f2fs: Provide a splice-read wrapper
[linux-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
1bf27e98 16#include <linux/math64.h>
b95f1b31 17#include <linux/export.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/slab.h>
23#include <linux/pagemap.h>
24#include <linux/writeback.h>
25#include <linux/init.h>
26#include <linux/backing-dev.h>
55e829af 27#include <linux/task_io_accounting_ops.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/mpage.h>
d08b3851 30#include <linux/rmap.h>
1da177e4 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/smp.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/syscalls.h>
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
aa779e51 74static int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
aa779e51 80static unsigned long dirty_background_bytes;
2da02997 81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
aa779e51 86static int vm_highmem_is_dirtyable;
195cf453 87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
aa779e51 91static int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
aa779e51 97static unsigned long vm_dirty_bytes;
2da02997 98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4 110
1da177e4 111/*
ed5b43f1
BS
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
114 */
115int laptop_mode;
116
117EXPORT_SYMBOL(laptop_mode);
118
119/* End of sysctl-exported parameters */
120
dcc25ae7 121struct wb_domain global_wb_domain;
1da177e4 122
2bc00aef
TH
123/* consolidated parameters for balance_dirty_pages() and its subroutines */
124struct dirty_throttle_control {
e9f07dfd
TH
125#ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
9fc3a43e 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 128#endif
2bc00aef 129 struct bdi_writeback *wb;
e9770b34 130 struct fprop_local_percpu *wb_completions;
eb608e3a 131
9fc3a43e 132 unsigned long avail; /* dirtyable */
2bc00aef
TH
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
970fb01a 139 unsigned long wb_bg_thresh;
daddfa3c
TH
140
141 unsigned long pos_ratio;
2bc00aef
TH
142};
143
eb608e3a
JK
144/*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 150
693108a8
TH
151#ifdef CONFIG_CGROUP_WRITEBACK
152
d60d1bdd
TH
153#define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
9fc3a43e 157#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
158
159#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
c2aa723a
TH
163
164static bool mdtc_valid(struct dirty_throttle_control *dtc)
165{
166 return dtc->dom;
167}
e9f07dfd
TH
168
169static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
173
9fc3a43e
TH
174static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175{
176 return mdtc->gdtc;
177}
178
841710aa
TH
179static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180{
181 return &wb->memcg_completions;
182}
183
693108a8
TH
184static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186{
20792ebf 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
693108a8
TH
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
6d9e8c65 199 min = div64_ul(min, tot_bw);
693108a8 200 }
ae82291e 201 if (max < 100 * BDI_RATIO_SCALE) {
693108a8 202 max *= this_bw;
6d9e8c65 203 max = div64_ul(max, tot_bw);
693108a8
TH
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209}
210
211#else /* CONFIG_CGROUP_WRITEBACK */
212
d60d1bdd
TH
213#define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
9fc3a43e 215#define GDTC_INIT_NO_WB
c2aa723a
TH
216#define MDTC_INIT(__wb, __gdtc)
217
218static bool mdtc_valid(struct dirty_throttle_control *dtc)
219{
220 return false;
221}
e9f07dfd
TH
222
223static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224{
225 return &global_wb_domain;
226}
227
9fc3a43e
TH
228static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229{
230 return NULL;
231}
232
841710aa
TH
233static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234{
235 return NULL;
236}
237
693108a8
TH
238static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240{
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243}
244
245#endif /* CONFIG_CGROUP_WRITEBACK */
246
a756cf59
JW
247/*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
e0857cf5 255 * user-configurable dirty ratio is the effective number of pages that
a756cf59
JW
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
a804552b 265/**
281e3726
MG
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
a804552b 268 *
a862f68a 269 * Return: the node's number of pages potentially available for dirty
281e3726 270 * page cache. This is the base value for the per-node dirty limits.
a804552b 271 */
281e3726 272static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 273{
281e3726
MG
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
a804552b 285
a8d01437
JW
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
281e3726 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 292
281e3726
MG
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
295
296 return nr_pages;
297}
298
1edf2234
JW
299static unsigned long highmem_dirtyable_memory(unsigned long total)
300{
301#ifdef CONFIG_HIGHMEM
302 int node;
bb4cc2be 303 unsigned long x = 0;
09b4ab3c 304 int i;
1edf2234
JW
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
9cb937e2 309 unsigned long nr_pages;
281e3726
MG
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
315 if (!populated_zone(z))
316 continue;
1edf2234 317
9cb937e2 318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 319 /* watch for underflows */
9cb937e2 320 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
09b4ab3c 324 }
1edf2234 325 }
281e3726 326
1edf2234
JW
327 /*
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
332 */
333 return min(x, total);
334#else
335 return 0;
336#endif
337}
338
339/**
ccafa287 340 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 341 *
a862f68a 342 * Return: the global number of pages potentially available for dirty
ccafa287 343 * page cache. This is the base value for the global dirty limits.
1edf2234 344 */
18cf8cf8 345static unsigned long global_dirtyable_memory(void)
1edf2234
JW
346{
347 unsigned long x;
348
c41f012a 349 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
350 /*
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
354 */
355 x -= min(x, totalreserve_pages);
1edf2234 356
599d0c95
MG
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 359
1edf2234
JW
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
362
363 return x + 1; /* Ensure that we never return 0 */
364}
365
9fc3a43e
TH
366/**
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
ccafa287 369 *
9fc3a43e
TH
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 373 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 374 */
9fc3a43e 375static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 376{
9fc3a43e
TH
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
384 unsigned long thresh;
385 unsigned long bg_thresh;
ccafa287
JW
386 struct task_struct *tsk;
387
9fc3a43e
TH
388 /* gdtc is !NULL iff @dtc is for memcg domain */
389 if (gdtc) {
390 unsigned long global_avail = gdtc->avail;
391
392 /*
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
62a584fe
TH
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 * number of pages.
9fc3a43e
TH
398 */
399 if (bytes)
62a584fe
TH
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 PAGE_SIZE);
9fc3a43e 402 if (bg_bytes)
62a584fe
TH
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 PAGE_SIZE);
9fc3a43e
TH
405 bytes = bg_bytes = 0;
406 }
407
408 if (bytes)
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 410 else
62a584fe 411 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 412
9fc3a43e
TH
413 if (bg_bytes)
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 415 else
62a584fe 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 417
90daf306 418 if (bg_thresh >= thresh)
9fc3a43e 419 bg_thresh = thresh / 2;
ccafa287 420 tsk = current;
a37b0715 421 if (rt_task(tsk)) {
a53eaff8
N
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 424 }
9fc3a43e
TH
425 dtc->thresh = thresh;
426 dtc->bg_thresh = bg_thresh;
427
428 /* we should eventually report the domain in the TP */
429 if (!gdtc)
430 trace_global_dirty_state(bg_thresh, thresh);
431}
432
433/**
434 * global_dirty_limits - background-writeback and dirty-throttling thresholds
435 * @pbackground: out parameter for bg_thresh
436 * @pdirty: out parameter for thresh
437 *
438 * Calculate bg_thresh and thresh for global_wb_domain. See
439 * domain_dirty_limits() for details.
440 */
441void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
442{
443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
444
445 gdtc.avail = global_dirtyable_memory();
446 domain_dirty_limits(&gdtc);
447
448 *pbackground = gdtc.bg_thresh;
449 *pdirty = gdtc.thresh;
ccafa287
JW
450}
451
a756cf59 452/**
281e3726
MG
453 * node_dirty_limit - maximum number of dirty pages allowed in a node
454 * @pgdat: the node
a756cf59 455 *
a862f68a 456 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 457 * on the node's dirtyable memory.
a756cf59 458 */
281e3726 459static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 460{
281e3726 461 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
462 struct task_struct *tsk = current;
463 unsigned long dirty;
464
465 if (vm_dirty_bytes)
466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 467 node_memory / global_dirtyable_memory();
a756cf59 468 else
281e3726 469 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 470
a37b0715 471 if (rt_task(tsk))
a756cf59
JW
472 dirty += dirty / 4;
473
474 return dirty;
475}
476
477/**
281e3726
MG
478 * node_dirty_ok - tells whether a node is within its dirty limits
479 * @pgdat: the node to check
a756cf59 480 *
a862f68a 481 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
482 * dirty limit, %false if the limit is exceeded.
483 */
281e3726 484bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 485{
281e3726
MG
486 unsigned long limit = node_dirty_limit(pgdat);
487 unsigned long nr_pages = 0;
488
11fb9989 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 491
281e3726 492 return nr_pages <= limit;
a756cf59
JW
493}
494
aa779e51 495#ifdef CONFIG_SYSCTL
496static int dirty_background_ratio_handler(struct ctl_table *table, int write,
32927393 497 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
498{
499 int ret;
500
8d65af78 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
502 if (ret == 0 && write)
503 dirty_background_bytes = 0;
504 return ret;
505}
506
aa779e51 507static int dirty_background_bytes_handler(struct ctl_table *table, int write,
32927393 508 void *buffer, size_t *lenp, loff_t *ppos)
2da02997
DR
509{
510 int ret;
511
8d65af78 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
513 if (ret == 0 && write)
514 dirty_background_ratio = 0;
515 return ret;
516}
517
aa779e51 518static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
32927393 519 size_t *lenp, loff_t *ppos)
04fbfdc1
PZ
520{
521 int old_ratio = vm_dirty_ratio;
2da02997
DR
522 int ret;
523
8d65af78 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 526 writeback_set_ratelimit();
2da02997
DR
527 vm_dirty_bytes = 0;
528 }
529 return ret;
530}
531
aa779e51 532static int dirty_bytes_handler(struct ctl_table *table, int write,
32927393 533 void *buffer, size_t *lenp, loff_t *ppos)
2da02997 534{
fc3501d4 535 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
536 int ret;
537
8d65af78 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 540 writeback_set_ratelimit();
2da02997 541 vm_dirty_ratio = 0;
04fbfdc1
PZ
542 }
543 return ret;
544}
aa779e51 545#endif
04fbfdc1 546
eb608e3a
JK
547static unsigned long wp_next_time(unsigned long cur_time)
548{
549 cur_time += VM_COMPLETIONS_PERIOD_LEN;
550 /* 0 has a special meaning... */
551 if (!cur_time)
552 return 1;
553 return cur_time;
554}
555
cc24df4c 556static void wb_domain_writeout_add(struct wb_domain *dom,
c7981433 557 struct fprop_local_percpu *completions,
cc24df4c 558 unsigned int max_prop_frac, long nr)
04fbfdc1 559{
be5f1797 560 __fprop_add_percpu_max(&dom->completions, completions,
cc24df4c 561 max_prop_frac, nr);
eb608e3a 562 /* First event after period switching was turned off? */
517663ed 563 if (unlikely(!dom->period_time)) {
eb608e3a
JK
564 /*
565 * We can race with other __bdi_writeout_inc calls here but
566 * it does not cause any harm since the resulting time when
567 * timer will fire and what is in writeout_period_time will be
568 * roughly the same.
569 */
380c27ca
TH
570 dom->period_time = wp_next_time(jiffies);
571 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 572 }
04fbfdc1
PZ
573}
574
c7981433
TH
575/*
576 * Increment @wb's writeout completion count and the global writeout
269ccca3 577 * completion count. Called from __folio_end_writeback().
c7981433 578 */
cc24df4c 579static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
dd5656e5 580{
841710aa 581 struct wb_domain *cgdom;
dd5656e5 582
cc24df4c
MWO
583 wb_stat_mod(wb, WB_WRITTEN, nr);
584 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585 wb->bdi->max_prop_frac, nr);
841710aa
TH
586
587 cgdom = mem_cgroup_wb_domain(wb);
588 if (cgdom)
cc24df4c
MWO
589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590 wb->bdi->max_prop_frac, nr);
dd5656e5 591}
dd5656e5 592
93f78d88 593void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 594{
dd5656e5
MS
595 unsigned long flags;
596
597 local_irq_save(flags);
cc24df4c 598 __wb_writeout_add(wb, 1);
dd5656e5 599 local_irq_restore(flags);
04fbfdc1 600}
93f78d88 601EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 602
eb608e3a
JK
603/*
604 * On idle system, we can be called long after we scheduled because we use
605 * deferred timers so count with missed periods.
606 */
9823e51b 607static void writeout_period(struct timer_list *t)
eb608e3a 608{
9823e51b 609 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 610 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
611 VM_COMPLETIONS_PERIOD_LEN;
612
380c27ca
TH
613 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 616 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
617 } else {
618 /*
619 * Aging has zeroed all fractions. Stop wasting CPU on period
620 * updates.
