Merge tag 'drm-misc-fixes-2022-03-24' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-block.git] / mm / migrate_device.c
CommitLineData
76cbbead
CH
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7#include <linux/export.h>
8#include <linux/memremap.h>
9#include <linux/migrate.h>
10#include <linux/mm_inline.h>
11#include <linux/mmu_notifier.h>
12#include <linux/oom.h>
13#include <linux/pagewalk.h>
14#include <linux/rmap.h>
15#include <linux/swapops.h>
16#include <asm/tlbflush.h>
17#include "internal.h"
18
19static int migrate_vma_collect_skip(unsigned long start,
20 unsigned long end,
21 struct mm_walk *walk)
22{
23 struct migrate_vma *migrate = walk->private;
24 unsigned long addr;
25
26 for (addr = start; addr < end; addr += PAGE_SIZE) {
27 migrate->dst[migrate->npages] = 0;
28 migrate->src[migrate->npages++] = 0;
29 }
30
31 return 0;
32}
33
34static int migrate_vma_collect_hole(unsigned long start,
35 unsigned long end,
36 __always_unused int depth,
37 struct mm_walk *walk)
38{
39 struct migrate_vma *migrate = walk->private;
40 unsigned long addr;
41
42 /* Only allow populating anonymous memory. */
43 if (!vma_is_anonymous(walk->vma))
44 return migrate_vma_collect_skip(start, end, walk);
45
46 for (addr = start; addr < end; addr += PAGE_SIZE) {
47 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
48 migrate->dst[migrate->npages] = 0;
49 migrate->npages++;
50 migrate->cpages++;
51 }
52
53 return 0;
54}
55
56static int migrate_vma_collect_pmd(pmd_t *pmdp,
57 unsigned long start,
58 unsigned long end,
59 struct mm_walk *walk)
60{
61 struct migrate_vma *migrate = walk->private;
62 struct vm_area_struct *vma = walk->vma;
63 struct mm_struct *mm = vma->vm_mm;
64 unsigned long addr = start, unmapped = 0;
65 spinlock_t *ptl;
66 pte_t *ptep;
67
68again:
69 if (pmd_none(*pmdp))
70 return migrate_vma_collect_hole(start, end, -1, walk);
71
72 if (pmd_trans_huge(*pmdp)) {
73 struct page *page;
74
75 ptl = pmd_lock(mm, pmdp);
76 if (unlikely(!pmd_trans_huge(*pmdp))) {
77 spin_unlock(ptl);
78 goto again;
79 }
80
81 page = pmd_page(*pmdp);
82 if (is_huge_zero_page(page)) {
83 spin_unlock(ptl);
84 split_huge_pmd(vma, pmdp, addr);
85 if (pmd_trans_unstable(pmdp))
86 return migrate_vma_collect_skip(start, end,
87 walk);
88 } else {
89 int ret;
90
91 get_page(page);
92 spin_unlock(ptl);
93 if (unlikely(!trylock_page(page)))
94 return migrate_vma_collect_skip(start, end,
95 walk);
96 ret = split_huge_page(page);
97 unlock_page(page);
98 put_page(page);
99 if (ret)
100 return migrate_vma_collect_skip(start, end,
101 walk);
102 if (pmd_none(*pmdp))
103 return migrate_vma_collect_hole(start, end, -1,
104 walk);
105 }
106 }
107
108 if (unlikely(pmd_bad(*pmdp)))
109 return migrate_vma_collect_skip(start, end, walk);
110
111 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
112 arch_enter_lazy_mmu_mode();
113
114 for (; addr < end; addr += PAGE_SIZE, ptep++) {
115 unsigned long mpfn = 0, pfn;
116 struct page *page;
117 swp_entry_t entry;
118 pte_t pte;
119
120 pte = *ptep;
121
122 if (pte_none(pte)) {
123 if (vma_is_anonymous(vma)) {
124 mpfn = MIGRATE_PFN_MIGRATE;
125 migrate->cpages++;
126 }
127 goto next;
128 }
129
130 if (!pte_present(pte)) {
131 /*
132 * Only care about unaddressable device page special
133 * page table entry. Other special swap entries are not
134 * migratable, and we ignore regular swapped page.
