fs: introduce f_op->mmap_capabilities for nommu mmap support
[linux-block.git] / mm / nommu.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
8feae131 9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
1da177e4
LT
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
29c185e5 13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
1da177e4
LT
14 */
15
b1de0d13
MH
16#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
b95f1b31 18#include <linux/export.h>
1da177e4 19#include <linux/mm.h>
615d6e87 20#include <linux/vmacache.h>
1da177e4
LT
21#include <linux/mman.h>
22#include <linux/swap.h>
23#include <linux/file.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <linux/slab.h>
27#include <linux/vmalloc.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/backing-dev.h>
3b32123d 30#include <linux/compiler.h>
1da177e4
LT
31#include <linux/mount.h>
32#include <linux/personality.h>
33#include <linux/security.h>
34#include <linux/syscalls.h>
120a795d 35#include <linux/audit.h>
cf4aebc2 36#include <linux/sched/sysctl.h>
b1de0d13 37#include <linux/printk.h>
1da177e4
LT
38
39#include <asm/uaccess.h>
40#include <asm/tlb.h>
41#include <asm/tlbflush.h>
eb8cdec4 42#include <asm/mmu_context.h>
8feae131
DH
43#include "internal.h"
44
8feae131
DH
45#if 0
46#define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48#define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50#define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52#else
53#define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55#define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57#define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59#endif
1da177e4
LT
60
61void *high_memory;
62struct page *mem_map;
63unsigned long max_mapnr;
4266c97a 64unsigned long highest_memmap_pfn;
00a62ce9 65struct percpu_counter vm_committed_as;
1da177e4
LT
66int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67int sysctl_overcommit_ratio = 50; /* default is 50% */
49f0ce5f 68unsigned long sysctl_overcommit_kbytes __read_mostly;
1da177e4 69int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
fc4d5c29 70int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
c9b1d098 71unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
4eeab4f5 72unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
1da177e4
LT
73int heap_stack_gap = 0;
74
33e5d769 75atomic_long_t mmap_pages_allocated;
8feae131 76
997071bc
S
77/*
78 * The global memory commitment made in the system can be a metric
79 * that can be used to drive ballooning decisions when Linux is hosted
80 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
81 * balancing memory across competing virtual machines that are hosted.
82 * Several metrics drive this policy engine including the guest reported
83 * memory commitment.
84 */
85unsigned long vm_memory_committed(void)
86{
87 return percpu_counter_read_positive(&vm_committed_as);
88}
89
90EXPORT_SYMBOL_GPL(vm_memory_committed);
91
1da177e4 92EXPORT_SYMBOL(mem_map);
1da177e4 93
8feae131
DH
94/* list of mapped, potentially shareable regions */
95static struct kmem_cache *vm_region_jar;
96struct rb_root nommu_region_tree = RB_ROOT;
97DECLARE_RWSEM(nommu_region_sem);
1da177e4 98
f0f37e2f 99const struct vm_operations_struct generic_file_vm_ops = {
1da177e4
LT
100};
101
1da177e4
LT
102/*
103 * Return the total memory allocated for this pointer, not
104 * just what the caller asked for.
105 *
106 * Doesn't have to be accurate, i.e. may have races.
107 */
108unsigned int kobjsize(const void *objp)
109{
110 struct page *page;
111
4016a139
MH
112 /*
113 * If the object we have should not have ksize performed on it,
114 * return size of 0
115 */
5a1603be 116 if (!objp || !virt_addr_valid(objp))
6cfd53fc
PM
117 return 0;
118
119 page = virt_to_head_page(objp);
6cfd53fc
PM
120
121 /*
122 * If the allocator sets PageSlab, we know the pointer came from
123 * kmalloc().
124 */
1da177e4
LT
125 if (PageSlab(page))
126 return ksize(objp);
127
ab2e83ea
PM
128 /*
129 * If it's not a compound page, see if we have a matching VMA
130 * region. This test is intentionally done in reverse order,
131 * so if there's no VMA, we still fall through and hand back
132 * PAGE_SIZE for 0-order pages.
133 */
134 if (!PageCompound(page)) {
135 struct vm_area_struct *vma;
136
137 vma = find_vma(current->mm, (unsigned long)objp);
138 if (vma)
139 return vma->vm_end - vma->vm_start;
140 }
141
6cfd53fc
PM
142 /*
143 * The ksize() function is only guaranteed to work for pointers
5a1603be 144 * returned by kmalloc(). So handle arbitrary pointers here.
6cfd53fc 145 */
5a1603be 146 return PAGE_SIZE << compound_order(page);
1da177e4
LT
147}
148
28a35716
ML
149long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
150 unsigned long start, unsigned long nr_pages,
151 unsigned int foll_flags, struct page **pages,
152 struct vm_area_struct **vmas, int *nonblocking)
1da177e4 153{
910e46da 154 struct vm_area_struct *vma;
7b4d5b8b
DH
155 unsigned long vm_flags;
156 int i;
157
158 /* calculate required read or write permissions.
58fa879e 159 * If FOLL_FORCE is set, we only require the "MAY" flags.
7b4d5b8b 160 */
58fa879e
HD
161 vm_flags = (foll_flags & FOLL_WRITE) ?
162 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
163 vm_flags &= (foll_flags & FOLL_FORCE) ?
164 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4 165
9d73777e 166 for (i = 0; i < nr_pages; i++) {
7561e8ca 167 vma = find_vma(mm, start);
7b4d5b8b
DH
168 if (!vma)
169 goto finish_or_fault;
170
171 /* protect what we can, including chardevs */
1c3aff1c
HD
172 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
173 !(vm_flags & vma->vm_flags))
7b4d5b8b 174 goto finish_or_fault;
910e46da 175
1da177e4
LT
176 if (pages) {
177 pages[i] = virt_to_page(start);
178 if (pages[i])
179 page_cache_get(pages[i]);
180 }
181 if (vmas)
910e46da 182 vmas[i] = vma;
e1ee65d8 183 start = (start + PAGE_SIZE) & PAGE_MASK;
1da177e4 184 }
7b4d5b8b
DH
185
186 return i;
187
188finish_or_fault:
189 return i ? : -EFAULT;
1da177e4 190}
b291f000 191
b291f000
NP
192/*
193 * get a list of pages in an address range belonging to the specified process
194 * and indicate the VMA that covers each page
195 * - this is potentially dodgy as we may end incrementing the page count of a
196 * slab page or a secondary page from a compound page
197 * - don't permit access to VMAs that don't support it, such as I/O mappings
198 */
28a35716
ML
199long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
200 unsigned long start, unsigned long nr_pages,
201 int write, int force, struct page **pages,
202 struct vm_area_struct **vmas)
b291f000
NP
203{
204 int flags = 0;
205
206 if (write)
58fa879e 207 flags |= FOLL_WRITE;
b291f000 208 if (force)
58fa879e 209 flags |= FOLL_FORCE;
b291f000 210
53a7706d
ML
211 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
212 NULL);
b291f000 213}
66aa2b4b
GU
214EXPORT_SYMBOL(get_user_pages);
215
dfc2f91a
PM
216/**
217 * follow_pfn - look up PFN at a user virtual address
218 * @vma: memory mapping
219 * @address: user virtual address
220 * @pfn: location to store found PFN
221 *
222 * Only IO mappings and raw PFN mappings are allowed.
223 *
224 * Returns zero and the pfn at @pfn on success, -ve otherwise.
225 */
226int follow_pfn(struct vm_area_struct *vma, unsigned long address,
227 unsigned long *pfn)
228{
229 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
230 return -EINVAL;
231
232 *pfn = address >> PAGE_SHIFT;
233 return 0;
234}
235EXPORT_SYMBOL(follow_pfn);
236
f1c4069e 237LIST_HEAD(vmap_area_list);
1da177e4 238
b3bdda02 239void vfree(const void *addr)
1da177e4
LT
240{
241 kfree(addr);
242}
b5073173 243EXPORT_SYMBOL(vfree);
1da177e4 244
dd0fc66f 245void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1da177e4
LT
246{
247 /*
8518609d
RD
248 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
249 * returns only a logical address.
1da177e4 250 */
84097518 251 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
1da177e4 252}
b5073173 253EXPORT_SYMBOL(__vmalloc);
1da177e4 254
f905bc44
PM
255void *vmalloc_user(unsigned long size)
256{
257 void *ret;
258
259 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
260 PAGE_KERNEL);
261 if (ret) {
262 struct vm_area_struct *vma;
263
264 down_write(&current->mm->mmap_sem);
265 vma = find_vma(current->mm, (unsigned long)ret);
266 if (vma)
267 vma->vm_flags |= VM_USERMAP;
268 up_write(&current->mm->mmap_sem);
269 }
270
271 return ret;
272}
273EXPORT_SYMBOL(vmalloc_user);
274
b3bdda02 275struct page *vmalloc_to_page(const void *addr)
1da177e4
LT
276{
277 return virt_to_page(addr);
278}
b5073173 279EXPORT_SYMBOL(vmalloc_to_page);
1da177e4 280
b3bdda02 281unsigned long vmalloc_to_pfn(const void *addr)
1da177e4
LT
282{
283 return page_to_pfn(virt_to_page(addr));
284}
b5073173 285EXPORT_SYMBOL(vmalloc_to_pfn);
1da177e4
LT
286
287long vread(char *buf, char *addr, unsigned long count)
288{
9bde916b
CG
289 /* Don't allow overflow */
290 if ((unsigned long) buf + count < count)
291 count = -(unsigned long) buf;
292
1da177e4
LT
293 memcpy(buf, addr, count);
294 return count;
295}
296
297long vwrite(char *buf, char *addr, unsigned long count)
298{
299 /* Don't allow overflow */
300 if ((unsigned long) addr + count < count)
301 count = -(unsigned long) addr;
302
303 memcpy(addr, buf, count);
ac714904 304 return count;
1da177e4
LT
305}
306
307/*
308 * vmalloc - allocate virtually continguos memory
309 *
310 * @size: allocation size
311 *
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
314 *
c1c8897f 315 * For tight control over page level allocator and protection flags
1da177e4
LT
316 * use __vmalloc() instead.
