mm: add per-zone lru list stat
[linux-2.6-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
1da177e4 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
eb608e3a 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
eb608e3a
JK
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 154
693108a8
TH
155#ifdef CONFIG_CGROUP_WRITEBACK
156
d60d1bdd
TH
157#define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
9fc3a43e 161#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
162
163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
c2aa723a
TH
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
e9f07dfd
TH
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175 return dtc->dom;
176}
177
9fc3a43e
TH
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180 return mdtc->gdtc;
181}
182
841710aa
TH
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185 return &wb->memcg_completions;
186}
187
693108a8
TH
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190{
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213}
214
215#else /* CONFIG_CGROUP_WRITEBACK */
216
d60d1bdd
TH
217#define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
9fc3a43e 219#define GDTC_INIT_NO_WB
c2aa723a
TH
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224 return false;
225}
e9f07dfd
TH
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229 return &global_wb_domain;
230}
231
9fc3a43e
TH
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234 return NULL;
235}
236
841710aa
TH
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239 return NULL;
240}
241
693108a8
TH
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244{
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247}
248
249#endif /* CONFIG_CGROUP_WRITEBACK */
250
a756cf59
JW
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
a804552b 269/**
281e3726
MG
270 * node_dirtyable_memory - number of dirtyable pages in a node
271 * @pgdat: the node
a804552b 272 *
281e3726
MG
273 * Returns the node's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-node dirty limits.
a804552b 275 */
281e3726 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 277{
281e3726
MG
278 unsigned long nr_pages = 0;
279 int z;
280
281 for (z = 0; z < MAX_NR_ZONES; z++) {
282 struct zone *zone = pgdat->node_zones + z;
283
284 if (!populated_zone(zone))
285 continue;
286
287 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288 }
a804552b 289
a8d01437
JW
290 /*
291 * Pages reserved for the kernel should not be considered
292 * dirtyable, to prevent a situation where reclaim has to
293 * clean pages in order to balance the zones.
294 */
281e3726 295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 296
281e3726
MG
297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
299
300 return nr_pages;
301}
bca67592
MG
302#ifdef CONFIG_HIGHMEM
303atomic_t highmem_file_pages;
304#endif
a804552b 305
1edf2234
JW
306static unsigned long highmem_dirtyable_memory(unsigned long total)
307{
308#ifdef CONFIG_HIGHMEM
309 int node;
9cb937e2 310 unsigned long x;
09b4ab3c 311 int i;
9cb937e2 312 unsigned long dirtyable = 0;
1edf2234
JW
313
314 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
315 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
316 struct zone *z;
9cb937e2 317 unsigned long nr_pages;
281e3726
MG
318
319 if (!is_highmem_idx(i))
320 continue;
321
322 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
323 if (!populated_zone(z))
324 continue;
1edf2234 325
9cb937e2 326 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 327 /* watch for underflows */
9cb937e2
MK
328 nr_pages -= min(nr_pages, high_wmark_pages(z));
329 dirtyable += nr_pages;
09b4ab3c 330 }
1edf2234 331 }
281e3726 332
9cb937e2
MK
333 x = dirtyable + atomic_read(&highmem_file_pages);
334
c8b74c2f
SR
335 /*
336 * Unreclaimable memory (kernel memory or anonymous memory
337 * without swap) can bring down the dirtyable pages below
338 * the zone's dirty balance reserve and the above calculation
339 * will underflow. However we still want to add in nodes
340 * which are below threshold (negative values) to get a more
341 * accurate calculation but make sure that the total never
342 * underflows.
343 */
344 if ((long)x < 0)
345 x = 0;
346
1edf2234
JW
347 /*
348 * Make sure that the number of highmem pages is never larger
349 * than the number of the total dirtyable memory. This can only
350 * occur in very strange VM situations but we want to make sure
351 * that this does not occur.
352 */
353 return min(x, total);
354#else
355 return 0;
356#endif
357}
358
359/**
ccafa287 360 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 361 *
ccafa287
JW
362 * Returns the global number of pages potentially available for dirty
363 * page cache. This is the base value for the global dirty limits.
1edf2234 364 */
18cf8cf8 365static unsigned long global_dirtyable_memory(void)
1edf2234
JW
366{
367 unsigned long x;
368
a804552b 369 x = global_page_state(NR_FREE_PAGES);
a8d01437
JW
370 /*
371 * Pages reserved for the kernel should not be considered
372 * dirtyable, to prevent a situation where reclaim has to
373 * clean pages in order to balance the zones.
374 */
375 x -= min(x, totalreserve_pages);
1edf2234 376
599d0c95
MG
377 x += global_node_page_state(NR_INACTIVE_FILE);
378 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 379
1edf2234
JW
380 if (!vm_highmem_is_dirtyable)
381 x -= highmem_dirtyable_memory(x);
382
383 return x + 1; /* Ensure that we never return 0 */
384}
385
9fc3a43e
TH
386/**
387 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
388 * @dtc: dirty_throttle_control of interest
ccafa287 389 *
9fc3a43e
TH
390 * Calculate @dtc->thresh and ->bg_thresh considering
391 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
392 * must ensure that @dtc->avail is set before calling this function. The
393 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
394 * real-time tasks.
395 */
9fc3a43e 396static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 397{
9fc3a43e
TH
398 const unsigned long available_memory = dtc->avail;
399 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
400 unsigned long bytes = vm_dirty_bytes;
401 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
402 /* convert ratios to per-PAGE_SIZE for higher precision */
403 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
404 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
405 unsigned long thresh;
406 unsigned long bg_thresh;
ccafa287
JW
407 struct task_struct *tsk;
408
9fc3a43e
TH
409 /* gdtc is !NULL iff @dtc is for memcg domain */
410 if (gdtc) {
411 unsigned long global_avail = gdtc->avail;
412
413 /*
414 * The byte settings can't be applied directly to memcg
415 * domains. Convert them to ratios by scaling against
62a584fe
TH
416 * globally available memory. As the ratios are in
417 * per-PAGE_SIZE, they can be obtained by dividing bytes by
418 * number of pages.
9fc3a43e
TH
419 */
420 if (bytes)
62a584fe
TH
421 ratio = min(DIV_ROUND_UP(bytes, global_avail),
422 PAGE_SIZE);
9fc3a43e 423 if (bg_bytes)
62a584fe
TH
424 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
425 PAGE_SIZE);
9fc3a43e
TH
426 bytes = bg_bytes = 0;
427 }
428
429 if (bytes)
430 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 431 else
62a584fe 432 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 433
9fc3a43e
TH
434 if (bg_bytes)
435 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 436 else
62a584fe 437 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 438
9fc3a43e
TH
439 if (bg_thresh >= thresh)
440 bg_thresh = thresh / 2;
ccafa287
JW
441 tsk = current;
442 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
a53eaff8
N
443 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
444 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 445 }
9fc3a43e
TH
446 dtc->thresh = thresh;
447 dtc->bg_thresh = bg_thresh;
448
449 /* we should eventually report the domain in the TP */
450 if (!gdtc)
451 trace_global_dirty_state(bg_thresh, thresh);
452}
453
454/**
455 * global_dirty_limits - background-writeback and dirty-throttling thresholds
456 * @pbackground: out parameter for bg_thresh
457 * @pdirty: out parameter for thresh
458 *
459 * Calculate bg_thresh and thresh for global_wb_domain. See
460 * domain_dirty_limits() for details.
461 */
462void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
463{
464 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
465
466 gdtc.avail = global_dirtyable_memory();
467 domain_dirty_limits(&gdtc);
468
469 *pbackground = gdtc.bg_thresh;
470 *pdirty = gdtc.thresh;
ccafa287
JW
471}
472
a756cf59 473/**
281e3726
MG
474 * node_dirty_limit - maximum number of dirty pages allowed in a node
475 * @pgdat: the node
a756cf59 476 *
281e3726
MG
477 * Returns the maximum number of dirty pages allowed in a node, based
478 * on the node's dirtyable memory.
a756cf59 479 */
281e3726 480static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 481{
281e3726 482 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
483 struct task_struct *tsk = current;
484 unsigned long dirty;
485
486 if (vm_dirty_bytes)
487 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 488 node_memory / global_dirtyable_memory();
a756cf59 489 else
281e3726 490 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59
JW
491
492 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
493 dirty += dirty / 4;
494
495 return dirty;
496}
497
498/**
281e3726
MG
499 * node_dirty_ok - tells whether a node is within its dirty limits
500 * @pgdat: the node to check
a756cf59 501 *
281e3726 502 * Returns %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
503 * dirty limit, %false if the limit is exceeded.
504 */
281e3726 505bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 506{
281e3726
MG
507 unsigned long limit = node_dirty_limit(pgdat);
508 unsigned long nr_pages = 0;
509
11fb9989
MG
510 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
511 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
512 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 513
281e3726 514 return nr_pages <= limit;
a756cf59
JW
515}
516
2da02997 517int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 518 void __user *buffer, size_t *lenp,
2da02997
DR
519 loff_t *ppos)
520{
521 int ret;
522
8d65af78 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
524 if (ret == 0 && write)
525 dirty_background_bytes = 0;
526 return ret;
527}
528
529int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 530 void __user *buffer, size_t *lenp,
2da02997
DR
531 loff_t *ppos)
532{
533 int ret;
534
8d65af78 535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
536 if (ret == 0 && write)
537 dirty_background_ratio = 0;
538 return ret;
539}
540
04fbfdc1 541int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 542 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
543 loff_t *ppos)
544{
545 int old_ratio = vm_dirty_ratio;
2da02997
DR
546 int ret;
547
8d65af78 548 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 549 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 550 writeback_set_ratelimit();
2da02997
DR
551 vm_dirty_bytes = 0;
552 }
553 return ret;
554}
555
2da02997 556int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 557 void __user *buffer, size_t *lenp,
2da02997
DR
558 loff_t *ppos)
559{
fc3501d4 560 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
561 int ret;
562
8d65af78 563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 564 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 565 writeback_set_ratelimit();
2da02997 566 vm_dirty_ratio = 0;
04fbfdc1
PZ
567 }
568 return ret;
569}
570
eb608e3a
JK
571static unsigned long wp_next_time(unsigned long cur_time)
572{
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
578}
579
c7981433
TH
580static void wb_domain_writeout_inc(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac)
04fbfdc1 583{
c7981433
TH
584 __fprop_inc_percpu_max(&dom->completions, completions,
585 max_prop_frac);
eb608e3a 586 /* First event after period switching was turned off? */
380c27ca 587 if (!unlikely(dom->period_time)) {
eb608e3a
JK
588 /*
589 * We can race with other __bdi_writeout_inc calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
593 */
380c27ca
TH
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 596 }
04fbfdc1
PZ
597}
598
c7981433
TH
599/*
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from test_clear_page_writeback().
