mm/memremap.c: take a pgmap reference on page allocation
[linux-block.git] / mm / migrate_device.c
CommitLineData
76cbbead
CH
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7#include <linux/export.h>
8#include <linux/memremap.h>
9#include <linux/migrate.h>
fd35ca3d 10#include <linux/mm.h>
76cbbead
CH
11#include <linux/mm_inline.h>
12#include <linux/mmu_notifier.h>
13#include <linux/oom.h>
14#include <linux/pagewalk.h>
15#include <linux/rmap.h>
16#include <linux/swapops.h>
17#include <asm/tlbflush.h>
18#include "internal.h"
19
20static int migrate_vma_collect_skip(unsigned long start,
21 unsigned long end,
22 struct mm_walk *walk)
23{
24 struct migrate_vma *migrate = walk->private;
25 unsigned long addr;
26
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
30 }
31
32 return 0;
33}
34
35static int migrate_vma_collect_hole(unsigned long start,
36 unsigned long end,
37 __always_unused int depth,
38 struct mm_walk *walk)
39{
40 struct migrate_vma *migrate = walk->private;
41 unsigned long addr;
42
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
46
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
50 migrate->npages++;
51 migrate->cpages++;
52 }
53
54 return 0;
55}
56
57static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 unsigned long start,
59 unsigned long end,
60 struct mm_walk *walk)
61{
62 struct migrate_vma *migrate = walk->private;
63 struct vm_area_struct *vma = walk->vma;
64 struct mm_struct *mm = vma->vm_mm;
65 unsigned long addr = start, unmapped = 0;
66 spinlock_t *ptl;
67 pte_t *ptep;
68
69again:
70 if (pmd_none(*pmdp))
71 return migrate_vma_collect_hole(start, end, -1, walk);
72
73 if (pmd_trans_huge(*pmdp)) {
74 struct page *page;
75
76 ptl = pmd_lock(mm, pmdp);
77 if (unlikely(!pmd_trans_huge(*pmdp))) {
78 spin_unlock(ptl);
79 goto again;
80 }
81
82 page = pmd_page(*pmdp);
83 if (is_huge_zero_page(page)) {
84 spin_unlock(ptl);
85 split_huge_pmd(vma, pmdp, addr);
86 if (pmd_trans_unstable(pmdp))
87 return migrate_vma_collect_skip(start, end,
88 walk);
89 } else {
90 int ret;
91
92 get_page(page);
93 spin_unlock(ptl);
94 if (unlikely(!trylock_page(page)))
95 return migrate_vma_collect_skip(start, end,
96 walk);
97 ret = split_huge_page(page);
98 unlock_page(page);
99 put_page(page);
100 if (ret)
101 return migrate_vma_collect_skip(start, end,
102 walk);
103 if (pmd_none(*pmdp))
104 return migrate_vma_collect_hole(start, end, -1,
105 walk);
106 }
107 }
108
109 if (unlikely(pmd_bad(*pmdp)))
110 return migrate_vma_collect_skip(start, end, walk);
111
112 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
113 arch_enter_lazy_mmu_mode();
114
115 for (; addr < end; addr += PAGE_SIZE, ptep++) {
116 unsigned long mpfn = 0, pfn;
117 struct page *page;
118 swp_entry_t entry;
119 pte_t pte;
120
121 pte = *ptep;
122
123 if (pte_none(pte)) {
124 if (vma_is_anonymous(vma)) {
125 mpfn = MIGRATE_PFN_MIGRATE;
126 migrate->cpages++;
127 }
128 goto next;
129 }
130
131 if (!pte_present(pte)) {
132 /*
133 * Only care about unaddressable device page special
134 * page table entry. Other special swap entries are not
135 * migratable, and we ignore regular swapped page.
