mm: document /sys/class/bdi/<bdi>/strict_limit knob
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
b95f1b31 16#include <linux/export.h>
1da177e4
LT
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
55e829af 26#include <linux/task_io_accounting_ops.h>
1da177e4
LT
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
d08b3851 29#include <linux/rmap.h>
1da177e4 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
811d736f 35#include <linux/pagevec.h>
eb608e3a 36#include <linux/timer.h>
8bd75c77 37#include <linux/sched/rt.h>
f361bf4a 38#include <linux/sched/signal.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
aa779e51 73static int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
aa779e51 79static unsigned long dirty_background_bytes;
2da02997 80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
aa779e51 85static int vm_highmem_is_dirtyable;
195cf453 86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
aa779e51 90static int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
aa779e51 96static unsigned long vm_dirty_bytes;
2da02997 97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 109
1da177e4 110/*
ed5b43f1
BS
111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
113 */
114int laptop_mode;
115
116EXPORT_SYMBOL(laptop_mode);
117
118/* End of sysctl-exported parameters */
119
dcc25ae7 120struct wb_domain global_wb_domain;
1da177e4 121
2bc00aef
TH
122/* consolidated parameters for balance_dirty_pages() and its subroutines */
123struct dirty_throttle_control {
e9f07dfd
TH
124#ifdef CONFIG_CGROUP_WRITEBACK
125 struct wb_domain *dom;
9fc3a43e 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 127#endif
2bc00aef 128 struct bdi_writeback *wb;
e9770b34 129 struct fprop_local_percpu *wb_completions;
eb608e3a 130
9fc3a43e 131 unsigned long avail; /* dirtyable */
2bc00aef
TH
132 unsigned long dirty; /* file_dirty + write + nfs */
133 unsigned long thresh; /* dirty threshold */
134 unsigned long bg_thresh; /* dirty background threshold */
135
136 unsigned long wb_dirty; /* per-wb counterparts */
137 unsigned long wb_thresh;
970fb01a 138 unsigned long wb_bg_thresh;
daddfa3c
TH
139
140 unsigned long pos_ratio;
2bc00aef
TH
141};
142
eb608e3a
JK
143/*
144 * Length of period for aging writeout fractions of bdis. This is an
145 * arbitrarily chosen number. The longer the period, the slower fractions will
146 * reflect changes in current writeout rate.
147 */
148#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 149
693108a8
TH
150#ifdef CONFIG_CGROUP_WRITEBACK
151
d60d1bdd
TH
152#define GDTC_INIT(__wb) .wb = (__wb), \
153 .dom = &global_wb_domain, \
154 .wb_completions = &(__wb)->completions
155
9fc3a43e 156#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
157
158#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
159 .dom = mem_cgroup_wb_domain(__wb), \
160 .wb_completions = &(__wb)->memcg_completions, \
161 .gdtc = __gdtc
c2aa723a
TH
162
163static bool mdtc_valid(struct dirty_throttle_control *dtc)
164{
165 return dtc->dom;
166}
e9f07dfd
TH
167
168static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
172
9fc3a43e
TH
173static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174{
175 return mdtc->gdtc;
176}
177
841710aa
TH
178static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179{
180 return &wb->memcg_completions;
181}
182
693108a8
TH
183static void wb_min_max_ratio(struct bdi_writeback *wb,
184 unsigned long *minp, unsigned long *maxp)
185{
20792ebf 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188 unsigned long long min = wb->bdi->min_ratio;
189 unsigned long long max = wb->bdi->max_ratio;
190
191 /*
192 * @wb may already be clean by the time control reaches here and
193 * the total may not include its bw.
194 */
195 if (this_bw < tot_bw) {
196 if (min) {
197 min *= this_bw;
6d9e8c65 198 min = div64_ul(min, tot_bw);
693108a8
TH
199 }
200 if (max < 100) {
201 max *= this_bw;
6d9e8c65 202 max = div64_ul(max, tot_bw);
693108a8
TH
203 }
204 }
205
206 *minp = min;
207 *maxp = max;
208}
209
210#else /* CONFIG_CGROUP_WRITEBACK */
211
d60d1bdd
TH
212#define GDTC_INIT(__wb) .wb = (__wb), \
213 .wb_completions = &(__wb)->completions
9fc3a43e 214#define GDTC_INIT_NO_WB
c2aa723a
TH
215#define MDTC_INIT(__wb, __gdtc)
216
217static bool mdtc_valid(struct dirty_throttle_control *dtc)
218{
219 return false;
220}
e9f07dfd
TH
221
222static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223{
224 return &global_wb_domain;
225}
226
9fc3a43e
TH
227static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228{
229 return NULL;
230}
231
841710aa
TH
232static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233{
234 return NULL;
235}
236
693108a8
TH
237static void wb_min_max_ratio(struct bdi_writeback *wb,
238 unsigned long *minp, unsigned long *maxp)
239{
240 *minp = wb->bdi->min_ratio;
241 *maxp = wb->bdi->max_ratio;
242}
243
244#endif /* CONFIG_CGROUP_WRITEBACK */
245
a756cf59
JW
246/*
247 * In a memory zone, there is a certain amount of pages we consider
248 * available for the page cache, which is essentially the number of
249 * free and reclaimable pages, minus some zone reserves to protect
250 * lowmem and the ability to uphold the zone's watermarks without
251 * requiring writeback.
252 *
253 * This number of dirtyable pages is the base value of which the
e0857cf5 254 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
255 * are allowed to be actually dirtied. Per individual zone, or
256 * globally by using the sum of dirtyable pages over all zones.
257 *
258 * Because the user is allowed to specify the dirty limit globally as
259 * absolute number of bytes, calculating the per-zone dirty limit can
260 * require translating the configured limit into a percentage of
261 * global dirtyable memory first.
262 */
263
a804552b 264/**
281e3726
MG
265 * node_dirtyable_memory - number of dirtyable pages in a node
266 * @pgdat: the node
a804552b 267 *
a862f68a 268 * Return: the node's number of pages potentially available for dirty
281e3726 269 * page cache. This is the base value for the per-node dirty limits.
a804552b 270 */
281e3726 271static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 272{
281e3726
MG
273 unsigned long nr_pages = 0;
274 int z;
275
276 for (z = 0; z < MAX_NR_ZONES; z++) {
277 struct zone *zone = pgdat->node_zones + z;
278
279 if (!populated_zone(zone))
280 continue;
281
282 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283 }
a804552b 284
a8d01437
JW
285 /*
286 * Pages reserved for the kernel should not be considered
287 * dirtyable, to prevent a situation where reclaim has to
288 * clean pages in order to balance the zones.
289 */
281e3726 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 291
281e3726
MG
292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
294
295 return nr_pages;
296}
297
1edf2234
JW
298static unsigned long highmem_dirtyable_memory(unsigned long total)
299{
300#ifdef CONFIG_HIGHMEM
301 int node;
bb4cc2be 302 unsigned long x = 0;
09b4ab3c 303 int i;
1edf2234
JW
304
305 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307 struct zone *z;
9cb937e2 308 unsigned long nr_pages;
281e3726
MG
309
310 if (!is_highmem_idx(i))
311 continue;
312
313 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
314 if (!populated_zone(z))
315 continue;
1edf2234 316
9cb937e2 317 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 318 /* watch for underflows */
9cb937e2 319 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322 x += nr_pages;
09b4ab3c 323 }
1edf2234 324 }
281e3726 325
1edf2234
JW
326 /*
327 * Make sure that the number of highmem pages is never larger
328 * than the number of the total dirtyable memory. This can only
329 * occur in very strange VM situations but we want to make sure
330 * that this does not occur.
331 */
332 return min(x, total);
333#else
334 return 0;
335#endif
336}
337
338/**
ccafa287 339 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 340 *
a862f68a 341 * Return: the global number of pages potentially available for dirty
ccafa287 342 * page cache. This is the base value for the global dirty limits.
1edf2234 343 */
18cf8cf8 344static unsigned long global_dirtyable_memory(void)
1edf2234
JW
345{
346 unsigned long x;
347
c41f012a 348 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
349 /*
350 * Pages reserved for the kernel should not be considered
351 * dirtyable, to prevent a situation where reclaim has to
352 * clean pages in order to balance the zones.
353 */
354 x -= min(x, totalreserve_pages);
1edf2234 355
599d0c95
MG
356 x += global_node_page_state(NR_INACTIVE_FILE);
357 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 358
1edf2234
JW
359 if (!vm_highmem_is_dirtyable)
360 x -= highmem_dirtyable_memory(x);
361
362 return x + 1; /* Ensure that we never return 0 */
363}
364
9fc3a43e
TH
365/**
366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367 * @dtc: dirty_throttle_control of interest
ccafa287 368 *
9fc3a43e
TH
369 * Calculate @dtc->thresh and ->bg_thresh considering
370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
371 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 372 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 373 */
9fc3a43e 374static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 375{
9fc3a43e
TH
376 const unsigned long available_memory = dtc->avail;
377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378 unsigned long bytes = vm_dirty_bytes;
379 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
380 /* convert ratios to per-PAGE_SIZE for higher precision */
381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
383 unsigned long thresh;
384 unsigned long bg_thresh;
ccafa287
JW
385 struct task_struct *tsk;
386
9fc3a43e
TH
387 /* gdtc is !NULL iff @dtc is for memcg domain */
388 if (gdtc) {
389 unsigned long global_avail = gdtc->avail;
390
391 /*
392 * The byte settings can't be applied directly to memcg
393 * domains. Convert them to ratios by scaling against
62a584fe
TH
394 * globally available memory. As the ratios are in
395 * per-PAGE_SIZE, they can be obtained by dividing bytes by
396 * number of pages.
9fc3a43e
TH
397 */
398 if (bytes)
62a584fe
TH
399 ratio = min(DIV_ROUND_UP(bytes, global_avail),
400 PAGE_SIZE);
9fc3a43e 401 if (bg_bytes)
62a584fe
TH
402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403 PAGE_SIZE);
9fc3a43e
TH
404 bytes = bg_bytes = 0;
405 }
406
407 if (bytes)
408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 409 else
62a584fe 410 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 411
9fc3a43e
TH
412 if (bg_bytes)
413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 414 else
62a584fe 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 416
90daf306 417 if (bg_thresh >= thresh)
9fc3a43e 418 bg_thresh = thresh / 2;
ccafa287 419 tsk = current;
a37b0715 420 if (rt_task(tsk)) {
a53eaff8
N
421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 423 }
9fc3a43e
TH
424 dtc->thresh = thresh;
425 dtc->bg_thresh = bg_thresh;
426
427 /* we should eventually report the domain in the TP */
428 if (!gdtc)
429 trace_global_dirty_state(bg_thresh, thresh);
430}
431
432/**
433 * global_dirty_limits - background-writeback and dirty-throttling thresholds
434 * @pbackground: out parameter for bg_thresh
435 * @pdirty: out parameter for thresh
436 *
437 * Calculate bg_thresh and thresh for global_wb_domain. See
438 * domain_dirty_limits() for details.
439 */
440void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441{
442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444 gdtc.avail = global_dirtyable_memory();
445 domain_dirty_limits(&gdtc);
446
447 *pbackground = gdtc.bg_thresh;
448 *pdirty = gdtc.thresh;
ccafa287
JW
449}
450
a756cf59 451/**
281e3726
MG
452 * node_dirty_limit - maximum number of dirty pages allowed in a node
453 * @pgdat: the node
a756cf59 454 *
a862f68a 455 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 456 * on the node's dirtyable memory.
a756cf59 457 */
281e3726 458static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 459{
281e3726 460 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
461 struct task_struct *tsk = current;
462 unsigned long dirty;
463
464 if (vm_dirty_bytes)
465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 466 node_memory / global_dirtyable_memory();
a756cf59 467 else
281e3726 468 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 469
a37b0715 470 if (rt_task(tsk))
a756cf59
JW
471 dirty += dirty / 4;
472
473 return dirty;
474}
475
476/**
281e3726
MG
477 * node_dirty_ok - tells whether a node is within its dirty limits
478 * @pgdat: the node to check
a756cf59 479 *
a862f68a 480 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
481 * dirty limit, %false if the limit is exceeded.