602 */
603static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 604{
841710aa 605 struct wb_domain *cgdom;
dd5656e5 606
c7981433
TH
607 __inc_wb_stat(wb, WB_WRITTEN);
608 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac);
841710aa
TH
610
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac);
dd5656e5 615}
dd5656e5 616
93f78d88 617void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 618{
dd5656e5
MS
619 unsigned long flags;
620
621 local_irq_save(flags);
93f78d88 622 __wb_writeout_inc(wb);
dd5656e5 623 local_irq_restore(flags);
04fbfdc1 624}
93f78d88 625EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 626
eb608e3a
JK
627/*
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
630 */
631static void writeout_period(unsigned long t)
632{
380c27ca
TH
633 struct wb_domain *dom = (void *)t;
634 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
635 VM_COMPLETIONS_PERIOD_LEN;
636
380c27ca
TH
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 640 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
641 } else {
642 /*
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
645 */
380c27ca 646 dom->period_time = 0;
eb608e3a
JK
647 }
648}
649
380c27ca
TH
650int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
651{
652 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
653
654 spin_lock_init(&dom->lock);
655
380c27ca
TH
656 init_timer_deferrable(&dom->period_timer);
657 dom->period_timer.function = writeout_period;
658 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
659
660 dom->dirty_limit_tstamp = jiffies;
661
380c27ca
TH
662 return fprop_global_init(&dom->completions, gfp);
663}
664
841710aa
TH
665#ifdef CONFIG_CGROUP_WRITEBACK
666void wb_domain_exit(struct wb_domain *dom)
667{
668 del_timer_sync(&dom->period_timer);
669 fprop_global_destroy(&dom->completions);
670}
671#endif
672
189d3c4a 673/*
d08c429b
JW
674 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
675 * registered backing devices, which, for obvious reasons, can not
676 * exceed 100%.
189d3c4a 677 */
189d3c4a
PZ
678static unsigned int bdi_min_ratio;
679
680int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
681{
682 int ret = 0;
189d3c4a 683
cfc4ba53 684 spin_lock_bh(&bdi_lock);
a42dde04 685 if (min_ratio > bdi->max_ratio) {
189d3c4a 686 ret = -EINVAL;
a42dde04
PZ
687 } else {
688 min_ratio -= bdi->min_ratio;
689 if (bdi_min_ratio + min_ratio < 100) {
690 bdi_min_ratio += min_ratio;
691 bdi->min_ratio += min_ratio;
692 } else {
693 ret = -EINVAL;
694 }
695 }
cfc4ba53 696 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
697
698 return ret;
699}
700
701int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
702{
a42dde04
PZ
703 int ret = 0;
704
705 if (max_ratio > 100)
706 return -EINVAL;
707
cfc4ba53 708 spin_lock_bh(&bdi_lock);
a42dde04
PZ
709 if (bdi->min_ratio > max_ratio) {
710 ret = -EINVAL;
711 } else {
712 bdi->max_ratio = max_ratio;
eb608e3a 713 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 714 }
cfc4ba53 715 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
716
717 return ret;
718}
a42dde04 719EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 720
6c14ae1e
WF
721static unsigned long dirty_freerun_ceiling(unsigned long thresh,
722 unsigned long bg_thresh)
723{
724 return (thresh + bg_thresh) / 2;
725}
726
c7981433
TH
727static unsigned long hard_dirty_limit(struct wb_domain *dom,
728 unsigned long thresh)
ffd1f609 729{
dcc25ae7 730 return max(thresh, dom->dirty_limit);
ffd1f609
WF
731}
732
c5edf9cd
TH
733/*
734 * Memory which can be further allocated to a memcg domain is capped by
735 * system-wide clean memory excluding the amount being used in the domain.
736 */
737static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
738 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
739{
740 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
741 unsigned long clean = filepages - min(filepages, mdtc->dirty);
742 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
743 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 744
c5edf9cd 745 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
746}
747
6f718656 748/**
b1cbc6d4
TH
749 * __wb_calc_thresh - @wb's share of dirty throttling threshold
750 * @dtc: dirty_throttle_context of interest
1babe183 751 *
a88a341a 752 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 753 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
754 *
755 * Note that balance_dirty_pages() will only seriously take it as a hard limit
756 * when sleeping max_pause per page is not enough to keep the dirty pages under
757 * control. For example, when the device is completely stalled due to some error
758 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
759 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 760 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 761 *
6f718656 762 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
763 * - starving fast devices
764 * - piling up dirty pages (that will take long time to sync) on slow devices
765 *
a88a341a 766 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
767 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
768 */
b1cbc6d4 769static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 770{
e9f07dfd 771 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 772 unsigned long thresh = dtc->thresh;
0d960a38 773 u64 wb_thresh;
16c4042f 774 long numerator, denominator;
693108a8 775 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 776
16c4042f 777 /*
0d960a38 778 * Calculate this BDI's share of the thresh ratio.
16c4042f 779 */
e9770b34 780 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 781 &numerator, &denominator);
04fbfdc1 782
0d960a38
TH
783 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
784 wb_thresh *= numerator;
785 do_div(wb_thresh, denominator);
04fbfdc1 786
b1cbc6d4 787 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 788
0d960a38
TH
789 wb_thresh += (thresh * wb_min_ratio) / 100;
790 if (wb_thresh > (thresh * wb_max_ratio) / 100)
791 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 792
0d960a38 793 return wb_thresh;
1da177e4
LT
794}
795
b1cbc6d4
TH
796unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
797{
798 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
799 .thresh = thresh };
800 return __wb_calc_thresh(&gdtc);
1da177e4
LT
801}
802
5a537485
MP
803/*
804 * setpoint - dirty 3
805 * f(dirty) := 1.0 + (----------------)
806 * limit - setpoint
807 *
808 * it's a 3rd order polynomial that subjects to
809 *
810 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
811 * (2) f(setpoint) = 1.0 => the balance point
812 * (3) f(limit) = 0 => the hard limit
813 * (4) df/dx <= 0 => negative feedback control
814 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
815 * => fast response on large errors; small oscillation near setpoint
816 */
d5c9fde3 817static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
818 unsigned long dirty,
819 unsigned long limit)
820{
821 long long pos_ratio;
822 long x;
823
d5c9fde3 824 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 825 (limit - setpoint) | 1);
5a537485
MP
826 pos_ratio = x;
827 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
828 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
829 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
830
831 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
832}
833
6c14ae1e
WF
834/*
835 * Dirty position control.
836 *
837 * (o) global/bdi setpoints
838 *
de1fff37 839 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
840 * When the number of dirty pages is higher/lower than the setpoint, the
841 * dirty position control ratio (and hence task dirty ratelimit) will be
842 * decreased/increased to bring the dirty pages back to the setpoint.
843 *
844 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
845 *
846 * if (dirty < setpoint) scale up pos_ratio
847 * if (dirty > setpoint) scale down pos_ratio
848 *
de1fff37
TH
849 * if (wb_dirty < wb_setpoint) scale up pos_ratio
850 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
851 *
852 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
853 *
854 * (o) global control line
855 *
856 * ^ pos_ratio
857 * |
858 * | |<===== global dirty control scope ======>|
859 * 2.0 .............*
860 * | .*
861 * | . *
862 * | . *
863 * | . *
864 * | . *
865 * | . *
866 * 1.0 ................................*
867 * | . . *
868 * | . . *
869 * | . . *
870 * | . . *
871 * | . . *
872 * 0 +------------.------------------.----------------------*------------->
873 * freerun^ setpoint^ limit^ dirty pages
874 *
de1fff37 875 * (o) wb control line
6c14ae1e
WF
876 *
877 * ^ pos_ratio
878 * |
879 * | *
880 * | *
881 * | *
882 * | *
883 * | * |<=========== span ============>|
884 * 1.0 .......................*
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * | . *
894 * | . *
895 * | . *
896 * 1/4 ...............................................* * * * * * * * * * * *
897 * | . .
898 * | . .
899 * | . .
900 * 0 +----------------------.-------------------------------.------------->
de1fff37 901 * wb_setpoint^ x_intercept^
6c14ae1e 902 *
de1fff37 903 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
904 * be smoothly throttled down to normal if it starts high in situations like
905 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
906 * card's wb_dirty may rush to many times higher than wb_setpoint.
907 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 908 */
daddfa3c 909static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 910{
2bc00aef 911 struct bdi_writeback *wb = dtc->wb;
a88a341a 912 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 913 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 914 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 915 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
916 unsigned long x_intercept;
917 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 918 unsigned long wb_setpoint;
6c14ae1e
WF
919 unsigned long span;
920 long long pos_ratio; /* for scaling up/down the rate limit */
921 long x;
922
daddfa3c
TH
923 dtc->pos_ratio = 0;
924
2bc00aef 925 if (unlikely(dtc->dirty >= limit))
daddfa3c 926 return;
6c14ae1e
WF
927
928 /*
929 * global setpoint
930 *
5a537485
MP
931 * See comment for pos_ratio_polynom().
932 */
933 setpoint = (freerun + limit) / 2;
2bc00aef 934 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
935
936 /*
937 * The strictlimit feature is a tool preventing mistrusted filesystems
938 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
939 * such filesystems balance_dirty_pages always checks wb counters
940 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
941 * This is especially important for fuse which sets bdi->max_ratio to
942 * 1% by default. Without strictlimit feature, fuse writeback may
943 * consume arbitrary amount of RAM because it is accounted in
944 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 945 *
a88a341a 946 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 947 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
948 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
949 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 950 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 951 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 952 * about ~6K pages (as the average of background and throttle wb
5a537485 953 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 954 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 955 *
5a537485 956 * Note, that we cannot use global counters in these calculations
de1fff37 957 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
958 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
959 * in the example above).
6c14ae1e 960 */
a88a341a 961 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 962 long long wb_pos_ratio;
5a537485 963
daddfa3c
TH
964 if (dtc->wb_dirty < 8) {
965 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
966 2 << RATELIMIT_CALC_SHIFT);
967 return;
968 }
5a537485 969
2bc00aef 970 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 971 return;
5a537485 972
970fb01a
TH
973 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
974 dtc->wb_bg_thresh);
5a537485 975
de1fff37 976 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 977 return;
5a537485 978
2bc00aef 979 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 980 wb_thresh);
5a537485
MP
981
982 /*
de1fff37
TH
983 * Typically, for strictlimit case, wb_setpoint << setpoint
984 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 985 * state ("dirty") is not limiting factor and we have to
de1fff37 986 * make decision based on wb counters. But there is an
5a537485
MP
987 * important case when global pos_ratio should get precedence:
988 * global limits are exceeded (e.g. due to activities on other
de1fff37 989 * wb's) while given strictlimit wb is below limit.
