mm/mlock: remove lru_lock on TestClearPageMlocked
[linux-block.git] / mm / mlock.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
c59ede7b 9#include <linux/capability.h>
1da177e4
LT
10#include <linux/mman.h>
11#include <linux/mm.h>
8703e8a4 12#include <linux/sched/user.h>
b291f000
NP
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
7225522b 16#include <linux/pagevec.h>
1da177e4
LT
17#include <linux/mempolicy.h>
18#include <linux/syscalls.h>
e8edc6e0 19#include <linux/sched.h>
b95f1b31 20#include <linux/export.h>
b291f000
NP
21#include <linux/rmap.h>
22#include <linux/mmzone.h>
23#include <linux/hugetlb.h>
7225522b
VB
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
b291f000
NP
26
27#include "internal.h"
1da177e4 28
7f43add4 29bool can_do_mlock(void)
e8edc6e0 30{
59e99e5b 31 if (rlimit(RLIMIT_MEMLOCK) != 0)
7f43add4 32 return true;
a5a6579d 33 if (capable(CAP_IPC_LOCK))
7f43add4
WX
34 return true;
35 return false;
e8edc6e0
AD
36}
37EXPORT_SYMBOL(can_do_mlock);
1da177e4 38
b291f000
NP
39/*
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * statistics.
43 *
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
48 *
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
c1e8d7c6 52 * the mmap_lock for read, and verify that the vma really is locked
b291f000
NP
53 * (see mm/rmap.c).
54 */
55
56/*
57 * LRU accounting for clear_page_mlock()
58 */
e6c509f8 59void clear_page_mlock(struct page *page)
b291f000 60{
0964730b
HD
61 int nr_pages;
62
e6c509f8 63 if (!TestClearPageMlocked(page))
b291f000 64 return;
b291f000 65
0964730b
HD
66 nr_pages = thp_nr_pages(page);
67 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
68 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
9c4e6b1a
SB
69 /*
70 * The previous TestClearPageMlocked() corresponds to the smp_mb()
71 * in __pagevec_lru_add_fn().
72 *
73 * See __pagevec_lru_add_fn for more explanation.
74 */
b291f000
NP
75 if (!isolate_lru_page(page)) {
76 putback_lru_page(page);
77 } else {
78 /*
8891d6da 79 * We lost the race. the page already moved to evictable list.
b291f000 80 */
8891d6da 81 if (PageUnevictable(page))
0964730b 82 count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
b291f000
NP
83 }
84}
85
86/*
87 * Mark page as mlocked if not already.
88 * If page on LRU, isolate and putback to move to unevictable list.
89 */
90void mlock_vma_page(struct page *page)
91{
57e68e9c 92 /* Serialize with page migration */
b291f000
NP
93 BUG_ON(!PageLocked(page));
94
e90309c9
KS
95 VM_BUG_ON_PAGE(PageTail(page), page);
96 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
97
5344b7e6 98 if (!TestSetPageMlocked(page)) {
0964730b
HD
99 int nr_pages = thp_nr_pages(page);
100
101 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
102 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
5344b7e6
NP
103 if (!isolate_lru_page(page))
104 putback_lru_page(page);
105 }
b291f000
NP
106}
107
01cc2e58
VB
108/*
109 * Isolate a page from LRU with optional get_page() pin.
110 * Assumes lru_lock already held and page already pinned.
111 */
112static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
113{
114 if (PageLRU(page)) {
115 struct lruvec *lruvec;
116
599d0c95 117 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
01cc2e58
VB
118 if (getpage)
119 get_page(page);
120 ClearPageLRU(page);
121 del_page_from_lru_list(page, lruvec, page_lru(page));
122 return true;
123 }
124
125 return false;
126}
127
7225522b
VB
128/*
129 * Finish munlock after successful page isolation
130 *
131 * Page must be locked. This is a wrapper for try_to_munlock()
132 * and putback_lru_page() with munlock accounting.
133 */
134static void __munlock_isolated_page(struct page *page)
135{
7225522b
VB
136 /*
137 * Optimization: if the page was mapped just once, that's our mapping
138 * and we don't need to check all the other vmas.
