brd: use XArray instead of radix-tree to index backing pages
[linux-block.git] / mm / mm_init.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
6b74ab97
MG
2/*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9#include <linux/kernel.h>
10#include <linux/init.h>
ff7ea79c 11#include <linux/kobject.h>
b95f1b31 12#include <linux/export.h>
917d9290
TC
13#include <linux/memory.h>
14#include <linux/notifier.h>
7e18adb4 15#include <linux/sched.h>
56f3547b 16#include <linux/mman.h>
9420f89d
MRI
17#include <linux/memblock.h>
18#include <linux/page-isolation.h>
19#include <linux/padata.h>
20#include <linux/nmi.h>
21#include <linux/buffer_head.h>
22#include <linux/kmemleak.h>
b7ec1bf3
MRI
23#include <linux/kfence.h>
24#include <linux/page_ext.h>
25#include <linux/pti.h>
26#include <linux/pgtable.h>
eb8589b4
MRI
27#include <linux/swap.h>
28#include <linux/cma.h>
708614e6 29#include "internal.h"
d5d2c02a 30#include "slab.h"
9420f89d 31#include "shuffle.h"
6b74ab97 32
b7ec1bf3
MRI
33#include <asm/setup.h>
34
5e9426ab 35#ifdef CONFIG_DEBUG_MEMORY_INIT
194e8151 36int __meminitdata mminit_loglevel;
6b74ab97 37
68ad8df4 38/* The zonelists are simply reported, validation is manual. */
0e2342c7 39void __init mminit_verify_zonelist(void)
68ad8df4
MG
40{
41 int nid;
42
43 if (mminit_loglevel < MMINIT_VERIFY)
44 return;
45
46 for_each_online_node(nid) {
47 pg_data_t *pgdat = NODE_DATA(nid);
48 struct zone *zone;
49 struct zoneref *z;
50 struct zonelist *zonelist;
51 int i, listid, zoneid;
52
e46b893d 53 BUILD_BUG_ON(MAX_ZONELISTS > 2);
68ad8df4
MG
54 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
55
56 /* Identify the zone and nodelist */
57 zoneid = i % MAX_NR_ZONES;
58 listid = i / MAX_NR_ZONES;
59 zonelist = &pgdat->node_zonelists[listid];
60 zone = &pgdat->node_zones[zoneid];
61 if (!populated_zone(zone))
62 continue;
63
64 /* Print information about the zonelist */
65 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
66 listid > 0 ? "thisnode" : "general", nid,
67 zone->name);
68
69 /* Iterate the zonelist */
c1093b74
PT
70 for_each_zone_zonelist(zone, z, zonelist, zoneid)
71 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
1170532b 72 pr_cont("\n");
68ad8df4
MG
73 }
74 }
75}
76
708614e6
MG
77void __init mminit_verify_pageflags_layout(void)
78{
79 int shift, width;
80 unsigned long or_mask, add_mask;
81
82 shift = 8 * sizeof(unsigned long);
86fea8b4 83 width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
ec1c86b2 84 - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
708614e6 85 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
ec1c86b2 86 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
708614e6
MG
87 SECTIONS_WIDTH,
88 NODES_WIDTH,
89 ZONES_WIDTH,
90572890 90 LAST_CPUPID_WIDTH,
86fea8b4 91 KASAN_TAG_WIDTH,
ec1c86b2
YZ
92 LRU_GEN_WIDTH,
93 LRU_REFS_WIDTH,
708614e6
MG
94 NR_PAGEFLAGS);
95 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
86fea8b4 96 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
708614e6 97 SECTIONS_SHIFT,
708614e6 98 NODES_SHIFT,
a4e1b4c6 99 ZONES_SHIFT,
86fea8b4
JX
100 LAST_CPUPID_SHIFT,
101 KASAN_TAG_WIDTH);
a4e1b4c6 102 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
86fea8b4 103 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
708614e6
MG
104 (unsigned long)SECTIONS_PGSHIFT,
105 (unsigned long)NODES_PGSHIFT,
a4e1b4c6 106 (unsigned long)ZONES_PGSHIFT,
86fea8b4
JX
107 (unsigned long)LAST_CPUPID_PGSHIFT,
108 (unsigned long)KASAN_TAG_PGSHIFT);
a4e1b4c6
MG
109 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
110 "Node/Zone ID: %lu -> %lu\n",
111 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
112 (unsigned long)ZONEID_PGOFF);
708614e6 113 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
a4e1b4c6 114 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
708614e6
MG
115 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
116#ifdef NODE_NOT_IN_PAGE_FLAGS
117 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
118 "Node not in page flags");
119#endif
90572890 120#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
a4e1b4c6 121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
90572890 122 "Last cpupid not in page flags");
a4e1b4c6 123#endif
708614e6
MG
124
125 if (SECTIONS_WIDTH) {
126 shift -= SECTIONS_WIDTH;
127 BUG_ON(shift != SECTIONS_PGSHIFT);
128 }
129 if (NODES_WIDTH) {
130 shift -= NODES_WIDTH;
131 BUG_ON(shift != NODES_PGSHIFT);
132 }
133 if (ZONES_WIDTH) {
134 shift -= ZONES_WIDTH;
135 BUG_ON(shift != ZONES_PGSHIFT);
136 }
137
138 /* Check for bitmask overlaps */
139 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
140 (NODES_MASK << NODES_PGSHIFT) |
141 (SECTIONS_MASK << SECTIONS_PGSHIFT);
142 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
143 (NODES_MASK << NODES_PGSHIFT) +
144 (SECTIONS_MASK << SECTIONS_PGSHIFT);
145 BUG_ON(or_mask != add_mask);
146}
147
6b74ab97
MG
148static __init int set_mminit_loglevel(char *str)
149{
150 get_option(&str, &mminit_loglevel);
151 return 0;
152}
153early_param("mminit_loglevel", set_mminit_loglevel);
5e9426ab 154#endif /* CONFIG_DEBUG_MEMORY_INIT */
ff7ea79c
NA
155
156struct kobject *mm_kobj;
157EXPORT_SYMBOL_GPL(mm_kobj);
158
917d9290
TC
159#ifdef CONFIG_SMP
160s32 vm_committed_as_batch = 32;
161
56f3547b 162void mm_compute_batch(int overcommit_policy)
917d9290
TC
163{
164 u64 memsized_batch;
165 s32 nr = num_present_cpus();
166 s32 batch = max_t(s32, nr*2, 32);
56f3547b
FT
167 unsigned long ram_pages = totalram_pages();
168
169 /*
170 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
171 * (total memory/#cpus), and lift it to 25% for other policies
172 * to easy the possible lock contention for percpu_counter
173 * vm_committed_as, while the max limit is INT_MAX
174 */
175 if (overcommit_policy == OVERCOMMIT_NEVER)
176 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
177 else
178 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
917d9290
TC
179
180 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
181}
182
183static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
184 unsigned long action, void *arg)
185{
186 switch (action) {
187 case MEM_ONLINE:
188 case MEM_OFFLINE:
56f3547b 189 mm_compute_batch(sysctl_overcommit_memory);
01359eb2 190 break;
917d9290
TC
191 default:
192 break;
193 }
194 return NOTIFY_OK;
195}
196
917d9290
TC
197static int __init mm_compute_batch_init(void)
198{
56f3547b 199 mm_compute_batch(sysctl_overcommit_memory);
1eeaa4fd 200 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
917d9290
TC
201 return 0;
202}
203
204__initcall(mm_compute_batch_init);
205
206#endif
207
ff7ea79c
NA
208static int __init mm_sysfs_init(void)
209{
210 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
211 if (!mm_kobj)
212 return -ENOMEM;
213
214 return 0;
215}
e82cb95d 216postcore_initcall(mm_sysfs_init);
9420f89d
MRI
217
218static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
219static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
220static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
221
222static unsigned long required_kernelcore __initdata;
223static unsigned long required_kernelcore_percent __initdata;
224static unsigned long required_movablecore __initdata;
225static unsigned long required_movablecore_percent __initdata;
226
227static unsigned long nr_kernel_pages __initdata;
228static unsigned long nr_all_pages __initdata;
229static unsigned long dma_reserve __initdata;
230
de57807e 231static bool deferred_struct_pages __meminitdata;
9420f89d
MRI
232
233static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
234
235static int __init cmdline_parse_core(char *p, unsigned long *core,
236 unsigned long *percent)
237{
238 unsigned long long coremem;
239 char *endptr;
240
241 if (!p)
242 return -EINVAL;
243
244 /* Value may be a percentage of total memory, otherwise bytes */
245 coremem = simple_strtoull(p, &endptr, 0);
246 if (*endptr == '%') {
247 /* Paranoid check for percent values greater than 100 */
248 WARN_ON(coremem > 100);
249
250 *percent = coremem;
251 } else {
252 coremem = memparse(p, &p);
253 /* Paranoid check that UL is enough for the coremem value */
254 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
255
256 *core = coremem >> PAGE_SHIFT;
257 *percent = 0UL;
258 }
259 return 0;
260}
261
262/*
263 * kernelcore=size sets the amount of memory for use for allocations that
264 * cannot be reclaimed or migrated.
265 */
266static int __init cmdline_parse_kernelcore(char *p)
267{
268 /* parse kernelcore=mirror */
269 if (parse_option_str(p, "mirror")) {
270 mirrored_kernelcore = true;
271 return 0;
272 }
273
274 return cmdline_parse_core(p, &required_kernelcore,
275 &required_kernelcore_percent);
276}
277early_param("kernelcore", cmdline_parse_kernelcore);
278
279/*
280 * movablecore=size sets the amount of memory for use for allocations that
281 * can be reclaimed or migrated.
282 */
283static int __init cmdline_parse_movablecore(char *p)
284{
285 return cmdline_parse_core(p, &required_movablecore,
286 &required_movablecore_percent);
287}
288early_param("movablecore", cmdline_parse_movablecore);
289
290/*
291 * early_calculate_totalpages()
292 * Sum pages in active regions for movable zone.
293 * Populate N_MEMORY for calculating usable_nodes.