5a537485 990 *
de1fff37 991 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 992 * but it would look too non-natural for the case of all
de1fff37 993 * activity in the system coming from a single strictlimit wb
5a537485
MP
994 * with bdi->max_ratio == 100%.
995 *
996 * Note that min() below somewhat changes the dynamics of the
997 * control system. Normally, pos_ratio value can be well over 3
de1fff37 998 * (when globally we are at freerun and wb is well below wb
5a537485
MP
999 * setpoint). Now the maximum pos_ratio in the same situation
1000 * is 2. We might want to tweak this if we observe the control
1001 * system is too slow to adapt.
1002 */
daddfa3c
TH
1003 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1004 return;
5a537485 1005 }
6c14ae1e
WF
1006
1007 /*
1008 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1009 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1010 * pos_ratio further down/up. That is done by the following mechanism.
1011 */
1012
1013 /*
de1fff37 1014 * wb setpoint
6c14ae1e 1015 *
de1fff37 1016 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1017 *
de1fff37 1018 * x_intercept - wb_dirty
6c14ae1e 1019 * := --------------------------
de1fff37 1020 * x_intercept - wb_setpoint
6c14ae1e 1021 *
de1fff37 1022 * The main wb control line is a linear function that subjects to
6c14ae1e 1023 *
de1fff37
TH
1024 * (1) f(wb_setpoint) = 1.0
1025 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1026 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1027 *
de1fff37 1028 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1029 * regularly within range
de1fff37 1030 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1031 * for various filesystems, where (2) can yield in a reasonable 12.5%
1032 * fluctuation range for pos_ratio.
1033 *
de1fff37 1034 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1035 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1036 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1037 */
2bc00aef
TH
1038 if (unlikely(wb_thresh > dtc->thresh))
1039 wb_thresh = dtc->thresh;
aed21ad2 1040 /*
de1fff37 1041 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1042 * device is slow, but that it has remained inactive for long time.
1043 * Honour such devices a reasonable good (hopefully IO efficient)
1044 * threshold, so that the occasional writes won't be blocked and active
1045 * writes can rampup the threshold quickly.
1046 */
2bc00aef 1047 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1048 /*
de1fff37
TH
1049 * scale global setpoint to wb's:
1050 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1051 */
e4bc13ad 1052 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1053 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1054 /*
de1fff37
TH
1055 * Use span=(8*write_bw) in single wb case as indicated by
1056 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1057 *
de1fff37
TH
1058 * wb_thresh thresh - wb_thresh
1059 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1060 * thresh thresh
6c14ae1e 1061 */
2bc00aef 1062 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1063 x_intercept = wb_setpoint + span;
6c14ae1e 1064
2bc00aef
TH
1065 if (dtc->wb_dirty < x_intercept - span / 4) {
1066 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1067 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1068 } else
1069 pos_ratio /= 4;
1070
8927f66c 1071 /*
de1fff37 1072 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1073 * It may push the desired control point of global dirty pages higher
1074 * than setpoint.
1075 */
de1fff37 1076 x_intercept = wb_thresh / 2;
2bc00aef
TH
1077 if (dtc->wb_dirty < x_intercept) {
1078 if (dtc->wb_dirty > x_intercept / 8)
1079 pos_ratio = div_u64(pos_ratio * x_intercept,
1080 dtc->wb_dirty);
50657fc4 1081 else
8927f66c
WF
1082 pos_ratio *= 8;
1083 }
1084
daddfa3c 1085 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1086}
1087
a88a341a
TH
1088static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1089 unsigned long elapsed,
1090 unsigned long written)
e98be2d5
WF
1091{
1092 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1093 unsigned long avg = wb->avg_write_bandwidth;
1094 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1095 u64 bw;
1096
1097 /*
1098 * bw = written * HZ / elapsed
1099 *
1100 * bw * elapsed + write_bandwidth * (period - elapsed)
1101 * write_bandwidth = ---------------------------------------------------
1102 * period
c72efb65
TH
1103 *
1104 * @written may have decreased due to account_page_redirty().
1105 * Avoid underflowing @bw calculation.
e98be2d5 1106 */
a88a341a 1107 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1108 bw *= HZ;
1109 if (unlikely(elapsed > period)) {
1110 do_div(bw, elapsed);
1111 avg = bw;
1112 goto out;
1113 }
a88a341a 1114 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1115 bw >>= ilog2(period);
1116
1117 /*
1118 * one more level of smoothing, for filtering out sudden spikes
1119 */
1120 if (avg > old && old >= (unsigned long)bw)
1121 avg -= (avg - old) >> 3;
1122
1123 if (avg < old && old <= (unsigned long)bw)
1124 avg += (old - avg) >> 3;
1125
1126out:
95a46c65
TH
1127 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1128 avg = max(avg, 1LU);
1129 if (wb_has_dirty_io(wb)) {
1130 long delta = avg - wb->avg_write_bandwidth;
1131 WARN_ON_ONCE(atomic_long_add_return(delta,
1132 &wb->bdi->tot_write_bandwidth) <= 0);
1133 }
a88a341a
TH
1134 wb->write_bandwidth = bw;
1135 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1136}
1137
2bc00aef 1138static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1139{
e9f07dfd 1140 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1141 unsigned long thresh = dtc->thresh;
dcc25ae7 1142 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1143
1144 /*
1145 * Follow up in one step.
1146 */
1147 if (limit < thresh) {
1148 limit = thresh;
1149 goto update;
1150 }
1151
1152 /*
1153 * Follow down slowly. Use the higher one as the target, because thresh
1154 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1155 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1156 */
2bc00aef 1157 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1158 if (limit > thresh) {
1159 limit -= (limit - thresh) >> 5;
1160 goto update;
1161 }
1162 return;
1163update:
dcc25ae7 1164 dom->dirty_limit = limit;
c42843f2
WF
1165}
1166
e9f07dfd 1167static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1168 unsigned long now)
1169{
e9f07dfd 1170 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1171
1172 /*
1173 * check locklessly first to optimize away locking for the most time
1174 */
dcc25ae7 1175 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1176 return;
1177
dcc25ae7
TH
1178 spin_lock(&dom->lock);
1179 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1180 update_dirty_limit(dtc);
dcc25ae7 1181 dom->dirty_limit_tstamp = now;
c42843f2 1182 }
dcc25ae7 1183 spin_unlock(&dom->lock);
c42843f2
WF
1184}
1185
be3ffa27 1186/*
de1fff37 1187 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1188 *
de1fff37 1189 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1190 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1191 */
2bc00aef 1192static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1193 unsigned long dirtied,
1194 unsigned long elapsed)
be3ffa27 1195{
2bc00aef
TH
1196 struct bdi_writeback *wb = dtc->wb;
1197 unsigned long dirty = dtc->dirty;
1198 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1199 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1200 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1201 unsigned long write_bw = wb->avg_write_bandwidth;
1202 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1203 unsigned long dirty_rate;
1204 unsigned long task_ratelimit;
1205 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1206 unsigned long step;
1207 unsigned long x;
d59b1087 1208 unsigned long shift;
be3ffa27
WF
1209
1210 /*
1211 * The dirty rate will match the writeout rate in long term, except
1212 * when dirty pages are truncated by userspace or re-dirtied by FS.
1213 */
a88a341a 1214 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1215
be3ffa27
WF
1216 /*
1217 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1218 */
1219 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1220 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1221 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1222
1223 /*
1224 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1225 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1226 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1227 * formula will yield the balanced rate limit (write_bw / N).
1228 *
1229 * Note that the expanded form is not a pure rate feedback:
1230 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1231 * but also takes pos_ratio into account:
1232 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1233 *
1234 * (1) is not realistic because pos_ratio also takes part in balancing
1235 * the dirty rate. Consider the state
1236 * pos_ratio = 0.5 (3)
1237 * rate = 2 * (write_bw / N) (4)
1238 * If (1) is used, it will stuck in that state! Because each dd will
1239 * be throttled at
1240 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1241 * yielding
1242 * dirty_rate = N * task_ratelimit = write_bw (6)
1243 * put (6) into (1) we get
1244 * rate_(i+1) = rate_(i) (7)
1245 *
1246 * So we end up using (2) to always keep
1247 * rate_(i+1) ~= (write_bw / N) (8)
1248 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1249 * pos_ratio is able to drive itself to 1.0, which is not only where
1250 * the dirty count meet the setpoint, but also where the slope of
1251 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1252 */
1253 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1254 dirty_rate | 1);
bdaac490
WF
1255 /*
1256 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1257 */
1258 if (unlikely(balanced_dirty_ratelimit > write_bw))
1259 balanced_dirty_ratelimit = write_bw;
be3ffa27 1260
7381131c
WF
1261 /*
1262 * We could safely do this and return immediately:
1263 *
de1fff37 1264 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1265 *
1266 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1267 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1268 * limit the step size.
1269 *
1270 * The below code essentially only uses the relative value of
1271 *
1272 * task_ratelimit - dirty_ratelimit
1273 * = (pos_ratio - 1) * dirty_ratelimit
1274 *
1275 * which reflects the direction and size of dirty position error.
1276 */
1277
1278 /*
1279 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1280 * task_ratelimit is on the same side of dirty_ratelimit, too.
1281 * For example, when
1282 * - dirty_ratelimit > balanced_dirty_ratelimit
1283 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1284 * lowering dirty_ratelimit will help meet both the position and rate
1285 * control targets. Otherwise, don't update dirty_ratelimit if it will
1286 * only help meet the rate target. After all, what the users ultimately
1287 * feel and care are stable dirty rate and small position error.
1288 *
1289 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1290 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1291 * keeps jumping around randomly and can even leap far away at times
1292 * due to the small 200ms estimation period of dirty_rate (we want to
1293 * keep that period small to reduce time lags).
1294 */
1295 step = 0;
5a537485
MP
1296
1297 /*
de1fff37 1298 * For strictlimit case, calculations above were based on wb counters
a88a341a 1299 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1300 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1301 * Hence, to calculate "step" properly, we have to use wb_dirty as
1302 * "dirty" and wb_setpoint as "setpoint".
5a537485 1303 *
de1fff37
TH
1304 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1305 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1306 * of backing device.
5a537485 1307 */
a88a341a 1308 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1309 dirty = dtc->wb_dirty;
1310 if (dtc->wb_dirty < 8)
1311 setpoint = dtc->wb_dirty + 1;
5a537485 1312 else
970fb01a 1313 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1314 }
1315
7381131c 1316 if (dirty < setpoint) {
a88a341a 1317 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1318 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1319 if (dirty_ratelimit < x)
1320 step = x - dirty_ratelimit;
1321 } else {
a88a341a 1322 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1323 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1324 if (dirty_ratelimit > x)
1325 step = dirty_ratelimit - x;
1326 }
1327
1328 /*
1329 * Don't pursue 100% rate matching. It's impossible since the balanced
1330 * rate itself is constantly fluctuating. So decrease the track speed
1331 * when it gets close to the target. Helps eliminate pointless tremors.
