mm: parallelize deferred_init_memmap()
[linux-2.6-block.git] / mm / page-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4 2/*
f30c2269 3 * mm/page-writeback.c
1da177e4
LT
4 *
5 * Copyright (C) 2002, Linus Torvalds.
90eec103 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Initial version
13 */
14
15#include <linux/kernel.h>
b95f1b31 16#include <linux/export.h>
1da177e4
LT
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/writeback.h>
24#include <linux/init.h>
25#include <linux/backing-dev.h>
55e829af 26#include <linux/task_io_accounting_ops.h>
1da177e4
LT
27#include <linux/blkdev.h>
28#include <linux/mpage.h>
d08b3851 29#include <linux/rmap.h>
1da177e4 30#include <linux/percpu.h>
1da177e4
LT
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
dcc25ae7 126struct wb_domain global_wb_domain;
1da177e4 127
2bc00aef
TH
128/* consolidated parameters for balance_dirty_pages() and its subroutines */
129struct dirty_throttle_control {
e9f07dfd
TH
130#ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
9fc3a43e 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 133#endif
2bc00aef 134 struct bdi_writeback *wb;
e9770b34 135 struct fprop_local_percpu *wb_completions;
eb608e3a 136
9fc3a43e 137 unsigned long avail; /* dirtyable */
2bc00aef
TH
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
970fb01a 144 unsigned long wb_bg_thresh;
daddfa3c
TH
145
146 unsigned long pos_ratio;
2bc00aef
TH
147};
148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
d60d1bdd
TH
158#define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
9fc3a43e 162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
163
164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
c2aa723a
TH
168
169static bool mdtc_valid(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
e9f07dfd
TH
173
174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175{
176 return dtc->dom;
177}
178
9fc3a43e
TH
179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180{
181 return mdtc->gdtc;
182}
183
841710aa
TH
184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185{
186 return &wb->memcg_completions;
187}
188
693108a8
TH
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
6d9e8c65 204 min = div64_ul(min, tot_bw);
693108a8
TH
205 }
206 if (max < 100) {
207 max *= this_bw;
6d9e8c65 208 max = div64_ul(max, tot_bw);
693108a8
TH
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214}
215
216#else /* CONFIG_CGROUP_WRITEBACK */
217
d60d1bdd
TH
218#define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
9fc3a43e 220#define GDTC_INIT_NO_WB
c2aa723a
TH
221#define MDTC_INIT(__wb, __gdtc)
222
223static bool mdtc_valid(struct dirty_throttle_control *dtc)
224{
225 return false;
226}
e9f07dfd
TH
227
228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229{
230 return &global_wb_domain;
231}
232
9fc3a43e
TH
233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234{
235 return NULL;
236}
237
841710aa
TH
238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239{
240 return NULL;
241}
242
693108a8
TH
243static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245{
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248}
249
250#endif /* CONFIG_CGROUP_WRITEBACK */
251
a756cf59
JW
252/*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
a804552b 270/**
281e3726
MG
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
a804552b 273 *
a862f68a 274 * Return: the node's number of pages potentially available for dirty
281e3726 275 * page cache. This is the base value for the per-node dirty limits.
a804552b 276 */
281e3726 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 278{
281e3726
MG
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
a804552b 290
a8d01437
JW
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
281e3726 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 297
281e3726
MG
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
300
301 return nr_pages;
302}
303
1edf2234
JW
304static unsigned long highmem_dirtyable_memory(unsigned long total)
305{
306#ifdef CONFIG_HIGHMEM
307 int node;
bb4cc2be 308 unsigned long x = 0;
09b4ab3c 309 int i;
1edf2234
JW
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
9cb937e2 314 unsigned long nr_pages;
281e3726
MG
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
320 if (!populated_zone(z))
321 continue;
1edf2234 322
9cb937e2 323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 324 /* watch for underflows */
9cb937e2 325 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
09b4ab3c 329 }
1edf2234 330 }
281e3726 331
c8b74c2f
SR
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
1edf2234
JW
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351#else
352 return 0;
353#endif
354}
355
356/**
ccafa287 357 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 358 *
a862f68a 359 * Return: the global number of pages potentially available for dirty
ccafa287 360 * page cache. This is the base value for the global dirty limits.
1edf2234 361 */
18cf8cf8 362static unsigned long global_dirtyable_memory(void)
1edf2234
JW
363{
364 unsigned long x;
365
c41f012a 366 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
1edf2234 373
599d0c95
MG
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 376
1edf2234
JW
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381}
382
9fc3a43e
TH
383/**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
ccafa287 386 *
9fc3a43e
TH
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
a37b0715 390 * dirty limits will be lifted by 1/4 for real-time tasks.
ccafa287 391 */
9fc3a43e 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 393{
9fc3a43e
TH
394 const unsigned long available_memory = dtc->avail;
395 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
396 unsigned long bytes = vm_dirty_bytes;
397 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
398 /* convert ratios to per-PAGE_SIZE for higher precision */
399 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
400 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
401 unsigned long thresh;
402 unsigned long bg_thresh;
ccafa287
JW
403 struct task_struct *tsk;
404
9fc3a43e
TH
405 /* gdtc is !NULL iff @dtc is for memcg domain */
406 if (gdtc) {
407 unsigned long global_avail = gdtc->avail;
408
409 /*
410 * The byte settings can't be applied directly to memcg
411 * domains. Convert them to ratios by scaling against
62a584fe
TH
412 * globally available memory. As the ratios are in
413 * per-PAGE_SIZE, they can be obtained by dividing bytes by
414 * number of pages.
9fc3a43e
TH
415 */
416 if (bytes)
62a584fe
TH
417 ratio = min(DIV_ROUND_UP(bytes, global_avail),
418 PAGE_SIZE);
9fc3a43e 419 if (bg_bytes)
62a584fe
TH
420 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
421 PAGE_SIZE);
9fc3a43e
TH
422 bytes = bg_bytes = 0;
423 }
424
425 if (bytes)
426 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 427 else
62a584fe 428 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 429
9fc3a43e
TH
430 if (bg_bytes)
431 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 432 else
62a584fe 433 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 434
90daf306 435 if (bg_thresh >= thresh)
9fc3a43e 436 bg_thresh = thresh / 2;
ccafa287 437 tsk = current;
a37b0715 438 if (rt_task(tsk)) {
a53eaff8
N
439 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
440 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 441 }
9fc3a43e
TH
442 dtc->thresh = thresh;
443 dtc->bg_thresh = bg_thresh;
444
445 /* we should eventually report the domain in the TP */
446 if (!gdtc)
447 trace_global_dirty_state(bg_thresh, thresh);
448}
449
450/**
451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
452 * @pbackground: out parameter for bg_thresh
453 * @pdirty: out parameter for thresh
454 *
455 * Calculate bg_thresh and thresh for global_wb_domain. See
456 * domain_dirty_limits() for details.
457 */
458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
459{
460 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
461
462 gdtc.avail = global_dirtyable_memory();
463 domain_dirty_limits(&gdtc);
464
465 *pbackground = gdtc.bg_thresh;
466 *pdirty = gdtc.thresh;
ccafa287
JW
467}
468
a756cf59 469/**
281e3726
MG
470 * node_dirty_limit - maximum number of dirty pages allowed in a node
471 * @pgdat: the node
a756cf59 472 *
a862f68a 473 * Return: the maximum number of dirty pages allowed in a node, based
281e3726 474 * on the node's dirtyable memory.
a756cf59 475 */
281e3726 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 477{
281e3726 478 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
479 struct task_struct *tsk = current;
480 unsigned long dirty;
481
482 if (vm_dirty_bytes)
483 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 484 node_memory / global_dirtyable_memory();
a756cf59 485 else
281e3726 486 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59 487
a37b0715 488 if (rt_task(tsk))
a756cf59
JW
489 dirty += dirty / 4;
490
491 return dirty;
492}
493
494/**
281e3726
MG
495 * node_dirty_ok - tells whether a node is within its dirty limits
496 * @pgdat: the node to check
a756cf59 497 *
a862f68a 498 * Return: %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
499 * dirty limit, %false if the limit is exceeded.
500 */
281e3726 501bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 502{
281e3726
MG
503 unsigned long limit = node_dirty_limit(pgdat);
504 unsigned long nr_pages = 0;
505
11fb9989 506 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
11fb9989 507 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 508
281e3726 509 return nr_pages <= limit;
a756cf59
JW
510}
511
2da02997 512int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 513 void __user *buffer, size_t *lenp,
2da02997
DR
514 loff_t *ppos)
515{
516 int ret;
517
8d65af78 518 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
519 if (ret == 0 && write)
520 dirty_background_bytes = 0;
521 return ret;
522}
523
524int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 525 void __user *buffer, size_t *lenp,
2da02997
DR
526 loff_t *ppos)
527{
528 int ret;
529
8d65af78 530 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
531 if (ret == 0 && write)
532 dirty_background_ratio = 0;
533 return ret;
534}
535
04fbfdc1 536int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 537 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
538 loff_t *ppos)
539{
540 int old_ratio = vm_dirty_ratio;
2da02997
DR
541 int ret;
542
8d65af78 543 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 544 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 545 writeback_set_ratelimit();
2da02997
DR
546 vm_dirty_bytes = 0;
547 }
548 return ret;
549}
550
2da02997 551int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 552 void __user *buffer, size_t *lenp,
2da02997
DR
553 loff_t *ppos)
554{
fc3501d4 555 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
556 int ret;
557
8d65af78 558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 560 writeback_set_ratelimit();
2da02997 561 vm_dirty_ratio = 0;
04fbfdc1
PZ
562 }
563 return ret;
564}
565
eb608e3a
JK
566static unsigned long wp_next_time(unsigned long cur_time)
567{
568 cur_time += VM_COMPLETIONS_PERIOD_LEN;
569 /* 0 has a special meaning... */
570 if (!cur_time)
571 return 1;
572 return cur_time;
573}
574
c7981433
TH
575static void wb_domain_writeout_inc(struct wb_domain *dom,
576 struct fprop_local_percpu *completions,
577 unsigned int max_prop_frac)
04fbfdc1 578{
c7981433
TH
579 __fprop_inc_percpu_max(&dom->completions, completions,
580 max_prop_frac);
eb608e3a 581 /* First event after period switching was turned off? */
517663ed 582 if (unlikely(!dom->period_time)) {
eb608e3a
JK
583 /*
584 * We can race with other __bdi_writeout_inc calls here but
585 * it does not cause any harm since the resulting time when
586 * timer will fire and what is in writeout_period_time will be
587 * roughly the same.
588 */
380c27ca
TH
589 dom->period_time = wp_next_time(jiffies);
590 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 591 }
04fbfdc1
PZ
592}
593
c7981433
TH
594/*
595 * Increment @wb's writeout completion count and the global writeout
596 * completion count. Called from test_clear_page_writeback().