294 */
295static unsigned long __init early_calculate_totalpages(void)
296{
297 unsigned long totalpages = 0;
298 unsigned long start_pfn, end_pfn;
299 int i, nid;
300
301 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
302 unsigned long pages = end_pfn - start_pfn;
303
304 totalpages += pages;
305 if (pages)
306 node_set_state(nid, N_MEMORY);
307 }
308 return totalpages;
309}
310
311/*
312 * This finds a zone that can be used for ZONE_MOVABLE pages. The
313 * assumption is made that zones within a node are ordered in monotonic
314 * increasing memory addresses so that the "highest" populated zone is used
315 */
316static void __init find_usable_zone_for_movable(void)
317{
318 int zone_index;
319 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
320 if (zone_index == ZONE_MOVABLE)
321 continue;
322
323 if (arch_zone_highest_possible_pfn[zone_index] >
324 arch_zone_lowest_possible_pfn[zone_index])
325 break;
326 }
327
328 VM_BUG_ON(zone_index == -1);
329 movable_zone = zone_index;
330}
331
332/*
333 * Find the PFN the Movable zone begins in each node. Kernel memory
334 * is spread evenly between nodes as long as the nodes have enough
335 * memory. When they don't, some nodes will have more kernelcore than
336 * others
337 */
338static void __init find_zone_movable_pfns_for_nodes(void)
339{
340 int i, nid;
341 unsigned long usable_startpfn;
342 unsigned long kernelcore_node, kernelcore_remaining;
343 /* save the state before borrow the nodemask */
344 nodemask_t saved_node_state = node_states[N_MEMORY];
345 unsigned long totalpages = early_calculate_totalpages();
346 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
347 struct memblock_region *r;
348
349 /* Need to find movable_zone earlier when movable_node is specified. */
350 find_usable_zone_for_movable();
351
352 /*
353 * If movable_node is specified, ignore kernelcore and movablecore
354 * options.
355 */
356 if (movable_node_is_enabled()) {
357 for_each_mem_region(r) {
358 if (!memblock_is_hotpluggable(r))
359 continue;
360
361 nid = memblock_get_region_node(r);
362
363 usable_startpfn = PFN_DOWN(r->base);
364 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
365 min(usable_startpfn, zone_movable_pfn[nid]) :
366 usable_startpfn;
367 }
368
369 goto out2;
370 }
371
372 /*
373 * If kernelcore=mirror is specified, ignore movablecore option
374 */
375 if (mirrored_kernelcore) {
376 bool mem_below_4gb_not_mirrored = false;
377
378 for_each_mem_region(r) {
379 if (memblock_is_mirror(r))
380 continue;
381
382 nid = memblock_get_region_node(r);
383
384 usable_startpfn = memblock_region_memory_base_pfn(r);
385
386 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
387 mem_below_4gb_not_mirrored = true;
388 continue;
389 }
390
391 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
392 min(usable_startpfn, zone_movable_pfn[nid]) :
393 usable_startpfn;
394 }
395
396 if (mem_below_4gb_not_mirrored)
397 pr_warn("This configuration results in unmirrored kernel memory.\n");
398
399 goto out2;
400 }
401
402 /*
403 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
404 * amount of necessary memory.
405 */
406 if (required_kernelcore_percent)
407 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
408 10000UL;
409 if (required_movablecore_percent)
410 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
411 10000UL;
412
413 /*
414 * If movablecore= was specified, calculate what size of
415 * kernelcore that corresponds so that memory usable for
416 * any allocation type is evenly spread. If both kernelcore
417 * and movablecore are specified, then the value of kernelcore
418 * will be used for required_kernelcore if it's greater than
419 * what movablecore would have allowed.
420 */
421 if (required_movablecore) {
422 unsigned long corepages;
423
424 /*
425 * Round-up so that ZONE_MOVABLE is at least as large as what
426 * was requested by the user
427 */
428 required_movablecore =
429 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
430 required_movablecore = min(totalpages, required_movablecore);
431 corepages = totalpages - required_movablecore;
432
433 required_kernelcore = max(required_kernelcore, corepages);
434 }
435
436 /*
437 * If kernelcore was not specified or kernelcore size is larger
438 * than totalpages, there is no ZONE_MOVABLE.
439 */
440 if (!required_kernelcore || required_kernelcore >= totalpages)
441 goto out;
442
443 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
444 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
445
446restart:
447 /* Spread kernelcore memory as evenly as possible throughout nodes */
448 kernelcore_node = required_kernelcore / usable_nodes;
449 for_each_node_state(nid, N_MEMORY) {
450 unsigned long start_pfn, end_pfn;
451
452 /*
453 * Recalculate kernelcore_node if the division per node
454 * now exceeds what is necessary to satisfy the requested
455 * amount of memory for the kernel
456 */
457 if (required_kernelcore < kernelcore_node)
458 kernelcore_node = required_kernelcore / usable_nodes;
459
460 /*
461 * As the map is walked, we track how much memory is usable
462 * by the kernel using kernelcore_remaining. When it is
463 * 0, the rest of the node is usable by ZONE_MOVABLE
464 */
465 kernelcore_remaining = kernelcore_node;
466
467 /* Go through each range of PFNs within this node */
468 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
469 unsigned long size_pages;
470
471 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
472 if (start_pfn >= end_pfn)
473 continue;
474
475 /* Account for what is only usable for kernelcore */
476 if (start_pfn < usable_startpfn) {
477 unsigned long kernel_pages;
478 kernel_pages = min(end_pfn, usable_startpfn)
479 - start_pfn;
480
481 kernelcore_remaining -= min(kernel_pages,
482 kernelcore_remaining);
483 required_kernelcore -= min(kernel_pages,
484 required_kernelcore);
485
486 /* Continue if range is now fully accounted */
487 if (end_pfn <= usable_startpfn) {
488
489 /*
490 * Push zone_movable_pfn to the end so
491 * that if we have to rebalance
492 * kernelcore across nodes, we will
493 * not double account here
494 */
495 zone_movable_pfn[nid] = end_pfn;
496 continue;
497 }
498 start_pfn = usable_startpfn;
499 }
500
501 /*
502 * The usable PFN range for ZONE_MOVABLE is from
503 * start_pfn->end_pfn. Calculate size_pages as the
504 * number of pages used as kernelcore
505 */
506 size_pages = end_pfn - start_pfn;
507 if (size_pages > kernelcore_remaining)
508 size_pages = kernelcore_remaining;
509 zone_movable_pfn[nid] = start_pfn + size_pages;
510
511 /*
512 * Some kernelcore has been met, update counts and
513 * break if the kernelcore for this node has been
514 * satisfied
515 */
516 required_kernelcore -= min(required_kernelcore,
517 size_pages);
518 kernelcore_remaining -= size_pages;
519 if (!kernelcore_remaining)
520 break;
521 }
522 }
523
524 /*
525 * If there is still required_kernelcore, we do another pass with one
526 * less node in the count. This will push zone_movable_pfn[nid] further
527 * along on the nodes that still have memory until kernelcore is
528 * satisfied
529 */
530 usable_nodes--;
531 if (usable_nodes && required_kernelcore > usable_nodes)
532 goto restart;
533
534out2:
535 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
536 for (nid = 0; nid < MAX_NUMNODES; nid++) {
537 unsigned long start_pfn, end_pfn;
538
539 zone_movable_pfn[nid] =
540 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
541
542 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
543 if (zone_movable_pfn[nid] >= end_pfn)
544 zone_movable_pfn[nid] = 0;
545 }
546
547out:
548 /* restore the node_state */
549 node_states[N_MEMORY] = saved_node_state;
550}
551
552static void __meminit __init_single_page(struct page *page, unsigned long pfn,
553 unsigned long zone, int nid)
554{
555 mm_zero_struct_page(page);
556 set_page_links(page, zone, nid, pfn);
557 init_page_count(page);
558 page_mapcount_reset(page);
559 page_cpupid_reset_last(page);
560 page_kasan_tag_reset(page);
561
562 INIT_LIST_HEAD(&page->lru);
563#ifdef WANT_PAGE_VIRTUAL
564 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
565 if (!is_highmem_idx(zone))
566 set_page_address(page, __va(pfn << PAGE_SHIFT));
567#endif
568}
569
570#ifdef CONFIG_NUMA
571/*
572 * During memory init memblocks map pfns to nids. The search is expensive and
573 * this caches recent lookups. The implementation of __early_pfn_to_nid
574 * treats start/end as pfns.
575 */
576struct mminit_pfnnid_cache {
577 unsigned long last_start;
578 unsigned long last_end;
579 int last_nid;
580};
581
582static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
583
584/*
585 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
586 */
587static int __meminit __early_pfn_to_nid(unsigned long pfn,
588 struct mminit_pfnnid_cache *state)
589{
590 unsigned long start_pfn, end_pfn;
591 int nid;
592
593 if (state->last_start <= pfn && pfn < state->last_end)
594 return state->last_nid;
595
596 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
597 if (nid != NUMA_NO_NODE) {
598 state->last_start = start_pfn;
599 state->last_end = end_pfn;
600 state->last_nid = nid;
601 }
602
603 return nid;
604}
605
606int __meminit early_pfn_to_nid(unsigned long pfn)
607{
608 static DEFINE_SPINLOCK(early_pfn_lock);
609 int nid;
610
611 spin_lock(&early_pfn_lock);
612 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
613 if (nid < 0)
614 nid = first_online_node;
615 spin_unlock(&early_pfn_lock);
616
617 return nid;
618}
534ef4e1
MRI
619
620int hashdist = HASHDIST_DEFAULT;
621
622static int __init set_hashdist(char *str)
623{
624 if (!str)
625 return 0;
626 hashdist = simple_strtoul(str, &str, 0);
627 return 1;
628}
629__setup("hashdist=", set_hashdist);
630
631static inline void fixup_hashdist(void)
632{
633 if (num_node_state(N_MEMORY) == 1)
634 hashdist = 0;
635}
636#else
637static inline void fixup_hashdist(void) {}
9420f89d
MRI
638#endif /* CONFIG_NUMA */
639
640#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
641static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
642{
643 pgdat->first_deferred_pfn = ULONG_MAX;
644}
645
646/* Returns true if the struct page for the pfn is initialised */
647static inline bool __meminit early_page_initialised(unsigned long pfn)
648{
649 int nid = early_pfn_to_nid(pfn);
650
651 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
652 return false;
653
654 return true;
655}
656
657/*
658 * Returns true when the remaining initialisation should be deferred until
659 * later in the boot cycle when it can be parallelised.
660 */
661static bool __meminit
662defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
663{
664 static unsigned long prev_end_pfn, nr_initialised;
665
666 if (early_page_ext_enabled())
667 return false;
668 /*
669 * prev_end_pfn static that contains the end of previous zone
670 * No need to protect because called very early in boot before smp_init.
671 */
672 if (prev_end_pfn != end_pfn) {
673 prev_end_pfn = end_pfn;
674 nr_initialised = 0;
675 }
676
677 /* Always populate low zones for address-constrained allocations */
678 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
679 return false;
680
681 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
682 return true;
683 /*
684 * We start only with one section of pages, more pages are added as
685 * needed until the rest of deferred pages are initialized.