139 */
140 if (page_mapcount(page) > 1)
192d7232 141 try_to_munlock(page);
7225522b
VB
142
143 /* Did try_to_unlock() succeed or punt? */
192d7232 144 if (!PageMlocked(page))
0964730b 145 count_vm_events(UNEVICTABLE_PGMUNLOCKED, thp_nr_pages(page));
7225522b
VB
146
147 putback_lru_page(page);
148}
149
150/*
151 * Accounting for page isolation fail during munlock
152 *
153 * Performs accounting when page isolation fails in munlock. There is nothing
154 * else to do because it means some other task has already removed the page
155 * from the LRU. putback_lru_page() will take care of removing the page from
156 * the unevictable list, if necessary. vmscan [page_referenced()] will move
157 * the page back to the unevictable list if some other vma has it mlocked.
158 */
159static void __munlock_isolation_failed(struct page *page)
160{
0964730b
HD
161 int nr_pages = thp_nr_pages(page);
162
7225522b 163 if (PageUnevictable(page))
0964730b 164 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
7225522b 165 else
0964730b 166 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
7225522b
VB
167}
168
6927c1dd
LS
169/**
170 * munlock_vma_page - munlock a vma page
b7701a5f 171 * @page: page to be unlocked, either a normal page or THP page head
c424be1c
VB
172 *
173 * returns the size of the page as a page mask (0 for normal page,
174 * HPAGE_PMD_NR - 1 for THP head page)
b291f000 175 *
6927c1dd
LS
176 * called from munlock()/munmap() path with page supposedly on the LRU.
177 * When we munlock a page, because the vma where we found the page is being
178 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
179 * page locked so that we can leave it on the unevictable lru list and not
180 * bother vmscan with it. However, to walk the page's rmap list in
181 * try_to_munlock() we must isolate the page from the LRU. If some other
182 * task has removed the page from the LRU, we won't be able to do that.
183 * So we clear the PageMlocked as we might not get another chance. If we
184 * can't isolate the page, we leave it for putback_lru_page() and vmscan
185 * [page_referenced()/try_to_unmap()] to deal with.
b291f000 186 */
ff6a6da6 187unsigned int munlock_vma_page(struct page *page)
b291f000 188{
7162a1e8 189 int nr_pages;
ff6a6da6 190
57e68e9c 191 /* For try_to_munlock() and to serialize with page migration */
b291f000 192 BUG_ON(!PageLocked(page));
e90309c9
KS
193 VM_BUG_ON_PAGE(PageTail(page), page);
194
655548bf
KS
195 if (!TestClearPageMlocked(page)) {
196 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
3db19aa3 197 return 0;
655548bf 198 }
01cc2e58 199
6c357848 200 nr_pages = thp_nr_pages(page);
3db19aa3 201 mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
01cc2e58 202
3db19aa3 203 if (!isolate_lru_page(page))
01cc2e58 204 __munlock_isolated_page(page);
3db19aa3
AS
205 else
206 __munlock_isolation_failed(page);
01cc2e58 207
c424be1c 208 return nr_pages - 1;
b291f000
NP
209}
210
9978ad58
LS
211/*
212 * convert get_user_pages() return value to posix mlock() error
213 */
214static int __mlock_posix_error_return(long retval)
215{
216 if (retval == -EFAULT)
217 retval = -ENOMEM;
218 else if (retval == -ENOMEM)
219 retval = -EAGAIN;
220 return retval;
b291f000
NP
221}
222
56afe477
VB
223/*
224 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
225 *
226 * The fast path is available only for evictable pages with single mapping.
227 * Then we can bypass the per-cpu pvec and get better performance.
228 * when mapcount > 1 we need try_to_munlock() which can fail.
229 * when !page_evictable(), we need the full redo logic of putback_lru_page to
230 * avoid leaving evictable page in unevictable list.
231 *
232 * In case of success, @page is added to @pvec and @pgrescued is incremented
233 * in case that the page was previously unevictable. @page is also unlocked.
234 */
235static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
236 int *pgrescued)
237{
309381fe
SL
238 VM_BUG_ON_PAGE(PageLRU(page), page);
239 VM_BUG_ON_PAGE(!PageLocked(page), page);
56afe477
VB
240
241 if (page_mapcount(page) <= 1 && page_evictable(page)) {
242 pagevec_add(pvec, page);
243 if (TestClearPageUnevictable(page))
244 (*pgrescued)++;
245 unlock_page(page);
246 return true;
247 }
248
249 return false;
250}
251
252/*
253 * Putback multiple evictable pages to the LRU
254 *
255 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
256 * the pages might have meanwhile become unevictable but that is OK.
