mm/zbud: add kerneldoc fields for zbud_pool
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
b95f1b31 16#include <linux/export.h>
1da177e4
LT
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
55e829af 26#include <linux/task_io_accounting_ops.h>
1da177e4
LT
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
d08b3851 29#include <linux/rmap.h>
1da177e4 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
811d736f 35#include <linux/pagevec.h>
eb608e3a 36#include <linux/timer.h>
8bd75c77 37#include <linux/sched/rt.h>
f361bf4a 38#include <linux/sched/signal.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
1da177e4 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
e9f07dfd
TH
129#ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
9fc3a43e 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 132#endif
2bc00aef 133 struct bdi_writeback *wb;
e9770b34 134 struct fprop_local_percpu *wb_completions;
eb608e3a 135
9fc3a43e 136 unsigned long avail; /* dirtyable */
2bc00aef
TH
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
970fb01a 143 unsigned long wb_bg_thresh;
daddfa3c
TH
144
145 unsigned long pos_ratio;
2bc00aef
TH
146};
147
eb608e3a
JK
148/*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 154
693108a8
TH
155#ifdef CONFIG_CGROUP_WRITEBACK
156
d60d1bdd
TH
157#define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
9fc3a43e 161#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
162
163#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
c2aa723a
TH
167
168static bool mdtc_valid(struct dirty_throttle_control *dtc)
169{
170 return dtc->dom;
171}
e9f07dfd
TH
172
173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174{
175 return dtc->dom;
176}
177
9fc3a43e
TH
178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179{
180 return mdtc->gdtc;
181}
182
841710aa
TH
183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184{
185 return &wb->memcg_completions;
186}
187
693108a8
TH
188static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190{
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
6d9e8c65 203 min = div64_ul(min, tot_bw);
693108a8
TH
204 }
205 if (max < 100) {
206 max *= this_bw;
6d9e8c65 207 max = div64_ul(max, tot_bw);
693108a8
TH
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213}
214
215#else /* CONFIG_CGROUP_WRITEBACK */
216
d60d1bdd
TH
217#define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
9fc3a43e 219#define GDTC_INIT_NO_WB
c2aa723a
TH
220#define MDTC_INIT(__wb, __gdtc)
221
222static bool mdtc_valid(struct dirty_throttle_control *dtc)
223{
224 return false;
225}
e9f07dfd
TH
226
227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228{
229 return &global_wb_domain;
230}
231
9fc3a43e
TH
232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233{
234 return NULL;
235}
236
841710aa
TH
237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238{
239 return NULL;
240}
241
693108a8
TH
242static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244{
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247}
248
249#endif /* CONFIG_CGROUP_WRITEBACK */
250
a756cf59
JW
251/*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
e0857cf5 259 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
a804552b 269/**
281e3726
MG
270 * node_dirtyable_memory - number of dirtyable pages in a node
271 * @pgdat: the node
a804552b 272 *
a862f68a 273 * Return: the node's number of pages potentially available for dirty
281e3726 274 * page cache. This is the base value for the per-node dirty limits.
a804552b 275 */
281e3726 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 277{
281e3726
MG
278 unsigned long nr_pages = 0;
279 int z;
280
281 for (z = 0; z < MAX_NR_ZONES; z++) {
282 struct zone *zone = pgdat->node_zones + z;
283
284 if (!populated_zone(zone))
285 continue;
286
287 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288 }
a804552b 289
a8d01437
JW
290 /*
291 * Pages reserved for the kernel should not be considered
292 * dirtyable, to prevent a situation where reclaim has to
293 * clean pages in order to balance the zones.
294 */
281e3726 295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 296
281e3726
MG
297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
299
300 return nr_pages;
301}
302
1edf2234
JW
303static unsigned long highmem_dirtyable_memory(unsigned long total)
304{
305#ifdef CONFIG_HIGHMEM
306 int node;
bb4cc2be 307 unsigned long x = 0;
09b4ab3c 308 int i;
1edf2234
JW
309
310 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312 struct zone *z;
9cb937e2 313 unsigned long nr_pages;
281e3726
MG
314
315 if (!is_highmem_idx(i))
316 continue;
317
318 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
319 if (!populated_zone(z))
320 continue;
1edf2234 321
9cb937e2 322 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 323 /* watch for underflows */
9cb937e2 324 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
325 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
326 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
327 x += nr_pages;
09b4ab3c 328 }
1edf2234 329 }
281e3726 330
c8b74c2f
SR
331 /*
332 * Unreclaimable memory (kernel memory or anonymous memory
333 * without swap) can bring down the dirtyable pages below
334 * the zone's dirty balance reserve and the above calculation
335 * will underflow. However we still want to add in nodes
336 * which are below threshold (negative values) to get a more
337 * accurate calculation but make sure that the total never
338 * underflows.
339 */
340 if ((long)x < 0)
341 x = 0;
342
1edf2234
JW
343 /*
344 * Make sure that the number of highmem pages is never larger
345 * than the number of the total dirtyable memory. This can only
346 * occur in very strange VM situations but we want to make sure
347 * that this does not occur.
348 */
349 return min(x, total);
350#else
351 return 0;
352#endif
353}
354
355/**
ccafa287 356 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 357 *
a862f68a 358 * Return: the global number of pages potentially available for dirty
ccafa287 359 * page cache. This is the base value for the global dirty limits.
1edf2234 360 */
18cf8cf8 361static unsigned long global_dirtyable_memory(void)
1edf2234
JW
362{
363 unsigned long x;
364
c41f012a 365 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
366 /*
367 * Pages reserved for the kernel should not be considered
368 * dirtyable, to prevent a situation where reclaim has to
369 * clean pages in order to balance the zones.
370 */
371 x -= min(x, totalreserve_pages);
1edf2234 372
599d0c95
MG
373 x += global_node_page_state(NR_INACTIVE_FILE);
374 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 375
1edf2234
JW
376 if (!vm_highmem_is_dirtyable)
377 x -= highmem_dirtyable_memory(x);
378
379 return x + 1; /* Ensure that we never return 0 */
380}
381
9fc3a43e
TH
382/**
383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
384 * @dtc: dirty_throttle_control of interest
ccafa287 385 *
9fc3a43e
TH
386 * Calculate @dtc->thresh and ->bg_thresh considering
387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
388 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 389 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 390 */
9fc3a43e 391static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 392{
9fc3a43e
TH
393 const unsigned long available_memory = dtc->avail;
394 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
395 unsigned long bytes = vm_dirty_bytes;
396 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
397 /* convert ratios to per-PAGE_SIZE for higher precision */
398 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
399 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
400 unsigned long thresh;
401 unsigned long bg_thresh;
ccafa287
JW
402 struct task_struct *tsk;
403
9fc3a43e
TH
404 /* gdtc is !NULL iff @dtc is for memcg domain */
405 if (gdtc) {
406 unsigned long global_avail = gdtc->avail;
407
408 /*
409 * The byte settings can't be applied directly to memcg
410 * domains. Convert them to ratios by scaling against
62a584fe
TH
411 * globally available memory. As the ratios are in
412 * per-PAGE_SIZE, they can be obtained by dividing bytes by
413 * number of pages.
9fc3a43e
TH
414 */
415 if (bytes)
62a584fe
TH
416 ratio = min(DIV_ROUND_UP(bytes, global_avail),
417 PAGE_SIZE);
9fc3a43e 418 if (bg_bytes)
62a584fe
TH
419 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
420 PAGE_SIZE);
9fc3a43e
TH
421 bytes = bg_bytes = 0;
422 }
423
424 if (bytes)
425 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 426 else
62a584fe 427 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 428
9fc3a43e
TH
429 if (bg_bytes)
430 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 431 else
62a584fe 432 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 433
90daf306 434 if (bg_thresh >= thresh)
9fc3a43e 435 bg_thresh = thresh / 2;
ccafa287 436 tsk = current;
a37b0715 437 if (rt_task(tsk)) {
a53eaff8
N
438 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
439 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 440 }
9fc3a43e
TH
441 dtc->thresh = thresh;
442 dtc->bg_thresh = bg_thresh;
443
444 /* we should eventually report the domain in the TP */
445 if (!gdtc)
446 trace_global_dirty_state(bg_thresh, thresh);
447}
448
449/**
450 * global_dirty_limits - background-writeback and dirty-throttling thresholds
451 * @pbackground: out parameter for bg_thresh
452 * @pdirty: out parameter for thresh
453 *
454 * Calculate bg_thresh and thresh for global_wb_domain. See
455 * domain_dirty_limits() for details.
456 */
457void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
458{
459 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
460
461 gdtc.avail = global_dirtyable_memory();
462 domain_dirty_limits(&gdtc);
463
464 *pbackground = gdtc.bg_thresh;
465 *pdirty = gdtc.thresh;
ccafa287
JW
466}
467
a756cf59 468/**
281e3726
MG
469 * node_dirty_limit - maximum number of dirty pages allowed in a node
470 * @pgdat: the node
a756cf59 471 *
a862f68a 472 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 473 * on the node's dirtyable memory.
a756cf59 474 */
281e3726 475static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 476{
281e3726 477 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
478 struct task_struct *tsk = current;
479 unsigned long dirty;
480
481 if (vm_dirty_bytes)
482 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 483 node_memory / global_dirtyable_memory();
a756cf59 484 else
281e3726 485 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 486
a37b0715 487 if (rt_task(tsk))
a756cf59
JW
488 dirty += dirty / 4;
489
490 return dirty;
491}
492
493/**
281e3726
MG
494 * node_dirty_ok - tells whether a node is within its dirty limits
495 * @pgdat: the node to check
a756cf59 496 *
a862f68a 497 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
498 * dirty limit, %false if the limit is exceeded.
499 */
281e3726 500bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 501{
281e3726
MG
502 unsigned long limit = node_dirty_limit(pgdat);
503 unsigned long nr_pages = 0;
504
11fb9989 505 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 506 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 507
281e3726 508 return nr_pages <= limit;
a756cf59
JW
509}
510
2da02997 511int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 512 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
513{
514 int ret;
515
8d65af78 516 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
517 if (ret == 0 && write)
518 dirty_background_bytes = 0;
519 return ret;
520}
521
522int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 523 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
524{
525 int ret;
526
8d65af78 527 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
528 if (ret == 0 && write)
529 dirty_background_ratio = 0;
530 return ret;
531}
532
32927393
CH
533int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
534 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
535{
536 int old_ratio = vm_dirty_ratio;
2da02997
DR
537 int ret;
538
8d65af78 539 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 540 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 541 writeback_set_ratelimit();
2da02997
DR
542 vm_dirty_bytes = 0;
543 }
544 return ret;
545}
546
2da02997 547int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 548 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 549{
fc3501d4 550 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
551 int ret;
552
8d65af78 553 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 554 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 555 writeback_set_ratelimit();
2da02997 556 vm_dirty_ratio = 0;
04fbfdc1
PZ
557 }
558 return ret;
559}
560
eb608e3a
JK
561static unsigned long wp_next_time(unsigned long cur_time)
562{
563 cur_time += VM_COMPLETIONS_PERIOD_LEN;
564 /* 0 has a special meaning... */
565 if (!cur_time)
566 return 1;
567 return cur_time;
568}
569
c7981433
TH
570static void wb_domain_writeout_inc(struct wb_domain *dom,
571 struct fprop_local_percpu *completions,
572 unsigned int max_prop_frac)
04fbfdc1 573{
c7981433
TH
574 __fprop_inc_percpu_max(&dom->completions, completions,
575 max_prop_frac);
eb608e3a 576 /* First event after period switching was turned off? */
517663ed 577 if (unlikely(!dom->period_time)) {
eb608e3a
JK
578 /*
579 * We can race with other __bdi_writeout_inc calls here but
580 * it does not cause any harm since the resulting time when
581 * timer will fire and what is in writeout_period_time will be
582 * roughly the same.