621 */
380c27ca 622 dom->period_time = 0;
eb608e3a
JK
623 }
624}
625
380c27ca
TH
626int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
627{
628 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
629
630 spin_lock_init(&dom->lock);
631
9823e51b 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
633
634 dom->dirty_limit_tstamp = jiffies;
635
380c27ca
TH
636 return fprop_global_init(&dom->completions, gfp);
637}
638
841710aa
TH
639#ifdef CONFIG_CGROUP_WRITEBACK
640void wb_domain_exit(struct wb_domain *dom)
641{
642 del_timer_sync(&dom->period_timer);
643 fprop_global_destroy(&dom->completions);
644}
645#endif
646
189d3c4a 647/*
d08c429b
JW
648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649 * registered backing devices, which, for obvious reasons, can not
650 * exceed 100%.
189d3c4a 651 */
189d3c4a
PZ
652static unsigned int bdi_min_ratio;
653
1bf27e98
SR
654static int bdi_check_pages_limit(unsigned long pages)
655{
656 unsigned long max_dirty_pages = global_dirtyable_memory();
657
658 if (pages > max_dirty_pages)
659 return -EINVAL;
660
661 return 0;
662}
663
664static unsigned long bdi_ratio_from_pages(unsigned long pages)
665{
666 unsigned long background_thresh;
667 unsigned long dirty_thresh;
668 unsigned long ratio;
669
670 global_dirty_limits(&background_thresh, &dirty_thresh);
671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
672
673 return ratio;
674}
675
00df7d51
SR
676static u64 bdi_get_bytes(unsigned int ratio)
677{
678 unsigned long background_thresh;
679 unsigned long dirty_thresh;
680 u64 bytes;
681
682 global_dirty_limits(&background_thresh, &dirty_thresh);
683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
684
685 return bytes;
686}
687
8021fb32 688static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
189d3c4a 689{
21f0dd88 690 unsigned int delta;
189d3c4a 691 int ret = 0;
189d3c4a 692
2c44af4f
SR
693 if (min_ratio > 100 * BDI_RATIO_SCALE)
694 return -EINVAL;
ae82291e
SR
695 min_ratio *= BDI_RATIO_SCALE;
696
cfc4ba53 697 spin_lock_bh(&bdi_lock);
a42dde04 698 if (min_ratio > bdi->max_ratio) {
189d3c4a 699 ret = -EINVAL;
a42dde04 700 } else {
21f0dd88
CW
701 if (min_ratio < bdi->min_ratio) {
702 delta = bdi->min_ratio - min_ratio;
703 bdi_min_ratio -= delta;
704 bdi->min_ratio = min_ratio;
a42dde04 705 } else {
21f0dd88 706 delta = min_ratio - bdi->min_ratio;
ae82291e 707 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
21f0dd88
CW
708 bdi_min_ratio += delta;
709 bdi->min_ratio = min_ratio;
710 } else {
711 ret = -EINVAL;
712 }
a42dde04
PZ
713 }
714 }
cfc4ba53 715 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
716
717 return ret;
718}
719
efc3e6ad 720static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
a42dde04 721{
a42dde04
PZ
722 int ret = 0;
723
4e230b40
SR
724 if (max_ratio > 100 * BDI_RATIO_SCALE)
725 return -EINVAL;
726
cfc4ba53 727 spin_lock_bh(&bdi_lock);
a42dde04
PZ
728 if (bdi->min_ratio > max_ratio) {
729 ret = -EINVAL;
730 } else {
731 bdi->max_ratio = max_ratio;
eb608e3a 732 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 733 }
cfc4ba53 734 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
735
736 return ret;
737}
efc3e6ad 738
2c44af4f
SR
739int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
740{
741 return __bdi_set_min_ratio(bdi, min_ratio);
742}
743
4e230b40
SR
744int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
745{
746 return __bdi_set_max_ratio(bdi, max_ratio);
747}
748
8021fb32
SR
749int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
750{
751 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
752}
753
efc3e6ad
SR
754int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
755{
efc3e6ad
SR
756 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
757}
a42dde04 758EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 759
712c00d6
SR
760u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
761{
762 return bdi_get_bytes(bdi->min_ratio);
763}
764
803c9805
SR
765int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
766{
767 int ret;
768 unsigned long pages = min_bytes >> PAGE_SHIFT;
769 unsigned long min_ratio;
770
771 ret = bdi_check_pages_limit(pages);
772 if (ret)
773 return ret;
774
775 min_ratio = bdi_ratio_from_pages(pages);
776 return __bdi_set_min_ratio(bdi, min_ratio);
777}
778
00df7d51
SR
779u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
780{
781 return bdi_get_bytes(bdi->max_ratio);
782}
783
1bf27e98
SR
784int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
785{
786 int ret;
787 unsigned long pages = max_bytes >> PAGE_SHIFT;
788 unsigned long max_ratio;
789
790 ret = bdi_check_pages_limit(pages);
791 if (ret)
792 return ret;
793
794 max_ratio = bdi_ratio_from_pages(pages);
795 return __bdi_set_max_ratio(bdi, max_ratio);
796}
797
8e9d5ead
SR
798int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
799{
800 if (strict_limit > 1)
801 return -EINVAL;
802
803 spin_lock_bh(&bdi_lock);
804 if (strict_limit)
805 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
806 else
807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
808 spin_unlock_bh(&bdi_lock);
809
810 return 0;
811}
812
6c14ae1e
WF
813static unsigned long dirty_freerun_ceiling(unsigned long thresh,
814 unsigned long bg_thresh)
815{
816 return (thresh + bg_thresh) / 2;
817}
818
c7981433
TH
819static unsigned long hard_dirty_limit(struct wb_domain *dom,
820 unsigned long thresh)
ffd1f609 821{
dcc25ae7 822 return max(thresh, dom->dirty_limit);
ffd1f609
WF
823}
824
c5edf9cd
TH
825/*
826 * Memory which can be further allocated to a memcg domain is capped by
827 * system-wide clean memory excluding the amount being used in the domain.
828 */
829static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
830 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
831{
832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
833 unsigned long clean = filepages - min(filepages, mdtc->dirty);
834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
835 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 836
c5edf9cd 837 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
838}
839
6f718656 840/**
b1cbc6d4
TH
841 * __wb_calc_thresh - @wb's share of dirty throttling threshold
842 * @dtc: dirty_throttle_context of interest
1babe183 843 *
aed21ad2
WF
844 * Note that balance_dirty_pages() will only seriously take it as a hard limit
845 * when sleeping max_pause per page is not enough to keep the dirty pages under
846 * control. For example, when the device is completely stalled due to some error
847 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
848 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 849 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 850 *
6f718656 851 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
852 * - starving fast devices
853 * - piling up dirty pages (that will take long time to sync) on slow devices
854 *
a88a341a 855 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 856 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
857 *
858 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 859 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 860 */
b1cbc6d4 861static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 862{
e9f07dfd 863 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 864 unsigned long thresh = dtc->thresh;
0d960a38 865 u64 wb_thresh;
d3ac946e 866 unsigned long numerator, denominator;
693108a8 867 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 868
16c4042f 869 /*
0d960a38 870 * Calculate this BDI's share of the thresh ratio.
16c4042f 871 */
e9770b34 872 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 873 &numerator, &denominator);
04fbfdc1 874
ae82291e 875 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
0d960a38 876 wb_thresh *= numerator;
d3ac946e 877 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 878
b1cbc6d4 879 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 880
ae82291e
SR
881 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
882 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
883 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
16c4042f 884
0d960a38 885 return wb_thresh;
1da177e4
LT
886}
887
b1cbc6d4
TH
888unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
889{
890 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
891 .thresh = thresh };
892 return __wb_calc_thresh(&gdtc);
1da177e4
LT
893}
894
5a537485
MP
895/*
896 * setpoint - dirty 3
897 * f(dirty) := 1.0 + (----------------)
898 * limit - setpoint
899 *
900 * it's a 3rd order polynomial that subjects to
901 *
902 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
903 * (2) f(setpoint) = 1.0 => the balance point
904 * (3) f(limit) = 0 => the hard limit
905 * (4) df/dx <= 0 => negative feedback control
906 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
907 * => fast response on large errors; small oscillation near setpoint
908 */
d5c9fde3 909static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
910 unsigned long dirty,
911 unsigned long limit)
912{
913 long long pos_ratio;
914 long x;
915
d5c9fde3 916 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 917 (limit - setpoint) | 1);
5a537485
MP
918 pos_ratio = x;
919 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
920 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
921 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
922
923 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
924}
925
6c14ae1e
WF
926/*
927 * Dirty position control.
928 *
929 * (o) global/bdi setpoints
930 *
de1fff37 931 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
932 * When the number of dirty pages is higher/lower than the setpoint, the
933 * dirty position control ratio (and hence task dirty ratelimit) will be
934 * decreased/increased to bring the dirty pages back to the setpoint.
935 *
936 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
937 *
938 * if (dirty < setpoint) scale up pos_ratio
939 * if (dirty > setpoint) scale down pos_ratio
940 *
de1fff37
TH
941 * if (wb_dirty < wb_setpoint) scale up pos_ratio
942 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
943 *
944 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
945 *
946 * (o) global control line
947 *
948 * ^ pos_ratio
949 * |
950 * | |<===== global dirty control scope ======>|
03231554 951 * 2.0 * * * * * * *
6c14ae1e
WF
952 * | .*
953 * | . *
954 * | . *
955 * | . *
956 * | . *
957 * | . *
958 * 1.0 ................................*
959 * | . . *
960 * | . . *
961 * | . . *
962 * | . . *
963 * | . . *
964 * 0 +------------.------------------.----------------------*------------->
965 * freerun^ setpoint^ limit^ dirty pages
966 *
de1fff37 967 * (o) wb control line
6c14ae1e
WF
968 *
969 * ^ pos_ratio
970 * |
971 * | *
972 * | *
973 * | *
974 * | *
975 * | * |<=========== span ============>|
976 * 1.0 .......................*
977 * | . *
978 * | . *
979 * | . *
980 * | . *
981 * | . *
982 * | . *
983 * | . *
984 * | . *
985 * | . *
986 * | . *
987 * | . *
988 * 1/4 ...............................................* * * * * * * * * * * *
989 * | . .
990 * | . .
991 * | . .
992 * 0 +----------------------.-------------------------------.------------->
de1fff37 993 * wb_setpoint^ x_intercept^
6c14ae1e 994 *
de1fff37 995 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
996 * be smoothly throttled down to normal if it starts high in situations like
997 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
998 * card's wb_dirty may rush to many times higher than wb_setpoint.
999 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 1000 */
daddfa3c 1001static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 1002{
2bc00aef 1003 struct bdi_writeback *wb = dtc->wb;
20792ebf 1004 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
2bc00aef 1005 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1006 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 1007 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
1008 unsigned long x_intercept;
1009 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 1010 unsigned long wb_setpoint;
6c14ae1e
WF
1011 unsigned long span;
1012 long long pos_ratio; /* for scaling up/down the rate limit */
1013 long x;
1014
daddfa3c
TH
1015 dtc->pos_ratio = 0;
1016
2bc00aef 1017 if (unlikely(dtc->dirty >= limit))
daddfa3c 1018 return;
6c14ae1e
WF
1019
1020 /*
1021 * global setpoint
1022 *
5a537485
MP
1023 * See comment for pos_ratio_polynom().
1024 */
1025 setpoint = (freerun + limit) / 2;
2bc00aef 1026 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
1027
1028 /*
1029 * The strictlimit feature is a tool preventing mistrusted filesystems
1030 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
1031 * such filesystems balance_dirty_pages always checks wb counters
1032 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
1033 * This is especially important for fuse which sets bdi->max_ratio to
1034 * 1% by default. Without strictlimit feature, fuse writeback may
1035 * consume arbitrary amount of RAM because it is accounted in
1036 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 1037 *
a88a341a 1038 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 1039 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
1040 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1041 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 1042 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 1043 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 1044 * about ~6K pages (as the average of background and throttle wb
5a537485 1045 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 1046 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 1047 *
5a537485 1048 * Note, that we cannot use global counters in these calculations
de1fff37 1049 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
1050 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1051 * in the example above).
6c14ae1e 1052 */
a88a341a 1053 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 1054 long long wb_pos_ratio;
5a537485 1055
daddfa3c
TH
1056 if (dtc->wb_dirty < 8) {
1057 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1058 2 << RATELIMIT_CALC_SHIFT);
1059 return;
1060 }
5a537485 1061
2bc00aef 1062 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 1063 return;
5a537485 1064
970fb01a
TH
1065 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1066 dtc->wb_bg_thresh);
5a537485 1067
de1fff37 1068 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 1069 return;
5a537485 1070
2bc00aef 1071 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 1072 wb_thresh);
5a537485
MP
1073
1074 /*
de1fff37
TH
1075 * Typically, for strictlimit case, wb_setpoint << setpoint
1076 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 1077 * state ("dirty") is not limiting factor and we have to
de1fff37 1078 * make decision based on wb counters. But there is an
5a537485
MP
1079 * important case when global pos_ratio should get precedence:
1080 * global limits are exceeded (e.g. due to activities on other
de1fff37 1081 * wb's) while given strictlimit wb is below limit.