257 */
258static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
259{
260 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
261 /*
262 *__pagevec_lru_add() calls release_pages() so we don't call
263 * put_page() explicitly
264 */
265 __pagevec_lru_add(pvec);
266 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
267}
268
7225522b
VB
269/*
270 * Munlock a batch of pages from the same zone
271 *
272 * The work is split to two main phases. First phase clears the Mlocked flag
273 * and attempts to isolate the pages, all under a single zone lru lock.
274 * The second phase finishes the munlock only for pages where isolation
275 * succeeded.
276 *
7a8010cd 277 * Note that the pagevec may be modified during the process.
7225522b
VB
278 */
279static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
280{
281 int i;
282 int nr = pagevec_count(pvec);
70feee0e 283 int delta_munlocked = -nr;
56afe477
VB
284 struct pagevec pvec_putback;
285 int pgrescued = 0;
7225522b 286
86679820 287 pagevec_init(&pvec_putback);
3b25df93 288
7225522b 289 /* Phase 1: page isolation */
f4b7e272 290 spin_lock_irq(&zone->zone_pgdat->lru_lock);
7225522b
VB
291 for (i = 0; i < nr; i++) {
292 struct page *page = pvec->pages[i];
293
294 if (TestClearPageMlocked(page)) {
7225522b 295 /*
01cc2e58
VB
296 * We already have pin from follow_page_mask()
297 * so we can spare the get_page() here.
7225522b 298 */
01cc2e58
VB
299 if (__munlock_isolate_lru_page(page, false))
300 continue;
301 else
302 __munlock_isolation_failed(page);
70feee0e
YX
303 } else {
304 delta_munlocked++;
7225522b 305 }
01cc2e58
VB
306
307 /*
308 * We won't be munlocking this page in the next phase
309 * but we still need to release the follow_page_mask()
310 * pin. We cannot do it under lru_lock however. If it's
311 * the last pin, __page_cache_release() would deadlock.
312 */
313 pagevec_add(&pvec_putback, pvec->pages[i]);
314 pvec->pages[i] = NULL;
7225522b 315 }
1ebb7cc6 316 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
f4b7e272 317 spin_unlock_irq(&zone->zone_pgdat->lru_lock);
7225522b 318
3b25df93
VB
319 /* Now we can release pins of pages that we are not munlocking */
320 pagevec_release(&pvec_putback);
321
56afe477 322 /* Phase 2: page munlock */
7225522b
VB
323 for (i = 0; i < nr; i++) {
324 struct page *page = pvec->pages[i];
325
326 if (page) {
327 lock_page(page);
56afe477
VB
328 if (!__putback_lru_fast_prepare(page, &pvec_putback,
329 &pgrescued)) {
5b40998a
VB
330 /*
331 * Slow path. We don't want to lose the last
332 * pin before unlock_page()
333 */
334 get_page(page); /* for putback_lru_page() */
56afe477
VB
335 __munlock_isolated_page(page);
336 unlock_page(page);
5b40998a 337 put_page(page); /* from follow_page_mask() */
56afe477 338 }
7225522b
VB
339 }
340 }
56afe477 341
5b40998a
VB
342 /*
343 * Phase 3: page putback for pages that qualified for the fast path
344 * This will also call put_page() to return pin from follow_page_mask()
345 */
56afe477
VB
346 if (pagevec_count(&pvec_putback))
347 __putback_lru_fast(&pvec_putback, pgrescued);
7a8010cd
VB
348}
349
350/*
351 * Fill up pagevec for __munlock_pagevec using pte walk
352 *
353 * The function expects that the struct page corresponding to @start address is
354 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
355 *
356 * The rest of @pvec is filled by subsequent pages within the same pmd and same
357 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
358 * pages also get pinned.
359 *
360 * Returns the address of the next page that should be scanned. This equals
361 * @start + PAGE_SIZE when no page could be added by the pte walk.
362 */
363static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
9472f23c
JK
364 struct vm_area_struct *vma, struct zone *zone,
365 unsigned long start, unsigned long end)
7a8010cd
VB
366{
367 pte_t *pte;
368 spinlock_t *ptl;
369
370 /*
371 * Initialize pte walk starting at the already pinned page where we
eadb41ae 372 * are sure that there is a pte, as it was pinned under the same
c1e8d7c6 373 * mmap_lock write op.