583 */
380c27ca
TH
584 dom->period_time = wp_next_time(jiffies);
585 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 586 }
04fbfdc1
PZ
587}
588
c7981433
TH
589/*
590 * Increment @wb's writeout completion count and the global writeout
591 * completion count. Called from test_clear_page_writeback().
592 */
593static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 594{
841710aa 595 struct wb_domain *cgdom;
dd5656e5 596
3e8f399d 597 inc_wb_stat(wb, WB_WRITTEN);
c7981433
TH
598 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
599 wb->bdi->max_prop_frac);
841710aa
TH
600
601 cgdom = mem_cgroup_wb_domain(wb);
602 if (cgdom)
603 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
604 wb->bdi->max_prop_frac);
dd5656e5 605}
dd5656e5 606
93f78d88 607void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 608{
dd5656e5
MS
609 unsigned long flags;
610
611 local_irq_save(flags);
93f78d88 612 __wb_writeout_inc(wb);
dd5656e5 613 local_irq_restore(flags);
04fbfdc1 614}
93f78d88 615EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 616
eb608e3a
JK
617/*
618 * On idle system, we can be called long after we scheduled because we use
619 * deferred timers so count with missed periods.
620 */
9823e51b 621static void writeout_period(struct timer_list *t)
eb608e3a 622{
9823e51b 623 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 624 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
625 VM_COMPLETIONS_PERIOD_LEN;
626
380c27ca
TH
627 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
628 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 629 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 630 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
631 } else {
632 /*
633 * Aging has zeroed all fractions. Stop wasting CPU on period
634 * updates.
635 */
380c27ca 636 dom->period_time = 0;
eb608e3a
JK
637 }
638}
639
380c27ca
TH
640int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
641{
642 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
643
644 spin_lock_init(&dom->lock);
645
9823e51b 646 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
647
648 dom->dirty_limit_tstamp = jiffies;
649
380c27ca
TH
650 return fprop_global_init(&dom->completions, gfp);
651}
652
841710aa
TH
653#ifdef CONFIG_CGROUP_WRITEBACK
654void wb_domain_exit(struct wb_domain *dom)
655{
656 del_timer_sync(&dom->period_timer);
657 fprop_global_destroy(&dom->completions);
658}
659#endif
660
189d3c4a 661/*
d08c429b
JW
662 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
663 * registered backing devices, which, for obvious reasons, can not
664 * exceed 100%.
189d3c4a 665 */
189d3c4a
PZ
666static unsigned int bdi_min_ratio;
667
668int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
669{
670 int ret = 0;
189d3c4a 671
cfc4ba53 672 spin_lock_bh(&bdi_lock);
a42dde04 673 if (min_ratio > bdi->max_ratio) {
189d3c4a 674 ret = -EINVAL;
a42dde04
PZ
675 } else {
676 min_ratio -= bdi->min_ratio;
677 if (bdi_min_ratio + min_ratio < 100) {
678 bdi_min_ratio += min_ratio;
679 bdi->min_ratio += min_ratio;
680 } else {
681 ret = -EINVAL;
682 }
683 }
cfc4ba53 684 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
685
686 return ret;
687}
688
689int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
690{
a42dde04
PZ
691 int ret = 0;
692
693 if (max_ratio > 100)
694 return -EINVAL;
695
cfc4ba53 696 spin_lock_bh(&bdi_lock);
a42dde04
PZ
697 if (bdi->min_ratio > max_ratio) {
698 ret = -EINVAL;
699 } else {
700 bdi->max_ratio = max_ratio;
eb608e3a 701 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 702 }
cfc4ba53 703 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
704
705 return ret;
706}
a42dde04 707EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 708
6c14ae1e
WF
709static unsigned long dirty_freerun_ceiling(unsigned long thresh,
710 unsigned long bg_thresh)
711{
712 return (thresh + bg_thresh) / 2;
713}
714
c7981433
TH
715static unsigned long hard_dirty_limit(struct wb_domain *dom,
716 unsigned long thresh)
ffd1f609 717{
dcc25ae7 718 return max(thresh, dom->dirty_limit);
ffd1f609
WF
719}
720
c5edf9cd
TH
721/*
722 * Memory which can be further allocated to a memcg domain is capped by
723 * system-wide clean memory excluding the amount being used in the domain.
724 */
725static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
726 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
727{
728 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
729 unsigned long clean = filepages - min(filepages, mdtc->dirty);
730 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
731 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 732
c5edf9cd 733 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
734}
735
6f718656 736/**
b1cbc6d4
TH
737 * __wb_calc_thresh - @wb's share of dirty throttling threshold
738 * @dtc: dirty_throttle_context of interest
1babe183 739 *
aed21ad2
WF
740 * Note that balance_dirty_pages() will only seriously take it as a hard limit
741 * when sleeping max_pause per page is not enough to keep the dirty pages under
742 * control. For example, when the device is completely stalled due to some error
743 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
744 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 745 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 746 *
6f718656 747 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
748 * - starving fast devices
749 * - piling up dirty pages (that will take long time to sync) on slow devices
750 *
a88a341a 751 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 752 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
753 *
754 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 755 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 756 */
b1cbc6d4 757static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 758{
e9f07dfd 759 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 760 unsigned long thresh = dtc->thresh;
0d960a38 761 u64 wb_thresh;
d3ac946e 762 unsigned long numerator, denominator;
693108a8 763 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 764
16c4042f 765 /*
0d960a38 766 * Calculate this BDI's share of the thresh ratio.
16c4042f 767 */
e9770b34 768 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 769 &numerator, &denominator);
04fbfdc1 770
0d960a38
TH
771 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
772 wb_thresh *= numerator;
d3ac946e 773 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 774
b1cbc6d4 775 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 776
0d960a38
TH
777 wb_thresh += (thresh * wb_min_ratio) / 100;
778 if (wb_thresh > (thresh * wb_max_ratio) / 100)
779 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 780
0d960a38 781 return wb_thresh;
1da177e4
LT
782}
783
b1cbc6d4
TH
784unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
785{
786 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
787 .thresh = thresh };
788 return __wb_calc_thresh(&gdtc);
1da177e4
LT
789}
790
5a537485
MP
791/*
792 * setpoint - dirty 3
793 * f(dirty) := 1.0 + (----------------)
794 * limit - setpoint
795 *
796 * it's a 3rd order polynomial that subjects to
797 *
798 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
799 * (2) f(setpoint) = 1.0 => the balance point
800 * (3) f(limit) = 0 => the hard limit
801 * (4) df/dx <= 0 => negative feedback control
802 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
803 * => fast response on large errors; small oscillation near setpoint
804 */
d5c9fde3 805static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
806 unsigned long dirty,
807 unsigned long limit)
808{
809 long long pos_ratio;
810 long x;
811
d5c9fde3 812 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 813 (limit - setpoint) | 1);
5a537485
MP
814 pos_ratio = x;
815 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
816 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
817 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
818
819 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
820}
821
6c14ae1e
WF
822/*
823 * Dirty position control.
824 *
825 * (o) global/bdi setpoints
826 *
de1fff37 827 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
828 * When the number of dirty pages is higher/lower than the setpoint, the
829 * dirty position control ratio (and hence task dirty ratelimit) will be
830 * decreased/increased to bring the dirty pages back to the setpoint.
831 *
832 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
833 *
834 * if (dirty < setpoint) scale up pos_ratio
835 * if (dirty > setpoint) scale down pos_ratio
836 *
de1fff37
TH
837 * if (wb_dirty < wb_setpoint) scale up pos_ratio
838 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
839 *
840 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
841 *
842 * (o) global control line
843 *
844 * ^ pos_ratio
845 * |
846 * | |<===== global dirty control scope ======>|
03231554 847 * 2.0 * * * * * * *
6c14ae1e
WF
848 * | .*
849 * | . *
850 * | . *
851 * | . *
852 * | . *
853 * | . *
854 * 1.0 ................................*
855 * | . . *
856 * | . . *
857 * | . . *
858 * | . . *
859 * | . . *
860 * 0 +------------.------------------.----------------------*------------->
861 * freerun^ setpoint^ limit^ dirty pages
862 *
de1fff37 863 * (o) wb control line
6c14ae1e
WF
864 *
865 * ^ pos_ratio
866 * |
867 * | *
868 * | *
869 * | *
870 * | *
871 * | * |<=========== span ============>|
872 * 1.0 .......................*
873 * | . *
874 * | . *
875 * | . *
876 * | . *
877 * | . *
878 * | . *
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * 1/4 ...............................................* * * * * * * * * * * *
885 * | . .
886 * | . .
887 * | . .
888 * 0 +----------------------.-------------------------------.------------->
de1fff37 889 * wb_setpoint^ x_intercept^
6c14ae1e 890 *
de1fff37 891 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
892 * be smoothly throttled down to normal if it starts high in situations like
893 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
894 * card's wb_dirty may rush to many times higher than wb_setpoint.
895 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 896 */
daddfa3c 897static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 898{
2bc00aef 899 struct bdi_writeback *wb = dtc->wb;
a88a341a 900 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 901 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 902 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 903 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
904 unsigned long x_intercept;
905 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 906 unsigned long wb_setpoint;
6c14ae1e
WF
907 unsigned long span;
908 long long pos_ratio; /* for scaling up/down the rate limit */
909 long x;
910
daddfa3c
TH
911 dtc->pos_ratio = 0;
912
2bc00aef 913 if (unlikely(dtc->dirty >= limit))
daddfa3c 914 return;
6c14ae1e
WF
915
916 /*
917 * global setpoint
918 *
5a537485
MP
919 * See comment for pos_ratio_polynom().
920 */
921 setpoint = (freerun + limit) / 2;
2bc00aef 922 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
923
924 /*
925 * The strictlimit feature is a tool preventing mistrusted filesystems
926 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
927 * such filesystems balance_dirty_pages always checks wb counters
928 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
929 * This is especially important for fuse which sets bdi->max_ratio to
930 * 1% by default. Without strictlimit feature, fuse writeback may
931 * consume arbitrary amount of RAM because it is accounted in
932 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 933 *
a88a341a 934 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 935 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
936 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
937 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 938 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 939 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 940 * about ~6K pages (as the average of background and throttle wb
5a537485 941 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 942 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 943 *
5a537485 944 * Note, that we cannot use global counters in these calculations
de1fff37 945 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
946 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
947 * in the example above).
