mm: rename NR_ANON_PAGES to NR_ANON_MAPPED
[linux-2.6-block.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
1da177e4 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
eb608e3a 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
eb608e3a
JK
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 154
693108a8
TH
155#ifdef CONFIG_CGROUP_WRITEBACK
156
d60d1bdd
TH
157#define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
9fc3a43e 161#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
162
163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
c2aa723a
TH
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
e9f07dfd
TH
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175 return dtc->dom;
176}
177
9fc3a43e
TH
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180 return mdtc->gdtc;
181}
182
841710aa
TH
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185 return &wb->memcg_completions;
186}
187
693108a8
TH
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190{
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213}
214
215#else /* CONFIG_CGROUP_WRITEBACK */
216
d60d1bdd
TH
217#define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
9fc3a43e 219#define GDTC_INIT_NO_WB
c2aa723a
TH
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224 return false;
225}
e9f07dfd
TH
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229 return &global_wb_domain;
230}
231
9fc3a43e
TH
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234 return NULL;
235}
236
841710aa
TH
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239 return NULL;
240}
241
693108a8
TH
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244{
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247}
248
249#endif /* CONFIG_CGROUP_WRITEBACK */
250
a756cf59
JW
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
a804552b 269/**
281e3726
MG
270 * node_dirtyable_memory - number of dirtyable pages in a node
271 * @pgdat: the node
a804552b 272 *
281e3726
MG
273 * Returns the node's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-node dirty limits.
a804552b 275 */
281e3726 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 277{
281e3726
MG
278 unsigned long nr_pages = 0;
279 int z;
280
281 for (z = 0; z < MAX_NR_ZONES; z++) {
282 struct zone *zone = pgdat->node_zones + z;
283
284 if (!populated_zone(zone))
285 continue;
286
287 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288 }
a804552b 289
a8d01437
JW
290 /*
291 * Pages reserved for the kernel should not be considered
292 * dirtyable, to prevent a situation where reclaim has to
293 * clean pages in order to balance the zones.
294 */
281e3726 295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 296
281e3726
MG
297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
299
300 return nr_pages;
301}
302
1edf2234
JW
303static unsigned long highmem_dirtyable_memory(unsigned long total)
304{
305#ifdef CONFIG_HIGHMEM
306 int node;
307 unsigned long x = 0;
09b4ab3c 308 int i;
1edf2234
JW
309
310 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312 struct zone *z;
313 unsigned long dirtyable;
314
315 if (!is_highmem_idx(i))
316 continue;
317
318 z = &NODE_DATA(node)->node_zones[i];
319 dirtyable = zone_page_state(z, NR_FREE_PAGES) +
320 zone_page_state(z, NR_ZONE_LRU_FILE);
1edf2234 321
281e3726
MG
322 /* watch for underflows */
323 dirtyable -= min(dirtyable, high_wmark_pages(z));
324
325 x += dirtyable;
09b4ab3c 326 }
1edf2234 327 }
281e3726 328
c8b74c2f
SR
329 /*
330 * Unreclaimable memory (kernel memory or anonymous memory
331 * without swap) can bring down the dirtyable pages below
332 * the zone's dirty balance reserve and the above calculation
333 * will underflow. However we still want to add in nodes
334 * which are below threshold (negative values) to get a more
335 * accurate calculation but make sure that the total never
336 * underflows.
337 */
338 if ((long)x < 0)
339 x = 0;
340
1edf2234
JW
341 /*
342 * Make sure that the number of highmem pages is never larger
343 * than the number of the total dirtyable memory. This can only
344 * occur in very strange VM situations but we want to make sure
345 * that this does not occur.
346 */
347 return min(x, total);
348#else
349 return 0;
350#endif
351}
352
353/**
ccafa287 354 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 355 *
ccafa287
JW
356 * Returns the global number of pages potentially available for dirty
357 * page cache. This is the base value for the global dirty limits.
1edf2234 358 */
18cf8cf8 359static unsigned long global_dirtyable_memory(void)
1edf2234
JW
360{
361 unsigned long x;
362
a804552b 363 x = global_page_state(NR_FREE_PAGES);
a8d01437
JW
364 /*
365 * Pages reserved for the kernel should not be considered
366 * dirtyable, to prevent a situation where reclaim has to
367 * clean pages in order to balance the zones.
368 */
369 x -= min(x, totalreserve_pages);
1edf2234 370
599d0c95
MG
371 x += global_node_page_state(NR_INACTIVE_FILE);
372 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 373
1edf2234
JW
374 if (!vm_highmem_is_dirtyable)
375 x -= highmem_dirtyable_memory(x);
376
377 return x + 1; /* Ensure that we never return 0 */
378}
379
9fc3a43e
TH
380/**
381 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
382 * @dtc: dirty_throttle_control of interest
ccafa287 383 *
9fc3a43e
TH
384 * Calculate @dtc->thresh and ->bg_thresh considering
385 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
386 * must ensure that @dtc->avail is set before calling this function. The
387 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
388 * real-time tasks.
389 */
9fc3a43e 390static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 391{
9fc3a43e
TH
392 const unsigned long available_memory = dtc->avail;
393 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
394 unsigned long bytes = vm_dirty_bytes;
395 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
396 /* convert ratios to per-PAGE_SIZE for higher precision */
397 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
398 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
399 unsigned long thresh;
400 unsigned long bg_thresh;
ccafa287
JW
401 struct task_struct *tsk;
402
9fc3a43e
TH
403 /* gdtc is !NULL iff @dtc is for memcg domain */
404 if (gdtc) {
405 unsigned long global_avail = gdtc->avail;
406
407 /*
408 * The byte settings can't be applied directly to memcg
409 * domains. Convert them to ratios by scaling against
62a584fe
TH
410 * globally available memory. As the ratios are in
411 * per-PAGE_SIZE, they can be obtained by dividing bytes by
412 * number of pages.
9fc3a43e
TH
413 */
414 if (bytes)
62a584fe
TH
415 ratio = min(DIV_ROUND_UP(bytes, global_avail),
416 PAGE_SIZE);
9fc3a43e 417 if (bg_bytes)
62a584fe
TH
418 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
419 PAGE_SIZE);
9fc3a43e
TH
420 bytes = bg_bytes = 0;
421 }
422
423 if (bytes)
424 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 425 else
62a584fe 426 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 427
9fc3a43e
TH
428 if (bg_bytes)
429 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 430 else
62a584fe 431 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 432
9fc3a43e
TH
433 if (bg_thresh >= thresh)
434 bg_thresh = thresh / 2;
ccafa287
JW
435 tsk = current;
436 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
a53eaff8
N
437 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
438 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 439 }
9fc3a43e
TH
440 dtc->thresh = thresh;
441 dtc->bg_thresh = bg_thresh;
442
443 /* we should eventually report the domain in the TP */
444 if (!gdtc)
445 trace_global_dirty_state(bg_thresh, thresh);
446}
447
448/**
449 * global_dirty_limits - background-writeback and dirty-throttling thresholds
450 * @pbackground: out parameter for bg_thresh
451 * @pdirty: out parameter for thresh
452 *
453 * Calculate bg_thresh and thresh for global_wb_domain. See
454 * domain_dirty_limits() for details.
455 */
456void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
457{
458 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
459
460 gdtc.avail = global_dirtyable_memory();
461 domain_dirty_limits(&gdtc);
462
463 *pbackground = gdtc.bg_thresh;
464 *pdirty = gdtc.thresh;
ccafa287
JW
465}
466
a756cf59 467/**
281e3726
MG
468 * node_dirty_limit - maximum number of dirty pages allowed in a node
469 * @pgdat: the node
a756cf59 470 *
281e3726
MG
471 * Returns the maximum number of dirty pages allowed in a node, based
472 * on the node's dirtyable memory.
a756cf59 473 */
281e3726 474static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 475{
281e3726 476 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
477 struct task_struct *tsk = current;
478 unsigned long dirty;
479
480 if (vm_dirty_bytes)
481 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 482 node_memory / global_dirtyable_memory();
a756cf59 483 else
281e3726 484 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59
JW
485
486 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
487 dirty += dirty / 4;
488
489 return dirty;
490}
491
492/**
281e3726
MG
493 * node_dirty_ok - tells whether a node is within its dirty limits
494 * @pgdat: the node to check
a756cf59 495 *
281e3726 496 * Returns %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
497 * dirty limit, %false if the limit is exceeded.
498 */
281e3726 499bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 500{
281e3726
MG
501 int z;
502 unsigned long limit = node_dirty_limit(pgdat);
503 unsigned long nr_pages = 0;
504
505 for (z = 0; z < MAX_NR_ZONES; z++) {
506 struct zone *zone = pgdat->node_zones + z;
507
508 if (!populated_zone(zone))
509 continue;
510
511 nr_pages += zone_page_state(zone, NR_FILE_DIRTY);
512 nr_pages += zone_page_state(zone, NR_UNSTABLE_NFS);
513 nr_pages += zone_page_state(zone, NR_WRITEBACK);
514 }
a756cf59 515
281e3726 516 return nr_pages <= limit;
a756cf59
JW
517}
518
2da02997 519int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 520 void __user *buffer, size_t *lenp,
2da02997
DR
521 loff_t *ppos)
522{
523 int ret;
524
8d65af78 525 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
526 if (ret == 0 && write)
527 dirty_background_bytes = 0;
528 return ret;
529}
530
531int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 532 void __user *buffer, size_t *lenp,
2da02997
DR
533 loff_t *ppos)
534{
535 int ret;
536
8d65af78 537 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
538 if (ret == 0 && write)
539 dirty_background_ratio = 0;
540 return ret;
541}
542
04fbfdc1 543int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 544 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
545 loff_t *ppos)
546{
547 int old_ratio = vm_dirty_ratio;
2da02997
DR
548 int ret;
549
8d65af78 550 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 551 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 552 writeback_set_ratelimit();
2da02997
DR
553 vm_dirty_bytes = 0;
554 }
555 return ret;
556}
557
2da02997 558int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 559 void __user *buffer, size_t *lenp,
2da02997
DR
560 loff_t *ppos)
561{
fc3501d4 562 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
563 int ret;
564
8d65af78 565 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 566 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 567 writeback_set_ratelimit();
2da02997 568 vm_dirty_ratio = 0;
04fbfdc1
PZ
569 }
570 return ret;
571}
572
eb608e3a
JK
573static unsigned long wp_next_time(unsigned long cur_time)
574{
575 cur_time += VM_COMPLETIONS_PERIOD_LEN;
576 /* 0 has a special meaning... */
577 if (!cur_time)
578 return 1;
579 return cur_time;
580}
581
c7981433
TH
582static void wb_domain_writeout_inc(struct wb_domain *dom,
583 struct fprop_local_percpu *completions,
584 unsigned int max_prop_frac)
04fbfdc1 585{
c7981433
TH
586 __fprop_inc_percpu_max(&dom->completions, completions,
587 max_prop_frac);
eb608e3a 588 /* First event after period switching was turned off? */
380c27ca 589 if (!unlikely(dom->period_time)) {
eb608e3a
JK
590 /*
591 * We can race with other __bdi_writeout_inc calls here but
592 * it does not cause any harm since the resulting time when
593 * timer will fire and what is in writeout_period_time will be
594 * roughly the same.