7a8010cd
VB
374 */
375 pte = get_locked_pte(vma->vm_mm, start, &ptl);
eadb41ae
VB
376 /* Make sure we do not cross the page table boundary */
377 end = pgd_addr_end(start, end);
c2febafc 378 end = p4d_addr_end(start, end);
eadb41ae
VB
379 end = pud_addr_end(start, end);
380 end = pmd_addr_end(start, end);
7a8010cd
VB
381
382 /* The page next to the pinned page is the first we will try to get */
383 start += PAGE_SIZE;
384 while (start < end) {
385 struct page *page = NULL;
386 pte++;
387 if (pte_present(*pte))
388 page = vm_normal_page(vma, start, *pte);
389 /*
390 * Break if page could not be obtained or the page's node+zone does not
391 * match
392 */
9472f23c 393 if (!page || page_zone(page) != zone)
7a8010cd 394 break;
56afe477 395
e90309c9
KS
396 /*
397 * Do not use pagevec for PTE-mapped THP,
398 * munlock_vma_pages_range() will handle them.
399 */
400 if (PageTransCompound(page))
401 break;
402
7a8010cd
VB
403 get_page(page);
404 /*
405 * Increase the address that will be returned *before* the
406 * eventual break due to pvec becoming full by adding the page
407 */
408 start += PAGE_SIZE;
409 if (pagevec_add(pvec, page) == 0)
410 break;
411 }
412 pte_unmap_unlock(pte, ptl);
413 return start;
7225522b
VB
414}
415
b291f000 416/*
ba470de4
RR
417 * munlock_vma_pages_range() - munlock all pages in the vma range.'
418 * @vma - vma containing range to be munlock()ed.
419 * @start - start address in @vma of the range
420 * @end - end of range in @vma.
421 *
422 * For mremap(), munmap() and exit().
423 *
424 * Called with @vma VM_LOCKED.
425 *
426 * Returns with VM_LOCKED cleared. Callers must be prepared to
427 * deal with this.
428 *
429 * We don't save and restore VM_LOCKED here because pages are
430 * still on lru. In unmap path, pages might be scanned by reclaim
431 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
432 * free them. This will result in freeing mlocked pages.
b291f000 433 */
ba470de4 434void munlock_vma_pages_range(struct vm_area_struct *vma,
408e82b7 435 unsigned long start, unsigned long end)
b291f000 436{
de60f5f1 437 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
408e82b7 438
ff6a6da6 439 while (start < end) {
ab7a5af7 440 struct page *page;
6ebb4a1b 441 unsigned int page_mask = 0;
c424be1c 442 unsigned long page_increm;
7a8010cd
VB
443 struct pagevec pvec;
444 struct zone *zone;
ff6a6da6 445
86679820 446 pagevec_init(&pvec);
6e919717
HD
447 /*
448 * Although FOLL_DUMP is intended for get_dump_page(),
449 * it just so happens that its special treatment of the
450 * ZERO_PAGE (returning an error instead of doing get_page)
451 * suits munlock very well (and if somehow an abnormal page
452 * has sneaked into the range, we won't oops here: great).
453 */
6ebb4a1b 454 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
7a8010cd 455
e90309c9
KS
456 if (page && !IS_ERR(page)) {
457 if (PageTransTail(page)) {
458 VM_BUG_ON_PAGE(PageMlocked(page), page);
459 put_page(page); /* follow_page_mask() */
460 } else if (PageTransHuge(page)) {
461 lock_page(page);
462 /*
463 * Any THP page found by follow_page_mask() may
464 * have gotten split before reaching
6ebb4a1b
KS
465 * munlock_vma_page(), so we need to compute
466 * the page_mask here instead.
e90309c9
KS
467 */
468 page_mask = munlock_vma_page(page);
469 unlock_page(page);
470 put_page(page); /* follow_page_mask() */
471 } else {
472 /*
473 * Non-huge pages are handled in batches via
474 * pagevec. The pin from follow_page_mask()
475 * prevents them from collapsing by THP.
476 */
477 pagevec_add(&pvec, page);
478 zone = page_zone(page);
7a8010cd 479
e90309c9
KS
480 /*
481 * Try to fill the rest of pagevec using fast
482 * pte walk. This will also update start to
483 * the next page to process. Then munlock the
484 * pagevec.