686 */
687 nr_initialised++;
688 if ((nr_initialised > PAGES_PER_SECTION) &&
689 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
690 NODE_DATA(nid)->first_deferred_pfn = pfn;
691 return true;
692 }
693 return false;
694}
695
696static void __meminit init_reserved_page(unsigned long pfn)
697{
698 pg_data_t *pgdat;
699 int nid, zid;
700
701 if (early_page_initialised(pfn))
702 return;
703
704 nid = early_pfn_to_nid(pfn);
705 pgdat = NODE_DATA(nid);
706
707 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
708 struct zone *zone = &pgdat->node_zones[zid];
709
710 if (zone_spans_pfn(zone, pfn))
711 break;
712 }
713 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
714}
715#else
716static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
717
718static inline bool early_page_initialised(unsigned long pfn)
719{
720 return true;
721}
722
723static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
724{
725 return false;
726}
727
728static inline void init_reserved_page(unsigned long pfn)
729{
730}
731#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
732
733/*
734 * Initialised pages do not have PageReserved set. This function is
735 * called for each range allocated by the bootmem allocator and
736 * marks the pages PageReserved. The remaining valid pages are later
737 * sent to the buddy page allocator.
738 */
739void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
740{
741 unsigned long start_pfn = PFN_DOWN(start);
742 unsigned long end_pfn = PFN_UP(end);
743
744 for (; start_pfn < end_pfn; start_pfn++) {
745 if (pfn_valid(start_pfn)) {
746 struct page *page = pfn_to_page(start_pfn);
747
748 init_reserved_page(start_pfn);
749
750 /* Avoid false-positive PageTail() */
751 INIT_LIST_HEAD(&page->lru);
752
753 /*
754 * no need for atomic set_bit because the struct
755 * page is not visible yet so nobody should
756 * access it yet.
757 */
758 __SetPageReserved(page);
759 }
760 }
761}
762
763/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
764static bool __meminit
765overlap_memmap_init(unsigned long zone, unsigned long *pfn)
766{
767 static struct memblock_region *r;
768
769 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
770 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
771 for_each_mem_region(r) {
772 if (*pfn < memblock_region_memory_end_pfn(r))
773 break;
774 }
775 }
776 if (*pfn >= memblock_region_memory_base_pfn(r) &&
777 memblock_is_mirror(r)) {
778 *pfn = memblock_region_memory_end_pfn(r);
779 return true;
780 }
781 }
782 return false;
783}
784
785/*
786 * Only struct pages that correspond to ranges defined by memblock.memory
787 * are zeroed and initialized by going through __init_single_page() during
788 * memmap_init_zone_range().
789 *
790 * But, there could be struct pages that correspond to holes in
791 * memblock.memory. This can happen because of the following reasons:
792 * - physical memory bank size is not necessarily the exact multiple of the
793 * arbitrary section size
794 * - early reserved memory may not be listed in memblock.memory
795 * - memory layouts defined with memmap= kernel parameter may not align
796 * nicely with memmap sections
797 *
798 * Explicitly initialize those struct pages so that:
799 * - PG_Reserved is set
800 * - zone and node links point to zone and node that span the page if the
801 * hole is in the middle of a zone
802 * - zone and node links point to adjacent zone/node if the hole falls on
803 * the zone boundary; the pages in such holes will be prepended to the
804 * zone/node above the hole except for the trailing pages in the last
805 * section that will be appended to the zone/node below.
806 */
807static void __init init_unavailable_range(unsigned long spfn,
808 unsigned long epfn,
809 int zone, int node)
810{
811 unsigned long pfn;
812 u64 pgcnt = 0;
813
814 for (pfn = spfn; pfn < epfn; pfn++) {
815 if (!pfn_valid(pageblock_start_pfn(pfn))) {
816 pfn = pageblock_end_pfn(pfn) - 1;
817 continue;
818 }
819 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
820 __SetPageReserved(pfn_to_page(pfn));
821 pgcnt++;
822 }
823
824 if (pgcnt)
825 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
826 node, zone_names[zone], pgcnt);
827}
828
829/*
830 * Initially all pages are reserved - free ones are freed
831 * up by memblock_free_all() once the early boot process is
832 * done. Non-atomic initialization, single-pass.
833 *
834 * All aligned pageblocks are initialized to the specified migratetype
835 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
836 * zone stats (e.g., nr_isolate_pageblock) are touched.
837 */
838void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
839 unsigned long start_pfn, unsigned long zone_end_pfn,
840 enum meminit_context context,
841 struct vmem_altmap *altmap, int migratetype)
842{
843 unsigned long pfn, end_pfn = start_pfn + size;
844 struct page *page;
845
846 if (highest_memmap_pfn < end_pfn - 1)
847 highest_memmap_pfn = end_pfn - 1;
848
849#ifdef CONFIG_ZONE_DEVICE
850 /*
851 * Honor reservation requested by the driver for this ZONE_DEVICE
852 * memory. We limit the total number of pages to initialize to just
853 * those that might contain the memory mapping. We will defer the
854 * ZONE_DEVICE page initialization until after we have released
855 * the hotplug lock.
856 */
857 if (zone == ZONE_DEVICE) {
858 if (!altmap)
859 return;
860
861 if (start_pfn == altmap->base_pfn)
862 start_pfn += altmap->reserve;
863 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
864 }
865#endif
866
867 for (pfn = start_pfn; pfn < end_pfn; ) {
868 /*
869 * There can be holes in boot-time mem_map[]s handed to this
870 * function. They do not exist on hotplugged memory.
871 */
872 if (context == MEMINIT_EARLY) {
873 if (overlap_memmap_init(zone, &pfn))
874 continue;
875 if (defer_init(nid, pfn, zone_end_pfn)) {
876 deferred_struct_pages = true;
877 break;
878 }
879 }
880
881 page = pfn_to_page(pfn);
882 __init_single_page(page, pfn, zone, nid);
883 if (context == MEMINIT_HOTPLUG)
884 __SetPageReserved(page);
885
886 /*
887 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
888 * such that unmovable allocations won't be scattered all
889 * over the place during system boot.
890 */
891 if (pageblock_aligned(pfn)) {
892 set_pageblock_migratetype(page, migratetype);
893 cond_resched();
894 }
895 pfn++;
896 }
897}
898
899static void __init memmap_init_zone_range(struct zone *zone,
900 unsigned long start_pfn,
901 unsigned long end_pfn,
902 unsigned long *hole_pfn)
903{
904 unsigned long zone_start_pfn = zone->zone_start_pfn;
905 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
906 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
907
908 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
909 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
910
911 if (start_pfn >= end_pfn)
912 return;
913
914 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
915 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
916
917 if (*hole_pfn < start_pfn)
918 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
919
920 *hole_pfn = end_pfn;
921}
922
923static void __init memmap_init(void)
924{
925 unsigned long start_pfn, end_pfn;
926 unsigned long hole_pfn = 0;
927 int i, j, zone_id = 0, nid;
928
929 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
930 struct pglist_data *node = NODE_DATA(nid);
931
932 for (j = 0; j < MAX_NR_ZONES; j++) {
933 struct zone *zone = node->node_zones + j;
934
935 if (!populated_zone(zone))
936 continue;
937
938 memmap_init_zone_range(zone, start_pfn, end_pfn,
939 &hole_pfn);
940 zone_id = j;
941 }
942 }
943
944#ifdef CONFIG_SPARSEMEM
945 /*
946 * Initialize the memory map for hole in the range [memory_end,
947 * section_end].
948 * Append the pages in this hole to the highest zone in the last
949 * node.
950 * The call to init_unavailable_range() is outside the ifdef to
951 * silence the compiler warining about zone_id set but not used;
952 * for FLATMEM it is a nop anyway
953 */
954 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
955 if (hole_pfn < end_pfn)
956#endif
957 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
958}
959
960#ifdef CONFIG_ZONE_DEVICE
961static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
962 unsigned long zone_idx, int nid,
963 struct dev_pagemap *pgmap)
964{
965
966 __init_single_page(page, pfn, zone_idx, nid);
967
968 /*
969 * Mark page reserved as it will need to wait for onlining
970 * phase for it to be fully associated with a zone.
971 *
972 * We can use the non-atomic __set_bit operation for setting
973 * the flag as we are still initializing the pages.
974 */
975 __SetPageReserved(page);
976
977 /*
978 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
979 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
980 * ever freed or placed on a driver-private list.
981 */
982 page->pgmap = pgmap;
983 page->zone_device_data = NULL;
984
985 /*
986 * Mark the block movable so that blocks are reserved for
987 * movable at startup. This will force kernel allocations
988 * to reserve their blocks rather than leaking throughout
989 * the address space during boot when many long-lived
990 * kernel allocations are made.
991 *
992 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
993 * because this is done early in section_activate()
994 */
995 if (pageblock_aligned(pfn)) {
996 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
997 cond_resched();
998 }
999
1000 /*
1001 * ZONE_DEVICE pages are released directly to the driver page allocator
1002 * which will set the page count to 1 when allocating the page.
1003 */
1004 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
1005 pgmap->type == MEMORY_DEVICE_COHERENT)
1006 set_page_count(page, 0);
1007}
1008
1009/*
1010 * With compound page geometry and when struct pages are stored in ram most
1011 * tail pages are reused. Consequently, the amount of unique struct pages to
1012 * initialize is a lot smaller that the total amount of struct pages being
1013 * mapped. This is a paired / mild layering violation with explicit knowledge
1014 * of how the sparse_vmemmap internals handle compound pages in the lack
1015 * of an altmap. See vmemmap_populate_compound_pages().
1016 */
1017static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
87a7ae75 1018 struct dev_pagemap *pgmap)
9420f89d 1019{
87a7ae75
AK
1020 if (!vmemmap_can_optimize(altmap, pgmap))
1021 return pgmap_vmemmap_nr(pgmap);
1022
1023 return 2 * (PAGE_SIZE / sizeof(struct page));
9420f89d
MRI
1024}
1025
1026static void __ref memmap_init_compound(struct page *head,
1027 unsigned long head_pfn,
1028 unsigned long zone_idx, int nid,
1029 struct dev_pagemap *pgmap,
1030 unsigned long nr_pages)
1031{
1032 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1033 unsigned int order = pgmap->vmemmap_shift;
1034
1035 __SetPageHead(head);
1036 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1037 struct page *page = pfn_to_page(pfn);
1038
1039 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1040 prep_compound_tail(head, pfn - head_pfn);
1041 set_page_count(page, 0);
1042
1043 /*
1044 * The first tail page stores important compound page info.
1045 * Call prep_compound_head() after the first tail page has
1046 * been initialized, to not have the data overwritten.