482 */
281e3726 483bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 484{
281e3726
MG
485 unsigned long limit = node_dirty_limit(pgdat);
486 unsigned long nr_pages = 0;
487
11fb9989 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 490
281e3726 491 return nr_pages <= limit;
a756cf59
JW
492}
493
aa779e51 494#ifdef CONFIG_SYSCTL
495static int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 496 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
497{
498 int ret;
499
8d65af78 500 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
501 if (ret == 0 && write)
502 dirty_background_bytes = 0;
503 return ret;
504}
505
aa779e51 506static int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 507 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
508{
509 int ret;
510
8d65af78 511 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
512 if (ret == 0 && write)
513 dirty_background_ratio = 0;
514 return ret;
515}
516
aa779e51 517static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
32927393 518 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
519{
520 int old_ratio = vm_dirty_ratio;
2da02997
DR
521 int ret;
522
8d65af78 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 524 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 525 writeback_set_ratelimit();
2da02997
DR
526 vm_dirty_bytes = 0;
527 }
528 return ret;
529}
530
aa779e51 531static int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 532 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 533{
fc3501d4 534 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
535 int ret;
536
8d65af78 537 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 538 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 539 writeback_set_ratelimit();
2da02997 540 vm_dirty_ratio = 0;
04fbfdc1
PZ
541 }
542 return ret;
543}
aa779e51 544#endif
04fbfdc1 545
eb608e3a
JK
546static unsigned long wp_next_time(unsigned long cur_time)
547{
548 cur_time += VM_COMPLETIONS_PERIOD_LEN;
549 /* 0 has a special meaning... */
550 if (!cur_time)
551 return 1;
552 return cur_time;
553}
554
cc24df4c 555static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 556 struct fprop_local_percpu *completions,
cc24df4c 557 unsigned int max_prop_frac, long nr)
04fbfdc1 558{
be5f1797 559 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 560 max_prop_frac, nr);
eb608e3a 561 /* First event after period switching was turned off? */
517663ed 562 if (unlikely(!dom->period_time)) {
eb608e3a
JK
563 /*
564 * We can race with other __bdi_writeout_inc calls here but
565 * it does not cause any harm since the resulting time when
566 * timer will fire and what is in writeout_period_time will be
567 * roughly the same.
568 */
380c27ca
TH
569 dom->period_time = wp_next_time(jiffies);
570 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 571 }
04fbfdc1
PZ
572}
573
c7981433
TH
574/*
575 * Increment @wb's writeout completion count and the global writeout
269ccca3 576 * completion count. Called from __folio_end_writeback().
c7981433 577 */
cc24df4c 578static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 579{
841710aa 580 struct wb_domain *cgdom;
dd5656e5 581
cc24df4c
MWO
582 wb_stat_mod(wb, WB_WRITTEN, nr);
583 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
584 wb->bdi->max_prop_frac, nr);
841710aa
TH
585
586 cgdom = mem_cgroup_wb_domain(wb);
587 if (cgdom)
cc24df4c
MWO
588 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
589 wb->bdi->max_prop_frac, nr);
dd5656e5 590}
dd5656e5 591
93f78d88 592void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 593{
dd5656e5
MS
594 unsigned long flags;
595
596 local_irq_save(flags);
cc24df4c 597 __wb_writeout_add(wb, 1);
dd5656e5 598 local_irq_restore(flags);
04fbfdc1 599}
93f78d88 600EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 601
eb608e3a
JK
602/*
603 * On idle system, we can be called long after we scheduled because we use
604 * deferred timers so count with missed periods.
605 */
9823e51b 606static void writeout_period(struct timer_list *t)
eb608e3a 607{
9823e51b 608 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 609 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
610 VM_COMPLETIONS_PERIOD_LEN;
611
380c27ca
TH
612 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
613 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 614 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 615 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
616 } else {
617 /*
618 * Aging has zeroed all fractions. Stop wasting CPU on period
619 * updates.
620 */
380c27ca 621 dom->period_time = 0;
eb608e3a
JK
622 }
623}
624
380c27ca
TH
625int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
626{
627 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
628
629 spin_lock_init(&dom->lock);
630
9823e51b 631 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
632
633 dom->dirty_limit_tstamp = jiffies;
634
380c27ca
TH
635 return fprop_global_init(&dom->completions, gfp);
636}
637
841710aa
TH
638#ifdef CONFIG_CGROUP_WRITEBACK
639void wb_domain_exit(struct wb_domain *dom)
640{
641 del_timer_sync(&dom->period_timer);
642 fprop_global_destroy(&dom->completions);
643}
644#endif
645
189d3c4a 646/*
d08c429b
JW
647 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
648 * registered backing devices, which, for obvious reasons, can not
649 * exceed 100%.
189d3c4a 650 */
189d3c4a
PZ
651static unsigned int bdi_min_ratio;
652
653int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
654{
21f0dd88 655 unsigned int delta;
189d3c4a 656 int ret = 0;
189d3c4a 657
cfc4ba53 658 spin_lock_bh(&bdi_lock);
a42dde04 659 if (min_ratio > bdi->max_ratio) {
189d3c4a 660 ret = -EINVAL;
a42dde04 661 } else {
21f0dd88
CW
662 if (min_ratio < bdi->min_ratio) {
663 delta = bdi->min_ratio - min_ratio;
664 bdi_min_ratio -= delta;
665 bdi->min_ratio = min_ratio;
a42dde04 666 } else {
21f0dd88
CW
667 delta = min_ratio - bdi->min_ratio;
668 if (bdi_min_ratio + delta < 100) {
669 bdi_min_ratio += delta;
670 bdi->min_ratio = min_ratio;
671 } else {
672 ret = -EINVAL;
673 }
a42dde04
PZ
674 }
675 }
cfc4ba53 676 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
677
678 return ret;
679}
680
681int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
682{
a42dde04
PZ
683 int ret = 0;
684
685 if (max_ratio > 100)
686 return -EINVAL;
687
cfc4ba53 688 spin_lock_bh(&bdi_lock);
a42dde04
PZ
689 if (bdi->min_ratio > max_ratio) {
690 ret = -EINVAL;
691 } else {
692 bdi->max_ratio = max_ratio;
eb608e3a 693 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 694 }
cfc4ba53 695 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
696
697 return ret;
698}
a42dde04 699EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 700
8e9d5ead
SR
701int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
702{
703 if (strict_limit > 1)
704 return -EINVAL;
705
706 spin_lock_bh(&bdi_lock);
707 if (strict_limit)
708 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
709 else
710 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
711 spin_unlock_bh(&bdi_lock);
712
713 return 0;
714}
715
6c14ae1e
WF
716static unsigned long dirty_freerun_ceiling(unsigned long thresh,
717 unsigned long bg_thresh)
718{
719 return (thresh + bg_thresh) / 2;
720}
721
c7981433
TH
722static unsigned long hard_dirty_limit(struct wb_domain *dom,
723 unsigned long thresh)
ffd1f609 724{
dcc25ae7 725 return max(thresh, dom->dirty_limit);
ffd1f609
WF
726}
727
c5edf9cd
TH
728/*
729 * Memory which can be further allocated to a memcg domain is capped by
730 * system-wide clean memory excluding the amount being used in the domain.
731 */
732static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
733 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
734{
735 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
736 unsigned long clean = filepages - min(filepages, mdtc->dirty);
737 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
738 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 739
c5edf9cd 740 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
741}
742
6f718656 743/**
b1cbc6d4
TH
744 * __wb_calc_thresh - @wb's share of dirty throttling threshold
745 * @dtc: dirty_throttle_context of interest
1babe183 746 *
aed21ad2
WF
747 * Note that balance_dirty_pages() will only seriously take it as a hard limit
748 * when sleeping max_pause per page is not enough to keep the dirty pages under
749 * control. For example, when the device is completely stalled due to some error
750 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
751 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 752 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 753 *
6f718656 754 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
755 * - starving fast devices
756 * - piling up dirty pages (that will take long time to sync) on slow devices
757 *
a88a341a 758 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 759 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
760 *
761 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 762 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 763 */
b1cbc6d4 764static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 765{
e9f07dfd 766 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 767 unsigned long thresh = dtc->thresh;
0d960a38 768 u64 wb_thresh;
d3ac946e 769 unsigned long numerator, denominator;
693108a8 770 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 771
16c4042f 772 /*
0d960a38 773 * Calculate this BDI's share of the thresh ratio.
16c4042f 774 */
e9770b34 775 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 776 &numerator, &denominator);
04fbfdc1 777
0d960a38
TH
778 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
779 wb_thresh *= numerator;
d3ac946e 780 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 781
b1cbc6d4 782 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 783
0d960a38
TH
784 wb_thresh += (thresh * wb_min_ratio) / 100;
785 if (wb_thresh > (thresh * wb_max_ratio) / 100)
786 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 787
0d960a38 788 return wb_thresh;
1da177e4
LT
789}
790
b1cbc6d4
TH
791unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
792{
793 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
794 .thresh = thresh };
795 return __wb_calc_thresh(&gdtc);
1da177e4
LT
796}
797
5a537485
MP
798/*
799 * setpoint - dirty 3
800 * f(dirty) := 1.0 + (----------------)
801 * limit - setpoint
802 *
803 * it's a 3rd order polynomial that subjects to
804 *
805 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
806 * (2) f(setpoint) = 1.0 => the balance point
807 * (3) f(limit) = 0 => the hard limit
808 * (4) df/dx <= 0 => negative feedback control
809 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
810 * => fast response on large errors; small oscillation near setpoint
811 */
d5c9fde3 812static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
813 unsigned long dirty,
814 unsigned long limit)
815{
816 long long pos_ratio;
817 long x;
818
d5c9fde3 819 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 820 (limit - setpoint) | 1);
5a537485
MP
821 pos_ratio = x;
822 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
823 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
824 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
825
826 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
827}
828
6c14ae1e
WF
829/*
830 * Dirty position control.
831 *
832 * (o) global/bdi setpoints
833 *
de1fff37 834 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
835 * When the number of dirty pages is higher/lower than the setpoint, the
836 * dirty position control ratio (and hence task dirty ratelimit) will be
837 * decreased/increased to bring the dirty pages back to the setpoint.
838 *
839 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
840 *
841 * if (dirty < setpoint) scale up pos_ratio
842 * if (dirty > setpoint) scale down pos_ratio
843 *
de1fff37
TH
844 * if (wb_dirty < wb_setpoint) scale up pos_ratio
845 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
846 *
847 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
848 *
849 * (o) global control line
850 *
851 * ^ pos_ratio
852 * |
853 * | |<===== global dirty control scope ======>|
03231554 854 * 2.0 * * * * * * *
6c14ae1e
WF
855 * | .*
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * 1.0 ................................*
862 * | . . *
863 * | . . *
864 * | . . *
865 * | . . *
866 * | . . *
867 * 0 +------------.------------------.----------------------*------------->
868 * freerun^ setpoint^ limit^ dirty pages
869 *
de1fff37 870 * (o) wb control line
6c14ae1e
WF
871 *
872 * ^ pos_ratio
873 * |
874 * | *
875 * | *
876 * | *
877 * | *
878 * | * |<=========== span ============>|
879 * 1.0 .......................*
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * 1/4 ...............................................* * * * * * * * * * * *
892 * | . .
893 * | . .
894 * | . .
895 * 0 +----------------------.-------------------------------.------------->
de1fff37 896 * wb_setpoint^ x_intercept^
6c14ae1e 897 *
de1fff37 898 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
899 * be smoothly throttled down to normal if it starts high in situations like
900 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
901 * card's wb_dirty may rush to many times higher than wb_setpoint.
902 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 903 */
daddfa3c 904static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 905{
2bc00aef 906 struct bdi_writeback *wb = dtc->wb;
20792ebf 907 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 908 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 909 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 910 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
911 unsigned long x_intercept;
912 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 913 unsigned long wb_setpoint;
6c14ae1e
WF
914 unsigned long span;
915 long long pos_ratio; /* for scaling up/down the rate limit */
916 long x;
917
daddfa3c
TH
918 dtc->pos_ratio = 0;
919
2bc00aef 920 if (unlikely(dtc->dirty >= limit))
daddfa3c 921 return;
6c14ae1e
WF
922
923 /*
924 * global setpoint
925 *
5a537485
MP
926 * See comment for pos_ratio_polynom().
927 */
928 setpoint = (freerun + limit) / 2;
2bc00aef 929 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
930
931 /*
932 * The strictlimit feature is a tool preventing mistrusted filesystems
933 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
934 * such filesystems balance_dirty_pages always checks wb counters
935 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
936 * This is especially important for fuse which sets bdi->max_ratio to
937 * 1% by default. Without strictlimit feature, fuse writeback may
938 * consume arbitrary amount of RAM because it is accounted in
939 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 940 *
a88a341a 941 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 942 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
943 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
944 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 945 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 946 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 947 * about ~6K pages (as the average of background and throttle wb
5a537485 948 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 949 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 950 *
5a537485 951 * Note, that we cannot use global counters in these calculations
de1fff37 952 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
953 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
954 * in the example above).