1332 */
d59b1087
AR
1333 shift = dirty_ratelimit / (2 * step + 1);
1334 if (shift < BITS_PER_LONG)
1335 step = DIV_ROUND_UP(step >> shift, 8);
1336 else
1337 step = 0;
7381131c
WF
1338
1339 if (dirty_ratelimit < balanced_dirty_ratelimit)
1340 dirty_ratelimit += step;
1341 else
1342 dirty_ratelimit -= step;
1343
a88a341a
TH
1344 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1345 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1346
5634cc2a 1347 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1348}
1349
c2aa723a
TH
1350static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1351 struct dirty_throttle_control *mdtc,
8a731799
TH
1352 unsigned long start_time,
1353 bool update_ratelimit)
e98be2d5 1354{
c2aa723a 1355 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1356 unsigned long now = jiffies;
a88a341a 1357 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1358 unsigned long dirtied;
e98be2d5
WF
1359 unsigned long written;
1360
8a731799
TH
1361 lockdep_assert_held(&wb->list_lock);
1362
e98be2d5
WF
1363 /*
1364 * rate-limit, only update once every 200ms.
1365 */
1366 if (elapsed < BANDWIDTH_INTERVAL)
1367 return;
1368
a88a341a
TH
1369 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1370 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1371
1372 /*
1373 * Skip quiet periods when disk bandwidth is under-utilized.
1374 * (at least 1s idle time between two flusher runs)
1375 */
a88a341a 1376 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1377 goto snapshot;
1378
8a731799 1379 if (update_ratelimit) {
c2aa723a
TH
1380 domain_update_bandwidth(gdtc, now);
1381 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1382
1383 /*
1384 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1385 * compiler has no way to figure that out. Help it.
1386 */
1387 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1388 domain_update_bandwidth(mdtc, now);
1389 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1390 }
be3ffa27 1391 }
a88a341a 1392 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1393
1394snapshot:
a88a341a
TH
1395 wb->dirtied_stamp = dirtied;
1396 wb->written_stamp = written;
1397 wb->bw_time_stamp = now;
e98be2d5
WF
1398}
1399
8a731799 1400void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1401{
2bc00aef
TH
1402 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1403
c2aa723a 1404 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1405}
1406
9d823e8f 1407/*
d0e1d66b 1408 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1409 * will look to see if it needs to start dirty throttling.
1410 *
1411 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1412 * global_page_state() too often. So scale it near-sqrt to the safety margin
1413 * (the number of pages we may dirty without exceeding the dirty limits).
1414 */
1415static unsigned long dirty_poll_interval(unsigned long dirty,
1416 unsigned long thresh)
1417{
1418 if (thresh > dirty)
1419 return 1UL << (ilog2(thresh - dirty) >> 1);
1420
1421 return 1;
1422}
1423
a88a341a 1424static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1425 unsigned long wb_dirty)
c8462cc9 1426{
a88a341a 1427 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1428 unsigned long t;
c8462cc9 1429
7ccb9ad5
WF
1430 /*
1431 * Limit pause time for small memory systems. If sleeping for too long
1432 * time, a small pool of dirty/writeback pages may go empty and disk go
1433 * idle.
1434 *
1435 * 8 serves as the safety ratio.
1436 */
de1fff37 1437 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1438 t++;
1439
e3b6c655 1440 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1441}
1442
a88a341a
TH
1443static long wb_min_pause(struct bdi_writeback *wb,
1444 long max_pause,
1445 unsigned long task_ratelimit,
1446 unsigned long dirty_ratelimit,
1447 int *nr_dirtied_pause)
c8462cc9 1448{
a88a341a
TH
1449 long hi = ilog2(wb->avg_write_bandwidth);
1450 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1451 long t; /* target pause */
1452 long pause; /* estimated next pause */
1453 int pages; /* target nr_dirtied_pause */
c8462cc9 1454
7ccb9ad5
WF
1455 /* target for 10ms pause on 1-dd case */
1456 t = max(1, HZ / 100);
c8462cc9
WF
1457
1458 /*
1459 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1460 * overheads.
1461 *
7ccb9ad5 1462 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1463 */
1464 if (hi > lo)
7ccb9ad5 1465 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1466
1467 /*
7ccb9ad5
WF
1468 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1469 * on the much more stable dirty_ratelimit. However the next pause time
1470 * will be computed based on task_ratelimit and the two rate limits may
1471 * depart considerably at some time. Especially if task_ratelimit goes
1472 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1473 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1474 * result task_ratelimit won't be executed faithfully, which could
1475 * eventually bring down dirty_ratelimit.
c8462cc9 1476 *
7ccb9ad5
WF
1477 * We apply two rules to fix it up:
1478 * 1) try to estimate the next pause time and if necessary, use a lower
1479 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1480 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1481 * 2) limit the target pause time to max_pause/2, so that the normal
1482 * small fluctuations of task_ratelimit won't trigger rule (1) and
1483 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1484 */
7ccb9ad5
WF
1485 t = min(t, 1 + max_pause / 2);
1486 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1487
1488 /*
5b9b3574
WF
1489 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1490 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1491 * When the 16 consecutive reads are often interrupted by some dirty
1492 * throttling pause during the async writes, cfq will go into idles
1493 * (deadline is fine). So push nr_dirtied_pause as high as possible
1494 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1495 */
5b9b3574
WF
1496 if (pages < DIRTY_POLL_THRESH) {
1497 t = max_pause;
1498 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1499 if (pages > DIRTY_POLL_THRESH) {
1500 pages = DIRTY_POLL_THRESH;
1501 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1502 }
1503 }
1504
7ccb9ad5
WF
1505 pause = HZ * pages / (task_ratelimit + 1);
1506 if (pause > max_pause) {
1507 t = max_pause;
1508 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1509 }
c8462cc9 1510
7ccb9ad5 1511 *nr_dirtied_pause = pages;
c8462cc9 1512 /*
7ccb9ad5 1513 * The minimal pause time will normally be half the target pause time.
c8462cc9 1514 */
5b9b3574 1515 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1516}
1517
970fb01a 1518static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1519{
2bc00aef 1520 struct bdi_writeback *wb = dtc->wb;
93f78d88 1521 unsigned long wb_reclaimable;
5a537485
MP
1522
1523 /*
de1fff37 1524 * wb_thresh is not treated as some limiting factor as
5a537485 1525 * dirty_thresh, due to reasons
de1fff37 1526 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1527 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1528 * go into state (wb_dirty >> wb_thresh) either because
1529 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1530 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1531 * dirtiers for 100 seconds until wb_dirty drops under
1532 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1533 * wb_position_ratio() will let the dirtier task progress
de1fff37 1534 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1535 */
b1cbc6d4 1536 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1537 dtc->wb_bg_thresh = dtc->thresh ?
1538 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1539
1540 /*
1541 * In order to avoid the stacked BDI deadlock we need
1542 * to ensure we accurately count the 'dirty' pages when
1543 * the threshold is low.
1544 *
1545 * Otherwise it would be possible to get thresh+n pages
1546 * reported dirty, even though there are thresh-m pages
1547 * actually dirty; with m+n sitting in the percpu
1548 * deltas.
1549 */
2bc00aef 1550 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1551 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1552 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1553 } else {
93f78d88 1554 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1555 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1556 }
1557}
1558
1da177e4
LT
1559/*
1560 * balance_dirty_pages() must be called by processes which are generating dirty
1561 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1562 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1563 * If we're over `background_thresh' then the writeback threads are woken to
1564 * perform some writeout.
1da177e4 1565 */
3a2e9a5a 1566static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1567 struct bdi_writeback *wb,
143dfe86 1568 unsigned long pages_dirtied)
1da177e4 1569{
2bc00aef 1570 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1571 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1572 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1573 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1574 &mdtc_stor : NULL;
1575 struct dirty_throttle_control *sdtc;
143dfe86 1576 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1577 long period;
7ccb9ad5
WF
1578 long pause;
1579 long max_pause;
1580 long min_pause;
1581 int nr_dirtied_pause;
e50e3720 1582 bool dirty_exceeded = false;
143dfe86 1583 unsigned long task_ratelimit;
7ccb9ad5 1584 unsigned long dirty_ratelimit;
dfb8ae56 1585 struct backing_dev_info *bdi = wb->bdi;
5a537485 1586 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1587 unsigned long start_time = jiffies;
1da177e4
LT
1588
1589 for (;;) {
83712358 1590 unsigned long now = jiffies;
2bc00aef 1591 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1592 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1593 unsigned long m_thresh = 0;
1594 unsigned long m_bg_thresh = 0;
83712358 1595
143dfe86
WF
1596 /*
1597 * Unstable writes are a feature of certain networked
1598 * filesystems (i.e. NFS) in which data may have been
1599 * written to the server's write cache, but has not yet
1600 * been flushed to permanent storage.
1601 */
11fb9989
MG
1602 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1603 global_node_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1604 gdtc->avail = global_dirtyable_memory();
11fb9989 1605 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1606
9fc3a43e 1607 domain_dirty_limits(gdtc);
16c4042f 1608
5a537485 1609 if (unlikely(strictlimit)) {
970fb01a 1610 wb_dirty_limits(gdtc);
5a537485 1611
2bc00aef
TH
1612 dirty = gdtc->wb_dirty;
1613 thresh = gdtc->wb_thresh;
970fb01a 1614 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1615 } else {
2bc00aef
TH
1616 dirty = gdtc->dirty;
1617 thresh = gdtc->thresh;
1618 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1619 }
1620
c2aa723a 1621 if (mdtc) {
c5edf9cd 1622 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1623
1624 /*
1625 * If @wb belongs to !root memcg, repeat the same
1626 * basic calculations for the memcg domain.
1627 */
c5edf9cd
TH
1628 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1629 &mdtc->dirty, &writeback);
c2aa723a 1630 mdtc->dirty += writeback;
c5edf9cd 1631 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1632
1633 domain_dirty_limits(mdtc);
1634
1635 if (unlikely(strictlimit)) {
1636 wb_dirty_limits(mdtc);
1637 m_dirty = mdtc->wb_dirty;
1638 m_thresh = mdtc->wb_thresh;
1639 m_bg_thresh = mdtc->wb_bg_thresh;
1640 } else {
1641 m_dirty = mdtc->dirty;
1642 m_thresh = mdtc->thresh;
1643 m_bg_thresh = mdtc->bg_thresh;
1644 }
5a537485
MP
1645 }
1646
16c4042f
WF
1647 /*
1648 * Throttle it only when the background writeback cannot
1649 * catch-up. This avoids (excessively) small writeouts
de1fff37 1650 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1651 *
de1fff37
TH
1652 * In strictlimit case make decision based on the wb counters
1653 * and limits. Small writeouts when the wb limits are ramping
5a537485 1654 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1655 *
1656 * If memcg domain is in effect, @dirty should be under
1657 * both global and memcg freerun ceilings.