1047 */
1048 if (pfn == head_pfn + 1)
1049 prep_compound_head(head, order);
1050 }
1051}
1052
1053void __ref memmap_init_zone_device(struct zone *zone,
1054 unsigned long start_pfn,
1055 unsigned long nr_pages,
1056 struct dev_pagemap *pgmap)
1057{
1058 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1059 struct pglist_data *pgdat = zone->zone_pgdat;
1060 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1061 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1062 unsigned long zone_idx = zone_idx(zone);
1063 unsigned long start = jiffies;
1064 int nid = pgdat->node_id;
1065
1066 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1067 return;
1068
1069 /*
1070 * The call to memmap_init should have already taken care
1071 * of the pages reserved for the memmap, so we can just jump to
1072 * the end of that region and start processing the device pages.
1073 */
1074 if (altmap) {
1075 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1076 nr_pages = end_pfn - start_pfn;
1077 }
1078
1079 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1080 struct page *page = pfn_to_page(pfn);
1081
1082 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1083
1084 if (pfns_per_compound == 1)
1085 continue;
1086
1087 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
87a7ae75 1088 compound_nr_pages(altmap, pgmap));
9420f89d
MRI
1089 }
1090
dd31bad2 1091 pr_debug("%s initialised %lu pages in %ums\n", __func__,
9420f89d
MRI
1092 nr_pages, jiffies_to_msecs(jiffies - start));
1093}
1094#endif
1095
1096/*
1097 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1098 * because it is sized independent of architecture. Unlike the other zones,
1099 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1100 * in each node depending on the size of each node and how evenly kernelcore
1101 * is distributed. This helper function adjusts the zone ranges
1102 * provided by the architecture for a given node by using the end of the
1103 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1104 * zones within a node are in order of monotonic increases memory addresses
1105 */
1106static void __init adjust_zone_range_for_zone_movable(int nid,
1107 unsigned long zone_type,
1108 unsigned long node_start_pfn,
1109 unsigned long node_end_pfn,
1110 unsigned long *zone_start_pfn,
1111 unsigned long *zone_end_pfn)
1112{
1113 /* Only adjust if ZONE_MOVABLE is on this node */
1114 if (zone_movable_pfn[nid]) {
1115 /* Size ZONE_MOVABLE */
1116 if (zone_type == ZONE_MOVABLE) {
1117 *zone_start_pfn = zone_movable_pfn[nid];
1118 *zone_end_pfn = min(node_end_pfn,
1119 arch_zone_highest_possible_pfn[movable_zone]);
1120
1121 /* Adjust for ZONE_MOVABLE starting within this range */
1122 } else if (!mirrored_kernelcore &&
1123 *zone_start_pfn < zone_movable_pfn[nid] &&
1124 *zone_end_pfn > zone_movable_pfn[nid]) {
1125 *zone_end_pfn = zone_movable_pfn[nid];
1126
1127 /* Check if this whole range is within ZONE_MOVABLE */
1128 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1129 *zone_start_pfn = *zone_end_pfn;
1130 }
1131}
1132
1133/*
1134 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1135 * then all holes in the requested range will be accounted for.
1136 */
1137unsigned long __init __absent_pages_in_range(int nid,
1138 unsigned long range_start_pfn,
1139 unsigned long range_end_pfn)
1140{
1141 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1142 unsigned long start_pfn, end_pfn;
1143 int i;
1144
1145 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1146 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1147 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1148 nr_absent -= end_pfn - start_pfn;
1149 }
1150 return nr_absent;
1151}
1152
1153/**
1154 * absent_pages_in_range - Return number of page frames in holes within a range
1155 * @start_pfn: The start PFN to start searching for holes
1156 * @end_pfn: The end PFN to stop searching for holes
1157 *
1158 * Return: the number of pages frames in memory holes within a range.
1159 */
1160unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1161 unsigned long end_pfn)
1162{
1163 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1164}
1165
1166/* Return the number of page frames in holes in a zone on a node */
1167static unsigned long __init zone_absent_pages_in_node(int nid,
1168 unsigned long zone_type,
1169 unsigned long node_start_pfn,
1170 unsigned long node_end_pfn)
1171{
1172 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1173 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1174 unsigned long zone_start_pfn, zone_end_pfn;
1175 unsigned long nr_absent;
1176
1177 /* When hotadd a new node from cpu_up(), the node should be empty */
1178 if (!node_start_pfn && !node_end_pfn)
1179 return 0;
1180
1181 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1182 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1183
1184 adjust_zone_range_for_zone_movable(nid, zone_type,
1185 node_start_pfn, node_end_pfn,
1186 &zone_start_pfn, &zone_end_pfn);
1187 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1188
1189 /*
1190 * ZONE_MOVABLE handling.
1191 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1192 * and vice versa.
1193 */
1194 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1195 unsigned long start_pfn, end_pfn;
1196 struct memblock_region *r;
1197
1198 for_each_mem_region(r) {
1199 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1200 zone_start_pfn, zone_end_pfn);
1201 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1202 zone_start_pfn, zone_end_pfn);
1203
1204 if (zone_type == ZONE_MOVABLE &&
1205 memblock_is_mirror(r))
1206 nr_absent += end_pfn - start_pfn;
1207
1208 if (zone_type == ZONE_NORMAL &&
1209 !memblock_is_mirror(r))
1210 nr_absent += end_pfn - start_pfn;
1211 }
1212 }
1213
1214 return nr_absent;
1215}
1216
1217/*
1218 * Return the number of pages a zone spans in a node, including holes
1219 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1220 */
1221static unsigned long __init zone_spanned_pages_in_node(int nid,
1222 unsigned long zone_type,
1223 unsigned long node_start_pfn,
1224 unsigned long node_end_pfn,
1225 unsigned long *zone_start_pfn,
1226 unsigned long *zone_end_pfn)
1227{
1228 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1229 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1230 /* When hotadd a new node from cpu_up(), the node should be empty */
1231 if (!node_start_pfn && !node_end_pfn)
1232 return 0;
1233
1234 /* Get the start and end of the zone */
1235 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1236 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1237 adjust_zone_range_for_zone_movable(nid, zone_type,
1238 node_start_pfn, node_end_pfn,
1239 zone_start_pfn, zone_end_pfn);
1240
1241 /* Check that this node has pages within the zone's required range */
1242 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1243 return 0;
1244
1245 /* Move the zone boundaries inside the node if necessary */
1246 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1247 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1248
1249 /* Return the spanned pages */
1250 return *zone_end_pfn - *zone_start_pfn;
1251}
1252
1253static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1254 unsigned long node_start_pfn,
1255 unsigned long node_end_pfn)
1256{
1257 unsigned long realtotalpages = 0, totalpages = 0;
1258 enum zone_type i;
1259
1260 for (i = 0; i < MAX_NR_ZONES; i++) {
1261 struct zone *zone = pgdat->node_zones + i;
1262 unsigned long zone_start_pfn, zone_end_pfn;
1263 unsigned long spanned, absent;
1264 unsigned long size, real_size;
1265
1266 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1267 node_start_pfn,
1268 node_end_pfn,
1269 &zone_start_pfn,
1270 &zone_end_pfn);
1271 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1272 node_start_pfn,
1273 node_end_pfn);
1274
1275 size = spanned;
1276 real_size = size - absent;
1277
1278 if (size)
1279 zone->zone_start_pfn = zone_start_pfn;
1280 else
1281 zone->zone_start_pfn = 0;
1282 zone->spanned_pages = size;
1283 zone->present_pages = real_size;
1284#if defined(CONFIG_MEMORY_HOTPLUG)
1285 zone->present_early_pages = real_size;
1286#endif
1287
1288 totalpages += size;
1289 realtotalpages += real_size;
1290 }
1291
1292 pgdat->node_spanned_pages = totalpages;
1293 pgdat->node_present_pages = realtotalpages;
1294 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1295}
1296
1297static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
1298 unsigned long present_pages)
1299{
1300 unsigned long pages = spanned_pages;
1301
1302 /*
1303 * Provide a more accurate estimation if there are holes within
1304 * the zone and SPARSEMEM is in use. If there are holes within the
1305 * zone, each populated memory region may cost us one or two extra
1306 * memmap pages due to alignment because memmap pages for each
1307 * populated regions may not be naturally aligned on page boundary.
1308 * So the (present_pages >> 4) heuristic is a tradeoff for that.
1309 */
1310 if (spanned_pages > present_pages + (present_pages >> 4) &&
1311 IS_ENABLED(CONFIG_SPARSEMEM))
1312 pages = present_pages;
1313
1314 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
1315}
1316
1317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1318static void pgdat_init_split_queue(struct pglist_data *pgdat)
1319{
1320 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1321
1322 spin_lock_init(&ds_queue->split_queue_lock);
1323 INIT_LIST_HEAD(&ds_queue->split_queue);
1324 ds_queue->split_queue_len = 0;
1325}
1326#else
1327static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1328#endif
1329
1330#ifdef CONFIG_COMPACTION
1331static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1332{
1333 init_waitqueue_head(&pgdat->kcompactd_wait);
1334}
1335#else
1336static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1337#endif
1338
1339static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1340{
1341 int i;
1342
1343 pgdat_resize_init(pgdat);
1344 pgdat_kswapd_lock_init(pgdat);
1345
1346 pgdat_init_split_queue(pgdat);
1347 pgdat_init_kcompactd(pgdat);
1348
1349 init_waitqueue_head(&pgdat->kswapd_wait);
1350 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1351
1352 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1353 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1354
1355 pgdat_page_ext_init(pgdat);
1356 lruvec_init(&pgdat->__lruvec);
1357}
1358
1359static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1360 unsigned long remaining_pages)
1361{
1362 atomic_long_set(&zone->managed_pages, remaining_pages);
1363 zone_set_nid(zone, nid);
1364 zone->name = zone_names[idx];
1365 zone->zone_pgdat = NODE_DATA(nid);
1366 spin_lock_init(&zone->lock);
1367 zone_seqlock_init(zone);
1368 zone_pcp_init(zone);
1369}
1370
1371static void __meminit zone_init_free_lists(struct zone *zone)
1372{
1373 unsigned int order, t;
1374 for_each_migratetype_order(order, t) {
1375 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1376 zone->free_area[order].nr_free = 0;
1377 }
1378}
1379
1380void __meminit init_currently_empty_zone(struct zone *zone,
1381 unsigned long zone_start_pfn,
1382 unsigned long size)
1383{
1384 struct pglist_data *pgdat = zone->zone_pgdat;
1385 int zone_idx = zone_idx(zone) + 1;
1386
1387 if (zone_idx > pgdat->nr_zones)
1388 pgdat->nr_zones = zone_idx;
1389
1390 zone->zone_start_pfn = zone_start_pfn;
1391
1392 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1393 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1394 pgdat->node_id,
1395 (unsigned long)zone_idx(zone),
1396 zone_start_pfn, (zone_start_pfn + size));
1397
1398 zone_init_free_lists(zone);
1399 zone->initialized = 1;
1400}
1401
1402#ifndef CONFIG_SPARSEMEM
1403/*
1404 * Calculate the size of the zone->blockflags rounded to an unsigned long
1405 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1406 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1407 * round what is now in bits to nearest long in bits, then return it in
1408 * bytes.