6c14ae1e 948 */
a88a341a 949 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 950 long long wb_pos_ratio;
5a537485 951
daddfa3c
TH
952 if (dtc->wb_dirty < 8) {
953 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
954 2 << RATELIMIT_CALC_SHIFT);
955 return;
956 }
5a537485 957
2bc00aef 958 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 959 return;
5a537485 960
970fb01a
TH
961 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
962 dtc->wb_bg_thresh);
5a537485 963
de1fff37 964 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 965 return;
5a537485 966
2bc00aef 967 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 968 wb_thresh);
5a537485
MP
969
970 /*
de1fff37
TH
971 * Typically, for strictlimit case, wb_setpoint << setpoint
972 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 973 * state ("dirty") is not limiting factor and we have to
de1fff37 974 * make decision based on wb counters. But there is an
5a537485
MP
975 * important case when global pos_ratio should get precedence:
976 * global limits are exceeded (e.g. due to activities on other
de1fff37 977 * wb's) while given strictlimit wb is below limit.
5a537485 978 *
de1fff37 979 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 980 * but it would look too non-natural for the case of all
de1fff37 981 * activity in the system coming from a single strictlimit wb
5a537485
MP
982 * with bdi->max_ratio == 100%.
983 *
984 * Note that min() below somewhat changes the dynamics of the
985 * control system. Normally, pos_ratio value can be well over 3
de1fff37 986 * (when globally we are at freerun and wb is well below wb
5a537485
MP
987 * setpoint). Now the maximum pos_ratio in the same situation
988 * is 2. We might want to tweak this if we observe the control
989 * system is too slow to adapt.
990 */
daddfa3c
TH
991 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
992 return;
5a537485 993 }
6c14ae1e
WF
994
995 /*
996 * We have computed basic pos_ratio above based on global situation. If
de1fff37 997 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
998 * pos_ratio further down/up. That is done by the following mechanism.
999 */
1000
1001 /*
de1fff37 1002 * wb setpoint
6c14ae1e 1003 *
de1fff37 1004 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1005 *
de1fff37 1006 * x_intercept - wb_dirty
6c14ae1e 1007 * := --------------------------
de1fff37 1008 * x_intercept - wb_setpoint
6c14ae1e 1009 *
de1fff37 1010 * The main wb control line is a linear function that subjects to
6c14ae1e 1011 *
de1fff37
TH
1012 * (1) f(wb_setpoint) = 1.0
1013 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1014 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1015 *
de1fff37 1016 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1017 * regularly within range
de1fff37 1018 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1019 * for various filesystems, where (2) can yield in a reasonable 12.5%
1020 * fluctuation range for pos_ratio.
1021 *
de1fff37 1022 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1023 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1024 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1025 */
2bc00aef
TH
1026 if (unlikely(wb_thresh > dtc->thresh))
1027 wb_thresh = dtc->thresh;
aed21ad2 1028 /*
de1fff37 1029 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1030 * device is slow, but that it has remained inactive for long time.
1031 * Honour such devices a reasonable good (hopefully IO efficient)
1032 * threshold, so that the occasional writes won't be blocked and active
1033 * writes can rampup the threshold quickly.
1034 */
2bc00aef 1035 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1036 /*
de1fff37
TH
1037 * scale global setpoint to wb's:
1038 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1039 */
e4bc13ad 1040 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1041 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1042 /*
de1fff37
TH
1043 * Use span=(8*write_bw) in single wb case as indicated by
1044 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1045 *
de1fff37
TH
1046 * wb_thresh thresh - wb_thresh
1047 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1048 * thresh thresh
6c14ae1e 1049 */
2bc00aef 1050 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1051 x_intercept = wb_setpoint + span;
6c14ae1e 1052
2bc00aef
TH
1053 if (dtc->wb_dirty < x_intercept - span / 4) {
1054 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1055 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1056 } else
1057 pos_ratio /= 4;
1058
8927f66c 1059 /*
de1fff37 1060 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1061 * It may push the desired control point of global dirty pages higher
1062 * than setpoint.
1063 */
de1fff37 1064 x_intercept = wb_thresh / 2;
2bc00aef
TH
1065 if (dtc->wb_dirty < x_intercept) {
1066 if (dtc->wb_dirty > x_intercept / 8)
1067 pos_ratio = div_u64(pos_ratio * x_intercept,
1068 dtc->wb_dirty);
50657fc4 1069 else
8927f66c
WF
1070 pos_ratio *= 8;
1071 }
1072
daddfa3c 1073 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1074}
1075
a88a341a
TH
1076static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1077 unsigned long elapsed,
1078 unsigned long written)
e98be2d5
WF
1079{
1080 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1081 unsigned long avg = wb->avg_write_bandwidth;
1082 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1083 u64 bw;
1084
1085 /*
1086 * bw = written * HZ / elapsed
1087 *
1088 * bw * elapsed + write_bandwidth * (period - elapsed)
1089 * write_bandwidth = ---------------------------------------------------
1090 * period
c72efb65
TH
1091 *
1092 * @written may have decreased due to account_page_redirty().
1093 * Avoid underflowing @bw calculation.
e98be2d5 1094 */
a88a341a 1095 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1096 bw *= HZ;
1097 if (unlikely(elapsed > period)) {
0a5d1a7f 1098 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1099 avg = bw;
1100 goto out;
1101 }
a88a341a 1102 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1103 bw >>= ilog2(period);
1104
1105 /*
1106 * one more level of smoothing, for filtering out sudden spikes
1107 */
1108 if (avg > old && old >= (unsigned long)bw)
1109 avg -= (avg - old) >> 3;
1110
1111 if (avg < old && old <= (unsigned long)bw)
1112 avg += (old - avg) >> 3;
1113
1114out:
95a46c65
TH
1115 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1116 avg = max(avg, 1LU);
1117 if (wb_has_dirty_io(wb)) {
1118 long delta = avg - wb->avg_write_bandwidth;
1119 WARN_ON_ONCE(atomic_long_add_return(delta,
1120 &wb->bdi->tot_write_bandwidth) <= 0);
1121 }
a88a341a
TH
1122 wb->write_bandwidth = bw;
1123 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1124}
1125
2bc00aef 1126static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1127{
e9f07dfd 1128 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1129 unsigned long thresh = dtc->thresh;
dcc25ae7 1130 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1131
1132 /*
1133 * Follow up in one step.
1134 */
1135 if (limit < thresh) {
1136 limit = thresh;
1137 goto update;
1138 }
1139
1140 /*
1141 * Follow down slowly. Use the higher one as the target, because thresh
1142 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1143 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1144 */
2bc00aef 1145 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1146 if (limit > thresh) {
1147 limit -= (limit - thresh) >> 5;
1148 goto update;
1149 }
1150 return;
1151update:
dcc25ae7 1152 dom->dirty_limit = limit;
c42843f2
WF
1153}
1154
e9f07dfd 1155static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1156 unsigned long now)
1157{
e9f07dfd 1158 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1159
1160 /*
1161 * check locklessly first to optimize away locking for the most time
1162 */
dcc25ae7 1163 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1164 return;
1165
dcc25ae7
TH
1166 spin_lock(&dom->lock);
1167 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1168 update_dirty_limit(dtc);
dcc25ae7 1169 dom->dirty_limit_tstamp = now;
c42843f2 1170 }
dcc25ae7 1171 spin_unlock(&dom->lock);
c42843f2
WF
1172}
1173
be3ffa27 1174/*
de1fff37 1175 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1176 *
de1fff37 1177 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1178 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1179 */
2bc00aef 1180static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1181 unsigned long dirtied,
1182 unsigned long elapsed)
be3ffa27 1183{
2bc00aef
TH
1184 struct bdi_writeback *wb = dtc->wb;
1185 unsigned long dirty = dtc->dirty;
1186 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1187 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1188 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1189 unsigned long write_bw = wb->avg_write_bandwidth;
1190 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1191 unsigned long dirty_rate;
1192 unsigned long task_ratelimit;
1193 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1194 unsigned long step;
1195 unsigned long x;
d59b1087 1196 unsigned long shift;
be3ffa27
WF
1197
1198 /*
1199 * The dirty rate will match the writeout rate in long term, except
1200 * when dirty pages are truncated by userspace or re-dirtied by FS.
1201 */
a88a341a 1202 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1203
be3ffa27
WF
1204 /*
1205 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1206 */
1207 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1208 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1209 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1210
1211 /*
1212 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1213 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1214 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1215 * formula will yield the balanced rate limit (write_bw / N).
1216 *
1217 * Note that the expanded form is not a pure rate feedback:
1218 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1219 * but also takes pos_ratio into account:
1220 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1221 *
1222 * (1) is not realistic because pos_ratio also takes part in balancing
1223 * the dirty rate. Consider the state
1224 * pos_ratio = 0.5 (3)
1225 * rate = 2 * (write_bw / N) (4)
1226 * If (1) is used, it will stuck in that state! Because each dd will
1227 * be throttled at
1228 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1229 * yielding
1230 * dirty_rate = N * task_ratelimit = write_bw (6)
1231 * put (6) into (1) we get
1232 * rate_(i+1) = rate_(i) (7)
1233 *
1234 * So we end up using (2) to always keep
1235 * rate_(i+1) ~= (write_bw / N) (8)
1236 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1237 * pos_ratio is able to drive itself to 1.0, which is not only where
1238 * the dirty count meet the setpoint, but also where the slope of
1239 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1240 */
1241 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1242 dirty_rate | 1);
bdaac490
WF
1243 /*
1244 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1245 */
1246 if (unlikely(balanced_dirty_ratelimit > write_bw))
1247 balanced_dirty_ratelimit = write_bw;
be3ffa27 1248
7381131c
WF
1249 /*
1250 * We could safely do this and return immediately:
1251 *
de1fff37 1252 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1253 *
1254 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1255 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1256 * limit the step size.
1257 *
1258 * The below code essentially only uses the relative value of
1259 *
1260 * task_ratelimit - dirty_ratelimit
1261 * = (pos_ratio - 1) * dirty_ratelimit
1262 *
1263 * which reflects the direction and size of dirty position error.
1264 */
1265
1266 /*
1267 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1268 * task_ratelimit is on the same side of dirty_ratelimit, too.
1269 * For example, when
1270 * - dirty_ratelimit > balanced_dirty_ratelimit
1271 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1272 * lowering dirty_ratelimit will help meet both the position and rate
1273 * control targets. Otherwise, don't update dirty_ratelimit if it will
1274 * only help meet the rate target. After all, what the users ultimately
1275 * feel and care are stable dirty rate and small position error.
1276 *
1277 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1278 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1279 * keeps jumping around randomly and can even leap far away at times
1280 * due to the small 200ms estimation period of dirty_rate (we want to
1281 * keep that period small to reduce time lags).
1282 */
1283 step = 0;
5a537485
MP
1284
1285 /*
de1fff37 1286 * For strictlimit case, calculations above were based on wb counters
a88a341a 1287 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1288 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1289 * Hence, to calculate "step" properly, we have to use wb_dirty as
1290 * "dirty" and wb_setpoint as "setpoint".
5a537485 1291 *
de1fff37
TH
1292 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1293 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1294 * of backing device.