5a537485 1082 *
de1fff37 1083 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 1084 * but it would look too non-natural for the case of all
de1fff37 1085 * activity in the system coming from a single strictlimit wb
5a537485
MP
1086 * with bdi->max_ratio == 100%.
1087 *
1088 * Note that min() below somewhat changes the dynamics of the
1089 * control system. Normally, pos_ratio value can be well over 3
de1fff37 1090 * (when globally we are at freerun and wb is well below wb
5a537485
MP
1091 * setpoint). Now the maximum pos_ratio in the same situation
1092 * is 2. We might want to tweak this if we observe the control
1093 * system is too slow to adapt.
1094 */
daddfa3c
TH
1095 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1096 return;
5a537485 1097 }
6c14ae1e
WF
1098
1099 /*
1100 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1101 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1102 * pos_ratio further down/up. That is done by the following mechanism.
1103 */
1104
1105 /*
de1fff37 1106 * wb setpoint
6c14ae1e 1107 *
de1fff37 1108 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1109 *
de1fff37 1110 * x_intercept - wb_dirty
6c14ae1e 1111 * := --------------------------
de1fff37 1112 * x_intercept - wb_setpoint
6c14ae1e 1113 *
de1fff37 1114 * The main wb control line is a linear function that subjects to
6c14ae1e 1115 *
de1fff37
TH
1116 * (1) f(wb_setpoint) = 1.0
1117 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1118 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1119 *
de1fff37 1120 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1121 * regularly within range
de1fff37 1122 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1123 * for various filesystems, where (2) can yield in a reasonable 12.5%
1124 * fluctuation range for pos_ratio.
1125 *
de1fff37 1126 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1127 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1128 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1129 */
2bc00aef
TH
1130 if (unlikely(wb_thresh > dtc->thresh))
1131 wb_thresh = dtc->thresh;
aed21ad2 1132 /*
de1fff37 1133 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1134 * device is slow, but that it has remained inactive for long time.
1135 * Honour such devices a reasonable good (hopefully IO efficient)
1136 * threshold, so that the occasional writes won't be blocked and active
1137 * writes can rampup the threshold quickly.
1138 */
2bc00aef 1139 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1140 /*
de1fff37
TH
1141 * scale global setpoint to wb's:
1142 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1143 */
e4bc13ad 1144 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1145 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1146 /*
de1fff37
TH
1147 * Use span=(8*write_bw) in single wb case as indicated by
1148 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1149 *
de1fff37
TH
1150 * wb_thresh thresh - wb_thresh
1151 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1152 * thresh thresh
6c14ae1e 1153 */
2bc00aef 1154 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1155 x_intercept = wb_setpoint + span;
6c14ae1e 1156
2bc00aef
TH
1157 if (dtc->wb_dirty < x_intercept - span / 4) {
1158 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1159 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1160 } else
1161 pos_ratio /= 4;
1162
8927f66c 1163 /*
de1fff37 1164 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1165 * It may push the desired control point of global dirty pages higher
1166 * than setpoint.
1167 */
de1fff37 1168 x_intercept = wb_thresh / 2;
2bc00aef
TH
1169 if (dtc->wb_dirty < x_intercept) {
1170 if (dtc->wb_dirty > x_intercept / 8)
1171 pos_ratio = div_u64(pos_ratio * x_intercept,
1172 dtc->wb_dirty);
50657fc4 1173 else
8927f66c
WF
1174 pos_ratio *= 8;
1175 }
1176
daddfa3c 1177 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1178}
1179
a88a341a
TH
1180static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1181 unsigned long elapsed,
1182 unsigned long written)
e98be2d5
WF
1183{
1184 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1185 unsigned long avg = wb->avg_write_bandwidth;
1186 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1187 u64 bw;
1188
1189 /*
1190 * bw = written * HZ / elapsed
1191 *
1192 * bw * elapsed + write_bandwidth * (period - elapsed)
1193 * write_bandwidth = ---------------------------------------------------
1194 * period
c72efb65 1195 *
25ff8b15 1196 * @written may have decreased due to folio_account_redirty().
c72efb65 1197 * Avoid underflowing @bw calculation.
e98be2d5 1198 */
a88a341a 1199 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1200 bw *= HZ;
1201 if (unlikely(elapsed > period)) {
0a5d1a7f 1202 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1203 avg = bw;
1204 goto out;
1205 }
a88a341a 1206 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1207 bw >>= ilog2(period);
1208
1209 /*
1210 * one more level of smoothing, for filtering out sudden spikes
1211 */
1212 if (avg > old && old >= (unsigned long)bw)
1213 avg -= (avg - old) >> 3;
1214
1215 if (avg < old && old <= (unsigned long)bw)
1216 avg += (old - avg) >> 3;
1217
1218out:
95a46c65
TH
1219 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1220 avg = max(avg, 1LU);
1221 if (wb_has_dirty_io(wb)) {
1222 long delta = avg - wb->avg_write_bandwidth;
1223 WARN_ON_ONCE(atomic_long_add_return(delta,
1224 &wb->bdi->tot_write_bandwidth) <= 0);
1225 }
a88a341a 1226 wb->write_bandwidth = bw;
20792ebf 1227 WRITE_ONCE(wb->avg_write_bandwidth, avg);
e98be2d5
WF
1228}
1229
2bc00aef 1230static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1231{
e9f07dfd 1232 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1233 unsigned long thresh = dtc->thresh;
dcc25ae7 1234 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1235
1236 /*
1237 * Follow up in one step.
1238 */
1239 if (limit < thresh) {
1240 limit = thresh;
1241 goto update;
1242 }
1243
1244 /*
1245 * Follow down slowly. Use the higher one as the target, because thresh
1246 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1247 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1248 */
2bc00aef 1249 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1250 if (limit > thresh) {
1251 limit -= (limit - thresh) >> 5;
1252 goto update;
1253 }
1254 return;
1255update:
dcc25ae7 1256 dom->dirty_limit = limit;
c42843f2
WF
1257}
1258
42dd235c
JK
1259static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1260 unsigned long now)
c42843f2 1261{
e9f07dfd 1262 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1263
1264 /*
1265 * check locklessly first to optimize away locking for the most time
1266 */
dcc25ae7 1267 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1268 return;
1269
dcc25ae7
TH
1270 spin_lock(&dom->lock);
1271 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1272 update_dirty_limit(dtc);
dcc25ae7 1273 dom->dirty_limit_tstamp = now;
c42843f2 1274 }
dcc25ae7 1275 spin_unlock(&dom->lock);
c42843f2
WF
1276}
1277
be3ffa27 1278/*
de1fff37 1279 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1280 *
de1fff37 1281 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1282 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1283 */
2bc00aef 1284static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1285 unsigned long dirtied,
1286 unsigned long elapsed)
be3ffa27 1287{
2bc00aef
TH
1288 struct bdi_writeback *wb = dtc->wb;
1289 unsigned long dirty = dtc->dirty;
1290 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1291 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1292 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1293 unsigned long write_bw = wb->avg_write_bandwidth;
1294 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1295 unsigned long dirty_rate;
1296 unsigned long task_ratelimit;
1297 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1298 unsigned long step;
1299 unsigned long x;
d59b1087 1300 unsigned long shift;
be3ffa27
WF
1301
1302 /*
1303 * The dirty rate will match the writeout rate in long term, except
1304 * when dirty pages are truncated by userspace or re-dirtied by FS.
1305 */
a88a341a 1306 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1307
be3ffa27
WF
1308 /*
1309 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1310 */
1311 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1312 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1313 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1314
1315 /*
1316 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1317 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1318 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1319 * formula will yield the balanced rate limit (write_bw / N).
1320 *
1321 * Note that the expanded form is not a pure rate feedback:
1322 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1323 * but also takes pos_ratio into account:
1324 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1325 *
1326 * (1) is not realistic because pos_ratio also takes part in balancing
1327 * the dirty rate. Consider the state
1328 * pos_ratio = 0.5 (3)
1329 * rate = 2 * (write_bw / N) (4)
1330 * If (1) is used, it will stuck in that state! Because each dd will
1331 * be throttled at
1332 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1333 * yielding
1334 * dirty_rate = N * task_ratelimit = write_bw (6)
1335 * put (6) into (1) we get
1336 * rate_(i+1) = rate_(i) (7)
1337 *
1338 * So we end up using (2) to always keep
1339 * rate_(i+1) ~= (write_bw / N) (8)
1340 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1341 * pos_ratio is able to drive itself to 1.0, which is not only where
1342 * the dirty count meet the setpoint, but also where the slope of
1343 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1344 */
1345 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1346 dirty_rate | 1);
bdaac490
WF
1347 /*
1348 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1349 */
1350 if (unlikely(balanced_dirty_ratelimit > write_bw))
1351 balanced_dirty_ratelimit = write_bw;
be3ffa27 1352
7381131c
WF
1353 /*
1354 * We could safely do this and return immediately:
1355 *
de1fff37 1356 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1357 *
1358 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1359 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1360 * limit the step size.
1361 *
1362 * The below code essentially only uses the relative value of
1363 *
1364 * task_ratelimit - dirty_ratelimit
1365 * = (pos_ratio - 1) * dirty_ratelimit
1366 *
1367 * which reflects the direction and size of dirty position error.
1368 */
1369
1370 /*
1371 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1372 * task_ratelimit is on the same side of dirty_ratelimit, too.
1373 * For example, when
1374 * - dirty_ratelimit > balanced_dirty_ratelimit
1375 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1376 * lowering dirty_ratelimit will help meet both the position and rate
1377 * control targets. Otherwise, don't update dirty_ratelimit if it will
1378 * only help meet the rate target. After all, what the users ultimately
1379 * feel and care are stable dirty rate and small position error.
1380 *
1381 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1382 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1383 * keeps jumping around randomly and can even leap far away at times
1384 * due to the small 200ms estimation period of dirty_rate (we want to
1385 * keep that period small to reduce time lags).
1386 */
1387 step = 0;
5a537485
MP
1388
1389 /*
de1fff37 1390 * For strictlimit case, calculations above were based on wb counters
a88a341a 1391 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1392 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1393 * Hence, to calculate "step" properly, we have to use wb_dirty as
1394 * "dirty" and wb_setpoint as "setpoint".
5a537485 1395 *
de1fff37
TH
1396 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1397 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1398 * of backing device.
5a537485 1399 */
a88a341a 1400 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1401 dirty = dtc->wb_dirty;
1402 if (dtc->wb_dirty < 8)
1403 setpoint = dtc->wb_dirty + 1;
5a537485 1404 else
970fb01a 1405 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1406 }
1407
7381131c 1408 if (dirty < setpoint) {
a88a341a 1409 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1410 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1411 if (dirty_ratelimit < x)
1412 step = x - dirty_ratelimit;
1413 } else {
a88a341a 1414 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1415 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1416 if (dirty_ratelimit > x)
1417 step = dirty_ratelimit - x;
1418 }
1419
1420 /*
1421 * Don't pursue 100% rate matching. It's impossible since the balanced
1422 * rate itself is constantly fluctuating. So decrease the track speed
1423 * when it gets close to the target. Helps eliminate pointless tremors.
1424 */
d59b1087
AR
1425 shift = dirty_ratelimit / (2 * step + 1);
1426 if (shift < BITS_PER_LONG)
1427 step = DIV_ROUND_UP(step >> shift, 8);
1428 else
1429 step = 0;
7381131c
WF
1430
1431 if (dirty_ratelimit < balanced_dirty_ratelimit)
1432 dirty_ratelimit += step;
1433 else
1434 dirty_ratelimit -= step;
1435
20792ebf 1436 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
a88a341a 1437 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1438
5634cc2a 1439 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1440}
1441
c2aa723a
TH
1442static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1443 struct dirty_throttle_control *mdtc,
8a731799 1444 bool update_ratelimit)
e98be2d5 1445{
c2aa723a 1446 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1447 unsigned long now = jiffies;
45a2966f 1448 unsigned long elapsed;
be3ffa27 1449 unsigned long dirtied;
e98be2d5
WF
1450 unsigned long written;
1451
45a2966f 1452 spin_lock(&wb->list_lock);
8a731799 1453
e98be2d5 1454 /*
45a2966f
JK
1455 * Lockless checks for elapsed time are racy and delayed update after
1456 * IO completion doesn't do it at all (to make sure written pages are
1457 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1458 * division errors.
e98be2d5 1459 */
45a2966f 1460 elapsed = max(now - wb->bw_time_stamp, 1UL);
a88a341a
TH
1461 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1462 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5 1463
8a731799 1464 if (update_ratelimit) {
42dd235c 1465 domain_update_dirty_limit(gdtc, now);
c2aa723a
TH
1466 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1467
1468 /*
1469 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1470 * compiler has no way to figure that out. Help it.