1409 */
1410static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1411{
1412 unsigned long usemapsize;
1413
1414 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1415 usemapsize = roundup(zonesize, pageblock_nr_pages);
1416 usemapsize = usemapsize >> pageblock_order;
1417 usemapsize *= NR_PAGEBLOCK_BITS;
1418 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
1419
1420 return usemapsize / 8;
1421}
1422
1423static void __ref setup_usemap(struct zone *zone)
1424{
1425 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1426 zone->spanned_pages);
1427 zone->pageblock_flags = NULL;
1428 if (usemapsize) {
1429 zone->pageblock_flags =
1430 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1431 zone_to_nid(zone));
1432 if (!zone->pageblock_flags)
1433 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1434 usemapsize, zone->name, zone_to_nid(zone));
1435 }
1436}
1437#else
1438static inline void setup_usemap(struct zone *zone) {}
1439#endif /* CONFIG_SPARSEMEM */
1440
1441#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1442
1443/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
1444void __init set_pageblock_order(void)
1445{
1446 unsigned int order = MAX_ORDER;
1447
1448 /* Check that pageblock_nr_pages has not already been setup */
1449 if (pageblock_order)
1450 return;
1451
1452 /* Don't let pageblocks exceed the maximum allocation granularity. */
1453 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1454 order = HUGETLB_PAGE_ORDER;
1455
1456 /*
1457 * Assume the largest contiguous order of interest is a huge page.
1458 * This value may be variable depending on boot parameters on IA64 and
1459 * powerpc.
1460 */
1461 pageblock_order = order;
1462}
1463#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1464
1465/*
1466 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1467 * is unused as pageblock_order is set at compile-time. See
1468 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1469 * the kernel config
1470 */
1471void __init set_pageblock_order(void)
1472{
1473}
1474
1475#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1476
1477/*
1478 * Set up the zone data structures
1479 * - init pgdat internals
1480 * - init all zones belonging to this node
1481 *
1482 * NOTE: this function is only called during memory hotplug
1483 */
1484#ifdef CONFIG_MEMORY_HOTPLUG
1485void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1486{
1487 int nid = pgdat->node_id;
1488 enum zone_type z;
1489 int cpu;
1490
1491 pgdat_init_internals(pgdat);
1492
1493 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1494 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1495
1496 /*
1497 * Reset the nr_zones, order and highest_zoneidx before reuse.
1498 * Note that kswapd will init kswapd_highest_zoneidx properly
1499 * when it starts in the near future.
1500 */
1501 pgdat->nr_zones = 0;
1502 pgdat->kswapd_order = 0;
1503 pgdat->kswapd_highest_zoneidx = 0;
1504 pgdat->node_start_pfn = 0;
1505 for_each_online_cpu(cpu) {
1506 struct per_cpu_nodestat *p;
1507
1508 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1509 memset(p, 0, sizeof(*p));
1510 }
1511
1512 for (z = 0; z < MAX_NR_ZONES; z++)
1513 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
1514}
1515#endif
1516
1517/*
1518 * Set up the zone data structures:
1519 * - mark all pages reserved
1520 * - mark all memory queues empty
1521 * - clear the memory bitmaps
1522 *
1523 * NOTE: pgdat should get zeroed by caller.
1524 * NOTE: this function is only called during early init.
1525 */
1526static void __init free_area_init_core(struct pglist_data *pgdat)
1527{
1528 enum zone_type j;
1529 int nid = pgdat->node_id;
1530
1531 pgdat_init_internals(pgdat);
1532 pgdat->per_cpu_nodestats = &boot_nodestats;
1533
1534 for (j = 0; j < MAX_NR_ZONES; j++) {
1535 struct zone *zone = pgdat->node_zones + j;
1536 unsigned long size, freesize, memmap_pages;
1537
1538 size = zone->spanned_pages;
1539 freesize = zone->present_pages;
1540
1541 /*
1542 * Adjust freesize so that it accounts for how much memory
1543 * is used by this zone for memmap. This affects the watermark
1544 * and per-cpu initialisations
1545 */
1546 memmap_pages = calc_memmap_size(size, freesize);
1547 if (!is_highmem_idx(j)) {
1548 if (freesize >= memmap_pages) {
1549 freesize -= memmap_pages;
1550 if (memmap_pages)
1551 pr_debug(" %s zone: %lu pages used for memmap\n",
1552 zone_names[j], memmap_pages);
1553 } else
1554 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
1555 zone_names[j], memmap_pages, freesize);
1556 }
1557
1558 /* Account for reserved pages */
1559 if (j == 0 && freesize > dma_reserve) {
1560 freesize -= dma_reserve;
1561 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
1562 }
1563
1564 if (!is_highmem_idx(j))
1565 nr_kernel_pages += freesize;
1566 /* Charge for highmem memmap if there are enough kernel pages */
1567 else if (nr_kernel_pages > memmap_pages * 2)
1568 nr_kernel_pages -= memmap_pages;
1569 nr_all_pages += freesize;
1570
1571 /*
1572 * Set an approximate value for lowmem here, it will be adjusted
1573 * when the bootmem allocator frees pages into the buddy system.
1574 * And all highmem pages will be managed by the buddy system.
1575 */
1576 zone_init_internals(zone, j, nid, freesize);
1577
1578 if (!size)
1579 continue;
1580
1581 set_pageblock_order();
1582 setup_usemap(zone);
1583 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1584 }
1585}
1586
1587void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1588 phys_addr_t min_addr, int nid, bool exact_nid)
1589{
1590 void *ptr;
1591
1592 if (exact_nid)
1593 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1594 MEMBLOCK_ALLOC_ACCESSIBLE,
1595 nid);
1596 else
1597 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1598 MEMBLOCK_ALLOC_ACCESSIBLE,
1599 nid);
1600
1601 if (ptr && size > 0)
1602 page_init_poison(ptr, size);
1603
1604 return ptr;
1605}
1606
1607#ifdef CONFIG_FLATMEM
1608static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1609{
1610 unsigned long __maybe_unused start = 0;
1611 unsigned long __maybe_unused offset = 0;
1612
1613 /* Skip empty nodes */
1614 if (!pgdat->node_spanned_pages)
1615 return;
1616
1617 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1618 offset = pgdat->node_start_pfn - start;
1619 /* ia64 gets its own node_mem_map, before this, without bootmem */
1620 if (!pgdat->node_mem_map) {
1621 unsigned long size, end;
1622 struct page *map;
1623
1624 /*
1625 * The zone's endpoints aren't required to be MAX_ORDER
1626 * aligned but the node_mem_map endpoints must be in order
1627 * for the buddy allocator to function correctly.
1628 */
1629 end = pgdat_end_pfn(pgdat);
1630 end = ALIGN(end, MAX_ORDER_NR_PAGES);
1631 size = (end - start) * sizeof(struct page);
1632 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1633 pgdat->node_id, false);
1634 if (!map)
1635 panic("Failed to allocate %ld bytes for node %d memory map\n",
1636 size, pgdat->node_id);
1637 pgdat->node_mem_map = map + offset;
1638 }
1639 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1640 __func__, pgdat->node_id, (unsigned long)pgdat,
1641 (unsigned long)pgdat->node_mem_map);
1642#ifndef CONFIG_NUMA
1643 /*
1644 * With no DISCONTIG, the global mem_map is just set as node 0's
1645 */
1646 if (pgdat == NODE_DATA(0)) {
1647 mem_map = NODE_DATA(0)->node_mem_map;
1648 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1649 mem_map -= offset;
1650 }
1651#endif
1652}
1653#else
1654static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1655#endif /* CONFIG_FLATMEM */
1656
1657/**
1658 * get_pfn_range_for_nid - Return the start and end page frames for a node
1659 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1660 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1661 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1662 *
1663 * It returns the start and end page frame of a node based on information
1664 * provided by memblock_set_node(). If called for a node
1665 * with no available memory, a warning is printed and the start and end
1666 * PFNs will be 0.
1667 */
1668void __init get_pfn_range_for_nid(unsigned int nid,
1669 unsigned long *start_pfn, unsigned long *end_pfn)
1670{
1671 unsigned long this_start_pfn, this_end_pfn;
1672 int i;
1673
1674 *start_pfn = -1UL;
1675 *end_pfn = 0;
1676
1677 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1678 *start_pfn = min(*start_pfn, this_start_pfn);
1679 *end_pfn = max(*end_pfn, this_end_pfn);
1680 }
1681
1682 if (*start_pfn == -1UL)
1683 *start_pfn = 0;
1684}
1685
1686static void __init free_area_init_node(int nid)
1687{
1688 pg_data_t *pgdat = NODE_DATA(nid);
1689 unsigned long start_pfn = 0;
1690 unsigned long end_pfn = 0;
1691
1692 /* pg_data_t should be reset to zero when it's allocated */
1693 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1694
1695 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1696
1697 pgdat->node_id = nid;
1698 pgdat->node_start_pfn = start_pfn;
1699 pgdat->per_cpu_nodestats = NULL;
1700
1701 if (start_pfn != end_pfn) {
1702 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1703 (u64)start_pfn << PAGE_SHIFT,
1704 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1705 } else {
1706 pr_info("Initmem setup node %d as memoryless\n", nid);
1707 }
1708
1709 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1710
1711 alloc_node_mem_map(pgdat);
1712 pgdat_set_deferred_range(pgdat);
1713
1714 free_area_init_core(pgdat);
1715 lru_gen_init_pgdat(pgdat);
1716}
1717
1718/* Any regular or high memory on that node ? */
1719static void check_for_memory(pg_data_t *pgdat, int nid)
1720{
1721 enum zone_type zone_type;
1722
1723 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1724 struct zone *zone = &pgdat->node_zones[zone_type];
1725 if (populated_zone(zone)) {
1726 if (IS_ENABLED(CONFIG_HIGHMEM))
1727 node_set_state(nid, N_HIGH_MEMORY);
1728 if (zone_type <= ZONE_NORMAL)
1729 node_set_state(nid, N_NORMAL_MEMORY);
1730 break;
1731 }
1732 }
1733}
1734
1735#if MAX_NUMNODES > 1
1736/*
1737 * Figure out the number of possible node ids.