595 */
380c27ca
TH
596 dom->period_time = wp_next_time(jiffies);
597 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 598 }
04fbfdc1
PZ
599}
600
c7981433
TH
601/*
602 * Increment @wb's writeout completion count and the global writeout
603 * completion count. Called from test_clear_page_writeback().
604 */
605static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 606{
841710aa 607 struct wb_domain *cgdom;
dd5656e5 608
c7981433
TH
609 __inc_wb_stat(wb, WB_WRITTEN);
610 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
611 wb->bdi->max_prop_frac);
841710aa
TH
612
613 cgdom = mem_cgroup_wb_domain(wb);
614 if (cgdom)
615 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
616 wb->bdi->max_prop_frac);
dd5656e5 617}
dd5656e5 618
93f78d88 619void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 620{
dd5656e5
MS
621 unsigned long flags;
622
623 local_irq_save(flags);
93f78d88 624 __wb_writeout_inc(wb);
dd5656e5 625 local_irq_restore(flags);
04fbfdc1 626}
93f78d88 627EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 628
eb608e3a
JK
629/*
630 * On idle system, we can be called long after we scheduled because we use
631 * deferred timers so count with missed periods.
632 */
633static void writeout_period(unsigned long t)
634{
380c27ca
TH
635 struct wb_domain *dom = (void *)t;
636 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
637 VM_COMPLETIONS_PERIOD_LEN;
638
380c27ca
TH
639 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
640 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 641 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 642 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
643 } else {
644 /*
645 * Aging has zeroed all fractions. Stop wasting CPU on period
646 * updates.
647 */
380c27ca 648 dom->period_time = 0;
eb608e3a
JK
649 }
650}
651
380c27ca
TH
652int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
653{
654 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
655
656 spin_lock_init(&dom->lock);
657
380c27ca
TH
658 init_timer_deferrable(&dom->period_timer);
659 dom->period_timer.function = writeout_period;
660 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
661
662 dom->dirty_limit_tstamp = jiffies;
663
380c27ca
TH
664 return fprop_global_init(&dom->completions, gfp);
665}
666
841710aa
TH
667#ifdef CONFIG_CGROUP_WRITEBACK
668void wb_domain_exit(struct wb_domain *dom)
669{
670 del_timer_sync(&dom->period_timer);
671 fprop_global_destroy(&dom->completions);
672}
673#endif
674
189d3c4a 675/*
d08c429b
JW
676 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
677 * registered backing devices, which, for obvious reasons, can not
678 * exceed 100%.
189d3c4a 679 */
189d3c4a
PZ
680static unsigned int bdi_min_ratio;
681
682int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
683{
684 int ret = 0;
189d3c4a 685
cfc4ba53 686 spin_lock_bh(&bdi_lock);
a42dde04 687 if (min_ratio > bdi->max_ratio) {
189d3c4a 688 ret = -EINVAL;
a42dde04
PZ
689 } else {
690 min_ratio -= bdi->min_ratio;
691 if (bdi_min_ratio + min_ratio < 100) {
692 bdi_min_ratio += min_ratio;
693 bdi->min_ratio += min_ratio;
694 } else {
695 ret = -EINVAL;
696 }
697 }
cfc4ba53 698 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
699
700 return ret;
701}
702
703int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
704{
a42dde04
PZ
705 int ret = 0;
706
707 if (max_ratio > 100)
708 return -EINVAL;
709
cfc4ba53 710 spin_lock_bh(&bdi_lock);
a42dde04
PZ
711 if (bdi->min_ratio > max_ratio) {
712 ret = -EINVAL;
713 } else {
714 bdi->max_ratio = max_ratio;
eb608e3a 715 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 716 }
cfc4ba53 717 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
718
719 return ret;
720}
a42dde04 721EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 722
6c14ae1e
WF
723static unsigned long dirty_freerun_ceiling(unsigned long thresh,
724 unsigned long bg_thresh)
725{
726 return (thresh + bg_thresh) / 2;
727}
728
c7981433
TH
729static unsigned long hard_dirty_limit(struct wb_domain *dom,
730 unsigned long thresh)
ffd1f609 731{
dcc25ae7 732 return max(thresh, dom->dirty_limit);
ffd1f609
WF
733}
734
c5edf9cd
TH
735/*
736 * Memory which can be further allocated to a memcg domain is capped by
737 * system-wide clean memory excluding the amount being used in the domain.
738 */
739static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
740 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
741{
742 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
743 unsigned long clean = filepages - min(filepages, mdtc->dirty);
744 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
745 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 746
c5edf9cd 747 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
748}
749
6f718656 750/**
b1cbc6d4
TH
751 * __wb_calc_thresh - @wb's share of dirty throttling threshold
752 * @dtc: dirty_throttle_context of interest
1babe183 753 *
a88a341a 754 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 755 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
756 *
757 * Note that balance_dirty_pages() will only seriously take it as a hard limit
758 * when sleeping max_pause per page is not enough to keep the dirty pages under
759 * control. For example, when the device is completely stalled due to some error
760 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
761 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 762 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 763 *
6f718656 764 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
765 * - starving fast devices
766 * - piling up dirty pages (that will take long time to sync) on slow devices
767 *
a88a341a 768 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
769 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
770 */
b1cbc6d4 771static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 772{
e9f07dfd 773 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 774 unsigned long thresh = dtc->thresh;
0d960a38 775 u64 wb_thresh;
16c4042f 776 long numerator, denominator;
693108a8 777 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 778
16c4042f 779 /*
0d960a38 780 * Calculate this BDI's share of the thresh ratio.
16c4042f 781 */
e9770b34 782 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 783 &numerator, &denominator);
04fbfdc1 784
0d960a38
TH
785 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
786 wb_thresh *= numerator;
787 do_div(wb_thresh, denominator);
04fbfdc1 788
b1cbc6d4 789 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 790
0d960a38
TH
791 wb_thresh += (thresh * wb_min_ratio) / 100;
792 if (wb_thresh > (thresh * wb_max_ratio) / 100)
793 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 794
0d960a38 795 return wb_thresh;
1da177e4
LT
796}
797
b1cbc6d4
TH
798unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
799{
800 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
801 .thresh = thresh };
802 return __wb_calc_thresh(&gdtc);
1da177e4
LT
803}
804
5a537485
MP
805/*
806 * setpoint - dirty 3
807 * f(dirty) := 1.0 + (----------------)
808 * limit - setpoint
809 *
810 * it's a 3rd order polynomial that subjects to
811 *
812 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
813 * (2) f(setpoint) = 1.0 => the balance point
814 * (3) f(limit) = 0 => the hard limit
815 * (4) df/dx <= 0 => negative feedback control
816 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
817 * => fast response on large errors; small oscillation near setpoint
818 */
d5c9fde3 819static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
820 unsigned long dirty,
821 unsigned long limit)
822{
823 long long pos_ratio;
824 long x;
825
d5c9fde3 826 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 827 (limit - setpoint) | 1);
5a537485
MP
828 pos_ratio = x;
829 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
830 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
831 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
832
833 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
834}
835
6c14ae1e
WF
836/*
837 * Dirty position control.
838 *
839 * (o) global/bdi setpoints
840 *
de1fff37 841 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
842 * When the number of dirty pages is higher/lower than the setpoint, the
843 * dirty position control ratio (and hence task dirty ratelimit) will be
844 * decreased/increased to bring the dirty pages back to the setpoint.
845 *
846 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
847 *
848 * if (dirty < setpoint) scale up pos_ratio
849 * if (dirty > setpoint) scale down pos_ratio
850 *
de1fff37
TH
851 * if (wb_dirty < wb_setpoint) scale up pos_ratio
852 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
853 *
854 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
855 *
856 * (o) global control line
857 *
858 * ^ pos_ratio
859 * |
860 * | |<===== global dirty control scope ======>|
861 * 2.0 .............*
862 * | .*
863 * | . *
864 * | . *
865 * | . *
866 * | . *
867 * | . *
868 * 1.0 ................................*
869 * | . . *
870 * | . . *
871 * | . . *
872 * | . . *
873 * | . . *
874 * 0 +------------.------------------.----------------------*------------->
875 * freerun^ setpoint^ limit^ dirty pages
876 *
de1fff37 877 * (o) wb control line
6c14ae1e
WF
878 *
879 * ^ pos_ratio
880 * |
881 * | *
882 * | *
883 * | *
884 * | *
885 * | * |<=========== span ============>|
886 * 1.0 .......................*
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * | . *
892 * | . *
893 * | . *
894 * | . *
895 * | . *
896 * | . *
897 * | . *
898 * 1/4 ...............................................* * * * * * * * * * * *
899 * | . .
900 * | . .
901 * | . .
902 * 0 +----------------------.-------------------------------.------------->
de1fff37 903 * wb_setpoint^ x_intercept^
6c14ae1e 904 *
de1fff37 905 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
906 * be smoothly throttled down to normal if it starts high in situations like
907 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
908 * card's wb_dirty may rush to many times higher than wb_setpoint.
909 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 910 */
daddfa3c 911static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 912{
2bc00aef 913 struct bdi_writeback *wb = dtc->wb;
a88a341a 914 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 915 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 916 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 917 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
918 unsigned long x_intercept;
919 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 920 unsigned long wb_setpoint;
6c14ae1e
WF
921 unsigned long span;
922 long long pos_ratio; /* for scaling up/down the rate limit */
923 long x;
924
daddfa3c
TH
925 dtc->pos_ratio = 0;
926
2bc00aef 927 if (unlikely(dtc->dirty >= limit))
daddfa3c 928 return;
6c14ae1e
WF
929
930 /*
931 * global setpoint
932 *
5a537485
MP
933 * See comment for pos_ratio_polynom().
934 */
935 setpoint = (freerun + limit) / 2;
2bc00aef 936 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
937
938 /*
939 * The strictlimit feature is a tool preventing mistrusted filesystems
940 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
941 * such filesystems balance_dirty_pages always checks wb counters
942 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
943 * This is especially important for fuse which sets bdi->max_ratio to
944 * 1% by default. Without strictlimit feature, fuse writeback may
945 * consume arbitrary amount of RAM because it is accounted in
946 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 947 *
a88a341a 948 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 949 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
950 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
951 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 952 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 953 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 954 * about ~6K pages (as the average of background and throttle wb
5a537485 955 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 956 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 957 *
5a537485 958 * Note, that we cannot use global counters in these calculations
de1fff37 959 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
960 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
961 * in the example above).