135 */
136 entry = pte_to_swp_entry(pte);
137 if (!is_device_private_entry(entry))
138 goto next;
139
140 page = pfn_swap_entry_to_page(entry);
141 if (!(migrate->flags &
142 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
143 page->pgmap->owner != migrate->pgmap_owner)
144 goto next;
145
146 mpfn = migrate_pfn(page_to_pfn(page)) |
147 MIGRATE_PFN_MIGRATE;
148 if (is_writable_device_private_entry(entry))
149 mpfn |= MIGRATE_PFN_WRITE;
150 } else {
151 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
152 goto next;
153 pfn = pte_pfn(pte);
154 if (is_zero_pfn(pfn)) {
155 mpfn = MIGRATE_PFN_MIGRATE;
156 migrate->cpages++;
157 goto next;
158 }
159 page = vm_normal_page(migrate->vma, addr, pte);
160 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
161 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
162 }
163
164 /* FIXME support THP */
165 if (!page || !page->mapping || PageTransCompound(page)) {
166 mpfn = 0;
167 goto next;
168 }
169
170 /*
171 * By getting a reference on the page we pin it and that blocks
172 * any kind of migration. Side effect is that it "freezes" the
173 * pte.
174 *
175 * We drop this reference after isolating the page from the lru
176 * for non device page (device page are not on the lru and thus
177 * can't be dropped from it).
178 */
179 get_page(page);
180
181 /*
182 * Optimize for the common case where page is only mapped once
183 * in one process. If we can lock the page, then we can safely
184 * set up a special migration page table entry now.
185 */
186 if (trylock_page(page)) {
187 pte_t swp_pte;
188
189 migrate->cpages++;
190 ptep_get_and_clear(mm, addr, ptep);
191
192 /* Setup special migration page table entry */
193 if (mpfn & MIGRATE_PFN_WRITE)
194 entry = make_writable_migration_entry(
195 page_to_pfn(page));
196 else
197 entry = make_readable_migration_entry(
198 page_to_pfn(page));
199 swp_pte = swp_entry_to_pte(entry);
200 if (pte_present(pte)) {
201 if (pte_soft_dirty(pte))
202 swp_pte = pte_swp_mksoft_dirty(swp_pte);
203 if (pte_uffd_wp(pte))
204 swp_pte = pte_swp_mkuffd_wp(swp_pte);
205 } else {
206 if (pte_swp_soft_dirty(pte))
207 swp_pte = pte_swp_mksoft_dirty(swp_pte);
208 if (pte_swp_uffd_wp(pte))
209 swp_pte = pte_swp_mkuffd_wp(swp_pte);
210 }
211 set_pte_at(mm, addr, ptep, swp_pte);
212
213 /*
214 * This is like regular unmap: we remove the rmap and
215 * drop page refcount. Page won't be freed, as we took
216 * a reference just above.
217 */
218 page_remove_rmap(page, vma, false);
219 put_page(page);
220
221 if (pte_present(pte))
222 unmapped++;
223 } else {
224 put_page(page);
225 mpfn = 0;
226 }
227
228next:
229 migrate->dst[migrate->npages] = 0;
230 migrate->src[migrate->npages++] = mpfn;
231 }
232 arch_leave_lazy_mmu_mode();
233 pte_unmap_unlock(ptep - 1, ptl);
234
235 /* Only flush the TLB if we actually modified any entries */
236 if (unmapped)
237 flush_tlb_range(walk->vma, start, end);
238
239 return 0;
240}
241
242static const struct mm_walk_ops migrate_vma_walk_ops = {
243 .pmd_entry = migrate_vma_collect_pmd,
244 .pte_hole = migrate_vma_collect_hole,
245};
246
247/*
248 * migrate_vma_collect() - collect pages over a range of virtual addresses
249 * @migrate: migrate struct containing all migration information
250 *
251 * This will walk the CPU page table. For each virtual address backed by a
252 * valid page, it updates the src array and takes a reference on the page, in
253 * order to pin the page until we lock it and unmap it.