16c4042f 1658 */
c2aa723a
TH
1659 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1660 (!mdtc ||
1661 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1662 unsigned long intv = dirty_poll_interval(dirty, thresh);
1663 unsigned long m_intv = ULONG_MAX;
1664
83712358
WF
1665 current->dirty_paused_when = now;
1666 current->nr_dirtied = 0;
c2aa723a
TH
1667 if (mdtc)
1668 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1669 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1670 break;
83712358 1671 }
16c4042f 1672
bc05873d 1673 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1674 wb_start_background_writeback(wb);
143dfe86 1675
c2aa723a
TH
1676 /*
1677 * Calculate global domain's pos_ratio and select the
1678 * global dtc by default.
1679 */
5a537485 1680 if (!strictlimit)
970fb01a 1681 wb_dirty_limits(gdtc);
5fce25a9 1682
2bc00aef
TH
1683 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1684 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1685
1686 wb_position_ratio(gdtc);
c2aa723a
TH
1687 sdtc = gdtc;
1688
1689 if (mdtc) {
1690 /*
1691 * If memcg domain is in effect, calculate its
1692 * pos_ratio. @wb should satisfy constraints from
1693 * both global and memcg domains. Choose the one
1694 * w/ lower pos_ratio.
1695 */
1696 if (!strictlimit)
1697 wb_dirty_limits(mdtc);
1698
1699 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1700 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1701
1702 wb_position_ratio(mdtc);
1703 if (mdtc->pos_ratio < gdtc->pos_ratio)
1704 sdtc = mdtc;
1705 }
daddfa3c 1706
a88a341a
TH
1707 if (dirty_exceeded && !wb->dirty_exceeded)
1708 wb->dirty_exceeded = 1;
1da177e4 1709
8a731799
TH
1710 if (time_is_before_jiffies(wb->bw_time_stamp +
1711 BANDWIDTH_INTERVAL)) {
1712 spin_lock(&wb->list_lock);
c2aa723a 1713 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1714 spin_unlock(&wb->list_lock);
1715 }
e98be2d5 1716
c2aa723a 1717 /* throttle according to the chosen dtc */
a88a341a 1718 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1719 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1720 RATELIMIT_CALC_SHIFT;
c2aa723a 1721 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1722 min_pause = wb_min_pause(wb, max_pause,
1723 task_ratelimit, dirty_ratelimit,
1724 &nr_dirtied_pause);
7ccb9ad5 1725
3a73dbbc 1726 if (unlikely(task_ratelimit == 0)) {
83712358 1727 period = max_pause;
c8462cc9 1728 pause = max_pause;
143dfe86 1729 goto pause;
04fbfdc1 1730 }
83712358
WF
1731 period = HZ * pages_dirtied / task_ratelimit;
1732 pause = period;
1733 if (current->dirty_paused_when)
1734 pause -= now - current->dirty_paused_when;
1735 /*
1736 * For less than 1s think time (ext3/4 may block the dirtier
1737 * for up to 800ms from time to time on 1-HDD; so does xfs,
1738 * however at much less frequency), try to compensate it in
1739 * future periods by updating the virtual time; otherwise just
1740 * do a reset, as it may be a light dirtier.
1741 */
7ccb9ad5 1742 if (pause < min_pause) {
5634cc2a 1743 trace_balance_dirty_pages(wb,
c2aa723a
TH
1744 sdtc->thresh,
1745 sdtc->bg_thresh,
1746 sdtc->dirty,
1747 sdtc->wb_thresh,
1748 sdtc->wb_dirty,
ece13ac3
WF
1749 dirty_ratelimit,
1750 task_ratelimit,
1751 pages_dirtied,
83712358 1752 period,
7ccb9ad5 1753 min(pause, 0L),
ece13ac3 1754 start_time);
83712358
WF
1755 if (pause < -HZ) {
1756 current->dirty_paused_when = now;
1757 current->nr_dirtied = 0;
1758 } else if (period) {
1759 current->dirty_paused_when += period;
1760 current->nr_dirtied = 0;
7ccb9ad5
WF
1761 } else if (current->nr_dirtied_pause <= pages_dirtied)
1762 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1763 break;
04fbfdc1 1764 }
7ccb9ad5
WF
1765 if (unlikely(pause > max_pause)) {
1766 /* for occasional dropped task_ratelimit */
1767 now += min(pause - max_pause, max_pause);
1768 pause = max_pause;
1769 }
143dfe86
WF
1770
1771pause:
5634cc2a 1772 trace_balance_dirty_pages(wb,
c2aa723a
TH
1773 sdtc->thresh,
1774 sdtc->bg_thresh,
1775 sdtc->dirty,
1776 sdtc->wb_thresh,
1777 sdtc->wb_dirty,
ece13ac3
WF
1778 dirty_ratelimit,
1779 task_ratelimit,
1780 pages_dirtied,
83712358 1781 period,
ece13ac3
WF
1782 pause,
1783 start_time);
499d05ec 1784 __set_current_state(TASK_KILLABLE);
d25105e8 1785 io_schedule_timeout(pause);
87c6a9b2 1786
83712358
WF
1787 current->dirty_paused_when = now + pause;
1788 current->nr_dirtied = 0;
7ccb9ad5 1789 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1790
ffd1f609 1791 /*
2bc00aef
TH
1792 * This is typically equal to (dirty < thresh) and can also
1793 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1794 */
1df64719 1795 if (task_ratelimit)
ffd1f609 1796 break;
499d05ec 1797
c5c6343c
WF
1798 /*
1799 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1800 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1801 * to go through, so that tasks on them still remain responsive.
1802 *
1803 * In theory 1 page is enough to keep the comsumer-producer
1804 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1805 * more page. However wb_dirty has accounting errors. So use
93f78d88 1806 * the larger and more IO friendly wb_stat_error.
c5c6343c 1807 */
c2aa723a 1808 if (sdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1809 break;
1810
499d05ec
JK
1811 if (fatal_signal_pending(current))
1812 break;
1da177e4
LT
1813 }
1814
a88a341a
TH
1815 if (!dirty_exceeded && wb->dirty_exceeded)
1816 wb->dirty_exceeded = 0;
1da177e4 1817
bc05873d 1818 if (writeback_in_progress(wb))
5b0830cb 1819 return;
1da177e4
LT
1820
1821 /*
1822 * In laptop mode, we wait until hitting the higher threshold before
1823 * starting background writeout, and then write out all the way down
1824 * to the lower threshold. So slow writers cause minimal disk activity.
1825 *
1826 * In normal mode, we start background writeout at the lower
1827 * background_thresh, to keep the amount of dirty memory low.
1828 */
143dfe86
WF
1829 if (laptop_mode)
1830 return;
1831
2bc00aef 1832 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1833 wb_start_background_writeback(wb);
1da177e4
LT
1834}
1835
9d823e8f 1836static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1837
54848d73
WF
1838/*
1839 * Normal tasks are throttled by
1840 * loop {
1841 * dirty tsk->nr_dirtied_pause pages;
1842 * take a snap in balance_dirty_pages();
1843 * }
1844 * However there is a worst case. If every task exit immediately when dirtied
1845 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1846 * called to throttle the page dirties. The solution is to save the not yet
1847 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1848 * randomly into the running tasks. This works well for the above worst case,
1849 * as the new task will pick up and accumulate the old task's leaked dirty
1850 * count and eventually get throttled.
1851 */
1852DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1853
1da177e4 1854/**
d0e1d66b 1855 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1856 * @mapping: address_space which was dirtied
1da177e4
LT
1857 *
1858 * Processes which are dirtying memory should call in here once for each page
1859 * which was newly dirtied. The function will periodically check the system's
1860 * dirty state and will initiate writeback if needed.
1861 *
1862 * On really big machines, get_writeback_state is expensive, so try to avoid
1863 * calling it too often (ratelimiting). But once we're over the dirty memory
1864 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1865 * from overshooting the limit by (ratelimit_pages) each.
1866 */
d0e1d66b 1867void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1868{
dfb8ae56
TH
1869 struct inode *inode = mapping->host;
1870 struct backing_dev_info *bdi = inode_to_bdi(inode);
1871 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1872 int ratelimit;
1873 int *p;
1da177e4 1874
36715cef
WF
1875 if (!bdi_cap_account_dirty(bdi))
1876 return;
1877
dfb8ae56
TH
1878 if (inode_cgwb_enabled(inode))
1879 wb = wb_get_create_current(bdi, GFP_KERNEL);
1880 if (!wb)
1881 wb = &bdi->wb;
1882
9d823e8f 1883 ratelimit = current->nr_dirtied_pause;
a88a341a 1884 if (wb->dirty_exceeded)
9d823e8f
WF
1885 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1886
9d823e8f 1887 preempt_disable();
1da177e4 1888 /*
9d823e8f
WF
1889 * This prevents one CPU to accumulate too many dirtied pages without
1890 * calling into balance_dirty_pages(), which can happen when there are
1891 * 1000+ tasks, all of them start dirtying pages at exactly the same
1892 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1893 */
7c8e0181 1894 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1895 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1896 *p = 0;
d3bc1fef
WF
1897 else if (unlikely(*p >= ratelimit_pages)) {
1898 *p = 0;
1899 ratelimit = 0;
1da177e4 1900 }
54848d73
WF
1901 /*
1902 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1903 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1904 * the dirty throttling and livelock other long-run dirtiers.
1905 */
7c8e0181 1906 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1907 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1908 unsigned long nr_pages_dirtied;
54848d73
WF
1909 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1910 *p -= nr_pages_dirtied;
1911 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1912 }
fa5a734e 1913 preempt_enable();
9d823e8f
WF
1914
1915 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1916 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1917
1918 wb_put(wb);
1da177e4 1919}
d0e1d66b 1920EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1921
aa661bbe
TH
1922/**
1923 * wb_over_bg_thresh - does @wb need to be written back?
1924 * @wb: bdi_writeback of interest
1925 *
1926 * Determines whether background writeback should keep writing @wb or it's
1927 * clean enough. Returns %true if writeback should continue.
1928 */
1929bool wb_over_bg_thresh(struct bdi_writeback *wb)
1930{
947e9762 1931 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1932 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1933 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1934 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1935 &mdtc_stor : NULL;
aa661bbe 1936
947e9762
TH
1937 /*
1938 * Similar to balance_dirty_pages() but ignores pages being written
1939 * as we're trying to decide whether to put more under writeback.