597 */
598static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 599{
841710aa 600 struct wb_domain *cgdom;
dd5656e5 601
3e8f399d 602 inc_wb_stat(wb, WB_WRITTEN);
c7981433
TH
603 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
604 wb->bdi->max_prop_frac);
841710aa
TH
605
606 cgdom = mem_cgroup_wb_domain(wb);
607 if (cgdom)
608 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
609 wb->bdi->max_prop_frac);
dd5656e5 610}
dd5656e5 611
93f78d88 612void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 613{
dd5656e5
MS
614 unsigned long flags;
615
616 local_irq_save(flags);
93f78d88 617 __wb_writeout_inc(wb);
dd5656e5 618 local_irq_restore(flags);
04fbfdc1 619}
93f78d88 620EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 621
eb608e3a
JK
622/*
623 * On idle system, we can be called long after we scheduled because we use
624 * deferred timers so count with missed periods.
625 */
9823e51b 626static void writeout_period(struct timer_list *t)
eb608e3a 627{
9823e51b 628 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 629 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
630 VM_COMPLETIONS_PERIOD_LEN;
631
380c27ca
TH
632 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
633 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 634 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 635 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
636 } else {
637 /*
638 * Aging has zeroed all fractions. Stop wasting CPU on period
639 * updates.
640 */
380c27ca 641 dom->period_time = 0;
eb608e3a
JK
642 }
643}
644
380c27ca
TH
645int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
646{
647 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
648
649 spin_lock_init(&dom->lock);
650
9823e51b 651 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
652
653 dom->dirty_limit_tstamp = jiffies;
654
380c27ca
TH
655 return fprop_global_init(&dom->completions, gfp);
656}
657
841710aa
TH
658#ifdef CONFIG_CGROUP_WRITEBACK
659void wb_domain_exit(struct wb_domain *dom)
660{
661 del_timer_sync(&dom->period_timer);
662 fprop_global_destroy(&dom->completions);
663}
664#endif
665
189d3c4a 666/*
d08c429b
JW
667 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
668 * registered backing devices, which, for obvious reasons, can not
669 * exceed 100%.
189d3c4a 670 */
189d3c4a
PZ
671static unsigned int bdi_min_ratio;
672
673int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
674{
675 int ret = 0;
189d3c4a 676
cfc4ba53 677 spin_lock_bh(&bdi_lock);
a42dde04 678 if (min_ratio > bdi->max_ratio) {
189d3c4a 679 ret = -EINVAL;
a42dde04
PZ
680 } else {
681 min_ratio -= bdi->min_ratio;
682 if (bdi_min_ratio + min_ratio < 100) {
683 bdi_min_ratio += min_ratio;
684 bdi->min_ratio += min_ratio;
685 } else {
686 ret = -EINVAL;
687 }
688 }
cfc4ba53 689 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
690
691 return ret;
692}
693
694int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
695{
a42dde04
PZ
696 int ret = 0;
697
698 if (max_ratio > 100)
699 return -EINVAL;
700
cfc4ba53 701 spin_lock_bh(&bdi_lock);
a42dde04
PZ
702 if (bdi->min_ratio > max_ratio) {
703 ret = -EINVAL;
704 } else {
705 bdi->max_ratio = max_ratio;
eb608e3a 706 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 707 }
cfc4ba53 708 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
709
710 return ret;
711}
a42dde04 712EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 713
6c14ae1e
WF
714static unsigned long dirty_freerun_ceiling(unsigned long thresh,
715 unsigned long bg_thresh)
716{
717 return (thresh + bg_thresh) / 2;
718}
719
c7981433
TH
720static unsigned long hard_dirty_limit(struct wb_domain *dom,
721 unsigned long thresh)
ffd1f609 722{
dcc25ae7 723 return max(thresh, dom->dirty_limit);
ffd1f609
WF
724}
725
c5edf9cd
TH
726/*
727 * Memory which can be further allocated to a memcg domain is capped by
728 * system-wide clean memory excluding the amount being used in the domain.
729 */
730static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
731 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
732{
733 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
734 unsigned long clean = filepages - min(filepages, mdtc->dirty);
735 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
736 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 737
c5edf9cd 738 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
739}
740
6f718656 741/**
b1cbc6d4
TH
742 * __wb_calc_thresh - @wb's share of dirty throttling threshold
743 * @dtc: dirty_throttle_context of interest
1babe183 744 *
aed21ad2
WF
745 * Note that balance_dirty_pages() will only seriously take it as a hard limit
746 * when sleeping max_pause per page is not enough to keep the dirty pages under
747 * control. For example, when the device is completely stalled due to some error
748 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
749 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 750 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 751 *
6f718656 752 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
753 * - starving fast devices
754 * - piling up dirty pages (that will take long time to sync) on slow devices
755 *
a88a341a 756 * The wb's share of dirty limit will be adapting to its throughput and
1babe183 757 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
a862f68a
MR
758 *
759 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
8d92890b 760 * dirty balancing includes all PG_dirty and PG_writeback pages.
1babe183 761 */
b1cbc6d4 762static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 763{
e9f07dfd 764 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 765 unsigned long thresh = dtc->thresh;
0d960a38 766 u64 wb_thresh;
d3ac946e 767 unsigned long numerator, denominator;
693108a8 768 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 769
16c4042f 770 /*
0d960a38 771 * Calculate this BDI's share of the thresh ratio.
16c4042f 772 */
e9770b34 773 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 774 &numerator, &denominator);
04fbfdc1 775
0d960a38
TH
776 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
777 wb_thresh *= numerator;
d3ac946e 778 wb_thresh = div64_ul(wb_thresh, denominator);
04fbfdc1 779
b1cbc6d4 780 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 781
0d960a38
TH
782 wb_thresh += (thresh * wb_min_ratio) / 100;
783 if (wb_thresh > (thresh * wb_max_ratio) / 100)
784 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 785
0d960a38 786 return wb_thresh;
1da177e4
LT
787}
788
b1cbc6d4
TH
789unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
790{
791 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
792 .thresh = thresh };
793 return __wb_calc_thresh(&gdtc);
1da177e4
LT
794}
795
5a537485
MP
796/*
797 * setpoint - dirty 3
798 * f(dirty) := 1.0 + (----------------)
799 * limit - setpoint
800 *
801 * it's a 3rd order polynomial that subjects to
802 *
803 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
804 * (2) f(setpoint) = 1.0 => the balance point
805 * (3) f(limit) = 0 => the hard limit
806 * (4) df/dx <= 0 => negative feedback control
807 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
808 * => fast response on large errors; small oscillation near setpoint
809 */
d5c9fde3 810static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
811 unsigned long dirty,
812 unsigned long limit)
813{
814 long long pos_ratio;
815 long x;
816
d5c9fde3 817 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 818 (limit - setpoint) | 1);
5a537485
MP
819 pos_ratio = x;
820 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
821 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
822 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
823
824 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
825}
826
6c14ae1e
WF
827/*
828 * Dirty position control.
829 *
830 * (o) global/bdi setpoints
831 *
de1fff37 832 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
833 * When the number of dirty pages is higher/lower than the setpoint, the
834 * dirty position control ratio (and hence task dirty ratelimit) will be
835 * decreased/increased to bring the dirty pages back to the setpoint.
836 *
837 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
838 *
839 * if (dirty < setpoint) scale up pos_ratio
840 * if (dirty > setpoint) scale down pos_ratio
841 *
de1fff37
TH
842 * if (wb_dirty < wb_setpoint) scale up pos_ratio
843 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
844 *
845 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
846 *
847 * (o) global control line
848 *
849 * ^ pos_ratio
850 * |
851 * | |<===== global dirty control scope ======>|
852 * 2.0 .............*
853 * | .*
854 * | . *
855 * | . *
856 * | . *
857 * | . *
858 * | . *
859 * 1.0 ................................*
860 * | . . *
861 * | . . *
862 * | . . *
863 * | . . *
864 * | . . *
865 * 0 +------------.------------------.----------------------*------------->
866 * freerun^ setpoint^ limit^ dirty pages
867 *
de1fff37 868 * (o) wb control line
6c14ae1e
WF
869 *
870 * ^ pos_ratio
871 * |
872 * | *
873 * | *
874 * | *
875 * | *
876 * | * |<=========== span ============>|
877 * 1.0 .......................*
878 * | . *
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * 1/4 ...............................................* * * * * * * * * * * *
890 * | . .
891 * | . .
892 * | . .
893 * 0 +----------------------.-------------------------------.------------->
de1fff37 894 * wb_setpoint^ x_intercept^
6c14ae1e 895 *
de1fff37 896 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
897 * be smoothly throttled down to normal if it starts high in situations like
898 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
899 * card's wb_dirty may rush to many times higher than wb_setpoint.
900 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 901 */
daddfa3c 902static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 903{
2bc00aef 904 struct bdi_writeback *wb = dtc->wb;
a88a341a 905 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 906 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 907 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 908 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
909 unsigned long x_intercept;
910 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 911 unsigned long wb_setpoint;
6c14ae1e
WF
912 unsigned long span;
913 long long pos_ratio; /* for scaling up/down the rate limit */
914 long x;
915
daddfa3c
TH
916 dtc->pos_ratio = 0;
917
2bc00aef 918 if (unlikely(dtc->dirty >= limit))
daddfa3c 919 return;
6c14ae1e
WF
920
921 /*
922 * global setpoint
923 *
5a537485
MP
924 * See comment for pos_ratio_polynom().
925 */
926 setpoint = (freerun + limit) / 2;
2bc00aef 927 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
928
929 /*
930 * The strictlimit feature is a tool preventing mistrusted filesystems
931 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
932 * such filesystems balance_dirty_pages always checks wb counters
933 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
934 * This is especially important for fuse which sets bdi->max_ratio to
935 * 1% by default. Without strictlimit feature, fuse writeback may
936 * consume arbitrary amount of RAM because it is accounted in
937 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 938 *
a88a341a 939 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 940 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
941 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
942 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 943 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 944 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 945 * about ~6K pages (as the average of background and throttle wb
5a537485 946 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 947 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 948 *
5a537485 949 * Note, that we cannot use global counters in these calculations
de1fff37 950 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
951 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
952 * in the example above).
6c14ae1e 953 */
a88a341a 954 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 955 long long wb_pos_ratio;
5a537485 956
daddfa3c
TH
957 if (dtc->wb_dirty < 8) {
958 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
959 2 << RATELIMIT_CALC_SHIFT);
960 return;
961 }
5a537485 962
2bc00aef 963 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 964 return;
5a537485 965
970fb01a
TH
966 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
967 dtc->wb_bg_thresh);
5a537485 968
de1fff37 969 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 970 return;
5a537485 971
2bc00aef 972 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 973 wb_thresh);
5a537485
MP
974
975 /*
de1fff37
TH
976 * Typically, for strictlimit case, wb_setpoint << setpoint
977 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 978 * state ("dirty") is not limiting factor and we have to
de1fff37 979 * make decision based on wb counters. But there is an
5a537485
MP
980 * important case when global pos_ratio should get precedence:
981 * global limits are exceeded (e.g. due to activities on other
de1fff37 982 * wb's) while given strictlimit wb is below limit.