317 */
318void *vmalloc(unsigned long size)
319{
320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321}
f6138882
AM
322EXPORT_SYMBOL(vmalloc);
323
e1ca7788
DY
324/*
325 * vzalloc - allocate virtually continguos memory with zero fill
326 *
327 * @size: allocation size
328 *
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
331 * The memory allocated is set to zero.
332 *
333 * For tight control over page level allocator and protection flags
334 * use __vmalloc() instead.
335 */
336void *vzalloc(unsigned long size)
337{
338 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
339 PAGE_KERNEL);
340}
341EXPORT_SYMBOL(vzalloc);
342
343/**
344 * vmalloc_node - allocate memory on a specific node
345 * @size: allocation size
346 * @node: numa node
347 *
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into contiguous kernel virtual space.
350 *
351 * For tight control over page level allocator and protection flags
352 * use __vmalloc() instead.
353 */
f6138882
AM
354void *vmalloc_node(unsigned long size, int node)
355{
356 return vmalloc(size);
357}
9a14f653 358EXPORT_SYMBOL(vmalloc_node);
e1ca7788
DY
359
360/**
361 * vzalloc_node - allocate memory on a specific node with zero fill
362 * @size: allocation size
363 * @node: numa node
364 *
365 * Allocate enough pages to cover @size from the page level
366 * allocator and map them into contiguous kernel virtual space.
367 * The memory allocated is set to zero.
368 *
369 * For tight control over page level allocator and protection flags
370 * use __vmalloc() instead.
371 */
372void *vzalloc_node(unsigned long size, int node)
373{
374 return vzalloc(size);
375}
376EXPORT_SYMBOL(vzalloc_node);
1da177e4 377
1af446ed
PM
378#ifndef PAGE_KERNEL_EXEC
379# define PAGE_KERNEL_EXEC PAGE_KERNEL
380#endif
381
382/**
383 * vmalloc_exec - allocate virtually contiguous, executable memory
384 * @size: allocation size
385 *
386 * Kernel-internal function to allocate enough pages to cover @size
387 * the page level allocator and map them into contiguous and
388 * executable kernel virtual space.
389 *
390 * For tight control over page level allocator and protection flags
391 * use __vmalloc() instead.
392 */
393
394void *vmalloc_exec(unsigned long size)
395{
396 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
397}
398
b5073173
PM
399/**
400 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
401 * @size: allocation size
402 *
403 * Allocate enough 32bit PA addressable pages to cover @size from the
404 * page level allocator and map them into continguos kernel virtual space.
405 */
406void *vmalloc_32(unsigned long size)
407{
408 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
409}
b5073173
PM
410EXPORT_SYMBOL(vmalloc_32);
411
412/**
413 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
414 * @size: allocation size
415 *
416 * The resulting memory area is 32bit addressable and zeroed so it can be
417 * mapped to userspace without leaking data.
f905bc44
PM
418 *
419 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
420 * remap_vmalloc_range() are permissible.
b5073173
PM
421 */
422void *vmalloc_32_user(unsigned long size)
423{
f905bc44
PM
424 /*
425 * We'll have to sort out the ZONE_DMA bits for 64-bit,
426 * but for now this can simply use vmalloc_user() directly.
427 */
428 return vmalloc_user(size);
b5073173
PM
429}
430EXPORT_SYMBOL(vmalloc_32_user);
1da177e4
LT
431
432void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
433{
434 BUG();
435 return NULL;
436}
b5073173 437EXPORT_SYMBOL(vmap);
1da177e4 438
b3bdda02 439void vunmap(const void *addr)
1da177e4
LT
440{
441 BUG();
442}
b5073173 443EXPORT_SYMBOL(vunmap);
1da177e4 444
eb6434d9
PM
445void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
446{
447 BUG();
448 return NULL;
449}
450EXPORT_SYMBOL(vm_map_ram);
451
452void vm_unmap_ram(const void *mem, unsigned int count)
453{
454 BUG();
455}
456EXPORT_SYMBOL(vm_unmap_ram);
457
458void vm_unmap_aliases(void)
459{
460}
461EXPORT_SYMBOL_GPL(vm_unmap_aliases);
462
1eeb66a1
CH
463/*
464 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
465 * have one.
466 */
3b32123d 467void __weak vmalloc_sync_all(void)
1eeb66a1
CH
468{
469}
470
29c185e5
PM
471/**
472 * alloc_vm_area - allocate a range of kernel address space
473 * @size: size of the area
474 *
475 * Returns: NULL on failure, vm_struct on success
476 *
477 * This function reserves a range of kernel address space, and
478 * allocates pagetables to map that range. No actual mappings
479 * are created. If the kernel address space is not shared
480 * between processes, it syncs the pagetable across all
481 * processes.
482 */
cd12909c 483struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
29c185e5
PM
484{
485 BUG();
486 return NULL;
487}
488EXPORT_SYMBOL_GPL(alloc_vm_area);
489
490void free_vm_area(struct vm_struct *area)
491{
492 BUG();
493}
494EXPORT_SYMBOL_GPL(free_vm_area);
495
b5073173
PM
496int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
497 struct page *page)
498{
499 return -EINVAL;
500}
501EXPORT_SYMBOL(vm_insert_page);
502
1da177e4
LT
503/*
504 * sys_brk() for the most part doesn't need the global kernel
505 * lock, except when an application is doing something nasty
506 * like trying to un-brk an area that has already been mapped
507 * to a regular file. in this case, the unmapping will need
508 * to invoke file system routines that need the global lock.
509 */
6a6160a7 510SYSCALL_DEFINE1(brk, unsigned long, brk)
1da177e4
LT
511{
512 struct mm_struct *mm = current->mm;
513
514 if (brk < mm->start_brk || brk > mm->context.end_brk)
515 return mm->brk;
516
517 if (mm->brk == brk)
518 return mm->brk;
519
520 /*
521 * Always allow shrinking brk
522 */
523 if (brk <= mm->brk) {
524 mm->brk = brk;
525 return brk;
526 }
527
528 /*
529 * Ok, looks good - let it rip.