6c14ae1e 955 */
a88a341a 956 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 957 long long wb_pos_ratio;
5a537485 958
daddfa3c
TH
959 if (dtc->wb_dirty < 8) {
960 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
961 2 << RATELIMIT_CALC_SHIFT);
962 return;
963 }
5a537485 964
2bc00aef 965 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 966 return;
5a537485 967
970fb01a
TH
968 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
969 dtc->wb_bg_thresh);
5a537485 970
de1fff37 971 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 972 return;
5a537485 973
2bc00aef 974 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 975 wb_thresh);
5a537485
MP
976
977 /*
de1fff37
TH
978 * Typically, for strictlimit case, wb_setpoint << setpoint
979 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 980 * state ("dirty") is not limiting factor and we have to
de1fff37 981 * make decision based on wb counters. But there is an
5a537485
MP
982 * important case when global pos_ratio should get precedence:
983 * global limits are exceeded (e.g. due to activities on other
de1fff37 984 * wb's) while given strictlimit wb is below limit.
5a537485 985 *
de1fff37 986 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 987 * but it would look too non-natural for the case of all
de1fff37 988 * activity in the system coming from a single strictlimit wb
5a537485
MP
989 * with bdi->max_ratio == 100%.
990 *
991 * Note that min() below somewhat changes the dynamics of the
992 * control system. Normally, pos_ratio value can be well over 3
de1fff37 993 * (when globally we are at freerun and wb is well below wb
5a537485
MP
994 * setpoint). Now the maximum pos_ratio in the same situation
995 * is 2. We might want to tweak this if we observe the control
996 * system is too slow to adapt.
997 */
daddfa3c
TH
998 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
999 return;
5a537485 1000 }
6c14ae1e
WF
1001
1002 /*
1003 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1004 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1005 * pos_ratio further down/up. That is done by the following mechanism.
1006 */
1007
1008 /*
de1fff37 1009 * wb setpoint
6c14ae1e 1010 *
de1fff37 1011 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1012 *
de1fff37 1013 * x_intercept - wb_dirty
6c14ae1e 1014 * := --------------------------
de1fff37 1015 * x_intercept - wb_setpoint
6c14ae1e 1016 *
de1fff37 1017 * The main wb control line is a linear function that subjects to
6c14ae1e 1018 *
de1fff37
TH
1019 * (1) f(wb_setpoint) = 1.0
1020 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1021 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1022 *
de1fff37 1023 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1024 * regularly within range
de1fff37 1025 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1026 * for various filesystems, where (2) can yield in a reasonable 12.5%
1027 * fluctuation range for pos_ratio.
1028 *
de1fff37 1029 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1030 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1031 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1032 */
2bc00aef
TH
1033 if (unlikely(wb_thresh > dtc->thresh))
1034 wb_thresh = dtc->thresh;
aed21ad2 1035 /*
de1fff37 1036 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1037 * device is slow, but that it has remained inactive for long time.
1038 * Honour such devices a reasonable good (hopefully IO efficient)
1039 * threshold, so that the occasional writes won't be blocked and active
1040 * writes can rampup the threshold quickly.
1041 */
2bc00aef 1042 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1043 /*
de1fff37
TH
1044 * scale global setpoint to wb's:
1045 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1046 */
e4bc13ad 1047 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1048 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1049 /*
de1fff37
TH
1050 * Use span=(8*write_bw) in single wb case as indicated by
1051 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1052 *
de1fff37
TH
1053 * wb_thresh thresh - wb_thresh
1054 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055 * thresh thresh
6c14ae1e 1056 */
2bc00aef 1057 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1058 x_intercept = wb_setpoint + span;
6c14ae1e 1059
2bc00aef
TH
1060 if (dtc->wb_dirty < x_intercept - span / 4) {
1061 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1062 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1063 } else
1064 pos_ratio /= 4;
1065
8927f66c 1066 /*
de1fff37 1067 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1068 * It may push the desired control point of global dirty pages higher
1069 * than setpoint.
1070 */
de1fff37 1071 x_intercept = wb_thresh / 2;
2bc00aef
TH
1072 if (dtc->wb_dirty < x_intercept) {
1073 if (dtc->wb_dirty > x_intercept / 8)
1074 pos_ratio = div_u64(pos_ratio * x_intercept,
1075 dtc->wb_dirty);
50657fc4 1076 else
8927f66c
WF
1077 pos_ratio *= 8;
1078 }
1079
daddfa3c 1080 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1081}
1082
a88a341a
TH
1083static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084 unsigned long elapsed,
1085 unsigned long written)
e98be2d5
WF
1086{
1087 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1088 unsigned long avg = wb->avg_write_bandwidth;
1089 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1090 u64 bw;
1091
1092 /*
1093 * bw = written * HZ / elapsed
1094 *
1095 * bw * elapsed + write_bandwidth * (period - elapsed)
1096 * write_bandwidth = ---------------------------------------------------
1097 * period
c72efb65 1098 *
25ff8b15 1099 * @written may have decreased due to folio_account_redirty().
c72efb65 1100 * Avoid underflowing @bw calculation.
e98be2d5 1101 */
a88a341a 1102 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1103 bw *= HZ;
1104 if (unlikely(elapsed > period)) {
0a5d1a7f 1105 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1106 avg = bw;
1107 goto out;
1108 }
a88a341a 1109 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1110 bw >>= ilog2(period);
1111
1112 /*
1113 * one more level of smoothing, for filtering out sudden spikes
1114 */
1115 if (avg > old && old >= (unsigned long)bw)
1116 avg -= (avg - old) >> 3;
1117
1118 if (avg < old && old <= (unsigned long)bw)
1119 avg += (old - avg) >> 3;
1120
1121out:
95a46c65
TH
1122 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123 avg = max(avg, 1LU);
1124 if (wb_has_dirty_io(wb)) {
1125 long delta = avg - wb->avg_write_bandwidth;
1126 WARN_ON_ONCE(atomic_long_add_return(delta,
1127 &wb->bdi->tot_write_bandwidth) <= 0);
1128 }
a88a341a 1129 wb->write_bandwidth = bw;
20792ebf 1130 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1131}
1132
2bc00aef 1133static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1134{
e9f07dfd 1135 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1136 unsigned long thresh = dtc->thresh;
dcc25ae7 1137 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1138
1139 /*
1140 * Follow up in one step.
1141 */
1142 if (limit < thresh) {
1143 limit = thresh;
1144 goto update;
1145 }
1146
1147 /*
1148 * Follow down slowly. Use the higher one as the target, because thresh
1149 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1150 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1151 */
2bc00aef 1152 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1153 if (limit > thresh) {
1154 limit -= (limit - thresh) >> 5;
1155 goto update;
1156 }
1157 return;
1158update:
dcc25ae7 1159 dom->dirty_limit = limit;
c42843f2
WF
1160}
1161
42dd235c
JK
1162static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1163 unsigned long now)
c42843f2 1164{
e9f07dfd 1165 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1166
1167 /*
1168 * check locklessly first to optimize away locking for the most time
1169 */
dcc25ae7 1170 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1171 return;
1172
dcc25ae7
TH
1173 spin_lock(&dom->lock);
1174 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1175 update_dirty_limit(dtc);
dcc25ae7 1176 dom->dirty_limit_tstamp = now;
c42843f2 1177 }
dcc25ae7 1178 spin_unlock(&dom->lock);
c42843f2
WF
1179}
1180
be3ffa27 1181/*
de1fff37 1182 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1183 *
de1fff37 1184 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1185 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 */
2bc00aef 1187static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1188 unsigned long dirtied,
1189 unsigned long elapsed)
be3ffa27 1190{
2bc00aef
TH
1191 struct bdi_writeback *wb = dtc->wb;
1192 unsigned long dirty = dtc->dirty;
1193 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1194 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1195 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1196 unsigned long write_bw = wb->avg_write_bandwidth;
1197 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1198 unsigned long dirty_rate;
1199 unsigned long task_ratelimit;
1200 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1201 unsigned long step;
1202 unsigned long x;
d59b1087 1203 unsigned long shift;
be3ffa27
WF
1204
1205 /*
1206 * The dirty rate will match the writeout rate in long term, except
1207 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208 */
a88a341a 1209 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1210
be3ffa27
WF
1211 /*
1212 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213 */
1214 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1215 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1216 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217
1218 /*
1219 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1220 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1221 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222 * formula will yield the balanced rate limit (write_bw / N).
1223 *
1224 * Note that the expanded form is not a pure rate feedback:
1225 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1226 * but also takes pos_ratio into account:
1227 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1228 *
1229 * (1) is not realistic because pos_ratio also takes part in balancing
1230 * the dirty rate. Consider the state
1231 * pos_ratio = 0.5 (3)
1232 * rate = 2 * (write_bw / N) (4)
1233 * If (1) is used, it will stuck in that state! Because each dd will
1234 * be throttled at
1235 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1236 * yielding
1237 * dirty_rate = N * task_ratelimit = write_bw (6)
1238 * put (6) into (1) we get
1239 * rate_(i+1) = rate_(i) (7)
1240 *
1241 * So we end up using (2) to always keep
1242 * rate_(i+1) ~= (write_bw / N) (8)
1243 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244 * pos_ratio is able to drive itself to 1.0, which is not only where
1245 * the dirty count meet the setpoint, but also where the slope of
1246 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247 */
1248 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249 dirty_rate | 1);
bdaac490
WF
1250 /*
1251 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252 */
1253 if (unlikely(balanced_dirty_ratelimit > write_bw))
1254 balanced_dirty_ratelimit = write_bw;
be3ffa27 1255
7381131c
WF
1256 /*
1257 * We could safely do this and return immediately:
1258 *
de1fff37 1259 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1260 *
1261 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1262 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1263 * limit the step size.
1264 *
1265 * The below code essentially only uses the relative value of
1266 *
1267 * task_ratelimit - dirty_ratelimit
1268 * = (pos_ratio - 1) * dirty_ratelimit
1269 *
1270 * which reflects the direction and size of dirty position error.
1271 */
1272
1273 /*
1274 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275 * task_ratelimit is on the same side of dirty_ratelimit, too.
1276 * For example, when
1277 * - dirty_ratelimit > balanced_dirty_ratelimit
1278 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279 * lowering dirty_ratelimit will help meet both the position and rate
1280 * control targets. Otherwise, don't update dirty_ratelimit if it will
1281 * only help meet the rate target. After all, what the users ultimately
1282 * feel and care are stable dirty rate and small position error.
1283 *
1284 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1285 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1286 * keeps jumping around randomly and can even leap far away at times
1287 * due to the small 200ms estimation period of dirty_rate (we want to
1288 * keep that period small to reduce time lags).
1289 */
1290 step = 0;
5a537485
MP
1291
1292 /*
de1fff37 1293 * For strictlimit case, calculations above were based on wb counters
a88a341a 1294 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1295 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1296 * Hence, to calculate "step" properly, we have to use wb_dirty as
1297 * "dirty" and wb_setpoint as "setpoint".
5a537485 1298 *
de1fff37
TH
1299 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1301 * of backing device.
5a537485 1302 */
a88a341a 1303 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1304 dirty = dtc->wb_dirty;
1305 if (dtc->wb_dirty < 8)
1306 setpoint = dtc->wb_dirty + 1;
5a537485 1307 else
970fb01a 1308 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1309 }
1310
7381131c 1311 if (dirty < setpoint) {
a88a341a 1312 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1313 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1314 if (dirty_ratelimit < x)
1315 step = x - dirty_ratelimit;
1316 } else {
a88a341a 1317 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1318 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1319 if (dirty_ratelimit > x)
1320 step = dirty_ratelimit - x;
1321 }
1322
1323 /*
1324 * Don't pursue 100% rate matching. It's impossible since the balanced
1325 * rate itself is constantly fluctuating. So decrease the track speed
1326 * when it gets close to the target. Helps eliminate pointless tremors.