136 */
137 entry = pte_to_swp_entry(pte);
138 if (!is_device_private_entry(entry))
139 goto next;
140
141 page = pfn_swap_entry_to_page(entry);
142 if (!(migrate->flags &
143 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
144 page->pgmap->owner != migrate->pgmap_owner)
145 goto next;
146
147 mpfn = migrate_pfn(page_to_pfn(page)) |
148 MIGRATE_PFN_MIGRATE;
149 if (is_writable_device_private_entry(entry))
150 mpfn |= MIGRATE_PFN_WRITE;
151 } else {
76cbbead 152 pfn = pte_pfn(pte);
dd19e6d8
AS
153 if (is_zero_pfn(pfn) &&
154 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
76cbbead
CH
155 mpfn = MIGRATE_PFN_MIGRATE;
156 migrate->cpages++;
157 goto next;
158 }
159 page = vm_normal_page(migrate->vma, addr, pte);
dd19e6d8
AS
160 if (page && !is_zone_device_page(page) &&
161 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
162 goto next;
163 else if (page && is_device_coherent_page(page) &&
164 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
165 page->pgmap->owner != migrate->pgmap_owner))
166 goto next;
76cbbead
CH
167 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
168 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
169 }
170
171 /* FIXME support THP */
172 if (!page || !page->mapping || PageTransCompound(page)) {
173 mpfn = 0;
174 goto next;
175 }
176
177 /*
178 * By getting a reference on the page we pin it and that blocks
179 * any kind of migration. Side effect is that it "freezes" the
180 * pte.
181 *
182 * We drop this reference after isolating the page from the lru
183 * for non device page (device page are not on the lru and thus
184 * can't be dropped from it).
185 */
186 get_page(page);
187
188 /*
0742e490
AP
189 * We rely on trylock_page() to avoid deadlock between
190 * concurrent migrations where each is waiting on the others
191 * page lock. If we can't immediately lock the page we fail this
192 * migration as it is only best effort anyway.
193 *
194 * If we can lock the page it's safe to set up a migration entry
195 * now. In the common case where the page is mapped once in a
196 * single process setting up the migration entry now is an
197 * optimisation to avoid walking the rmap later with
198 * try_to_migrate().
76cbbead
CH
199 */
200 if (trylock_page(page)) {
6c287605 201 bool anon_exclusive;
76cbbead
CH
202 pte_t swp_pte;
203
a3589e1d 204 flush_cache_page(vma, addr, pte_pfn(*ptep));
6c287605
DH
205 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
206 if (anon_exclusive) {
fd35ca3d 207 pte = ptep_clear_flush(vma, addr, ptep);
6c287605
DH
208
209 if (page_try_share_anon_rmap(page)) {
210 set_pte_at(mm, addr, ptep, pte);
211 unlock_page(page);
212 put_page(page);
213 mpfn = 0;
214 goto next;
215 }
216 } else {
fd35ca3d 217 pte = ptep_get_and_clear(mm, addr, ptep);
6c287605
DH
218 }
219
76cbbead 220 migrate->cpages++;
76cbbead 221
fd35ca3d
AP
222 /* Set the dirty flag on the folio now the pte is gone. */
223 if (pte_dirty(pte))
224 folio_mark_dirty(page_folio(page));
225
76cbbead
CH
226 /* Setup special migration page table entry */
227 if (mpfn & MIGRATE_PFN_WRITE)
228 entry = make_writable_migration_entry(
229 page_to_pfn(page));
6c287605
DH
230 else if (anon_exclusive)
231 entry = make_readable_exclusive_migration_entry(
232 page_to_pfn(page));
76cbbead
CH
233 else
234 entry = make_readable_migration_entry(
235 page_to_pfn(page));
2e346877
PX
236 if (pte_present(pte)) {
237 if (pte_young(pte))
238 entry = make_migration_entry_young(entry);
239 if (pte_dirty(pte))
240 entry = make_migration_entry_dirty(entry);
241 }
76cbbead
CH
242 swp_pte = swp_entry_to_pte(entry);
243 if (pte_present(pte)) {
244 if (pte_soft_dirty(pte))
245 swp_pte = pte_swp_mksoft_dirty(swp_pte);
246 if (pte_uffd_wp(pte))
247 swp_pte = pte_swp_mkuffd_wp(swp_pte);
248 } else {
249 if (pte_swp_soft_dirty(pte))
250 swp_pte = pte_swp_mksoft_dirty(swp_pte);
251 if (pte_swp_uffd_wp(pte))
252 swp_pte = pte_swp_mkuffd_wp(swp_pte);
253 }
254 set_pte_at(mm, addr, ptep, swp_pte);
255
256 /*
257 * This is like regular unmap: we remove the rmap and
258 * drop page refcount. Page won't be freed, as we took
259 * a reference just above.