530 */
cfe79c00 531 flush_icache_range(mm->brk, brk);
1da177e4
LT
532 return mm->brk = brk;
533}
534
8feae131
DH
535/*
536 * initialise the VMA and region record slabs
537 */
538void __init mmap_init(void)
1da177e4 539{
00a62ce9
KM
540 int ret;
541
908c7f19 542 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
00a62ce9 543 VM_BUG_ON(ret);
33e5d769 544 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
1da177e4 545}
1da177e4 546
3034097a 547/*
8feae131
DH
548 * validate the region tree
549 * - the caller must hold the region lock
3034097a 550 */
8feae131
DH
551#ifdef CONFIG_DEBUG_NOMMU_REGIONS
552static noinline void validate_nommu_regions(void)
3034097a 553{
8feae131
DH
554 struct vm_region *region, *last;
555 struct rb_node *p, *lastp;
3034097a 556
8feae131
DH
557 lastp = rb_first(&nommu_region_tree);
558 if (!lastp)
559 return;
560
561 last = rb_entry(lastp, struct vm_region, vm_rb);
33e5d769
DH
562 BUG_ON(unlikely(last->vm_end <= last->vm_start));
563 BUG_ON(unlikely(last->vm_top < last->vm_end));
8feae131
DH
564
565 while ((p = rb_next(lastp))) {
566 region = rb_entry(p, struct vm_region, vm_rb);
567 last = rb_entry(lastp, struct vm_region, vm_rb);
568
33e5d769
DH
569 BUG_ON(unlikely(region->vm_end <= region->vm_start));
570 BUG_ON(unlikely(region->vm_top < region->vm_end));
571 BUG_ON(unlikely(region->vm_start < last->vm_top));
3034097a 572
8feae131
DH
573 lastp = p;
574 }
3034097a 575}
8feae131 576#else
33e5d769
DH
577static void validate_nommu_regions(void)
578{
579}
8feae131 580#endif
3034097a
DH
581
582/*
8feae131 583 * add a region into the global tree
3034097a 584 */
8feae131 585static void add_nommu_region(struct vm_region *region)
3034097a 586{
8feae131
DH
587 struct vm_region *pregion;
588 struct rb_node **p, *parent;
3034097a 589
8feae131
DH
590 validate_nommu_regions();
591
8feae131
DH
592 parent = NULL;
593 p = &nommu_region_tree.rb_node;
594 while (*p) {
595 parent = *p;
596 pregion = rb_entry(parent, struct vm_region, vm_rb);
597 if (region->vm_start < pregion->vm_start)
598 p = &(*p)->rb_left;
599 else if (region->vm_start > pregion->vm_start)
600 p = &(*p)->rb_right;
601 else if (pregion == region)
602 return;
603 else
604 BUG();
3034097a
DH
605 }
606
8feae131
DH
607 rb_link_node(&region->vm_rb, parent, p);
608 rb_insert_color(&region->vm_rb, &nommu_region_tree);
3034097a 609
8feae131 610 validate_nommu_regions();
3034097a 611}
3034097a 612
930e652a 613/*
8feae131 614 * delete a region from the global tree
930e652a 615 */
8feae131 616static void delete_nommu_region(struct vm_region *region)
930e652a 617{
8feae131 618 BUG_ON(!nommu_region_tree.rb_node);
930e652a 619
8feae131
DH
620 validate_nommu_regions();
621 rb_erase(&region->vm_rb, &nommu_region_tree);
622 validate_nommu_regions();
57c8f63e
GU
623}
624
6fa5f80b 625/*
8feae131 626 * free a contiguous series of pages
6fa5f80b 627 */
8feae131 628static void free_page_series(unsigned long from, unsigned long to)
6fa5f80b 629{
8feae131
DH
630 for (; from < to; from += PAGE_SIZE) {
631 struct page *page = virt_to_page(from);
632
633 kdebug("- free %lx", from);
33e5d769 634 atomic_long_dec(&mmap_pages_allocated);
8feae131 635 if (page_count(page) != 1)
33e5d769
DH
636 kdebug("free page %p: refcount not one: %d",
637 page, page_count(page));
8feae131 638 put_page(page);
6fa5f80b 639 }
6fa5f80b
DH
640}
641
3034097a 642/*
8feae131 643 * release a reference to a region
33e5d769 644 * - the caller must hold the region semaphore for writing, which this releases
dd8632a1 645 * - the region may not have been added to the tree yet, in which case vm_top
8feae131 646 * will equal vm_start
3034097a 647 */
8feae131
DH
648static void __put_nommu_region(struct vm_region *region)
649 __releases(nommu_region_sem)
1da177e4 650{
1e2ae599 651 kenter("%p{%d}", region, region->vm_usage);
1da177e4 652
8feae131 653 BUG_ON(!nommu_region_tree.rb_node);
1da177e4 654
1e2ae599 655 if (--region->vm_usage == 0) {
dd8632a1 656 if (region->vm_top > region->vm_start)
8feae131
DH
657 delete_nommu_region(region);
658 up_write(&nommu_region_sem);
659
660 if (region->vm_file)
661 fput(region->vm_file);
662
663 /* IO memory and memory shared directly out of the pagecache
664 * from ramfs/tmpfs mustn't be released here */
665 if (region->vm_flags & VM_MAPPED_COPY) {
666 kdebug("free series");
dd8632a1 667 free_page_series(region->vm_start, region->vm_top);
8feae131
DH
668 }
669 kmem_cache_free(vm_region_jar, region);
670 } else {
671 up_write(&nommu_region_sem);
1da177e4 672 }
8feae131 673}
1da177e4 674
8feae131
DH
675/*
676 * release a reference to a region
677 */
678static void put_nommu_region(struct vm_region *region)
679{
680 down_write(&nommu_region_sem);
681 __put_nommu_region(region);
1da177e4
LT
682}
683
eb8cdec4
BS
684/*
685 * update protection on a vma
686 */
687static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
688{
689#ifdef CONFIG_MPU
690 struct mm_struct *mm = vma->vm_mm;
691 long start = vma->vm_start & PAGE_MASK;
692 while (start < vma->vm_end) {
693 protect_page(mm, start, flags);
694 start += PAGE_SIZE;
695 }
696 update_protections(mm);
697#endif
698}
699
3034097a 700/*
8feae131
DH
701 * add a VMA into a process's mm_struct in the appropriate place in the list
702 * and tree and add to the address space's page tree also if not an anonymous
703 * page
704 * - should be called with mm->mmap_sem held writelocked
3034097a 705 */
8feae131 706static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
1da177e4 707{
6038def0 708 struct vm_area_struct *pvma, *prev;
1da177e4 709 struct address_space *mapping;
6038def0 710 struct rb_node **p, *parent, *rb_prev;
8feae131
DH
711
712 kenter(",%p", vma);
713
714 BUG_ON(!vma->vm_region);
715
716 mm->map_count++;
717 vma->vm_mm = mm;
1da177e4 718
eb8cdec4
BS
719 protect_vma(vma, vma->vm_flags);
720
1da177e4
LT
721 /* add the VMA to the mapping */
722 if (vma->vm_file) {
723 mapping = vma->vm_file->f_mapping;
724
83cde9e8 725 i_mmap_lock_write(mapping);
1da177e4 726 flush_dcache_mmap_lock(mapping);
6b2dbba8 727 vma_interval_tree_insert(vma, &mapping->i_mmap);
1da177e4 728 flush_dcache_mmap_unlock(mapping);
83cde9e8 729 i_mmap_unlock_write(mapping);
1da177e4
LT
730 }
731
8feae131 732 /* add the VMA to the tree */
6038def0 733 parent = rb_prev = NULL;
8feae131 734 p = &mm->mm_rb.rb_node;
1da177e4
LT
735 while (*p) {
736 parent = *p;
737 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
738
8feae131
DH
739 /* sort by: start addr, end addr, VMA struct addr in that order
740 * (the latter is necessary as we may get identical VMAs) */
741 if (vma->vm_start < pvma->vm_start)
1da177e4 742 p = &(*p)->rb_left;
6038def0
NK
743 else if (vma->vm_start > pvma->vm_start) {
744 rb_prev = parent;
1da177e4 745 p = &(*p)->rb_right;
6038def0 746 } else if (vma->vm_end < pvma->vm_end)
8feae131 747 p = &(*p)->rb_left;
6038def0
NK
748 else if (vma->vm_end > pvma->vm_end) {
749 rb_prev = parent;
8feae131 750 p = &(*p)->rb_right;
6038def0 751 } else if (vma < pvma)
8feae131 752 p = &(*p)->rb_left;
6038def0
NK
753 else if (vma > pvma) {
754 rb_prev = parent;
8feae131 755 p = &(*p)->rb_right;
6038def0 756 } else
8feae131 757 BUG();
1da177e4
LT
758 }
759
760 rb_link_node(&vma->vm_rb, parent, p);
8feae131
DH
761 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
762
763 /* add VMA to the VMA list also */
6038def0
NK
764 prev = NULL;
765 if (rb_prev)
766 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
8feae131 767
6038def0 768 __vma_link_list(mm, vma, prev, parent);
1da177e4
LT
769}
770
3034097a 771/*
8feae131 772 * delete a VMA from its owning mm_struct and address space
3034097a 773 */
8feae131 774static void delete_vma_from_mm(struct vm_area_struct *vma)
1da177e4 775{
615d6e87 776 int i;
1da177e4 777 struct address_space *mapping;
8feae131 778 struct mm_struct *mm = vma->vm_mm;
615d6e87 779 struct task_struct *curr = current;
8feae131
DH
780
781 kenter("%p", vma);
782
eb8cdec4
BS
783 protect_vma(vma, 0);
784
8feae131 785 mm->map_count--;
615d6e87
DB
786 for (i = 0; i < VMACACHE_SIZE; i++) {
787 /* if the vma is cached, invalidate the entire cache */
788 if (curr->vmacache[i] == vma) {
e020d5bd 789 vmacache_invalidate(mm);
615d6e87
DB
790 break;
791 }
792 }
1da177e4
LT
793
794 /* remove the VMA from the mapping */
795 if (vma->vm_file) {
796 mapping = vma->vm_file->f_mapping;
797
83cde9e8 798 i_mmap_lock_write(mapping);
1da177e4 799 flush_dcache_mmap_lock(mapping);
6b2dbba8 800 vma_interval_tree_remove(vma, &mapping->i_mmap);