254 */
255static void migrate_vma_collect(struct migrate_vma *migrate)
256{
257 struct mmu_notifier_range range;
258
259 /*
260 * Note that the pgmap_owner is passed to the mmu notifier callback so
261 * that the registered device driver can skip invalidating device
262 * private page mappings that won't be migrated.
263 */
264 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
265 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
266 migrate->pgmap_owner);
267 mmu_notifier_invalidate_range_start(&range);
268
269 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
270 &migrate_vma_walk_ops, migrate);
271
272 mmu_notifier_invalidate_range_end(&range);
273 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
274}
275
276/*
277 * migrate_vma_check_page() - check if page is pinned or not
278 * @page: struct page to check
279 *
280 * Pinned pages cannot be migrated. This is the same test as in
281 * folio_migrate_mapping(), except that here we allow migration of a
282 * ZONE_DEVICE page.
283 */
284static bool migrate_vma_check_page(struct page *page)
285{
286 /*
287 * One extra ref because caller holds an extra reference, either from
288 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
289 * a device page.
290 */
291 int extra = 1;
292
293 /*
294 * FIXME support THP (transparent huge page), it is bit more complex to
295 * check them than regular pages, because they can be mapped with a pmd
296 * or with a pte (split pte mapping).
297 */
298 if (PageCompound(page))
299 return false;
300
301 /* Page from ZONE_DEVICE have one extra reference */
302 if (is_zone_device_page(page))
303 extra++;
304
305 /* For file back page */
306 if (page_mapping(page))
307 extra += 1 + page_has_private(page);
308
309 if ((page_count(page) - extra) > page_mapcount(page))
310 return false;
311
312 return true;
313}
314
315/*
316 * migrate_vma_unmap() - replace page mapping with special migration pte entry
317 * @migrate: migrate struct containing all migration information
318 *
319 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
320 * special migration pte entry and check if it has been pinned. Pinned pages are
321 * restored because we cannot migrate them.
322 *
323 * This is the last step before we call the device driver callback to allocate
324 * destination memory and copy contents of original page over to new page.
325 */
326static void migrate_vma_unmap(struct migrate_vma *migrate)
327{
328 const unsigned long npages = migrate->npages;
329 unsigned long i, restore = 0;
330 bool allow_drain = true;
331
332 lru_add_drain();
333
334 for (i = 0; i < npages; i++) {
335 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4b8554c5 336 struct folio *folio;
76cbbead
CH
337
338 if (!page)
339 continue;
340
341 /* ZONE_DEVICE pages are not on LRU */
342 if (!is_zone_device_page(page)) {
343 if (!PageLRU(page) && allow_drain) {
344 /* Drain CPU's pagevec */
345 lru_add_drain_all();
346 allow_drain = false;
347 }
348
349 if (isolate_lru_page(page)) {
350 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
351 migrate->cpages--;
352 restore++;
353 continue;
354 }
355
356 /* Drop the reference we took in collect */
357 put_page(page);
358 }
359
4b8554c5
MWO
360 folio = page_folio(page);
361 if (folio_mapped(folio))
362 try_to_migrate(folio, 0);
76cbbead
CH
363
364 if (page_mapped(page) || !migrate_vma_check_page(page)) {
365 if (!is_zone_device_page(page)) {
366 get_page(page);
367 putback_lru_page(page);
368 }
369
370 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
371 migrate->cpages--;
372 restore++;
373 continue;
374 }
375 }
376
377 for (i = 0; i < npages && restore; i++) {
378 struct page *page = migrate_pfn_to_page(migrate->src[i]);
4eecb8b9 379 struct folio *folio;
76cbbead
CH
380
381 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
382 continue;
383
4eecb8b9
MWO
384 folio = page_folio(page);
385 remove_migration_ptes(folio, folio, false);
76cbbead
CH
386
387 migrate->src[i] = 0;
4eecb8b9
MWO
388 folio_unlock(folio);
389 folio_put(folio);
76cbbead
CH
390 restore--;
391 }
392}
393
394/**
395 * migrate_vma_setup() - prepare to migrate a range of memory
396 * @args: contains the vma, start, and pfns arrays for the migration
397 *
398 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
399 * without an error.