1738 */
1739void __init setup_nr_node_ids(void)
1740{
1741 unsigned int highest;
1742
1743 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1744 nr_node_ids = highest + 1;
1745}
1746#endif
1747
1748static void __init free_area_init_memoryless_node(int nid)
1749{
1750 free_area_init_node(nid);
1751}
1752
1753/*
1754 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1755 * such cases we allow max_zone_pfn sorted in the descending order
1756 */
5f300fd5 1757static bool arch_has_descending_max_zone_pfns(void)
9420f89d 1758{
5f300fd5 1759 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
9420f89d
MRI
1760}
1761
1762/**
1763 * free_area_init - Initialise all pg_data_t and zone data
1764 * @max_zone_pfn: an array of max PFNs for each zone
1765 *
1766 * This will call free_area_init_node() for each active node in the system.
1767 * Using the page ranges provided by memblock_set_node(), the size of each
1768 * zone in each node and their holes is calculated. If the maximum PFN
1769 * between two adjacent zones match, it is assumed that the zone is empty.
1770 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1771 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1772 * starts where the previous one ended. For example, ZONE_DMA32 starts
1773 * at arch_max_dma_pfn.
1774 */
1775void __init free_area_init(unsigned long *max_zone_pfn)
1776{
1777 unsigned long start_pfn, end_pfn;
1778 int i, nid, zone;
1779 bool descending;
1780
1781 /* Record where the zone boundaries are */
1782 memset(arch_zone_lowest_possible_pfn, 0,
1783 sizeof(arch_zone_lowest_possible_pfn));
1784 memset(arch_zone_highest_possible_pfn, 0,
1785 sizeof(arch_zone_highest_possible_pfn));
1786
1787 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1788 descending = arch_has_descending_max_zone_pfns();
1789
1790 for (i = 0; i < MAX_NR_ZONES; i++) {
1791 if (descending)
1792 zone = MAX_NR_ZONES - i - 1;
1793 else
1794 zone = i;
1795
1796 if (zone == ZONE_MOVABLE)
1797 continue;
1798
1799 end_pfn = max(max_zone_pfn[zone], start_pfn);
1800 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1801 arch_zone_highest_possible_pfn[zone] = end_pfn;
1802
1803 start_pfn = end_pfn;
1804 }
1805
1806 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1807 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1808 find_zone_movable_pfns_for_nodes();
1809
1810 /* Print out the zone ranges */
1811 pr_info("Zone ranges:\n");
1812 for (i = 0; i < MAX_NR_ZONES; i++) {
1813 if (i == ZONE_MOVABLE)
1814 continue;
1815 pr_info(" %-8s ", zone_names[i]);
1816 if (arch_zone_lowest_possible_pfn[i] ==
1817 arch_zone_highest_possible_pfn[i])
1818 pr_cont("empty\n");
1819 else
1820 pr_cont("[mem %#018Lx-%#018Lx]\n",
1821 (u64)arch_zone_lowest_possible_pfn[i]
1822 << PAGE_SHIFT,
1823 ((u64)arch_zone_highest_possible_pfn[i]
1824 << PAGE_SHIFT) - 1);
1825 }
1826
1827 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1828 pr_info("Movable zone start for each node\n");
1829 for (i = 0; i < MAX_NUMNODES; i++) {
1830 if (zone_movable_pfn[i])
1831 pr_info(" Node %d: %#018Lx\n", i,
1832 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1833 }
1834
1835 /*
1836 * Print out the early node map, and initialize the
1837 * subsection-map relative to active online memory ranges to
1838 * enable future "sub-section" extensions of the memory map.
1839 */
1840 pr_info("Early memory node ranges\n");
1841 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1842 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1843 (u64)start_pfn << PAGE_SHIFT,
1844 ((u64)end_pfn << PAGE_SHIFT) - 1);
1845 subsection_map_init(start_pfn, end_pfn - start_pfn);
1846 }
1847
1848 /* Initialise every node */
1849 mminit_verify_pageflags_layout();
1850 setup_nr_node_ids();
1851 for_each_node(nid) {
1852 pg_data_t *pgdat;
1853
1854 if (!node_online(nid)) {
1855 pr_info("Initializing node %d as memoryless\n", nid);
1856
1857 /* Allocator not initialized yet */
1858 pgdat = arch_alloc_nodedata(nid);
1859 if (!pgdat)
1860 panic("Cannot allocate %zuB for node %d.\n",
1861 sizeof(*pgdat), nid);
1862 arch_refresh_nodedata(nid, pgdat);
1863 free_area_init_memoryless_node(nid);
1864
1865 /*
1866 * We do not want to confuse userspace by sysfs
1867 * files/directories for node without any memory
1868 * attached to it, so this node is not marked as
1869 * N_MEMORY and not marked online so that no sysfs
1870 * hierarchy will be created via register_one_node for
1871 * it. The pgdat will get fully initialized by
1872 * hotadd_init_pgdat() when memory is hotplugged into
1873 * this node.
1874 */
1875 continue;
1876 }
1877
1878 pgdat = NODE_DATA(nid);
1879 free_area_init_node(nid);
1880
1881 /* Any memory on that node */
1882 if (pgdat->node_present_pages)
1883 node_set_state(nid, N_MEMORY);
1884 check_for_memory(pgdat, nid);
1885 }
1886
1887 memmap_init();
534ef4e1
MRI
1888
1889 /* disable hash distribution for systems with a single node */
1890 fixup_hashdist();
9420f89d
MRI
1891}
1892
1893/**
1894 * node_map_pfn_alignment - determine the maximum internode alignment
1895 *
1896 * This function should be called after node map is populated and sorted.
1897 * It calculates the maximum power of two alignment which can distinguish
1898 * all the nodes.
1899 *
1900 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1901 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1902 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1903 * shifted, 1GiB is enough and this function will indicate so.
1904 *
1905 * This is used to test whether pfn -> nid mapping of the chosen memory
1906 * model has fine enough granularity to avoid incorrect mapping for the
1907 * populated node map.
1908 *
1909 * Return: the determined alignment in pfn's. 0 if there is no alignment
1910 * requirement (single node).
1911 */
1912unsigned long __init node_map_pfn_alignment(void)
1913{
1914 unsigned long accl_mask = 0, last_end = 0;
1915 unsigned long start, end, mask;
1916 int last_nid = NUMA_NO_NODE;
1917 int i, nid;
1918
1919 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1920 if (!start || last_nid < 0 || last_nid == nid) {
1921 last_nid = nid;
1922 last_end = end;
1923 continue;
1924 }
1925
1926 /*
1927 * Start with a mask granular enough to pin-point to the
1928 * start pfn and tick off bits one-by-one until it becomes
1929 * too coarse to separate the current node from the last.
1930 */
1931 mask = ~((1 << __ffs(start)) - 1);
1932 while (mask && last_end <= (start & (mask << 1)))
1933 mask <<= 1;
1934
1935 /* accumulate all internode masks */
1936 accl_mask |= mask;
1937 }
1938
1939 /* convert mask to number of pages */
1940 return ~accl_mask + 1;
1941}
1942
1943#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1944static void __init deferred_free_range(unsigned long pfn,
1945 unsigned long nr_pages)
1946{
1947 struct page *page;
1948 unsigned long i;
1949
1950 if (!nr_pages)
1951 return;
1952
1953 page = pfn_to_page(pfn);
1954
1955 /* Free a large naturally-aligned chunk if possible */
3f6dac0f
KS
1956 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1957 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1958 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
1959 __free_pages_core(page, MAX_ORDER);
9420f89d
MRI
1960 return;
1961 }
1962
1963 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1964 if (pageblock_aligned(pfn))
1965 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1966 __free_pages_core(page, 0);
1967 }
1968}
1969
1970/* Completion tracking for deferred_init_memmap() threads */
1971static atomic_t pgdat_init_n_undone __initdata;
1972static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1973
1974static inline void __init pgdat_init_report_one_done(void)
1975{
1976 if (atomic_dec_and_test(&pgdat_init_n_undone))
1977 complete(&pgdat_init_all_done_comp);
1978}
1979
1980/*
1981 * Returns true if page needs to be initialized or freed to buddy allocator.
1982 *
3f6dac0f 1983 * We check if a current MAX_ORDER block is valid by only checking the validity
9420f89d
MRI
1984 * of the head pfn.
1985 */
1986static inline bool __init deferred_pfn_valid(unsigned long pfn)
1987{
3f6dac0f 1988 if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
9420f89d
MRI
1989 return false;
1990 return true;
1991}
1992
1993/*
1994 * Free pages to buddy allocator. Try to free aligned pages in
3f6dac0f 1995 * MAX_ORDER_NR_PAGES sizes.
9420f89d
MRI
1996 */
1997static void __init deferred_free_pages(unsigned long pfn,
1998 unsigned long end_pfn)
1999{
2000 unsigned long nr_free = 0;
2001
2002 for (; pfn < end_pfn; pfn++) {
2003 if (!deferred_pfn_valid(pfn)) {
2004 deferred_free_range(pfn - nr_free, nr_free);
2005 nr_free = 0;
3f6dac0f 2006 } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
9420f89d
MRI
2007 deferred_free_range(pfn - nr_free, nr_free);
2008 nr_free = 1;
2009 } else {
2010 nr_free++;
2011 }
2012 }
2013 /* Free the last block of pages to allocator */
2014 deferred_free_range(pfn - nr_free, nr_free);
2015}
2016
2017/*
2018 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
3f6dac0f 2019 * by performing it only once every MAX_ORDER_NR_PAGES.
9420f89d
MRI
2020 * Return number of pages initialized.
2021 */
2022static unsigned long __init deferred_init_pages(struct zone *zone,
2023 unsigned long pfn,
2024 unsigned long end_pfn)
2025{
2026 int nid = zone_to_nid(zone);
2027 unsigned long nr_pages = 0;
2028 int zid = zone_idx(zone);
2029 struct page *page = NULL;
2030
2031 for (; pfn < end_pfn; pfn++) {
2032 if (!deferred_pfn_valid(pfn)) {
2033 page = NULL;
2034 continue;
3f6dac0f 2035 } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
9420f89d
MRI
2036 page = pfn_to_page(pfn);
2037 } else {
2038 page++;
2039 }
2040 __init_single_page(page, pfn, zid, nid);
2041 nr_pages++;
2042 }
2043 return (nr_pages);
2044}
2045
2046/*
2047 * This function is meant to pre-load the iterator for the zone init.
2048 * Specifically it walks through the ranges until we are caught up to the
2049 * first_init_pfn value and exits there. If we never encounter the value we
2050 * return false indicating there are no valid ranges left.
2051 */
2052static bool __init
2053deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2054 unsigned long *spfn, unsigned long *epfn,
2055 unsigned long first_init_pfn)
2056{
2057 u64 j;
2058
2059 /*
2060 * Start out by walking through the ranges in this zone that have
2061 * already been initialized. We don't need to do anything with them
2062 * so we just need to flush them out of the system.