6c14ae1e 962 */
a88a341a 963 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 964 long long wb_pos_ratio;
5a537485 965
daddfa3c
TH
966 if (dtc->wb_dirty < 8) {
967 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
968 2 << RATELIMIT_CALC_SHIFT);
969 return;
970 }
5a537485 971
2bc00aef 972 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 973 return;
5a537485 974
970fb01a
TH
975 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
976 dtc->wb_bg_thresh);
5a537485 977
de1fff37 978 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 979 return;
5a537485 980
2bc00aef 981 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 982 wb_thresh);
5a537485
MP
983
984 /*
de1fff37
TH
985 * Typically, for strictlimit case, wb_setpoint << setpoint
986 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 987 * state ("dirty") is not limiting factor and we have to
de1fff37 988 * make decision based on wb counters. But there is an
5a537485
MP
989 * important case when global pos_ratio should get precedence:
990 * global limits are exceeded (e.g. due to activities on other
de1fff37 991 * wb's) while given strictlimit wb is below limit.
5a537485 992 *
de1fff37 993 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 994 * but it would look too non-natural for the case of all
de1fff37 995 * activity in the system coming from a single strictlimit wb
5a537485
MP
996 * with bdi->max_ratio == 100%.
997 *
998 * Note that min() below somewhat changes the dynamics of the
999 * control system. Normally, pos_ratio value can be well over 3
de1fff37 1000 * (when globally we are at freerun and wb is well below wb
5a537485
MP
1001 * setpoint). Now the maximum pos_ratio in the same situation
1002 * is 2. We might want to tweak this if we observe the control
1003 * system is too slow to adapt.
1004 */
daddfa3c
TH
1005 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1006 return;
5a537485 1007 }
6c14ae1e
WF
1008
1009 /*
1010 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1011 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1012 * pos_ratio further down/up. That is done by the following mechanism.
1013 */
1014
1015 /*
de1fff37 1016 * wb setpoint
6c14ae1e 1017 *
de1fff37 1018 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1019 *
de1fff37 1020 * x_intercept - wb_dirty
6c14ae1e 1021 * := --------------------------
de1fff37 1022 * x_intercept - wb_setpoint
6c14ae1e 1023 *
de1fff37 1024 * The main wb control line is a linear function that subjects to
6c14ae1e 1025 *
de1fff37
TH
1026 * (1) f(wb_setpoint) = 1.0
1027 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1028 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1029 *
de1fff37 1030 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1031 * regularly within range
de1fff37 1032 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1033 * for various filesystems, where (2) can yield in a reasonable 12.5%
1034 * fluctuation range for pos_ratio.
1035 *
de1fff37 1036 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1037 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1038 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1039 */
2bc00aef
TH
1040 if (unlikely(wb_thresh > dtc->thresh))
1041 wb_thresh = dtc->thresh;
aed21ad2 1042 /*
de1fff37 1043 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1044 * device is slow, but that it has remained inactive for long time.
1045 * Honour such devices a reasonable good (hopefully IO efficient)
1046 * threshold, so that the occasional writes won't be blocked and active
1047 * writes can rampup the threshold quickly.
1048 */
2bc00aef 1049 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1050 /*
de1fff37
TH
1051 * scale global setpoint to wb's:
1052 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1053 */
e4bc13ad 1054 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1055 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1056 /*
de1fff37
TH
1057 * Use span=(8*write_bw) in single wb case as indicated by
1058 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1059 *
de1fff37
TH
1060 * wb_thresh thresh - wb_thresh
1061 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1062 * thresh thresh
6c14ae1e 1063 */
2bc00aef 1064 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1065 x_intercept = wb_setpoint + span;
6c14ae1e 1066
2bc00aef
TH
1067 if (dtc->wb_dirty < x_intercept - span / 4) {
1068 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1069 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1070 } else
1071 pos_ratio /= 4;
1072
8927f66c 1073 /*
de1fff37 1074 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1075 * It may push the desired control point of global dirty pages higher
1076 * than setpoint.
1077 */
de1fff37 1078 x_intercept = wb_thresh / 2;
2bc00aef
TH
1079 if (dtc->wb_dirty < x_intercept) {
1080 if (dtc->wb_dirty > x_intercept / 8)
1081 pos_ratio = div_u64(pos_ratio * x_intercept,
1082 dtc->wb_dirty);
50657fc4 1083 else
8927f66c
WF
1084 pos_ratio *= 8;
1085 }
1086
daddfa3c 1087 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1088}
1089
a88a341a
TH
1090static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1091 unsigned long elapsed,
1092 unsigned long written)
e98be2d5
WF
1093{
1094 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1095 unsigned long avg = wb->avg_write_bandwidth;
1096 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1097 u64 bw;
1098
1099 /*
1100 * bw = written * HZ / elapsed
1101 *
1102 * bw * elapsed + write_bandwidth * (period - elapsed)
1103 * write_bandwidth = ---------------------------------------------------
1104 * period
c72efb65
TH
1105 *
1106 * @written may have decreased due to account_page_redirty().
1107 * Avoid underflowing @bw calculation.
e98be2d5 1108 */
a88a341a 1109 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1110 bw *= HZ;
1111 if (unlikely(elapsed > period)) {
1112 do_div(bw, elapsed);
1113 avg = bw;
1114 goto out;
1115 }
a88a341a 1116 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1117 bw >>= ilog2(period);
1118
1119 /*
1120 * one more level of smoothing, for filtering out sudden spikes
1121 */
1122 if (avg > old && old >= (unsigned long)bw)
1123 avg -= (avg - old) >> 3;
1124
1125 if (avg < old && old <= (unsigned long)bw)
1126 avg += (old - avg) >> 3;
1127
1128out:
95a46c65
TH
1129 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1130 avg = max(avg, 1LU);
1131 if (wb_has_dirty_io(wb)) {
1132 long delta = avg - wb->avg_write_bandwidth;
1133 WARN_ON_ONCE(atomic_long_add_return(delta,
1134 &wb->bdi->tot_write_bandwidth) <= 0);
1135 }
a88a341a
TH
1136 wb->write_bandwidth = bw;
1137 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1138}
1139
2bc00aef 1140static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1141{
e9f07dfd 1142 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1143 unsigned long thresh = dtc->thresh;
dcc25ae7 1144 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1145
1146 /*
1147 * Follow up in one step.
1148 */
1149 if (limit < thresh) {
1150 limit = thresh;
1151 goto update;
1152 }
1153
1154 /*
1155 * Follow down slowly. Use the higher one as the target, because thresh
1156 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1157 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1158 */
2bc00aef 1159 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1160 if (limit > thresh) {
1161 limit -= (limit - thresh) >> 5;
1162 goto update;
1163 }
1164 return;
1165update:
dcc25ae7 1166 dom->dirty_limit = limit;
c42843f2
WF
1167}
1168
e9f07dfd 1169static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1170 unsigned long now)
1171{
e9f07dfd 1172 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1173
1174 /*
1175 * check locklessly first to optimize away locking for the most time
1176 */
dcc25ae7 1177 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1178 return;
1179
dcc25ae7
TH
1180 spin_lock(&dom->lock);
1181 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1182 update_dirty_limit(dtc);
dcc25ae7 1183 dom->dirty_limit_tstamp = now;
c42843f2 1184 }
dcc25ae7 1185 spin_unlock(&dom->lock);
c42843f2
WF
1186}
1187
be3ffa27 1188/*
de1fff37 1189 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1190 *
de1fff37 1191 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1192 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1193 */
2bc00aef 1194static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1195 unsigned long dirtied,
1196 unsigned long elapsed)
be3ffa27 1197{
2bc00aef
TH
1198 struct bdi_writeback *wb = dtc->wb;
1199 unsigned long dirty = dtc->dirty;
1200 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1201 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1202 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1203 unsigned long write_bw = wb->avg_write_bandwidth;
1204 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1205 unsigned long dirty_rate;
1206 unsigned long task_ratelimit;
1207 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1208 unsigned long step;
1209 unsigned long x;
d59b1087 1210 unsigned long shift;
be3ffa27
WF
1211
1212 /*
1213 * The dirty rate will match the writeout rate in long term, except
1214 * when dirty pages are truncated by userspace or re-dirtied by FS.
1215 */
a88a341a 1216 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1217
be3ffa27
WF
1218 /*
1219 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1220 */
1221 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1222 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1223 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1224
1225 /*
1226 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1227 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1228 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1229 * formula will yield the balanced rate limit (write_bw / N).
1230 *
1231 * Note that the expanded form is not a pure rate feedback:
1232 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1233 * but also takes pos_ratio into account:
1234 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1235 *
1236 * (1) is not realistic because pos_ratio also takes part in balancing
1237 * the dirty rate. Consider the state
1238 * pos_ratio = 0.5 (3)
1239 * rate = 2 * (write_bw / N) (4)
1240 * If (1) is used, it will stuck in that state! Because each dd will
1241 * be throttled at
1242 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1243 * yielding
1244 * dirty_rate = N * task_ratelimit = write_bw (6)
1245 * put (6) into (1) we get
1246 * rate_(i+1) = rate_(i) (7)
1247 *
1248 * So we end up using (2) to always keep
1249 * rate_(i+1) ~= (write_bw / N) (8)
1250 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1251 * pos_ratio is able to drive itself to 1.0, which is not only where
1252 * the dirty count meet the setpoint, but also where the slope of
1253 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1254 */
1255 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1256 dirty_rate | 1);
bdaac490
WF
1257 /*
1258 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1259 */
1260 if (unlikely(balanced_dirty_ratelimit > write_bw))
1261 balanced_dirty_ratelimit = write_bw;
be3ffa27 1262
7381131c
WF
1263 /*
1264 * We could safely do this and return immediately:
1265 *
de1fff37 1266 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1267 *
1268 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1269 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1270 * limit the step size.
1271 *
1272 * The below code essentially only uses the relative value of
1273 *
1274 * task_ratelimit - dirty_ratelimit
1275 * = (pos_ratio - 1) * dirty_ratelimit
1276 *
1277 * which reflects the direction and size of dirty position error.
1278 */
1279
1280 /*
1281 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1282 * task_ratelimit is on the same side of dirty_ratelimit, too.
1283 * For example, when
1284 * - dirty_ratelimit > balanced_dirty_ratelimit
1285 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1286 * lowering dirty_ratelimit will help meet both the position and rate
1287 * control targets. Otherwise, don't update dirty_ratelimit if it will
1288 * only help meet the rate target. After all, what the users ultimately
1289 * feel and care are stable dirty rate and small position error.
1290 *
1291 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1292 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1293 * keeps jumping around randomly and can even leap far away at times
1294 * due to the small 200ms estimation period of dirty_rate (we want to
1295 * keep that period small to reduce time lags).
1296 */
1297 step = 0;
5a537485
MP
1298
1299 /*
de1fff37 1300 * For strictlimit case, calculations above were based on wb counters
a88a341a 1301 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1302 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1303 * Hence, to calculate "step" properly, we have to use wb_dirty as
1304 * "dirty" and wb_setpoint as "setpoint".