1471 */
1472 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
42dd235c 1473 domain_update_dirty_limit(mdtc, now);
c2aa723a
TH
1474 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1475 }
be3ffa27 1476 }
a88a341a 1477 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5 1478
a88a341a
TH
1479 wb->dirtied_stamp = dirtied;
1480 wb->written_stamp = written;
20792ebf 1481 WRITE_ONCE(wb->bw_time_stamp, now);
45a2966f 1482 spin_unlock(&wb->list_lock);
e98be2d5
WF
1483}
1484
45a2966f 1485void wb_update_bandwidth(struct bdi_writeback *wb)
e98be2d5 1486{
2bc00aef
TH
1487 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1488
fee468fd 1489 __wb_update_bandwidth(&gdtc, NULL, false);
fee468fd
JK
1490}
1491
1492/* Interval after which we consider wb idle and don't estimate bandwidth */
1493#define WB_BANDWIDTH_IDLE_JIF (HZ)
1494
1495static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1496{
1497 unsigned long now = jiffies;
1498 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1499
1500 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1501 !atomic_read(&wb->writeback_inodes)) {
1502 spin_lock(&wb->list_lock);
1503 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1504 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
20792ebf 1505 WRITE_ONCE(wb->bw_time_stamp, now);
fee468fd
JK
1506 spin_unlock(&wb->list_lock);
1507 }
e98be2d5
WF
1508}
1509
9d823e8f 1510/*
d0e1d66b 1511 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1512 * will look to see if it needs to start dirty throttling.
1513 *
1514 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1515 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1516 * (the number of pages we may dirty without exceeding the dirty limits).
1517 */
1518static unsigned long dirty_poll_interval(unsigned long dirty,
1519 unsigned long thresh)
1520{
1521 if (thresh > dirty)
1522 return 1UL << (ilog2(thresh - dirty) >> 1);
1523
1524 return 1;
1525}
1526
a88a341a 1527static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1528 unsigned long wb_dirty)
c8462cc9 1529{
20792ebf 1530 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
e3b6c655 1531 unsigned long t;
c8462cc9 1532
7ccb9ad5
WF
1533 /*
1534 * Limit pause time for small memory systems. If sleeping for too long
1535 * time, a small pool of dirty/writeback pages may go empty and disk go
1536 * idle.
1537 *
1538 * 8 serves as the safety ratio.
1539 */
de1fff37 1540 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1541 t++;
1542
e3b6c655 1543 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1544}
1545
a88a341a
TH
1546static long wb_min_pause(struct bdi_writeback *wb,
1547 long max_pause,
1548 unsigned long task_ratelimit,
1549 unsigned long dirty_ratelimit,
1550 int *nr_dirtied_pause)
c8462cc9 1551{
20792ebf
JK
1552 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1553 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
7ccb9ad5
WF
1554 long t; /* target pause */
1555 long pause; /* estimated next pause */
1556 int pages; /* target nr_dirtied_pause */
c8462cc9 1557
7ccb9ad5
WF
1558 /* target for 10ms pause on 1-dd case */
1559 t = max(1, HZ / 100);
c8462cc9
WF
1560
1561 /*
1562 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1563 * overheads.
1564 *
7ccb9ad5 1565 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1566 */
1567 if (hi > lo)
7ccb9ad5 1568 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1569
1570 /*
7ccb9ad5
WF
1571 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1572 * on the much more stable dirty_ratelimit. However the next pause time
1573 * will be computed based on task_ratelimit and the two rate limits may
1574 * depart considerably at some time. Especially if task_ratelimit goes
1575 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1576 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1577 * result task_ratelimit won't be executed faithfully, which could
1578 * eventually bring down dirty_ratelimit.
c8462cc9 1579 *
7ccb9ad5
WF
1580 * We apply two rules to fix it up:
1581 * 1) try to estimate the next pause time and if necessary, use a lower
1582 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1583 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1584 * 2) limit the target pause time to max_pause/2, so that the normal
1585 * small fluctuations of task_ratelimit won't trigger rule (1) and
1586 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1587 */
7ccb9ad5
WF
1588 t = min(t, 1 + max_pause / 2);
1589 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1590
1591 /*
5b9b3574
WF
1592 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1593 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1594 * When the 16 consecutive reads are often interrupted by some dirty
1595 * throttling pause during the async writes, cfq will go into idles
1596 * (deadline is fine). So push nr_dirtied_pause as high as possible
1597 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1598 */
5b9b3574
WF
1599 if (pages < DIRTY_POLL_THRESH) {
1600 t = max_pause;
1601 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1602 if (pages > DIRTY_POLL_THRESH) {
1603 pages = DIRTY_POLL_THRESH;
1604 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1605 }
1606 }
1607
7ccb9ad5
WF
1608 pause = HZ * pages / (task_ratelimit + 1);
1609 if (pause > max_pause) {
1610 t = max_pause;
1611 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1612 }
c8462cc9 1613
7ccb9ad5 1614 *nr_dirtied_pause = pages;
c8462cc9 1615 /*
7ccb9ad5 1616 * The minimal pause time will normally be half the target pause time.
c8462cc9 1617 */
5b9b3574 1618 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1619}
1620
970fb01a 1621static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1622{
2bc00aef 1623 struct bdi_writeback *wb = dtc->wb;
93f78d88 1624 unsigned long wb_reclaimable;
5a537485
MP
1625
1626 /*
de1fff37 1627 * wb_thresh is not treated as some limiting factor as
5a537485 1628 * dirty_thresh, due to reasons
de1fff37 1629 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1630 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1631 * go into state (wb_dirty >> wb_thresh) either because
1632 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1633 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1634 * dirtiers for 100 seconds until wb_dirty drops under
1635 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1636 * wb_position_ratio() will let the dirtier task progress
de1fff37 1637 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1638 */
b1cbc6d4 1639 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1640 dtc->wb_bg_thresh = dtc->thresh ?
1641 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1642
1643 /*
1644 * In order to avoid the stacked BDI deadlock we need
1645 * to ensure we accurately count the 'dirty' pages when
1646 * the threshold is low.
1647 *
1648 * Otherwise it would be possible to get thresh+n pages
1649 * reported dirty, even though there are thresh-m pages
1650 * actually dirty; with m+n sitting in the percpu
1651 * deltas.
1652 */
2bce774e 1653 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1654 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1655 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1656 } else {
93f78d88 1657 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1658 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1659 }
1660}
1661
1da177e4
LT
1662/*
1663 * balance_dirty_pages() must be called by processes which are generating dirty
1664 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1665 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1666 * If we're over `background_thresh' then the writeback threads are woken to
1667 * perform some writeout.
1da177e4 1668 */
fe6c9c6e
JK
1669static int balance_dirty_pages(struct bdi_writeback *wb,
1670 unsigned long pages_dirtied, unsigned int flags)
1da177e4 1671{
2bc00aef 1672 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1673 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1674 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1675 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1676 &mdtc_stor : NULL;
1677 struct dirty_throttle_control *sdtc;
8d92890b 1678 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1679 long period;
7ccb9ad5
WF
1680 long pause;
1681 long max_pause;
1682 long min_pause;
1683 int nr_dirtied_pause;
e50e3720 1684 bool dirty_exceeded = false;
143dfe86 1685 unsigned long task_ratelimit;
7ccb9ad5 1686 unsigned long dirty_ratelimit;
dfb8ae56 1687 struct backing_dev_info *bdi = wb->bdi;
5a537485 1688 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1689 unsigned long start_time = jiffies;
fe6c9c6e 1690 int ret = 0;
1da177e4
LT
1691
1692 for (;;) {
83712358 1693 unsigned long now = jiffies;
2bc00aef 1694 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1695 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1696 unsigned long m_thresh = 0;
1697 unsigned long m_bg_thresh = 0;
83712358 1698
8d92890b 1699 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1700 gdtc->avail = global_dirtyable_memory();
11fb9989 1701 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1702
9fc3a43e 1703 domain_dirty_limits(gdtc);
16c4042f 1704
5a537485 1705 if (unlikely(strictlimit)) {
970fb01a 1706 wb_dirty_limits(gdtc);
5a537485 1707
2bc00aef
TH
1708 dirty = gdtc->wb_dirty;
1709 thresh = gdtc->wb_thresh;
970fb01a 1710 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1711 } else {
2bc00aef
TH
1712 dirty = gdtc->dirty;
1713 thresh = gdtc->thresh;
1714 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1715 }
1716
c2aa723a 1717 if (mdtc) {
c5edf9cd 1718 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1719
1720 /*
1721 * If @wb belongs to !root memcg, repeat the same
1722 * basic calculations for the memcg domain.
1723 */
c5edf9cd
TH
1724 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1725 &mdtc->dirty, &writeback);
c2aa723a 1726 mdtc->dirty += writeback;
c5edf9cd 1727 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1728
1729 domain_dirty_limits(mdtc);
1730
1731 if (unlikely(strictlimit)) {
1732 wb_dirty_limits(mdtc);
1733 m_dirty = mdtc->wb_dirty;
1734 m_thresh = mdtc->wb_thresh;
1735 m_bg_thresh = mdtc->wb_bg_thresh;
1736 } else {
1737 m_dirty = mdtc->dirty;
1738 m_thresh = mdtc->thresh;
1739 m_bg_thresh = mdtc->bg_thresh;
1740 }
5a537485
MP
1741 }
1742
ea6813be
JK
1743 /*
1744 * In laptop mode, we wait until hitting the higher threshold
1745 * before starting background writeout, and then write out all
1746 * the way down to the lower threshold. So slow writers cause
1747 * minimal disk activity.
1748 *
1749 * In normal mode, we start background writeout at the lower
1750 * background_thresh, to keep the amount of dirty memory low.
1751 */
1752 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1753 !writeback_in_progress(wb))
1754 wb_start_background_writeback(wb);
1755
16c4042f
WF
1756 /*
1757 * Throttle it only when the background writeback cannot
1758 * catch-up. This avoids (excessively) small writeouts
de1fff37 1759 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1760 *
de1fff37
TH
1761 * In strictlimit case make decision based on the wb counters
1762 * and limits. Small writeouts when the wb limits are ramping
5a537485 1763 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1764 *
1765 * If memcg domain is in effect, @dirty should be under
1766 * both global and memcg freerun ceilings.
16c4042f 1767 */
c2aa723a
TH
1768 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1769 (!mdtc ||
1770 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1771 unsigned long intv;
1772 unsigned long m_intv;
1773
1774free_running:
1775 intv = dirty_poll_interval(dirty, thresh);
1776 m_intv = ULONG_MAX;
c2aa723a 1777
83712358
WF
1778 current->dirty_paused_when = now;
1779 current->nr_dirtied = 0;
c2aa723a
TH
1780 if (mdtc)
1781 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1782 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1783 break;
83712358 1784 }
16c4042f 1785
ea6813be 1786 /* Start writeback even when in laptop mode */
bc05873d 1787 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1788 wb_start_background_writeback(wb);
143dfe86 1789
97b27821
TH
1790 mem_cgroup_flush_foreign(wb);
1791
c2aa723a
TH
1792 /*
1793 * Calculate global domain's pos_ratio and select the
1794 * global dtc by default.
1795 */
a37b0715 1796 if (!strictlimit) {
970fb01a 1797 wb_dirty_limits(gdtc);
5fce25a9 1798
a37b0715
N
1799 if ((current->flags & PF_LOCAL_THROTTLE) &&
1800 gdtc->wb_dirty <
1801 dirty_freerun_ceiling(gdtc->wb_thresh,
1802 gdtc->wb_bg_thresh))
1803 /*
1804 * LOCAL_THROTTLE tasks must not be throttled
1805 * when below the per-wb freerun ceiling.
1806 */
1807 goto free_running;
1808 }
1809
2bc00aef
TH
1810 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1811 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1812
1813 wb_position_ratio(gdtc);
c2aa723a
TH
1814 sdtc = gdtc;
1815
1816 if (mdtc) {
1817 /*
1818 * If memcg domain is in effect, calculate its
1819 * pos_ratio. @wb should satisfy constraints from
1820 * both global and memcg domains. Choose the one
1821 * w/ lower pos_ratio.
1822 */
a37b0715 1823 if (!strictlimit) {
c2aa723a
TH
1824 wb_dirty_limits(mdtc);
1825
a37b0715
N
1826 if ((current->flags & PF_LOCAL_THROTTLE) &&
1827 mdtc->wb_dirty <
1828 dirty_freerun_ceiling(mdtc->wb_thresh,
1829 mdtc->wb_bg_thresh))
1830 /*
1831 * LOCAL_THROTTLE tasks must not be
1832 * throttled when below the per-wb
1833 * freerun ceiling.