5a537485 983 *
de1fff37 984 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 985 * but it would look too non-natural for the case of all
de1fff37 986 * activity in the system coming from a single strictlimit wb
5a537485
MP
987 * with bdi->max_ratio == 100%.
988 *
989 * Note that min() below somewhat changes the dynamics of the
990 * control system. Normally, pos_ratio value can be well over 3
de1fff37 991 * (when globally we are at freerun and wb is well below wb
5a537485
MP
992 * setpoint). Now the maximum pos_ratio in the same situation
993 * is 2. We might want to tweak this if we observe the control
994 * system is too slow to adapt.
995 */
daddfa3c
TH
996 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
997 return;
5a537485 998 }
6c14ae1e
WF
999
1000 /*
1001 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1002 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1003 * pos_ratio further down/up. That is done by the following mechanism.
1004 */
1005
1006 /*
de1fff37 1007 * wb setpoint
6c14ae1e 1008 *
de1fff37 1009 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1010 *
de1fff37 1011 * x_intercept - wb_dirty
6c14ae1e 1012 * := --------------------------
de1fff37 1013 * x_intercept - wb_setpoint
6c14ae1e 1014 *
de1fff37 1015 * The main wb control line is a linear function that subjects to
6c14ae1e 1016 *
de1fff37
TH
1017 * (1) f(wb_setpoint) = 1.0
1018 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1019 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1020 *
de1fff37 1021 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1022 * regularly within range
de1fff37 1023 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1024 * for various filesystems, where (2) can yield in a reasonable 12.5%
1025 * fluctuation range for pos_ratio.
1026 *
de1fff37 1027 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1028 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1029 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1030 */
2bc00aef
TH
1031 if (unlikely(wb_thresh > dtc->thresh))
1032 wb_thresh = dtc->thresh;
aed21ad2 1033 /*
de1fff37 1034 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1035 * device is slow, but that it has remained inactive for long time.
1036 * Honour such devices a reasonable good (hopefully IO efficient)
1037 * threshold, so that the occasional writes won't be blocked and active
1038 * writes can rampup the threshold quickly.
1039 */
2bc00aef 1040 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1041 /*
de1fff37
TH
1042 * scale global setpoint to wb's:
1043 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1044 */
e4bc13ad 1045 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1046 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1047 /*
de1fff37
TH
1048 * Use span=(8*write_bw) in single wb case as indicated by
1049 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1050 *
de1fff37
TH
1051 * wb_thresh thresh - wb_thresh
1052 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1053 * thresh thresh
6c14ae1e 1054 */
2bc00aef 1055 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1056 x_intercept = wb_setpoint + span;
6c14ae1e 1057
2bc00aef
TH
1058 if (dtc->wb_dirty < x_intercept - span / 4) {
1059 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1060 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1061 } else
1062 pos_ratio /= 4;
1063
8927f66c 1064 /*
de1fff37 1065 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1066 * It may push the desired control point of global dirty pages higher
1067 * than setpoint.
1068 */
de1fff37 1069 x_intercept = wb_thresh / 2;
2bc00aef
TH
1070 if (dtc->wb_dirty < x_intercept) {
1071 if (dtc->wb_dirty > x_intercept / 8)
1072 pos_ratio = div_u64(pos_ratio * x_intercept,
1073 dtc->wb_dirty);
50657fc4 1074 else
8927f66c
WF
1075 pos_ratio *= 8;
1076 }
1077
daddfa3c 1078 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1079}
1080
a88a341a
TH
1081static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1082 unsigned long elapsed,
1083 unsigned long written)
e98be2d5
WF
1084{
1085 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1086 unsigned long avg = wb->avg_write_bandwidth;
1087 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1088 u64 bw;
1089
1090 /*
1091 * bw = written * HZ / elapsed
1092 *
1093 * bw * elapsed + write_bandwidth * (period - elapsed)
1094 * write_bandwidth = ---------------------------------------------------
1095 * period
c72efb65
TH
1096 *
1097 * @written may have decreased due to account_page_redirty().
1098 * Avoid underflowing @bw calculation.
e98be2d5 1099 */
a88a341a 1100 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1101 bw *= HZ;
1102 if (unlikely(elapsed > period)) {
0a5d1a7f 1103 bw = div64_ul(bw, elapsed);
e98be2d5
WF
1104 avg = bw;
1105 goto out;
1106 }
a88a341a 1107 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1108 bw >>= ilog2(period);
1109
1110 /*
1111 * one more level of smoothing, for filtering out sudden spikes
1112 */
1113 if (avg > old && old >= (unsigned long)bw)
1114 avg -= (avg - old) >> 3;
1115
1116 if (avg < old && old <= (unsigned long)bw)
1117 avg += (old - avg) >> 3;
1118
1119out:
95a46c65
TH
1120 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1121 avg = max(avg, 1LU);
1122 if (wb_has_dirty_io(wb)) {
1123 long delta = avg - wb->avg_write_bandwidth;
1124 WARN_ON_ONCE(atomic_long_add_return(delta,
1125 &wb->bdi->tot_write_bandwidth) <= 0);
1126 }
a88a341a
TH
1127 wb->write_bandwidth = bw;
1128 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1129}
1130
2bc00aef 1131static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1132{
e9f07dfd 1133 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1134 unsigned long thresh = dtc->thresh;
dcc25ae7 1135 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1136
1137 /*
1138 * Follow up in one step.
1139 */
1140 if (limit < thresh) {
1141 limit = thresh;
1142 goto update;
1143 }
1144
1145 /*
1146 * Follow down slowly. Use the higher one as the target, because thresh
1147 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1148 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1149 */
2bc00aef 1150 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1151 if (limit > thresh) {
1152 limit -= (limit - thresh) >> 5;
1153 goto update;
1154 }
1155 return;
1156update:
dcc25ae7 1157 dom->dirty_limit = limit;
c42843f2
WF
1158}
1159
e9f07dfd 1160static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1161 unsigned long now)
1162{
e9f07dfd 1163 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1164
1165 /*
1166 * check locklessly first to optimize away locking for the most time
1167 */
dcc25ae7 1168 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1169 return;
1170
dcc25ae7
TH
1171 spin_lock(&dom->lock);
1172 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1173 update_dirty_limit(dtc);
dcc25ae7 1174 dom->dirty_limit_tstamp = now;
c42843f2 1175 }
dcc25ae7 1176 spin_unlock(&dom->lock);
c42843f2
WF
1177}
1178
be3ffa27 1179/*
de1fff37 1180 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1181 *
de1fff37 1182 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1183 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1184 */
2bc00aef 1185static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1186 unsigned long dirtied,
1187 unsigned long elapsed)
be3ffa27 1188{
2bc00aef
TH
1189 struct bdi_writeback *wb = dtc->wb;
1190 unsigned long dirty = dtc->dirty;
1191 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1192 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1193 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1194 unsigned long write_bw = wb->avg_write_bandwidth;
1195 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1196 unsigned long dirty_rate;
1197 unsigned long task_ratelimit;
1198 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1199 unsigned long step;
1200 unsigned long x;
d59b1087 1201 unsigned long shift;
be3ffa27
WF
1202
1203 /*
1204 * The dirty rate will match the writeout rate in long term, except
1205 * when dirty pages are truncated by userspace or re-dirtied by FS.
1206 */
a88a341a 1207 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1208
be3ffa27
WF
1209 /*
1210 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1211 */
1212 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1213 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1214 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1215
1216 /*
1217 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1218 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1219 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1220 * formula will yield the balanced rate limit (write_bw / N).
1221 *
1222 * Note that the expanded form is not a pure rate feedback:
1223 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1224 * but also takes pos_ratio into account:
1225 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1226 *
1227 * (1) is not realistic because pos_ratio also takes part in balancing
1228 * the dirty rate. Consider the state
1229 * pos_ratio = 0.5 (3)
1230 * rate = 2 * (write_bw / N) (4)
1231 * If (1) is used, it will stuck in that state! Because each dd will
1232 * be throttled at
1233 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1234 * yielding
1235 * dirty_rate = N * task_ratelimit = write_bw (6)
1236 * put (6) into (1) we get
1237 * rate_(i+1) = rate_(i) (7)
1238 *
1239 * So we end up using (2) to always keep
1240 * rate_(i+1) ~= (write_bw / N) (8)
1241 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1242 * pos_ratio is able to drive itself to 1.0, which is not only where
1243 * the dirty count meet the setpoint, but also where the slope of
1244 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1245 */
1246 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1247 dirty_rate | 1);
bdaac490
WF
1248 /*
1249 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1250 */
1251 if (unlikely(balanced_dirty_ratelimit > write_bw))
1252 balanced_dirty_ratelimit = write_bw;
be3ffa27 1253
7381131c
WF
1254 /*
1255 * We could safely do this and return immediately:
1256 *
de1fff37 1257 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1258 *
1259 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1260 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1261 * limit the step size.
1262 *
1263 * The below code essentially only uses the relative value of
1264 *
1265 * task_ratelimit - dirty_ratelimit
1266 * = (pos_ratio - 1) * dirty_ratelimit
1267 *
1268 * which reflects the direction and size of dirty position error.
1269 */
1270
1271 /*
1272 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1273 * task_ratelimit is on the same side of dirty_ratelimit, too.
1274 * For example, when
1275 * - dirty_ratelimit > balanced_dirty_ratelimit
1276 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1277 * lowering dirty_ratelimit will help meet both the position and rate
1278 * control targets. Otherwise, don't update dirty_ratelimit if it will
1279 * only help meet the rate target. After all, what the users ultimately
1280 * feel and care are stable dirty rate and small position error.
1281 *
1282 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1283 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1284 * keeps jumping around randomly and can even leap far away at times
1285 * due to the small 200ms estimation period of dirty_rate (we want to
1286 * keep that period small to reduce time lags).
1287 */
1288 step = 0;
5a537485
MP
1289
1290 /*
de1fff37 1291 * For strictlimit case, calculations above were based on wb counters
a88a341a 1292 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1293 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1294 * Hence, to calculate "step" properly, we have to use wb_dirty as
1295 * "dirty" and wb_setpoint as "setpoint".
5a537485 1296 *
de1fff37
TH
1297 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1298 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1299 * of backing device.
5a537485 1300 */
a88a341a 1301 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1302 dirty = dtc->wb_dirty;
1303 if (dtc->wb_dirty < 8)
1304 setpoint = dtc->wb_dirty + 1;
5a537485 1305 else
970fb01a 1306 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1307 }
1308
7381131c 1309 if (dirty < setpoint) {
a88a341a 1310 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1311 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1312 if (dirty_ratelimit < x)
1313 step = x - dirty_ratelimit;
1314 } else {
a88a341a 1315 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1316 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1317 if (dirty_ratelimit > x)
1318 step = dirty_ratelimit - x;
1319 }
1320
1321 /*
1322 * Don't pursue 100% rate matching. It's impossible since the balanced
1323 * rate itself is constantly fluctuating. So decrease the track speed
1324 * when it gets close to the target. Helps eliminate pointless tremors.