1327 */
d59b1087
AR
1328 shift = dirty_ratelimit / (2 * step + 1);
1329 if (shift < BITS_PER_LONG)
1330 step = DIV_ROUND_UP(step >> shift, 8);
1331 else
1332 step = 0;
7381131c
WF
1333
1334 if (dirty_ratelimit < balanced_dirty_ratelimit)
1335 dirty_ratelimit += step;
1336 else
1337 dirty_ratelimit -= step;
1338
20792ebf 1339 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1340 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1341
5634cc2a 1342 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1343}
1344
c2aa723a
TH
1345static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346 struct dirty_throttle_control *mdtc,
8a731799 1347 bool update_ratelimit)
e98be2d5 1348{
c2aa723a 1349 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1350 unsigned long now = jiffies;
45a2966f 1351 unsigned long elapsed;
be3ffa27 1352 unsigned long dirtied;
e98be2d5
WF
1353 unsigned long written;
1354
45a2966f 1355 spin_lock(&wb->list_lock);
8a731799 1356
e98be2d5 1357 /*
45a2966f
JK
1358 * Lockless checks for elapsed time are racy and delayed update after
1359 * IO completion doesn't do it at all (to make sure written pages are
1360 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1361 * division errors.
e98be2d5 1362 */
45a2966f 1363 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1364 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1366
8a731799 1367 if (update_ratelimit) {
42dd235c 1368 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1369 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1370
1371 /*
1372 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1373 * compiler has no way to figure that out. Help it.
1374 */
1375 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1376 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1377 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1378 }
be3ffa27 1379 }
a88a341a 1380 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1381
a88a341a
TH
1382 wb->dirtied_stamp = dirtied;
1383 wb->written_stamp = written;
20792ebf 1384 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1385 spin_unlock(&wb->list_lock);
e98be2d5
WF
1386}
1387
45a2966f 1388void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1389{
2bc00aef
TH
1390 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1391
fee468fd 1392 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1393}
1394
1395/* Interval after which we consider wb idle and don't estimate bandwidth */
1396#define WB_BANDWIDTH_IDLE_JIF (HZ)
1397
1398static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1399{
1400 unsigned long now = jiffies;
1401 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1402
1403 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1404 !atomic_read(&wb->writeback_inodes)) {
1405 spin_lock(&wb->list_lock);
1406 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1407 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1408 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1409 spin_unlock(&wb->list_lock);
1410 }
e98be2d5
WF
1411}
1412
9d823e8f 1413/*
d0e1d66b 1414 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1415 * will look to see if it needs to start dirty throttling.
1416 *
1417 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1418 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1419 * (the number of pages we may dirty without exceeding the dirty limits).
1420 */
1421static unsigned long dirty_poll_interval(unsigned long dirty,
1422 unsigned long thresh)
1423{
1424 if (thresh > dirty)
1425 return 1UL << (ilog2(thresh - dirty) >> 1);
1426
1427 return 1;
1428}
1429
a88a341a 1430static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1431 unsigned long wb_dirty)
c8462cc9 1432{
20792ebf 1433 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1434 unsigned long t;
c8462cc9 1435
7ccb9ad5
WF
1436 /*
1437 * Limit pause time for small memory systems. If sleeping for too long
1438 * time, a small pool of dirty/writeback pages may go empty and disk go
1439 * idle.
1440 *
1441 * 8 serves as the safety ratio.
1442 */
de1fff37 1443 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1444 t++;
1445
e3b6c655 1446 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1447}
1448
a88a341a
TH
1449static long wb_min_pause(struct bdi_writeback *wb,
1450 long max_pause,
1451 unsigned long task_ratelimit,
1452 unsigned long dirty_ratelimit,
1453 int *nr_dirtied_pause)
c8462cc9 1454{
20792ebf
JK
1455 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1456 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1457 long t; /* target pause */
1458 long pause; /* estimated next pause */
1459 int pages; /* target nr_dirtied_pause */
c8462cc9 1460
7ccb9ad5
WF
1461 /* target for 10ms pause on 1-dd case */
1462 t = max(1, HZ / 100);
c8462cc9
WF
1463
1464 /*
1465 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1466 * overheads.
1467 *
7ccb9ad5 1468 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1469 */
1470 if (hi > lo)
7ccb9ad5 1471 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1472
1473 /*
7ccb9ad5
WF
1474 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1475 * on the much more stable dirty_ratelimit. However the next pause time
1476 * will be computed based on task_ratelimit and the two rate limits may
1477 * depart considerably at some time. Especially if task_ratelimit goes
1478 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1479 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1480 * result task_ratelimit won't be executed faithfully, which could
1481 * eventually bring down dirty_ratelimit.
c8462cc9 1482 *
7ccb9ad5
WF
1483 * We apply two rules to fix it up:
1484 * 1) try to estimate the next pause time and if necessary, use a lower
1485 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1486 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1487 * 2) limit the target pause time to max_pause/2, so that the normal
1488 * small fluctuations of task_ratelimit won't trigger rule (1) and
1489 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1490 */
7ccb9ad5
WF
1491 t = min(t, 1 + max_pause / 2);
1492 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1493
1494 /*
5b9b3574
WF
1495 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1496 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1497 * When the 16 consecutive reads are often interrupted by some dirty
1498 * throttling pause during the async writes, cfq will go into idles
1499 * (deadline is fine). So push nr_dirtied_pause as high as possible
1500 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1501 */
5b9b3574
WF
1502 if (pages < DIRTY_POLL_THRESH) {
1503 t = max_pause;
1504 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1505 if (pages > DIRTY_POLL_THRESH) {
1506 pages = DIRTY_POLL_THRESH;
1507 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1508 }
1509 }
1510
7ccb9ad5
WF
1511 pause = HZ * pages / (task_ratelimit + 1);
1512 if (pause > max_pause) {
1513 t = max_pause;
1514 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1515 }
c8462cc9 1516
7ccb9ad5 1517 *nr_dirtied_pause = pages;
c8462cc9 1518 /*
7ccb9ad5 1519 * The minimal pause time will normally be half the target pause time.
c8462cc9 1520 */
5b9b3574 1521 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1522}
1523
970fb01a 1524static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1525{
2bc00aef 1526 struct bdi_writeback *wb = dtc->wb;
93f78d88 1527 unsigned long wb_reclaimable;
5a537485
MP
1528
1529 /*
de1fff37 1530 * wb_thresh is not treated as some limiting factor as
5a537485 1531 * dirty_thresh, due to reasons
de1fff37 1532 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1533 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1534 * go into state (wb_dirty >> wb_thresh) either because
1535 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1536 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1537 * dirtiers for 100 seconds until wb_dirty drops under
1538 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1539 * wb_position_ratio() will let the dirtier task progress
de1fff37 1540 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1541 */
b1cbc6d4 1542 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1543 dtc->wb_bg_thresh = dtc->thresh ?
1544 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1545
1546 /*
1547 * In order to avoid the stacked BDI deadlock we need
1548 * to ensure we accurately count the 'dirty' pages when
1549 * the threshold is low.
1550 *
1551 * Otherwise it would be possible to get thresh+n pages
1552 * reported dirty, even though there are thresh-m pages
1553 * actually dirty; with m+n sitting in the percpu
1554 * deltas.
1555 */
2bce774e 1556 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1557 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1558 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1559 } else {
93f78d88 1560 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1561 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1562 }
1563}
1564
1da177e4
LT
1565/*
1566 * balance_dirty_pages() must be called by processes which are generating dirty
1567 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1568 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1569 * If we're over `background_thresh' then the writeback threads are woken to
1570 * perform some writeout.
1da177e4 1571 */
fe6c9c6e
JK
1572static int balance_dirty_pages(struct bdi_writeback *wb,
1573 unsigned long pages_dirtied, unsigned int flags)
1da177e4 1574{
2bc00aef 1575 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1576 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1577 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1578 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1579 &mdtc_stor : NULL;
1580 struct dirty_throttle_control *sdtc;
8d92890b 1581 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1582 long period;
7ccb9ad5
WF
1583 long pause;
1584 long max_pause;
1585 long min_pause;
1586 int nr_dirtied_pause;
e50e3720 1587 bool dirty_exceeded = false;
143dfe86 1588 unsigned long task_ratelimit;
7ccb9ad5 1589 unsigned long dirty_ratelimit;
dfb8ae56 1590 struct backing_dev_info *bdi = wb->bdi;
5a537485 1591 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1592 unsigned long start_time = jiffies;
fe6c9c6e 1593 int ret = 0;
1da177e4
LT
1594
1595 for (;;) {
83712358 1596 unsigned long now = jiffies;
2bc00aef 1597 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1598 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1599 unsigned long m_thresh = 0;
1600 unsigned long m_bg_thresh = 0;
83712358 1601
8d92890b 1602 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1603 gdtc->avail = global_dirtyable_memory();
11fb9989 1604 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1605
9fc3a43e 1606 domain_dirty_limits(gdtc);
16c4042f 1607
5a537485 1608 if (unlikely(strictlimit)) {
970fb01a 1609 wb_dirty_limits(gdtc);
5a537485 1610
2bc00aef
TH
1611 dirty = gdtc->wb_dirty;
1612 thresh = gdtc->wb_thresh;
970fb01a 1613 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1614 } else {
2bc00aef
TH
1615 dirty = gdtc->dirty;
1616 thresh = gdtc->thresh;
1617 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1618 }
1619
c2aa723a 1620 if (mdtc) {
c5edf9cd 1621 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1622
1623 /*
1624 * If @wb belongs to !root memcg, repeat the same
1625 * basic calculations for the memcg domain.
1626 */
c5edf9cd
TH
1627 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1628 &mdtc->dirty, &writeback);
c2aa723a 1629 mdtc->dirty += writeback;
c5edf9cd 1630 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1631
1632 domain_dirty_limits(mdtc);
1633
1634 if (unlikely(strictlimit)) {
1635 wb_dirty_limits(mdtc);
1636 m_dirty = mdtc->wb_dirty;
1637 m_thresh = mdtc->wb_thresh;
1638 m_bg_thresh = mdtc->wb_bg_thresh;
1639 } else {
1640 m_dirty = mdtc->dirty;
1641 m_thresh = mdtc->thresh;
1642 m_bg_thresh = mdtc->bg_thresh;
1643 }
5a537485
MP
1644 }
1645
ea6813be
JK
1646 /*
1647 * In laptop mode, we wait until hitting the higher threshold
1648 * before starting background writeout, and then write out all
1649 * the way down to the lower threshold. So slow writers cause
1650 * minimal disk activity.
1651 *
1652 * In normal mode, we start background writeout at the lower
1653 * background_thresh, to keep the amount of dirty memory low.
1654 */
1655 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1656 !writeback_in_progress(wb))
1657 wb_start_background_writeback(wb);
1658
16c4042f
WF
1659 /*
1660 * Throttle it only when the background writeback cannot
1661 * catch-up. This avoids (excessively) small writeouts
de1fff37 1662 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1663 *
de1fff37
TH
1664 * In strictlimit case make decision based on the wb counters
1665 * and limits. Small writeouts when the wb limits are ramping
5a537485 1666 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1667 *
1668 * If memcg domain is in effect, @dirty should be under
1669 * both global and memcg freerun ceilings.
16c4042f 1670 */
c2aa723a
TH
1671 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1672 (!mdtc ||
1673 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1674 unsigned long intv;
1675 unsigned long m_intv;
1676
1677free_running:
1678 intv = dirty_poll_interval(dirty, thresh);
1679 m_intv = ULONG_MAX;
c2aa723a 1680
83712358
WF
1681 current->dirty_paused_when = now;
1682 current->nr_dirtied = 0;
c2aa723a
TH
1683 if (mdtc)
1684 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1685 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1686 break;
83712358 1687 }
16c4042f 1688
ea6813be 1689 /* Start writeback even when in laptop mode */
bc05873d 1690 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1691 wb_start_background_writeback(wb);
143dfe86 1692
97b27821
TH
1693 mem_cgroup_flush_foreign(wb);
1694
c2aa723a
TH
1695 /*
1696 * Calculate global domain's pos_ratio and select the
1697 * global dtc by default.
1698 */
a37b0715 1699 if (!strictlimit) {
970fb01a 1700 wb_dirty_limits(gdtc);
5fce25a9 1701
a37b0715
N
1702 if ((current->flags & PF_LOCAL_THROTTLE) &&
1703 gdtc->wb_dirty <
1704 dirty_freerun_ceiling(gdtc->wb_thresh,
1705 gdtc->wb_bg_thresh))
1706 /*
1707 * LOCAL_THROTTLE tasks must not be throttled
1708 * when below the per-wb freerun ceiling.