1da177e4 801 flush_dcache_mmap_unlock(mapping);
83cde9e8 802 i_mmap_unlock_write(mapping);
1da177e4
LT
803 }
804
8feae131
DH
805 /* remove from the MM's tree and list */
806 rb_erase(&vma->vm_rb, &mm->mm_rb);
b951bf2c
NK
807
808 if (vma->vm_prev)
809 vma->vm_prev->vm_next = vma->vm_next;
810 else
811 mm->mmap = vma->vm_next;
812
813 if (vma->vm_next)
814 vma->vm_next->vm_prev = vma->vm_prev;
8feae131
DH
815}
816
817/*
818 * destroy a VMA record
819 */
820static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
821{
822 kenter("%p", vma);
823 if (vma->vm_ops && vma->vm_ops->close)
824 vma->vm_ops->close(vma);
e9714acf 825 if (vma->vm_file)
8feae131 826 fput(vma->vm_file);
8feae131
DH
827 put_nommu_region(vma->vm_region);
828 kmem_cache_free(vm_area_cachep, vma);
829}
830
831/*
832 * look up the first VMA in which addr resides, NULL if none
833 * - should be called with mm->mmap_sem at least held readlocked
834 */
835struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
836{
837 struct vm_area_struct *vma;
8feae131
DH
838
839 /* check the cache first */
615d6e87
DB
840 vma = vmacache_find(mm, addr);
841 if (likely(vma))
8feae131
DH
842 return vma;
843
e922c4c5 844 /* trawl the list (there may be multiple mappings in which addr
8feae131 845 * resides) */
e922c4c5 846 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8feae131
DH
847 if (vma->vm_start > addr)
848 return NULL;
849 if (vma->vm_end > addr) {
615d6e87 850 vmacache_update(addr, vma);
8feae131
DH
851 return vma;
852 }
853 }
854
855 return NULL;
856}
857EXPORT_SYMBOL(find_vma);
858
859/*
860 * find a VMA
861 * - we don't extend stack VMAs under NOMMU conditions
862 */
863struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
864{
7561e8ca 865 return find_vma(mm, addr);
8feae131
DH
866}
867
868/*
869 * expand a stack to a given address
870 * - not supported under NOMMU conditions
871 */
872int expand_stack(struct vm_area_struct *vma, unsigned long address)
873{
874 return -ENOMEM;
875}
876
877/*
878 * look up the first VMA exactly that exactly matches addr
879 * - should be called with mm->mmap_sem at least held readlocked
880 */
881static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
882 unsigned long addr,
883 unsigned long len)
884{
885 struct vm_area_struct *vma;
8feae131
DH
886 unsigned long end = addr + len;
887
888 /* check the cache first */
615d6e87
DB
889 vma = vmacache_find_exact(mm, addr, end);
890 if (vma)
8feae131
DH
891 return vma;
892
e922c4c5 893 /* trawl the list (there may be multiple mappings in which addr
8feae131 894 * resides) */
e922c4c5 895 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8feae131
DH
896 if (vma->vm_start < addr)
897 continue;
898 if (vma->vm_start > addr)
899 return NULL;
900 if (vma->vm_end == end) {
615d6e87 901 vmacache_update(addr, vma);
8feae131
DH
902 return vma;
903 }
904 }
905
906 return NULL;
1da177e4
LT
907}
908
909/*
910 * determine whether a mapping should be permitted and, if so, what sort of
911 * mapping we're capable of supporting
912 */
913static int validate_mmap_request(struct file *file,
914 unsigned long addr,
915 unsigned long len,
916 unsigned long prot,
917 unsigned long flags,
918 unsigned long pgoff,
919 unsigned long *_capabilities)
920{
8feae131 921 unsigned long capabilities, rlen;
1da177e4
LT
922 int ret;
923
924 /* do the simple checks first */
06aab5a3 925 if (flags & MAP_FIXED) {
1da177e4
LT
926 printk(KERN_DEBUG
927 "%d: Can't do fixed-address/overlay mmap of RAM\n",
928 current->pid);
929 return -EINVAL;
930 }
931
932 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
933 (flags & MAP_TYPE) != MAP_SHARED)
934 return -EINVAL;
935
f81cff0d 936 if (!len)
1da177e4
LT
937 return -EINVAL;
938
f81cff0d 939 /* Careful about overflows.. */
8feae131
DH
940 rlen = PAGE_ALIGN(len);
941 if (!rlen || rlen > TASK_SIZE)
f81cff0d
MF
942 return -ENOMEM;
943
1da177e4 944 /* offset overflow? */
8feae131 945 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
f81cff0d 946 return -EOVERFLOW;
1da177e4
LT
947
948 if (file) {
1da177e4 949 /* files must support mmap */
72c2d531 950 if (!file->f_op->mmap)
1da177e4
LT
951 return -ENODEV;
952
953 /* work out if what we've got could possibly be shared
954 * - we support chardevs that provide their own "memory"
955 * - we support files/blockdevs that are memory backed
956 */
b4caecd4
CH
957 if (file->f_op->mmap_capabilities) {
958 capabilities = file->f_op->mmap_capabilities(file);
959 } else {
1da177e4
LT
960 /* no explicit capabilities set, so assume some
961 * defaults */
496ad9aa 962 switch (file_inode(file)->i_mode & S_IFMT) {
1da177e4
LT
963 case S_IFREG:
964 case S_IFBLK:
b4caecd4 965 capabilities = NOMMU_MAP_COPY;
1da177e4
LT
966 break;
967
968 case S_IFCHR:
969 capabilities =
b4caecd4
CH
970 NOMMU_MAP_DIRECT |
971 NOMMU_MAP_READ |
972 NOMMU_MAP_WRITE;
1da177e4
LT
973 break;
974
975 default:
976 return -EINVAL;
977 }
978 }
979
980 /* eliminate any capabilities that we can't support on this
981 * device */
982 if (!file->f_op->get_unmapped_area)
b4caecd4 983 capabilities &= ~NOMMU_MAP_DIRECT;
1da177e4 984 if (!file->f_op->read)
b4caecd4 985 capabilities &= ~NOMMU_MAP_COPY;
1da177e4 986
28d7a6ae
GY
987 /* The file shall have been opened with read permission. */
988 if (!(file->f_mode & FMODE_READ))
989 return -EACCES;
990
1da177e4
LT
991 if (flags & MAP_SHARED) {
992 /* do checks for writing, appending and locking */
993 if ((prot & PROT_WRITE) &&
994 !(file->f_mode & FMODE_WRITE))
995 return -EACCES;
996
496ad9aa 997 if (IS_APPEND(file_inode(file)) &&
1da177e4
LT
998 (file->f_mode & FMODE_WRITE))
999 return -EACCES;
1000
d7a06983 1001 if (locks_verify_locked(file))
1da177e4
LT
1002 return -EAGAIN;
1003
b4caecd4 1004 if (!(capabilities & NOMMU_MAP_DIRECT))
1da177e4
LT
1005 return -ENODEV;
1006
1da177e4 1007 /* we mustn't privatise shared mappings */
b4caecd4 1008 capabilities &= ~NOMMU_MAP_COPY;
ac714904 1009 } else {
1da177e4
LT
1010 /* we're going to read the file into private memory we
1011 * allocate */
b4caecd4 1012 if (!(capabilities & NOMMU_MAP_COPY))
1da177e4
LT
1013 return -ENODEV;
1014
1015 /* we don't permit a private writable mapping to be
1016 * shared with the backing device */
1017 if (prot & PROT_WRITE)
b4caecd4 1018 capabilities &= ~NOMMU_MAP_DIRECT;
1da177e4
LT
1019 }
1020
b4caecd4
CH
1021 if (capabilities & NOMMU_MAP_DIRECT) {
1022 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1023 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1024 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
3c7b2045 1025 ) {
b4caecd4 1026 capabilities &= ~NOMMU_MAP_DIRECT;
3c7b2045
BS
1027 if (flags & MAP_SHARED) {
1028 printk(KERN_WARNING
1029 "MAP_SHARED not completely supported on !MMU\n");
1030 return -EINVAL;
1031 }
1032 }
1033 }
1034
1da177e4
LT
1035 /* handle executable mappings and implied executable
1036 * mappings */
e9536ae7 1037 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1da177e4
LT
1038 if (prot & PROT_EXEC)
1039 return -EPERM;
ac714904 1040 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1da177e4
LT
1041 /* handle implication of PROT_EXEC by PROT_READ */
1042 if (current->personality & READ_IMPLIES_EXEC) {
b4caecd4 1043 if (capabilities & NOMMU_MAP_EXEC)
1da177e4
LT
1044 prot |= PROT_EXEC;
1045 }
ac714904 1046 } else if ((prot & PROT_READ) &&
1da177e4 1047 (prot & PROT_EXEC) &&
b4caecd4 1048 !(capabilities & NOMMU_MAP_EXEC)
1da177e4
LT
1049 ) {
1050 /* backing file is not executable, try to copy */
b4caecd4 1051 capabilities &= ~NOMMU_MAP_DIRECT;
1da177e4 1052 }
ac714904 1053 } else {
1da177e4
LT
1054 /* anonymous mappings are always memory backed and can be
1055 * privately mapped
1056 */
b4caecd4 1057 capabilities = NOMMU_MAP_COPY;
1da177e4
LT
1058
1059 /* handle PROT_EXEC implication by PROT_READ */
1060 if ((prot & PROT_READ) &&
1061 (current->personality & READ_IMPLIES_EXEC))
1062 prot |= PROT_EXEC;
1063 }
1064
1065 /* allow the security API to have its say */
e5467859 1066 ret = security_mmap_addr(addr);
1da177e4
LT
1067 if (ret < 0)
1068 return ret;
1069
1070 /* looks okay */
1071 *_capabilities = capabilities;
1072 return 0;
1073}
1074
1075/*
1076 * we've determined that we can make the mapping, now translate what we
1077 * now know into VMA flags
1078 */
1079static unsigned long determine_vm_flags(struct file *file,
1080 unsigned long prot,
1081 unsigned long flags,
1082 unsigned long capabilities)
1083{
1084 unsigned long vm_flags;
1085
1086 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1da177e4