5a537485 1295 */
a88a341a 1296 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1297 dirty = dtc->wb_dirty;
1298 if (dtc->wb_dirty < 8)
1299 setpoint = dtc->wb_dirty + 1;
5a537485 1300 else
970fb01a 1301 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1302 }
1303
7381131c 1304 if (dirty < setpoint) {
a88a341a 1305 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1306 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1307 if (dirty_ratelimit < x)
1308 step = x - dirty_ratelimit;
1309 } else {
a88a341a 1310 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1311 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1312 if (dirty_ratelimit > x)
1313 step = dirty_ratelimit - x;
1314 }
1315
1316 /*
1317 * Don't pursue 100% rate matching. It's impossible since the balanced
1318 * rate itself is constantly fluctuating. So decrease the track speed
1319 * when it gets close to the target. Helps eliminate pointless tremors.
1320 */
d59b1087
AR
1321 shift = dirty_ratelimit / (2 * step + 1);
1322 if (shift < BITS_PER_LONG)
1323 step = DIV_ROUND_UP(step >> shift, 8);
1324 else
1325 step = 0;
7381131c
WF
1326
1327 if (dirty_ratelimit < balanced_dirty_ratelimit)
1328 dirty_ratelimit += step;
1329 else
1330 dirty_ratelimit -= step;
1331
a88a341a
TH
1332 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1333 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1334
5634cc2a 1335 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1336}
1337
c2aa723a
TH
1338static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1339 struct dirty_throttle_control *mdtc,
8a731799
TH
1340 unsigned long start_time,
1341 bool update_ratelimit)
e98be2d5 1342{
c2aa723a 1343 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1344 unsigned long now = jiffies;
a88a341a 1345 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1346 unsigned long dirtied;
e98be2d5
WF
1347 unsigned long written;
1348
8a731799
TH
1349 lockdep_assert_held(&wb->list_lock);
1350
e98be2d5
WF
1351 /*
1352 * rate-limit, only update once every 200ms.
1353 */
1354 if (elapsed < BANDWIDTH_INTERVAL)
1355 return;
1356
a88a341a
TH
1357 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1358 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1359
1360 /*
1361 * Skip quiet periods when disk bandwidth is under-utilized.
1362 * (at least 1s idle time between two flusher runs)
1363 */
a88a341a 1364 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1365 goto snapshot;
1366
8a731799 1367 if (update_ratelimit) {
c2aa723a
TH
1368 domain_update_bandwidth(gdtc, now);
1369 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1370
1371 /*
1372 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1373 * compiler has no way to figure that out. Help it.
1374 */
1375 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1376 domain_update_bandwidth(mdtc, now);
1377 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1378 }
be3ffa27 1379 }
a88a341a 1380 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1381
1382snapshot:
a88a341a
TH
1383 wb->dirtied_stamp = dirtied;
1384 wb->written_stamp = written;
1385 wb->bw_time_stamp = now;
e98be2d5
WF
1386}
1387
8a731799 1388void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1389{
2bc00aef
TH
1390 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1391
c2aa723a 1392 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1393}
1394
9d823e8f 1395/*
d0e1d66b 1396 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1397 * will look to see if it needs to start dirty throttling.
1398 *
1399 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1400 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1401 * (the number of pages we may dirty without exceeding the dirty limits).
1402 */
1403static unsigned long dirty_poll_interval(unsigned long dirty,
1404 unsigned long thresh)
1405{
1406 if (thresh > dirty)
1407 return 1UL << (ilog2(thresh - dirty) >> 1);
1408
1409 return 1;
1410}
1411
a88a341a 1412static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1413 unsigned long wb_dirty)
c8462cc9 1414{
a88a341a 1415 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1416 unsigned long t;
c8462cc9 1417
7ccb9ad5
WF
1418 /*
1419 * Limit pause time for small memory systems. If sleeping for too long
1420 * time, a small pool of dirty/writeback pages may go empty and disk go
1421 * idle.
1422 *
1423 * 8 serves as the safety ratio.
1424 */
de1fff37 1425 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1426 t++;
1427
e3b6c655 1428 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1429}
1430
a88a341a
TH
1431static long wb_min_pause(struct bdi_writeback *wb,
1432 long max_pause,
1433 unsigned long task_ratelimit,
1434 unsigned long dirty_ratelimit,
1435 int *nr_dirtied_pause)
c8462cc9 1436{
a88a341a
TH
1437 long hi = ilog2(wb->avg_write_bandwidth);
1438 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1439 long t; /* target pause */
1440 long pause; /* estimated next pause */
1441 int pages; /* target nr_dirtied_pause */
c8462cc9 1442
7ccb9ad5
WF
1443 /* target for 10ms pause on 1-dd case */
1444 t = max(1, HZ / 100);
c8462cc9
WF
1445
1446 /*
1447 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1448 * overheads.
1449 *
7ccb9ad5 1450 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1451 */
1452 if (hi > lo)
7ccb9ad5 1453 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1454
1455 /*
7ccb9ad5
WF
1456 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1457 * on the much more stable dirty_ratelimit. However the next pause time
1458 * will be computed based on task_ratelimit and the two rate limits may
1459 * depart considerably at some time. Especially if task_ratelimit goes
1460 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1461 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1462 * result task_ratelimit won't be executed faithfully, which could
1463 * eventually bring down dirty_ratelimit.
c8462cc9 1464 *
7ccb9ad5
WF
1465 * We apply two rules to fix it up:
1466 * 1) try to estimate the next pause time and if necessary, use a lower
1467 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1468 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1469 * 2) limit the target pause time to max_pause/2, so that the normal
1470 * small fluctuations of task_ratelimit won't trigger rule (1) and
1471 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1472 */
7ccb9ad5
WF
1473 t = min(t, 1 + max_pause / 2);
1474 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1475
1476 /*
5b9b3574
WF
1477 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1478 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1479 * When the 16 consecutive reads are often interrupted by some dirty
1480 * throttling pause during the async writes, cfq will go into idles
1481 * (deadline is fine). So push nr_dirtied_pause as high as possible
1482 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1483 */
5b9b3574
WF
1484 if (pages < DIRTY_POLL_THRESH) {
1485 t = max_pause;
1486 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1487 if (pages > DIRTY_POLL_THRESH) {
1488 pages = DIRTY_POLL_THRESH;
1489 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1490 }
1491 }
1492
7ccb9ad5
WF
1493 pause = HZ * pages / (task_ratelimit + 1);
1494 if (pause > max_pause) {
1495 t = max_pause;
1496 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1497 }
c8462cc9 1498
7ccb9ad5 1499 *nr_dirtied_pause = pages;
c8462cc9 1500 /*
7ccb9ad5 1501 * The minimal pause time will normally be half the target pause time.
c8462cc9 1502 */
5b9b3574 1503 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1504}
1505
970fb01a 1506static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1507{
2bc00aef 1508 struct bdi_writeback *wb = dtc->wb;
93f78d88 1509 unsigned long wb_reclaimable;
5a537485
MP
1510
1511 /*
de1fff37 1512 * wb_thresh is not treated as some limiting factor as
5a537485 1513 * dirty_thresh, due to reasons
de1fff37 1514 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1515 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1516 * go into state (wb_dirty >> wb_thresh) either because
1517 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1518 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1519 * dirtiers for 100 seconds until wb_dirty drops under
1520 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1521 * wb_position_ratio() will let the dirtier task progress
de1fff37 1522 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1523 */
b1cbc6d4 1524 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1525 dtc->wb_bg_thresh = dtc->thresh ?
1526 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1527
1528 /*
1529 * In order to avoid the stacked BDI deadlock we need
1530 * to ensure we accurately count the 'dirty' pages when
1531 * the threshold is low.
1532 *
1533 * Otherwise it would be possible to get thresh+n pages
1534 * reported dirty, even though there are thresh-m pages
1535 * actually dirty; with m+n sitting in the percpu
1536 * deltas.
1537 */
2bce774e 1538 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1539 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1540 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1541 } else {
93f78d88 1542 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1543 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1544 }
1545}
1546
1da177e4
LT
1547/*
1548 * balance_dirty_pages() must be called by processes which are generating dirty
1549 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1550 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1551 * If we're over `background_thresh' then the writeback threads are woken to
1552 * perform some writeout.
1da177e4 1553 */
4c578dce 1554static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1555 unsigned long pages_dirtied)
1da177e4 1556{
2bc00aef 1557 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1558 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1559 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1560 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1561 &mdtc_stor : NULL;
1562 struct dirty_throttle_control *sdtc;
8d92890b 1563 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1564 long period;
7ccb9ad5
WF
1565 long pause;
1566 long max_pause;
1567 long min_pause;
1568 int nr_dirtied_pause;
e50e3720 1569 bool dirty_exceeded = false;
143dfe86 1570 unsigned long task_ratelimit;
7ccb9ad5 1571 unsigned long dirty_ratelimit;
dfb8ae56 1572 struct backing_dev_info *bdi = wb->bdi;
5a537485 1573 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1574 unsigned long start_time = jiffies;
1da177e4
LT
1575
1576 for (;;) {
83712358 1577 unsigned long now = jiffies;
2bc00aef 1578 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1579 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1580 unsigned long m_thresh = 0;
1581 unsigned long m_bg_thresh = 0;
83712358 1582
8d92890b 1583 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1584 gdtc->avail = global_dirtyable_memory();
11fb9989 1585 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1586
9fc3a43e 1587 domain_dirty_limits(gdtc);
16c4042f 1588
5a537485 1589 if (unlikely(strictlimit)) {
970fb01a 1590 wb_dirty_limits(gdtc);
5a537485 1591
2bc00aef
TH
1592 dirty = gdtc->wb_dirty;
1593 thresh = gdtc->wb_thresh;
970fb01a 1594 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1595 } else {
2bc00aef
TH
1596 dirty = gdtc->dirty;
1597 thresh = gdtc->thresh;
1598 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1599 }
1600
c2aa723a 1601 if (mdtc) {
c5edf9cd 1602 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1603
1604 /*
1605 * If @wb belongs to !root memcg, repeat the same
1606 * basic calculations for the memcg domain.
1607 */
c5edf9cd
TH
1608 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1609 &mdtc->dirty, &writeback);
c2aa723a 1610 mdtc->dirty += writeback;
c5edf9cd 1611 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1612
1613 domain_dirty_limits(mdtc);
1614
1615 if (unlikely(strictlimit)) {
1616 wb_dirty_limits(mdtc);
1617 m_dirty = mdtc->wb_dirty;
1618 m_thresh = mdtc->wb_thresh;
1619 m_bg_thresh = mdtc->wb_bg_thresh;
1620 } else {
1621 m_dirty = mdtc->dirty;
1622 m_thresh = mdtc->thresh;
1623 m_bg_thresh = mdtc->bg_thresh;
1624 }
5a537485
MP
1625 }
1626
16c4042f
WF
1627 /*
1628 * Throttle it only when the background writeback cannot
1629 * catch-up. This avoids (excessively) small writeouts
de1fff37 1630 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1631 *
de1fff37
TH
1632 * In strictlimit case make decision based on the wb counters
1633 * and limits. Small writeouts when the wb limits are ramping
5a537485 1634 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1635 *
1636 * If memcg domain is in effect, @dirty should be under
1637 * both global and memcg freerun ceilings.