1709 */
1710 goto free_running;
1711 }
1712
2bc00aef
TH
1713 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1714 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1715
1716 wb_position_ratio(gdtc);
c2aa723a
TH
1717 sdtc = gdtc;
1718
1719 if (mdtc) {
1720 /*
1721 * If memcg domain is in effect, calculate its
1722 * pos_ratio. @wb should satisfy constraints from
1723 * both global and memcg domains. Choose the one
1724 * w/ lower pos_ratio.
1725 */
a37b0715 1726 if (!strictlimit) {
c2aa723a
TH
1727 wb_dirty_limits(mdtc);
1728
a37b0715
N
1729 if ((current->flags & PF_LOCAL_THROTTLE) &&
1730 mdtc->wb_dirty <
1731 dirty_freerun_ceiling(mdtc->wb_thresh,
1732 mdtc->wb_bg_thresh))
1733 /*
1734 * LOCAL_THROTTLE tasks must not be
1735 * throttled when below the per-wb
1736 * freerun ceiling.
1737 */
1738 goto free_running;
1739 }
c2aa723a
TH
1740 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1741 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1742
1743 wb_position_ratio(mdtc);
1744 if (mdtc->pos_ratio < gdtc->pos_ratio)
1745 sdtc = mdtc;
1746 }
daddfa3c 1747
e92eebbb
JK
1748 if (dirty_exceeded != wb->dirty_exceeded)
1749 wb->dirty_exceeded = dirty_exceeded;
1da177e4 1750
20792ebf 1751 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1752 BANDWIDTH_INTERVAL))
fee468fd 1753 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1754
c2aa723a 1755 /* throttle according to the chosen dtc */
20792ebf 1756 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1757 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1758 RATELIMIT_CALC_SHIFT;
c2aa723a 1759 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1760 min_pause = wb_min_pause(wb, max_pause,
1761 task_ratelimit, dirty_ratelimit,
1762 &nr_dirtied_pause);
7ccb9ad5 1763
3a73dbbc 1764 if (unlikely(task_ratelimit == 0)) {
83712358 1765 period = max_pause;
c8462cc9 1766 pause = max_pause;
143dfe86 1767 goto pause;
04fbfdc1 1768 }
83712358
WF
1769 period = HZ * pages_dirtied / task_ratelimit;
1770 pause = period;
1771 if (current->dirty_paused_when)
1772 pause -= now - current->dirty_paused_when;
1773 /*
1774 * For less than 1s think time (ext3/4 may block the dirtier
1775 * for up to 800ms from time to time on 1-HDD; so does xfs,
1776 * however at much less frequency), try to compensate it in
1777 * future periods by updating the virtual time; otherwise just
1778 * do a reset, as it may be a light dirtier.
1779 */
7ccb9ad5 1780 if (pause < min_pause) {
5634cc2a 1781 trace_balance_dirty_pages(wb,
c2aa723a
TH
1782 sdtc->thresh,
1783 sdtc->bg_thresh,
1784 sdtc->dirty,
1785 sdtc->wb_thresh,
1786 sdtc->wb_dirty,
ece13ac3
WF
1787 dirty_ratelimit,
1788 task_ratelimit,
1789 pages_dirtied,
83712358 1790 period,
7ccb9ad5 1791 min(pause, 0L),
ece13ac3 1792 start_time);
83712358
WF
1793 if (pause < -HZ) {
1794 current->dirty_paused_when = now;
1795 current->nr_dirtied = 0;
1796 } else if (period) {
1797 current->dirty_paused_when += period;
1798 current->nr_dirtied = 0;
7ccb9ad5
WF
1799 } else if (current->nr_dirtied_pause <= pages_dirtied)
1800 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1801 break;
04fbfdc1 1802 }
7ccb9ad5
WF
1803 if (unlikely(pause > max_pause)) {
1804 /* for occasional dropped task_ratelimit */
1805 now += min(pause - max_pause, max_pause);
1806 pause = max_pause;
1807 }
143dfe86
WF
1808
1809pause:
5634cc2a 1810 trace_balance_dirty_pages(wb,
c2aa723a
TH
1811 sdtc->thresh,
1812 sdtc->bg_thresh,
1813 sdtc->dirty,
1814 sdtc->wb_thresh,
1815 sdtc->wb_dirty,
ece13ac3
WF
1816 dirty_ratelimit,
1817 task_ratelimit,
1818 pages_dirtied,
83712358 1819 period,
ece13ac3
WF
1820 pause,
1821 start_time);
fe6c9c6e
JK
1822 if (flags & BDP_ASYNC) {
1823 ret = -EAGAIN;
1824 break;
1825 }
499d05ec 1826 __set_current_state(TASK_KILLABLE);
b57d74af 1827 wb->dirty_sleep = now;
d25105e8 1828 io_schedule_timeout(pause);
87c6a9b2 1829
83712358
WF
1830 current->dirty_paused_when = now + pause;
1831 current->nr_dirtied = 0;
7ccb9ad5 1832 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1833
ffd1f609 1834 /*
2bc00aef
TH
1835 * This is typically equal to (dirty < thresh) and can also
1836 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1837 */
1df64719 1838 if (task_ratelimit)
ffd1f609 1839 break;
499d05ec 1840
c5c6343c 1841 /*
f0953a1b 1842 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1843 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1844 * to go through, so that tasks on them still remain responsive.
1845 *
3f8b6fb7 1846 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1847 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1848 * more page. However wb_dirty has accounting errors. So use
93f78d88 1849 * the larger and more IO friendly wb_stat_error.
c5c6343c 1850 */
2bce774e 1851 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1852 break;
1853
499d05ec
JK
1854 if (fatal_signal_pending(current))
1855 break;
1da177e4 1856 }
fe6c9c6e 1857 return ret;
1da177e4
LT
1858}
1859
9d823e8f 1860static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1861
54848d73
WF
1862/*
1863 * Normal tasks are throttled by
1864 * loop {
1865 * dirty tsk->nr_dirtied_pause pages;
1866 * take a snap in balance_dirty_pages();
1867 * }
1868 * However there is a worst case. If every task exit immediately when dirtied
1869 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1870 * called to throttle the page dirties. The solution is to save the not yet
1871 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1872 * randomly into the running tasks. This works well for the above worst case,
1873 * as the new task will pick up and accumulate the old task's leaked dirty
1874 * count and eventually get throttled.
1875 */
1876DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1877
1da177e4 1878/**
fe6c9c6e
JK
1879 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1880 * @mapping: address_space which was dirtied.
1881 * @flags: BDP flags.
1da177e4
LT
1882 *
1883 * Processes which are dirtying memory should call in here once for each page
1884 * which was newly dirtied. The function will periodically check the system's
1885 * dirty state and will initiate writeback if needed.
1886 *
fe6c9c6e
JK
1887 * See balance_dirty_pages_ratelimited() for details.
1888 *
1889 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1890 * indicate that memory is out of balance and the caller must wait
1891 * for I/O to complete. Otherwise, it will return 0 to indicate
1892 * that either memory was already in balance, or it was able to sleep
1893 * until the amount of dirty memory returned to balance.
1da177e4 1894 */
fe6c9c6e
JK
1895int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1896 unsigned int flags)
1da177e4 1897{
dfb8ae56
TH
1898 struct inode *inode = mapping->host;
1899 struct backing_dev_info *bdi = inode_to_bdi(inode);
1900 struct bdi_writeback *wb = NULL;
9d823e8f 1901 int ratelimit;
fe6c9c6e 1902 int ret = 0;
9d823e8f 1903 int *p;
1da177e4 1904
f56753ac 1905 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
fe6c9c6e 1906 return ret;
36715cef 1907
dfb8ae56
TH
1908 if (inode_cgwb_enabled(inode))
1909 wb = wb_get_create_current(bdi, GFP_KERNEL);
1910 if (!wb)
1911 wb = &bdi->wb;
1912
9d823e8f 1913 ratelimit = current->nr_dirtied_pause;
a88a341a 1914 if (wb->dirty_exceeded)
9d823e8f
WF
1915 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1916
9d823e8f 1917 preempt_disable();
1da177e4 1918 /*
9d823e8f
WF
1919 * This prevents one CPU to accumulate too many dirtied pages without
1920 * calling into balance_dirty_pages(), which can happen when there are
1921 * 1000+ tasks, all of them start dirtying pages at exactly the same
1922 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1923 */
7c8e0181 1924 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1925 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1926 *p = 0;
d3bc1fef
WF
1927 else if (unlikely(*p >= ratelimit_pages)) {
1928 *p = 0;
1929 ratelimit = 0;
1da177e4 1930 }
54848d73
WF
1931 /*
1932 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1933 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1934 * the dirty throttling and livelock other long-run dirtiers.
1935 */
7c8e0181 1936 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1937 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1938 unsigned long nr_pages_dirtied;
54848d73
WF
1939 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1940 *p -= nr_pages_dirtied;
1941 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1942 }
fa5a734e 1943 preempt_enable();
9d823e8f
WF
1944
1945 if (unlikely(current->nr_dirtied >= ratelimit))
fe6c9c6e 1946 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
dfb8ae56
TH
1947
1948 wb_put(wb);
fe6c9c6e
JK
1949 return ret;
1950}
611df5d6 1951EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
fe6c9c6e
JK
1952
1953/**
1954 * balance_dirty_pages_ratelimited - balance dirty memory state.
1955 * @mapping: address_space which was dirtied.
1956 *
1957 * Processes which are dirtying memory should call in here once for each page
1958 * which was newly dirtied. The function will periodically check the system's
1959 * dirty state and will initiate writeback if needed.
1960 *
1961 * Once we're over the dirty memory limit we decrease the ratelimiting
1962 * by a lot, to prevent individual processes from overshooting the limit
1963 * by (ratelimit_pages) each.
1964 */
1965void balance_dirty_pages_ratelimited(struct address_space *mapping)
1966{
1967 balance_dirty_pages_ratelimited_flags(mapping, 0);
1da177e4 1968}
d0e1d66b 1969EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1970
aa661bbe
TH
1971/**
1972 * wb_over_bg_thresh - does @wb need to be written back?
1973 * @wb: bdi_writeback of interest
1974 *
1975 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
1976 * clean enough.
1977 *
1978 * Return: %true if writeback should continue.
aa661bbe
TH
1979 */
1980bool wb_over_bg_thresh(struct bdi_writeback *wb)
1981{
947e9762 1982 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1983 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1984 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1985 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1986 &mdtc_stor : NULL;
ab19939a
CW
1987 unsigned long reclaimable;
1988 unsigned long thresh;
aa661bbe 1989
947e9762
TH
1990 /*
1991 * Similar to balance_dirty_pages() but ignores pages being written
1992 * as we're trying to decide whether to put more under writeback.
1993 */
1994 gdtc->avail = global_dirtyable_memory();
8d92890b 1995 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 1996 domain_dirty_limits(gdtc);
aa661bbe 1997
947e9762 1998 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1999 return true;
2000
ab19939a
CW
2001 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2002 if (thresh < 2 * wb_stat_error())
2003 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2004 else
2005 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2006
2007 if (reclaimable > thresh)
aa661bbe
TH
2008 return true;
2009
c2aa723a 2010 if (mdtc) {
c5edf9cd 2011 unsigned long filepages, headroom, writeback;
c2aa723a 2012
c5edf9cd
TH
2013 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2014 &writeback);
2015 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
2016 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2017
2018 if (mdtc->dirty > mdtc->bg_thresh)
2019 return true;
2020
ab19939a
CW
2021 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2022 if (thresh < 2 * wb_stat_error())
2023 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2024 else
2025 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2026
2027 if (reclaimable > thresh)
c2aa723a
TH
2028 return true;
2029 }
2030
aa661bbe
TH
2031 return false;
2032}
2033
aa779e51 2034#ifdef CONFIG_SYSCTL
1da177e4
LT
2035/*
2036 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2037 */
aa779e51 2038static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 2039 void *buffer, size_t *length, loff_t *ppos)
1da177e4 2040{
94af5846
YS
2041 unsigned int old_interval = dirty_writeback_interval;
2042 int ret;
2043
2044 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
2045
2046 /*
2047 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2048 * and a different non-zero value will wakeup the writeback threads.
2049 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2050 * iterate over all bdis and wbs.
2051 * The reason we do this is to make the change take effect immediately.