5a537485 1305 *
de1fff37
TH
1306 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1307 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1308 * of backing device.
5a537485 1309 */
a88a341a 1310 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1311 dirty = dtc->wb_dirty;
1312 if (dtc->wb_dirty < 8)
1313 setpoint = dtc->wb_dirty + 1;
5a537485 1314 else
970fb01a 1315 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1316 }
1317
7381131c 1318 if (dirty < setpoint) {
a88a341a 1319 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1320 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1321 if (dirty_ratelimit < x)
1322 step = x - dirty_ratelimit;
1323 } else {
a88a341a 1324 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1325 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1326 if (dirty_ratelimit > x)
1327 step = dirty_ratelimit - x;
1328 }
1329
1330 /*
1331 * Don't pursue 100% rate matching. It's impossible since the balanced
1332 * rate itself is constantly fluctuating. So decrease the track speed
1333 * when it gets close to the target. Helps eliminate pointless tremors.
1334 */
d59b1087
AR
1335 shift = dirty_ratelimit / (2 * step + 1);
1336 if (shift < BITS_PER_LONG)
1337 step = DIV_ROUND_UP(step >> shift, 8);
1338 else
1339 step = 0;
7381131c
WF
1340
1341 if (dirty_ratelimit < balanced_dirty_ratelimit)
1342 dirty_ratelimit += step;
1343 else
1344 dirty_ratelimit -= step;
1345
a88a341a
TH
1346 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1347 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1348
5634cc2a 1349 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1350}
1351
c2aa723a
TH
1352static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1353 struct dirty_throttle_control *mdtc,
8a731799
TH
1354 unsigned long start_time,
1355 bool update_ratelimit)
e98be2d5 1356{
c2aa723a 1357 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1358 unsigned long now = jiffies;
a88a341a 1359 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1360 unsigned long dirtied;
e98be2d5
WF
1361 unsigned long written;
1362
8a731799
TH
1363 lockdep_assert_held(&wb->list_lock);
1364
e98be2d5
WF
1365 /*
1366 * rate-limit, only update once every 200ms.
1367 */
1368 if (elapsed < BANDWIDTH_INTERVAL)
1369 return;
1370
a88a341a
TH
1371 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1372 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1373
1374 /*
1375 * Skip quiet periods when disk bandwidth is under-utilized.
1376 * (at least 1s idle time between two flusher runs)
1377 */
a88a341a 1378 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1379 goto snapshot;
1380
8a731799 1381 if (update_ratelimit) {
c2aa723a
TH
1382 domain_update_bandwidth(gdtc, now);
1383 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1384
1385 /*
1386 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1387 * compiler has no way to figure that out. Help it.
1388 */
1389 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1390 domain_update_bandwidth(mdtc, now);
1391 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1392 }
be3ffa27 1393 }
a88a341a 1394 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1395
1396snapshot:
a88a341a
TH
1397 wb->dirtied_stamp = dirtied;
1398 wb->written_stamp = written;
1399 wb->bw_time_stamp = now;
e98be2d5
WF
1400}
1401
8a731799 1402void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1403{
2bc00aef
TH
1404 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1405
c2aa723a 1406 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1407}
1408
9d823e8f 1409/*
d0e1d66b 1410 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1411 * will look to see if it needs to start dirty throttling.
1412 *
1413 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1414 * global_page_state() too often. So scale it near-sqrt to the safety margin
1415 * (the number of pages we may dirty without exceeding the dirty limits).
1416 */
1417static unsigned long dirty_poll_interval(unsigned long dirty,
1418 unsigned long thresh)
1419{
1420 if (thresh > dirty)
1421 return 1UL << (ilog2(thresh - dirty) >> 1);
1422
1423 return 1;
1424}
1425
a88a341a 1426static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1427 unsigned long wb_dirty)
c8462cc9 1428{
a88a341a 1429 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1430 unsigned long t;
c8462cc9 1431
7ccb9ad5
WF
1432 /*
1433 * Limit pause time for small memory systems. If sleeping for too long
1434 * time, a small pool of dirty/writeback pages may go empty and disk go
1435 * idle.
1436 *
1437 * 8 serves as the safety ratio.
1438 */
de1fff37 1439 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1440 t++;
1441
e3b6c655 1442 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1443}
1444
a88a341a
TH
1445static long wb_min_pause(struct bdi_writeback *wb,
1446 long max_pause,
1447 unsigned long task_ratelimit,
1448 unsigned long dirty_ratelimit,
1449 int *nr_dirtied_pause)
c8462cc9 1450{
a88a341a
TH
1451 long hi = ilog2(wb->avg_write_bandwidth);
1452 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1453 long t; /* target pause */
1454 long pause; /* estimated next pause */
1455 int pages; /* target nr_dirtied_pause */
c8462cc9 1456
7ccb9ad5
WF
1457 /* target for 10ms pause on 1-dd case */
1458 t = max(1, HZ / 100);
c8462cc9
WF
1459
1460 /*
1461 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1462 * overheads.
1463 *
7ccb9ad5 1464 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1465 */
1466 if (hi > lo)
7ccb9ad5 1467 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1468
1469 /*
7ccb9ad5
WF
1470 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1471 * on the much more stable dirty_ratelimit. However the next pause time
1472 * will be computed based on task_ratelimit and the two rate limits may
1473 * depart considerably at some time. Especially if task_ratelimit goes
1474 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1475 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1476 * result task_ratelimit won't be executed faithfully, which could
1477 * eventually bring down dirty_ratelimit.
c8462cc9 1478 *
7ccb9ad5
WF
1479 * We apply two rules to fix it up:
1480 * 1) try to estimate the next pause time and if necessary, use a lower
1481 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1482 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1483 * 2) limit the target pause time to max_pause/2, so that the normal
1484 * small fluctuations of task_ratelimit won't trigger rule (1) and
1485 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1486 */
7ccb9ad5
WF
1487 t = min(t, 1 + max_pause / 2);
1488 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1489
1490 /*
5b9b3574
WF
1491 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1492 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1493 * When the 16 consecutive reads are often interrupted by some dirty
1494 * throttling pause during the async writes, cfq will go into idles
1495 * (deadline is fine). So push nr_dirtied_pause as high as possible
1496 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1497 */
5b9b3574
WF
1498 if (pages < DIRTY_POLL_THRESH) {
1499 t = max_pause;
1500 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1501 if (pages > DIRTY_POLL_THRESH) {
1502 pages = DIRTY_POLL_THRESH;
1503 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1504 }
1505 }
1506
7ccb9ad5
WF
1507 pause = HZ * pages / (task_ratelimit + 1);
1508 if (pause > max_pause) {
1509 t = max_pause;
1510 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1511 }
c8462cc9 1512
7ccb9ad5 1513 *nr_dirtied_pause = pages;
c8462cc9 1514 /*
7ccb9ad5 1515 * The minimal pause time will normally be half the target pause time.
c8462cc9 1516 */
5b9b3574 1517 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1518}
1519
970fb01a 1520static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1521{
2bc00aef 1522 struct bdi_writeback *wb = dtc->wb;
93f78d88 1523 unsigned long wb_reclaimable;
5a537485
MP
1524
1525 /*
de1fff37 1526 * wb_thresh is not treated as some limiting factor as
5a537485 1527 * dirty_thresh, due to reasons
de1fff37 1528 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1529 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1530 * go into state (wb_dirty >> wb_thresh) either because
1531 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1532 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1533 * dirtiers for 100 seconds until wb_dirty drops under
1534 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1535 * wb_position_ratio() will let the dirtier task progress
de1fff37 1536 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1537 */
b1cbc6d4 1538 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1539 dtc->wb_bg_thresh = dtc->thresh ?
1540 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1541
1542 /*
1543 * In order to avoid the stacked BDI deadlock we need
1544 * to ensure we accurately count the 'dirty' pages when
1545 * the threshold is low.
1546 *
1547 * Otherwise it would be possible to get thresh+n pages
1548 * reported dirty, even though there are thresh-m pages
1549 * actually dirty; with m+n sitting in the percpu
1550 * deltas.
1551 */
2bc00aef 1552 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1553 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1554 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1555 } else {
93f78d88 1556 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1557 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1558 }
1559}
1560
1da177e4
LT
1561/*
1562 * balance_dirty_pages() must be called by processes which are generating dirty
1563 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1564 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1565 * If we're over `background_thresh' then the writeback threads are woken to
1566 * perform some writeout.
1da177e4 1567 */
3a2e9a5a 1568static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1569 struct bdi_writeback *wb,
143dfe86 1570 unsigned long pages_dirtied)
1da177e4 1571{
2bc00aef 1572 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1573 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1574 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1575 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1576 &mdtc_stor : NULL;
1577 struct dirty_throttle_control *sdtc;
143dfe86 1578 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1579 long period;
7ccb9ad5
WF
1580 long pause;
1581 long max_pause;
1582 long min_pause;
1583 int nr_dirtied_pause;
e50e3720 1584 bool dirty_exceeded = false;
143dfe86 1585 unsigned long task_ratelimit;
7ccb9ad5 1586 unsigned long dirty_ratelimit;
dfb8ae56 1587 struct backing_dev_info *bdi = wb->bdi;
5a537485 1588 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1589 unsigned long start_time = jiffies;
1da177e4
LT
1590
1591 for (;;) {
83712358 1592 unsigned long now = jiffies;
2bc00aef 1593 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1594 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1595 unsigned long m_thresh = 0;
1596 unsigned long m_bg_thresh = 0;
83712358 1597
143dfe86
WF
1598 /*
1599 * Unstable writes are a feature of certain networked
1600 * filesystems (i.e. NFS) in which data may have been
1601 * written to the server's write cache, but has not yet
1602 * been flushed to permanent storage.
1603 */
5fce25a9
PZ
1604 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1605 global_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1606 gdtc->avail = global_dirtyable_memory();
2bc00aef 1607 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1608
9fc3a43e 1609 domain_dirty_limits(gdtc);
16c4042f 1610
5a537485 1611 if (unlikely(strictlimit)) {
970fb01a 1612 wb_dirty_limits(gdtc);
5a537485 1613
2bc00aef
TH
1614 dirty = gdtc->wb_dirty;
1615 thresh = gdtc->wb_thresh;
970fb01a 1616 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1617 } else {
2bc00aef
TH
1618 dirty = gdtc->dirty;
1619 thresh = gdtc->thresh;
1620 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1621 }
1622
c2aa723a 1623 if (mdtc) {
c5edf9cd 1624 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1625
1626 /*
1627 * If @wb belongs to !root memcg, repeat the same
1628 * basic calculations for the memcg domain.