16c4042f 1638 */
c2aa723a
TH
1639 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1640 (!mdtc ||
1641 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1642 unsigned long intv;
1643 unsigned long m_intv;
1644
1645free_running:
1646 intv = dirty_poll_interval(dirty, thresh);
1647 m_intv = ULONG_MAX;
c2aa723a 1648
83712358
WF
1649 current->dirty_paused_when = now;
1650 current->nr_dirtied = 0;
c2aa723a
TH
1651 if (mdtc)
1652 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1653 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1654 break;
83712358 1655 }
16c4042f 1656
bc05873d 1657 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1658 wb_start_background_writeback(wb);
143dfe86 1659
97b27821
TH
1660 mem_cgroup_flush_foreign(wb);
1661
c2aa723a
TH
1662 /*
1663 * Calculate global domain's pos_ratio and select the
1664 * global dtc by default.
1665 */
a37b0715 1666 if (!strictlimit) {
970fb01a 1667 wb_dirty_limits(gdtc);
5fce25a9 1668
a37b0715
N
1669 if ((current->flags & PF_LOCAL_THROTTLE) &&
1670 gdtc->wb_dirty <
1671 dirty_freerun_ceiling(gdtc->wb_thresh,
1672 gdtc->wb_bg_thresh))
1673 /*
1674 * LOCAL_THROTTLE tasks must not be throttled
1675 * when below the per-wb freerun ceiling.
1676 */
1677 goto free_running;
1678 }
1679
2bc00aef
TH
1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1682
1683 wb_position_ratio(gdtc);
c2aa723a
TH
1684 sdtc = gdtc;
1685
1686 if (mdtc) {
1687 /*
1688 * If memcg domain is in effect, calculate its
1689 * pos_ratio. @wb should satisfy constraints from
1690 * both global and memcg domains. Choose the one
1691 * w/ lower pos_ratio.
1692 */
a37b0715 1693 if (!strictlimit) {
c2aa723a
TH
1694 wb_dirty_limits(mdtc);
1695
a37b0715
N
1696 if ((current->flags & PF_LOCAL_THROTTLE) &&
1697 mdtc->wb_dirty <
1698 dirty_freerun_ceiling(mdtc->wb_thresh,
1699 mdtc->wb_bg_thresh))
1700 /*
1701 * LOCAL_THROTTLE tasks must not be
1702 * throttled when below the per-wb
1703 * freerun ceiling.
1704 */
1705 goto free_running;
1706 }
c2aa723a
TH
1707 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1708 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1709
1710 wb_position_ratio(mdtc);
1711 if (mdtc->pos_ratio < gdtc->pos_ratio)
1712 sdtc = mdtc;
1713 }
daddfa3c 1714
a88a341a
TH
1715 if (dirty_exceeded && !wb->dirty_exceeded)
1716 wb->dirty_exceeded = 1;
1da177e4 1717
8a731799
TH
1718 if (time_is_before_jiffies(wb->bw_time_stamp +
1719 BANDWIDTH_INTERVAL)) {
1720 spin_lock(&wb->list_lock);
c2aa723a 1721 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1722 spin_unlock(&wb->list_lock);
1723 }
e98be2d5 1724
c2aa723a 1725 /* throttle according to the chosen dtc */
a88a341a 1726 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1727 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1728 RATELIMIT_CALC_SHIFT;
c2aa723a 1729 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1730 min_pause = wb_min_pause(wb, max_pause,
1731 task_ratelimit, dirty_ratelimit,
1732 &nr_dirtied_pause);
7ccb9ad5 1733
3a73dbbc 1734 if (unlikely(task_ratelimit == 0)) {
83712358 1735 period = max_pause;
c8462cc9 1736 pause = max_pause;
143dfe86 1737 goto pause;
04fbfdc1 1738 }
83712358
WF
1739 period = HZ * pages_dirtied / task_ratelimit;
1740 pause = period;
1741 if (current->dirty_paused_when)
1742 pause -= now - current->dirty_paused_when;
1743 /*
1744 * For less than 1s think time (ext3/4 may block the dirtier
1745 * for up to 800ms from time to time on 1-HDD; so does xfs,
1746 * however at much less frequency), try to compensate it in
1747 * future periods by updating the virtual time; otherwise just
1748 * do a reset, as it may be a light dirtier.
1749 */
7ccb9ad5 1750 if (pause < min_pause) {
5634cc2a 1751 trace_balance_dirty_pages(wb,
c2aa723a
TH
1752 sdtc->thresh,
1753 sdtc->bg_thresh,
1754 sdtc->dirty,
1755 sdtc->wb_thresh,
1756 sdtc->wb_dirty,
ece13ac3
WF
1757 dirty_ratelimit,
1758 task_ratelimit,
1759 pages_dirtied,
83712358 1760 period,
7ccb9ad5 1761 min(pause, 0L),
ece13ac3 1762 start_time);
83712358
WF
1763 if (pause < -HZ) {
1764 current->dirty_paused_when = now;
1765 current->nr_dirtied = 0;
1766 } else if (period) {
1767 current->dirty_paused_when += period;
1768 current->nr_dirtied = 0;
7ccb9ad5
WF
1769 } else if (current->nr_dirtied_pause <= pages_dirtied)
1770 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1771 break;
04fbfdc1 1772 }
7ccb9ad5
WF
1773 if (unlikely(pause > max_pause)) {
1774 /* for occasional dropped task_ratelimit */
1775 now += min(pause - max_pause, max_pause);
1776 pause = max_pause;
1777 }
143dfe86
WF
1778
1779pause:
5634cc2a 1780 trace_balance_dirty_pages(wb,
c2aa723a
TH
1781 sdtc->thresh,
1782 sdtc->bg_thresh,
1783 sdtc->dirty,
1784 sdtc->wb_thresh,
1785 sdtc->wb_dirty,
ece13ac3
WF
1786 dirty_ratelimit,
1787 task_ratelimit,
1788 pages_dirtied,
83712358 1789 period,
ece13ac3
WF
1790 pause,
1791 start_time);
499d05ec 1792 __set_current_state(TASK_KILLABLE);
b57d74af 1793 wb->dirty_sleep = now;
d25105e8 1794 io_schedule_timeout(pause);
87c6a9b2 1795
83712358
WF
1796 current->dirty_paused_when = now + pause;
1797 current->nr_dirtied = 0;
7ccb9ad5 1798 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1799
ffd1f609 1800 /*
2bc00aef
TH
1801 * This is typically equal to (dirty < thresh) and can also
1802 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1803 */
1df64719 1804 if (task_ratelimit)
ffd1f609 1805 break;
499d05ec 1806
c5c6343c 1807 /*
f0953a1b 1808 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1809 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1810 * to go through, so that tasks on them still remain responsive.
1811 *
3f8b6fb7 1812 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1813 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1814 * more page. However wb_dirty has accounting errors. So use
93f78d88 1815 * the larger and more IO friendly wb_stat_error.
c5c6343c 1816 */
2bce774e 1817 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1818 break;
1819
499d05ec
JK
1820 if (fatal_signal_pending(current))
1821 break;
1da177e4
LT
1822 }
1823
a88a341a
TH
1824 if (!dirty_exceeded && wb->dirty_exceeded)
1825 wb->dirty_exceeded = 0;
1da177e4 1826
bc05873d 1827 if (writeback_in_progress(wb))
5b0830cb 1828 return;
1da177e4
LT
1829
1830 /*
1831 * In laptop mode, we wait until hitting the higher threshold before
1832 * starting background writeout, and then write out all the way down
1833 * to the lower threshold. So slow writers cause minimal disk activity.
1834 *
1835 * In normal mode, we start background writeout at the lower
1836 * background_thresh, to keep the amount of dirty memory low.
1837 */
143dfe86
WF
1838 if (laptop_mode)
1839 return;
1840
2bc00aef 1841 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1842 wb_start_background_writeback(wb);
1da177e4
LT
1843}
1844
9d823e8f 1845static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1846
54848d73
WF
1847/*
1848 * Normal tasks are throttled by
1849 * loop {
1850 * dirty tsk->nr_dirtied_pause pages;
1851 * take a snap in balance_dirty_pages();
1852 * }
1853 * However there is a worst case. If every task exit immediately when dirtied
1854 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1855 * called to throttle the page dirties. The solution is to save the not yet
1856 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1857 * randomly into the running tasks. This works well for the above worst case,
1858 * as the new task will pick up and accumulate the old task's leaked dirty
1859 * count and eventually get throttled.
1860 */
1861DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1862
1da177e4 1863/**
d0e1d66b 1864 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1865 * @mapping: address_space which was dirtied
1da177e4
LT
1866 *
1867 * Processes which are dirtying memory should call in here once for each page
1868 * which was newly dirtied. The function will periodically check the system's
1869 * dirty state and will initiate writeback if needed.
1870 *
5defd497
KW
1871 * Once we're over the dirty memory limit we decrease the ratelimiting
1872 * by a lot, to prevent individual processes from overshooting the limit
1873 * by (ratelimit_pages) each.
1da177e4 1874 */
d0e1d66b 1875void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1876{
dfb8ae56
TH
1877 struct inode *inode = mapping->host;
1878 struct backing_dev_info *bdi = inode_to_bdi(inode);
1879 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1880 int ratelimit;
1881 int *p;
1da177e4 1882
f56753ac 1883 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
36715cef
WF
1884 return;
1885
dfb8ae56
TH
1886 if (inode_cgwb_enabled(inode))
1887 wb = wb_get_create_current(bdi, GFP_KERNEL);
1888 if (!wb)
1889 wb = &bdi->wb;
1890
9d823e8f 1891 ratelimit = current->nr_dirtied_pause;
a88a341a 1892 if (wb->dirty_exceeded)
9d823e8f
WF
1893 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1894
9d823e8f 1895 preempt_disable();
1da177e4 1896 /*
9d823e8f
WF
1897 * This prevents one CPU to accumulate too many dirtied pages without
1898 * calling into balance_dirty_pages(), which can happen when there are
1899 * 1000+ tasks, all of them start dirtying pages at exactly the same
1900 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1901 */
7c8e0181 1902 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1903 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1904 *p = 0;
d3bc1fef
WF
1905 else if (unlikely(*p >= ratelimit_pages)) {
1906 *p = 0;
1907 ratelimit = 0;
1da177e4 1908 }
54848d73
WF
1909 /*
1910 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1911 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1912 * the dirty throttling and livelock other long-run dirtiers.
1913 */
7c8e0181 1914 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1915 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1916 unsigned long nr_pages_dirtied;
54848d73
WF
1917 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1918 *p -= nr_pages_dirtied;
1919 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1920 }
fa5a734e 1921 preempt_enable();
9d823e8f
WF
1922
1923 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1924 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1925
1926 wb_put(wb);
1da177e4 1927}
d0e1d66b 1928EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1929
aa661bbe
TH
1930/**
1931 * wb_over_bg_thresh - does @wb need to be written back?
1932 * @wb: bdi_writeback of interest
1933 *
1934 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
1935 * clean enough.