1834 */
1835 goto free_running;
1836 }
c2aa723a
TH
1837 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1838 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1839
1840 wb_position_ratio(mdtc);
1841 if (mdtc->pos_ratio < gdtc->pos_ratio)
1842 sdtc = mdtc;
1843 }
daddfa3c 1844
e92eebbb
JK
1845 if (dirty_exceeded != wb->dirty_exceeded)
1846 wb->dirty_exceeded = dirty_exceeded;
1da177e4 1847
20792ebf 1848 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
45a2966f 1849 BANDWIDTH_INTERVAL))
fee468fd 1850 __wb_update_bandwidth(gdtc, mdtc, true);
e98be2d5 1851
c2aa723a 1852 /* throttle according to the chosen dtc */
20792ebf 1853 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
c2aa723a 1854 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1855 RATELIMIT_CALC_SHIFT;
c2aa723a 1856 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1857 min_pause = wb_min_pause(wb, max_pause,
1858 task_ratelimit, dirty_ratelimit,
1859 &nr_dirtied_pause);
7ccb9ad5 1860
3a73dbbc 1861 if (unlikely(task_ratelimit == 0)) {
83712358 1862 period = max_pause;
c8462cc9 1863 pause = max_pause;
143dfe86 1864 goto pause;
04fbfdc1 1865 }
83712358
WF
1866 period = HZ * pages_dirtied / task_ratelimit;
1867 pause = period;
1868 if (current->dirty_paused_when)
1869 pause -= now - current->dirty_paused_when;
1870 /*
1871 * For less than 1s think time (ext3/4 may block the dirtier
1872 * for up to 800ms from time to time on 1-HDD; so does xfs,
1873 * however at much less frequency), try to compensate it in
1874 * future periods by updating the virtual time; otherwise just
1875 * do a reset, as it may be a light dirtier.
1876 */
7ccb9ad5 1877 if (pause < min_pause) {
5634cc2a 1878 trace_balance_dirty_pages(wb,
c2aa723a
TH
1879 sdtc->thresh,
1880 sdtc->bg_thresh,
1881 sdtc->dirty,
1882 sdtc->wb_thresh,
1883 sdtc->wb_dirty,
ece13ac3
WF
1884 dirty_ratelimit,
1885 task_ratelimit,
1886 pages_dirtied,
83712358 1887 period,
7ccb9ad5 1888 min(pause, 0L),
ece13ac3 1889 start_time);
83712358
WF
1890 if (pause < -HZ) {
1891 current->dirty_paused_when = now;
1892 current->nr_dirtied = 0;
1893 } else if (period) {
1894 current->dirty_paused_when += period;
1895 current->nr_dirtied = 0;
7ccb9ad5
WF
1896 } else if (current->nr_dirtied_pause <= pages_dirtied)
1897 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1898 break;
04fbfdc1 1899 }
7ccb9ad5
WF
1900 if (unlikely(pause > max_pause)) {
1901 /* for occasional dropped task_ratelimit */
1902 now += min(pause - max_pause, max_pause);
1903 pause = max_pause;
1904 }
143dfe86
WF
1905
1906pause:
5634cc2a 1907 trace_balance_dirty_pages(wb,
c2aa723a
TH
1908 sdtc->thresh,
1909 sdtc->bg_thresh,
1910 sdtc->dirty,
1911 sdtc->wb_thresh,
1912 sdtc->wb_dirty,
ece13ac3
WF
1913 dirty_ratelimit,
1914 task_ratelimit,
1915 pages_dirtied,
83712358 1916 period,
ece13ac3
WF
1917 pause,
1918 start_time);
fe6c9c6e
JK
1919 if (flags & BDP_ASYNC) {
1920 ret = -EAGAIN;
1921 break;
1922 }
499d05ec 1923 __set_current_state(TASK_KILLABLE);
b57d74af 1924 wb->dirty_sleep = now;
d25105e8 1925 io_schedule_timeout(pause);
87c6a9b2 1926
83712358
WF
1927 current->dirty_paused_when = now + pause;
1928 current->nr_dirtied = 0;
7ccb9ad5 1929 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1930
ffd1f609 1931 /*
2bc00aef
TH
1932 * This is typically equal to (dirty < thresh) and can also
1933 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1934 */
1df64719 1935 if (task_ratelimit)
ffd1f609 1936 break;
499d05ec 1937
c5c6343c 1938 /*
f0953a1b 1939 * In the case of an unresponsive NFS server and the NFS dirty
de1fff37 1940 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1941 * to go through, so that tasks on them still remain responsive.
1942 *
3f8b6fb7 1943 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1944 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1945 * more page. However wb_dirty has accounting errors. So use
93f78d88 1946 * the larger and more IO friendly wb_stat_error.
c5c6343c 1947 */
2bce774e 1948 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1949 break;
1950
499d05ec
JK
1951 if (fatal_signal_pending(current))
1952 break;
1da177e4 1953 }
fe6c9c6e 1954 return ret;
1da177e4
LT
1955}
1956
9d823e8f 1957static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1958
54848d73
WF
1959/*
1960 * Normal tasks are throttled by
1961 * loop {
1962 * dirty tsk->nr_dirtied_pause pages;
1963 * take a snap in balance_dirty_pages();
1964 * }
1965 * However there is a worst case. If every task exit immediately when dirtied
1966 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1967 * called to throttle the page dirties. The solution is to save the not yet
1968 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1969 * randomly into the running tasks. This works well for the above worst case,
1970 * as the new task will pick up and accumulate the old task's leaked dirty
1971 * count and eventually get throttled.
1972 */
1973DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1974
1da177e4 1975/**
fe6c9c6e
JK
1976 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1977 * @mapping: address_space which was dirtied.
1978 * @flags: BDP flags.
1da177e4
LT
1979 *
1980 * Processes which are dirtying memory should call in here once for each page
1981 * which was newly dirtied. The function will periodically check the system's
1982 * dirty state and will initiate writeback if needed.
1983 *
fe6c9c6e
JK
1984 * See balance_dirty_pages_ratelimited() for details.
1985 *
1986 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1987 * indicate that memory is out of balance and the caller must wait
1988 * for I/O to complete. Otherwise, it will return 0 to indicate
1989 * that either memory was already in balance, or it was able to sleep
1990 * until the amount of dirty memory returned to balance.
1da177e4 1991 */
fe6c9c6e
JK
1992int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1993 unsigned int flags)
1da177e4 1994{
dfb8ae56
TH
1995 struct inode *inode = mapping->host;
1996 struct backing_dev_info *bdi = inode_to_bdi(inode);
1997 struct bdi_writeback *wb = NULL;
9d823e8f 1998 int ratelimit;
fe6c9c6e 1999 int ret = 0;
9d823e8f 2000 int *p;
1da177e4 2001
f56753ac 2002 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
fe6c9c6e 2003 return ret;
36715cef 2004
dfb8ae56
TH
2005 if (inode_cgwb_enabled(inode))
2006 wb = wb_get_create_current(bdi, GFP_KERNEL);
2007 if (!wb)
2008 wb = &bdi->wb;
2009
9d823e8f 2010 ratelimit = current->nr_dirtied_pause;
a88a341a 2011 if (wb->dirty_exceeded)
9d823e8f
WF
2012 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2013
9d823e8f 2014 preempt_disable();
1da177e4 2015 /*
9d823e8f
WF
2016 * This prevents one CPU to accumulate too many dirtied pages without
2017 * calling into balance_dirty_pages(), which can happen when there are
2018 * 1000+ tasks, all of them start dirtying pages at exactly the same
2019 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 2020 */
7c8e0181 2021 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 2022 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 2023 *p = 0;
d3bc1fef
WF
2024 else if (unlikely(*p >= ratelimit_pages)) {
2025 *p = 0;
2026 ratelimit = 0;
1da177e4 2027 }
54848d73
WF
2028 /*
2029 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2030 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2031 * the dirty throttling and livelock other long-run dirtiers.
2032 */
7c8e0181 2033 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 2034 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 2035 unsigned long nr_pages_dirtied;
54848d73
WF
2036 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2037 *p -= nr_pages_dirtied;
2038 current->nr_dirtied += nr_pages_dirtied;
1da177e4 2039 }
fa5a734e 2040 preempt_enable();
9d823e8f
WF
2041
2042 if (unlikely(current->nr_dirtied >= ratelimit))
fe6c9c6e 2043 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
dfb8ae56
TH
2044
2045 wb_put(wb);
fe6c9c6e
JK
2046 return ret;
2047}
611df5d6 2048EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
fe6c9c6e
JK
2049
2050/**
2051 * balance_dirty_pages_ratelimited - balance dirty memory state.
2052 * @mapping: address_space which was dirtied.
2053 *
2054 * Processes which are dirtying memory should call in here once for each page
2055 * which was newly dirtied. The function will periodically check the system's
2056 * dirty state and will initiate writeback if needed.
2057 *
2058 * Once we're over the dirty memory limit we decrease the ratelimiting
2059 * by a lot, to prevent individual processes from overshooting the limit
2060 * by (ratelimit_pages) each.
2061 */
2062void balance_dirty_pages_ratelimited(struct address_space *mapping)
2063{
2064 balance_dirty_pages_ratelimited_flags(mapping, 0);
1da177e4 2065}
d0e1d66b 2066EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 2067
aa661bbe
TH
2068/**
2069 * wb_over_bg_thresh - does @wb need to be written back?
2070 * @wb: bdi_writeback of interest
2071 *
2072 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
2073 * clean enough.
2074 *
2075 * Return: %true if writeback should continue.
aa661bbe
TH
2076 */
2077bool wb_over_bg_thresh(struct bdi_writeback *wb)
2078{
947e9762 2079 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 2080 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 2081 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
2082 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2083 &mdtc_stor : NULL;
ab19939a
CW
2084 unsigned long reclaimable;
2085 unsigned long thresh;
aa661bbe 2086
947e9762
TH
2087 /*
2088 * Similar to balance_dirty_pages() but ignores pages being written
2089 * as we're trying to decide whether to put more under writeback.
2090 */
2091 gdtc->avail = global_dirtyable_memory();
8d92890b 2092 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 2093 domain_dirty_limits(gdtc);
aa661bbe 2094
947e9762 2095 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
2096 return true;
2097
ab19939a
CW
2098 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2099 if (thresh < 2 * wb_stat_error())
2100 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2101 else
2102 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2103
2104 if (reclaimable > thresh)
aa661bbe
TH
2105 return true;
2106
c2aa723a 2107 if (mdtc) {
c5edf9cd 2108 unsigned long filepages, headroom, writeback;
c2aa723a 2109
c5edf9cd
TH
2110 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2111 &writeback);
2112 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
2113 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2114
2115 if (mdtc->dirty > mdtc->bg_thresh)
2116 return true;
2117
ab19939a
CW
2118 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2119 if (thresh < 2 * wb_stat_error())
2120 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2121 else
2122 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2123
2124 if (reclaimable > thresh)
c2aa723a
TH
2125 return true;
2126 }
2127
aa661bbe
TH
2128 return false;
2129}
2130
aa779e51 2131#ifdef CONFIG_SYSCTL
1da177e4
LT
2132/*
2133 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2134 */
aa779e51 2135static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
32927393 2136 void *buffer, size_t *length, loff_t *ppos)
1da177e4 2137{
94af5846
YS
2138 unsigned int old_interval = dirty_writeback_interval;
2139 int ret;
2140
2141 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
2142
2143 /*
2144 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2145 * and a different non-zero value will wakeup the writeback threads.
2146 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2147 * iterate over all bdis and wbs.
2148 * The reason we do this is to make the change take effect immediately.
2149 */
2150 if (!ret && write && dirty_writeback_interval &&
2151 dirty_writeback_interval != old_interval)
94af5846
YS
2152 wakeup_flusher_threads(WB_REASON_PERIODIC);
2153
2154 return ret;
1da177e4 2155}
aa779e51 2156#endif
1da177e4 2157
bca237a5 2158void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2159{
bca237a5
KC
2160 struct backing_dev_info *backing_dev_info =
2161 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2162
bca237a5 2163 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2164}
2165
2166/*
2167 * We've spun up the disk and we're in laptop mode: schedule writeback
2168 * of all dirty data a few seconds from now. If the flush is already scheduled
2169 * then push it back - the user is still using the disk.
2170 */
31373d09 2171void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2172{
31373d09 2173 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2174}
2175
2176/*
2177 * We're in laptop mode and we've just synced. The sync's writes will have
2178 * caused another writeback to be scheduled by laptop_io_completion.
2179 * Nothing needs to be written back anymore, so we unschedule the writeback.
2180 */
2181void laptop_sync_completion(void)
2182{
31373d09
MG
2183 struct backing_dev_info *bdi;
2184
2185 rcu_read_lock();
2186
2187 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2188 del_timer(&bdi->laptop_mode_wb_timer);
2189
2190 rcu_read_unlock();
1da177e4
LT
2191}
2192
2193/*
2194 * If ratelimit_pages is too high then we can get into dirty-data overload
2195 * if a large number of processes all perform writes at the same time.
1da177e4
LT
2196 *
2197 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2198 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2199 * thresholds.