LT
1087 /* vm_flags |= mm->def_flags; */
1088
b4caecd4 1089 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1da177e4 1090 /* attempt to share read-only copies of mapped file chunks */
3c7b2045 1091 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1da177e4
LT
1092 if (file && !(prot & PROT_WRITE))
1093 vm_flags |= VM_MAYSHARE;
3c7b2045 1094 } else {
1da177e4
LT
1095 /* overlay a shareable mapping on the backing device or inode
1096 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1097 * romfs/cramfs */
b4caecd4 1098 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1da177e4 1099 if (flags & MAP_SHARED)
3c7b2045 1100 vm_flags |= VM_SHARED;
1da177e4
LT
1101 }
1102
1103 /* refuse to let anyone share private mappings with this process if
1104 * it's being traced - otherwise breakpoints set in it may interfere
1105 * with another untraced process
1106 */
a288eecc 1107 if ((flags & MAP_PRIVATE) && current->ptrace)
1da177e4
LT
1108 vm_flags &= ~VM_MAYSHARE;
1109
1110 return vm_flags;
1111}
1112
1113/*
8feae131
DH
1114 * set up a shared mapping on a file (the driver or filesystem provides and
1115 * pins the storage)
1da177e4 1116 */
8feae131 1117static int do_mmap_shared_file(struct vm_area_struct *vma)
1da177e4
LT
1118{
1119 int ret;
1120
1121 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
dd8632a1
PM
1122 if (ret == 0) {
1123 vma->vm_region->vm_top = vma->vm_region->vm_end;
645d83c5 1124 return 0;
dd8632a1 1125 }
1da177e4
LT
1126 if (ret != -ENOSYS)
1127 return ret;
1128
3fa30460
DH
1129 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1130 * opposed to tried but failed) so we can only give a suitable error as
1131 * it's not possible to make a private copy if MAP_SHARED was given */
1da177e4
LT
1132 return -ENODEV;
1133}
1134
1135/*
1136 * set up a private mapping or an anonymous shared mapping
1137 */
8feae131
DH
1138static int do_mmap_private(struct vm_area_struct *vma,
1139 struct vm_region *region,
645d83c5
DH
1140 unsigned long len,
1141 unsigned long capabilities)
1da177e4 1142{
dbc8358c 1143 unsigned long total, point;
1da177e4 1144 void *base;
8feae131 1145 int ret, order;
1da177e4
LT
1146
1147 /* invoke the file's mapping function so that it can keep track of
1148 * shared mappings on devices or memory
1149 * - VM_MAYSHARE will be set if it may attempt to share
1150 */
b4caecd4 1151 if (capabilities & NOMMU_MAP_DIRECT) {
1da177e4 1152 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
dd8632a1 1153 if (ret == 0) {
1da177e4 1154 /* shouldn't return success if we're not sharing */
dd8632a1
PM
1155 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1156 vma->vm_region->vm_top = vma->vm_region->vm_end;
645d83c5 1157 return 0;
1da177e4 1158 }
dd8632a1
PM
1159 if (ret != -ENOSYS)
1160 return ret;
1da177e4
LT
1161
1162 /* getting an ENOSYS error indicates that direct mmap isn't
1163 * possible (as opposed to tried but failed) so we'll try to
1164 * make a private copy of the data and map that instead */
1165 }
1166
8feae131 1167
1da177e4
LT
1168 /* allocate some memory to hold the mapping
1169 * - note that this may not return a page-aligned address if the object
1170 * we're allocating is smaller than a page
1171 */
f67d9b15 1172 order = get_order(len);
8feae131
DH
1173 kdebug("alloc order %d for %lx", order, len);
1174
8feae131 1175 total = 1 << order;
f67d9b15 1176 point = len >> PAGE_SHIFT;
dd8632a1 1177
dbc8358c 1178 /* we don't want to allocate a power-of-2 sized page set */
dd8632a1 1179 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
dbc8358c
JK
1180 total = point;
1181 kdebug("try to alloc exact %lu pages", total);
1182 base = alloc_pages_exact(len, GFP_KERNEL);
1183 } else {
1184 base = (void *)__get_free_pages(GFP_KERNEL, order);
8feae131
DH
1185 }
1186
dbc8358c
JK
1187 if (!base)
1188 goto enomem;
1189
1190 atomic_long_add(total, &mmap_pages_allocated);
1da177e4 1191
8feae131
DH
1192 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1193 region->vm_start = (unsigned long) base;
f67d9b15 1194 region->vm_end = region->vm_start + len;
dd8632a1 1195 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
8feae131
DH
1196
1197 vma->vm_start = region->vm_start;
1198 vma->vm_end = region->vm_start + len;
1da177e4
LT
1199
1200 if (vma->vm_file) {
1201 /* read the contents of a file into the copy */
1202 mm_segment_t old_fs;
1203 loff_t fpos;
1204
1205 fpos = vma->vm_pgoff;
1206 fpos <<= PAGE_SHIFT;
1207
1208 old_fs = get_fs();
1209 set_fs(KERNEL_DS);
f67d9b15 1210 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1da177e4
LT
1211 set_fs(old_fs);
1212
1213 if (ret < 0)
1214 goto error_free;
1215
1216 /* clear the last little bit */
f67d9b15
BL
1217 if (ret < len)
1218 memset(base + ret, 0, len - ret);
1da177e4 1219
1da177e4
LT
1220 }
1221
1222 return 0;
1223
1224error_free:
7223bb4a 1225 free_page_series(region->vm_start, region->vm_top);
8feae131
DH
1226 region->vm_start = vma->vm_start = 0;
1227 region->vm_end = vma->vm_end = 0;
dd8632a1 1228 region->vm_top = 0;
1da177e4
LT
1229 return ret;
1230
1231enomem:
b1de0d13 1232 pr_err("Allocation of length %lu from process %d (%s) failed\n",
05ae6fa3 1233 len, current->pid, current->comm);
7bf02ea2 1234 show_free_areas(0);
1da177e4
LT
1235 return -ENOMEM;
1236}
1237
1238/*
1239 * handle mapping creation for uClinux
1240 */
e3fc629d 1241unsigned long do_mmap_pgoff(struct file *file,
1da177e4
LT
1242 unsigned long addr,
1243 unsigned long len,
1244 unsigned long prot,
1245 unsigned long flags,
bebeb3d6 1246 unsigned long pgoff,
41badc15 1247 unsigned long *populate)
1da177e4 1248{
8feae131
DH
1249 struct vm_area_struct *vma;
1250 struct vm_region *region;
1da177e4 1251 struct rb_node *rb;
8feae131 1252 unsigned long capabilities, vm_flags, result;
1da177e4
LT
1253 int ret;
1254
8feae131
DH
1255 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1256
41badc15 1257 *populate = 0;
bebeb3d6 1258
1da177e4
LT
1259 /* decide whether we should attempt the mapping, and if so what sort of
1260 * mapping */
1261 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1262 &capabilities);
8feae131
DH
1263 if (ret < 0) {
1264 kleave(" = %d [val]", ret);
1da177e4 1265 return ret;
8feae131 1266 }
1da177e4 1267
06aab5a3
DH
1268 /* we ignore the address hint */
1269 addr = 0;
f67d9b15 1270 len = PAGE_ALIGN(len);
06aab5a3 1271
1da177e4
LT
1272 /* we've determined that we can make the mapping, now translate what we
1273 * now know into VMA flags */
1274 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1275
8feae131
DH
1276 /* we're going to need to record the mapping */
1277 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1278 if (!region)
1279 goto error_getting_region;
1280
1281 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1282 if (!vma)
1283 goto error_getting_vma;
1da177e4 1284
1e2ae599 1285 region->vm_usage = 1;
8feae131
DH
1286 region->vm_flags = vm_flags;
1287 region->vm_pgoff = pgoff;
1288
5beb4930 1289 INIT_LIST_HEAD(&vma->anon_vma_chain);
8feae131
DH
1290 vma->vm_flags = vm_flags;
1291 vma->vm_pgoff = pgoff;
1da177e4 1292
8feae131 1293 if (file) {
cb0942b8
AV
1294 region->vm_file = get_file(file);
1295 vma->vm_file = get_file(file);
8feae131
DH
1296 }
1297
1298 down_write(&nommu_region_sem);
1299
1300 /* if we want to share, we need to check for regions created by other
1da177e4 1301 * mmap() calls that overlap with our proposed mapping
8feae131 1302 * - we can only share with a superset match on most regular files
1da177e4
LT
1303 * - shared mappings on character devices and memory backed files are
1304 * permitted to overlap inexactly as far as we are concerned for in
1305 * these cases, sharing is handled in the driver or filesystem rather
1306 * than here
1307 */
1308 if (vm_flags & VM_MAYSHARE) {
8feae131
DH
1309 struct vm_region *pregion;
1310 unsigned long pglen, rpglen, pgend, rpgend, start;
1da177e4 1311
8feae131
DH
1312 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1313 pgend = pgoff + pglen;
165b2392 1314
8feae131
DH
1315 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1316 pregion = rb_entry(rb, struct vm_region, vm_rb);
1da177e4 1317
8feae131 1318 if (!(pregion->vm_flags & VM_MAYSHARE))
1da177e4
LT
1319 continue;
1320
1321 /* search for overlapping mappings on the same file */
496ad9aa
AV
1322 if (file_inode(pregion->vm_file) !=
1323 file_inode(file))
1da177e4
LT
1324 continue;
1325
8feae131 1326 if (pregion->vm_pgoff >= pgend)
1da177e4
LT
1327 continue;
1328
8feae131
DH