1936 *
1937 * Return: %true if writeback should continue.
aa661bbe
TH
1938 */
1939bool wb_over_bg_thresh(struct bdi_writeback *wb)
1940{
947e9762 1941 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1942 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1943 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1944 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1945 &mdtc_stor : NULL;
ab19939a
CW
1946 unsigned long reclaimable;
1947 unsigned long thresh;
aa661bbe 1948
947e9762
TH
1949 /*
1950 * Similar to balance_dirty_pages() but ignores pages being written
1951 * as we're trying to decide whether to put more under writeback.
1952 */
1953 gdtc->avail = global_dirtyable_memory();
8d92890b 1954 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 1955 domain_dirty_limits(gdtc);
aa661bbe 1956
947e9762 1957 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1958 return true;
1959
ab19939a
CW
1960 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1961 if (thresh < 2 * wb_stat_error())
1962 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1963 else
1964 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1965
1966 if (reclaimable > thresh)
aa661bbe
TH
1967 return true;
1968
c2aa723a 1969 if (mdtc) {
c5edf9cd 1970 unsigned long filepages, headroom, writeback;
c2aa723a 1971
c5edf9cd
TH
1972 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1973 &writeback);
1974 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1975 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1976
1977 if (mdtc->dirty > mdtc->bg_thresh)
1978 return true;
1979
ab19939a
CW
1980 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1981 if (thresh < 2 * wb_stat_error())
1982 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1983 else
1984 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1985
1986 if (reclaimable > thresh)
c2aa723a
TH
1987 return true;
1988 }
1989
aa661bbe
TH
1990 return false;
1991}
1992
1da177e4
LT
1993/*
1994 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1995 */
cccad5b9 1996int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 1997 void *buffer, size_t *length, loff_t *ppos)
1da177e4 1998{
94af5846
YS
1999 unsigned int old_interval = dirty_writeback_interval;
2000 int ret;
2001
2002 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
2003
2004 /*
2005 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2006 * and a different non-zero value will wakeup the writeback threads.
2007 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2008 * iterate over all bdis and wbs.
2009 * The reason we do this is to make the change take effect immediately.
2010 */
2011 if (!ret && write && dirty_writeback_interval &&
2012 dirty_writeback_interval != old_interval)
94af5846
YS
2013 wakeup_flusher_threads(WB_REASON_PERIODIC);
2014
2015 return ret;
1da177e4
LT
2016}
2017
c2c4986e 2018#ifdef CONFIG_BLOCK
bca237a5 2019void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2020{
bca237a5
KC
2021 struct backing_dev_info *backing_dev_info =
2022 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2023
bca237a5 2024 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2025}
2026
2027/*
2028 * We've spun up the disk and we're in laptop mode: schedule writeback
2029 * of all dirty data a few seconds from now. If the flush is already scheduled
2030 * then push it back - the user is still using the disk.
2031 */
31373d09 2032void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2033{
31373d09 2034 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2035}
2036
2037/*
2038 * We're in laptop mode and we've just synced. The sync's writes will have
2039 * caused another writeback to be scheduled by laptop_io_completion.
2040 * Nothing needs to be written back anymore, so we unschedule the writeback.
2041 */
2042void laptop_sync_completion(void)
2043{
31373d09
MG
2044 struct backing_dev_info *bdi;
2045
2046 rcu_read_lock();
2047
2048 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2049 del_timer(&bdi->laptop_mode_wb_timer);
2050
2051 rcu_read_unlock();
1da177e4 2052}
c2c4986e 2053#endif
1da177e4
LT
2054
2055/*
2056 * If ratelimit_pages is too high then we can get into dirty-data overload
2057 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2058 *
2059 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2060 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2061 * thresholds.
1da177e4
LT
2062 */
2063
2d1d43f6 2064void writeback_set_ratelimit(void)
1da177e4 2065{
dcc25ae7 2066 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2067 unsigned long background_thresh;
2068 unsigned long dirty_thresh;
dcc25ae7 2069
9d823e8f 2070 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2071 dom->dirty_limit = dirty_thresh;
9d823e8f 2072 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2073 if (ratelimit_pages < 16)
2074 ratelimit_pages = 16;
1da177e4
LT
2075}
2076
1d7ac6ae 2077static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2078{
1d7ac6ae
SAS
2079 writeback_set_ratelimit();
2080 return 0;
1da177e4
LT
2081}
2082
1da177e4 2083/*
dc6e29da
LT
2084 * Called early on to tune the page writeback dirty limits.
2085 *
2086 * We used to scale dirty pages according to how total memory
0a18e607 2087 * related to pages that could be allocated for buffers.
dc6e29da
LT
2088 *
2089 * However, that was when we used "dirty_ratio" to scale with
2090 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2091 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2092 * get into the old insane situation any more where we had
2093 * large amounts of dirty pages compared to a small amount of
2094 * non-HIGHMEM memory.
2095 *
2096 * But we might still want to scale the dirty_ratio by how
2097 * much memory the box has..
1da177e4
LT
2098 */
2099void __init page_writeback_init(void)
2100{
a50fcb51
RV
2101 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2102
1d7ac6ae
SAS
2103 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2104 page_writeback_cpu_online, NULL);
2105 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2106 page_writeback_cpu_online);
1da177e4
LT
2107}
2108
f446daae
JK
2109/**
2110 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2111 * @mapping: address space structure to write
2112 * @start: starting page index
2113 * @end: ending page index (inclusive)
2114 *
2115 * This function scans the page range from @start to @end (inclusive) and tags
2116 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2117 * that write_cache_pages (or whoever calls this function) will then use
2118 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2119 * used to avoid livelocking of writeback by a process steadily creating new
2120 * dirty pages in the file (thus it is important for this function to be quick
2121 * so that it can tag pages faster than a dirtying process can create them).
2122 */
f446daae
JK
2123void tag_pages_for_writeback(struct address_space *mapping,
2124 pgoff_t start, pgoff_t end)
2125{
ff9c745b
MW
2126 XA_STATE(xas, &mapping->i_pages, start);
2127 unsigned int tagged = 0;
2128 void *page;
268f42de 2129
ff9c745b
MW
2130 xas_lock_irq(&xas);
2131 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2132 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2133 if (++tagged % XA_CHECK_SCHED)
268f42de 2134 continue;
ff9c745b
MW
2135
2136 xas_pause(&xas);
2137 xas_unlock_irq(&xas);
f446daae 2138 cond_resched();
ff9c745b 2139 xas_lock_irq(&xas);
268f42de 2140 }
ff9c745b 2141 xas_unlock_irq(&xas);
f446daae
JK
2142}
2143EXPORT_SYMBOL(tag_pages_for_writeback);
2144
811d736f 2145/**
0ea97180 2146 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2147 * @mapping: address space structure to write
2148 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2149 * @writepage: function called for each page
2150 * @data: data passed to writepage function
811d736f 2151 *
0ea97180 2152 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2153 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2154 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2155 * and msync() need to guarantee that all the data which was dirty at the time
2156 * the call was made get new I/O started against them. If wbc->sync_mode is
2157 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2158 * existing IO to complete.
f446daae
JK
2159 *
2160 * To avoid livelocks (when other process dirties new pages), we first tag
2161 * pages which should be written back with TOWRITE tag and only then start
2162 * writing them. For data-integrity sync we have to be careful so that we do
2163 * not miss some pages (e.g., because some other process has cleared TOWRITE
2164 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2165 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2166 *
2167 * To avoid deadlocks between range_cyclic writeback and callers that hold
2168 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2169 * we do not loop back to the start of the file. Doing so causes a page
2170 * lock/page writeback access order inversion - we should only ever lock
2171 * multiple pages in ascending page->index order, and looping back to the start
2172 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2173 *
2174 * Return: %0 on success, negative error code otherwise
811d736f 2175 */
0ea97180
MS
2176int write_cache_pages(struct address_space *mapping,
2177 struct writeback_control *wbc, writepage_t writepage,
2178 void *data)
811d736f 2179{
811d736f
DH
2180 int ret = 0;
2181 int done = 0;
3fa750dc 2182 int error;
811d736f
DH
2183 struct pagevec pvec;
2184 int nr_pages;
2185 pgoff_t index;
2186 pgoff_t end; /* Inclusive */
bd19e012 2187 pgoff_t done_index;
811d736f 2188 int range_whole = 0;
ff9c745b 2189 xa_mark_t tag;
811d736f 2190
86679820 2191 pagevec_init(&pvec);
811d736f 2192 if (wbc->range_cyclic) {
28659cc8 2193 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2194 end = -1;
2195 } else {
09cbfeaf
KS
2196 index = wbc->range_start >> PAGE_SHIFT;
2197 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2198 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2199 range_whole = 1;
811d736f 2200 }
cc7b8f62
MFO
2201 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2202 tag_pages_for_writeback(mapping, index, end);
f446daae 2203 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2204 } else {
f446daae 2205 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2206 }
bd19e012 2207 done_index = index;
5a3d5c98
NP
2208 while (!done && (index <= end)) {
2209 int i;
2210
2b9775ae 2211 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2212 tag);
5a3d5c98
NP
2213 if (nr_pages == 0)
2214 break;
811d736f 2215
811d736f
DH
2216 for (i = 0; i < nr_pages; i++) {
2217 struct page *page = pvec.pages[i];
2218
cf15b07c 2219 done_index = page->index;
d5482cdf 2220
811d736f
DH
2221 lock_page(page);
2222
5a3d5c98
NP
2223 /*
2224 * Page truncated or invalidated. We can freely skip it
2225 * then, even for data integrity operations: the page
2226 * has disappeared concurrently, so there could be no
f0953a1b 2227 * real expectation of this data integrity operation
5a3d5c98
NP
2228 * even if there is now a new, dirty page at the same
2229 * pagecache address.
2230 */
811d736f 2231 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2232continue_unlock:
811d736f
DH
2233 unlock_page(page);
2234 continue;
2235 }
2236
515f4a03
NP
2237 if (!PageDirty(page)) {
2238 /* someone wrote it for us */
2239 goto continue_unlock;
2240 }
2241
2242 if (PageWriteback(page)) {
2243 if (wbc->sync_mode != WB_SYNC_NONE)
2244 wait_on_page_writeback(page);
2245 else
2246 goto continue_unlock;
2247 }
811d736f 2248
515f4a03
NP
2249 BUG_ON(PageWriteback(page));
2250 if (!clear_page_dirty_for_io(page))
5a3d5c98 2251 goto continue_unlock;
811d736f 2252
de1414a6 2253 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2254 error = (*writepage)(page, wbc, data);
2255 if (unlikely(error)) {
2256 /*
2257 * Handle errors according to the type of
2258 * writeback. There's no need to continue for
2259 * background writeback. Just push done_index
2260 * past this page so media errors won't choke
2261 * writeout for the entire file. For integrity
2262 * writeback, we must process the entire dirty
2263 * set regardless of errors because the fs may
2264 * still have state to clear for each page. In
2265 * that case we continue processing and return
2266 * the first error.
2267 */
2268 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2269 unlock_page(page);
3fa750dc
BF
2270 error = 0;
2271 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2272 ret = error;
cf15b07c 2273 done_index = page->index + 1;
00266770
NP
2274 done = 1;
2275 break;
2276 }
3fa750dc
BF
2277 if (!ret)
2278 ret = error;
0b564927 2279 }
00266770 2280
546a1924
DC
2281 /*
2282 * We stop writing back only if we are not doing
2283 * integrity sync. In case of integrity sync we have to
2284 * keep going until we have written all the pages
2285 * we tagged for writeback prior to entering this loop.