400 *
401 * Prepare to migrate a range of memory virtual address range by collecting all
402 * the pages backing each virtual address in the range, saving them inside the
403 * src array. Then lock those pages and unmap them. Once the pages are locked
404 * and unmapped, check whether each page is pinned or not. Pages that aren't
405 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
406 * corresponding src array entry. Then restores any pages that are pinned, by
407 * remapping and unlocking those pages.
408 *
409 * The caller should then allocate destination memory and copy source memory to
410 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
411 * flag set). Once these are allocated and copied, the caller must update each
412 * corresponding entry in the dst array with the pfn value of the destination
413 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
414 * lock_page().
415 *
416 * Note that the caller does not have to migrate all the pages that are marked
417 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
418 * device memory to system memory. If the caller cannot migrate a device page
419 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
420 * consequences for the userspace process, so it must be avoided if at all
421 * possible.
422 *
423 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
424 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
425 * allowing the caller to allocate device memory for those unbacked virtual
426 * addresses. For this the caller simply has to allocate device memory and
427 * properly set the destination entry like for regular migration. Note that
428 * this can still fail, and thus inside the device driver you must check if the
429 * migration was successful for those entries after calling migrate_vma_pages(),
430 * just like for regular migration.
431 *
432 * After that, the callers must call migrate_vma_pages() to go over each entry
433 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
434 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
435 * then migrate_vma_pages() to migrate struct page information from the source
436 * struct page to the destination struct page. If it fails to migrate the
437 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
438 * src array.
439 *
440 * At this point all successfully migrated pages have an entry in the src
441 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
442 * array entry with MIGRATE_PFN_VALID flag set.
443 *
444 * Once migrate_vma_pages() returns the caller may inspect which pages were
445 * successfully migrated, and which were not. Successfully migrated pages will
446 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
447 *
448 * It is safe to update device page table after migrate_vma_pages() because
449 * both destination and source page are still locked, and the mmap_lock is held
450 * in read mode (hence no one can unmap the range being migrated).
451 *
452 * Once the caller is done cleaning up things and updating its page table (if it
453 * chose to do so, this is not an obligation) it finally calls
454 * migrate_vma_finalize() to update the CPU page table to point to new pages
455 * for successfully migrated pages or otherwise restore the CPU page table to
456 * point to the original source pages.
457 */
458int migrate_vma_setup(struct migrate_vma *args)
459{
460 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
461
462 args->start &= PAGE_MASK;
463 args->end &= PAGE_MASK;
464 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
465 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
466 return -EINVAL;
467 if (nr_pages <= 0)
468 return -EINVAL;
469 if (args->start < args->vma->vm_start ||
470 args->start >= args->vma->vm_end)
471 return -EINVAL;
472 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
473 return -EINVAL;
474 if (!args->src || !args->dst)
475 return -EINVAL;
476
477 memset(args->src, 0, sizeof(*args->src) * nr_pages);
478 args->cpages = 0;
479 args->npages = 0;
480
481 migrate_vma_collect(args);
482
483 if (args->cpages)
484 migrate_vma_unmap(args);
485
486 /*
487 * At this point pages are locked and unmapped, and thus they have
488 * stable content and can safely be copied to destination memory that
489 * is allocated by the drivers.
490 */
491 return 0;
492
493}
494EXPORT_SYMBOL(migrate_vma_setup);
495
496/*
497 * This code closely matches the code in:
498 * __handle_mm_fault()
499 * handle_pte_fault()
500 * do_anonymous_page()
501 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
502 * private page.