1325 */
d59b1087
AR
1326 shift = dirty_ratelimit / (2 * step + 1);
1327 if (shift < BITS_PER_LONG)
1328 step = DIV_ROUND_UP(step >> shift, 8);
1329 else
1330 step = 0;
7381131c
WF
1331
1332 if (dirty_ratelimit < balanced_dirty_ratelimit)
1333 dirty_ratelimit += step;
1334 else
1335 dirty_ratelimit -= step;
1336
a88a341a
TH
1337 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1338 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1339
5634cc2a 1340 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1341}
1342
c2aa723a
TH
1343static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1344 struct dirty_throttle_control *mdtc,
8a731799
TH
1345 unsigned long start_time,
1346 bool update_ratelimit)
e98be2d5 1347{
c2aa723a 1348 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1349 unsigned long now = jiffies;
a88a341a 1350 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1351 unsigned long dirtied;
e98be2d5
WF
1352 unsigned long written;
1353
8a731799
TH
1354 lockdep_assert_held(&wb->list_lock);
1355
e98be2d5
WF
1356 /*
1357 * rate-limit, only update once every 200ms.
1358 */
1359 if (elapsed < BANDWIDTH_INTERVAL)
1360 return;
1361
a88a341a
TH
1362 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1363 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1364
1365 /*
1366 * Skip quiet periods when disk bandwidth is under-utilized.
1367 * (at least 1s idle time between two flusher runs)
1368 */
a88a341a 1369 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1370 goto snapshot;
1371
8a731799 1372 if (update_ratelimit) {
c2aa723a
TH
1373 domain_update_bandwidth(gdtc, now);
1374 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1375
1376 /*
1377 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1378 * compiler has no way to figure that out. Help it.
1379 */
1380 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1381 domain_update_bandwidth(mdtc, now);
1382 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1383 }
be3ffa27 1384 }
a88a341a 1385 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1386
1387snapshot:
a88a341a
TH
1388 wb->dirtied_stamp = dirtied;
1389 wb->written_stamp = written;
1390 wb->bw_time_stamp = now;
e98be2d5
WF
1391}
1392
8a731799 1393void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1394{
2bc00aef
TH
1395 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1396
c2aa723a 1397 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1398}
1399
9d823e8f 1400/*
d0e1d66b 1401 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1402 * will look to see if it needs to start dirty throttling.
1403 *
1404 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1405 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1406 * (the number of pages we may dirty without exceeding the dirty limits).
1407 */
1408static unsigned long dirty_poll_interval(unsigned long dirty,
1409 unsigned long thresh)
1410{
1411 if (thresh > dirty)
1412 return 1UL << (ilog2(thresh - dirty) >> 1);
1413
1414 return 1;
1415}
1416
a88a341a 1417static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1418 unsigned long wb_dirty)
c8462cc9 1419{
a88a341a 1420 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1421 unsigned long t;
c8462cc9 1422
7ccb9ad5
WF
1423 /*
1424 * Limit pause time for small memory systems. If sleeping for too long
1425 * time, a small pool of dirty/writeback pages may go empty and disk go
1426 * idle.
1427 *
1428 * 8 serves as the safety ratio.
1429 */
de1fff37 1430 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1431 t++;
1432
e3b6c655 1433 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1434}
1435
a88a341a
TH
1436static long wb_min_pause(struct bdi_writeback *wb,
1437 long max_pause,
1438 unsigned long task_ratelimit,
1439 unsigned long dirty_ratelimit,
1440 int *nr_dirtied_pause)
c8462cc9 1441{
a88a341a
TH
1442 long hi = ilog2(wb->avg_write_bandwidth);
1443 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1444 long t; /* target pause */
1445 long pause; /* estimated next pause */
1446 int pages; /* target nr_dirtied_pause */
c8462cc9 1447
7ccb9ad5
WF
1448 /* target for 10ms pause on 1-dd case */
1449 t = max(1, HZ / 100);
c8462cc9
WF
1450
1451 /*
1452 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1453 * overheads.
1454 *
7ccb9ad5 1455 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1456 */
1457 if (hi > lo)
7ccb9ad5 1458 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1459
1460 /*
7ccb9ad5
WF
1461 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1462 * on the much more stable dirty_ratelimit. However the next pause time
1463 * will be computed based on task_ratelimit and the two rate limits may
1464 * depart considerably at some time. Especially if task_ratelimit goes
1465 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1466 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1467 * result task_ratelimit won't be executed faithfully, which could
1468 * eventually bring down dirty_ratelimit.
c8462cc9 1469 *
7ccb9ad5
WF
1470 * We apply two rules to fix it up:
1471 * 1) try to estimate the next pause time and if necessary, use a lower
1472 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1473 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1474 * 2) limit the target pause time to max_pause/2, so that the normal
1475 * small fluctuations of task_ratelimit won't trigger rule (1) and
1476 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1477 */
7ccb9ad5
WF
1478 t = min(t, 1 + max_pause / 2);
1479 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1480
1481 /*
5b9b3574
WF
1482 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1483 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1484 * When the 16 consecutive reads are often interrupted by some dirty
1485 * throttling pause during the async writes, cfq will go into idles
1486 * (deadline is fine). So push nr_dirtied_pause as high as possible
1487 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1488 */
5b9b3574
WF
1489 if (pages < DIRTY_POLL_THRESH) {
1490 t = max_pause;
1491 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1492 if (pages > DIRTY_POLL_THRESH) {
1493 pages = DIRTY_POLL_THRESH;
1494 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1495 }
1496 }
1497
7ccb9ad5
WF
1498 pause = HZ * pages / (task_ratelimit + 1);
1499 if (pause > max_pause) {
1500 t = max_pause;
1501 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1502 }
c8462cc9 1503
7ccb9ad5 1504 *nr_dirtied_pause = pages;
c8462cc9 1505 /*
7ccb9ad5 1506 * The minimal pause time will normally be half the target pause time.
c8462cc9 1507 */
5b9b3574 1508 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1509}
1510
970fb01a 1511static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1512{
2bc00aef 1513 struct bdi_writeback *wb = dtc->wb;
93f78d88 1514 unsigned long wb_reclaimable;
5a537485
MP
1515
1516 /*
de1fff37 1517 * wb_thresh is not treated as some limiting factor as
5a537485 1518 * dirty_thresh, due to reasons
de1fff37 1519 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1520 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1521 * go into state (wb_dirty >> wb_thresh) either because
1522 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1523 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1524 * dirtiers for 100 seconds until wb_dirty drops under
1525 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1526 * wb_position_ratio() will let the dirtier task progress
de1fff37 1527 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1528 */
b1cbc6d4 1529 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1530 dtc->wb_bg_thresh = dtc->thresh ?
1531 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1532
1533 /*
1534 * In order to avoid the stacked BDI deadlock we need
1535 * to ensure we accurately count the 'dirty' pages when
1536 * the threshold is low.
1537 *
1538 * Otherwise it would be possible to get thresh+n pages
1539 * reported dirty, even though there are thresh-m pages
1540 * actually dirty; with m+n sitting in the percpu
1541 * deltas.
1542 */
2bce774e 1543 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1544 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1545 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1546 } else {
93f78d88 1547 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1548 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1549 }
1550}
1551
1da177e4
LT
1552/*
1553 * balance_dirty_pages() must be called by processes which are generating dirty
1554 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1555 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1556 * If we're over `background_thresh' then the writeback threads are woken to
1557 * perform some writeout.
1da177e4 1558 */
4c578dce 1559static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1560 unsigned long pages_dirtied)
1da177e4 1561{
2bc00aef 1562 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1563 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1564 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1565 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1566 &mdtc_stor : NULL;
1567 struct dirty_throttle_control *sdtc;
8d92890b 1568 unsigned long nr_reclaimable; /* = file_dirty */
83712358 1569 long period;
7ccb9ad5
WF
1570 long pause;
1571 long max_pause;
1572 long min_pause;
1573 int nr_dirtied_pause;
e50e3720 1574 bool dirty_exceeded = false;
143dfe86 1575 unsigned long task_ratelimit;
7ccb9ad5 1576 unsigned long dirty_ratelimit;
dfb8ae56 1577 struct backing_dev_info *bdi = wb->bdi;
5a537485 1578 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1579 unsigned long start_time = jiffies;
1da177e4
LT
1580
1581 for (;;) {
83712358 1582 unsigned long now = jiffies;
2bc00aef 1583 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1584 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1585 unsigned long m_thresh = 0;
1586 unsigned long m_bg_thresh = 0;
83712358 1587
8d92890b 1588 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
9fc3a43e 1589 gdtc->avail = global_dirtyable_memory();
11fb9989 1590 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1591
9fc3a43e 1592 domain_dirty_limits(gdtc);
16c4042f 1593
5a537485 1594 if (unlikely(strictlimit)) {
970fb01a 1595 wb_dirty_limits(gdtc);
5a537485 1596
2bc00aef
TH
1597 dirty = gdtc->wb_dirty;
1598 thresh = gdtc->wb_thresh;
970fb01a 1599 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1600 } else {
2bc00aef
TH
1601 dirty = gdtc->dirty;
1602 thresh = gdtc->thresh;
1603 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1604 }
1605
c2aa723a 1606 if (mdtc) {
c5edf9cd 1607 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1608
1609 /*
1610 * If @wb belongs to !root memcg, repeat the same
1611 * basic calculations for the memcg domain.
1612 */
c5edf9cd
TH
1613 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1614 &mdtc->dirty, &writeback);
c2aa723a 1615 mdtc->dirty += writeback;
c5edf9cd 1616 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1617
1618 domain_dirty_limits(mdtc);
1619
1620 if (unlikely(strictlimit)) {
1621 wb_dirty_limits(mdtc);
1622 m_dirty = mdtc->wb_dirty;
1623 m_thresh = mdtc->wb_thresh;
1624 m_bg_thresh = mdtc->wb_bg_thresh;
1625 } else {
1626 m_dirty = mdtc->dirty;
1627 m_thresh = mdtc->thresh;
1628 m_bg_thresh = mdtc->bg_thresh;
1629 }
5a537485
MP
1630 }
1631
16c4042f
WF
1632 /*
1633 * Throttle it only when the background writeback cannot
1634 * catch-up. This avoids (excessively) small writeouts
de1fff37 1635 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1636 *
de1fff37
TH
1637 * In strictlimit case make decision based on the wb counters
1638 * and limits. Small writeouts when the wb limits are ramping
5a537485 1639 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1640 *
1641 * If memcg domain is in effect, @dirty should be under
1642 * both global and memcg freerun ceilings.
16c4042f 1643 */
c2aa723a
TH
1644 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1645 (!mdtc ||
1646 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
a37b0715
N
1647 unsigned long intv;
1648 unsigned long m_intv;
1649
1650free_running:
1651 intv = dirty_poll_interval(dirty, thresh);
1652 m_intv = ULONG_MAX;
c2aa723a 1653
83712358
WF
1654 current->dirty_paused_when = now;
1655 current->nr_dirtied = 0;
c2aa723a
TH
1656 if (mdtc)
1657 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1658 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1659 break;
83712358 1660 }
16c4042f 1661
bc05873d 1662 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1663 wb_start_background_writeback(wb);
143dfe86 1664
97b27821
TH
1665 mem_cgroup_flush_foreign(wb);
1666
c2aa723a
TH
1667 /*
1668 * Calculate global domain's pos_ratio and select the
1669 * global dtc by default.