2052 */
2053 if (!ret && write && dirty_writeback_interval &&
2054 dirty_writeback_interval != old_interval)
94af5846
YS
2055 wakeup_flusher_threads(WB_REASON_PERIODIC);
2056
2057 return ret;
1da177e4 2058}
aa779e51 2059#endif
1da177e4 2060
bca237a5 2061void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2062{
bca237a5
KC
2063 struct backing_dev_info *backing_dev_info =
2064 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2065
bca237a5 2066 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2067}
2068
2069/*
2070 * We've spun up the disk and we're in laptop mode: schedule writeback
2071 * of all dirty data a few seconds from now. If the flush is already scheduled
2072 * then push it back - the user is still using the disk.
2073 */
31373d09 2074void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2075{
31373d09 2076 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2077}
2078
2079/*
2080 * We're in laptop mode and we've just synced. The sync's writes will have
2081 * caused another writeback to be scheduled by laptop_io_completion.
2082 * Nothing needs to be written back anymore, so we unschedule the writeback.
2083 */
2084void laptop_sync_completion(void)
2085{
31373d09
MG
2086 struct backing_dev_info *bdi;
2087
2088 rcu_read_lock();
2089
2090 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2091 del_timer(&bdi->laptop_mode_wb_timer);
2092
2093 rcu_read_unlock();
1da177e4
LT
2094}
2095
2096/*
2097 * If ratelimit_pages is too high then we can get into dirty-data overload
2098 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2099 *
2100 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2101 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2102 * thresholds.
1da177e4
LT
2103 */
2104
2d1d43f6 2105void writeback_set_ratelimit(void)
1da177e4 2106{
dcc25ae7 2107 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2108 unsigned long background_thresh;
2109 unsigned long dirty_thresh;
dcc25ae7 2110
9d823e8f 2111 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2112 dom->dirty_limit = dirty_thresh;
9d823e8f 2113 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2114 if (ratelimit_pages < 16)
2115 ratelimit_pages = 16;
1da177e4
LT
2116}
2117
1d7ac6ae 2118static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2119{
1d7ac6ae
SAS
2120 writeback_set_ratelimit();
2121 return 0;
1da177e4
LT
2122}
2123
aa779e51 2124#ifdef CONFIG_SYSCTL
3c6a4cba
LC
2125
2126/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2127static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2128
aa779e51 2129static struct ctl_table vm_page_writeback_sysctls[] = {
2130 {
2131 .procname = "dirty_background_ratio",
2132 .data = &dirty_background_ratio,
2133 .maxlen = sizeof(dirty_background_ratio),
2134 .mode = 0644,
2135 .proc_handler = dirty_background_ratio_handler,
2136 .extra1 = SYSCTL_ZERO,
2137 .extra2 = SYSCTL_ONE_HUNDRED,
2138 },
2139 {
2140 .procname = "dirty_background_bytes",
2141 .data = &dirty_background_bytes,
2142 .maxlen = sizeof(dirty_background_bytes),
2143 .mode = 0644,
2144 .proc_handler = dirty_background_bytes_handler,
2145 .extra1 = SYSCTL_LONG_ONE,
2146 },
2147 {
2148 .procname = "dirty_ratio",
2149 .data = &vm_dirty_ratio,
2150 .maxlen = sizeof(vm_dirty_ratio),
2151 .mode = 0644,
2152 .proc_handler = dirty_ratio_handler,
2153 .extra1 = SYSCTL_ZERO,
2154 .extra2 = SYSCTL_ONE_HUNDRED,
2155 },
2156 {
2157 .procname = "dirty_bytes",
2158 .data = &vm_dirty_bytes,
2159 .maxlen = sizeof(vm_dirty_bytes),
2160 .mode = 0644,
2161 .proc_handler = dirty_bytes_handler,
2162 .extra1 = (void *)&dirty_bytes_min,
2163 },
2164 {
2165 .procname = "dirty_writeback_centisecs",
2166 .data = &dirty_writeback_interval,
2167 .maxlen = sizeof(dirty_writeback_interval),
2168 .mode = 0644,
2169 .proc_handler = dirty_writeback_centisecs_handler,
2170 },
2171 {
2172 .procname = "dirty_expire_centisecs",
2173 .data = &dirty_expire_interval,
2174 .maxlen = sizeof(dirty_expire_interval),
2175 .mode = 0644,
2176 .proc_handler = proc_dointvec_minmax,
2177 .extra1 = SYSCTL_ZERO,
2178 },
2179#ifdef CONFIG_HIGHMEM
2180 {
2181 .procname = "highmem_is_dirtyable",
2182 .data = &vm_highmem_is_dirtyable,
2183 .maxlen = sizeof(vm_highmem_is_dirtyable),
2184 .mode = 0644,
2185 .proc_handler = proc_dointvec_minmax,
2186 .extra1 = SYSCTL_ZERO,
2187 .extra2 = SYSCTL_ONE,
2188 },
2189#endif
2190 {
2191 .procname = "laptop_mode",
2192 .data = &laptop_mode,
2193 .maxlen = sizeof(laptop_mode),
2194 .mode = 0644,
2195 .proc_handler = proc_dointvec_jiffies,
2196 },
2197 {}
2198};
2199#endif
2200
1da177e4 2201/*
dc6e29da
LT
2202 * Called early on to tune the page writeback dirty limits.
2203 *
2204 * We used to scale dirty pages according to how total memory
0a18e607 2205 * related to pages that could be allocated for buffers.
dc6e29da
LT
2206 *
2207 * However, that was when we used "dirty_ratio" to scale with
2208 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2209 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2210 * get into the old insane situation any more where we had
2211 * large amounts of dirty pages compared to a small amount of
2212 * non-HIGHMEM memory.
2213 *
2214 * But we might still want to scale the dirty_ratio by how
2215 * much memory the box has..
1da177e4
LT
2216 */
2217void __init page_writeback_init(void)
2218{
a50fcb51
RV
2219 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2220
1d7ac6ae
SAS
2221 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2222 page_writeback_cpu_online, NULL);
2223 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2224 page_writeback_cpu_online);
aa779e51 2225#ifdef CONFIG_SYSCTL
2226 register_sysctl_init("vm", vm_page_writeback_sysctls);
2227#endif
1da177e4
LT
2228}
2229
f446daae
JK
2230/**
2231 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2232 * @mapping: address space structure to write
2233 * @start: starting page index
2234 * @end: ending page index (inclusive)
2235 *
2236 * This function scans the page range from @start to @end (inclusive) and tags
2237 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2238 * that write_cache_pages (or whoever calls this function) will then use
2239 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2240 * used to avoid livelocking of writeback by a process steadily creating new
2241 * dirty pages in the file (thus it is important for this function to be quick
2242 * so that it can tag pages faster than a dirtying process can create them).
2243 */
f446daae
JK
2244void tag_pages_for_writeback(struct address_space *mapping,
2245 pgoff_t start, pgoff_t end)
2246{
ff9c745b
MW
2247 XA_STATE(xas, &mapping->i_pages, start);
2248 unsigned int tagged = 0;
2249 void *page;
268f42de 2250
ff9c745b
MW
2251 xas_lock_irq(&xas);
2252 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2253 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2254 if (++tagged % XA_CHECK_SCHED)
268f42de 2255 continue;
ff9c745b
MW
2256
2257 xas_pause(&xas);
2258 xas_unlock_irq(&xas);
f446daae 2259 cond_resched();
ff9c745b 2260 xas_lock_irq(&xas);
268f42de 2261 }
ff9c745b 2262 xas_unlock_irq(&xas);
f446daae
JK
2263}
2264EXPORT_SYMBOL(tag_pages_for_writeback);
2265
811d736f 2266/**
0ea97180 2267 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2268 * @mapping: address space structure to write
2269 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2270 * @writepage: function called for each page
2271 * @data: data passed to writepage function
811d736f 2272 *
0ea97180 2273 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2274 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2275 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2276 * and msync() need to guarantee that all the data which was dirty at the time
2277 * the call was made get new I/O started against them. If wbc->sync_mode is
2278 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2279 * existing IO to complete.
f446daae
JK
2280 *
2281 * To avoid livelocks (when other process dirties new pages), we first tag
2282 * pages which should be written back with TOWRITE tag and only then start
2283 * writing them. For data-integrity sync we have to be careful so that we do
2284 * not miss some pages (e.g., because some other process has cleared TOWRITE
2285 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2286 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2287 *
2288 * To avoid deadlocks between range_cyclic writeback and callers that hold
2289 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2290 * we do not loop back to the start of the file. Doing so causes a page
2291 * lock/page writeback access order inversion - we should only ever lock
2292 * multiple pages in ascending page->index order, and looping back to the start
2293 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2294 *
2295 * Return: %0 on success, negative error code otherwise
811d736f 2296 */
0ea97180
MS
2297int write_cache_pages(struct address_space *mapping,
2298 struct writeback_control *wbc, writepage_t writepage,
2299 void *data)
811d736f 2300{
811d736f
DH
2301 int ret = 0;
2302 int done = 0;
3fa750dc 2303 int error;
811d736f
DH
2304 struct pagevec pvec;
2305 int nr_pages;
2306 pgoff_t index;
2307 pgoff_t end; /* Inclusive */
bd19e012 2308 pgoff_t done_index;
811d736f 2309 int range_whole = 0;
ff9c745b 2310 xa_mark_t tag;
811d736f 2311
86679820 2312 pagevec_init(&pvec);
811d736f 2313 if (wbc->range_cyclic) {
28659cc8 2314 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2315 end = -1;
2316 } else {
09cbfeaf
KS
2317 index = wbc->range_start >> PAGE_SHIFT;
2318 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2319 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2320 range_whole = 1;
811d736f 2321 }
cc7b8f62
MFO
2322 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2323 tag_pages_for_writeback(mapping, index, end);
f446daae 2324 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2325 } else {
f446daae 2326 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2327 }
bd19e012 2328 done_index = index;
5a3d5c98
NP
2329 while (!done && (index <= end)) {
2330 int i;
2331
2b9775ae 2332 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2333 tag);
5a3d5c98
NP
2334 if (nr_pages == 0)
2335 break;
811d736f 2336
811d736f
DH
2337 for (i = 0; i < nr_pages; i++) {
2338 struct page *page = pvec.pages[i];
2339
cf15b07c 2340 done_index = page->index;
d5482cdf 2341
811d736f
DH
2342 lock_page(page);
2343
5a3d5c98
NP
2344 /*
2345 * Page truncated or invalidated. We can freely skip it
2346 * then, even for data integrity operations: the page
2347 * has disappeared concurrently, so there could be no
f0953a1b 2348 * real expectation of this data integrity operation
5a3d5c98
NP
2349 * even if there is now a new, dirty page at the same
2350 * pagecache address.
2351 */
811d736f 2352 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2353continue_unlock:
811d736f
DH
2354 unlock_page(page);
2355 continue;
2356 }
2357
515f4a03
NP
2358 if (!PageDirty(page)) {
2359 /* someone wrote it for us */
2360 goto continue_unlock;
2361 }
2362
2363 if (PageWriteback(page)) {
2364 if (wbc->sync_mode != WB_SYNC_NONE)
2365 wait_on_page_writeback(page);
2366 else
2367 goto continue_unlock;
2368 }
811d736f 2369
515f4a03
NP
2370 BUG_ON(PageWriteback(page));
2371 if (!clear_page_dirty_for_io(page))
5a3d5c98 2372 goto continue_unlock;
811d736f 2373
de1414a6 2374 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2375 error = (*writepage)(page, wbc, data);
2376 if (unlikely(error)) {
2377 /*
2378 * Handle errors according to the type of
2379 * writeback. There's no need to continue for
2380 * background writeback. Just push done_index
2381 * past this page so media errors won't choke
2382 * writeout for the entire file. For integrity
2383 * writeback, we must process the entire dirty
2384 * set regardless of errors because the fs may
2385 * still have state to clear for each page. In
2386 * that case we continue processing and return
2387 * the first error.
2388 */
2389 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2390 unlock_page(page);
3fa750dc
BF
2391 error = 0;
2392 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2393 ret = error;
cf15b07c 2394 done_index = page->index + 1;
00266770
NP
2395 done = 1;
2396 break;
2397 }
3fa750dc
BF
2398 if (!ret)
2399 ret = error;
0b564927 2400 }
00266770 2401
546a1924
DC
2402 /*
2403 * We stop writing back only if we are not doing
2404 * integrity sync. In case of integrity sync we have to
2405 * keep going until we have written all the pages
2406 * we tagged for writeback prior to entering this loop.