1da177e4
LT
2200 */
2201
2d1d43f6 2202void writeback_set_ratelimit(void)
1da177e4 2203{
dcc25ae7 2204 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2205 unsigned long background_thresh;
2206 unsigned long dirty_thresh;
dcc25ae7 2207
9d823e8f 2208 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2209 dom->dirty_limit = dirty_thresh;
9d823e8f 2210 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2211 if (ratelimit_pages < 16)
2212 ratelimit_pages = 16;
1da177e4
LT
2213}
2214
1d7ac6ae 2215static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2216{
1d7ac6ae
SAS
2217 writeback_set_ratelimit();
2218 return 0;
1da177e4
LT
2219}
2220
aa779e51 2221#ifdef CONFIG_SYSCTL
3c6a4cba
LC
2222
2223/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2224static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2225
aa779e51 2226static struct ctl_table vm_page_writeback_sysctls[] = {
2227 {
2228 .procname = "dirty_background_ratio",
2229 .data = &dirty_background_ratio,
2230 .maxlen = sizeof(dirty_background_ratio),
2231 .mode = 0644,
2232 .proc_handler = dirty_background_ratio_handler,
2233 .extra1 = SYSCTL_ZERO,
2234 .extra2 = SYSCTL_ONE_HUNDRED,
2235 },
2236 {
2237 .procname = "dirty_background_bytes",
2238 .data = &dirty_background_bytes,
2239 .maxlen = sizeof(dirty_background_bytes),
2240 .mode = 0644,
2241 .proc_handler = dirty_background_bytes_handler,
2242 .extra1 = SYSCTL_LONG_ONE,
2243 },
2244 {
2245 .procname = "dirty_ratio",
2246 .data = &vm_dirty_ratio,
2247 .maxlen = sizeof(vm_dirty_ratio),
2248 .mode = 0644,
2249 .proc_handler = dirty_ratio_handler,
2250 .extra1 = SYSCTL_ZERO,
2251 .extra2 = SYSCTL_ONE_HUNDRED,
2252 },
2253 {
2254 .procname = "dirty_bytes",
2255 .data = &vm_dirty_bytes,
2256 .maxlen = sizeof(vm_dirty_bytes),
2257 .mode = 0644,
2258 .proc_handler = dirty_bytes_handler,
2259 .extra1 = (void *)&dirty_bytes_min,
2260 },
2261 {
2262 .procname = "dirty_writeback_centisecs",
2263 .data = &dirty_writeback_interval,
2264 .maxlen = sizeof(dirty_writeback_interval),
2265 .mode = 0644,
2266 .proc_handler = dirty_writeback_centisecs_handler,
2267 },
2268 {
2269 .procname = "dirty_expire_centisecs",
2270 .data = &dirty_expire_interval,
2271 .maxlen = sizeof(dirty_expire_interval),
2272 .mode = 0644,
2273 .proc_handler = proc_dointvec_minmax,
2274 .extra1 = SYSCTL_ZERO,
2275 },
2276#ifdef CONFIG_HIGHMEM
2277 {
2278 .procname = "highmem_is_dirtyable",
2279 .data = &vm_highmem_is_dirtyable,
2280 .maxlen = sizeof(vm_highmem_is_dirtyable),
2281 .mode = 0644,
2282 .proc_handler = proc_dointvec_minmax,
2283 .extra1 = SYSCTL_ZERO,
2284 .extra2 = SYSCTL_ONE,
2285 },
2286#endif
2287 {
2288 .procname = "laptop_mode",
2289 .data = &laptop_mode,
2290 .maxlen = sizeof(laptop_mode),
2291 .mode = 0644,
2292 .proc_handler = proc_dointvec_jiffies,
2293 },
2294 {}
2295};
2296#endif
2297
1da177e4 2298/*
dc6e29da
LT
2299 * Called early on to tune the page writeback dirty limits.
2300 *
2301 * We used to scale dirty pages according to how total memory
0a18e607 2302 * related to pages that could be allocated for buffers.
dc6e29da
LT
2303 *
2304 * However, that was when we used "dirty_ratio" to scale with
2305 * all memory, and we don't do that any more. "dirty_ratio"
0a18e607 2306 * is now applied to total non-HIGHPAGE memory, and as such we can't
dc6e29da
LT
2307 * get into the old insane situation any more where we had
2308 * large amounts of dirty pages compared to a small amount of
2309 * non-HIGHMEM memory.
2310 *
2311 * But we might still want to scale the dirty_ratio by how
2312 * much memory the box has..
1da177e4
LT
2313 */
2314void __init page_writeback_init(void)
2315{
a50fcb51
RV
2316 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2317
1d7ac6ae
SAS
2318 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2319 page_writeback_cpu_online, NULL);
2320 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2321 page_writeback_cpu_online);
aa779e51 2322#ifdef CONFIG_SYSCTL
2323 register_sysctl_init("vm", vm_page_writeback_sysctls);
2324#endif
1da177e4
LT
2325}
2326
f446daae
JK
2327/**
2328 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2329 * @mapping: address space structure to write
2330 * @start: starting page index
2331 * @end: ending page index (inclusive)
2332 *
2333 * This function scans the page range from @start to @end (inclusive) and tags
2334 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2335 * that write_cache_pages (or whoever calls this function) will then use
2336 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2337 * used to avoid livelocking of writeback by a process steadily creating new
2338 * dirty pages in the file (thus it is important for this function to be quick
2339 * so that it can tag pages faster than a dirtying process can create them).
2340 */
f446daae
JK
2341void tag_pages_for_writeback(struct address_space *mapping,
2342 pgoff_t start, pgoff_t end)
2343{
ff9c745b
MW
2344 XA_STATE(xas, &mapping->i_pages, start);
2345 unsigned int tagged = 0;
2346 void *page;
268f42de 2347
ff9c745b
MW
2348 xas_lock_irq(&xas);
2349 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2350 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2351 if (++tagged % XA_CHECK_SCHED)
268f42de 2352 continue;
ff9c745b
MW
2353
2354 xas_pause(&xas);
2355 xas_unlock_irq(&xas);
f446daae 2356 cond_resched();
ff9c745b 2357 xas_lock_irq(&xas);
268f42de 2358 }
ff9c745b 2359 xas_unlock_irq(&xas);
f446daae
JK
2360}
2361EXPORT_SYMBOL(tag_pages_for_writeback);
2362
811d736f 2363/**
0ea97180 2364 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2365 * @mapping: address space structure to write
2366 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2367 * @writepage: function called for each page
2368 * @data: data passed to writepage function
811d736f 2369 *
0ea97180 2370 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2371 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2372 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2373 * and msync() need to guarantee that all the data which was dirty at the time
2374 * the call was made get new I/O started against them. If wbc->sync_mode is
2375 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2376 * existing IO to complete.
f446daae
JK
2377 *
2378 * To avoid livelocks (when other process dirties new pages), we first tag
2379 * pages which should be written back with TOWRITE tag and only then start
2380 * writing them. For data-integrity sync we have to be careful so that we do
2381 * not miss some pages (e.g., because some other process has cleared TOWRITE
2382 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2383 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2384 *
2385 * To avoid deadlocks between range_cyclic writeback and callers that hold
2386 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2387 * we do not loop back to the start of the file. Doing so causes a page
2388 * lock/page writeback access order inversion - we should only ever lock
2389 * multiple pages in ascending page->index order, and looping back to the start
2390 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2391 *
2392 * Return: %0 on success, negative error code otherwise
811d736f 2393 */
0ea97180
MS
2394int write_cache_pages(struct address_space *mapping,
2395 struct writeback_control *wbc, writepage_t writepage,
2396 void *data)
811d736f 2397{
811d736f
DH
2398 int ret = 0;
2399 int done = 0;
3fa750dc 2400 int error;
0fff435f
VMO
2401 struct folio_batch fbatch;
2402 int nr_folios;
811d736f
DH
2403 pgoff_t index;
2404 pgoff_t end; /* Inclusive */
bd19e012 2405 pgoff_t done_index;
811d736f 2406 int range_whole = 0;
ff9c745b 2407 xa_mark_t tag;
811d736f 2408
0fff435f 2409 folio_batch_init(&fbatch);
811d736f 2410 if (wbc->range_cyclic) {
28659cc8 2411 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2412 end = -1;
2413 } else {
09cbfeaf
KS
2414 index = wbc->range_start >> PAGE_SHIFT;
2415 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2416 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2417 range_whole = 1;
811d736f 2418 }
cc7b8f62
MFO
2419 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2420 tag_pages_for_writeback(mapping, index, end);
f446daae 2421 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2422 } else {
f446daae 2423 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2424 }
bd19e012 2425 done_index = index;
5a3d5c98
NP
2426 while (!done && (index <= end)) {
2427 int i;
2428
0fff435f
VMO
2429 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2430 tag, &fbatch);
2431
2432 if (nr_folios == 0)
5a3d5c98 2433 break;
811d736f 2434
0fff435f
VMO
2435 for (i = 0; i < nr_folios; i++) {
2436 struct folio *folio = fbatch.folios[i];
811d736f 2437
0fff435f 2438 done_index = folio->index;
d5482cdf 2439
0fff435f 2440 folio_lock(folio);
811d736f 2441
5a3d5c98
NP
2442 /*
2443 * Page truncated or invalidated. We can freely skip it
2444 * then, even for data integrity operations: the page
2445 * has disappeared concurrently, so there could be no
f0953a1b 2446 * real expectation of this data integrity operation
5a3d5c98
NP
2447 * even if there is now a new, dirty page at the same
2448 * pagecache address.
2449 */
0fff435f 2450 if (unlikely(folio->mapping != mapping)) {
5a3d5c98 2451continue_unlock:
0fff435f 2452 folio_unlock(folio);
811d736f
DH
2453 continue;
2454 }
2455
0fff435f 2456 if (!folio_test_dirty(folio)) {
515f4a03
NP
2457 /* someone wrote it for us */
2458 goto continue_unlock;
2459 }
2460
0fff435f 2461 if (folio_test_writeback(folio)) {
515f4a03 2462 if (wbc->sync_mode != WB_SYNC_NONE)
0fff435f 2463 folio_wait_writeback(folio);
515f4a03
NP
2464 else
2465 goto continue_unlock;
2466 }
811d736f 2467
0fff435f
VMO
2468 BUG_ON(folio_test_writeback(folio));
2469 if (!folio_clear_dirty_for_io(folio))
5a3d5c98 2470 goto continue_unlock;
811d736f 2471
de1414a6 2472 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
d585bdbe 2473 error = writepage(folio, wbc, data);
3fa750dc
BF
2474 if (unlikely(error)) {
2475 /*
2476 * Handle errors according to the type of
2477 * writeback. There's no need to continue for
2478 * background writeback. Just push done_index
2479 * past this page so media errors won't choke
2480 * writeout for the entire file. For integrity
2481 * writeback, we must process the entire dirty
2482 * set regardless of errors because the fs may
2483 * still have state to clear for each page. In
2484 * that case we continue processing and return
2485 * the first error.
2486 */
2487 if (error == AOP_WRITEPAGE_ACTIVATE) {
0fff435f 2488 folio_unlock(folio);
3fa750dc
BF
2489 error = 0;
2490 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2491 ret = error;
0fff435f
VMO
2492 done_index = folio->index +
2493 folio_nr_pages(folio);
00266770
NP
2494 done = 1;
2495 break;
2496 }
3fa750dc
BF
2497 if (!ret)
2498 ret = error;
0b564927 2499 }
00266770 2500
546a1924
DC
2501 /*
2502 * We stop writing back only if we are not doing
2503 * integrity sync. In case of integrity sync we have to
2504 * keep going until we have written all the pages
2505 * we tagged for writeback prior to entering this loop.
2506 */
2507 if (--wbc->nr_to_write <= 0 &&
2508 wbc->sync_mode == WB_SYNC_NONE) {
2509 done = 1;
2510 break;
05fe478d 2511 }
811d736f 2512 }
0fff435f 2513 folio_batch_release(&fbatch);
811d736f
DH
2514 cond_resched();
2515 }
64081362
DC
2516
2517 /*
2518 * If we hit the last page and there is more work to be done: wrap
2519 * back the index back to the start of the file for the next
2520 * time we are called.