503 */
504static void migrate_vma_insert_page(struct migrate_vma *migrate,
505 unsigned long addr,
506 struct page *page,
507 unsigned long *src)
508{
509 struct vm_area_struct *vma = migrate->vma;
510 struct mm_struct *mm = vma->vm_mm;
511 bool flush = false;
512 spinlock_t *ptl;
513 pte_t entry;
514 pgd_t *pgdp;
515 p4d_t *p4dp;
516 pud_t *pudp;
517 pmd_t *pmdp;
518 pte_t *ptep;
519
520 /* Only allow populating anonymous memory */
521 if (!vma_is_anonymous(vma))
522 goto abort;
523
524 pgdp = pgd_offset(mm, addr);
525 p4dp = p4d_alloc(mm, pgdp, addr);
526 if (!p4dp)
527 goto abort;
528 pudp = pud_alloc(mm, p4dp, addr);
529 if (!pudp)
530 goto abort;
531 pmdp = pmd_alloc(mm, pudp, addr);
532 if (!pmdp)
533 goto abort;
534
535 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
536 goto abort;
537
538 /*
539 * Use pte_alloc() instead of pte_alloc_map(). We can't run
540 * pte_offset_map() on pmds where a huge pmd might be created
541 * from a different thread.
542 *
543 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
544 * parallel threads are excluded by other means.
545 *
546 * Here we only have mmap_read_lock(mm).
547 */
548 if (pte_alloc(mm, pmdp))
549 goto abort;
550
551 /* See the comment in pte_alloc_one_map() */
552 if (unlikely(pmd_trans_unstable(pmdp)))
553 goto abort;
554
555 if (unlikely(anon_vma_prepare(vma)))
556 goto abort;
557 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
558 goto abort;
559
560 /*
561 * The memory barrier inside __SetPageUptodate makes sure that
562 * preceding stores to the page contents become visible before
563 * the set_pte_at() write.
564 */
565 __SetPageUptodate(page);
566
567 if (is_device_private_page(page)) {
568 swp_entry_t swp_entry;
569
570 if (vma->vm_flags & VM_WRITE)
571 swp_entry = make_writable_device_private_entry(
572 page_to_pfn(page));
573 else
574 swp_entry = make_readable_device_private_entry(
575 page_to_pfn(page));
576 entry = swp_entry_to_pte(swp_entry);
577 } else {
578 /*
579 * For now we only support migrating to un-addressable device
580 * memory.
581 */
582 if (is_zone_device_page(page)) {
583 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
584 goto abort;
585 }
586 entry = mk_pte(page, vma->vm_page_prot);
587 if (vma->vm_flags & VM_WRITE)
588 entry = pte_mkwrite(pte_mkdirty(entry));
589 }
590
591 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
592
593 if (check_stable_address_space(mm))
594 goto unlock_abort;
595
596 if (pte_present(*ptep)) {
597 unsigned long pfn = pte_pfn(*ptep);
598
599 if (!is_zero_pfn(pfn))
600 goto unlock_abort;
601 flush = true;
602 } else if (!pte_none(*ptep))
603 goto unlock_abort;
604
605 /*
606 * Check for userfaultfd but do not deliver the fault. Instead,
607 * just back off.
608 */
609 if (userfaultfd_missing(vma))
610 goto unlock_abort;
611
612 inc_mm_counter(mm, MM_ANONPAGES);
613 page_add_new_anon_rmap(page, vma, addr, false);
614 if (!is_zone_device_page(page))
615 lru_cache_add_inactive_or_unevictable(page, vma);
616 get_page(page);
617
618 if (flush) {
619 flush_cache_page(vma, addr, pte_pfn(*ptep));
620 ptep_clear_flush_notify(vma, addr, ptep);
621 set_pte_at_notify(mm, addr, ptep, entry);
622 update_mmu_cache(vma, addr, ptep);
623 } else {
624 /* No need to invalidate - it was non-present before */
625 set_pte_at(mm, addr, ptep, entry);
626 update_mmu_cache(vma, addr, ptep);
627 }
628
629 pte_unmap_unlock(ptep, ptl);
630 *src = MIGRATE_PFN_MIGRATE;
631 return;
632
633unlock_abort:
634 pte_unmap_unlock(ptep, ptl);
635abort:
636 *src &= ~MIGRATE_PFN_MIGRATE;
637}
638
639/**
640 * migrate_vma_pages() - migrate meta-data from src page to dst page
641 * @migrate: migrate struct containing all migration information
642 *
643 * This migrates struct page meta-data from source struct page to destination
644 * struct page. This effectively finishes the migration from source page to the
645 * destination page.