1629 */
c5edf9cd
TH
1630 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1631 &mdtc->dirty, &writeback);
c2aa723a 1632 mdtc->dirty += writeback;
c5edf9cd 1633 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1634
1635 domain_dirty_limits(mdtc);
1636
1637 if (unlikely(strictlimit)) {
1638 wb_dirty_limits(mdtc);
1639 m_dirty = mdtc->wb_dirty;
1640 m_thresh = mdtc->wb_thresh;
1641 m_bg_thresh = mdtc->wb_bg_thresh;
1642 } else {
1643 m_dirty = mdtc->dirty;
1644 m_thresh = mdtc->thresh;
1645 m_bg_thresh = mdtc->bg_thresh;
1646 }
5a537485
MP
1647 }
1648
16c4042f
WF
1649 /*
1650 * Throttle it only when the background writeback cannot
1651 * catch-up. This avoids (excessively) small writeouts
de1fff37 1652 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1653 *
de1fff37
TH
1654 * In strictlimit case make decision based on the wb counters
1655 * and limits. Small writeouts when the wb limits are ramping
5a537485 1656 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1657 *
1658 * If memcg domain is in effect, @dirty should be under
1659 * both global and memcg freerun ceilings.
16c4042f 1660 */
c2aa723a
TH
1661 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1662 (!mdtc ||
1663 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1664 unsigned long intv = dirty_poll_interval(dirty, thresh);
1665 unsigned long m_intv = ULONG_MAX;
1666
83712358
WF
1667 current->dirty_paused_when = now;
1668 current->nr_dirtied = 0;
c2aa723a
TH
1669 if (mdtc)
1670 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1671 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1672 break;
83712358 1673 }
16c4042f 1674
bc05873d 1675 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1676 wb_start_background_writeback(wb);
143dfe86 1677
c2aa723a
TH
1678 /*
1679 * Calculate global domain's pos_ratio and select the
1680 * global dtc by default.
1681 */
5a537485 1682 if (!strictlimit)
970fb01a 1683 wb_dirty_limits(gdtc);
5fce25a9 1684
2bc00aef
TH
1685 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1686 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1687
1688 wb_position_ratio(gdtc);
c2aa723a
TH
1689 sdtc = gdtc;
1690
1691 if (mdtc) {
1692 /*
1693 * If memcg domain is in effect, calculate its
1694 * pos_ratio. @wb should satisfy constraints from
1695 * both global and memcg domains. Choose the one
1696 * w/ lower pos_ratio.
1697 */
1698 if (!strictlimit)
1699 wb_dirty_limits(mdtc);
1700
1701 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1702 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1703
1704 wb_position_ratio(mdtc);
1705 if (mdtc->pos_ratio < gdtc->pos_ratio)
1706 sdtc = mdtc;
1707 }
daddfa3c 1708
a88a341a
TH
1709 if (dirty_exceeded && !wb->dirty_exceeded)
1710 wb->dirty_exceeded = 1;
1da177e4 1711
8a731799
TH
1712 if (time_is_before_jiffies(wb->bw_time_stamp +
1713 BANDWIDTH_INTERVAL)) {
1714 spin_lock(&wb->list_lock);
c2aa723a 1715 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1716 spin_unlock(&wb->list_lock);
1717 }
e98be2d5 1718
c2aa723a 1719 /* throttle according to the chosen dtc */
a88a341a 1720 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1721 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1722 RATELIMIT_CALC_SHIFT;
c2aa723a 1723 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1724 min_pause = wb_min_pause(wb, max_pause,
1725 task_ratelimit, dirty_ratelimit,
1726 &nr_dirtied_pause);
7ccb9ad5 1727
3a73dbbc 1728 if (unlikely(task_ratelimit == 0)) {
83712358 1729 period = max_pause;
c8462cc9 1730 pause = max_pause;
143dfe86 1731 goto pause;
04fbfdc1 1732 }
83712358
WF
1733 period = HZ * pages_dirtied / task_ratelimit;
1734 pause = period;
1735 if (current->dirty_paused_when)
1736 pause -= now - current->dirty_paused_when;
1737 /*
1738 * For less than 1s think time (ext3/4 may block the dirtier
1739 * for up to 800ms from time to time on 1-HDD; so does xfs,
1740 * however at much less frequency), try to compensate it in
1741 * future periods by updating the virtual time; otherwise just
1742 * do a reset, as it may be a light dirtier.
1743 */
7ccb9ad5 1744 if (pause < min_pause) {
5634cc2a 1745 trace_balance_dirty_pages(wb,
c2aa723a
TH
1746 sdtc->thresh,
1747 sdtc->bg_thresh,
1748 sdtc->dirty,
1749 sdtc->wb_thresh,
1750 sdtc->wb_dirty,
ece13ac3
WF
1751 dirty_ratelimit,
1752 task_ratelimit,
1753 pages_dirtied,
83712358 1754 period,
7ccb9ad5 1755 min(pause, 0L),
ece13ac3 1756 start_time);
83712358
WF
1757 if (pause < -HZ) {
1758 current->dirty_paused_when = now;
1759 current->nr_dirtied = 0;
1760 } else if (period) {
1761 current->dirty_paused_when += period;
1762 current->nr_dirtied = 0;
7ccb9ad5
WF
1763 } else if (current->nr_dirtied_pause <= pages_dirtied)
1764 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1765 break;
04fbfdc1 1766 }
7ccb9ad5
WF
1767 if (unlikely(pause > max_pause)) {
1768 /* for occasional dropped task_ratelimit */
1769 now += min(pause - max_pause, max_pause);
1770 pause = max_pause;
1771 }
143dfe86
WF
1772
1773pause:
5634cc2a 1774 trace_balance_dirty_pages(wb,
c2aa723a
TH
1775 sdtc->thresh,
1776 sdtc->bg_thresh,
1777 sdtc->dirty,
1778 sdtc->wb_thresh,
1779 sdtc->wb_dirty,
ece13ac3
WF
1780 dirty_ratelimit,
1781 task_ratelimit,
1782 pages_dirtied,
83712358 1783 period,
ece13ac3
WF
1784 pause,
1785 start_time);
499d05ec 1786 __set_current_state(TASK_KILLABLE);
d25105e8 1787 io_schedule_timeout(pause);
87c6a9b2 1788
83712358
WF
1789 current->dirty_paused_when = now + pause;
1790 current->nr_dirtied = 0;
7ccb9ad5 1791 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1792
ffd1f609 1793 /*
2bc00aef
TH
1794 * This is typically equal to (dirty < thresh) and can also
1795 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1796 */
1df64719 1797 if (task_ratelimit)
ffd1f609 1798 break;
499d05ec 1799
c5c6343c
WF
1800 /*
1801 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1802 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1803 * to go through, so that tasks on them still remain responsive.
1804 *
1805 * In theory 1 page is enough to keep the comsumer-producer
1806 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1807 * more page. However wb_dirty has accounting errors. So use
93f78d88 1808 * the larger and more IO friendly wb_stat_error.
c5c6343c 1809 */
c2aa723a 1810 if (sdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1811 break;
1812
499d05ec
JK
1813 if (fatal_signal_pending(current))
1814 break;
1da177e4
LT
1815 }
1816
a88a341a
TH
1817 if (!dirty_exceeded && wb->dirty_exceeded)
1818 wb->dirty_exceeded = 0;
1da177e4 1819
bc05873d 1820 if (writeback_in_progress(wb))
5b0830cb 1821 return;
1da177e4
LT
1822
1823 /*
1824 * In laptop mode, we wait until hitting the higher threshold before
1825 * starting background writeout, and then write out all the way down
1826 * to the lower threshold. So slow writers cause minimal disk activity.
1827 *
1828 * In normal mode, we start background writeout at the lower
1829 * background_thresh, to keep the amount of dirty memory low.
1830 */
143dfe86
WF
1831 if (laptop_mode)
1832 return;
1833
2bc00aef 1834 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1835 wb_start_background_writeback(wb);
1da177e4
LT
1836}
1837
9d823e8f 1838static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1839
54848d73
WF
1840/*
1841 * Normal tasks are throttled by
1842 * loop {
1843 * dirty tsk->nr_dirtied_pause pages;
1844 * take a snap in balance_dirty_pages();
1845 * }
1846 * However there is a worst case. If every task exit immediately when dirtied
1847 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1848 * called to throttle the page dirties. The solution is to save the not yet
1849 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1850 * randomly into the running tasks. This works well for the above worst case,
1851 * as the new task will pick up and accumulate the old task's leaked dirty
1852 * count and eventually get throttled.
1853 */
1854DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1855
1da177e4 1856/**
d0e1d66b 1857 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1858 * @mapping: address_space which was dirtied
1da177e4
LT
1859 *
1860 * Processes which are dirtying memory should call in here once for each page
1861 * which was newly dirtied. The function will periodically check the system's
1862 * dirty state and will initiate writeback if needed.
1863 *
1864 * On really big machines, get_writeback_state is expensive, so try to avoid
1865 * calling it too often (ratelimiting). But once we're over the dirty memory
1866 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1867 * from overshooting the limit by (ratelimit_pages) each.
1868 */
d0e1d66b 1869void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1870{
dfb8ae56
TH
1871 struct inode *inode = mapping->host;
1872 struct backing_dev_info *bdi = inode_to_bdi(inode);
1873 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1874 int ratelimit;
1875 int *p;
1da177e4 1876
36715cef
WF
1877 if (!bdi_cap_account_dirty(bdi))
1878 return;
1879
dfb8ae56
TH
1880 if (inode_cgwb_enabled(inode))
1881 wb = wb_get_create_current(bdi, GFP_KERNEL);
1882 if (!wb)
1883 wb = &bdi->wb;
1884
9d823e8f 1885 ratelimit = current->nr_dirtied_pause;
a88a341a 1886 if (wb->dirty_exceeded)
9d823e8f
WF
1887 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1888
9d823e8f 1889 preempt_disable();
1da177e4 1890 /*
9d823e8f
WF
1891 * This prevents one CPU to accumulate too many dirtied pages without
1892 * calling into balance_dirty_pages(), which can happen when there are
1893 * 1000+ tasks, all of them start dirtying pages at exactly the same
1894 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1895 */
7c8e0181 1896 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1897 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1898 *p = 0;
d3bc1fef
WF
1899 else if (unlikely(*p >= ratelimit_pages)) {
1900 *p = 0;
1901 ratelimit = 0;
1da177e4 1902 }
54848d73
WF
1903 /*
1904 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1905 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1906 * the dirty throttling and livelock other long-run dirtiers.
1907 */
7c8e0181 1908 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1909 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1910 unsigned long nr_pages_dirtied;
54848d73
WF
1911 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1912 *p -= nr_pages_dirtied;
1913 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1914 }
fa5a734e 1915 preempt_enable();
9d823e8f
WF
1916
1917 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1918 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1919
1920 wb_put(wb);
1da177e4 1921}
d0e1d66b 1922EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1923
aa661bbe
TH
1924/**
1925 * wb_over_bg_thresh - does @wb need to be written back?
1926 * @wb: bdi_writeback of interest
1927 *
1928 * Determines whether background writeback should keep writing @wb or it's
1929 * clean enough. Returns %true if writeback should continue.