2521 */
2522 if (wbc->range_cyclic && !done)
2523 done_index = 0;
0b564927
DC
2524 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2525 mapping->writeback_index = done_index;
06d6cf69 2526
811d736f
DH
2527 return ret;
2528}
0ea97180
MS
2529EXPORT_SYMBOL(write_cache_pages);
2530
d585bdbe 2531static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
c2ca7a59 2532 void *data)
0ea97180
MS
2533{
2534 struct address_space *mapping = data;
d585bdbe 2535 int ret = mapping->a_ops->writepage(&folio->page, wbc);
0ea97180
MS
2536 mapping_set_error(mapping, ret);
2537 return ret;
2538}
2539
1da177e4
LT
2540int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2541{
22905f77 2542 int ret;
fee468fd 2543 struct bdi_writeback *wb;
22905f77 2544
1da177e4
LT
2545 if (wbc->nr_to_write <= 0)
2546 return 0;
fee468fd
JK
2547 wb = inode_to_wb_wbc(mapping->host, wbc);
2548 wb_bandwidth_estimate_start(wb);
80a2ea9f 2549 while (1) {
c2ca7a59 2550 if (mapping->a_ops->writepages) {
80a2ea9f 2551 ret = mapping->a_ops->writepages(mapping, wbc);
c2ca7a59
CH
2552 } else if (mapping->a_ops->writepage) {
2553 struct blk_plug plug;
2554
2555 blk_start_plug(&plug);
2556 ret = write_cache_pages(mapping, wbc, writepage_cb,
2557 mapping);
2558 blk_finish_plug(&plug);
2559 } else {
2560 /* deal with chardevs and other special files */
2561 ret = 0;
2562 }
2563 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
80a2ea9f 2564 break;
8d58802f
MG
2565
2566 /*
2567 * Lacking an allocation context or the locality or writeback
2568 * state of any of the inode's pages, throttle based on
2569 * writeback activity on the local node. It's as good a
2570 * guess as any.
2571 */
2572 reclaim_throttle(NODE_DATA(numa_node_id()),
c3f4a9a2 2573 VMSCAN_THROTTLE_WRITEBACK);
80a2ea9f 2574 }
45a2966f
JK
2575 /*
2576 * Usually few pages are written by now from those we've just submitted
2577 * but if there's constant writeback being submitted, this makes sure
2578 * writeback bandwidth is updated once in a while.
2579 */
20792ebf
JK
2580 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2581 BANDWIDTH_INTERVAL))
45a2966f 2582 wb_update_bandwidth(wb);
22905f77 2583 return ret;
1da177e4
LT
2584}
2585
76719325
KC
2586/*
2587 * For address_spaces which do not use buffers nor write back.
2588 */
46de8b97 2589bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
76719325 2590{
46de8b97
MWO
2591 if (!folio_test_dirty(folio))
2592 return !folio_test_set_dirty(folio);
2593 return false;
76719325 2594}
46de8b97 2595EXPORT_SYMBOL(noop_dirty_folio);
76719325 2596
e3a7cca1
ES
2597/*
2598 * Helper function for set_page_dirty family.
c4843a75 2599 *
81f8c3a4 2600 * Caller must hold lock_page_memcg().
c4843a75 2601 *
e3a7cca1
ES
2602 * NOTE: This relies on being atomic wrt interrupts.
2603 */
203a3151 2604static void folio_account_dirtied(struct folio *folio,
6e1cae88 2605 struct address_space *mapping)
e3a7cca1 2606{
52ebea74
TH
2607 struct inode *inode = mapping->host;
2608
b9b0ff61 2609 trace_writeback_dirty_folio(folio, mapping);
9fb0a7da 2610
f56753ac 2611 if (mapping_can_writeback(mapping)) {
52ebea74 2612 struct bdi_writeback *wb;
203a3151 2613 long nr = folio_nr_pages(folio);
de1414a6 2614
9cfb816b 2615 inode_attach_wb(inode, folio);
52ebea74 2616 wb = inode_to_wb(inode);
de1414a6 2617
203a3151
MWO
2618 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2619 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2620 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2621 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2622 wb_stat_mod(wb, WB_DIRTIED, nr);
2623 task_io_account_write(nr * PAGE_SIZE);
2624 current->nr_dirtied += nr;
2625 __this_cpu_add(bdp_ratelimits, nr);
97b27821 2626
203a3151 2627 mem_cgroup_track_foreign_dirty(folio, wb);
e3a7cca1
ES
2628 }
2629}
2630
b9ea2515
KK
2631/*
2632 * Helper function for deaccounting dirty page without writeback.
2633 *
81f8c3a4 2634 * Caller must hold lock_page_memcg().
b9ea2515 2635 */
566d3362 2636void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
b9ea2515 2637{
566d3362
HD
2638 long nr = folio_nr_pages(folio);
2639
2640 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2641 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2642 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2643 task_io_account_cancelled_write(nr * PAGE_SIZE);
b9ea2515 2644}
b9ea2515 2645
6e1cae88 2646/*
203a3151
MWO
2647 * Mark the folio dirty, and set it dirty in the page cache, and mark
2648 * the inode dirty.
6e1cae88 2649 *
203a3151 2650 * If warn is true, then emit a warning if the folio is not uptodate and has
6e1cae88
MWO
2651 * not been truncated.
2652 *
a229a4f0
MWO
2653 * The caller must hold lock_page_memcg(). Most callers have the folio
2654 * locked. A few have the folio blocked from truncation through other
e9adcfec 2655 * means (eg zap_vma_pages() has it mapped and is holding the page table
a229a4f0
MWO
2656 * lock). This can also be called from mark_buffer_dirty(), which I
2657 * cannot prove is always protected against truncate.
6e1cae88 2658 */
203a3151 2659void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
6e1cae88
MWO
2660 int warn)
2661{
2662 unsigned long flags;
2663
2664 xa_lock_irqsave(&mapping->i_pages, flags);
203a3151
MWO
2665 if (folio->mapping) { /* Race with truncate? */
2666 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2667 folio_account_dirtied(folio, mapping);
2668 __xa_set_mark(&mapping->i_pages, folio_index(folio),
6e1cae88
MWO
2669 PAGECACHE_TAG_DIRTY);
2670 }
2671 xa_unlock_irqrestore(&mapping->i_pages, flags);
2672}
2673
85d4d2eb
MWO
2674/**
2675 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2676 * @mapping: Address space this folio belongs to.
2677 * @folio: Folio to be marked as dirty.
1da177e4 2678 *
85d4d2eb
MWO
2679 * Filesystems which do not use buffer heads should call this function
2680 * from their set_page_dirty address space operation. It ignores the
2681 * contents of folio_get_private(), so if the filesystem marks individual
2682 * blocks as dirty, the filesystem should handle that itself.
1da177e4 2683 *
85d4d2eb
MWO
2684 * This is also sometimes used by filesystems which use buffer_heads when
2685 * a single buffer is being dirtied: we want to set the folio dirty in
2686 * that case, but not all the buffers. This is a "bottom-up" dirtying,
e621900a 2687 * whereas block_dirty_folio() is a "top-down" dirtying.
85d4d2eb
MWO
2688 *
2689 * The caller must ensure this doesn't race with truncation. Most will
2690 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2691 * folio mapped and the pte lock held, which also locks out truncation.
1da177e4 2692 */
85d4d2eb 2693bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
1da177e4 2694{
85d4d2eb
MWO
2695 folio_memcg_lock(folio);
2696 if (folio_test_set_dirty(folio)) {
2697 folio_memcg_unlock(folio);
2698 return false;
2699 }
1da177e4 2700
85d4d2eb
MWO
2701 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2702 folio_memcg_unlock(folio);
c4843a75 2703
85d4d2eb
MWO
2704 if (mapping->host) {
2705 /* !PageAnon && !swapper_space */
2706 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2707 }
85d4d2eb 2708 return true;
1da177e4 2709}
85d4d2eb 2710EXPORT_SYMBOL(filemap_dirty_folio);
1da177e4 2711
25ff8b15
MWO
2712/**
2713 * folio_account_redirty - Manually account for redirtying a page.
2714 * @folio: The folio which is being redirtied.
2715 *
2716 * Most filesystems should call folio_redirty_for_writepage() instead
2717 * of this fuction. If your filesystem is doing writeback outside the
2718 * context of a writeback_control(), it can call this when redirtying
2719 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2720 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2721 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2722 * in balanced_dirty_ratelimit and the dirty pages position control.
2f800fbd 2723 */
25ff8b15 2724void folio_account_redirty(struct folio *folio)
2f800fbd 2725{
25ff8b15 2726 struct address_space *mapping = folio->mapping;
91018134 2727
f56753ac 2728 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2729 struct inode *inode = mapping->host;
2730 struct bdi_writeback *wb;
2e898e4c 2731 struct wb_lock_cookie cookie = {};
25ff8b15 2732 long nr = folio_nr_pages(folio);
91018134 2733
2e898e4c 2734 wb = unlocked_inode_to_wb_begin(inode, &cookie);
25ff8b15
MWO
2735 current->nr_dirtied -= nr;
2736 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2737 wb_stat_mod(wb, WB_DIRTIED, -nr);
2e898e4c 2738 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2739 }
2740}
25ff8b15 2741EXPORT_SYMBOL(folio_account_redirty);
2f800fbd 2742
cd78ab11
MWO
2743/**
2744 * folio_redirty_for_writepage - Decline to write a dirty folio.
2745 * @wbc: The writeback control.
2746 * @folio: The folio.
2747 *
2748 * When a writepage implementation decides that it doesn't want to write
2749 * @folio for some reason, it should call this function, unlock @folio and
2750 * return 0.
2751 *
2752 * Return: True if we redirtied the folio. False if someone else dirtied
2753 * it first.
1da177e4 2754 */
cd78ab11
MWO
2755bool folio_redirty_for_writepage(struct writeback_control *wbc,
2756 struct folio *folio)
1da177e4 2757{
cd78ab11
MWO
2758 bool ret;
2759 long nr = folio_nr_pages(folio);
2760
2761 wbc->pages_skipped += nr;
2762 ret = filemap_dirty_folio(folio->mapping, folio);
2763 folio_account_redirty(folio);
8d38633c 2764
8d38633c 2765 return ret;
1da177e4 2766}
cd78ab11 2767EXPORT_SYMBOL(folio_redirty_for_writepage);
1da177e4 2768
b5e84594
MWO
2769/**
2770 * folio_mark_dirty - Mark a folio as being modified.
2771 * @folio: The folio.
6746aff7 2772 *
2ca456c2
MWO
2773 * The folio may not be truncated while this function is running.
2774 * Holding the folio lock is sufficient to prevent truncation, but some
2775 * callers cannot acquire a sleeping lock. These callers instead hold
2776 * the page table lock for a page table which contains at least one page
2777 * in this folio. Truncation will block on the page table lock as it
2778 * unmaps pages before removing the folio from its mapping.
b5e84594
MWO
2779 *
2780 * Return: True if the folio was newly dirtied, false if it was already dirty.
1da177e4 2781 */
b5e84594 2782bool folio_mark_dirty(struct folio *folio)
1da177e4 2783{
b5e84594 2784 struct address_space *mapping = folio_mapping(folio);
1da177e4
LT
2785
2786 if (likely(mapping)) {
278df9f4 2787 /*
5a9e3474 2788 * readahead/folio_deactivate could remain
6f31a5a2
MWO
2789 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2790 * About readahead, if the folio is written, the flags would be
278df9f4 2791 * reset. So no problem.
5a9e3474 2792 * About folio_deactivate, if the folio is redirtied,
6f31a5a2
MWO
2793 * the flag will be reset. So no problem. but if the
2794 * folio is used by readahead it will confuse readahead
2795 * and make it restart the size rampup process. But it's
2796 * a trivial problem.
278df9f4 2797 */
b5e84594
MWO
2798 if (folio_test_reclaim(folio))
2799 folio_clear_reclaim(folio);
3a3bae50 2800 return mapping->a_ops->dirty_folio(mapping, folio);
4741c9fd 2801 }
3a3bae50
MWO
2802
2803 return noop_dirty_folio(mapping, folio);
1da177e4 2804}
b5e84594 2805EXPORT_SYMBOL(folio_mark_dirty);
1da177e4
LT
2806
2807/*
2808 * set_page_dirty() is racy if the caller has no reference against
2809 * page->mapping->host, and if the page is unlocked. This is because another
2810 * CPU could truncate the page off the mapping and then free the mapping.
2811 *
2812 * Usually, the page _is_ locked, or the caller is a user-space process which
2813 * holds a reference on the inode by having an open file.
2814 *
2815 * In other cases, the page should be locked before running set_page_dirty().
2816 */
2817int set_page_dirty_lock(struct page *page)
2818{
2819 int ret;
2820
7eaceacc 2821 lock_page(page);
1da177e4
LT
2822 ret = set_page_dirty(page);
2823 unlock_page(page);
2824 return ret;
2825}
2826EXPORT_SYMBOL(set_page_dirty_lock);
2827
11f81bec
TH
2828/*
2829 * This cancels just the dirty bit on the kernel page itself, it does NOT
2830 * actually remove dirty bits on any mmap's that may be around. It also
2831 * leaves the page tagged dirty, so any sync activity will still find it on
2832 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2833 * look at the dirty bits in the VM.
2834 *
2835 * Doing this should *normally* only ever be done when a page is truncated,
2836 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2837 * this when it notices that somebody has cleaned out all the buffers on a
2838 * page without actually doing it through the VM. Can you say "ext3 is
2839 * horribly ugly"? Thought you could.