646 */
647void migrate_vma_pages(struct migrate_vma *migrate)
648{
649 const unsigned long npages = migrate->npages;
650 const unsigned long start = migrate->start;
651 struct mmu_notifier_range range;
652 unsigned long addr, i;
653 bool notified = false;
654
655 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
656 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
657 struct page *page = migrate_pfn_to_page(migrate->src[i]);
658 struct address_space *mapping;
659 int r;
660
661 if (!newpage) {
662 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
663 continue;
664 }
665
666 if (!page) {
667 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
668 continue;
669 if (!notified) {
670 notified = true;
671
672 mmu_notifier_range_init_owner(&range,
673 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
674 migrate->vma->vm_mm, addr, migrate->end,
675 migrate->pgmap_owner);
676 mmu_notifier_invalidate_range_start(&range);
677 }
678 migrate_vma_insert_page(migrate, addr, newpage,
679 &migrate->src[i]);
680 continue;
681 }
682
683 mapping = page_mapping(page);
684
685 if (is_device_private_page(newpage)) {
686 /*
687 * For now only support private anonymous when migrating
688 * to un-addressable device memory.
689 */
690 if (mapping) {
691 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
692 continue;
693 }
694 } else if (is_zone_device_page(newpage)) {
695 /*
696 * Other types of ZONE_DEVICE page are not supported.
697 */
698 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
699 continue;
700 }
701
702 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
703 if (r != MIGRATEPAGE_SUCCESS)
704 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
705 }
706
707 /*
708 * No need to double call mmu_notifier->invalidate_range() callback as
709 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
710 * did already call it.
711 */
712 if (notified)
713 mmu_notifier_invalidate_range_only_end(&range);
714}
715EXPORT_SYMBOL(migrate_vma_pages);
716
717/**
718 * migrate_vma_finalize() - restore CPU page table entry
719 * @migrate: migrate struct containing all migration information
720 *
721 * This replaces the special migration pte entry with either a mapping to the
722 * new page if migration was successful for that page, or to the original page
723 * otherwise.
724 *
725 * This also unlocks the pages and puts them back on the lru, or drops the extra
726 * refcount, for device pages.
727 */
728void migrate_vma_finalize(struct migrate_vma *migrate)
729{
730 const unsigned long npages = migrate->npages;
731 unsigned long i;
732
733 for (i = 0; i < npages; i++) {
4eecb8b9 734 struct folio *dst, *src;
76cbbead
CH
735 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
736 struct page *page = migrate_pfn_to_page(migrate->src[i]);
737
738 if (!page) {
739 if (newpage) {
740 unlock_page(newpage);
741 put_page(newpage);
742 }
743 continue;
744 }
745
746 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
747 if (newpage) {
748 unlock_page(newpage);
749 put_page(newpage);
750 }
751 newpage = page;
752 }
753
4eecb8b9
MWO
754 src = page_folio(page);
755 dst = page_folio(newpage);
756 remove_migration_ptes(src, dst, false);
757 folio_unlock(src);
76cbbead
CH
758
759 if (is_zone_device_page(page))
760 put_page(page);
761 else
762 putback_lru_page(page);
763
764 if (newpage != page) {
765 unlock_page(newpage);
766 if (is_zone_device_page(newpage))
767 put_page(newpage);
768 else
769 putback_lru_page(newpage);
770 }
771 }
772}
773EXPORT_SYMBOL(migrate_vma_finalize);