1670 */
a37b0715 1671 if (!strictlimit) {
970fb01a 1672 wb_dirty_limits(gdtc);
5fce25a9 1673
a37b0715
N
1674 if ((current->flags & PF_LOCAL_THROTTLE) &&
1675 gdtc->wb_dirty <
1676 dirty_freerun_ceiling(gdtc->wb_thresh,
1677 gdtc->wb_bg_thresh))
1678 /*
1679 * LOCAL_THROTTLE tasks must not be throttled
1680 * when below the per-wb freerun ceiling.
1681 */
1682 goto free_running;
1683 }
1684
2bc00aef
TH
1685 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1686 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1687
1688 wb_position_ratio(gdtc);
c2aa723a
TH
1689 sdtc = gdtc;
1690
1691 if (mdtc) {
1692 /*
1693 * If memcg domain is in effect, calculate its
1694 * pos_ratio. @wb should satisfy constraints from
1695 * both global and memcg domains. Choose the one
1696 * w/ lower pos_ratio.
1697 */
a37b0715 1698 if (!strictlimit) {
c2aa723a
TH
1699 wb_dirty_limits(mdtc);
1700
a37b0715
N
1701 if ((current->flags & PF_LOCAL_THROTTLE) &&
1702 mdtc->wb_dirty <
1703 dirty_freerun_ceiling(mdtc->wb_thresh,
1704 mdtc->wb_bg_thresh))
1705 /*
1706 * LOCAL_THROTTLE tasks must not be
1707 * throttled when below the per-wb
1708 * freerun ceiling.
1709 */
1710 goto free_running;
1711 }
c2aa723a
TH
1712 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1713 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1714
1715 wb_position_ratio(mdtc);
1716 if (mdtc->pos_ratio < gdtc->pos_ratio)
1717 sdtc = mdtc;
1718 }
daddfa3c 1719
a88a341a
TH
1720 if (dirty_exceeded && !wb->dirty_exceeded)
1721 wb->dirty_exceeded = 1;
1da177e4 1722
8a731799
TH
1723 if (time_is_before_jiffies(wb->bw_time_stamp +
1724 BANDWIDTH_INTERVAL)) {
1725 spin_lock(&wb->list_lock);
c2aa723a 1726 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1727 spin_unlock(&wb->list_lock);
1728 }
e98be2d5 1729
c2aa723a 1730 /* throttle according to the chosen dtc */
a88a341a 1731 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1732 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1733 RATELIMIT_CALC_SHIFT;
c2aa723a 1734 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1735 min_pause = wb_min_pause(wb, max_pause,
1736 task_ratelimit, dirty_ratelimit,
1737 &nr_dirtied_pause);
7ccb9ad5 1738
3a73dbbc 1739 if (unlikely(task_ratelimit == 0)) {
83712358 1740 period = max_pause;
c8462cc9 1741 pause = max_pause;
143dfe86 1742 goto pause;
04fbfdc1 1743 }
83712358
WF
1744 period = HZ * pages_dirtied / task_ratelimit;
1745 pause = period;
1746 if (current->dirty_paused_when)
1747 pause -= now - current->dirty_paused_when;
1748 /*
1749 * For less than 1s think time (ext3/4 may block the dirtier
1750 * for up to 800ms from time to time on 1-HDD; so does xfs,
1751 * however at much less frequency), try to compensate it in
1752 * future periods by updating the virtual time; otherwise just
1753 * do a reset, as it may be a light dirtier.
1754 */
7ccb9ad5 1755 if (pause < min_pause) {
5634cc2a 1756 trace_balance_dirty_pages(wb,
c2aa723a
TH
1757 sdtc->thresh,
1758 sdtc->bg_thresh,
1759 sdtc->dirty,
1760 sdtc->wb_thresh,
1761 sdtc->wb_dirty,
ece13ac3
WF
1762 dirty_ratelimit,
1763 task_ratelimit,
1764 pages_dirtied,
83712358 1765 period,
7ccb9ad5 1766 min(pause, 0L),
ece13ac3 1767 start_time);
83712358
WF
1768 if (pause < -HZ) {
1769 current->dirty_paused_when = now;
1770 current->nr_dirtied = 0;
1771 } else if (period) {
1772 current->dirty_paused_when += period;
1773 current->nr_dirtied = 0;
7ccb9ad5
WF
1774 } else if (current->nr_dirtied_pause <= pages_dirtied)
1775 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1776 break;
04fbfdc1 1777 }
7ccb9ad5
WF
1778 if (unlikely(pause > max_pause)) {
1779 /* for occasional dropped task_ratelimit */
1780 now += min(pause - max_pause, max_pause);
1781 pause = max_pause;
1782 }
143dfe86
WF
1783
1784pause:
5634cc2a 1785 trace_balance_dirty_pages(wb,
c2aa723a
TH
1786 sdtc->thresh,
1787 sdtc->bg_thresh,
1788 sdtc->dirty,
1789 sdtc->wb_thresh,
1790 sdtc->wb_dirty,
ece13ac3
WF
1791 dirty_ratelimit,
1792 task_ratelimit,
1793 pages_dirtied,
83712358 1794 period,
ece13ac3
WF
1795 pause,
1796 start_time);
499d05ec 1797 __set_current_state(TASK_KILLABLE);
b57d74af 1798 wb->dirty_sleep = now;
d25105e8 1799 io_schedule_timeout(pause);
87c6a9b2 1800
83712358
WF
1801 current->dirty_paused_when = now + pause;
1802 current->nr_dirtied = 0;
7ccb9ad5 1803 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1804
ffd1f609 1805 /*
2bc00aef
TH
1806 * This is typically equal to (dirty < thresh) and can also
1807 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1808 */
1df64719 1809 if (task_ratelimit)
ffd1f609 1810 break;
499d05ec 1811
c5c6343c
WF
1812 /*
1813 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1814 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1815 * to go through, so that tasks on them still remain responsive.
1816 *
3f8b6fb7 1817 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1818 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1819 * more page. However wb_dirty has accounting errors. So use
93f78d88 1820 * the larger and more IO friendly wb_stat_error.
c5c6343c 1821 */
2bce774e 1822 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1823 break;
1824
499d05ec
JK
1825 if (fatal_signal_pending(current))
1826 break;
1da177e4
LT
1827 }
1828
a88a341a
TH
1829 if (!dirty_exceeded && wb->dirty_exceeded)
1830 wb->dirty_exceeded = 0;
1da177e4 1831
bc05873d 1832 if (writeback_in_progress(wb))
5b0830cb 1833 return;
1da177e4
LT
1834
1835 /*
1836 * In laptop mode, we wait until hitting the higher threshold before
1837 * starting background writeout, and then write out all the way down
1838 * to the lower threshold. So slow writers cause minimal disk activity.
1839 *
1840 * In normal mode, we start background writeout at the lower
1841 * background_thresh, to keep the amount of dirty memory low.
1842 */
143dfe86
WF
1843 if (laptop_mode)
1844 return;
1845
2bc00aef 1846 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1847 wb_start_background_writeback(wb);
1da177e4
LT
1848}
1849
9d823e8f 1850static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1851
54848d73
WF
1852/*
1853 * Normal tasks are throttled by
1854 * loop {
1855 * dirty tsk->nr_dirtied_pause pages;
1856 * take a snap in balance_dirty_pages();
1857 * }
1858 * However there is a worst case. If every task exit immediately when dirtied
1859 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1860 * called to throttle the page dirties. The solution is to save the not yet
1861 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1862 * randomly into the running tasks. This works well for the above worst case,
1863 * as the new task will pick up and accumulate the old task's leaked dirty
1864 * count and eventually get throttled.
1865 */
1866DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1867
1da177e4 1868/**
d0e1d66b 1869 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1870 * @mapping: address_space which was dirtied
1da177e4
LT
1871 *
1872 * Processes which are dirtying memory should call in here once for each page
1873 * which was newly dirtied. The function will periodically check the system's
1874 * dirty state and will initiate writeback if needed.
1875 *
1876 * On really big machines, get_writeback_state is expensive, so try to avoid
1877 * calling it too often (ratelimiting). But once we're over the dirty memory
1878 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1879 * from overshooting the limit by (ratelimit_pages) each.
1880 */
d0e1d66b 1881void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1882{
dfb8ae56
TH
1883 struct inode *inode = mapping->host;
1884 struct backing_dev_info *bdi = inode_to_bdi(inode);
1885 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1886 int ratelimit;
1887 int *p;
1da177e4 1888
36715cef
WF
1889 if (!bdi_cap_account_dirty(bdi))
1890 return;
1891
dfb8ae56
TH
1892 if (inode_cgwb_enabled(inode))
1893 wb = wb_get_create_current(bdi, GFP_KERNEL);
1894 if (!wb)
1895 wb = &bdi->wb;
1896
9d823e8f 1897 ratelimit = current->nr_dirtied_pause;
a88a341a 1898 if (wb->dirty_exceeded)
9d823e8f
WF
1899 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1900
9d823e8f 1901 preempt_disable();
1da177e4 1902 /*
9d823e8f
WF
1903 * This prevents one CPU to accumulate too many dirtied pages without
1904 * calling into balance_dirty_pages(), which can happen when there are
1905 * 1000+ tasks, all of them start dirtying pages at exactly the same
1906 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1907 */
7c8e0181 1908 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1909 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1910 *p = 0;
d3bc1fef
WF
1911 else if (unlikely(*p >= ratelimit_pages)) {
1912 *p = 0;
1913 ratelimit = 0;
1da177e4 1914 }
54848d73
WF
1915 /*
1916 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1917 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1918 * the dirty throttling and livelock other long-run dirtiers.
1919 */
7c8e0181 1920 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1921 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1922 unsigned long nr_pages_dirtied;
54848d73
WF
1923 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1924 *p -= nr_pages_dirtied;
1925 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1926 }
fa5a734e 1927 preempt_enable();
9d823e8f
WF
1928
1929 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1930 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1931
1932 wb_put(wb);
1da177e4 1933}
d0e1d66b 1934EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1935
aa661bbe
TH
1936/**
1937 * wb_over_bg_thresh - does @wb need to be written back?
1938 * @wb: bdi_writeback of interest
1939 *
1940 * Determines whether background writeback should keep writing @wb or it's
a862f68a
MR
1941 * clean enough.
1942 *
1943 * Return: %true if writeback should continue.
aa661bbe
TH
1944 */
1945bool wb_over_bg_thresh(struct bdi_writeback *wb)
1946{
947e9762 1947 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1948 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1949 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1950 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1951 &mdtc_stor : NULL;
aa661bbe 1952
947e9762
TH
1953 /*
1954 * Similar to balance_dirty_pages() but ignores pages being written
1955 * as we're trying to decide whether to put more under writeback.