260 */
261 page_remove_rmap(page, vma, false);
262 put_page(page);
263
264 if (pte_present(pte))
265 unmapped++;
266 } else {
267 put_page(page);
268 mpfn = 0;
269 }
270
271next:
272 migrate->dst[migrate->npages] = 0;
273 migrate->src[migrate->npages++] = mpfn;
274 }
76cbbead
CH
275
276 /* Only flush the TLB if we actually modified any entries */
277 if (unmapped)
278 flush_tlb_range(walk->vma, start, end);
279
60bae737
AP
280 arch_leave_lazy_mmu_mode();
281 pte_unmap_unlock(ptep - 1, ptl);
282
76cbbead
CH
283 return 0;
284}
285
286static const struct mm_walk_ops migrate_vma_walk_ops = {
287 .pmd_entry = migrate_vma_collect_pmd,
288 .pte_hole = migrate_vma_collect_hole,
289};
290
291/*
292 * migrate_vma_collect() - collect pages over a range of virtual addresses
293 * @migrate: migrate struct containing all migration information
294 *
295 * This will walk the CPU page table. For each virtual address backed by a
296 * valid page, it updates the src array and takes a reference on the page, in
297 * order to pin the page until we lock it and unmap it.
298 */
299static void migrate_vma_collect(struct migrate_vma *migrate)
300{
301 struct mmu_notifier_range range;
302
303 /*
304 * Note that the pgmap_owner is passed to the mmu notifier callback so
305 * that the registered device driver can skip invalidating device
306 * private page mappings that won't be migrated.
307 */
308 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
309 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
310 migrate->pgmap_owner);
311 mmu_notifier_invalidate_range_start(&range);
312
313 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
314 &migrate_vma_walk_ops, migrate);
315
316 mmu_notifier_invalidate_range_end(&range);
317 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
318}
319
320/*
321 * migrate_vma_check_page() - check if page is pinned or not
322 * @page: struct page to check
323 *
324 * Pinned pages cannot be migrated. This is the same test as in
325 * folio_migrate_mapping(), except that here we allow migration of a
326 * ZONE_DEVICE page.
327 */
16ce101d 328static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
76cbbead
CH
329{
330 /*
331 * One extra ref because caller holds an extra reference, either from
332 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
333 * a device page.
334 */
16ce101d 335 int extra = 1 + (page == fault_page);
76cbbead
CH
336
337 /*
338 * FIXME support THP (transparent huge page), it is bit more complex to
339 * check them than regular pages, because they can be mapped with a pmd
340 * or with a pte (split pte mapping).
341 */
342 if (PageCompound(page))
343 return false;
344
345 /* Page from ZONE_DEVICE have one extra reference */
346 if (is_zone_device_page(page))
347 extra++;
348
349 /* For file back page */
350 if (page_mapping(page))
351 extra += 1 + page_has_private(page);
352
353 if ((page_count(page) - extra) > page_mapcount(page))
354 return false;
355
356 return true;
357}
358
359/*
360 * migrate_vma_unmap() - replace page mapping with special migration pte entry
361 * @migrate: migrate struct containing all migration information
362 *
363 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
364 * special migration pte entry and check if it has been pinned. Pinned pages are
365 * restored because we cannot migrate them.
366 *
367 * This is the last step before we call the device driver callback to allocate
368 * destination memory and copy contents of original page over to new page.