1329 rpglen = pregion->vm_end - pregion->vm_start;
1330 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1331 rpgend = pregion->vm_pgoff + rpglen;
1332 if (pgoff >= rpgend)
1da177e4
LT
1333 continue;
1334
8feae131
DH
1335 /* handle inexactly overlapping matches between
1336 * mappings */
1337 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1338 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1339 /* new mapping is not a subset of the region */
b4caecd4 1340 if (!(capabilities & NOMMU_MAP_DIRECT))
1da177e4
LT
1341 goto sharing_violation;
1342 continue;
1343 }
1344
8feae131 1345 /* we've found a region we can share */
1e2ae599 1346 pregion->vm_usage++;
8feae131
DH
1347 vma->vm_region = pregion;
1348 start = pregion->vm_start;
1349 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1350 vma->vm_start = start;
1351 vma->vm_end = start + len;
1352
1353 if (pregion->vm_flags & VM_MAPPED_COPY) {
1354 kdebug("share copy");
1355 vma->vm_flags |= VM_MAPPED_COPY;
1356 } else {
1357 kdebug("share mmap");
1358 ret = do_mmap_shared_file(vma);
1359 if (ret < 0) {
1360 vma->vm_region = NULL;
1361 vma->vm_start = 0;
1362 vma->vm_end = 0;
1e2ae599 1363 pregion->vm_usage--;
8feae131
DH
1364 pregion = NULL;
1365 goto error_just_free;
1366 }
1367 }
1368 fput(region->vm_file);
1369 kmem_cache_free(vm_region_jar, region);
1370 region = pregion;
1371 result = start;
1372 goto share;
1da177e4
LT
1373 }
1374
1da177e4
LT
1375 /* obtain the address at which to make a shared mapping
1376 * - this is the hook for quasi-memory character devices to
1377 * tell us the location of a shared mapping
1378 */
b4caecd4 1379 if (capabilities & NOMMU_MAP_DIRECT) {
1da177e4
LT
1380 addr = file->f_op->get_unmapped_area(file, addr, len,
1381 pgoff, flags);
bb005a59 1382 if (IS_ERR_VALUE(addr)) {
1da177e4 1383 ret = addr;
bb005a59 1384 if (ret != -ENOSYS)
8feae131 1385 goto error_just_free;
1da177e4
LT
1386
1387 /* the driver refused to tell us where to site
1388 * the mapping so we'll have to attempt to copy
1389 * it */
bb005a59 1390 ret = -ENODEV;
b4caecd4 1391 if (!(capabilities & NOMMU_MAP_COPY))
8feae131 1392 goto error_just_free;
1da177e4 1393
b4caecd4 1394 capabilities &= ~NOMMU_MAP_DIRECT;
8feae131
DH
1395 } else {
1396 vma->vm_start = region->vm_start = addr;
1397 vma->vm_end = region->vm_end = addr + len;
1da177e4
LT
1398 }
1399 }
1400 }
1401
8feae131 1402 vma->vm_region = region;
1da177e4 1403
645d83c5 1404 /* set up the mapping
b4caecd4 1405 * - the region is filled in if NOMMU_MAP_DIRECT is still set
645d83c5 1406 */
1da177e4 1407 if (file && vma->vm_flags & VM_SHARED)
8feae131 1408 ret = do_mmap_shared_file(vma);
1da177e4 1409 else
645d83c5 1410 ret = do_mmap_private(vma, region, len, capabilities);
1da177e4 1411 if (ret < 0)
645d83c5
DH
1412 goto error_just_free;
1413 add_nommu_region(region);
8feae131 1414
ea637639
JZ
1415 /* clear anonymous mappings that don't ask for uninitialized data */
1416 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1417 memset((void *)region->vm_start, 0,
1418 region->vm_end - region->vm_start);
1419
1da177e4 1420 /* okay... we have a mapping; now we have to register it */
8feae131 1421 result = vma->vm_start;
1da177e4 1422
1da177e4
LT
1423 current->mm->total_vm += len >> PAGE_SHIFT;
1424
8feae131
DH
1425share:
1426 add_vma_to_mm(current->mm, vma);
1da177e4 1427
cfe79c00
MF
1428 /* we flush the region from the icache only when the first executable
1429 * mapping of it is made */
1430 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1431 flush_icache_range(region->vm_start, region->vm_end);
1432 region->vm_icache_flushed = true;
1433 }
1da177e4 1434
cfe79c00 1435 up_write(&nommu_region_sem);
1da177e4 1436
8feae131
DH
1437 kleave(" = %lx", result);
1438 return result;
1da177e4 1439
8feae131
DH
1440error_just_free:
1441 up_write(&nommu_region_sem);
1442error:
89a86402
DH
1443 if (region->vm_file)
1444 fput(region->vm_file);
8feae131 1445 kmem_cache_free(vm_region_jar, region);
89a86402
DH
1446 if (vma->vm_file)
1447 fput(vma->vm_file);
8feae131
DH
1448 kmem_cache_free(vm_area_cachep, vma);
1449 kleave(" = %d", ret);
1450 return ret;
1451
1452sharing_violation:
1453 up_write(&nommu_region_sem);
1454 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1455 ret = -EINVAL;
1456 goto error;
1da177e4 1457
8feae131
DH
1458error_getting_vma:
1459 kmem_cache_free(vm_region_jar, region);
1460 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1461 " from process %d failed\n",
1da177e4 1462 len, current->pid);
7bf02ea2 1463 show_free_areas(0);
1da177e4
LT
1464 return -ENOMEM;
1465
8feae131
DH
1466error_getting_region:
1467 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1468 " from process %d failed\n",
1da177e4 1469 len, current->pid);
7bf02ea2 1470 show_free_areas(0);
1da177e4
LT
1471 return -ENOMEM;
1472}
6be5ceb0 1473
66f0dc48
HD
1474SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1475 unsigned long, prot, unsigned long, flags,
1476 unsigned long, fd, unsigned long, pgoff)
1477{
1478 struct file *file = NULL;
1479 unsigned long retval = -EBADF;
1480
120a795d 1481 audit_mmap_fd(fd, flags);
66f0dc48
HD
1482 if (!(flags & MAP_ANONYMOUS)) {
1483 file = fget(fd);
1484 if (!file)
1485 goto out;
1486 }
1487
1488 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1489
ad1ed293 1490 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
66f0dc48
HD
1491
1492 if (file)
1493 fput(file);
1494out:
1495 return retval;
1496}
1497
a4679373
CH
1498#ifdef __ARCH_WANT_SYS_OLD_MMAP
1499struct mmap_arg_struct {
1500 unsigned long addr;
1501 unsigned long len;
1502 unsigned long prot;
1503 unsigned long flags;
1504 unsigned long fd;
1505 unsigned long offset;
1506};
1507
1508SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1509{
1510 struct mmap_arg_struct a;
1511
1512 if (copy_from_user(&a, arg, sizeof(a)))
1513 return -EFAULT;
1514 if (a.offset & ~PAGE_MASK)
1515 return -EINVAL;
1516
1517 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1518 a.offset >> PAGE_SHIFT);
1519}
1520#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1521
1da177e4 1522/*
8feae131
DH
1523 * split a vma into two pieces at address 'addr', a new vma is allocated either
1524 * for the first part or the tail.
1da177e4 1525 */
8feae131
DH
1526int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1527 unsigned long addr, int new_below)
1da177e4 1528{
8feae131
DH
1529 struct vm_area_struct *new;
1530 struct vm_region *region;
1531 unsigned long npages;
1da177e4 1532
8feae131 1533 kenter("");
1da177e4 1534
779c1023
DH
1535 /* we're only permitted to split anonymous regions (these should have
1536 * only a single usage on the region) */
1537 if (vma->vm_file)
8feae131 1538 return -ENOMEM;
1da177e4 1539
8feae131
DH
1540 if (mm->map_count >= sysctl_max_map_count)
1541 return -ENOMEM;
1da177e4 1542
8feae131
DH
1543 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1544 if (!region)
1545 return -ENOMEM;
1da177e4 1546
8feae131
DH
1547 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1548 if (!new) {
1549 kmem_cache_free(vm_region_jar, region);
1550 return -ENOMEM;
1551 }
1552
1553 /* most fields are the same, copy all, and then fixup */
1554 *new = *vma;
1555 *region = *vma->vm_region;
1556 new->vm_region = region;
1557
1558 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1559
1560 if (new_below) {
dd8632a1 1561 region->vm_top = region->vm_end = new->vm_end = addr;
8feae131
DH
1562 } else {
1563 region->vm_start = new->vm_start = addr;
1564 region->vm_pgoff = new->vm_pgoff += npages;
1da177e4 1565 }
8feae131
DH
1566
1567 if (new->vm_ops && new->vm_ops->open)
1568 new->vm_ops->open(new);
1569
1570 delete_vma_from_mm(vma);
1571 down_write(&nommu_region_sem);
1572 delete_nommu_region(vma->vm_region);
1573 if (new_below) {
1574 vma->vm_region->vm_start = vma->vm_start = addr;
1575 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1576 } else {
1577 vma->vm_region->vm_end = vma->vm_end = addr;
dd8632a1 1578 vma->vm_region->vm_top = addr;
8feae131
DH
1579 }
1580 add_nommu_region(vma->vm_region);
1581 add_nommu_region(new->vm_region);
1582 up_write(&nommu_region_sem);
1583 add_vma_to_mm(mm, vma);
1584 add_vma_to_mm(mm, new);
1585 return 0;
1da177e4
LT
1586}
1587
3034097a 1588/*
8feae131
DH
1589 * shrink a VMA by removing the specified chunk from either the beginning or
1590 * the end
3034097a 1591 */
8feae131
DH
1592static int shrink_vma(struct mm_struct *mm,
1593 struct vm_area_struct *vma,
1594 unsigned long from, unsigned long to)