1940 */
1941 gdtc->avail = global_dirtyable_memory();
11fb9989
MG
1942 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1943 global_node_page_state(NR_UNSTABLE_NFS);
947e9762 1944 domain_dirty_limits(gdtc);
aa661bbe 1945
947e9762 1946 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1947 return true;
1948
74d36944
HC
1949 if (wb_stat(wb, WB_RECLAIMABLE) >
1950 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1951 return true;
1952
c2aa723a 1953 if (mdtc) {
c5edf9cd 1954 unsigned long filepages, headroom, writeback;
c2aa723a 1955
c5edf9cd
TH
1956 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1957 &writeback);
1958 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1959 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1960
1961 if (mdtc->dirty > mdtc->bg_thresh)
1962 return true;
1963
74d36944
HC
1964 if (wb_stat(wb, WB_RECLAIMABLE) >
1965 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1966 return true;
1967 }
1968
aa661bbe
TH
1969 return false;
1970}
1971
232ea4d6 1972void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1973{
364aeb28
DR
1974 unsigned long background_thresh;
1975 unsigned long dirty_thresh;
1da177e4
LT
1976
1977 for ( ; ; ) {
16c4042f 1978 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1979 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1980
1981 /*
1982 * Boost the allowable dirty threshold a bit for page
1983 * allocators so they don't get DoS'ed by heavy writers
1984 */
1985 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1986
11fb9989
MG
1987 if (global_node_page_state(NR_UNSTABLE_NFS) +
1988 global_node_page_state(NR_WRITEBACK) <= dirty_thresh)
c24f21bd 1989 break;
8aa7e847 1990 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1991
1992 /*
1993 * The caller might hold locks which can prevent IO completion
1994 * or progress in the filesystem. So we cannot just sit here
1995 * waiting for IO to complete.
1996 */
1997 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1998 break;
1da177e4
LT
1999 }
2000}
2001
1da177e4
LT
2002/*
2003 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2004 */
cccad5b9 2005int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 2006 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2007{
8d65af78 2008 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
2009 return 0;
2010}
2011
c2c4986e 2012#ifdef CONFIG_BLOCK
31373d09 2013void laptop_mode_timer_fn(unsigned long data)
1da177e4 2014{
31373d09 2015 struct request_queue *q = (struct request_queue *)data;
11fb9989
MG
2016 int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
2017 global_node_page_state(NR_UNSTABLE_NFS);
a06fd6b1 2018 struct bdi_writeback *wb;
1da177e4 2019
31373d09
MG
2020 /*
2021 * We want to write everything out, not just down to the dirty
2022 * threshold
2023 */
a06fd6b1
TH
2024 if (!bdi_has_dirty_io(&q->backing_dev_info))
2025 return;
2026
9ad18ab9 2027 rcu_read_lock();
b817525a 2028 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
a06fd6b1
TH
2029 if (wb_has_dirty_io(wb))
2030 wb_start_writeback(wb, nr_pages, true,
2031 WB_REASON_LAPTOP_TIMER);
9ad18ab9 2032 rcu_read_unlock();
1da177e4
LT
2033}
2034
2035/*
2036 * We've spun up the disk and we're in laptop mode: schedule writeback
2037 * of all dirty data a few seconds from now. If the flush is already scheduled
2038 * then push it back - the user is still using the disk.
2039 */
31373d09 2040void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2041{
31373d09 2042 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2043}
2044
2045/*
2046 * We're in laptop mode and we've just synced. The sync's writes will have
2047 * caused another writeback to be scheduled by laptop_io_completion.
2048 * Nothing needs to be written back anymore, so we unschedule the writeback.
2049 */
2050void laptop_sync_completion(void)
2051{
31373d09
MG
2052 struct backing_dev_info *bdi;
2053
2054 rcu_read_lock();
2055
2056 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2057 del_timer(&bdi->laptop_mode_wb_timer);
2058
2059 rcu_read_unlock();
1da177e4 2060}
c2c4986e 2061#endif
1da177e4
LT
2062
2063/*
2064 * If ratelimit_pages is too high then we can get into dirty-data overload
2065 * if a large number of processes all perform writes at the same time.
2066 * If it is too low then SMP machines will call the (expensive)
2067 * get_writeback_state too often.
2068 *
2069 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2070 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2071 * thresholds.
1da177e4
LT
2072 */
2073
2d1d43f6 2074void writeback_set_ratelimit(void)
1da177e4 2075{
dcc25ae7 2076 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2077 unsigned long background_thresh;
2078 unsigned long dirty_thresh;
dcc25ae7 2079
9d823e8f 2080 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2081 dom->dirty_limit = dirty_thresh;
9d823e8f 2082 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2083 if (ratelimit_pages < 16)
2084 ratelimit_pages = 16;
1da177e4
LT
2085}
2086
0db0628d 2087static int
2f60d628
SB
2088ratelimit_handler(struct notifier_block *self, unsigned long action,
2089 void *hcpu)
1da177e4 2090{
2f60d628
SB
2091
2092 switch (action & ~CPU_TASKS_FROZEN) {
2093 case CPU_ONLINE:
2094 case CPU_DEAD:
2095 writeback_set_ratelimit();
2096 return NOTIFY_OK;
2097 default:
2098 return NOTIFY_DONE;
2099 }
1da177e4
LT
2100}
2101
0db0628d 2102static struct notifier_block ratelimit_nb = {
1da177e4
LT
2103 .notifier_call = ratelimit_handler,
2104 .next = NULL,
2105};
2106
2107/*
dc6e29da
LT
2108 * Called early on to tune the page writeback dirty limits.
2109 *
2110 * We used to scale dirty pages according to how total memory
2111 * related to pages that could be allocated for buffers (by
2112 * comparing nr_free_buffer_pages() to vm_total_pages.
2113 *
2114 * However, that was when we used "dirty_ratio" to scale with
2115 * all memory, and we don't do that any more. "dirty_ratio"
2116 * is now applied to total non-HIGHPAGE memory (by subtracting
2117 * totalhigh_pages from vm_total_pages), and as such we can't
2118 * get into the old insane situation any more where we had
2119 * large amounts of dirty pages compared to a small amount of
2120 * non-HIGHMEM memory.
2121 *
2122 * But we might still want to scale the dirty_ratio by how
2123 * much memory the box has..
1da177e4
LT
2124 */
2125void __init page_writeback_init(void)
2126{
a50fcb51
RV
2127 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2128
2d1d43f6 2129 writeback_set_ratelimit();
1da177e4
LT
2130 register_cpu_notifier(&ratelimit_nb);
2131}
2132
f446daae
JK
2133/**
2134 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2135 * @mapping: address space structure to write
2136 * @start: starting page index
2137 * @end: ending page index (inclusive)
2138 *
2139 * This function scans the page range from @start to @end (inclusive) and tags
2140 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2141 * that write_cache_pages (or whoever calls this function) will then use
2142 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2143 * used to avoid livelocking of writeback by a process steadily creating new
2144 * dirty pages in the file (thus it is important for this function to be quick
2145 * so that it can tag pages faster than a dirtying process can create them).
2146 */
2147/*
2148 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2149 */
f446daae
JK
2150void tag_pages_for_writeback(struct address_space *mapping,
2151 pgoff_t start, pgoff_t end)
2152{
3c111a07 2153#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
2154 unsigned long tagged;
2155
2156 do {
2157 spin_lock_irq(&mapping->tree_lock);
2158 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2159 &start, end, WRITEBACK_TAG_BATCH,
2160 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2161 spin_unlock_irq(&mapping->tree_lock);
2162 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2163 cond_resched();
d5ed3a4a
JK
2164 /* We check 'start' to handle wrapping when end == ~0UL */
2165 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
2166}
2167EXPORT_SYMBOL(tag_pages_for_writeback);
2168
811d736f 2169/**
0ea97180 2170 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2171 * @mapping: address space structure to write
2172 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2173 * @writepage: function called for each page
2174 * @data: data passed to writepage function
811d736f 2175 *
0ea97180 2176 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2177 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2178 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2179 * and msync() need to guarantee that all the data which was dirty at the time
2180 * the call was made get new I/O started against them. If wbc->sync_mode is
2181 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2182 * existing IO to complete.
f446daae
JK
2183 *
2184 * To avoid livelocks (when other process dirties new pages), we first tag
2185 * pages which should be written back with TOWRITE tag and only then start
2186 * writing them. For data-integrity sync we have to be careful so that we do
2187 * not miss some pages (e.g., because some other process has cleared TOWRITE
2188 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2189 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2190 */
0ea97180
MS
2191int write_cache_pages(struct address_space *mapping,
2192 struct writeback_control *wbc, writepage_t writepage,
2193 void *data)
811d736f 2194{
811d736f
DH
2195 int ret = 0;
2196 int done = 0;
811d736f
DH
2197 struct pagevec pvec;
2198 int nr_pages;
31a12666 2199 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2200 pgoff_t index;
2201 pgoff_t end; /* Inclusive */
bd19e012 2202 pgoff_t done_index;
31a12666 2203 int cycled;
811d736f 2204 int range_whole = 0;
f446daae 2205 int tag;
811d736f 2206
811d736f
DH
2207 pagevec_init(&pvec, 0);
2208 if (wbc->range_cyclic) {
31a12666
NP
2209 writeback_index = mapping->writeback_index; /* prev offset */
2210 index = writeback_index;
2211 if (index == 0)
2212 cycled = 1;
2213 else
2214 cycled = 0;
811d736f
DH
2215 end = -1;
2216 } else {
09cbfeaf
KS
2217 index = wbc->range_start >> PAGE_SHIFT;
2218 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2219 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2220 range_whole = 1;
31a12666 2221 cycled = 1; /* ignore range_cyclic tests */
811d736f 2222 }
6e6938b6 2223 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2224 tag = PAGECACHE_TAG_TOWRITE;
2225 else
2226 tag = PAGECACHE_TAG_DIRTY;
811d736f 2227retry:
6e6938b6 2228 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2229 tag_pages_for_writeback(mapping, index, end);
bd19e012 2230 done_index = index;
5a3d5c98
NP
2231 while (!done && (index <= end)) {
2232 int i;
2233
f446daae 2234 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2235 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2236 if (nr_pages == 0)
2237 break;
811d736f 2238
811d736f
DH
2239 for (i = 0; i < nr_pages; i++) {
2240 struct page *page = pvec.pages[i];
2241
2242 /*
d5482cdf
NP
2243 * At this point, the page may be truncated or
2244 * invalidated (changing page->mapping to NULL), or
2245 * even swizzled back from swapper_space to tmpfs file
2246 * mapping. However, page->index will not change
2247 * because we have a reference on the page.
811d736f 2248 */
d5482cdf
NP
2249 if (page->index > end) {
2250 /*
2251 * can't be range_cyclic (1st pass) because
2252 * end == -1 in that case.