369 */
370static void migrate_vma_unmap(struct migrate_vma *migrate)
371{
372 const unsigned long npages = migrate->npages;
373 unsigned long i, restore = 0;
374 bool allow_drain = true;
375
376 lru_add_drain();
377
378 for (i = 0; i < npages; i++) {
379 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4b8554c5 380 struct folio *folio;
76cbbead
CH
381
382 if (!page)
383 continue;
384
385 /* ZONE_DEVICE pages are not on LRU */
386 if (!is_zone_device_page(page)) {
387 if (!PageLRU(page) && allow_drain) {
388 /* Drain CPU's pagevec */
389 lru_add_drain_all();
390 allow_drain = false;
391 }
392
393 if (isolate_lru_page(page)) {
394 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
395 migrate->cpages--;
396 restore++;
397 continue;
398 }
399
400 /* Drop the reference we took in collect */
401 put_page(page);
402 }
403
4b8554c5
MWO
404 folio = page_folio(page);
405 if (folio_mapped(folio))
406 try_to_migrate(folio, 0);
76cbbead 407
16ce101d
AP
408 if (page_mapped(page) ||
409 !migrate_vma_check_page(page, migrate->fault_page)) {
76cbbead
CH
410 if (!is_zone_device_page(page)) {
411 get_page(page);
412 putback_lru_page(page);
413 }
414
415 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
416 migrate->cpages--;
417 restore++;
418 continue;
419 }
420 }
421
422 for (i = 0; i < npages && restore; i++) {
423 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4eecb8b9 424 struct folio *folio;
76cbbead
CH
425
426 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
427 continue;
428
4eecb8b9
MWO
429 folio = page_folio(page);
430 remove_migration_ptes(folio, folio, false);
76cbbead
CH
431
432 migrate->src[i] = 0;
4eecb8b9
MWO
433 folio_unlock(folio);
434 folio_put(folio);
76cbbead
CH
435 restore--;
436 }
437}
438
439/**
440 * migrate_vma_setup() - prepare to migrate a range of memory
441 * @args: contains the vma, start, and pfns arrays for the migration
442 *
443 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
444 * without an error.
445 *
446 * Prepare to migrate a range of memory virtual address range by collecting all
447 * the pages backing each virtual address in the range, saving them inside the
448 * src array. Then lock those pages and unmap them. Once the pages are locked
449 * and unmapped, check whether each page is pinned or not. Pages that aren't
450 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
451 * corresponding src array entry. Then restores any pages that are pinned, by
452 * remapping and unlocking those pages.
453 *
454 * The caller should then allocate destination memory and copy source memory to
455 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
456 * flag set). Once these are allocated and copied, the caller must update each
457 * corresponding entry in the dst array with the pfn value of the destination
458 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
459 * lock_page().
460 *
461 * Note that the caller does not have to migrate all the pages that are marked
462 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
463 * device memory to system memory. If the caller cannot migrate a device page
464 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
465 * consequences for the userspace process, so it must be avoided if at all
466 * possible.
467 *
468 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
469 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
470 * allowing the caller to allocate device memory for those unbacked virtual
471 * addresses. For this the caller simply has to allocate device memory and
472 * properly set the destination entry like for regular migration. Note that
473 * this can still fail, and thus inside the device driver you must check if the
474 * migration was successful for those entries after calling migrate_vma_pages(),
475 * just like for regular migration.
476 *
477 * After that, the callers must call migrate_vma_pages() to go over each entry
478 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
479 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
480 * then migrate_vma_pages() to migrate struct page information from the source
481 * struct page to the destination struct page. If it fails to migrate the
482 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
483 * src array.
484 *
485 * At this point all successfully migrated pages have an entry in the src
486 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
487 * array entry with MIGRATE_PFN_VALID flag set.
488 *
489 * Once migrate_vma_pages() returns the caller may inspect which pages were
490 * successfully migrated, and which were not. Successfully migrated pages will
491 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
492 *
493 * It is safe to update device page table after migrate_vma_pages() because
494 * both destination and source page are still locked, and the mmap_lock is held
495 * in read mode (hence no one can unmap the range being migrated).