1da177e4 1595{
8feae131 1596 struct vm_region *region;
1da177e4 1597
8feae131 1598 kenter("");
1da177e4 1599
8feae131
DH
1600 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1601 * and list */
1602 delete_vma_from_mm(vma);
1603 if (from > vma->vm_start)
1604 vma->vm_end = from;
1605 else
1606 vma->vm_start = to;
1607 add_vma_to_mm(mm, vma);
1da177e4 1608
8feae131
DH
1609 /* cut the backing region down to size */
1610 region = vma->vm_region;
1e2ae599 1611 BUG_ON(region->vm_usage != 1);
8feae131
DH
1612
1613 down_write(&nommu_region_sem);
1614 delete_nommu_region(region);
dd8632a1
PM
1615 if (from > region->vm_start) {
1616 to = region->vm_top;
1617 region->vm_top = region->vm_end = from;
1618 } else {
8feae131 1619 region->vm_start = to;
dd8632a1 1620 }
8feae131
DH
1621 add_nommu_region(region);
1622 up_write(&nommu_region_sem);
1623
1624 free_page_series(from, to);
1625 return 0;
1626}
1da177e4 1627
8feae131
DH
1628/*
1629 * release a mapping
1630 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1631 * VMA, though it need not cover the whole VMA
1632 */
1633int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1634{
1635 struct vm_area_struct *vma;
f67d9b15 1636 unsigned long end;
8feae131 1637 int ret;
1da177e4 1638
8feae131 1639 kenter(",%lx,%zx", start, len);
1da177e4 1640
f67d9b15 1641 len = PAGE_ALIGN(len);
8feae131
DH
1642 if (len == 0)
1643 return -EINVAL;
365e9c87 1644
f67d9b15
BL
1645 end = start + len;
1646
8feae131
DH
1647 /* find the first potentially overlapping VMA */
1648 vma = find_vma(mm, start);
1649 if (!vma) {
ac714904 1650 static int limit;
33e5d769
DH
1651 if (limit < 5) {
1652 printk(KERN_WARNING
1653 "munmap of memory not mmapped by process %d"
1654 " (%s): 0x%lx-0x%lx\n",
1655 current->pid, current->comm,
1656 start, start + len - 1);
1657 limit++;
1658 }
8feae131
DH
1659 return -EINVAL;
1660 }
1da177e4 1661
8feae131
DH
1662 /* we're allowed to split an anonymous VMA but not a file-backed one */
1663 if (vma->vm_file) {
1664 do {
1665 if (start > vma->vm_start) {
1666 kleave(" = -EINVAL [miss]");
1667 return -EINVAL;
1668 }
1669 if (end == vma->vm_end)
1670 goto erase_whole_vma;
d75a310c
NK
1671 vma = vma->vm_next;
1672 } while (vma);
8feae131
DH
1673 kleave(" = -EINVAL [split file]");
1674 return -EINVAL;
1675 } else {
1676 /* the chunk must be a subset of the VMA found */
1677 if (start == vma->vm_start && end == vma->vm_end)
1678 goto erase_whole_vma;
1679 if (start < vma->vm_start || end > vma->vm_end) {
1680 kleave(" = -EINVAL [superset]");
1681 return -EINVAL;
1682 }
1683 if (start & ~PAGE_MASK) {
1684 kleave(" = -EINVAL [unaligned start]");
1685 return -EINVAL;
1686 }
1687 if (end != vma->vm_end && end & ~PAGE_MASK) {
1688 kleave(" = -EINVAL [unaligned split]");
1689 return -EINVAL;
1690 }
1691 if (start != vma->vm_start && end != vma->vm_end) {
1692 ret = split_vma(mm, vma, start, 1);
1693 if (ret < 0) {
1694 kleave(" = %d [split]", ret);
1695 return ret;
1696 }
1697 }
1698 return shrink_vma(mm, vma, start, end);
1699 }
1da177e4 1700
8feae131
DH
1701erase_whole_vma:
1702 delete_vma_from_mm(vma);
1703 delete_vma(mm, vma);
1704 kleave(" = 0");
1da177e4
LT
1705 return 0;
1706}
b5073173 1707EXPORT_SYMBOL(do_munmap);
1da177e4 1708
bfce281c 1709int vm_munmap(unsigned long addr, size_t len)
3034097a 1710{
bfce281c 1711 struct mm_struct *mm = current->mm;
3034097a 1712 int ret;
3034097a
DH
1713
1714 down_write(&mm->mmap_sem);
1715 ret = do_munmap(mm, addr, len);
1716 up_write(&mm->mmap_sem);
1717 return ret;
1718}
a46ef99d
LT
1719EXPORT_SYMBOL(vm_munmap);
1720
1721SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1722{
bfce281c 1723 return vm_munmap(addr, len);
a46ef99d 1724}
3034097a
DH
1725
1726/*
8feae131 1727 * release all the mappings made in a process's VM space
3034097a 1728 */
8feae131 1729void exit_mmap(struct mm_struct *mm)
1da177e4 1730{
8feae131 1731 struct vm_area_struct *vma;
1da177e4 1732
8feae131
DH
1733 if (!mm)
1734 return;
1da177e4 1735
8feae131 1736 kenter("");
1da177e4 1737
8feae131 1738 mm->total_vm = 0;
1da177e4 1739
8feae131
DH
1740 while ((vma = mm->mmap)) {
1741 mm->mmap = vma->vm_next;
1742 delete_vma_from_mm(vma);
1743 delete_vma(mm, vma);
04c34961 1744 cond_resched();
1da177e4 1745 }
8feae131
DH
1746
1747 kleave("");
1da177e4
LT
1748}
1749
e4eb1ff6 1750unsigned long vm_brk(unsigned long addr, unsigned long len)
1da177e4
LT
1751{
1752 return -ENOMEM;
1753}
1754
1755/*
6fa5f80b
DH
1756 * expand (or shrink) an existing mapping, potentially moving it at the same
1757 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1da177e4 1758 *
6fa5f80b 1759 * under NOMMU conditions, we only permit changing a mapping's size, and only
8feae131
DH
1760 * as long as it stays within the region allocated by do_mmap_private() and the
1761 * block is not shareable
1da177e4 1762 *
6fa5f80b 1763 * MREMAP_FIXED is not supported under NOMMU conditions
1da177e4 1764 */
4b377bab 1765static unsigned long do_mremap(unsigned long addr,
1da177e4
LT
1766 unsigned long old_len, unsigned long new_len,
1767 unsigned long flags, unsigned long new_addr)
1768{
6fa5f80b 1769 struct vm_area_struct *vma;
1da177e4
LT
1770
1771 /* insanity checks first */
f67d9b15
BL
1772 old_len = PAGE_ALIGN(old_len);
1773 new_len = PAGE_ALIGN(new_len);
8feae131 1774 if (old_len == 0 || new_len == 0)
1da177e4
LT
1775 return (unsigned long) -EINVAL;
1776
8feae131
DH
1777 if (addr & ~PAGE_MASK)
1778 return -EINVAL;
1779
1da177e4
LT
1780 if (flags & MREMAP_FIXED && new_addr != addr)
1781 return (unsigned long) -EINVAL;
1782
8feae131 1783 vma = find_vma_exact(current->mm, addr, old_len);
6fa5f80b
DH
1784 if (!vma)
1785 return (unsigned long) -EINVAL;
1da177e4 1786
6fa5f80b 1787 if (vma->vm_end != vma->vm_start + old_len)
1da177e4
LT
1788 return (unsigned long) -EFAULT;
1789
6fa5f80b 1790 if (vma->vm_flags & VM_MAYSHARE)
1da177e4
LT
1791 return (unsigned long) -EPERM;
1792
8feae131 1793 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1da177e4
LT
1794 return (unsigned long) -ENOMEM;
1795
1796 /* all checks complete - do it */
6fa5f80b 1797 vma->vm_end = vma->vm_start + new_len;
6fa5f80b
DH
1798 return vma->vm_start;
1799}
1800
6a6160a7
HC
1801SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1802 unsigned long, new_len, unsigned long, flags,
1803 unsigned long, new_addr)
6fa5f80b
DH
1804{
1805 unsigned long ret;
1806
1807 down_write(&current->mm->mmap_sem);
1808 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1809 up_write(&current->mm->mmap_sem);
1810 return ret;
1da177e4
LT
1811}
1812
240aadee
ML
1813struct page *follow_page_mask(struct vm_area_struct *vma,
1814 unsigned long address, unsigned int flags,
1815 unsigned int *page_mask)
1da177e4 1816{
240aadee 1817 *page_mask = 0;
1da177e4
LT
1818 return NULL;
1819}
1820
8f3b1327
BL
1821int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1822 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4 1823{
8f3b1327
BL
1824 if (addr != (pfn << PAGE_SHIFT))
1825 return -EINVAL;
1826
314e51b9 1827 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
66aa2b4b 1828 return 0;
1da177e4 1829}
22c4af40 1830EXPORT_SYMBOL(remap_pfn_range);
1da177e4 1831
3c0b9de6
LT
1832int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1833{
1834 unsigned long pfn = start >> PAGE_SHIFT;
1835 unsigned long vm_len = vma->vm_end - vma->vm_start;
1836
1837 pfn += vma->vm_pgoff;
1838 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1839}
1840EXPORT_SYMBOL(vm_iomap_memory);
1841
f905bc44
PM
1842int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1843 unsigned long pgoff)
1844{
1845 unsigned int size = vma->vm_end - vma->vm_start;
1846
1847 if (!(vma->vm_flags & VM_USERMAP))
1848 return -EINVAL;
1849
1850 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1851 vma->vm_end = vma->vm_start + size;
1852
1853 return 0;
1854}
1855EXPORT_SYMBOL(remap_vmalloc_range);
1856
1da177e4
LT
1857unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1858 unsigned long len, unsigned long pgoff, unsigned long flags)
1859{
1860 return -ENOMEM;
1861}
1862
1da177e4
LT
1863void unmap_mapping_range(struct address_space *mapping,
1864 loff_t const holebegin, loff_t const holelen,
1865 int even_cows)
1866{
1867}
22c4af40 1868EXPORT_SYMBOL(unmap_mapping_range);
1da177e4
LT
1869
1870/*
1871 * Check that a process has enough memory to allocate a new virtual
1872 * mapping. 0 means there is enough memory for the allocation to
1873 * succeed and -ENOMEM implies there is not.