2286 */
2287 if (--wbc->nr_to_write <= 0 &&
2288 wbc->sync_mode == WB_SYNC_NONE) {
2289 done = 1;
2290 break;
05fe478d 2291 }
811d736f
DH
2292 }
2293 pagevec_release(&pvec);
2294 cond_resched();
2295 }
64081362
DC
2296
2297 /*
2298 * If we hit the last page and there is more work to be done: wrap
2299 * back the index back to the start of the file for the next
2300 * time we are called.
2301 */
2302 if (wbc->range_cyclic && !done)
2303 done_index = 0;
0b564927
DC
2304 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305 mapping->writeback_index = done_index;
06d6cf69 2306
811d736f
DH
2307 return ret;
2308}
0ea97180
MS
2309EXPORT_SYMBOL(write_cache_pages);
2310
2311/*
2312 * Function used by generic_writepages to call the real writepage
2313 * function and set the mapping flags on error
2314 */
2315static int __writepage(struct page *page, struct writeback_control *wbc,
2316 void *data)
2317{
2318 struct address_space *mapping = data;
2319 int ret = mapping->a_ops->writepage(page, wbc);
2320 mapping_set_error(mapping, ret);
2321 return ret;
2322}
2323
2324/**
2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326 * @mapping: address space structure to write
2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328 *
2329 * This is a library function, which implements the writepages()
2330 * address_space_operation.
a862f68a
MR
2331 *
2332 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2333 */
2334int generic_writepages(struct address_space *mapping,
2335 struct writeback_control *wbc)
2336{
9b6096a6
SL
2337 struct blk_plug plug;
2338 int ret;
2339
0ea97180
MS
2340 /* deal with chardevs and other special file */
2341 if (!mapping->a_ops->writepage)
2342 return 0;
2343
9b6096a6
SL
2344 blk_start_plug(&plug);
2345 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2346 blk_finish_plug(&plug);
2347 return ret;
0ea97180 2348}
811d736f
DH
2349
2350EXPORT_SYMBOL(generic_writepages);
2351
1da177e4
LT
2352int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2353{
22905f77
AM
2354 int ret;
2355
1da177e4
LT
2356 if (wbc->nr_to_write <= 0)
2357 return 0;
80a2ea9f
TT
2358 while (1) {
2359 if (mapping->a_ops->writepages)
2360 ret = mapping->a_ops->writepages(mapping, wbc);
2361 else
2362 ret = generic_writepages(mapping, wbc);
2363 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2364 break;
2365 cond_resched();
2366 congestion_wait(BLK_RW_ASYNC, HZ/50);
2367 }
22905f77 2368 return ret;
1da177e4
LT
2369}
2370
2371/**
2b69c828 2372 * write_one_page - write out a single page and wait on I/O
67be2dd1 2373 * @page: the page to write
1da177e4
LT
2374 *
2375 * The page must be locked by the caller and will be unlocked upon return.
2376 *
37e51a76
JL
2377 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2378 * function returns.
a862f68a
MR
2379 *
2380 * Return: %0 on success, negative error code otherwise
1da177e4 2381 */
2b69c828 2382int write_one_page(struct page *page)
1da177e4
LT
2383{
2384 struct address_space *mapping = page->mapping;
2385 int ret = 0;
2386 struct writeback_control wbc = {
2387 .sync_mode = WB_SYNC_ALL,
2388 .nr_to_write = 1,
2389 };
2390
2391 BUG_ON(!PageLocked(page));
2392
2b69c828 2393 wait_on_page_writeback(page);
1da177e4
LT
2394
2395 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2396 get_page(page);
1da177e4 2397 ret = mapping->a_ops->writepage(page, &wbc);
37e51a76 2398 if (ret == 0)
1da177e4 2399 wait_on_page_writeback(page);
09cbfeaf 2400 put_page(page);
1da177e4
LT
2401 } else {
2402 unlock_page(page);
2403 }
37e51a76
JL
2404
2405 if (!ret)
2406 ret = filemap_check_errors(mapping);
1da177e4
LT
2407 return ret;
2408}
2409EXPORT_SYMBOL(write_one_page);
2410
76719325
KC
2411/*
2412 * For address_spaces which do not use buffers nor write back.
2413 */
2414int __set_page_dirty_no_writeback(struct page *page)
2415{
2416 if (!PageDirty(page))
c3f0da63 2417 return !TestSetPageDirty(page);
76719325
KC
2418 return 0;
2419}
b82a96c9 2420EXPORT_SYMBOL(__set_page_dirty_no_writeback);
76719325 2421
e3a7cca1
ES
2422/*
2423 * Helper function for set_page_dirty family.
c4843a75 2424 *
81f8c3a4 2425 * Caller must hold lock_page_memcg().
c4843a75 2426 *
e3a7cca1
ES
2427 * NOTE: This relies on being atomic wrt interrupts.
2428 */
6e1cae88
MWO
2429static void account_page_dirtied(struct page *page,
2430 struct address_space *mapping)
e3a7cca1 2431{
52ebea74
TH
2432 struct inode *inode = mapping->host;
2433
9fb0a7da
TH
2434 trace_writeback_dirty_page(page, mapping);
2435
f56753ac 2436 if (mapping_can_writeback(mapping)) {
52ebea74 2437 struct bdi_writeback *wb;
de1414a6 2438
52ebea74
TH
2439 inode_attach_wb(inode, page);
2440 wb = inode_to_wb(inode);
de1414a6 2441
00f3ca2c 2442 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2443 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2444 __inc_node_page_state(page, NR_DIRTIED);
3e8f399d
NB
2445 inc_wb_stat(wb, WB_RECLAIMABLE);
2446 inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2447 task_io_account_write(PAGE_SIZE);
d3bc1fef 2448 current->nr_dirtied++;
87e37897 2449 __this_cpu_inc(bdp_ratelimits);
97b27821
TH
2450
2451 mem_cgroup_track_foreign_dirty(page, wb);
e3a7cca1
ES
2452 }
2453}
2454
b9ea2515
KK
2455/*
2456 * Helper function for deaccounting dirty page without writeback.
2457 *
81f8c3a4 2458 * Caller must hold lock_page_memcg().
b9ea2515 2459 */
c4843a75 2460void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2461 struct bdi_writeback *wb)
b9ea2515 2462{
f56753ac 2463 if (mapping_can_writeback(mapping)) {
00f3ca2c 2464 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2465 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2466 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2467 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2468 }
2469}
b9ea2515 2470
6e1cae88
MWO
2471/*
2472 * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2473 * dirty.
2474 *
2475 * If warn is true, then emit a warning if the page is not uptodate and has
2476 * not been truncated.
2477 *
2478 * The caller must hold lock_page_memcg().
2479 */
2480void __set_page_dirty(struct page *page, struct address_space *mapping,
2481 int warn)
2482{
2483 unsigned long flags;
2484
2485 xa_lock_irqsave(&mapping->i_pages, flags);
2486 if (page->mapping) { /* Race with truncate? */
2487 WARN_ON_ONCE(warn && !PageUptodate(page));
2488 account_page_dirtied(page, mapping);
2489 __xa_set_mark(&mapping->i_pages, page_index(page),
2490 PAGECACHE_TAG_DIRTY);
2491 }
2492 xa_unlock_irqrestore(&mapping->i_pages, flags);
2493}
2494
1da177e4
LT
2495/*
2496 * For address_spaces which do not use buffers. Just tag the page as dirty in
ff9c745b 2497 * the xarray.
1da177e4
LT
2498 *
2499 * This is also used when a single buffer is being dirtied: we want to set the
2500 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2501 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2502 *
2d6d7f98
JW
2503 * The caller must ensure this doesn't race with truncation. Most will simply
2504 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2505 * the pte lock held, which also locks out truncation.
1da177e4
LT
2506 */
2507int __set_page_dirty_nobuffers(struct page *page)
2508{
62cccb8c 2509 lock_page_memcg(page);
1da177e4
LT
2510 if (!TestSetPageDirty(page)) {
2511 struct address_space *mapping = page_mapping(page);
1da177e4 2512
c4843a75 2513 if (!mapping) {
62cccb8c 2514 unlock_page_memcg(page);
8c08540f 2515 return 1;
c4843a75 2516 }
2f18be36 2517 __set_page_dirty(page, mapping, !PagePrivate(page));
62cccb8c 2518 unlock_page_memcg(page);
c4843a75 2519
8c08540f
AM
2520 if (mapping->host) {
2521 /* !PageAnon && !swapper_space */
2522 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2523 }
4741c9fd 2524 return 1;
1da177e4 2525 }
62cccb8c 2526 unlock_page_memcg(page);
4741c9fd 2527 return 0;
1da177e4
LT
2528}
2529EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2530
2f800fbd
WF
2531/*
2532 * Call this whenever redirtying a page, to de-account the dirty counters
dcfe4df3
GT
2533 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2534 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2f800fbd
WF
2535 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2536 * control.
2537 */
2538void account_page_redirty(struct page *page)
2539{
2540 struct address_space *mapping = page->mapping;
91018134 2541
f56753ac 2542 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2543 struct inode *inode = mapping->host;
2544 struct bdi_writeback *wb;
2e898e4c 2545 struct wb_lock_cookie cookie = {};
91018134 2546
2e898e4c 2547 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2f800fbd 2548 current->nr_dirtied--;
c4a25635 2549 dec_node_page_state(page, NR_DIRTIED);
91018134 2550 dec_wb_stat(wb, WB_DIRTIED);
2e898e4c 2551 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2552 }
2553}
2554EXPORT_SYMBOL(account_page_redirty);
2555
1da177e4
LT
2556/*
2557 * When a writepage implementation decides that it doesn't want to write this
2558 * page for some reason, it should redirty the locked page via
2559 * redirty_page_for_writepage() and it should then unlock the page and return 0
2560 */
2561int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2562{
8d38633c
KK
2563 int ret;
2564
1da177e4 2565 wbc->pages_skipped++;
8d38633c 2566 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2567 account_page_redirty(page);
8d38633c 2568 return ret;
1da177e4
LT
2569}
2570EXPORT_SYMBOL(redirty_page_for_writepage);
2571
2572/*
6746aff7
WF
2573 * Dirty a page.
2574 *
0af57378
CH
2575 * For pages with a mapping this should be done under the page lock for the
2576 * benefit of asynchronous memory errors who prefer a consistent dirty state.
2577 * This rule can be broken in some special cases, but should be better not to.
1da177e4 2578 */
1cf6e7d8 2579int set_page_dirty(struct page *page)
1da177e4
LT
2580{
2581 struct address_space *mapping = page_mapping(page);
2582
800d8c63 2583 page = compound_head(page);
1da177e4 2584 if (likely(mapping)) {
278df9f4
MK
2585 /*
2586 * readahead/lru_deactivate_page could remain
2587 * PG_readahead/PG_reclaim due to race with end_page_writeback
2588 * About readahead, if the page is written, the flags would be
2589 * reset. So no problem.