2407 */
2408 if (--wbc->nr_to_write <= 0 &&
2409 wbc->sync_mode == WB_SYNC_NONE) {
2410 done = 1;
2411 break;
05fe478d 2412 }
811d736f
DH
2413 }
2414 pagevec_release(&pvec);
2415 cond_resched();
2416 }
64081362
DC
2417
2418 /*
2419 * If we hit the last page and there is more work to be done: wrap
2420 * back the index back to the start of the file for the next
2421 * time we are called.
2422 */
2423 if (wbc->range_cyclic && !done)
2424 done_index = 0;
0b564927
DC
2425 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2426 mapping->writeback_index = done_index;
06d6cf69 2427
811d736f
DH
2428 return ret;
2429}
0ea97180
MS
2430EXPORT_SYMBOL(write_cache_pages);
2431
2432/*
2433 * Function used by generic_writepages to call the real writepage
2434 * function and set the mapping flags on error
2435 */
2436static int __writepage(struct page *page, struct writeback_control *wbc,
2437 void *data)
2438{
2439 struct address_space *mapping = data;
2440 int ret = mapping->a_ops->writepage(page, wbc);
2441 mapping_set_error(mapping, ret);
2442 return ret;
2443}
2444
2445/**
2446 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2447 * @mapping: address space structure to write
2448 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2449 *
2450 * This is a library function, which implements the writepages()
2451 * address_space_operation.
a862f68a
MR
2452 *
2453 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2454 */
2455int generic_writepages(struct address_space *mapping,
2456 struct writeback_control *wbc)
2457{
9b6096a6
SL
2458 struct blk_plug plug;
2459 int ret;
2460
0ea97180
MS
2461 /* deal with chardevs and other special file */
2462 if (!mapping->a_ops->writepage)
2463 return 0;
2464
9b6096a6
SL
2465 blk_start_plug(&plug);
2466 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2467 blk_finish_plug(&plug);
2468 return ret;
0ea97180 2469}
811d736f
DH
2470
2471EXPORT_SYMBOL(generic_writepages);
2472
1da177e4
LT
2473int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2474{
22905f77 2475 int ret;
fee468fd 2476 struct bdi_writeback *wb;
22905f77 2477
1da177e4
LT
2478 if (wbc->nr_to_write <= 0)
2479 return 0;
fee468fd
JK
2480 wb = inode_to_wb_wbc(mapping->host, wbc);
2481 wb_bandwidth_estimate_start(wb);
80a2ea9f
TT
2482 while (1) {
2483 if (mapping->a_ops->writepages)
2484 ret = mapping->a_ops->writepages(mapping, wbc);
2485 else
2486 ret = generic_writepages(mapping, wbc);
2487 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2488 break;
8d58802f
MG
2489
2490 /*
2491 * Lacking an allocation context or the locality or writeback
2492 * state of any of the inode's pages, throttle based on
2493 * writeback activity on the local node. It's as good a
2494 * guess as any.
2495 */
2496 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2497 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2498 }
45a2966f
JK
2499 /*
2500 * Usually few pages are written by now from those we've just submitted
2501 * but if there's constant writeback being submitted, this makes sure
2502 * writeback bandwidth is updated once in a while.
2503 */
20792ebf
JK
2504 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2505 BANDWIDTH_INTERVAL))
45a2966f 2506 wb_update_bandwidth(wb);
22905f77 2507 return ret;
1da177e4
LT
2508}
2509
2510/**
121703c1
MWO
2511 * folio_write_one - write out a single folio and wait on I/O.
2512 * @folio: The folio to write.
1da177e4 2513 *
121703c1 2514 * The folio must be locked by the caller and will be unlocked upon return.
1da177e4 2515 *
37e51a76
JL
2516 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2517 * function returns.
a862f68a
MR
2518 *
2519 * Return: %0 on success, negative error code otherwise
1da177e4 2520 */
121703c1 2521int folio_write_one(struct folio *folio)
1da177e4 2522{
121703c1 2523 struct address_space *mapping = folio->mapping;
1da177e4
LT
2524 int ret = 0;
2525 struct writeback_control wbc = {
2526 .sync_mode = WB_SYNC_ALL,
121703c1 2527 .nr_to_write = folio_nr_pages(folio),
1da177e4
LT
2528 };
2529
121703c1 2530 BUG_ON(!folio_test_locked(folio));
1da177e4 2531
121703c1 2532 folio_wait_writeback(folio);
1da177e4 2533
121703c1
MWO
2534 if (folio_clear_dirty_for_io(folio)) {
2535 folio_get(folio);
2536 ret = mapping->a_ops->writepage(&folio->page, &wbc);
37e51a76 2537 if (ret == 0)
121703c1
MWO
2538 folio_wait_writeback(folio);
2539 folio_put(folio);
1da177e4 2540 } else {
121703c1 2541 folio_unlock(folio);
1da177e4 2542 }
37e51a76
JL
2543
2544 if (!ret)
2545 ret = filemap_check_errors(mapping);
1da177e4
LT
2546 return ret;
2547}
121703c1 2548EXPORT_SYMBOL(folio_write_one);
1da177e4 2549
76719325
KC
2550/*
2551 * For address_spaces which do not use buffers nor write back.
2552 */
46de8b97 2553bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2554{
46de8b97
MWO
2555 if (!folio_test_dirty(folio))
2556 return !folio_test_set_dirty(folio);
2557 return false;
76719325 2558}
46de8b97 2559EXPORT_SYMBOL(noop_dirty_folio);
76719325 2560
e3a7cca1
ES
2561/*
2562 * Helper function for set_page_dirty family.
c4843a75 2563 *
81f8c3a4 2564 * Caller must hold lock_page_memcg().
c4843a75 2565 *
e3a7cca1
ES
2566 * NOTE: This relies on being atomic wrt interrupts.
2567 */
203a3151 2568static void folio_account_dirtied(struct folio *folio,
6e1cae88 2569 struct address_space *mapping)
e3a7cca1 2570{
52ebea74
TH
2571 struct inode *inode = mapping->host;
2572
b9b0ff61 2573 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2574
f56753ac 2575 if (mapping_can_writeback(mapping)) {
52ebea74 2576 struct bdi_writeback *wb;
203a3151 2577 long nr = folio_nr_pages(folio);
de1414a6 2578
203a3151 2579 inode_attach_wb(inode, &folio->page);
52ebea74 2580 wb = inode_to_wb(inode);
de1414a6 2581
203a3151
MWO
2582 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2583 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2584 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2585 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2586 wb_stat_mod(wb, WB_DIRTIED, nr);
2587 task_io_account_write(nr * PAGE_SIZE);
2588 current->nr_dirtied += nr;
2589 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2590
203a3151 2591 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2592 }
2593}
2594
b9ea2515
KK
2595/*
2596 * Helper function for deaccounting dirty page without writeback.
2597 *
81f8c3a4 2598 * Caller must hold lock_page_memcg().
b9ea2515 2599 */
566d3362 2600void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2601{
566d3362
HD
2602 long nr = folio_nr_pages(folio);
2603
2604 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2605 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2606 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2607 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2608}
b9ea2515 2609
6e1cae88 2610/*
203a3151
MWO
2611 * Mark the folio dirty, and set it dirty in the page cache, and mark
2612 * the inode dirty.
6e1cae88 2613 *
203a3151 2614 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2615 * not been truncated.
2616 *
a229a4f0
MWO
2617 * The caller must hold lock_page_memcg(). Most callers have the folio
2618 * locked. A few have the folio blocked from truncation through other
2619 * means (eg zap_page_range() has it mapped and is holding the page table
2620 * lock). This can also be called from mark_buffer_dirty(), which I
2621 * cannot prove is always protected against truncate.
6e1cae88 2622 */
203a3151 2623void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2624 int warn)
2625{
2626 unsigned long flags;
2627
2628 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2629 if (folio->mapping) { /* Race with truncate? */
2630 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2631 folio_account_dirtied(folio, mapping);
2632 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2633 PAGECACHE_TAG_DIRTY);
2634 }
2635 xa_unlock_irqrestore(&mapping->i_pages, flags);
2636}
2637
85d4d2eb
MWO
2638/**
2639 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2640 * @mapping: Address space this folio belongs to.
2641 * @folio: Folio to be marked as dirty.
1da177e4 2642 *
85d4d2eb
MWO
2643 * Filesystems which do not use buffer heads should call this function
2644 * from their set_page_dirty address space operation. It ignores the
2645 * contents of folio_get_private(), so if the filesystem marks individual
2646 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2647 *
85d4d2eb
MWO
2648 * This is also sometimes used by filesystems which use buffer_heads when
2649 * a single buffer is being dirtied: we want to set the folio dirty in
2650 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2651 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2652 *
2653 * The caller must ensure this doesn't race with truncation. Most will
2654 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2655 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2656 */
85d4d2eb 2657bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2658{
85d4d2eb
MWO
2659 folio_memcg_lock(folio);
2660 if (folio_test_set_dirty(folio)) {
2661 folio_memcg_unlock(folio);
2662 return false;
2663 }
1da177e4 2664
85d4d2eb
MWO
2665 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2666 folio_memcg_unlock(folio);
c4843a75 2667
85d4d2eb
MWO
2668 if (mapping->host) {
2669 /* !PageAnon && !swapper_space */
2670 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2671 }
85d4d2eb 2672 return true;
1da177e4 2673}
85d4d2eb 2674EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2675
25ff8b15
MWO
2676/**
2677 * folio_account_redirty - Manually account for redirtying a page.
2678 * @folio: The folio which is being redirtied.
2679 *
2680 * Most filesystems should call folio_redirty_for_writepage() instead
2681 * of this fuction. If your filesystem is doing writeback outside the
2682 * context of a writeback_control(), it can call this when redirtying
2683 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2684 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2685 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2686 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2687 */
25ff8b15 2688void folio_account_redirty(struct folio *folio)
2f800fbd 2689{
25ff8b15 2690 struct address_space *mapping = folio->mapping;
91018134 2691
f56753ac 2692 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2693 struct inode *inode = mapping->host;
2694 struct bdi_writeback *wb;
2e898e4c 2695 struct wb_lock_cookie cookie = {};
25ff8b15 2696 long nr = folio_nr_pages(folio);
91018134 2697
2e898e4c 2698 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2699 current->nr_dirtied -= nr;
2700 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2701 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2702 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2703 }
2704}
25ff8b15 2705EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2706
cd78ab11
MWO
2707/**
2708 * folio_redirty_for_writepage - Decline to write a dirty folio.
2709 * @wbc: The writeback control.
2710 * @folio: The folio.
2711 *
2712 * When a writepage implementation decides that it doesn't want to write
2713 * @folio for some reason, it should call this function, unlock @folio and
2714 * return 0.
2715 *
2716 * Return: True if we redirtied the folio. False if someone else dirtied
2717 * it first.
1da177e4 2718 */
cd78ab11
MWO
2719bool folio_redirty_for_writepage(struct writeback_control *wbc,
2720 struct folio *folio)
1da177e4 2721{
cd78ab11
MWO
2722 bool ret;
2723 long nr = folio_nr_pages(folio);
2724
2725 wbc->pages_skipped += nr;
2726 ret = filemap_dirty_folio(folio->mapping, folio);
2727 folio_account_redirty(folio);
8d38633c 2728
8d38633c 2729 return ret;
1da177e4 2730}
cd78ab11 2731EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2732
b5e84594
MWO
2733/**
2734 * folio_mark_dirty - Mark a folio as being modified.
2735 * @folio: The folio.
6746aff7 2736 *
2ca456c2
MWO
2737 * The folio may not be truncated while this function is running.
2738 * Holding the folio lock is sufficient to prevent truncation, but some
2739 * callers cannot acquire a sleeping lock. These callers instead hold
2740 * the page table lock for a page table which contains at least one page
2741 * in this folio. Truncation will block on the page table lock as it
2742 * unmaps pages before removing the folio from its mapping.
b5e84594
MWO
2743 *
2744 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2745 */
b5e84594 2746bool folio_mark_dirty(struct folio *folio)
1da177e4 2747{
b5e84594 2748 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2749
2750 if (likely(mapping)) {
278df9f4
MK
2751 /*
2752 * readahead/lru_deactivate_page could remain
6f31a5a2
MWO
2753 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2754 * About readahead, if the folio is written, the flags would be
278df9f4 2755 * reset. So no problem.
6f31a5a2
MWO
2756 * About lru_deactivate_page, if the folio is redirtied,
2757 * the flag will be reset. So no problem. but if the
2758 * folio is used by readahead it will confuse readahead
2759 * and make it restart the size rampup process. But it's
2760 * a trivial problem.