1930 */
1931bool wb_over_bg_thresh(struct bdi_writeback *wb)
1932{
947e9762 1933 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1934 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1935 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1936 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1937 &mdtc_stor : NULL;
aa661bbe 1938
947e9762
TH
1939 /*
1940 * Similar to balance_dirty_pages() but ignores pages being written
1941 * as we're trying to decide whether to put more under writeback.
1942 */
1943 gdtc->avail = global_dirtyable_memory();
1944 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1945 global_page_state(NR_UNSTABLE_NFS);
1946 domain_dirty_limits(gdtc);
aa661bbe 1947
947e9762 1948 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1949 return true;
1950
74d36944
HC
1951 if (wb_stat(wb, WB_RECLAIMABLE) >
1952 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1953 return true;
1954
c2aa723a 1955 if (mdtc) {
c5edf9cd 1956 unsigned long filepages, headroom, writeback;
c2aa723a 1957
c5edf9cd
TH
1958 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1959 &writeback);
1960 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1961 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1962
1963 if (mdtc->dirty > mdtc->bg_thresh)
1964 return true;
1965
74d36944
HC
1966 if (wb_stat(wb, WB_RECLAIMABLE) >
1967 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1968 return true;
1969 }
1970
aa661bbe
TH
1971 return false;
1972}
1973
232ea4d6 1974void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1975{
364aeb28
DR
1976 unsigned long background_thresh;
1977 unsigned long dirty_thresh;
1da177e4
LT
1978
1979 for ( ; ; ) {
16c4042f 1980 global_dirty_limits(&background_thresh, &dirty_thresh);
c7981433 1981 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1da177e4
LT
1982
1983 /*
1984 * Boost the allowable dirty threshold a bit for page
1985 * allocators so they don't get DoS'ed by heavy writers
1986 */
1987 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1988
c24f21bd
CL
1989 if (global_page_state(NR_UNSTABLE_NFS) +
1990 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1991 break;
8aa7e847 1992 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1993
1994 /*
1995 * The caller might hold locks which can prevent IO completion
1996 * or progress in the filesystem. So we cannot just sit here
1997 * waiting for IO to complete.
1998 */
1999 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
2000 break;
1da177e4
LT
2001 }
2002}
2003
1da177e4
LT
2004/*
2005 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2006 */
cccad5b9 2007int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 2008 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2009{
8d65af78 2010 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
2011 return 0;
2012}
2013
c2c4986e 2014#ifdef CONFIG_BLOCK
31373d09 2015void laptop_mode_timer_fn(unsigned long data)
1da177e4 2016{
31373d09
MG
2017 struct request_queue *q = (struct request_queue *)data;
2018 int nr_pages = global_page_state(NR_FILE_DIRTY) +
2019 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1 2020 struct bdi_writeback *wb;
1da177e4 2021
31373d09
MG
2022 /*
2023 * We want to write everything out, not just down to the dirty
2024 * threshold
2025 */
a06fd6b1
TH
2026 if (!bdi_has_dirty_io(&q->backing_dev_info))
2027 return;
2028
9ad18ab9 2029 rcu_read_lock();
b817525a 2030 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
a06fd6b1
TH
2031 if (wb_has_dirty_io(wb))
2032 wb_start_writeback(wb, nr_pages, true,
2033 WB_REASON_LAPTOP_TIMER);
9ad18ab9 2034 rcu_read_unlock();
1da177e4
LT
2035}
2036
2037/*
2038 * We've spun up the disk and we're in laptop mode: schedule writeback
2039 * of all dirty data a few seconds from now. If the flush is already scheduled
2040 * then push it back - the user is still using the disk.
2041 */
31373d09 2042void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2043{
31373d09 2044 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2045}
2046
2047/*
2048 * We're in laptop mode and we've just synced. The sync's writes will have
2049 * caused another writeback to be scheduled by laptop_io_completion.
2050 * Nothing needs to be written back anymore, so we unschedule the writeback.
2051 */
2052void laptop_sync_completion(void)
2053{
31373d09
MG
2054 struct backing_dev_info *bdi;
2055
2056 rcu_read_lock();
2057
2058 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2059 del_timer(&bdi->laptop_mode_wb_timer);
2060
2061 rcu_read_unlock();
1da177e4 2062}
c2c4986e 2063#endif
1da177e4
LT
2064
2065/*
2066 * If ratelimit_pages is too high then we can get into dirty-data overload
2067 * if a large number of processes all perform writes at the same time.
2068 * If it is too low then SMP machines will call the (expensive)
2069 * get_writeback_state too often.
2070 *
2071 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2072 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2073 * thresholds.
1da177e4
LT
2074 */
2075
2d1d43f6 2076void writeback_set_ratelimit(void)
1da177e4 2077{
dcc25ae7 2078 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2079 unsigned long background_thresh;
2080 unsigned long dirty_thresh;
dcc25ae7 2081
9d823e8f 2082 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2083 dom->dirty_limit = dirty_thresh;
9d823e8f 2084 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2085 if (ratelimit_pages < 16)
2086 ratelimit_pages = 16;
1da177e4
LT
2087}
2088
0db0628d 2089static int
2f60d628
SB
2090ratelimit_handler(struct notifier_block *self, unsigned long action,
2091 void *hcpu)
1da177e4 2092{
2f60d628
SB
2093
2094 switch (action & ~CPU_TASKS_FROZEN) {
2095 case CPU_ONLINE:
2096 case CPU_DEAD:
2097 writeback_set_ratelimit();
2098 return NOTIFY_OK;
2099 default:
2100 return NOTIFY_DONE;
2101 }
1da177e4
LT
2102}
2103
0db0628d 2104static struct notifier_block ratelimit_nb = {
1da177e4
LT
2105 .notifier_call = ratelimit_handler,
2106 .next = NULL,
2107};
2108
2109/*
dc6e29da
LT
2110 * Called early on to tune the page writeback dirty limits.
2111 *
2112 * We used to scale dirty pages according to how total memory
2113 * related to pages that could be allocated for buffers (by
2114 * comparing nr_free_buffer_pages() to vm_total_pages.
2115 *
2116 * However, that was when we used "dirty_ratio" to scale with
2117 * all memory, and we don't do that any more. "dirty_ratio"
2118 * is now applied to total non-HIGHPAGE memory (by subtracting
2119 * totalhigh_pages from vm_total_pages), and as such we can't
2120 * get into the old insane situation any more where we had
2121 * large amounts of dirty pages compared to a small amount of
2122 * non-HIGHMEM memory.
2123 *
2124 * But we might still want to scale the dirty_ratio by how
2125 * much memory the box has..
1da177e4
LT
2126 */
2127void __init page_writeback_init(void)
2128{
a50fcb51
RV
2129 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2130
2d1d43f6 2131 writeback_set_ratelimit();
1da177e4
LT
2132 register_cpu_notifier(&ratelimit_nb);
2133}
2134
f446daae
JK
2135/**
2136 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2137 * @mapping: address space structure to write
2138 * @start: starting page index
2139 * @end: ending page index (inclusive)
2140 *
2141 * This function scans the page range from @start to @end (inclusive) and tags
2142 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2143 * that write_cache_pages (or whoever calls this function) will then use
2144 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2145 * used to avoid livelocking of writeback by a process steadily creating new
2146 * dirty pages in the file (thus it is important for this function to be quick
2147 * so that it can tag pages faster than a dirtying process can create them).
2148 */
2149/*
2150 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2151 */
f446daae
JK
2152void tag_pages_for_writeback(struct address_space *mapping,
2153 pgoff_t start, pgoff_t end)
2154{
3c111a07 2155#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
2156 unsigned long tagged;
2157
2158 do {
2159 spin_lock_irq(&mapping->tree_lock);
2160 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2161 &start, end, WRITEBACK_TAG_BATCH,
2162 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2163 spin_unlock_irq(&mapping->tree_lock);
2164 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2165 cond_resched();
d5ed3a4a
JK
2166 /* We check 'start' to handle wrapping when end == ~0UL */
2167 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
2168}
2169EXPORT_SYMBOL(tag_pages_for_writeback);
2170
811d736f 2171/**
0ea97180 2172 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2173 * @mapping: address space structure to write
2174 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2175 * @writepage: function called for each page
2176 * @data: data passed to writepage function
811d736f 2177 *
0ea97180 2178 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2179 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2180 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2181 * and msync() need to guarantee that all the data which was dirty at the time
2182 * the call was made get new I/O started against them. If wbc->sync_mode is
2183 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2184 * existing IO to complete.
f446daae
JK
2185 *
2186 * To avoid livelocks (when other process dirties new pages), we first tag
2187 * pages which should be written back with TOWRITE tag and only then start
2188 * writing them. For data-integrity sync we have to be careful so that we do
2189 * not miss some pages (e.g., because some other process has cleared TOWRITE
2190 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2191 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 2192 */
0ea97180
MS
2193int write_cache_pages(struct address_space *mapping,
2194 struct writeback_control *wbc, writepage_t writepage,
2195 void *data)
811d736f 2196{
811d736f
DH
2197 int ret = 0;
2198 int done = 0;
811d736f
DH
2199 struct pagevec pvec;
2200 int nr_pages;
31a12666 2201 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2202 pgoff_t index;
2203 pgoff_t end; /* Inclusive */
bd19e012 2204 pgoff_t done_index;
31a12666 2205 int cycled;
811d736f 2206 int range_whole = 0;
f446daae 2207 int tag;
811d736f 2208
811d736f
DH
2209 pagevec_init(&pvec, 0);
2210 if (wbc->range_cyclic) {
31a12666
NP
2211 writeback_index = mapping->writeback_index; /* prev offset */
2212 index = writeback_index;
2213 if (index == 0)
2214 cycled = 1;
2215 else
2216 cycled = 0;
811d736f
DH
2217 end = -1;
2218 } else {
09cbfeaf
KS
2219 index = wbc->range_start >> PAGE_SHIFT;
2220 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2221 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2222 range_whole = 1;
31a12666 2223 cycled = 1; /* ignore range_cyclic tests */
811d736f 2224 }
6e6938b6 2225 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2226 tag = PAGECACHE_TAG_TOWRITE;
2227 else
2228 tag = PAGECACHE_TAG_DIRTY;
811d736f 2229retry:
6e6938b6 2230 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2231 tag_pages_for_writeback(mapping, index, end);
bd19e012 2232 done_index = index;
5a3d5c98
NP
2233 while (!done && (index <= end)) {
2234 int i;
2235
f446daae 2236 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
2237 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2238 if (nr_pages == 0)
2239 break;
811d736f 2240
811d736f
DH
2241 for (i = 0; i < nr_pages; i++) {
2242 struct page *page = pvec.pages[i];
2243
2244 /*
d5482cdf
NP
2245 * At this point, the page may be truncated or
2246 * invalidated (changing page->mapping to NULL), or
2247 * even swizzled back from swapper_space to tmpfs file
2248 * mapping. However, page->index will not change
2249 * because we have a reference on the page.