2590 * About lru_deactivate_page, if the page is redirty, the flag
2591 * will be reset. So no problem. but if the page is used by readahead
2592 * it will confuse readahead and make it restart the size rampup
2593 * process. But it's a trivial problem.
2594 */
a4bb3ecd
NH
2595 if (PageReclaim(page))
2596 ClearPageReclaim(page);
0af57378 2597 return mapping->a_ops->set_page_dirty(page);
1da177e4 2598 }
4741c9fd
AM
2599 if (!PageDirty(page)) {
2600 if (!TestSetPageDirty(page))
2601 return 1;
2602 }
1da177e4
LT
2603 return 0;
2604}
2605EXPORT_SYMBOL(set_page_dirty);
2606
2607/*
2608 * set_page_dirty() is racy if the caller has no reference against
2609 * page->mapping->host, and if the page is unlocked. This is because another
2610 * CPU could truncate the page off the mapping and then free the mapping.
2611 *
2612 * Usually, the page _is_ locked, or the caller is a user-space process which
2613 * holds a reference on the inode by having an open file.
2614 *
2615 * In other cases, the page should be locked before running set_page_dirty().
2616 */
2617int set_page_dirty_lock(struct page *page)
2618{
2619 int ret;
2620
7eaceacc 2621 lock_page(page);
1da177e4
LT
2622 ret = set_page_dirty(page);
2623 unlock_page(page);
2624 return ret;
2625}
2626EXPORT_SYMBOL(set_page_dirty_lock);
2627
11f81bec
TH
2628/*
2629 * This cancels just the dirty bit on the kernel page itself, it does NOT
2630 * actually remove dirty bits on any mmap's that may be around. It also
2631 * leaves the page tagged dirty, so any sync activity will still find it on
2632 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2633 * look at the dirty bits in the VM.
2634 *
2635 * Doing this should *normally* only ever be done when a page is truncated,
2636 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2637 * this when it notices that somebody has cleaned out all the buffers on a
2638 * page without actually doing it through the VM. Can you say "ext3 is
2639 * horribly ugly"? Thought you could.
2640 */
736304f3 2641void __cancel_dirty_page(struct page *page)
11f81bec 2642{
c4843a75
GT
2643 struct address_space *mapping = page_mapping(page);
2644
f56753ac 2645 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2646 struct inode *inode = mapping->host;
2647 struct bdi_writeback *wb;
2e898e4c 2648 struct wb_lock_cookie cookie = {};
c4843a75 2649
62cccb8c 2650 lock_page_memcg(page);
2e898e4c 2651 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75
GT
2652
2653 if (TestClearPageDirty(page))
62cccb8c 2654 account_page_cleaned(page, mapping, wb);
c4843a75 2655
2e898e4c 2656 unlocked_inode_to_wb_end(inode, &cookie);
62cccb8c 2657 unlock_page_memcg(page);
c4843a75
GT
2658 } else {
2659 ClearPageDirty(page);
2660 }
11f81bec 2661}
736304f3 2662EXPORT_SYMBOL(__cancel_dirty_page);
11f81bec 2663
1da177e4
LT
2664/*
2665 * Clear a page's dirty flag, while caring for dirty memory accounting.
2666 * Returns true if the page was previously dirty.
2667 *
2668 * This is for preparing to put the page under writeout. We leave the page
ff9c745b 2669 * tagged as dirty in the xarray so that a concurrent write-for-sync
1da177e4
LT
2670 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2671 * implementation will run either set_page_writeback() or set_page_dirty(),
ff9c745b 2672 * at which stage we bring the page's dirty flag and xarray dirty tag
1da177e4
LT
2673 * back into sync.
2674 *
ff9c745b 2675 * This incoherency between the page's dirty flag and xarray tag is
1da177e4
LT
2676 * unfortunate, but it only exists while the page is locked.
2677 */
2678int clear_page_dirty_for_io(struct page *page)
2679{
2680 struct address_space *mapping = page_mapping(page);
c4843a75 2681 int ret = 0;
1da177e4 2682
184b4fef 2683 VM_BUG_ON_PAGE(!PageLocked(page), page);
79352894 2684
f56753ac 2685 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2686 struct inode *inode = mapping->host;
2687 struct bdi_writeback *wb;
2e898e4c 2688 struct wb_lock_cookie cookie = {};
682aa8e1 2689
7658cc28
LT
2690 /*
2691 * Yes, Virginia, this is indeed insane.
2692 *
2693 * We use this sequence to make sure that
2694 * (a) we account for dirty stats properly
2695 * (b) we tell the low-level filesystem to
2696 * mark the whole page dirty if it was
2697 * dirty in a pagetable. Only to then
2698 * (c) clean the page again and return 1 to
2699 * cause the writeback.
2700 *
2701 * This way we avoid all nasty races with the
2702 * dirty bit in multiple places and clearing
2703 * them concurrently from different threads.
2704 *
2705 * Note! Normally the "set_page_dirty(page)"
2706 * has no effect on the actual dirty bit - since
2707 * that will already usually be set. But we
2708 * need the side effects, and it can help us
2709 * avoid races.
2710 *
2711 * We basically use the page "master dirty bit"
2712 * as a serialization point for all the different
2713 * threads doing their things.
7658cc28
LT
2714 */
2715 if (page_mkclean(page))
2716 set_page_dirty(page);
79352894
NP
2717 /*
2718 * We carefully synchronise fault handlers against
2719 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2720 * at this point. We do this by having them hold the
2721 * page lock while dirtying the page, and pages are
2722 * always locked coming in here, so we get the desired
2723 * exclusion.
79352894 2724 */
2e898e4c 2725 wb = unlocked_inode_to_wb_begin(inode, &cookie);
7658cc28 2726 if (TestClearPageDirty(page)) {
00f3ca2c 2727 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2728 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2729 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2730 ret = 1;
1da177e4 2731 }
2e898e4c 2732 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2733 return ret;
1da177e4 2734 }
7658cc28 2735 return TestClearPageDirty(page);
1da177e4 2736}
58bb01a9 2737EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2738
2739int test_clear_page_writeback(struct page *page)
2740{
2741 struct address_space *mapping = page_mapping(page);
d7365e78 2742 int ret;
1da177e4 2743
1c824a68 2744 lock_page_memcg(page);
371a096e 2745 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2746 struct inode *inode = mapping->host;
2747 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2748 unsigned long flags;
2749
b93b0163 2750 xa_lock_irqsave(&mapping->i_pages, flags);
1da177e4 2751 ret = TestClearPageWriteback(page);
69cb51d1 2752 if (ret) {
ff9c745b 2753 __xa_clear_mark(&mapping->i_pages, page_index(page),
1da177e4 2754 PAGECACHE_TAG_WRITEBACK);
823423ef 2755 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
2756 struct bdi_writeback *wb = inode_to_wb(inode);
2757
3e8f399d 2758 dec_wb_stat(wb, WB_WRITEBACK);
91018134 2759 __wb_writeout_inc(wb);
04fbfdc1 2760 }
69cb51d1 2761 }
6c60d2b5
DC
2762
2763 if (mapping->host && !mapping_tagged(mapping,
2764 PAGECACHE_TAG_WRITEBACK))
2765 sb_clear_inode_writeback(mapping->host);
2766
b93b0163 2767 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4
LT
2768 } else {
2769 ret = TestClearPageWriteback(page);
2770 }
99b12e3d 2771 if (ret) {
1c824a68 2772 dec_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2773 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2774 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2775 }
1c824a68 2776 unlock_page_memcg(page);
1da177e4
LT
2777 return ret;
2778}
2779
1c8349a1 2780int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2781{
2782 struct address_space *mapping = page_mapping(page);
f28d4363 2783 int ret, access_ret;
1da177e4 2784
62cccb8c 2785 lock_page_memcg(page);
371a096e 2786 if (mapping && mapping_use_writeback_tags(mapping)) {
ff9c745b 2787 XA_STATE(xas, &mapping->i_pages, page_index(page));
91018134
TH
2788 struct inode *inode = mapping->host;
2789 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2790 unsigned long flags;
2791
ff9c745b
MW
2792 xas_lock_irqsave(&xas, flags);
2793 xas_load(&xas);
1da177e4 2794 ret = TestSetPageWriteback(page);
69cb51d1 2795 if (!ret) {
6c60d2b5
DC
2796 bool on_wblist;
2797
2798 on_wblist = mapping_tagged(mapping,
2799 PAGECACHE_TAG_WRITEBACK);
2800
ff9c745b 2801 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
823423ef 2802 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
3e8f399d 2803 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2804
2805 /*
2806 * We can come through here when swapping anonymous
2807 * pages, so we don't necessarily have an inode to track
2808 * for sync.
2809 */
2810 if (mapping->host && !on_wblist)
2811 sb_mark_inode_writeback(mapping->host);
69cb51d1 2812 }
1da177e4 2813 if (!PageDirty(page))
ff9c745b 2814 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 2815 if (!keep_write)
ff9c745b
MW
2816 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2817 xas_unlock_irqrestore(&xas, flags);
1da177e4
LT
2818 } else {
2819 ret = TestSetPageWriteback(page);
2820 }
3a3c02ec 2821 if (!ret) {
00f3ca2c 2822 inc_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2823 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
3a3c02ec 2824 }
62cccb8c 2825 unlock_page_memcg(page);
f28d4363
CI
2826 access_ret = arch_make_page_accessible(page);
2827 /*
2828 * If writeback has been triggered on a page that cannot be made
2829 * accessible, it is too late to recover here.
2830 */
2831 VM_BUG_ON_PAGE(access_ret != 0, page);
2832
1da177e4
LT
2833 return ret;
2834
2835}
1c8349a1 2836EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4 2837
19343b5b
YS
2838/*
2839 * Wait for a page to complete writeback
2840 */
2841void wait_on_page_writeback(struct page *page)
2842{
c2407cf7 2843 while (PageWriteback(page)) {
19343b5b
YS
2844 trace_wait_on_page_writeback(page, page_mapping(page));
2845 wait_on_page_bit(page, PG_writeback);
2846 }
2847}
2848EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2849
e5dbd332
MWO
2850/*
2851 * Wait for a page to complete writeback. Returns -EINTR if we get a
2852 * fatal signal while waiting.
2853 */
2854int wait_on_page_writeback_killable(struct page *page)
2855{
2856 while (PageWriteback(page)) {
2857 trace_wait_on_page_writeback(page, page_mapping(page));
2858 if (wait_on_page_bit_killable(page, PG_writeback))
2859 return -EINTR;
2860 }
2861
2862 return 0;
2863}
2864EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2865
1d1d1a76
DW
2866/**
2867 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2868 * @page: The page to wait on.
2869 *
2870 * This function determines if the given page is related to a backing device
2871 * that requires page contents to be held stable during writeback. If so, then
2872 * it will wait for any pending writeback to complete.
2873 */
2874void wait_for_stable_page(struct page *page)
2875{
8854a6a7 2876 page = thp_head(page);
1cb039f3 2877 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
de1414a6 2878 wait_on_page_writeback(page);
1d1d1a76
DW
2879}
2880EXPORT_SYMBOL_GPL(wait_for_stable_page);