485 */
486 start = __munlock_pagevec_fill(&pvec, vma,
9472f23c 487 zone, start, end);
e90309c9
KS
488 __munlock_pagevec(&pvec, zone);
489 goto next;
490 }
408e82b7 491 }
c424be1c 492 page_increm = 1 + page_mask;
ff6a6da6 493 start += page_increm * PAGE_SIZE;
7a8010cd 494next:
408e82b7
HD
495 cond_resched();
496 }
b291f000
NP
497}
498
499/*
500 * mlock_fixup - handle mlock[all]/munlock[all] requests.
501 *
502 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
503 * munlock is a no-op. However, for some special vmas, we go ahead and
cea10a19 504 * populate the ptes.
b291f000
NP
505 *
506 * For vmas that pass the filters, merge/split as appropriate.
507 */
1da177e4 508static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
ca16d140 509 unsigned long start, unsigned long end, vm_flags_t newflags)
1da177e4 510{
b291f000 511 struct mm_struct *mm = vma->vm_mm;
1da177e4 512 pgoff_t pgoff;
b291f000 513 int nr_pages;
1da177e4 514 int ret = 0;
ca16d140 515 int lock = !!(newflags & VM_LOCKED);
b155b4fd 516 vm_flags_t old_flags = vma->vm_flags;
1da177e4 517
fed067da 518 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
e1fb4a08
DJ
519 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
520 vma_is_dax(vma))
b0f205c2
EM
521 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
522 goto out;
b291f000 523
1da177e4
LT
524 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
525 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
19a809af
AA
526 vma->vm_file, pgoff, vma_policy(vma),
527 vma->vm_userfaultfd_ctx);
1da177e4
LT
528 if (*prev) {
529 vma = *prev;
530 goto success;
531 }
532
1da177e4
LT
533 if (start != vma->vm_start) {
534 ret = split_vma(mm, vma, start, 1);
535 if (ret)
536 goto out;
537 }
538
539 if (end != vma->vm_end) {
540 ret = split_vma(mm, vma, end, 0);
541 if (ret)
542 goto out;
543 }
544
545success:
b291f000
NP
546 /*
547 * Keep track of amount of locked VM.
548 */
549 nr_pages = (end - start) >> PAGE_SHIFT;
550 if (!lock)
551 nr_pages = -nr_pages;
b155b4fd
SG
552 else if (old_flags & VM_LOCKED)
553 nr_pages = 0;
b291f000
NP
554 mm->locked_vm += nr_pages;
555
1da177e4 556 /*
c1e8d7c6 557 * vm_flags is protected by the mmap_lock held in write mode.
1da177e4 558 * It's okay if try_to_unmap_one unmaps a page just after we
fc05f566 559 * set VM_LOCKED, populate_vma_page_range will bring it back.
1da177e4 560 */
1da177e4 561
fed067da 562 if (lock)
408e82b7 563 vma->vm_flags = newflags;
fed067da 564 else
408e82b7 565 munlock_vma_pages_range(vma, start, end);
1da177e4 566
1da177e4 567out:
b291f000 568 *prev = vma;
1da177e4
LT
569 return ret;
570}
571
1aab92ec
EM
572static int apply_vma_lock_flags(unsigned long start, size_t len,
573 vm_flags_t flags)
1da177e4
LT
574{
575 unsigned long nstart, end, tmp;
576 struct vm_area_struct * vma, * prev;
577 int error;
578
8fd9e488 579 VM_BUG_ON(offset_in_page(start));
fed067da 580 VM_BUG_ON(len != PAGE_ALIGN(len));
1da177e4
LT
581 end = start + len;
582 if (end < start)
583 return -EINVAL;
584 if (end == start)
585 return 0;
097d5910 586 vma = find_vma(current->mm, start);
1da177e4
LT
587 if (!vma || vma->vm_start > start)
588 return -ENOMEM;
589
097d5910 590 prev = vma->vm_prev;
1da177e4
LT
591 if (start > vma->vm_start)
592 prev = vma;
593
594 for (nstart = start ; ; ) {
b0f205c2 595 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
1da177e4 596
1aab92ec 597 newflags |= flags;
1da177e4 598
1aab92ec 599 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
1da177e4
LT
600 tmp = vma->vm_end;
601 if (tmp > end)
602 tmp = end;
603 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
604 if (error)
605 break;
606 nstart = tmp;
607 if (nstart < prev->vm_end)
608 nstart = prev->vm_end;
609 if (nstart >= end)
610 break;
611
612 vma = prev->vm_next;
613 if (!vma || vma->vm_start != nstart) {
614 error = -ENOMEM;
615 break;
616 }
617 }
618 return error;
619}
620
0cf2f6f6
SG
621/*
622 * Go through vma areas and sum size of mlocked
623 * vma pages, as return value.