811d736f 2250 */
d5482cdf
NP
2251 if (page->index > end) {
2252 /*
2253 * can't be range_cyclic (1st pass) because
2254 * end == -1 in that case.
2255 */
2256 done = 1;
2257 break;
2258 }
2259
cf15b07c 2260 done_index = page->index;
d5482cdf 2261
811d736f
DH
2262 lock_page(page);
2263
5a3d5c98
NP
2264 /*
2265 * Page truncated or invalidated. We can freely skip it
2266 * then, even for data integrity operations: the page
2267 * has disappeared concurrently, so there could be no
2268 * real expectation of this data interity operation
2269 * even if there is now a new, dirty page at the same
2270 * pagecache address.
2271 */
811d736f 2272 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2273continue_unlock:
811d736f
DH
2274 unlock_page(page);
2275 continue;
2276 }
2277
515f4a03
NP
2278 if (!PageDirty(page)) {
2279 /* someone wrote it for us */
2280 goto continue_unlock;
2281 }
2282
2283 if (PageWriteback(page)) {
2284 if (wbc->sync_mode != WB_SYNC_NONE)
2285 wait_on_page_writeback(page);
2286 else
2287 goto continue_unlock;
2288 }
811d736f 2289
515f4a03
NP
2290 BUG_ON(PageWriteback(page));
2291 if (!clear_page_dirty_for_io(page))
5a3d5c98 2292 goto continue_unlock;
811d736f 2293
de1414a6 2294 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 2295 ret = (*writepage)(page, wbc, data);
00266770
NP
2296 if (unlikely(ret)) {
2297 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2298 unlock_page(page);
2299 ret = 0;
2300 } else {
2301 /*
2302 * done_index is set past this page,
2303 * so media errors will not choke
2304 * background writeout for the entire
2305 * file. This has consequences for
2306 * range_cyclic semantics (ie. it may
2307 * not be suitable for data integrity
2308 * writeout).
2309 */
cf15b07c 2310 done_index = page->index + 1;
00266770
NP
2311 done = 1;
2312 break;
2313 }
0b564927 2314 }
00266770 2315
546a1924
DC
2316 /*
2317 * We stop writing back only if we are not doing
2318 * integrity sync. In case of integrity sync we have to
2319 * keep going until we have written all the pages
2320 * we tagged for writeback prior to entering this loop.
2321 */
2322 if (--wbc->nr_to_write <= 0 &&
2323 wbc->sync_mode == WB_SYNC_NONE) {
2324 done = 1;
2325 break;
05fe478d 2326 }
811d736f
DH
2327 }
2328 pagevec_release(&pvec);
2329 cond_resched();
2330 }
3a4c6800 2331 if (!cycled && !done) {
811d736f 2332 /*
31a12666 2333 * range_cyclic:
811d736f
DH
2334 * We hit the last page and there is more work to be done: wrap
2335 * back to the start of the file
2336 */
31a12666 2337 cycled = 1;
811d736f 2338 index = 0;
31a12666 2339 end = writeback_index - 1;
811d736f
DH
2340 goto retry;
2341 }
0b564927
DC
2342 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2343 mapping->writeback_index = done_index;
06d6cf69 2344
811d736f
DH
2345 return ret;
2346}
0ea97180
MS
2347EXPORT_SYMBOL(write_cache_pages);
2348
2349/*
2350 * Function used by generic_writepages to call the real writepage
2351 * function and set the mapping flags on error
2352 */
2353static int __writepage(struct page *page, struct writeback_control *wbc,
2354 void *data)
2355{
2356 struct address_space *mapping = data;
2357 int ret = mapping->a_ops->writepage(page, wbc);
2358 mapping_set_error(mapping, ret);
2359 return ret;
2360}
2361
2362/**
2363 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2364 * @mapping: address space structure to write
2365 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2366 *
2367 * This is a library function, which implements the writepages()
2368 * address_space_operation.
2369 */
2370int generic_writepages(struct address_space *mapping,
2371 struct writeback_control *wbc)
2372{
9b6096a6
SL
2373 struct blk_plug plug;
2374 int ret;
2375
0ea97180
MS
2376 /* deal with chardevs and other special file */
2377 if (!mapping->a_ops->writepage)
2378 return 0;
2379
9b6096a6
SL
2380 blk_start_plug(&plug);
2381 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2382 blk_finish_plug(&plug);
2383 return ret;
0ea97180 2384}
811d736f
DH
2385
2386EXPORT_SYMBOL(generic_writepages);
2387
1da177e4
LT
2388int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2389{
22905f77
AM
2390 int ret;
2391
1da177e4
LT
2392 if (wbc->nr_to_write <= 0)
2393 return 0;
2394 if (mapping->a_ops->writepages)
d08b3851 2395 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2396 else
2397 ret = generic_writepages(mapping, wbc);
22905f77 2398 return ret;
1da177e4
LT
2399}
2400
2401/**
2402 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2403 * @page: the page to write
2404 * @wait: if true, wait on writeout
1da177e4
LT
2405 *
2406 * The page must be locked by the caller and will be unlocked upon return.
2407 *
2408 * write_one_page() returns a negative error code if I/O failed.
2409 */
2410int write_one_page(struct page *page, int wait)
2411{
2412 struct address_space *mapping = page->mapping;
2413 int ret = 0;
2414 struct writeback_control wbc = {
2415 .sync_mode = WB_SYNC_ALL,
2416 .nr_to_write = 1,
2417 };
2418
2419 BUG_ON(!PageLocked(page));
2420
2421 if (wait)
2422 wait_on_page_writeback(page);
2423
2424 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2425 get_page(page);
1da177e4
LT
2426 ret = mapping->a_ops->writepage(page, &wbc);
2427 if (ret == 0 && wait) {
2428 wait_on_page_writeback(page);
2429 if (PageError(page))
2430 ret = -EIO;
2431 }
09cbfeaf 2432 put_page(page);
1da177e4
LT
2433 } else {
2434 unlock_page(page);
2435 }
2436 return ret;
2437}
2438EXPORT_SYMBOL(write_one_page);
2439
76719325
KC
2440/*
2441 * For address_spaces which do not use buffers nor write back.
2442 */
2443int __set_page_dirty_no_writeback(struct page *page)
2444{
2445 if (!PageDirty(page))
c3f0da63 2446 return !TestSetPageDirty(page);
76719325
KC
2447 return 0;
2448}
2449
e3a7cca1
ES
2450/*
2451 * Helper function for set_page_dirty family.
c4843a75 2452 *
81f8c3a4 2453 * Caller must hold lock_page_memcg().
c4843a75 2454 *
e3a7cca1
ES
2455 * NOTE: This relies on being atomic wrt interrupts.
2456 */
62cccb8c 2457void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2458{
52ebea74
TH
2459 struct inode *inode = mapping->host;
2460
9fb0a7da
TH
2461 trace_writeback_dirty_page(page, mapping);
2462
e3a7cca1 2463 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2464 struct bdi_writeback *wb;
de1414a6 2465
52ebea74
TH
2466 inode_attach_wb(inode, page);
2467 wb = inode_to_wb(inode);
de1414a6 2468
62cccb8c 2469 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2470 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2471 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2472 __inc_wb_stat(wb, WB_RECLAIMABLE);
2473 __inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2474 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2475 current->nr_dirtied++;
2476 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2477 }
2478}
679ceace 2479EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2480
b9ea2515
KK
2481/*
2482 * Helper function for deaccounting dirty page without writeback.
2483 *
81f8c3a4 2484 * Caller must hold lock_page_memcg().
b9ea2515 2485 */
c4843a75 2486void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2487 struct bdi_writeback *wb)
b9ea2515
KK
2488{
2489 if (mapping_cap_account_dirty(mapping)) {
62cccb8c 2490 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2491 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2492 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2493 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2494 }
2495}
b9ea2515 2496
1da177e4
LT
2497/*
2498 * For address_spaces which do not use buffers. Just tag the page as dirty in
2499 * its radix tree.
2500 *
2501 * This is also used when a single buffer is being dirtied: we want to set the
2502 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2503 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2504 *
2d6d7f98
JW
2505 * The caller must ensure this doesn't race with truncation. Most will simply
2506 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2507 * the pte lock held, which also locks out truncation.
1da177e4
LT
2508 */
2509int __set_page_dirty_nobuffers(struct page *page)
2510{
62cccb8c 2511 lock_page_memcg(page);
1da177e4
LT
2512 if (!TestSetPageDirty(page)) {
2513 struct address_space *mapping = page_mapping(page);
a85d9df1 2514 unsigned long flags;
1da177e4 2515
c4843a75 2516 if (!mapping) {
62cccb8c 2517 unlock_page_memcg(page);
8c08540f 2518 return 1;
c4843a75 2519 }
8c08540f 2520
a85d9df1 2521 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2522 BUG_ON(page_mapping(page) != mapping);
2523 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2524 account_page_dirtied(page, mapping);
2d6d7f98
JW
2525 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2526 PAGECACHE_TAG_DIRTY);
a85d9df1 2527 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 2528 unlock_page_memcg(page);
c4843a75 2529
8c08540f
AM
2530 if (mapping->host) {
2531 /* !PageAnon && !swapper_space */
2532 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2533 }
4741c9fd 2534 return 1;
1da177e4 2535 }
62cccb8c 2536 unlock_page_memcg(page);
4741c9fd 2537 return 0;
1da177e4
LT
2538}
2539EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2540
2f800fbd
WF
2541/*
2542 * Call this whenever redirtying a page, to de-account the dirty counters
2543 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2544 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2545 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2546 * control.
2547 */
2548void account_page_redirty(struct page *page)
2549{
2550 struct address_space *mapping = page->mapping;
91018134 2551
2f800fbd 2552 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2553 struct inode *inode = mapping->host;
2554 struct bdi_writeback *wb;
2555 bool locked;
91018134 2556
682aa8e1 2557 wb = unlocked_inode_to_wb_begin(inode, &locked);
2f800fbd
WF
2558 current->nr_dirtied--;
2559 dec_zone_page_state(page, NR_DIRTIED);
91018134 2560 dec_wb_stat(wb, WB_DIRTIED);
682aa8e1 2561 unlocked_inode_to_wb_end(inode, locked);
2f800fbd
WF
2562 }
2563}
2564EXPORT_SYMBOL(account_page_redirty);
2565
1da177e4
LT
2566/*
2567 * When a writepage implementation decides that it doesn't want to write this
2568 * page for some reason, it should redirty the locked page via
2569 * redirty_page_for_writepage() and it should then unlock the page and return 0
2570 */
2571int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2572{
8d38633c
KK
2573 int ret;
2574
1da177e4 2575 wbc->pages_skipped++;
8d38633c 2576 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2577 account_page_redirty(page);
8d38633c 2578 return ret;
1da177e4
LT
2579}
2580EXPORT_SYMBOL(redirty_page_for_writepage);
2581
2582/*
6746aff7
WF
2583 * Dirty a page.