2063 */
2064 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2065 if (*epfn <= first_init_pfn)
2066 continue;
2067 if (*spfn < first_init_pfn)
2068 *spfn = first_init_pfn;
2069 *i = j;
2070 return true;
2071 }
2072
2073 return false;
2074}
2075
2076/*
2077 * Initialize and free pages. We do it in two loops: first we initialize
2078 * struct page, then free to buddy allocator, because while we are
2079 * freeing pages we can access pages that are ahead (computing buddy
2080 * page in __free_one_page()).
2081 *
2082 * In order to try and keep some memory in the cache we have the loop
2083 * broken along max page order boundaries. This way we will not cause
2084 * any issues with the buddy page computation.
2085 */
2086static unsigned long __init
2087deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2088 unsigned long *end_pfn)
2089{
2090 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2091 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2092 unsigned long nr_pages = 0;
2093 u64 j = *i;
2094
2095 /* First we loop through and initialize the page values */
2096 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2097 unsigned long t;
2098
2099 if (mo_pfn <= *start_pfn)
2100 break;
2101
2102 t = min(mo_pfn, *end_pfn);
2103 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2104
2105 if (mo_pfn < *end_pfn) {
2106 *start_pfn = mo_pfn;
2107 break;
2108 }
2109 }
2110
2111 /* Reset values and now loop through freeing pages as needed */
2112 swap(j, *i);
2113
2114 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2115 unsigned long t;
2116
2117 if (mo_pfn <= spfn)
2118 break;
2119
2120 t = min(mo_pfn, epfn);
2121 deferred_free_pages(spfn, t);
2122
2123 if (mo_pfn <= epfn)
2124 break;
2125 }
2126
2127 return nr_pages;
2128}
2129
2130static void __init
2131deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2132 void *arg)
2133{
2134 unsigned long spfn, epfn;
2135 struct zone *zone = arg;
2136 u64 i;
2137
2138 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2139
2140 /*
2141 * Initialize and free pages in MAX_ORDER sized increments so that we
2142 * can avoid introducing any issues with the buddy allocator.
2143 */
2144 while (spfn < end_pfn) {
2145 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2146 cond_resched();
2147 }
2148}
2149
2150/* An arch may override for more concurrency. */
2151__weak int __init
2152deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2153{
2154 return 1;
2155}
2156
2157/* Initialise remaining memory on a node */
2158static int __init deferred_init_memmap(void *data)
2159{
2160 pg_data_t *pgdat = data;
2161 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2162 unsigned long spfn = 0, epfn = 0;
2163 unsigned long first_init_pfn, flags;
2164 unsigned long start = jiffies;
2165 struct zone *zone;
2166 int zid, max_threads;
2167 u64 i;
2168
2169 /* Bind memory initialisation thread to a local node if possible */
2170 if (!cpumask_empty(cpumask))
2171 set_cpus_allowed_ptr(current, cpumask);
2172
2173 pgdat_resize_lock(pgdat, &flags);
2174 first_init_pfn = pgdat->first_deferred_pfn;
2175 if (first_init_pfn == ULONG_MAX) {
2176 pgdat_resize_unlock(pgdat, &flags);
2177 pgdat_init_report_one_done();
2178 return 0;
2179 }
2180
2181 /* Sanity check boundaries */
2182 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2183 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2184 pgdat->first_deferred_pfn = ULONG_MAX;
2185
2186 /*
2187 * Once we unlock here, the zone cannot be grown anymore, thus if an
2188 * interrupt thread must allocate this early in boot, zone must be
2189 * pre-grown prior to start of deferred page initialization.
2190 */
2191 pgdat_resize_unlock(pgdat, &flags);
2192
2193 /* Only the highest zone is deferred so find it */
2194 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2195 zone = pgdat->node_zones + zid;
2196 if (first_init_pfn < zone_end_pfn(zone))
2197 break;
2198 }
2199
2200 /* If the zone is empty somebody else may have cleared out the zone */
2201 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2202 first_init_pfn))
2203 goto zone_empty;
2204
2205 max_threads = deferred_page_init_max_threads(cpumask);
2206
2207 while (spfn < epfn) {
2208 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2209 struct padata_mt_job job = {
2210 .thread_fn = deferred_init_memmap_chunk,
2211 .fn_arg = zone,
2212 .start = spfn,
2213 .size = epfn_align - spfn,
2214 .align = PAGES_PER_SECTION,
2215 .min_chunk = PAGES_PER_SECTION,
2216 .max_threads = max_threads,
2217 };
2218
2219 padata_do_multithreaded(&job);
2220 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2221 epfn_align);
2222 }
2223zone_empty:
2224 /* Sanity check that the next zone really is unpopulated */
2225 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2226
2227 pr_info("node %d deferred pages initialised in %ums\n",
2228 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2229
2230 pgdat_init_report_one_done();
2231 return 0;
2232}
2233
2234/*
2235 * If this zone has deferred pages, try to grow it by initializing enough
2236 * deferred pages to satisfy the allocation specified by order, rounded up to
2237 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2238 * of SECTION_SIZE bytes by initializing struct pages in increments of
2239 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2240 *
2241 * Return true when zone was grown, otherwise return false. We return true even
2242 * when we grow less than requested, to let the caller decide if there are
2243 * enough pages to satisfy the allocation.
2244 *
2245 * Note: We use noinline because this function is needed only during boot, and
2246 * it is called from a __ref function _deferred_grow_zone. This way we are
2247 * making sure that it is not inlined into permanent text section.
2248 */
2249bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2250{
2251 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2252 pg_data_t *pgdat = zone->zone_pgdat;
2253 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2254 unsigned long spfn, epfn, flags;
2255 unsigned long nr_pages = 0;
2256 u64 i;
2257
2258 /* Only the last zone may have deferred pages */
2259 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2260 return false;
2261
2262 pgdat_resize_lock(pgdat, &flags);
2263
2264 /*
2265 * If someone grew this zone while we were waiting for spinlock, return
2266 * true, as there might be enough pages already.
2267 */
2268 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2269 pgdat_resize_unlock(pgdat, &flags);
2270 return true;
2271 }
2272
2273 /* If the zone is empty somebody else may have cleared out the zone */
2274 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2275 first_deferred_pfn)) {
2276 pgdat->first_deferred_pfn = ULONG_MAX;
2277 pgdat_resize_unlock(pgdat, &flags);
2278 /* Retry only once. */
2279 return first_deferred_pfn != ULONG_MAX;
2280 }
2281
2282 /*
2283 * Initialize and free pages in MAX_ORDER sized increments so
2284 * that we can avoid introducing any issues with the buddy
2285 * allocator.
2286 */
2287 while (spfn < epfn) {
2288 /* update our first deferred PFN for this section */
2289 first_deferred_pfn = spfn;
2290
2291 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2292 touch_nmi_watchdog();
2293
2294 /* We should only stop along section boundaries */
2295 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2296 continue;
2297
2298 /* If our quota has been met we can stop here */
2299 if (nr_pages >= nr_pages_needed)
2300 break;
2301 }
2302
2303 pgdat->first_deferred_pfn = spfn;
2304 pgdat_resize_unlock(pgdat, &flags);
2305
2306 return nr_pages > 0;
2307}
2308
2309#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2310
2311#ifdef CONFIG_CMA
2312void __init init_cma_reserved_pageblock(struct page *page)
2313{
2314 unsigned i = pageblock_nr_pages;
2315 struct page *p = page;
2316
2317 do {
2318 __ClearPageReserved(p);
2319 set_page_count(p, 0);
2320 } while (++p, --i);
2321
2322 set_pageblock_migratetype(page, MIGRATE_CMA);
2323 set_page_refcounted(page);
2324 __free_pages(page, pageblock_order);
2325
2326 adjust_managed_page_count(page, pageblock_nr_pages);
2327 page_zone(page)->cma_pages += pageblock_nr_pages;
2328}
2329#endif
2330
2331void __init page_alloc_init_late(void)
2332{
2333 struct zone *zone;
2334 int nid;
2335
2336#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2337
2338 /* There will be num_node_state(N_MEMORY) threads */
2339 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2340 for_each_node_state(nid, N_MEMORY) {
2341 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2342 }
2343
2344 /* Block until all are initialised */
2345 wait_for_completion(&pgdat_init_all_done_comp);
2346
2347 /*
2348 * We initialized the rest of the deferred pages. Permanently disable
2349 * on-demand struct page initialization.
2350 */
2351 static_branch_disable(&deferred_pages);
2352
2353 /* Reinit limits that are based on free pages after the kernel is up */
2354 files_maxfiles_init();
2355#endif
2356
2357 buffer_init();
2358
2359 /* Discard memblock private memory */
2360 memblock_discard();
2361
2362 for_each_node_state(nid, N_MEMORY)
2363 shuffle_free_memory(NODE_DATA(nid));
2364
2365 for_each_populated_zone(zone)
2366 set_zone_contiguous(zone);
de57807e
MRI
2367
2368 /* Initialize page ext after all struct pages are initialized. */
2369 if (deferred_struct_pages)
2370 page_ext_init();
9420f89d
MRI
2371}
2372
2373#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2374/*
2375 * Returns the number of pages that arch has reserved but
2376 * is not known to alloc_large_system_hash().
2377 */
2378static unsigned long __init arch_reserved_kernel_pages(void)
2379{
2380 return 0;
2381}
2382#endif
2383
2384/*
2385 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2386 * machines. As memory size is increased the scale is also increased but at
2387 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2388 * quadruples the scale is increased by one, which means the size of hash table
2389 * only doubles, instead of quadrupling as well.
2390 * Because 32-bit systems cannot have large physical memory, where this scaling
2391 * makes sense, it is disabled on such platforms.