1956 */
1957 gdtc->avail = global_dirtyable_memory();
8d92890b 1958 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
947e9762 1959 domain_dirty_limits(gdtc);
aa661bbe 1960
947e9762 1961 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1962 return true;
1963
74d36944
HC
1964 if (wb_stat(wb, WB_RECLAIMABLE) >
1965 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1966 return true;
1967
c2aa723a 1968 if (mdtc) {
c5edf9cd 1969 unsigned long filepages, headroom, writeback;
c2aa723a 1970
c5edf9cd
TH
1971 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1972 &writeback);
1973 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1974 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1975
1976 if (mdtc->dirty > mdtc->bg_thresh)
1977 return true;
1978
74d36944
HC
1979 if (wb_stat(wb, WB_RECLAIMABLE) >
1980 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1981 return true;
1982 }
1983
aa661bbe
TH
1984 return false;
1985}
1986
1da177e4
LT
1987/*
1988 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1989 */
cccad5b9 1990int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1991 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1992{
94af5846
YS
1993 unsigned int old_interval = dirty_writeback_interval;
1994 int ret;
1995
1996 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1997
1998 /*
1999 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2000 * and a different non-zero value will wakeup the writeback threads.
2001 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2002 * iterate over all bdis and wbs.
2003 * The reason we do this is to make the change take effect immediately.
2004 */
2005 if (!ret && write && dirty_writeback_interval &&
2006 dirty_writeback_interval != old_interval)
94af5846
YS
2007 wakeup_flusher_threads(WB_REASON_PERIODIC);
2008
2009 return ret;
1da177e4
LT
2010}
2011
c2c4986e 2012#ifdef CONFIG_BLOCK
bca237a5 2013void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 2014{
bca237a5
KC
2015 struct backing_dev_info *backing_dev_info =
2016 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 2017
bca237a5 2018 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
2019}
2020
2021/*
2022 * We've spun up the disk and we're in laptop mode: schedule writeback
2023 * of all dirty data a few seconds from now. If the flush is already scheduled
2024 * then push it back - the user is still using the disk.
2025 */
31373d09 2026void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2027{
31373d09 2028 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2029}
2030
2031/*
2032 * We're in laptop mode and we've just synced. The sync's writes will have
2033 * caused another writeback to be scheduled by laptop_io_completion.
2034 * Nothing needs to be written back anymore, so we unschedule the writeback.
2035 */
2036void laptop_sync_completion(void)
2037{
31373d09
MG
2038 struct backing_dev_info *bdi;
2039
2040 rcu_read_lock();
2041
2042 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2043 del_timer(&bdi->laptop_mode_wb_timer);
2044
2045 rcu_read_unlock();
1da177e4 2046}
c2c4986e 2047#endif
1da177e4
LT
2048
2049/*
2050 * If ratelimit_pages is too high then we can get into dirty-data overload
2051 * if a large number of processes all perform writes at the same time.
2052 * If it is too low then SMP machines will call the (expensive)
2053 * get_writeback_state too often.
2054 *
2055 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2056 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2057 * thresholds.
1da177e4
LT
2058 */
2059
2d1d43f6 2060void writeback_set_ratelimit(void)
1da177e4 2061{
dcc25ae7 2062 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2063 unsigned long background_thresh;
2064 unsigned long dirty_thresh;
dcc25ae7 2065
9d823e8f 2066 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2067 dom->dirty_limit = dirty_thresh;
9d823e8f 2068 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2069 if (ratelimit_pages < 16)
2070 ratelimit_pages = 16;
1da177e4
LT
2071}
2072
1d7ac6ae 2073static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2074{
1d7ac6ae
SAS
2075 writeback_set_ratelimit();
2076 return 0;
1da177e4
LT
2077}
2078
1da177e4 2079/*
dc6e29da
LT
2080 * Called early on to tune the page writeback dirty limits.
2081 *
2082 * We used to scale dirty pages according to how total memory
2083 * related to pages that could be allocated for buffers (by
2084 * comparing nr_free_buffer_pages() to vm_total_pages.
2085 *
2086 * However, that was when we used "dirty_ratio" to scale with
2087 * all memory, and we don't do that any more. "dirty_ratio"
2088 * is now applied to total non-HIGHPAGE memory (by subtracting
2089 * totalhigh_pages from vm_total_pages), and as such we can't
2090 * get into the old insane situation any more where we had
2091 * large amounts of dirty pages compared to a small amount of
2092 * non-HIGHMEM memory.
2093 *
2094 * But we might still want to scale the dirty_ratio by how
2095 * much memory the box has..
1da177e4
LT
2096 */
2097void __init page_writeback_init(void)
2098{
a50fcb51
RV
2099 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2100
1d7ac6ae
SAS
2101 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2102 page_writeback_cpu_online, NULL);
2103 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2104 page_writeback_cpu_online);
1da177e4
LT
2105}
2106
f446daae
JK
2107/**
2108 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2109 * @mapping: address space structure to write
2110 * @start: starting page index
2111 * @end: ending page index (inclusive)
2112 *
2113 * This function scans the page range from @start to @end (inclusive) and tags
2114 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2115 * that write_cache_pages (or whoever calls this function) will then use
2116 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2117 * used to avoid livelocking of writeback by a process steadily creating new
2118 * dirty pages in the file (thus it is important for this function to be quick
2119 * so that it can tag pages faster than a dirtying process can create them).
2120 */
f446daae
JK
2121void tag_pages_for_writeback(struct address_space *mapping,
2122 pgoff_t start, pgoff_t end)
2123{
ff9c745b
MW
2124 XA_STATE(xas, &mapping->i_pages, start);
2125 unsigned int tagged = 0;
2126 void *page;
268f42de 2127
ff9c745b
MW
2128 xas_lock_irq(&xas);
2129 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2130 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2131 if (++tagged % XA_CHECK_SCHED)
268f42de 2132 continue;
ff9c745b
MW
2133
2134 xas_pause(&xas);
2135 xas_unlock_irq(&xas);
f446daae 2136 cond_resched();
ff9c745b 2137 xas_lock_irq(&xas);
268f42de 2138 }
ff9c745b 2139 xas_unlock_irq(&xas);
f446daae
JK
2140}
2141EXPORT_SYMBOL(tag_pages_for_writeback);
2142
811d736f 2143/**
0ea97180 2144 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2145 * @mapping: address space structure to write
2146 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2147 * @writepage: function called for each page
2148 * @data: data passed to writepage function
811d736f 2149 *
0ea97180 2150 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2151 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2152 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2153 * and msync() need to guarantee that all the data which was dirty at the time
2154 * the call was made get new I/O started against them. If wbc->sync_mode is
2155 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2156 * existing IO to complete.
f446daae
JK
2157 *
2158 * To avoid livelocks (when other process dirties new pages), we first tag
2159 * pages which should be written back with TOWRITE tag and only then start
2160 * writing them. For data-integrity sync we have to be careful so that we do
2161 * not miss some pages (e.g., because some other process has cleared TOWRITE
2162 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2163 * by the process clearing the DIRTY tag (and submitting the page for IO).
64081362
DC
2164 *
2165 * To avoid deadlocks between range_cyclic writeback and callers that hold
2166 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2167 * we do not loop back to the start of the file. Doing so causes a page
2168 * lock/page writeback access order inversion - we should only ever lock
2169 * multiple pages in ascending page->index order, and looping back to the start
2170 * of the file violates that rule and causes deadlocks.
a862f68a
MR
2171 *
2172 * Return: %0 on success, negative error code otherwise
811d736f 2173 */
0ea97180
MS
2174int write_cache_pages(struct address_space *mapping,
2175 struct writeback_control *wbc, writepage_t writepage,
2176 void *data)
811d736f 2177{
811d736f
DH
2178 int ret = 0;
2179 int done = 0;
3fa750dc 2180 int error;
811d736f
DH
2181 struct pagevec pvec;
2182 int nr_pages;
2183 pgoff_t index;
2184 pgoff_t end; /* Inclusive */
bd19e012 2185 pgoff_t done_index;
811d736f 2186 int range_whole = 0;
ff9c745b 2187 xa_mark_t tag;
811d736f 2188
86679820 2189 pagevec_init(&pvec);
811d736f 2190 if (wbc->range_cyclic) {
28659cc8 2191 index = mapping->writeback_index; /* prev offset */
811d736f
DH
2192 end = -1;
2193 } else {
09cbfeaf
KS
2194 index = wbc->range_start >> PAGE_SHIFT;
2195 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2196 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197 range_whole = 1;
811d736f 2198 }
cc7b8f62
MFO
2199 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2200 tag_pages_for_writeback(mapping, index, end);
f446daae 2201 tag = PAGECACHE_TAG_TOWRITE;
cc7b8f62 2202 } else {
f446daae 2203 tag = PAGECACHE_TAG_DIRTY;
cc7b8f62 2204 }
bd19e012 2205 done_index = index;
5a3d5c98
NP
2206 while (!done && (index <= end)) {
2207 int i;
2208
2b9775ae 2209 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2210 tag);
5a3d5c98
NP
2211 if (nr_pages == 0)
2212 break;
811d736f 2213
811d736f
DH
2214 for (i = 0; i < nr_pages; i++) {
2215 struct page *page = pvec.pages[i];
2216
cf15b07c 2217 done_index = page->index;
d5482cdf 2218
811d736f
DH
2219 lock_page(page);
2220
5a3d5c98
NP
2221 /*
2222 * Page truncated or invalidated. We can freely skip it
2223 * then, even for data integrity operations: the page
2224 * has disappeared concurrently, so there could be no
2225 * real expectation of this data interity operation
2226 * even if there is now a new, dirty page at the same
2227 * pagecache address.
2228 */
811d736f 2229 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2230continue_unlock:
811d736f
DH
2231 unlock_page(page);
2232 continue;
2233 }
2234
515f4a03
NP
2235 if (!PageDirty(page)) {
2236 /* someone wrote it for us */
2237 goto continue_unlock;
2238 }
2239
2240 if (PageWriteback(page)) {
2241 if (wbc->sync_mode != WB_SYNC_NONE)
2242 wait_on_page_writeback(page);
2243 else
2244 goto continue_unlock;
2245 }
811d736f 2246
515f4a03
NP
2247 BUG_ON(PageWriteback(page));
2248 if (!clear_page_dirty_for_io(page))
5a3d5c98 2249 goto continue_unlock;
811d736f 2250
de1414a6 2251 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
3fa750dc
BF
2252 error = (*writepage)(page, wbc, data);
2253 if (unlikely(error)) {
2254 /*
2255 * Handle errors according to the type of
2256 * writeback. There's no need to continue for
2257 * background writeback. Just push done_index
2258 * past this page so media errors won't choke
2259 * writeout for the entire file. For integrity
2260 * writeback, we must process the entire dirty
2261 * set regardless of errors because the fs may
2262 * still have state to clear for each page. In
2263 * that case we continue processing and return
2264 * the first error.