2840 */
fdaf532a 2841void __folio_cancel_dirty(struct folio *folio)
11f81bec 2842{
fdaf532a 2843 struct address_space *mapping = folio_mapping(folio);
c4843a75 2844
f56753ac 2845 if (mapping_can_writeback(mapping)) {
682aa8e1
TH
2846 struct inode *inode = mapping->host;
2847 struct bdi_writeback *wb;
2e898e4c 2848 struct wb_lock_cookie cookie = {};
c4843a75 2849
fdaf532a 2850 folio_memcg_lock(folio);
2e898e4c 2851 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75 2852
fdaf532a 2853 if (folio_test_clear_dirty(folio))
566d3362 2854 folio_account_cleaned(folio, wb);
c4843a75 2855
2e898e4c 2856 unlocked_inode_to_wb_end(inode, &cookie);
fdaf532a 2857 folio_memcg_unlock(folio);
c4843a75 2858 } else {
fdaf532a 2859 folio_clear_dirty(folio);
c4843a75 2860 }
11f81bec 2861}
fdaf532a 2862EXPORT_SYMBOL(__folio_cancel_dirty);
11f81bec 2863
1da177e4 2864/*
9350f20a
MWO
2865 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2866 * Returns true if the folio was previously dirty.
1da177e4 2867 *
9350f20a
MWO
2868 * This is for preparing to put the folio under writeout. We leave
2869 * the folio tagged as dirty in the xarray so that a concurrent
2870 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2871 * The ->writepage implementation will run either folio_start_writeback()
2872 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2873 * and xarray dirty tag back into sync.
1da177e4 2874 *
9350f20a
MWO
2875 * This incoherency between the folio's dirty flag and xarray tag is
2876 * unfortunate, but it only exists while the folio is locked.
1da177e4 2877 */
9350f20a 2878bool folio_clear_dirty_for_io(struct folio *folio)
1da177e4 2879{
9350f20a
MWO
2880 struct address_space *mapping = folio_mapping(folio);
2881 bool ret = false;
1da177e4 2882
9350f20a 2883 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
79352894 2884
f56753ac 2885 if (mapping && mapping_can_writeback(mapping)) {
682aa8e1
TH
2886 struct inode *inode = mapping->host;
2887 struct bdi_writeback *wb;
2e898e4c 2888 struct wb_lock_cookie cookie = {};
682aa8e1 2889
7658cc28
LT
2890 /*
2891 * Yes, Virginia, this is indeed insane.
2892 *
2893 * We use this sequence to make sure that
2894 * (a) we account for dirty stats properly
2895 * (b) we tell the low-level filesystem to
9350f20a 2896 * mark the whole folio dirty if it was
7658cc28 2897 * dirty in a pagetable. Only to then
9350f20a 2898 * (c) clean the folio again and return 1 to
7658cc28
LT
2899 * cause the writeback.
2900 *
2901 * This way we avoid all nasty races with the
2902 * dirty bit in multiple places and clearing
2903 * them concurrently from different threads.
2904 *
9350f20a 2905 * Note! Normally the "folio_mark_dirty(folio)"
7658cc28
LT
2906 * has no effect on the actual dirty bit - since
2907 * that will already usually be set. But we
2908 * need the side effects, and it can help us
2909 * avoid races.
2910 *
9350f20a 2911 * We basically use the folio "master dirty bit"
7658cc28
LT
2912 * as a serialization point for all the different
2913 * threads doing their things.
7658cc28 2914 */
9350f20a
MWO
2915 if (folio_mkclean(folio))
2916 folio_mark_dirty(folio);
79352894
NP
2917 /*
2918 * We carefully synchronise fault handlers against
9350f20a 2919 * installing a dirty pte and marking the folio dirty
2d6d7f98 2920 * at this point. We do this by having them hold the
9350f20a 2921 * page lock while dirtying the folio, and folios are
2d6d7f98
JW
2922 * always locked coming in here, so we get the desired
2923 * exclusion.
79352894 2924 */
2e898e4c 2925 wb = unlocked_inode_to_wb_begin(inode, &cookie);
9350f20a
MWO
2926 if (folio_test_clear_dirty(folio)) {
2927 long nr = folio_nr_pages(folio);
2928 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2929 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2930 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2931 ret = true;
1da177e4 2932 }
2e898e4c 2933 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2934 return ret;
1da177e4 2935 }
9350f20a 2936 return folio_test_clear_dirty(folio);
1da177e4 2937}
9350f20a 2938EXPORT_SYMBOL(folio_clear_dirty_for_io);
1da177e4 2939
633a2abb
JK
2940static void wb_inode_writeback_start(struct bdi_writeback *wb)
2941{
2942 atomic_inc(&wb->writeback_inodes);
2943}
2944
2945static void wb_inode_writeback_end(struct bdi_writeback *wb)
2946{
f87904c0 2947 unsigned long flags;
633a2abb 2948 atomic_dec(&wb->writeback_inodes);
45a2966f
JK
2949 /*
2950 * Make sure estimate of writeback throughput gets updated after
2951 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2952 * (which is the interval other bandwidth updates use for batching) so
2953 * that if multiple inodes end writeback at a similar time, they get
2954 * batched into one bandwidth update.
2955 */
f87904c0
KK
2956 spin_lock_irqsave(&wb->work_lock, flags);
2957 if (test_bit(WB_registered, &wb->state))
2958 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2959 spin_unlock_irqrestore(&wb->work_lock, flags);
633a2abb
JK
2960}
2961
269ccca3 2962bool __folio_end_writeback(struct folio *folio)
1da177e4 2963{
269ccca3
MWO
2964 long nr = folio_nr_pages(folio);
2965 struct address_space *mapping = folio_mapping(folio);
2966 bool ret;
1da177e4 2967
269ccca3 2968 folio_memcg_lock(folio);
371a096e 2969 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2970 struct inode *inode = mapping->host;
2971 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2972 unsigned long flags;
2973
b93b0163 2974 xa_lock_irqsave(&mapping->i_pages, flags);
269ccca3 2975 ret = folio_test_clear_writeback(folio);
69cb51d1 2976 if (ret) {
269ccca3 2977 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
1da177e4 2978 PAGECACHE_TAG_WRITEBACK);
823423ef 2979 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
91018134
TH
2980 struct bdi_writeback *wb = inode_to_wb(inode);
2981
269ccca3
MWO
2982 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2983 __wb_writeout_add(wb, nr);
633a2abb
JK
2984 if (!mapping_tagged(mapping,
2985 PAGECACHE_TAG_WRITEBACK))
2986 wb_inode_writeback_end(wb);
04fbfdc1 2987 }
69cb51d1 2988 }
6c60d2b5
DC
2989
2990 if (mapping->host && !mapping_tagged(mapping,
2991 PAGECACHE_TAG_WRITEBACK))
2992 sb_clear_inode_writeback(mapping->host);
2993
b93b0163 2994 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4 2995 } else {
269ccca3 2996 ret = folio_test_clear_writeback(folio);
1da177e4 2997 }
99b12e3d 2998 if (ret) {
269ccca3
MWO
2999 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3000 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3001 node_stat_mod_folio(folio, NR_WRITTEN, nr);
99b12e3d 3002 }
269ccca3 3003 folio_memcg_unlock(folio);
1da177e4
LT
3004 return ret;
3005}
3006
f143f1ea 3007bool __folio_start_writeback(struct folio *folio, bool keep_write)
1da177e4 3008{
f143f1ea
MWO
3009 long nr = folio_nr_pages(folio);
3010 struct address_space *mapping = folio_mapping(folio);
3011 bool ret;
3012 int access_ret;
1da177e4 3013
f143f1ea 3014 folio_memcg_lock(folio);
371a096e 3015 if (mapping && mapping_use_writeback_tags(mapping)) {
f143f1ea 3016 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
91018134
TH
3017 struct inode *inode = mapping->host;
3018 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
3019 unsigned long flags;
3020
ff9c745b
MW
3021 xas_lock_irqsave(&xas, flags);
3022 xas_load(&xas);
f143f1ea 3023 ret = folio_test_set_writeback(folio);
69cb51d1 3024 if (!ret) {
6c60d2b5
DC
3025 bool on_wblist;
3026
3027 on_wblist = mapping_tagged(mapping,
3028 PAGECACHE_TAG_WRITEBACK);
3029
ff9c745b 3030 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
633a2abb
JK
3031 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3032 struct bdi_writeback *wb = inode_to_wb(inode);
3033
f143f1ea 3034 wb_stat_mod(wb, WB_WRITEBACK, nr);
633a2abb
JK
3035 if (!on_wblist)
3036 wb_inode_writeback_start(wb);
3037 }
6c60d2b5
DC
3038
3039 /*
f143f1ea
MWO
3040 * We can come through here when swapping
3041 * anonymous folios, so we don't necessarily
3042 * have an inode to track for sync.
6c60d2b5
DC
3043 */
3044 if (mapping->host && !on_wblist)
3045 sb_mark_inode_writeback(mapping->host);
69cb51d1 3046 }
f143f1ea 3047 if (!folio_test_dirty(folio))
ff9c745b 3048 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 3049 if (!keep_write)
ff9c745b
MW
3050 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3051 xas_unlock_irqrestore(&xas, flags);
1da177e4 3052 } else {
f143f1ea 3053 ret = folio_test_set_writeback(folio);
1da177e4 3054 }
3a3c02ec 3055 if (!ret) {
f143f1ea
MWO
3056 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3057 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3a3c02ec 3058 }
f143f1ea
MWO
3059 folio_memcg_unlock(folio);
3060 access_ret = arch_make_folio_accessible(folio);
f28d4363
CI
3061 /*
3062 * If writeback has been triggered on a page that cannot be made
3063 * accessible, it is too late to recover here.
3064 */
f143f1ea 3065 VM_BUG_ON_FOLIO(access_ret != 0, folio);
f28d4363 3066
1da177e4 3067 return ret;
1da177e4 3068}
f143f1ea 3069EXPORT_SYMBOL(__folio_start_writeback);
1da177e4 3070
490e016f
MWO
3071/**
3072 * folio_wait_writeback - Wait for a folio to finish writeback.
3073 * @folio: The folio to wait for.
3074 *
3075 * If the folio is currently being written back to storage, wait for the
3076 * I/O to complete.
3077 *
3078 * Context: Sleeps. Must be called in process context and with
3079 * no spinlocks held. Caller should hold a reference on the folio.
3080 * If the folio is not locked, writeback may start again after writeback
3081 * has finished.
19343b5b 3082 */
490e016f 3083void folio_wait_writeback(struct folio *folio)
19343b5b 3084{
490e016f 3085 while (folio_test_writeback(folio)) {
b9b0ff61 3086 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3087 folio_wait_bit(folio, PG_writeback);
19343b5b
YS
3088 }
3089}
490e016f 3090EXPORT_SYMBOL_GPL(folio_wait_writeback);
19343b5b 3091
490e016f
MWO
3092/**
3093 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3094 * @folio: The folio to wait for.
3095 *
3096 * If the folio is currently being written back to storage, wait for the
3097 * I/O to complete or a fatal signal to arrive.
3098 *
3099 * Context: Sleeps. Must be called in process context and with
3100 * no spinlocks held. Caller should hold a reference on the folio.
3101 * If the folio is not locked, writeback may start again after writeback
3102 * has finished.
3103 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
e5dbd332 3104 */
490e016f 3105int folio_wait_writeback_killable(struct folio *folio)
e5dbd332 3106{
490e016f 3107 while (folio_test_writeback(folio)) {
b9b0ff61 3108 trace_folio_wait_writeback(folio, folio_mapping(folio));
101c0bf6 3109 if (folio_wait_bit_killable(folio, PG_writeback))
e5dbd332
MWO
3110 return -EINTR;
3111 }
3112
3113 return 0;
3114}
490e016f 3115EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
e5dbd332 3116
1d1d1a76 3117/**
a49d0c50
MWO
3118 * folio_wait_stable() - wait for writeback to finish, if necessary.
3119 * @folio: The folio to wait on.
1d1d1a76 3120 *
a49d0c50
MWO
3121 * This function determines if the given folio is related to a backing
3122 * device that requires folio contents to be held stable during writeback.
3123 * If so, then it will wait for any pending writeback to complete.
3124 *
3125 * Context: Sleeps. Must be called in process context and with
3126 * no spinlocks held. Caller should hold a reference on the folio.
3127 * If the folio is not locked, writeback may start again after writeback
3128 * has finished.
1d1d1a76 3129 */
a49d0c50 3130void folio_wait_stable(struct folio *folio)
1d1d1a76 3131{
452c472e 3132 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
a49d0c50 3133 folio_wait_writeback(folio);
1d1d1a76 3134}
a49d0c50 3135EXPORT_SYMBOL_GPL(folio_wait_stable);