2253 */
2254 done = 1;
2255 break;
2256 }
2257
cf15b07c 2258 done_index = page->index;
d5482cdf 2259
811d736f
DH
2260 lock_page(page);
2261
5a3d5c98
NP
2262 /*
2263 * Page truncated or invalidated. We can freely skip it
2264 * then, even for data integrity operations: the page
2265 * has disappeared concurrently, so there could be no
2266 * real expectation of this data interity operation
2267 * even if there is now a new, dirty page at the same
2268 * pagecache address.
2269 */
811d736f 2270 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2271continue_unlock:
811d736f
DH
2272 unlock_page(page);
2273 continue;
2274 }
2275
515f4a03
NP
2276 if (!PageDirty(page)) {
2277 /* someone wrote it for us */
2278 goto continue_unlock;
2279 }
2280
2281 if (PageWriteback(page)) {
2282 if (wbc->sync_mode != WB_SYNC_NONE)
2283 wait_on_page_writeback(page);
2284 else
2285 goto continue_unlock;
2286 }
811d736f 2287
515f4a03
NP
2288 BUG_ON(PageWriteback(page));
2289 if (!clear_page_dirty_for_io(page))
5a3d5c98 2290 goto continue_unlock;
811d736f 2291
de1414a6 2292 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2293 ret = (*writepage)(page, wbc, data);
00266770
NP
2294 if (unlikely(ret)) {
2295 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2296 unlock_page(page);
2297 ret = 0;
2298 } else {
2299 /*
2300 * done_index is set past this page,
2301 * so media errors will not choke
2302 * background writeout for the entire
2303 * file. This has consequences for
2304 * range_cyclic semantics (ie. it may
2305 * not be suitable for data integrity
2306 * writeout).
2307 */
cf15b07c 2308 done_index = page->index + 1;
00266770
NP
2309 done = 1;
2310 break;
2311 }
0b564927 2312 }
00266770 2313
546a1924
DC
2314 /*
2315 * We stop writing back only if we are not doing
2316 * integrity sync. In case of integrity sync we have to
2317 * keep going until we have written all the pages
2318 * we tagged for writeback prior to entering this loop.
2319 */
2320 if (--wbc->nr_to_write <= 0 &&
2321 wbc->sync_mode == WB_SYNC_NONE) {
2322 done = 1;
2323 break;
05fe478d 2324 }
811d736f
DH
2325 }
2326 pagevec_release(&pvec);
2327 cond_resched();
2328 }
3a4c6800 2329 if (!cycled && !done) {
811d736f 2330 /*
31a12666 2331 * range_cyclic:
811d736f
DH
2332 * We hit the last page and there is more work to be done: wrap
2333 * back to the start of the file
2334 */
31a12666 2335 cycled = 1;
811d736f 2336 index = 0;
31a12666 2337 end = writeback_index - 1;
811d736f
DH
2338 goto retry;
2339 }
0b564927
DC
2340 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2341 mapping->writeback_index = done_index;
06d6cf69 2342
811d736f
DH
2343 return ret;
2344}
0ea97180
MS
2345EXPORT_SYMBOL(write_cache_pages);
2346
2347/*
2348 * Function used by generic_writepages to call the real writepage
2349 * function and set the mapping flags on error
2350 */
2351static int __writepage(struct page *page, struct writeback_control *wbc,
2352 void *data)
2353{
2354 struct address_space *mapping = data;
2355 int ret = mapping->a_ops->writepage(page, wbc);
2356 mapping_set_error(mapping, ret);
2357 return ret;
2358}
2359
2360/**
2361 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2362 * @mapping: address space structure to write
2363 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2364 *
2365 * This is a library function, which implements the writepages()
2366 * address_space_operation.
2367 */
2368int generic_writepages(struct address_space *mapping,
2369 struct writeback_control *wbc)
2370{
9b6096a6
SL
2371 struct blk_plug plug;
2372 int ret;
2373
0ea97180
MS
2374 /* deal with chardevs and other special file */
2375 if (!mapping->a_ops->writepage)
2376 return 0;
2377
9b6096a6
SL
2378 blk_start_plug(&plug);
2379 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2380 blk_finish_plug(&plug);
2381 return ret;
0ea97180 2382}
811d736f
DH
2383
2384EXPORT_SYMBOL(generic_writepages);
2385
1da177e4
LT
2386int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2387{
22905f77
AM
2388 int ret;
2389
1da177e4
LT
2390 if (wbc->nr_to_write <= 0)
2391 return 0;
2392 if (mapping->a_ops->writepages)
d08b3851 2393 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2394 else
2395 ret = generic_writepages(mapping, wbc);
22905f77 2396 return ret;
1da177e4
LT
2397}
2398
2399/**
2400 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2401 * @page: the page to write
2402 * @wait: if true, wait on writeout
1da177e4
LT
2403 *
2404 * The page must be locked by the caller and will be unlocked upon return.
2405 *
2406 * write_one_page() returns a negative error code if I/O failed.
2407 */
2408int write_one_page(struct page *page, int wait)
2409{
2410 struct address_space *mapping = page->mapping;
2411 int ret = 0;
2412 struct writeback_control wbc = {
2413 .sync_mode = WB_SYNC_ALL,
2414 .nr_to_write = 1,
2415 };
2416
2417 BUG_ON(!PageLocked(page));
2418
2419 if (wait)
2420 wait_on_page_writeback(page);
2421
2422 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2423 get_page(page);
1da177e4
LT
2424 ret = mapping->a_ops->writepage(page, &wbc);
2425 if (ret == 0 && wait) {
2426 wait_on_page_writeback(page);
2427 if (PageError(page))
2428 ret = -EIO;
2429 }
09cbfeaf 2430 put_page(page);
1da177e4
LT
2431 } else {
2432 unlock_page(page);
2433 }
2434 return ret;
2435}
2436EXPORT_SYMBOL(write_one_page);
2437
76719325
KC
2438/*
2439 * For address_spaces which do not use buffers nor write back.
2440 */
2441int __set_page_dirty_no_writeback(struct page *page)
2442{
2443 if (!PageDirty(page))
c3f0da63 2444 return !TestSetPageDirty(page);
76719325
KC
2445 return 0;
2446}
2447
e3a7cca1
ES
2448/*
2449 * Helper function for set_page_dirty family.
c4843a75 2450 *
81f8c3a4 2451 * Caller must hold lock_page_memcg().
c4843a75 2452 *
e3a7cca1
ES
2453 * NOTE: This relies on being atomic wrt interrupts.
2454 */
62cccb8c 2455void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2456{
52ebea74
TH
2457 struct inode *inode = mapping->host;
2458
9fb0a7da
TH
2459 trace_writeback_dirty_page(page, mapping);
2460
e3a7cca1 2461 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2462 struct bdi_writeback *wb;
de1414a6 2463
52ebea74
TH
2464 inode_attach_wb(inode, page);
2465 wb = inode_to_wb(inode);
de1414a6 2466
62cccb8c 2467 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
11fb9989 2468 __inc_node_page_state(page, NR_FILE_DIRTY);
c4a25635 2469 __inc_node_page_state(page, NR_DIRTIED);
52ebea74
TH
2470 __inc_wb_stat(wb, WB_RECLAIMABLE);
2471 __inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2472 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2473 current->nr_dirtied++;
2474 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2475 }
2476}
679ceace 2477EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2478
b9ea2515
KK
2479/*
2480 * Helper function for deaccounting dirty page without writeback.
2481 *
81f8c3a4 2482 * Caller must hold lock_page_memcg().
b9ea2515 2483 */
c4843a75 2484void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2485 struct bdi_writeback *wb)
b9ea2515
KK
2486{
2487 if (mapping_cap_account_dirty(mapping)) {
62cccb8c 2488 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
11fb9989 2489 dec_node_page_state(page, NR_FILE_DIRTY);
682aa8e1 2490 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2491 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2492 }
2493}
b9ea2515 2494
1da177e4
LT
2495/*
2496 * For address_spaces which do not use buffers. Just tag the page as dirty in
2497 * its radix tree.
2498 *
2499 * This is also used when a single buffer is being dirtied: we want to set the
2500 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2501 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2502 *
2d6d7f98
JW
2503 * The caller must ensure this doesn't race with truncation. Most will simply
2504 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2505 * the pte lock held, which also locks out truncation.
1da177e4
LT
2506 */
2507int __set_page_dirty_nobuffers(struct page *page)
2508{
62cccb8c 2509 lock_page_memcg(page);
1da177e4
LT
2510 if (!TestSetPageDirty(page)) {
2511 struct address_space *mapping = page_mapping(page);
a85d9df1 2512 unsigned long flags;
1da177e4 2513
c4843a75 2514 if (!mapping) {
62cccb8c 2515 unlock_page_memcg(page);
8c08540f 2516 return 1;
c4843a75 2517 }
8c08540f 2518
a85d9df1 2519 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2520 BUG_ON(page_mapping(page) != mapping);
2521 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2522 account_page_dirtied(page, mapping);
2d6d7f98
JW
2523 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2524 PAGECACHE_TAG_DIRTY);
a85d9df1 2525 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 2526 unlock_page_memcg(page);
c4843a75 2527
8c08540f
AM
2528 if (mapping->host) {
2529 /* !PageAnon && !swapper_space */
2530 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2531 }
4741c9fd 2532 return 1;
1da177e4 2533 }
62cccb8c 2534 unlock_page_memcg(page);
4741c9fd 2535 return 0;
1da177e4
LT
2536}
2537EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2538
2f800fbd
WF
2539/*
2540 * Call this whenever redirtying a page, to de-account the dirty counters
2541 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2542 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2543 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2544 * control.
2545 */
2546void account_page_redirty(struct page *page)
2547{
2548 struct address_space *mapping = page->mapping;
91018134 2549
2f800fbd 2550 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2551 struct inode *inode = mapping->host;
2552 struct bdi_writeback *wb;
2553 bool locked;
91018134 2554
682aa8e1 2555 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd 2556 current->nr_dirtied--;
c4a25635 2557 dec_node_page_state(page, NR_DIRTIED);
91018134 2558 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2559 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2560 }
2561}
2562EXPORT_SYMBOL(account_page_redirty);
2563
1da177e4
LT
2564/*
2565 * When a writepage implementation decides that it doesn't want to write this
2566 * page for some reason, it should redirty the locked page via
2567 * redirty_page_for_writepage() and it should then unlock the page and return 0
2568 */
2569int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2570{
8d38633c
KK
2571 int ret;
2572
1da177e4 2573 wbc->pages_skipped++;
8d38633c 2574 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2575 account_page_redirty(page);
8d38633c 2576 return ret;
1da177e4
LT
2577}
2578EXPORT_SYMBOL(redirty_page_for_writepage);
2579
2580/*
6746aff7
WF
2581 * Dirty a page.