2265 */
2266 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2267 unlock_page(page);
3fa750dc
BF
2268 error = 0;
2269 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2270 ret = error;
cf15b07c 2271 done_index = page->index + 1;
00266770
NP
2272 done = 1;
2273 break;
2274 }
3fa750dc
BF
2275 if (!ret)
2276 ret = error;
0b564927 2277 }
00266770 2278
546a1924
DC
2279 /*
2280 * We stop writing back only if we are not doing
2281 * integrity sync. In case of integrity sync we have to
2282 * keep going until we have written all the pages
2283 * we tagged for writeback prior to entering this loop.
2284 */
2285 if (--wbc->nr_to_write <= 0 &&
2286 wbc->sync_mode == WB_SYNC_NONE) {
2287 done = 1;
2288 break;
05fe478d 2289 }
811d736f
DH
2290 }
2291 pagevec_release(&pvec);
2292 cond_resched();
2293 }
64081362
DC
2294
2295 /*
2296 * If we hit the last page and there is more work to be done: wrap
2297 * back the index back to the start of the file for the next
2298 * time we are called.
2299 */
2300 if (wbc->range_cyclic && !done)
2301 done_index = 0;
0b564927
DC
2302 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2303 mapping->writeback_index = done_index;
06d6cf69 2304
811d736f
DH
2305 return ret;
2306}
0ea97180
MS
2307EXPORT_SYMBOL(write_cache_pages);
2308
2309/*
2310 * Function used by generic_writepages to call the real writepage
2311 * function and set the mapping flags on error
2312 */
2313static int __writepage(struct page *page, struct writeback_control *wbc,
2314 void *data)
2315{
2316 struct address_space *mapping = data;
2317 int ret = mapping->a_ops->writepage(page, wbc);
2318 mapping_set_error(mapping, ret);
2319 return ret;
2320}
2321
2322/**
2323 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2324 * @mapping: address space structure to write
2325 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326 *
2327 * This is a library function, which implements the writepages()
2328 * address_space_operation.
a862f68a
MR
2329 *
2330 * Return: %0 on success, negative error code otherwise
0ea97180
MS
2331 */
2332int generic_writepages(struct address_space *mapping,
2333 struct writeback_control *wbc)
2334{
9b6096a6
SL
2335 struct blk_plug plug;
2336 int ret;
2337
0ea97180
MS
2338 /* deal with chardevs and other special file */
2339 if (!mapping->a_ops->writepage)
2340 return 0;
2341
9b6096a6
SL
2342 blk_start_plug(&plug);
2343 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344 blk_finish_plug(&plug);
2345 return ret;
0ea97180 2346}
811d736f
DH
2347
2348EXPORT_SYMBOL(generic_writepages);
2349
1da177e4
LT
2350int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351{
22905f77
AM
2352 int ret;
2353
1da177e4
LT
2354 if (wbc->nr_to_write <= 0)
2355 return 0;
80a2ea9f
TT
2356 while (1) {
2357 if (mapping->a_ops->writepages)
2358 ret = mapping->a_ops->writepages(mapping, wbc);
2359 else
2360 ret = generic_writepages(mapping, wbc);
2361 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2362 break;
2363 cond_resched();
2364 congestion_wait(BLK_RW_ASYNC, HZ/50);
2365 }
22905f77 2366 return ret;
1da177e4
LT
2367}
2368
2369/**
2b69c828 2370 * write_one_page - write out a single page and wait on I/O
67be2dd1 2371 * @page: the page to write
1da177e4
LT
2372 *
2373 * The page must be locked by the caller and will be unlocked upon return.
2374 *
37e51a76
JL
2375 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2376 * function returns.
a862f68a
MR
2377 *
2378 * Return: %0 on success, negative error code otherwise
1da177e4 2379 */
2b69c828 2380int write_one_page(struct page *page)
1da177e4
LT
2381{
2382 struct address_space *mapping = page->mapping;
2383 int ret = 0;
2384 struct writeback_control wbc = {
2385 .sync_mode = WB_SYNC_ALL,
2386 .nr_to_write = 1,
2387 };
2388
2389 BUG_ON(!PageLocked(page));
2390
2b69c828 2391 wait_on_page_writeback(page);
1da177e4
LT
2392
2393 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2394 get_page(page);
1da177e4 2395 ret = mapping->a_ops->writepage(page, &wbc);
37e51a76 2396 if (ret == 0)
1da177e4 2397 wait_on_page_writeback(page);
09cbfeaf 2398 put_page(page);
1da177e4
LT
2399 } else {
2400 unlock_page(page);
2401 }
37e51a76
JL
2402
2403 if (!ret)
2404 ret = filemap_check_errors(mapping);
1da177e4
LT
2405 return ret;
2406}
2407EXPORT_SYMBOL(write_one_page);
2408
76719325
KC
2409/*
2410 * For address_spaces which do not use buffers nor write back.
2411 */
2412int __set_page_dirty_no_writeback(struct page *page)
2413{
2414 if (!PageDirty(page))
c3f0da63 2415 return !TestSetPageDirty(page);
76719325
KC
2416 return 0;
2417}
2418
e3a7cca1
ES
2419/*
2420 * Helper function for set_page_dirty family.
c4843a75 2421 *
81f8c3a4 2422 * Caller must hold lock_page_memcg().
c4843a75 2423 *
e3a7cca1
ES
2424 * NOTE: This relies on being atomic wrt interrupts.
2425 */
62cccb8c 2426void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2427{
52ebea74
TH
2428 struct inode *inode = mapping->host;
2429
9fb0a7da
TH
2430 trace_writeback_dirty_page(page, mapping);
2431
e3a7cca1 2432 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2433 struct bdi_writeback *wb;
de1414a6 2434
52ebea74
TH
2435 inode_attach_wb(inode, page);
2436 wb = inode_to_wb(inode);
de1414a6 2437
00f3ca2c 2438 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2439 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2440 __inc_node_page_state(page, NR_DIRTIED);
3e8f399d
NB
2441 inc_wb_stat(wb, WB_RECLAIMABLE);
2442 inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2443 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2444 current->nr_dirtied++;
2445 this_cpu_inc(bdp_ratelimits);
97b27821
TH
2446
2447 mem_cgroup_track_foreign_dirty(page, wb);
e3a7cca1
ES
2448 }
2449}
2450
b9ea2515
KK
2451/*
2452 * Helper function for deaccounting dirty page without writeback.
2453 *
81f8c3a4 2454 * Caller must hold lock_page_memcg().
b9ea2515 2455 */
c4843a75 2456void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2457 struct bdi_writeback *wb)
b9ea2515
KK
2458{
2459 if (mapping_cap_account_dirty(mapping)) {
00f3ca2c 2460 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2461 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2462 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2463 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2464 }
2465}
b9ea2515 2466
1da177e4
LT
2467/*
2468 * For address_spaces which do not use buffers. Just tag the page as dirty in
ff9c745b 2469 * the xarray.
1da177e4
LT
2470 *
2471 * This is also used when a single buffer is being dirtied: we want to set the
2472 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2473 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2474 *
2d6d7f98
JW
2475 * The caller must ensure this doesn't race with truncation. Most will simply
2476 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2477 * the pte lock held, which also locks out truncation.
1da177e4
LT
2478 */
2479int __set_page_dirty_nobuffers(struct page *page)
2480{
62cccb8c 2481 lock_page_memcg(page);
1da177e4
LT
2482 if (!TestSetPageDirty(page)) {
2483 struct address_space *mapping = page_mapping(page);
a85d9df1 2484 unsigned long flags;
1da177e4 2485
c4843a75 2486 if (!mapping) {
62cccb8c 2487 unlock_page_memcg(page);
8c08540f 2488 return 1;
c4843a75 2489 }
8c08540f 2490
b93b0163 2491 xa_lock_irqsave(&mapping->i_pages, flags);
2d6d7f98
JW
2492 BUG_ON(page_mapping(page) != mapping);
2493 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2494 account_page_dirtied(page, mapping);
ff9c745b 2495 __xa_set_mark(&mapping->i_pages, page_index(page),
2d6d7f98 2496 PAGECACHE_TAG_DIRTY);
b93b0163 2497 xa_unlock_irqrestore(&mapping->i_pages, flags);
62cccb8c 2498 unlock_page_memcg(page);
c4843a75 2499
8c08540f
AM
2500 if (mapping->host) {
2501 /* !PageAnon && !swapper_space */
2502 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2503 }
4741c9fd 2504 return 1;
1da177e4 2505 }
62cccb8c 2506 unlock_page_memcg(page);
4741c9fd 2507 return 0;
1da177e4
LT
2508}
2509EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2510
2f800fbd
WF
2511/*
2512 * Call this whenever redirtying a page, to de-account the dirty counters
dcfe4df3
GT
2513 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2514 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2f800fbd
WF
2515 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2516 * control.
2517 */
2518void account_page_redirty(struct page *page)
2519{
2520 struct address_space *mapping = page->mapping;
91018134 2521
2f800fbd 2522 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2523 struct inode *inode = mapping->host;
2524 struct bdi_writeback *wb;
2e898e4c 2525 struct wb_lock_cookie cookie = {};
91018134 2526
2e898e4c 2527 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2f800fbd 2528 current->nr_dirtied--;
c4a25635 2529 dec_node_page_state(page, NR_DIRTIED);
91018134 2530 dec_wb_stat(wb, WB_DIRTIED);
2e898e4c 2531 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2532 }
2533}
2534EXPORT_SYMBOL(account_page_redirty);
2535
1da177e4
LT
2536/*
2537 * When a writepage implementation decides that it doesn't want to write this
2538 * page for some reason, it should redirty the locked page via
2539 * redirty_page_for_writepage() and it should then unlock the page and return 0
2540 */
2541int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2542{
8d38633c
KK
2543 int ret;
2544
1da177e4 2545 wbc->pages_skipped++;
8d38633c 2546 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2547 account_page_redirty(page);
8d38633c 2548 return ret;
1da177e4
LT
2549}
2550EXPORT_SYMBOL(redirty_page_for_writepage);
2551
2552/*
6746aff7
WF
2553 * Dirty a page.
2554 *
2555 * For pages with a mapping this should be done under the page lock
2556 * for the benefit of asynchronous memory errors who prefer a consistent
2557 * dirty state. This rule can be broken in some special cases,
2558 * but should be better not to.
2559 *
1da177e4
LT
2560 * If the mapping doesn't provide a set_page_dirty a_op, then
2561 * just fall through and assume that it wants buffer_heads.
2562 */
1cf6e7d8 2563int set_page_dirty(struct page *page)
1da177e4
LT
2564{
2565 struct address_space *mapping = page_mapping(page);
2566
800d8c63 2567 page = compound_head(page);
1da177e4
LT
2568 if (likely(mapping)) {
2569 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2570 /*
2571 * readahead/lru_deactivate_page could remain
2572 * PG_readahead/PG_reclaim due to race with end_page_writeback
2573 * About readahead, if the page is written, the flags would be
2574 * reset. So no problem.
2575 * About lru_deactivate_page, if the page is redirty, the flag
2576 * will be reset. So no problem. but if the page is used by readahead
2577 * it will confuse readahead and make it restart the size rampup
2578 * process. But it's a trivial problem.