496 *
497 * Once the caller is done cleaning up things and updating its page table (if it
498 * chose to do so, this is not an obligation) it finally calls
499 * migrate_vma_finalize() to update the CPU page table to point to new pages
500 * for successfully migrated pages or otherwise restore the CPU page table to
501 * point to the original source pages.
502 */
503int migrate_vma_setup(struct migrate_vma *args)
504{
505 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
506
507 args->start &= PAGE_MASK;
508 args->end &= PAGE_MASK;
509 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
510 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
511 return -EINVAL;
512 if (nr_pages <= 0)
513 return -EINVAL;
514 if (args->start < args->vma->vm_start ||
515 args->start >= args->vma->vm_end)
516 return -EINVAL;
517 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
518 return -EINVAL;
519 if (!args->src || !args->dst)
520 return -EINVAL;
16ce101d
AP
521 if (args->fault_page && !is_device_private_page(args->fault_page))
522 return -EINVAL;
76cbbead
CH
523
524 memset(args->src, 0, sizeof(*args->src) * nr_pages);
525 args->cpages = 0;
526 args->npages = 0;
527
528 migrate_vma_collect(args);
529
530 if (args->cpages)
531 migrate_vma_unmap(args);
532
533 /*
534 * At this point pages are locked and unmapped, and thus they have
535 * stable content and can safely be copied to destination memory that
536 * is allocated by the drivers.
537 */
538 return 0;
539
540}
541EXPORT_SYMBOL(migrate_vma_setup);
542
543/*
544 * This code closely matches the code in:
545 * __handle_mm_fault()
546 * handle_pte_fault()
547 * do_anonymous_page()
548 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
f25cbb7a 549 * private or coherent page.
76cbbead
CH
550 */
551static void migrate_vma_insert_page(struct migrate_vma *migrate,
552 unsigned long addr,
553 struct page *page,
554 unsigned long *src)
555{
556 struct vm_area_struct *vma = migrate->vma;
557 struct mm_struct *mm = vma->vm_mm;
558 bool flush = false;
559 spinlock_t *ptl;
560 pte_t entry;
561 pgd_t *pgdp;
562 p4d_t *p4dp;
563 pud_t *pudp;
564 pmd_t *pmdp;
565 pte_t *ptep;
566
567 /* Only allow populating anonymous memory */
568 if (!vma_is_anonymous(vma))
569 goto abort;
570
571 pgdp = pgd_offset(mm, addr);
572 p4dp = p4d_alloc(mm, pgdp, addr);
573 if (!p4dp)
574 goto abort;
575 pudp = pud_alloc(mm, p4dp, addr);
576 if (!pudp)
577 goto abort;
578 pmdp = pmd_alloc(mm, pudp, addr);
579 if (!pmdp)
580 goto abort;
581
582 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
583 goto abort;
584
585 /*
586 * Use pte_alloc() instead of pte_alloc_map(). We can't run
587 * pte_offset_map() on pmds where a huge pmd might be created
588 * from a different thread.
589 *
590 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
591 * parallel threads are excluded by other means.
592 *
593 * Here we only have mmap_read_lock(mm).
594 */
595 if (pte_alloc(mm, pmdp))
596 goto abort;
597
598 /* See the comment in pte_alloc_one_map() */
599 if (unlikely(pmd_trans_unstable(pmdp)))
600 goto abort;
601
602 if (unlikely(anon_vma_prepare(vma)))
603 goto abort;
604 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
605 goto abort;
606
607 /*
608 * The memory barrier inside __SetPageUptodate makes sure that
609 * preceding stores to the page contents become visible before
610 * the set_pte_at() write.