278df9f4 2761 */
b5e84594
MWO
2762 if (folio_test_reclaim(folio))
2763 folio_clear_reclaim(folio);
3a3bae50 2764 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2765 }
3a3bae50
MWO
2766
2767 return noop_dirty_folio(mapping, folio);
1da177e4 2768}
b5e84594 2769EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2770
2771/*
2772 * set_page_dirty() is racy if the caller has no reference against
2773 * page->mapping->host, and if the page is unlocked. This is because another
2774 * CPU could truncate the page off the mapping and then free the mapping.
2775 *
2776 * Usually, the page _is_ locked, or the caller is a user-space process which
2777 * holds a reference on the inode by having an open file.
2778 *
2779 * In other cases, the page should be locked before running set_page_dirty().
2780 */
2781int set_page_dirty_lock(struct page *page)
2782{
2783 int ret;
2784
7eaceacc 2785 lock_page(page);
1da177e4
LT
2786 ret = set_page_dirty(page);
2787 unlock_page(page);
2788 return ret;
2789}
2790EXPORT_SYMBOL(set_page_dirty_lock);
2791
11f81bec
TH
2792/*
2793 * This cancels just the dirty bit on the kernel page itself, it does NOT
2794 * actually remove dirty bits on any mmap's that may be around. It also
2795 * leaves the page tagged dirty, so any sync activity will still find it on
2796 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2797 * look at the dirty bits in the VM.
2798 *
2799 * Doing this should *normally* only ever be done when a page is truncated,
2800 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2801 * this when it notices that somebody has cleaned out all the buffers on a
2802 * page without actually doing it through the VM. Can you say "ext3 is
2803 * horribly ugly"? Thought you could.
2804 */
fdaf532a 2805void __folio_cancel_dirty(struct folio *folio)
11f81bec 2806{
fdaf532a 2807 struct address_space *mapping = folio_mapping(folio);
c4843a75 2808
f56753ac 2809 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2810 struct inode *inode = mapping->host;
2811 struct bdi_writeback *wb;
2e898e4c 2812 struct wb_lock_cookie cookie = {};
c4843a75 2813
fdaf532a 2814 folio_memcg_lock(folio);
2e898e4c 2815 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2816
fdaf532a 2817 if (folio_test_clear_dirty(folio))
566d3362 2818 folio_account_cleaned(folio, wb);
c4843a75 2819
2e898e4c 2820 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2821 folio_memcg_unlock(folio);
c4843a75 2822 } else {
fdaf532a 2823 folio_clear_dirty(folio);
c4843a75 2824 }
11f81bec 2825}
fdaf532a 2826EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2827
1da177e4 2828/*
9350f20a
MWO
2829 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2830 * Returns true if the folio was previously dirty.
1da177e4 2831 *
9350f20a
MWO
2832 * This is for preparing to put the folio under writeout. We leave
2833 * the folio tagged as dirty in the xarray so that a concurrent
2834 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2835 * The ->writepage implementation will run either folio_start_writeback()
2836 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2837 * and xarray dirty tag back into sync.
1da177e4 2838 *
9350f20a
MWO
2839 * This incoherency between the folio's dirty flag and xarray tag is
2840 * unfortunate, but it only exists while the folio is locked.
1da177e4 2841 */
9350f20a 2842bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2843{
9350f20a
MWO
2844 struct address_space *mapping = folio_mapping(folio);
2845 bool ret = false;
1da177e4 2846
9350f20a 2847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2848
f56753ac 2849 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2850 struct inode *inode = mapping->host;
2851 struct bdi_writeback *wb;
2e898e4c 2852 struct wb_lock_cookie cookie = {};
682aa8e1 2853
7658cc28
LT
2854 /*
2855 * Yes, Virginia, this is indeed insane.
2856 *
2857 * We use this sequence to make sure that
2858 * (a) we account for dirty stats properly
2859 * (b) we tell the low-level filesystem to
9350f20a 2860 * mark the whole folio dirty if it was
7658cc28 2861 * dirty in a pagetable. Only to then
9350f20a 2862 * (c) clean the folio again and return 1 to
7658cc28
LT
2863 * cause the writeback.
2864 *
2865 * This way we avoid all nasty races with the
2866 * dirty bit in multiple places and clearing
2867 * them concurrently from different threads.
2868 *
9350f20a 2869 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2870 * has no effect on the actual dirty bit - since
2871 * that will already usually be set. But we
2872 * need the side effects, and it can help us
2873 * avoid races.
2874 *
9350f20a 2875 * We basically use the folio "master dirty bit"
7658cc28
LT
2876 * as a serialization point for all the different
2877 * threads doing their things.
7658cc28 2878 */
9350f20a
MWO
2879 if (folio_mkclean(folio))
2880 folio_mark_dirty(folio);
79352894
NP
2881 /*
2882 * We carefully synchronise fault handlers against
9350f20a 2883 * installing a dirty pte and marking the folio dirty
2d6d7f98 2884 * at this point. We do this by having them hold the
9350f20a 2885 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2886 * always locked coming in here, so we get the desired
2887 * exclusion.
79352894 2888 */
2e898e4c 2889 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2890 if (folio_test_clear_dirty(folio)) {
2891 long nr = folio_nr_pages(folio);
2892 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2893 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2894 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2895 ret = true;
1da177e4 2896 }
2e898e4c 2897 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2898 return ret;
1da177e4 2899 }
9350f20a 2900 return folio_test_clear_dirty(folio);
1da177e4 2901}
9350f20a 2902EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2903
633a2abb
JK
2904static void wb_inode_writeback_start(struct bdi_writeback *wb)
2905{
2906 atomic_inc(&wb->writeback_inodes);
2907}
2908
2909static void wb_inode_writeback_end(struct bdi_writeback *wb)
2910{
f87904c0 2911 unsigned long flags;
633a2abb 2912 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2913 /*
2914 * Make sure estimate of writeback throughput gets updated after
2915 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2916 * (which is the interval other bandwidth updates use for batching) so
2917 * that if multiple inodes end writeback at a similar time, they get
2918 * batched into one bandwidth update.
2919 */
f87904c0
KK
2920 spin_lock_irqsave(&wb->work_lock, flags);
2921 if (test_bit(WB_registered, &wb->state))
2922 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2923 spin_unlock_irqrestore(&wb->work_lock, flags);
633a2abb
JK
2924}
2925
269ccca3 2926bool __folio_end_writeback(struct folio *folio)
1da177e4 2927{
269ccca3
MWO
2928 long nr = folio_nr_pages(folio);
2929 struct address_space *mapping = folio_mapping(folio);
2930 bool ret;
1da177e4 2931
269ccca3 2932 folio_memcg_lock(folio);
371a096e 2933 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2934 struct inode *inode = mapping->host;
2935 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2936 unsigned long flags;
2937
b93b0163 2938 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 2939 ret = folio_test_clear_writeback(folio);
69cb51d1 2940 if (ret) {
269ccca3 2941 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 2942 PAGECACHE_TAG_WRITEBACK);
823423ef 2943 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
2944 struct bdi_writeback *wb = inode_to_wb(inode);
2945
269ccca3
MWO
2946 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2947 __wb_writeout_add(wb, nr);
633a2abb
JK
2948 if (!mapping_tagged(mapping,
2949 PAGECACHE_TAG_WRITEBACK))
2950 wb_inode_writeback_end(wb);
04fbfdc1 2951 }
69cb51d1 2952 }
6c60d2b5
DC
2953
2954 if (mapping->host && !mapping_tagged(mapping,
2955 PAGECACHE_TAG_WRITEBACK))
2956 sb_clear_inode_writeback(mapping->host);
2957
b93b0163 2958 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 2959 } else {
269ccca3 2960 ret = folio_test_clear_writeback(folio);
1da177e4 2961 }
99b12e3d 2962 if (ret) {
269ccca3
MWO
2963 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2964 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2965 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 2966 }
269ccca3 2967 folio_memcg_unlock(folio);
1da177e4
LT
2968 return ret;
2969}
2970
f143f1ea 2971bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 2972{
f143f1ea
MWO
2973 long nr = folio_nr_pages(folio);
2974 struct address_space *mapping = folio_mapping(folio);
2975 bool ret;
2976 int access_ret;
1da177e4 2977
f143f1ea 2978 folio_memcg_lock(folio);
371a096e 2979 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 2980 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
2981 struct inode *inode = mapping->host;
2982 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2983 unsigned long flags;
2984
ff9c745b
MW
2985 xas_lock_irqsave(&xas, flags);
2986 xas_load(&xas);
f143f1ea 2987 ret = folio_test_set_writeback(folio);
69cb51d1 2988 if (!ret) {
6c60d2b5
DC
2989 bool on_wblist;
2990
2991 on_wblist = mapping_tagged(mapping,
2992 PAGECACHE_TAG_WRITEBACK);
2993
ff9c745b 2994 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
2995 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2996 struct bdi_writeback *wb = inode_to_wb(inode);
2997
f143f1ea 2998 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
2999 if (!on_wblist)
3000 wb_inode_writeback_start(wb);
3001 }
6c60d2b5
DC
3002
3003 /*
f143f1ea
MWO
3004 * We can come through here when swapping
3005 * anonymous folios, so we don't necessarily
3006 * have an inode to track for sync.
6c60d2b5
DC
3007 */
3008 if (mapping->host && !on_wblist)
3009 sb_mark_inode_writeback(mapping->host);
69cb51d1 3010 }
f143f1ea 3011 if (!folio_test_dirty(folio))
ff9c745b 3012 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 3013 if (!keep_write)
ff9c745b
MW
3014 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3015 xas_unlock_irqrestore(&xas, flags);
1da177e4 3016 } else {
f143f1ea 3017 ret = folio_test_set_writeback(folio);
1da177e4 3018 }
3a3c02ec 3019 if (!ret) {
f143f1ea
MWO
3020 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3021 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 3022 }
f143f1ea
MWO
3023 folio_memcg_unlock(folio);
3024 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
3025 /*
3026 * If writeback has been triggered on a page that cannot be made
3027 * accessible, it is too late to recover here.
3028 */
f143f1ea 3029 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 3030
1da177e4 3031 return ret;
1da177e4 3032}
f143f1ea 3033EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 3034
490e016f
MWO
3035/**
3036 * folio_wait_writeback - Wait for a folio to finish writeback.
3037 * @folio: The folio to wait for.
3038 *
3039 * If the folio is currently being written back to storage, wait for the
3040 * I/O to complete.
3041 *
3042 * Context: Sleeps. Must be called in process context and with
3043 * no spinlocks held. Caller should hold a reference on the folio.
3044 * If the folio is not locked, writeback may start again after writeback
3045 * has finished.
19343b5b 3046 */
490e016f 3047void folio_wait_writeback(struct folio *folio)
19343b5b 3048{
490e016f 3049 while (folio_test_writeback(folio)) {
b9b0ff61 3050 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3051 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
3052 }
3053}
490e016f 3054EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 3055
490e016f
MWO
3056/**
3057 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3058 * @folio: The folio to wait for.
3059 *
3060 * If the folio is currently being written back to storage, wait for the
3061 * I/O to complete or a fatal signal to arrive.
3062 *
3063 * Context: Sleeps. Must be called in process context and with
3064 * no spinlocks held. Caller should hold a reference on the folio.
3065 * If the folio is not locked, writeback may start again after writeback
3066 * has finished.
3067 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 3068 */
490e016f 3069int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 3070{
490e016f 3071 while (folio_test_writeback(folio)) {
b9b0ff61 3072 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3073 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
3074 return -EINTR;
3075 }
3076
3077 return 0;
3078}
490e016f 3079EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 3080
1d1d1a76 3081/**
a49d0c50
MWO
3082 * folio_wait_stable() - wait for writeback to finish, if necessary.
3083 * @folio: The folio to wait on.
1d1d1a76 3084 *
a49d0c50
MWO
3085 * This function determines if the given folio is related to a backing
3086 * device that requires folio contents to be held stable during writeback.
3087 * If so, then it will wait for any pending writeback to complete.
3088 *
3089 * Context: Sleeps. Must be called in process context and with
3090 * no spinlocks held. Caller should hold a reference on the folio.
3091 * If the folio is not locked, writeback may start again after writeback
3092 * has finished.
1d1d1a76 3093 */
a49d0c50 3094void folio_wait_stable(struct folio *folio)
1d1d1a76 3095{
452c472e 3096 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 3097 folio_wait_writeback(folio);
1d1d1a76 3098}
a49d0c50 3099EXPORT_SYMBOL_GPL(folio_wait_stable);