2579 */
a4bb3ecd
NH
2580 if (PageReclaim(page))
2581 ClearPageReclaim(page);
9361401e
DH
2582#ifdef CONFIG_BLOCK
2583 if (!spd)
2584 spd = __set_page_dirty_buffers;
2585#endif
2586 return (*spd)(page);
1da177e4 2587 }
4741c9fd
AM
2588 if (!PageDirty(page)) {
2589 if (!TestSetPageDirty(page))
2590 return 1;
2591 }
1da177e4
LT
2592 return 0;
2593}
2594EXPORT_SYMBOL(set_page_dirty);
2595
2596/*
2597 * set_page_dirty() is racy if the caller has no reference against
2598 * page->mapping->host, and if the page is unlocked. This is because another
2599 * CPU could truncate the page off the mapping and then free the mapping.
2600 *
2601 * Usually, the page _is_ locked, or the caller is a user-space process which
2602 * holds a reference on the inode by having an open file.
2603 *
2604 * In other cases, the page should be locked before running set_page_dirty().
2605 */
2606int set_page_dirty_lock(struct page *page)
2607{
2608 int ret;
2609
7eaceacc 2610 lock_page(page);
1da177e4
LT
2611 ret = set_page_dirty(page);
2612 unlock_page(page);
2613 return ret;
2614}
2615EXPORT_SYMBOL(set_page_dirty_lock);
2616
11f81bec
TH
2617/*
2618 * This cancels just the dirty bit on the kernel page itself, it does NOT
2619 * actually remove dirty bits on any mmap's that may be around. It also
2620 * leaves the page tagged dirty, so any sync activity will still find it on
2621 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2622 * look at the dirty bits in the VM.
2623 *
2624 * Doing this should *normally* only ever be done when a page is truncated,
2625 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2626 * this when it notices that somebody has cleaned out all the buffers on a
2627 * page without actually doing it through the VM. Can you say "ext3 is
2628 * horribly ugly"? Thought you could.
2629 */
736304f3 2630void __cancel_dirty_page(struct page *page)
11f81bec 2631{
c4843a75
GT
2632 struct address_space *mapping = page_mapping(page);
2633
2634 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2635 struct inode *inode = mapping->host;
2636 struct bdi_writeback *wb;
2e898e4c 2637 struct wb_lock_cookie cookie = {};
c4843a75 2638
62cccb8c 2639 lock_page_memcg(page);
2e898e4c 2640 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75
GT
2641
2642 if (TestClearPageDirty(page))
62cccb8c 2643 account_page_cleaned(page, mapping, wb);
c4843a75 2644
2e898e4c 2645 unlocked_inode_to_wb_end(inode, &cookie);
62cccb8c 2646 unlock_page_memcg(page);
c4843a75
GT
2647 } else {
2648 ClearPageDirty(page);
2649 }
11f81bec 2650}
736304f3 2651EXPORT_SYMBOL(__cancel_dirty_page);
11f81bec 2652
1da177e4
LT
2653/*
2654 * Clear a page's dirty flag, while caring for dirty memory accounting.
2655 * Returns true if the page was previously dirty.
2656 *
2657 * This is for preparing to put the page under writeout. We leave the page
ff9c745b 2658 * tagged as dirty in the xarray so that a concurrent write-for-sync
1da177e4
LT
2659 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2660 * implementation will run either set_page_writeback() or set_page_dirty(),
ff9c745b 2661 * at which stage we bring the page's dirty flag and xarray dirty tag
1da177e4
LT
2662 * back into sync.
2663 *
ff9c745b 2664 * This incoherency between the page's dirty flag and xarray tag is
1da177e4
LT
2665 * unfortunate, but it only exists while the page is locked.
2666 */
2667int clear_page_dirty_for_io(struct page *page)
2668{
2669 struct address_space *mapping = page_mapping(page);
c4843a75 2670 int ret = 0;
1da177e4 2671
184b4fef 2672 VM_BUG_ON_PAGE(!PageLocked(page), page);
79352894 2673
7658cc28 2674 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2675 struct inode *inode = mapping->host;
2676 struct bdi_writeback *wb;
2e898e4c 2677 struct wb_lock_cookie cookie = {};
682aa8e1 2678
7658cc28
LT
2679 /*
2680 * Yes, Virginia, this is indeed insane.
2681 *
2682 * We use this sequence to make sure that
2683 * (a) we account for dirty stats properly
2684 * (b) we tell the low-level filesystem to
2685 * mark the whole page dirty if it was
2686 * dirty in a pagetable. Only to then
2687 * (c) clean the page again and return 1 to
2688 * cause the writeback.
2689 *
2690 * This way we avoid all nasty races with the
2691 * dirty bit in multiple places and clearing
2692 * them concurrently from different threads.
2693 *
2694 * Note! Normally the "set_page_dirty(page)"
2695 * has no effect on the actual dirty bit - since
2696 * that will already usually be set. But we
2697 * need the side effects, and it can help us
2698 * avoid races.
2699 *
2700 * We basically use the page "master dirty bit"
2701 * as a serialization point for all the different
2702 * threads doing their things.
7658cc28
LT
2703 */
2704 if (page_mkclean(page))
2705 set_page_dirty(page);
79352894
NP
2706 /*
2707 * We carefully synchronise fault handlers against
2708 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2709 * at this point. We do this by having them hold the
2710 * page lock while dirtying the page, and pages are
2711 * always locked coming in here, so we get the desired
2712 * exclusion.
79352894 2713 */
2e898e4c 2714 wb = unlocked_inode_to_wb_begin(inode, &cookie);
7658cc28 2715 if (TestClearPageDirty(page)) {
00f3ca2c 2716 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2717 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2718 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2719 ret = 1;
1da177e4 2720 }
2e898e4c 2721 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2722 return ret;
1da177e4 2723 }
7658cc28 2724 return TestClearPageDirty(page);
1da177e4 2725}
58bb01a9 2726EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2727
2728int test_clear_page_writeback(struct page *page)
2729{
2730 struct address_space *mapping = page_mapping(page);
739f79fc
JW
2731 struct mem_cgroup *memcg;
2732 struct lruvec *lruvec;
d7365e78 2733 int ret;
1da177e4 2734
739f79fc
JW
2735 memcg = lock_page_memcg(page);
2736 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
371a096e 2737 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2738 struct inode *inode = mapping->host;
2739 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2740 unsigned long flags;
2741
b93b0163 2742 xa_lock_irqsave(&mapping->i_pages, flags);
1da177e4 2743 ret = TestClearPageWriteback(page);
69cb51d1 2744 if (ret) {
ff9c745b 2745 __xa_clear_mark(&mapping->i_pages, page_index(page),
1da177e4 2746 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2747 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2748 struct bdi_writeback *wb = inode_to_wb(inode);
2749
3e8f399d 2750 dec_wb_stat(wb, WB_WRITEBACK);
91018134 2751 __wb_writeout_inc(wb);
04fbfdc1 2752 }
69cb51d1 2753 }
6c60d2b5
DC
2754
2755 if (mapping->host && !mapping_tagged(mapping,
2756 PAGECACHE_TAG_WRITEBACK))
2757 sb_clear_inode_writeback(mapping->host);
2758
b93b0163 2759 xa_unlock_irqrestore(&mapping->i_pages, flags);
1da177e4
LT
2760 } else {
2761 ret = TestClearPageWriteback(page);
2762 }
739f79fc
JW
2763 /*
2764 * NOTE: Page might be free now! Writeback doesn't hold a page
2765 * reference on its own, it relies on truncation to wait for
2766 * the clearing of PG_writeback. The below can only access
2767 * page state that is static across allocation cycles.
2768 */
99b12e3d 2769 if (ret) {
739f79fc 2770 dec_lruvec_state(lruvec, NR_WRITEBACK);
5a1c84b4 2771 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2772 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2773 }
739f79fc 2774 __unlock_page_memcg(memcg);
1da177e4
LT
2775 return ret;
2776}
2777
1c8349a1 2778int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2779{
2780 struct address_space *mapping = page_mapping(page);
f28d4363 2781 int ret, access_ret;
1da177e4 2782
62cccb8c 2783 lock_page_memcg(page);
371a096e 2784 if (mapping && mapping_use_writeback_tags(mapping)) {
ff9c745b 2785 XA_STATE(xas, &mapping->i_pages, page_index(page));
91018134
TH
2786 struct inode *inode = mapping->host;
2787 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2788 unsigned long flags;
2789
ff9c745b
MW
2790 xas_lock_irqsave(&xas, flags);
2791 xas_load(&xas);
1da177e4 2792 ret = TestSetPageWriteback(page);
69cb51d1 2793 if (!ret) {
6c60d2b5
DC
2794 bool on_wblist;
2795
2796 on_wblist = mapping_tagged(mapping,
2797 PAGECACHE_TAG_WRITEBACK);
2798
ff9c745b 2799 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2800 if (bdi_cap_account_writeback(bdi))
3e8f399d 2801 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2802
2803 /*
2804 * We can come through here when swapping anonymous
2805 * pages, so we don't necessarily have an inode to track
2806 * for sync.
2807 */
2808 if (mapping->host && !on_wblist)
2809 sb_mark_inode_writeback(mapping->host);
69cb51d1 2810 }
1da177e4 2811 if (!PageDirty(page))
ff9c745b 2812 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
1c8349a1 2813 if (!keep_write)
ff9c745b
MW
2814 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2815 xas_unlock_irqrestore(&xas, flags);
1da177e4
LT
2816 } else {
2817 ret = TestSetPageWriteback(page);
2818 }
3a3c02ec 2819 if (!ret) {
00f3ca2c 2820 inc_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2821 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
3a3c02ec 2822 }
62cccb8c 2823 unlock_page_memcg(page);
f28d4363
CI
2824 access_ret = arch_make_page_accessible(page);
2825 /*
2826 * If writeback has been triggered on a page that cannot be made
2827 * accessible, it is too late to recover here.
2828 */
2829 VM_BUG_ON_PAGE(access_ret != 0, page);
2830
1da177e4
LT
2831 return ret;
2832
2833}
1c8349a1 2834EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4 2835
19343b5b
YS
2836/*
2837 * Wait for a page to complete writeback
2838 */
2839void wait_on_page_writeback(struct page *page)
2840{
2841 if (PageWriteback(page)) {
2842 trace_wait_on_page_writeback(page, page_mapping(page));
2843 wait_on_page_bit(page, PG_writeback);
2844 }
2845}
2846EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2847
1d1d1a76
DW
2848/**
2849 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2850 * @page: The page to wait on.
2851 *
2852 * This function determines if the given page is related to a backing device
2853 * that requires page contents to be held stable during writeback. If so, then
2854 * it will wait for any pending writeback to complete.
2855 */
2856void wait_for_stable_page(struct page *page)
2857{
de1414a6
CH
2858 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2859 wait_on_page_writeback(page);
1d1d1a76
DW
2860}
2861EXPORT_SYMBOL_GPL(wait_for_stable_page);