611 */
612 __SetPageUptodate(page);
613
614 if (is_device_private_page(page)) {
615 swp_entry_t swp_entry;
616
617 if (vma->vm_flags & VM_WRITE)
618 swp_entry = make_writable_device_private_entry(
619 page_to_pfn(page));
620 else
621 swp_entry = make_readable_device_private_entry(
622 page_to_pfn(page));
623 entry = swp_entry_to_pte(swp_entry);
624 } else {
f25cbb7a
AS
625 if (is_zone_device_page(page) &&
626 !is_device_coherent_page(page)) {
76cbbead
CH
627 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
628 goto abort;
629 }
630 entry = mk_pte(page, vma->vm_page_prot);
631 if (vma->vm_flags & VM_WRITE)
632 entry = pte_mkwrite(pte_mkdirty(entry));
633 }
634
635 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
636
637 if (check_stable_address_space(mm))
638 goto unlock_abort;
639
640 if (pte_present(*ptep)) {
641 unsigned long pfn = pte_pfn(*ptep);
642
643 if (!is_zero_pfn(pfn))
644 goto unlock_abort;
645 flush = true;
646 } else if (!pte_none(*ptep))
647 goto unlock_abort;
648
649 /*
650 * Check for userfaultfd but do not deliver the fault. Instead,
651 * just back off.
652 */
653 if (userfaultfd_missing(vma))
654 goto unlock_abort;
655
656 inc_mm_counter(mm, MM_ANONPAGES);
40f2bbf7 657 page_add_new_anon_rmap(page, vma, addr);
76cbbead
CH
658 if (!is_zone_device_page(page))
659 lru_cache_add_inactive_or_unevictable(page, vma);
660 get_page(page);
661
662 if (flush) {
663 flush_cache_page(vma, addr, pte_pfn(*ptep));
664 ptep_clear_flush_notify(vma, addr, ptep);
665 set_pte_at_notify(mm, addr, ptep, entry);
666 update_mmu_cache(vma, addr, ptep);
667 } else {
668 /* No need to invalidate - it was non-present before */
669 set_pte_at(mm, addr, ptep, entry);
670 update_mmu_cache(vma, addr, ptep);
671 }
672
673 pte_unmap_unlock(ptep, ptl);
674 *src = MIGRATE_PFN_MIGRATE;
675 return;
676
677unlock_abort:
678 pte_unmap_unlock(ptep, ptl);
679abort:
680 *src &= ~MIGRATE_PFN_MIGRATE;
681}
682
683/**
684 * migrate_vma_pages() - migrate meta-data from src page to dst page
685 * @migrate: migrate struct containing all migration information
686 *
687 * This migrates struct page meta-data from source struct page to destination
688 * struct page. This effectively finishes the migration from source page to the
689 * destination page.
690 */
691void migrate_vma_pages(struct migrate_vma *migrate)
692{
693 const unsigned long npages = migrate->npages;
694 const unsigned long start = migrate->start;
695 struct mmu_notifier_range range;
696 unsigned long addr, i;
697 bool notified = false;
698
699 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
700 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
701 struct page *page = migrate_pfn_to_page(migrate->src[i]);
702 struct address_space *mapping;
703 int r;
704
705 if (!newpage) {
706 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
707 continue;
708 }
709
710 if (!page) {
b05a79d4
AP
711 /*
712 * The only time there is no vma is when called from
713 * migrate_device_coherent_page(). However this isn't
714 * called if the page could not be unmapped.
715 */
716 VM_BUG_ON(!migrate->vma);
76cbbead
CH
717 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
718 continue;
719 if (!notified) {
720 notified = true;
721
722 mmu_notifier_range_init_owner(&range,
723 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
724 migrate->vma->vm_mm, addr, migrate->end,
725 migrate->pgmap_owner);
726 mmu_notifier_invalidate_range_start(&range);
727 }
728 migrate_vma_insert_page(migrate, addr, newpage,
729 &migrate->src[i]);
730 continue;
731 }
732
733 mapping = page_mapping(page);
734
f25cbb7a
AS
735 if (is_device_private_page(newpage) ||
736 is_device_coherent_page(newpage)) {
76cbbead 737 /*
f25cbb7a
AS
738 * For now only support anonymous memory migrating to
739 * device private or coherent memory.
76cbbead
CH
740 */
741 if (mapping) {
742 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
743 continue;
744 }
745 } else if (is_zone_device_page(newpage)) {
746 /*
747 * Other types of ZONE_DEVICE page are not supported.