624 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
625 * is also counted.
626 * Return value: previously mlocked page counts
627 */
0874bb49 628static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
0cf2f6f6
SG
629 unsigned long start, size_t len)
630{
631 struct vm_area_struct *vma;
0874bb49 632 unsigned long count = 0;
0cf2f6f6
SG
633
634 if (mm == NULL)
635 mm = current->mm;
636
637 vma = find_vma(mm, start);
638 if (vma == NULL)
639 vma = mm->mmap;
640
641 for (; vma ; vma = vma->vm_next) {
642 if (start >= vma->vm_end)
643 continue;
644 if (start + len <= vma->vm_start)
645 break;
646 if (vma->vm_flags & VM_LOCKED) {
647 if (start > vma->vm_start)
648 count -= (start - vma->vm_start);
649 if (start + len < vma->vm_end) {
650 count += start + len - vma->vm_start;
651 break;
652 }
653 count += vma->vm_end - vma->vm_start;
654 }
655 }
656
657 return count >> PAGE_SHIFT;
658}
659
dc0ef0df 660static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
1da177e4
LT
661{
662 unsigned long locked;
663 unsigned long lock_limit;
664 int error = -ENOMEM;
665
057d3389
AK
666 start = untagged_addr(start);
667
1da177e4
LT
668 if (!can_do_mlock())
669 return -EPERM;
670
8fd9e488 671 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4
LT
672 start &= PAGE_MASK;
673
59e99e5b 674 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4 675 lock_limit >>= PAGE_SHIFT;
1f1cd705
DB
676 locked = len >> PAGE_SHIFT;
677
d8ed45c5 678 if (mmap_write_lock_killable(current->mm))
dc0ef0df 679 return -EINTR;
1f1cd705
DB
680
681 locked += current->mm->locked_vm;
0cf2f6f6
SG
682 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
683 /*
684 * It is possible that the regions requested intersect with
685 * previously mlocked areas, that part area in "mm->locked_vm"
686 * should not be counted to new mlock increment count. So check
687 * and adjust locked count if necessary.
688 */
689 locked -= count_mm_mlocked_page_nr(current->mm,
690 start, len);
691 }
1da177e4
LT
692
693 /* check against resource limits */
694 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
1aab92ec 695 error = apply_vma_lock_flags(start, len, flags);
1f1cd705 696
d8ed45c5 697 mmap_write_unlock(current->mm);
c561259c
KS
698 if (error)
699 return error;
700
701 error = __mm_populate(start, len, 0);
702 if (error)
703 return __mlock_posix_error_return(error);
704 return 0;
1da177e4
LT
705}
706
1aab92ec
EM
707SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
708{
709 return do_mlock(start, len, VM_LOCKED);
710}
711
a8ca5d0e
EM
712SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
713{
b0f205c2
EM
714 vm_flags_t vm_flags = VM_LOCKED;
715
716 if (flags & ~MLOCK_ONFAULT)
a8ca5d0e
EM
717 return -EINVAL;
718
b0f205c2
EM
719 if (flags & MLOCK_ONFAULT)
720 vm_flags |= VM_LOCKONFAULT;
721
722 return do_mlock(start, len, vm_flags);
a8ca5d0e
EM
723}
724
6a6160a7 725SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
1da177e4
LT
726{
727 int ret;
728
057d3389
AK
729 start = untagged_addr(start);
730
8fd9e488 731 len = PAGE_ALIGN(len + (offset_in_page(start)));
1da177e4 732 start &= PAGE_MASK;
1f1cd705 733
d8ed45c5 734 if (mmap_write_lock_killable(current->mm))
dc0ef0df 735 return -EINTR;
1aab92ec 736 ret = apply_vma_lock_flags(start, len, 0);
d8ed45c5 737 mmap_write_unlock(current->mm);
1f1cd705 738
1da177e4
LT
739 return ret;
740}
741
b0f205c2
EM
742/*
743 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
744 * and translate into the appropriate modifications to mm->def_flags and/or the
745 * flags for all current VMAs.