2582 *
2583 * For pages with a mapping this should be done under the page lock
2584 * for the benefit of asynchronous memory errors who prefer a consistent
2585 * dirty state. This rule can be broken in some special cases,
2586 * but should be better not to.
2587 *
1da177e4
LT
2588 * If the mapping doesn't provide a set_page_dirty a_op, then
2589 * just fall through and assume that it wants buffer_heads.
2590 */
1cf6e7d8 2591int set_page_dirty(struct page *page)
1da177e4
LT
2592{
2593 struct address_space *mapping = page_mapping(page);
2594
800d8c63 2595 page = compound_head(page);
1da177e4
LT
2596 if (likely(mapping)) {
2597 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2598 /*
2599 * readahead/lru_deactivate_page could remain
2600 * PG_readahead/PG_reclaim due to race with end_page_writeback
2601 * About readahead, if the page is written, the flags would be
2602 * reset. So no problem.
2603 * About lru_deactivate_page, if the page is redirty, the flag
2604 * will be reset. So no problem. but if the page is used by readahead
2605 * it will confuse readahead and make it restart the size rampup
2606 * process. But it's a trivial problem.
2607 */
a4bb3ecd
NH
2608 if (PageReclaim(page))
2609 ClearPageReclaim(page);
9361401e
DH
2610#ifdef CONFIG_BLOCK
2611 if (!spd)
2612 spd = __set_page_dirty_buffers;
2613#endif
2614 return (*spd)(page);
1da177e4 2615 }
4741c9fd
AM
2616 if (!PageDirty(page)) {
2617 if (!TestSetPageDirty(page))
2618 return 1;
2619 }
1da177e4
LT
2620 return 0;
2621}
2622EXPORT_SYMBOL(set_page_dirty);
2623
2624/*
2625 * set_page_dirty() is racy if the caller has no reference against
2626 * page->mapping->host, and if the page is unlocked. This is because another
2627 * CPU could truncate the page off the mapping and then free the mapping.
2628 *
2629 * Usually, the page _is_ locked, or the caller is a user-space process which
2630 * holds a reference on the inode by having an open file.
2631 *
2632 * In other cases, the page should be locked before running set_page_dirty().
2633 */
2634int set_page_dirty_lock(struct page *page)
2635{
2636 int ret;
2637
7eaceacc 2638 lock_page(page);
1da177e4
LT
2639 ret = set_page_dirty(page);
2640 unlock_page(page);
2641 return ret;
2642}
2643EXPORT_SYMBOL(set_page_dirty_lock);
2644
11f81bec
TH
2645/*
2646 * This cancels just the dirty bit on the kernel page itself, it does NOT
2647 * actually remove dirty bits on any mmap's that may be around. It also
2648 * leaves the page tagged dirty, so any sync activity will still find it on
2649 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2650 * look at the dirty bits in the VM.
2651 *
2652 * Doing this should *normally* only ever be done when a page is truncated,
2653 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2654 * this when it notices that somebody has cleaned out all the buffers on a
2655 * page without actually doing it through the VM. Can you say "ext3 is
2656 * horribly ugly"? Thought you could.
2657 */
2658void cancel_dirty_page(struct page *page)
2659{
c4843a75
GT
2660 struct address_space *mapping = page_mapping(page);
2661
2662 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2663 struct inode *inode = mapping->host;
2664 struct bdi_writeback *wb;
682aa8e1 2665 bool locked;
c4843a75 2666
62cccb8c 2667 lock_page_memcg(page);
682aa8e1 2668 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2669
2670 if (TestClearPageDirty(page))
62cccb8c 2671 account_page_cleaned(page, mapping, wb);
c4843a75 2672
682aa8e1 2673 unlocked_inode_to_wb_end(inode, locked);
62cccb8c 2674 unlock_page_memcg(page);
c4843a75
GT
2675 } else {
2676 ClearPageDirty(page);
2677 }
11f81bec
TH
2678}
2679EXPORT_SYMBOL(cancel_dirty_page);
2680
1da177e4
LT
2681/*
2682 * Clear a page's dirty flag, while caring for dirty memory accounting.
2683 * Returns true if the page was previously dirty.
2684 *
2685 * This is for preparing to put the page under writeout. We leave the page
2686 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2687 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2688 * implementation will run either set_page_writeback() or set_page_dirty(),
2689 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2690 * back into sync.
2691 *
2692 * This incoherency between the page's dirty flag and radix-tree tag is
2693 * unfortunate, but it only exists while the page is locked.
2694 */
2695int clear_page_dirty_for_io(struct page *page)
2696{
2697 struct address_space *mapping = page_mapping(page);
c4843a75 2698 int ret = 0;
1da177e4 2699
79352894
NP
2700 BUG_ON(!PageLocked(page));
2701
7658cc28 2702 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2703 struct inode *inode = mapping->host;
2704 struct bdi_writeback *wb;
682aa8e1
TH
2705 bool locked;
2706
7658cc28
LT
2707 /*
2708 * Yes, Virginia, this is indeed insane.
2709 *
2710 * We use this sequence to make sure that
2711 * (a) we account for dirty stats properly
2712 * (b) we tell the low-level filesystem to
2713 * mark the whole page dirty if it was
2714 * dirty in a pagetable. Only to then
2715 * (c) clean the page again and return 1 to
2716 * cause the writeback.
2717 *
2718 * This way we avoid all nasty races with the
2719 * dirty bit in multiple places and clearing
2720 * them concurrently from different threads.
2721 *
2722 * Note! Normally the "set_page_dirty(page)"
2723 * has no effect on the actual dirty bit - since
2724 * that will already usually be set. But we
2725 * need the side effects, and it can help us
2726 * avoid races.
2727 *
2728 * We basically use the page "master dirty bit"
2729 * as a serialization point for all the different
2730 * threads doing their things.
7658cc28
LT
2731 */
2732 if (page_mkclean(page))
2733 set_page_dirty(page);
79352894
NP
2734 /*
2735 * We carefully synchronise fault handlers against
2736 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2737 * at this point. We do this by having them hold the
2738 * page lock while dirtying the page, and pages are
2739 * always locked coming in here, so we get the desired
2740 * exclusion.
79352894 2741 */
682aa8e1 2742 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2743 if (TestClearPageDirty(page)) {
62cccb8c 2744 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
11fb9989 2745 dec_node_page_state(page, NR_FILE_DIRTY);
682aa8e1 2746 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2747 ret = 1;
1da177e4 2748 }
682aa8e1 2749 unlocked_inode_to_wb_end(inode, locked);
c4843a75 2750 return ret;
1da177e4 2751 }
7658cc28 2752 return TestClearPageDirty(page);
1da177e4 2753}
58bb01a9 2754EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2755
2756int test_clear_page_writeback(struct page *page)
2757{
2758 struct address_space *mapping = page_mapping(page);
d7365e78 2759 int ret;
1da177e4 2760
62cccb8c 2761 lock_page_memcg(page);
1da177e4 2762 if (mapping) {
91018134
TH
2763 struct inode *inode = mapping->host;
2764 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2765 unsigned long flags;
2766
19fd6231 2767 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2768 ret = TestClearPageWriteback(page);
69cb51d1 2769 if (ret) {
1da177e4
LT
2770 radix_tree_tag_clear(&mapping->page_tree,
2771 page_index(page),
2772 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2773 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2774 struct bdi_writeback *wb = inode_to_wb(inode);
2775
2776 __dec_wb_stat(wb, WB_WRITEBACK);
2777 __wb_writeout_inc(wb);
04fbfdc1 2778 }
69cb51d1 2779 }
6c60d2b5
DC
2780
2781 if (mapping->host && !mapping_tagged(mapping,
2782 PAGECACHE_TAG_WRITEBACK))
2783 sb_clear_inode_writeback(mapping->host);
2784
19fd6231 2785 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2786 } else {
2787 ret = TestClearPageWriteback(page);
2788 }
99b12e3d 2789 if (ret) {
62cccb8c 2790 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
11fb9989 2791 dec_node_page_state(page, NR_WRITEBACK);
c4a25635 2792 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2793 }
62cccb8c 2794 unlock_page_memcg(page);
1da177e4
LT
2795 return ret;
2796}
2797
1c8349a1 2798int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2799{
2800 struct address_space *mapping = page_mapping(page);
d7365e78 2801 int ret;
1da177e4 2802
62cccb8c 2803 lock_page_memcg(page);
1da177e4 2804 if (mapping) {
91018134
TH
2805 struct inode *inode = mapping->host;
2806 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2807 unsigned long flags;
2808
19fd6231 2809 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2810 ret = TestSetPageWriteback(page);
69cb51d1 2811 if (!ret) {
6c60d2b5
DC
2812 bool on_wblist;
2813
2814 on_wblist = mapping_tagged(mapping,
2815 PAGECACHE_TAG_WRITEBACK);
2816
1da177e4
LT
2817 radix_tree_tag_set(&mapping->page_tree,
2818 page_index(page),
2819 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2820 if (bdi_cap_account_writeback(bdi))
91018134 2821 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2822
2823 /*
2824 * We can come through here when swapping anonymous
2825 * pages, so we don't necessarily have an inode to track
2826 * for sync.
2827 */
2828 if (mapping->host && !on_wblist)
2829 sb_mark_inode_writeback(mapping->host);
69cb51d1 2830 }
1da177e4
LT
2831 if (!PageDirty(page))
2832 radix_tree_tag_clear(&mapping->page_tree,
2833 page_index(page),
2834 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2835 if (!keep_write)
2836 radix_tree_tag_clear(&mapping->page_tree,
2837 page_index(page),
2838 PAGECACHE_TAG_TOWRITE);
19fd6231 2839 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2840 } else {
2841 ret = TestSetPageWriteback(page);
2842 }
3a3c02ec 2843 if (!ret) {
62cccb8c 2844 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
11fb9989 2845 inc_node_page_state(page, NR_WRITEBACK);
3a3c02ec 2846 }
62cccb8c 2847 unlock_page_memcg(page);
1da177e4
LT
2848 return ret;
2849
2850}
1c8349a1 2851EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2852
2853/*
00128188 2854 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2855 * passed tag.
2856 */
2857int mapping_tagged(struct address_space *mapping, int tag)
2858{
72c47832 2859 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2860}
2861EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2862
2863/**
2864 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2865 * @page: The page to wait on.
2866 *
2867 * This function determines if the given page is related to a backing device
2868 * that requires page contents to be held stable during writeback. If so, then
2869 * it will wait for any pending writeback to complete.
2870 */
2871void wait_for_stable_page(struct page *page)
2872{
de1414a6
CH
2873 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2874 wait_on_page_writeback(page);
1d1d1a76
DW
2875}
2876EXPORT_SYMBOL_GPL(wait_for_stable_page);