748 */
749 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
750 continue;
751 }
752
16ce101d
AP
753 if (migrate->fault_page == page)
754 r = migrate_folio_extra(mapping, page_folio(newpage),
755 page_folio(page),
756 MIGRATE_SYNC_NO_COPY, 1);
757 else
758 r = migrate_folio(mapping, page_folio(newpage),
759 page_folio(page), MIGRATE_SYNC_NO_COPY);
76cbbead
CH
760 if (r != MIGRATEPAGE_SUCCESS)
761 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
762 }
763
764 /*
765 * No need to double call mmu_notifier->invalidate_range() callback as
766 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
767 * did already call it.
768 */
769 if (notified)
770 mmu_notifier_invalidate_range_only_end(&range);
771}
772EXPORT_SYMBOL(migrate_vma_pages);
773
774/**
775 * migrate_vma_finalize() - restore CPU page table entry
776 * @migrate: migrate struct containing all migration information
777 *
778 * This replaces the special migration pte entry with either a mapping to the
779 * new page if migration was successful for that page, or to the original page
780 * otherwise.
781 *
782 * This also unlocks the pages and puts them back on the lru, or drops the extra
783 * refcount, for device pages.
784 */
785void migrate_vma_finalize(struct migrate_vma *migrate)
786{
787 const unsigned long npages = migrate->npages;
788 unsigned long i;
789
790 for (i = 0; i < npages; i++) {
4eecb8b9 791 struct folio *dst, *src;
76cbbead
CH
792 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
793 struct page *page = migrate_pfn_to_page(migrate->src[i]);
794
795 if (!page) {
796 if (newpage) {
797 unlock_page(newpage);
798 put_page(newpage);
799 }
800 continue;
801 }
802
803 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
804 if (newpage) {
805 unlock_page(newpage);
806 put_page(newpage);
807 }
808 newpage = page;
809 }
810
4eecb8b9
MWO
811 src = page_folio(page);
812 dst = page_folio(newpage);
813 remove_migration_ptes(src, dst, false);
814 folio_unlock(src);
76cbbead
CH
815
816 if (is_zone_device_page(page))
817 put_page(page);
818 else
819 putback_lru_page(page);
820
821 if (newpage != page) {
822 unlock_page(newpage);
823 if (is_zone_device_page(newpage))
824 put_page(newpage);
825 else
826 putback_lru_page(newpage);
827 }
828 }
829}
830EXPORT_SYMBOL(migrate_vma_finalize);
b05a79d4
AP
831
832/*
833 * Migrate a device coherent page back to normal memory. The caller should have
834 * a reference on page which will be copied to the new page if migration is
835 * successful or dropped on failure.
836 */
837int migrate_device_coherent_page(struct page *page)
838{
839 unsigned long src_pfn, dst_pfn = 0;
840 struct migrate_vma args;
841 struct page *dpage;
842
843 WARN_ON_ONCE(PageCompound(page));
844
845 lock_page(page);
846 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
847 args.src = &src_pfn;
848 args.dst = &dst_pfn;
849 args.cpages = 1;
850 args.npages = 1;
851 args.vma = NULL;
852
853 /*
854 * We don't have a VMA and don't need to walk the page tables to find
855 * the source page. So call migrate_vma_unmap() directly to unmap the
856 * page as migrate_vma_setup() will fail if args.vma == NULL.
857 */
858 migrate_vma_unmap(&args);
859 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
860 return -EBUSY;
861
862 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
863 if (dpage) {
864 lock_page(dpage);
865 dst_pfn = migrate_pfn(page_to_pfn(dpage));
866 }
867
868 migrate_vma_pages(&args);
869 if (src_pfn & MIGRATE_PFN_MIGRATE)
870 copy_highpage(dpage, page);
871 migrate_vma_finalize(&args);
872
873 if (src_pfn & MIGRATE_PFN_MIGRATE)
874 return 0;
875 return -EBUSY;
876}