746 *
747 * There are a couple of subtleties with this. If mlockall() is called multiple
748 * times with different flags, the values do not necessarily stack. If mlockall
749 * is called once including the MCL_FUTURE flag and then a second time without
750 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
751 */
1aab92ec 752static int apply_mlockall_flags(int flags)
1da177e4
LT
753{
754 struct vm_area_struct * vma, * prev = NULL;
b0f205c2 755 vm_flags_t to_add = 0;
1da177e4 756
b0f205c2
EM
757 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
758 if (flags & MCL_FUTURE) {
09a9f1d2 759 current->mm->def_flags |= VM_LOCKED;
1aab92ec 760
b0f205c2
EM
761 if (flags & MCL_ONFAULT)
762 current->mm->def_flags |= VM_LOCKONFAULT;
763
764 if (!(flags & MCL_CURRENT))
765 goto out;
766 }
767
768 if (flags & MCL_CURRENT) {
769 to_add |= VM_LOCKED;
770 if (flags & MCL_ONFAULT)
771 to_add |= VM_LOCKONFAULT;
772 }
1da177e4
LT
773
774 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
ca16d140 775 vm_flags_t newflags;
1da177e4 776
b0f205c2
EM
777 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
778 newflags |= to_add;
1da177e4
LT
779
780 /* Ignore errors */
781 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
50d4fb78 782 cond_resched();
1da177e4
LT
783 }
784out:
785 return 0;
786}
787
3480b257 788SYSCALL_DEFINE1(mlockall, int, flags)
1da177e4
LT
789{
790 unsigned long lock_limit;
86d2adcc 791 int ret;
1da177e4 792
dedca635
PS
793 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
794 flags == MCL_ONFAULT)
86d2adcc 795 return -EINVAL;
1da177e4 796
1da177e4 797 if (!can_do_mlock())
86d2adcc 798 return -EPERM;
1da177e4 799
59e99e5b 800 lock_limit = rlimit(RLIMIT_MEMLOCK);
1da177e4
LT
801 lock_limit >>= PAGE_SHIFT;
802
d8ed45c5 803 if (mmap_write_lock_killable(current->mm))
dc0ef0df 804 return -EINTR;
1f1cd705 805
dc0ef0df 806 ret = -ENOMEM;
1da177e4
LT
807 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
808 capable(CAP_IPC_LOCK))
1aab92ec 809 ret = apply_mlockall_flags(flags);
d8ed45c5 810 mmap_write_unlock(current->mm);
bebeb3d6
ML
811 if (!ret && (flags & MCL_CURRENT))
812 mm_populate(0, TASK_SIZE);
86d2adcc 813
1da177e4
LT
814 return ret;
815}
816
3480b257 817SYSCALL_DEFINE0(munlockall)
1da177e4
LT
818{
819 int ret;
820
d8ed45c5 821 if (mmap_write_lock_killable(current->mm))
dc0ef0df 822 return -EINTR;
1aab92ec 823 ret = apply_mlockall_flags(0);
d8ed45c5 824 mmap_write_unlock(current->mm);
1da177e4
LT
825 return ret;
826}
827
828/*
829 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
830 * shm segments) get accounted against the user_struct instead.
831 */
832static DEFINE_SPINLOCK(shmlock_user_lock);
833
834int user_shm_lock(size_t size, struct user_struct *user)
835{
836 unsigned long lock_limit, locked;
837 int allowed = 0;
838
839 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
59e99e5b 840 lock_limit = rlimit(RLIMIT_MEMLOCK);
5ed44a40
HB
841 if (lock_limit == RLIM_INFINITY)
842 allowed = 1;
1da177e4
LT
843 lock_limit >>= PAGE_SHIFT;
844 spin_lock(&shmlock_user_lock);
5ed44a40
HB
845 if (!allowed &&
846 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
1da177e4
LT
847 goto out;
848 get_uid(user);
849 user->locked_shm += locked;
850 allowed = 1;
851out:
852 spin_unlock(&shmlock_user_lock);
853 return allowed;
854}
855
856void user_shm_unlock(size_t size, struct user_struct *user)
857{
858 spin_lock(&shmlock_user_lock);
859 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
860 spin_unlock(&shmlock_user_lock);
861 free_uid(user);
862}