2584 *
2585 * For pages with a mapping this should be done under the page lock
2586 * for the benefit of asynchronous memory errors who prefer a consistent
2587 * dirty state. This rule can be broken in some special cases,
2588 * but should be better not to.
2589 *
1da177e4
LT
2590 * If the mapping doesn't provide a set_page_dirty a_op, then
2591 * just fall through and assume that it wants buffer_heads.
2592 */
1cf6e7d8 2593int set_page_dirty(struct page *page)
1da177e4
LT
2594{
2595 struct address_space *mapping = page_mapping(page);
2596
800d8c63 2597 page = compound_head(page);
1da177e4
LT
2598 if (likely(mapping)) {
2599 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2600 /*
2601 * readahead/lru_deactivate_page could remain
2602 * PG_readahead/PG_reclaim due to race with end_page_writeback
2603 * About readahead, if the page is written, the flags would be
2604 * reset. So no problem.
2605 * About lru_deactivate_page, if the page is redirty, the flag
2606 * will be reset. So no problem. but if the page is used by readahead
2607 * it will confuse readahead and make it restart the size rampup
2608 * process. But it's a trivial problem.
2609 */
a4bb3ecd
NH
2610 if (PageReclaim(page))
2611 ClearPageReclaim(page);
9361401e
DH
2612#ifdef CONFIG_BLOCK
2613 if (!spd)
2614 spd = __set_page_dirty_buffers;
2615#endif
2616 return (*spd)(page);
1da177e4 2617 }
4741c9fd
AM
2618 if (!PageDirty(page)) {
2619 if (!TestSetPageDirty(page))
2620 return 1;
2621 }
1da177e4
LT
2622 return 0;
2623}
2624EXPORT_SYMBOL(set_page_dirty);
2625
2626/*
2627 * set_page_dirty() is racy if the caller has no reference against
2628 * page->mapping->host, and if the page is unlocked. This is because another
2629 * CPU could truncate the page off the mapping and then free the mapping.
2630 *
2631 * Usually, the page _is_ locked, or the caller is a user-space process which
2632 * holds a reference on the inode by having an open file.
2633 *
2634 * In other cases, the page should be locked before running set_page_dirty().
2635 */
2636int set_page_dirty_lock(struct page *page)
2637{
2638 int ret;
2639
7eaceacc 2640 lock_page(page);
1da177e4
LT
2641 ret = set_page_dirty(page);
2642 unlock_page(page);
2643 return ret;
2644}
2645EXPORT_SYMBOL(set_page_dirty_lock);
2646
11f81bec
TH
2647/*
2648 * This cancels just the dirty bit on the kernel page itself, it does NOT
2649 * actually remove dirty bits on any mmap's that may be around. It also
2650 * leaves the page tagged dirty, so any sync activity will still find it on
2651 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2652 * look at the dirty bits in the VM.
2653 *
2654 * Doing this should *normally* only ever be done when a page is truncated,
2655 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2656 * this when it notices that somebody has cleaned out all the buffers on a
2657 * page without actually doing it through the VM. Can you say "ext3 is
2658 * horribly ugly"? Thought you could.
2659 */
2660void cancel_dirty_page(struct page *page)
2661{
c4843a75
GT
2662 struct address_space *mapping = page_mapping(page);
2663
2664 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2665 struct inode *inode = mapping->host;
2666 struct bdi_writeback *wb;
682aa8e1 2667 bool locked;
c4843a75 2668
62cccb8c 2669 lock_page_memcg(page);
682aa8e1 2670 wb = unlocked_inode_to_wb_begin(inode, &locked);
c4843a75
GT
2671
2672 if (TestClearPageDirty(page))
62cccb8c 2673 account_page_cleaned(page, mapping, wb);
c4843a75 2674
682aa8e1 2675 unlocked_inode_to_wb_end(inode, locked);
62cccb8c 2676 unlock_page_memcg(page);
c4843a75
GT
2677 } else {
2678 ClearPageDirty(page);
2679 }
11f81bec
TH
2680}
2681EXPORT_SYMBOL(cancel_dirty_page);
2682
1da177e4
LT
2683/*
2684 * Clear a page's dirty flag, while caring for dirty memory accounting.
2685 * Returns true if the page was previously dirty.
2686 *
2687 * This is for preparing to put the page under writeout. We leave the page
2688 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2689 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2690 * implementation will run either set_page_writeback() or set_page_dirty(),
2691 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2692 * back into sync.
2693 *
2694 * This incoherency between the page's dirty flag and radix-tree tag is
2695 * unfortunate, but it only exists while the page is locked.
2696 */
2697int clear_page_dirty_for_io(struct page *page)
2698{
2699 struct address_space *mapping = page_mapping(page);
c4843a75 2700 int ret = 0;
1da177e4 2701
79352894
NP
2702 BUG_ON(!PageLocked(page));
2703
7658cc28 2704 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2705 struct inode *inode = mapping->host;
2706 struct bdi_writeback *wb;
682aa8e1
TH
2707 bool locked;
2708
7658cc28
LT
2709 /*
2710 * Yes, Virginia, this is indeed insane.
2711 *
2712 * We use this sequence to make sure that
2713 * (a) we account for dirty stats properly
2714 * (b) we tell the low-level filesystem to
2715 * mark the whole page dirty if it was
2716 * dirty in a pagetable. Only to then
2717 * (c) clean the page again and return 1 to
2718 * cause the writeback.
2719 *
2720 * This way we avoid all nasty races with the
2721 * dirty bit in multiple places and clearing
2722 * them concurrently from different threads.
2723 *
2724 * Note! Normally the "set_page_dirty(page)"
2725 * has no effect on the actual dirty bit - since
2726 * that will already usually be set. But we
2727 * need the side effects, and it can help us
2728 * avoid races.
2729 *
2730 * We basically use the page "master dirty bit"
2731 * as a serialization point for all the different
2732 * threads doing their things.
7658cc28
LT
2733 */
2734 if (page_mkclean(page))
2735 set_page_dirty(page);
79352894
NP
2736 /*
2737 * We carefully synchronise fault handlers against
2738 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2739 * at this point. We do this by having them hold the
2740 * page lock while dirtying the page, and pages are
2741 * always locked coming in here, so we get the desired
2742 * exclusion.
79352894 2743 */
682aa8e1 2744 wb = unlocked_inode_to_wb_begin(inode, &locked);
7658cc28 2745 if (TestClearPageDirty(page)) {
62cccb8c 2746 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
8c08540f 2747 dec_zone_page_state(page, NR_FILE_DIRTY);
682aa8e1 2748 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2749 ret = 1;
1da177e4 2750 }
682aa8e1 2751 unlocked_inode_to_wb_end(inode, locked);
c4843a75 2752 return ret;
1da177e4 2753 }
7658cc28 2754 return TestClearPageDirty(page);
1da177e4 2755}
58bb01a9 2756EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2757
2758int test_clear_page_writeback(struct page *page)
2759{
2760 struct address_space *mapping = page_mapping(page);
d7365e78 2761 int ret;
1da177e4 2762
62cccb8c 2763 lock_page_memcg(page);
1da177e4 2764 if (mapping) {
91018134
TH
2765 struct inode *inode = mapping->host;
2766 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2767 unsigned long flags;
2768
19fd6231 2769 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2770 ret = TestClearPageWriteback(page);
69cb51d1 2771 if (ret) {
1da177e4
LT
2772 radix_tree_tag_clear(&mapping->page_tree,
2773 page_index(page),
2774 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2775 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2776 struct bdi_writeback *wb = inode_to_wb(inode);
2777
2778 __dec_wb_stat(wb, WB_WRITEBACK);
2779 __wb_writeout_inc(wb);
04fbfdc1 2780 }
69cb51d1 2781 }
6c60d2b5
DC
2782
2783 if (mapping->host && !mapping_tagged(mapping,
2784 PAGECACHE_TAG_WRITEBACK))
2785 sb_clear_inode_writeback(mapping->host);
2786
19fd6231 2787 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2788 } else {
2789 ret = TestClearPageWriteback(page);
2790 }
99b12e3d 2791 if (ret) {
62cccb8c 2792 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2793 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2794 inc_zone_page_state(page, NR_WRITTEN);
2795 }
62cccb8c 2796 unlock_page_memcg(page);
1da177e4
LT
2797 return ret;
2798}
2799
1c8349a1 2800int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2801{
2802 struct address_space *mapping = page_mapping(page);
d7365e78 2803 int ret;
1da177e4 2804
62cccb8c 2805 lock_page_memcg(page);
1da177e4 2806 if (mapping) {
91018134
TH
2807 struct inode *inode = mapping->host;
2808 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2809 unsigned long flags;
2810
19fd6231 2811 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2812 ret = TestSetPageWriteback(page);
69cb51d1 2813 if (!ret) {
6c60d2b5
DC
2814 bool on_wblist;
2815
2816 on_wblist = mapping_tagged(mapping,
2817 PAGECACHE_TAG_WRITEBACK);
2818
1da177e4
LT
2819 radix_tree_tag_set(&mapping->page_tree,
2820 page_index(page),
2821 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2822 if (bdi_cap_account_writeback(bdi))
91018134 2823 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2824
2825 /*
2826 * We can come through here when swapping anonymous
2827 * pages, so we don't necessarily have an inode to track
2828 * for sync.
2829 */
2830 if (mapping->host && !on_wblist)
2831 sb_mark_inode_writeback(mapping->host);
69cb51d1 2832 }
1da177e4
LT
2833 if (!PageDirty(page))
2834 radix_tree_tag_clear(&mapping->page_tree,
2835 page_index(page),
2836 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2837 if (!keep_write)
2838 radix_tree_tag_clear(&mapping->page_tree,
2839 page_index(page),
2840 PAGECACHE_TAG_TOWRITE);
19fd6231 2841 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2842 } else {
2843 ret = TestSetPageWriteback(page);
2844 }
3a3c02ec 2845 if (!ret) {
62cccb8c 2846 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2847 inc_zone_page_state(page, NR_WRITEBACK);
2848 }
62cccb8c 2849 unlock_page_memcg(page);
1da177e4
LT
2850 return ret;
2851
2852}
1c8349a1 2853EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2854
2855/*
00128188 2856 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2857 * passed tag.
2858 */
2859int mapping_tagged(struct address_space *mapping, int tag)
2860{
72c47832 2861 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2862}
2863EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2864
2865/**
2866 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2867 * @page: The page to wait on.
2868 *
2869 * This function determines if the given page is related to a backing device
2870 * that requires page contents to be held stable during writeback. If so, then
2871 * it will wait for any pending writeback to complete.
2872 */
2873void wait_for_stable_page(struct page *page)
2874{
de1414a6
CH
2875 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2876 wait_on_page_writeback(page);
1d1d1a76
DW
2877}
2878EXPORT_SYMBOL_GPL(wait_for_stable_page);