1874 *
1875 * We currently support three overcommit policies, which are set via the
1876 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1877 *
1878 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1879 * Additional code 2002 Jul 20 by Robert Love.
1880 *
1881 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1882 *
1883 * Note this is a helper function intended to be used by LSMs which
1884 * wish to use this logic.
1885 */
34b4e4aa 1886int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1da177e4 1887{
c9b1d098 1888 unsigned long free, allowed, reserve;
1da177e4
LT
1889
1890 vm_acct_memory(pages);
1891
1892 /*
1893 * Sometimes we want to use more memory than we have
1894 */
1895 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1896 return 0;
1897
1898 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
c15bef30
DF
1899 free = global_page_state(NR_FREE_PAGES);
1900 free += global_page_state(NR_FILE_PAGES);
1901
1902 /*
1903 * shmem pages shouldn't be counted as free in this
1904 * case, they can't be purged, only swapped out, and
1905 * that won't affect the overall amount of available
1906 * memory in the system.
1907 */
1908 free -= global_page_state(NR_SHMEM);
1da177e4 1909
ec8acf20 1910 free += get_nr_swap_pages();
1da177e4
LT
1911
1912 /*
1913 * Any slabs which are created with the
1914 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1915 * which are reclaimable, under pressure. The dentry
1916 * cache and most inode caches should fall into this
1917 */
972d1a7b 1918 free += global_page_state(NR_SLAB_RECLAIMABLE);
1da177e4 1919
d5ddc79b
HA
1920 /*
1921 * Leave reserved pages. The pages are not for anonymous pages.
1922 */
c15bef30 1923 if (free <= totalreserve_pages)
d5ddc79b
HA
1924 goto error;
1925 else
c15bef30 1926 free -= totalreserve_pages;
d5ddc79b
HA
1927
1928 /*
4eeab4f5 1929 * Reserve some for root
d5ddc79b 1930 */
1da177e4 1931 if (!cap_sys_admin)
4eeab4f5 1932 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
1933
1934 if (free > pages)
1935 return 0;
d5ddc79b
HA
1936
1937 goto error;
1da177e4
LT
1938 }
1939
00619bcc 1940 allowed = vm_commit_limit();
1da177e4 1941 /*
4eeab4f5 1942 * Reserve some 3% for root
1da177e4
LT
1943 */
1944 if (!cap_sys_admin)
4eeab4f5 1945 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1da177e4 1946
c9b1d098
AS
1947 /*
1948 * Don't let a single process grow so big a user can't recover
1949 */
1950 if (mm) {
1951 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1952 allowed -= min(mm->total_vm / 32, reserve);
1953 }
1da177e4 1954
00a62ce9 1955 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1da177e4 1956 return 0;
00a62ce9 1957
d5ddc79b 1958error:
1da177e4
LT
1959 vm_unacct_memory(pages);
1960
1961 return -ENOMEM;
1962}
1963
d0217ac0 1964int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
b0e15190
DH
1965{
1966 BUG();
d0217ac0 1967 return 0;
b0e15190 1968}
b5073173 1969EXPORT_SYMBOL(filemap_fault);
0ec76a11 1970
f1820361
KS
1971void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1972{
1973 BUG();
1974}
1975EXPORT_SYMBOL(filemap_map_pages);
1976
0b173bc4
KK
1977int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1978 unsigned long size, pgoff_t pgoff)
1979{
1980 BUG();
1981 return 0;
1982}
1983EXPORT_SYMBOL(generic_file_remap_pages);
1984
f55f199b
MF
1985static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1986 unsigned long addr, void *buf, int len, int write)
0ec76a11 1987{
0ec76a11 1988 struct vm_area_struct *vma;
0ec76a11
DH
1989
1990 down_read(&mm->mmap_sem);
1991
1992 /* the access must start within one of the target process's mappings */
0159b141
DH
1993 vma = find_vma(mm, addr);
1994 if (vma) {
0ec76a11
DH
1995 /* don't overrun this mapping */
1996 if (addr + len >= vma->vm_end)
1997 len = vma->vm_end - addr;
1998
1999 /* only read or write mappings where it is permitted */
d00c7b99 2000 if (write && vma->vm_flags & VM_MAYWRITE)
7959722b
JZ
2001 copy_to_user_page(vma, NULL, addr,
2002 (void *) addr, buf, len);
d00c7b99 2003 else if (!write && vma->vm_flags & VM_MAYREAD)
7959722b
JZ
2004 copy_from_user_page(vma, NULL, addr,
2005 buf, (void *) addr, len);
0ec76a11
DH
2006 else
2007 len = 0;
2008 } else {
2009 len = 0;
2010 }
2011
2012 up_read(&mm->mmap_sem);
f55f199b
MF
2013
2014 return len;
2015}
2016
2017/**
2018 * @access_remote_vm - access another process' address space
2019 * @mm: the mm_struct of the target address space
2020 * @addr: start address to access
2021 * @buf: source or destination buffer
2022 * @len: number of bytes to transfer
2023 * @write: whether the access is a write
2024 *
2025 * The caller must hold a reference on @mm.
2026 */
2027int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2028 void *buf, int len, int write)
2029{
2030 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2031}
2032
2033/*
2034 * Access another process' address space.
2035 * - source/target buffer must be kernel space
2036 */
2037int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2038{
2039 struct mm_struct *mm;
2040
2041 if (addr + len < addr)
2042 return 0;
2043
2044 mm = get_task_mm(tsk);
2045 if (!mm)
2046 return 0;
2047
2048 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2049
0ec76a11
DH
2050 mmput(mm);
2051 return len;
2052}
7e660872
DH
2053
2054/**
2055 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2056 * @inode: The inode to check
2057 * @size: The current filesize of the inode
2058 * @newsize: The proposed filesize of the inode
2059 *
2060 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2061 * make sure that that any outstanding VMAs aren't broken and then shrink the
2062 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2063 * automatically grant mappings that are too large.
2064 */
2065int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2066 size_t newsize)
2067{
2068 struct vm_area_struct *vma;
7e660872
DH
2069 struct vm_region *region;
2070 pgoff_t low, high;
2071 size_t r_size, r_top;
2072
2073 low = newsize >> PAGE_SHIFT;
2074 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2075
2076 down_write(&nommu_region_sem);
1acf2e04 2077 i_mmap_lock_read(inode->i_mapping);
7e660872
DH
2078
2079 /* search for VMAs that fall within the dead zone */
6b2dbba8 2080 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
7e660872
DH
2081 /* found one - only interested if it's shared out of the page
2082 * cache */
2083 if (vma->vm_flags & VM_SHARED) {
1acf2e04 2084 i_mmap_unlock_read(inode->i_mapping);
7e660872
DH
2085 up_write(&nommu_region_sem);
2086 return -ETXTBSY; /* not quite true, but near enough */
2087 }
2088 }
2089
2090 /* reduce any regions that overlap the dead zone - if in existence,
2091 * these will be pointed to by VMAs that don't overlap the dead zone
2092 *
2093 * we don't check for any regions that start beyond the EOF as there
2094 * shouldn't be any
2095 */
1acf2e04 2096 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
7e660872
DH
2097 if (!(vma->vm_flags & VM_SHARED))
2098 continue;
2099
2100 region = vma->vm_region;
2101 r_size = region->vm_top - region->vm_start;
2102 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2103
2104 if (r_top > newsize) {
2105 region->vm_top -= r_top - newsize;
2106 if (region->vm_end > region->vm_top)
2107 region->vm_end = region->vm_top;
2108 }
2109 }
2110
1acf2e04 2111 i_mmap_unlock_read(inode->i_mapping);
7e660872
DH
2112 up_write(&nommu_region_sem);
2113 return 0;
2114}
c9b1d098
AS
2115
2116/*
2117 * Initialise sysctl_user_reserve_kbytes.
2118 *
2119 * This is intended to prevent a user from starting a single memory hogging
2120 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2121 * mode.
2122 *
2123 * The default value is min(3% of free memory, 128MB)
2124 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2125 */
2126static int __meminit init_user_reserve(void)
2127{
2128 unsigned long free_kbytes;
2129
2130 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2131
2132 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2133 return 0;
2134}
2135module_init(init_user_reserve)
4eeab4f5
AS
2136
2137/*
2138 * Initialise sysctl_admin_reserve_kbytes.
2139 *
2140 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2141 * to log in and kill a memory hogging process.
2142 *
2143 * Systems with more than 256MB will reserve 8MB, enough to recover
2144 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2145 * only reserve 3% of free pages by default.
2146 */
2147static int __meminit init_admin_reserve(void)
2148{
2149 unsigned long free_kbytes;
2150
2151 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2152
2153 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2154 return 0;
2155}
2156module_init(init_admin_reserve)