2392 */
2393#if __BITS_PER_LONG > 32
2394#define ADAPT_SCALE_BASE (64ul << 30)
2395#define ADAPT_SCALE_SHIFT 2
2396#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2397#endif
2398
2399/*
2400 * allocate a large system hash table from bootmem
2401 * - it is assumed that the hash table must contain an exact power-of-2
2402 * quantity of entries
2403 * - limit is the number of hash buckets, not the total allocation size
2404 */
2405void *__init alloc_large_system_hash(const char *tablename,
2406 unsigned long bucketsize,
2407 unsigned long numentries,
2408 int scale,
2409 int flags,
2410 unsigned int *_hash_shift,
2411 unsigned int *_hash_mask,
2412 unsigned long low_limit,
2413 unsigned long high_limit)
2414{
2415 unsigned long long max = high_limit;
2416 unsigned long log2qty, size;
2417 void *table;
2418 gfp_t gfp_flags;
2419 bool virt;
2420 bool huge;
2421
2422 /* allow the kernel cmdline to have a say */
2423 if (!numentries) {
2424 /* round applicable memory size up to nearest megabyte */
2425 numentries = nr_kernel_pages;
2426 numentries -= arch_reserved_kernel_pages();
2427
2428 /* It isn't necessary when PAGE_SIZE >= 1MB */
2429 if (PAGE_SIZE < SZ_1M)
2430 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2431
2432#if __BITS_PER_LONG > 32
2433 if (!high_limit) {
2434 unsigned long adapt;
2435
2436 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2437 adapt <<= ADAPT_SCALE_SHIFT)
2438 scale++;
2439 }
2440#endif
2441
2442 /* limit to 1 bucket per 2^scale bytes of low memory */
2443 if (scale > PAGE_SHIFT)
2444 numentries >>= (scale - PAGE_SHIFT);
2445 else
2446 numentries <<= (PAGE_SHIFT - scale);
2447
2448 /* Make sure we've got at least a 0-order allocation.. */
2449 if (unlikely(flags & HASH_SMALL)) {
2450 /* Makes no sense without HASH_EARLY */
2451 WARN_ON(!(flags & HASH_EARLY));
2452 if (!(numentries >> *_hash_shift)) {
2453 numentries = 1UL << *_hash_shift;
2454 BUG_ON(!numentries);
2455 }
2456 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2457 numentries = PAGE_SIZE / bucketsize;
2458 }
2459 numentries = roundup_pow_of_two(numentries);
2460
2461 /* limit allocation size to 1/16 total memory by default */
2462 if (max == 0) {
2463 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2464 do_div(max, bucketsize);
2465 }
2466 max = min(max, 0x80000000ULL);
2467
2468 if (numentries < low_limit)
2469 numentries = low_limit;
2470 if (numentries > max)
2471 numentries = max;
2472
2473 log2qty = ilog2(numentries);
2474
2475 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2476 do {
2477 virt = false;
2478 size = bucketsize << log2qty;
2479 if (flags & HASH_EARLY) {
2480 if (flags & HASH_ZERO)
2481 table = memblock_alloc(size, SMP_CACHE_BYTES);
2482 else
2483 table = memblock_alloc_raw(size,
2484 SMP_CACHE_BYTES);
2485 } else if (get_order(size) > MAX_ORDER || hashdist) {
2486 table = vmalloc_huge(size, gfp_flags);
2487 virt = true;
2488 if (table)
2489 huge = is_vm_area_hugepages(table);
2490 } else {
2491 /*
2492 * If bucketsize is not a power-of-two, we may free
2493 * some pages at the end of hash table which
2494 * alloc_pages_exact() automatically does
2495 */
2496 table = alloc_pages_exact(size, gfp_flags);
2497 kmemleak_alloc(table, size, 1, gfp_flags);
2498 }
2499 } while (!table && size > PAGE_SIZE && --log2qty);
2500
2501 if (!table)
2502 panic("Failed to allocate %s hash table\n", tablename);
2503
2504 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2505 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2506 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2507
2508 if (_hash_shift)
2509 *_hash_shift = log2qty;
2510 if (_hash_mask)
2511 *_hash_mask = (1 << log2qty) - 1;
2512
2513 return table;
2514}
2515
2516/**
2517 * set_dma_reserve - set the specified number of pages reserved in the first zone
2518 * @new_dma_reserve: The number of pages to mark reserved
2519 *
2520 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
2521 * In the DMA zone, a significant percentage may be consumed by kernel image
2522 * and other unfreeable allocations which can skew the watermarks badly. This
2523 * function may optionally be used to account for unfreeable pages in the
2524 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2525 * smaller per-cpu batchsize.
2526 */
2527void __init set_dma_reserve(unsigned long new_dma_reserve)
2528{
2529 dma_reserve = new_dma_reserve;
2530}
2531
2532void __init memblock_free_pages(struct page *page, unsigned long pfn,
2533 unsigned int order)
2534{
2535 if (!early_page_initialised(pfn))
2536 return;
2537 if (!kmsan_memblock_free_pages(page, order)) {
2538 /* KMSAN will take care of these pages. */
2539 return;
2540 }
2541 __free_pages_core(page, order);
2542}
b7ec1bf3 2543
f2fc4b44
MRI
2544static bool _init_on_alloc_enabled_early __read_mostly
2545 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
2546static int __init early_init_on_alloc(char *buf)
2547{
2548
2549 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2550}
2551early_param("init_on_alloc", early_init_on_alloc);
2552
2553static bool _init_on_free_enabled_early __read_mostly
2554 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
2555static int __init early_init_on_free(char *buf)
2556{
2557 return kstrtobool(buf, &_init_on_free_enabled_early);
2558}
2559early_param("init_on_free", early_init_on_free);
2560
2561DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2562
2563/*
2564 * Enable static keys related to various memory debugging and hardening options.
2565 * Some override others, and depend on early params that are evaluated in the
2566 * order of appearance. So we need to first gather the full picture of what was
2567 * enabled, and then make decisions.
2568 */
2569static void __init mem_debugging_and_hardening_init(void)
2570{
2571 bool page_poisoning_requested = false;
2572 bool want_check_pages = false;
2573
2574#ifdef CONFIG_PAGE_POISONING
2575 /*
2576 * Page poisoning is debug page alloc for some arches. If
2577 * either of those options are enabled, enable poisoning.
2578 */
2579 if (page_poisoning_enabled() ||
2580 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2581 debug_pagealloc_enabled())) {
2582 static_branch_enable(&_page_poisoning_enabled);
2583 page_poisoning_requested = true;
2584 want_check_pages = true;
2585 }
2586#endif
2587
2588 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2589 page_poisoning_requested) {
2590 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2591 "will take precedence over init_on_alloc and init_on_free\n");
2592 _init_on_alloc_enabled_early = false;
2593 _init_on_free_enabled_early = false;
2594 }
2595
2596 if (_init_on_alloc_enabled_early) {
2597 want_check_pages = true;
2598 static_branch_enable(&init_on_alloc);
2599 } else {
2600 static_branch_disable(&init_on_alloc);
2601 }
2602
2603 if (_init_on_free_enabled_early) {
2604 want_check_pages = true;
2605 static_branch_enable(&init_on_free);
2606 } else {
2607 static_branch_disable(&init_on_free);
2608 }
2609
2610 if (IS_ENABLED(CONFIG_KMSAN) &&
2611 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2612 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2613
2614#ifdef CONFIG_DEBUG_PAGEALLOC
2615 if (debug_pagealloc_enabled()) {
2616 want_check_pages = true;
2617 static_branch_enable(&_debug_pagealloc_enabled);
2618
2619 if (debug_guardpage_minorder())
2620 static_branch_enable(&_debug_guardpage_enabled);
2621 }
2622#endif
2623
2624 /*
2625 * Any page debugging or hardening option also enables sanity checking
2626 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2627 * enabled already.
2628 */
2629 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2630 static_branch_enable(&check_pages_enabled);
2631}
2632
b7ec1bf3
MRI
2633/* Report memory auto-initialization states for this boot. */
2634static void __init report_meminit(void)
2635{
2636 const char *stack;
2637
2638 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2639 stack = "all(pattern)";
2640 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2641 stack = "all(zero)";
2642 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
2643 stack = "byref_all(zero)";
2644 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
2645 stack = "byref(zero)";
2646 else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
2647 stack = "__user(zero)";
2648 else
2649 stack = "off";
2650
2651 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2652 stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
2653 want_init_on_free() ? "on" : "off");
2654 if (want_init_on_free())
2655 pr_info("mem auto-init: clearing system memory may take some time...\n");
2656}
2657
eb8589b4
MRI
2658static void __init mem_init_print_info(void)
2659{
2660 unsigned long physpages, codesize, datasize, rosize, bss_size;
2661 unsigned long init_code_size, init_data_size;
2662
2663 physpages = get_num_physpages();
2664 codesize = _etext - _stext;
2665 datasize = _edata - _sdata;
2666 rosize = __end_rodata - __start_rodata;
2667 bss_size = __bss_stop - __bss_start;
2668 init_data_size = __init_end - __init_begin;
2669 init_code_size = _einittext - _sinittext;
2670
2671 /*
2672 * Detect special cases and adjust section sizes accordingly:
2673 * 1) .init.* may be embedded into .data sections
2674 * 2) .init.text.* may be out of [__init_begin, __init_end],
2675 * please refer to arch/tile/kernel/vmlinux.lds.S.
2676 * 3) .rodata.* may be embedded into .text or .data sections.
2677 */
2678#define adj_init_size(start, end, size, pos, adj) \
2679 do { \
2680 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2681 size -= adj; \
2682 } while (0)
2683
2684 adj_init_size(__init_begin, __init_end, init_data_size,
2685 _sinittext, init_code_size);
2686 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2687 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2688 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2689 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2690
2691#undef adj_init_size
2692
2693 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2694#ifdef CONFIG_HIGHMEM
2695 ", %luK highmem"
2696#endif
2697 ")\n",
2698 K(nr_free_pages()), K(physpages),
2699 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2700 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2701 K(physpages - totalram_pages() - totalcma_pages),
2702 K(totalcma_pages)
2703#ifdef CONFIG_HIGHMEM
2704 , K(totalhigh_pages())
2705#endif
2706 );
2707}
2708
b7ec1bf3
MRI
2709/*
2710 * Set up kernel memory allocators
2711 */
2712void __init mm_core_init(void)
2713{
2714 /* Initializations relying on SMP setup */
2715 build_all_zonelists(NULL);
2716 page_alloc_init_cpuhp();
2717
2718 /*
2719 * page_ext requires contiguous pages,
2720 * bigger than MAX_ORDER unless SPARSEMEM.
2721 */
2722 page_ext_init_flatmem();
f2fc4b44 2723 mem_debugging_and_hardening_init();
b7ec1bf3
MRI
2724 kfence_alloc_pool();
2725 report_meminit();
2726 kmsan_init_shadow();
2727 stack_depot_early_init();
2728 mem_init();
2729 mem_init_print_info();
2730 kmem_cache_init();
2731 /*
2732 * page_owner must be initialized after buddy is ready, and also after
2733 * slab is ready so that stack_depot_init() works properly
2734 */
2735 page_ext_init_flatmem_late();
2736 kmemleak_init();
4cd1e9ed
MRI
2737 ptlock_cache_init();
2738 pgtable_cache_init();
b7ec1bf3
MRI
2739 debug_objects_mem_init();
2740 vmalloc_init();
2741 /* If no deferred init page_ext now, as vmap is fully initialized */
2742 if (!deferred_struct_pages)
2743 page_ext_init();
2744 /* Should be run before the first non-init thread is created */
2745 init_espfix_bsp();
2746 /* Should be run after espfix64 is set up. */
2747 pti_init();
2748 kmsan_init_runtime();
2749 mm_cache_init();
2750}