Merge tag 'landlock-6.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mic...
[linux-block.git] / mm / migrate_device.c
CommitLineData
76cbbead
CH
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Device Memory Migration functionality.
4 *
5 * Originally written by Jérôme Glisse.
6 */
7#include <linux/export.h>
8#include <linux/memremap.h>
9#include <linux/migrate.h>
fd35ca3d 10#include <linux/mm.h>
76cbbead
CH
11#include <linux/mm_inline.h>
12#include <linux/mmu_notifier.h>
13#include <linux/oom.h>
14#include <linux/pagewalk.h>
15#include <linux/rmap.h>
16#include <linux/swapops.h>
17#include <asm/tlbflush.h>
18#include "internal.h"
19
20static int migrate_vma_collect_skip(unsigned long start,
21 unsigned long end,
22 struct mm_walk *walk)
23{
24 struct migrate_vma *migrate = walk->private;
25 unsigned long addr;
26
27 for (addr = start; addr < end; addr += PAGE_SIZE) {
28 migrate->dst[migrate->npages] = 0;
29 migrate->src[migrate->npages++] = 0;
30 }
31
32 return 0;
33}
34
35static int migrate_vma_collect_hole(unsigned long start,
36 unsigned long end,
37 __always_unused int depth,
38 struct mm_walk *walk)
39{
40 struct migrate_vma *migrate = walk->private;
41 unsigned long addr;
42
43 /* Only allow populating anonymous memory. */
44 if (!vma_is_anonymous(walk->vma))
45 return migrate_vma_collect_skip(start, end, walk);
46
47 for (addr = start; addr < end; addr += PAGE_SIZE) {
48 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
49 migrate->dst[migrate->npages] = 0;
50 migrate->npages++;
51 migrate->cpages++;
52 }
53
54 return 0;
55}
56
57static int migrate_vma_collect_pmd(pmd_t *pmdp,
58 unsigned long start,
59 unsigned long end,
60 struct mm_walk *walk)
61{
62 struct migrate_vma *migrate = walk->private;
63 struct vm_area_struct *vma = walk->vma;
64 struct mm_struct *mm = vma->vm_mm;
65 unsigned long addr = start, unmapped = 0;
66 spinlock_t *ptl;
67 pte_t *ptep;
68
69again:
70 if (pmd_none(*pmdp))
71 return migrate_vma_collect_hole(start, end, -1, walk);
72
73 if (pmd_trans_huge(*pmdp)) {
74 struct page *page;
75
76 ptl = pmd_lock(mm, pmdp);
77 if (unlikely(!pmd_trans_huge(*pmdp))) {
78 spin_unlock(ptl);
79 goto again;
80 }
81
82 page = pmd_page(*pmdp);
83 if (is_huge_zero_page(page)) {
84 spin_unlock(ptl);
85 split_huge_pmd(vma, pmdp, addr);
76cbbead
CH
86 } else {
87 int ret;
88
89 get_page(page);
90 spin_unlock(ptl);
91 if (unlikely(!trylock_page(page)))
92 return migrate_vma_collect_skip(start, end,
93 walk);
94 ret = split_huge_page(page);
95 unlock_page(page);
96 put_page(page);
97 if (ret)
98 return migrate_vma_collect_skip(start, end,
99 walk);
76cbbead
CH
100 }
101 }
102
76cbbead 103 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
4b56069c
HD
104 if (!ptep)
105 goto again;
76cbbead
CH
106 arch_enter_lazy_mmu_mode();
107
108 for (; addr < end; addr += PAGE_SIZE, ptep++) {
109 unsigned long mpfn = 0, pfn;
5b205c7f 110 struct folio *folio;
76cbbead
CH
111 struct page *page;
112 swp_entry_t entry;
113 pte_t pte;
114
c33c7948 115 pte = ptep_get(ptep);
76cbbead
CH
116
117 if (pte_none(pte)) {
118 if (vma_is_anonymous(vma)) {
119 mpfn = MIGRATE_PFN_MIGRATE;
120 migrate->cpages++;
121 }
122 goto next;
123 }
124
125 if (!pte_present(pte)) {
126 /*
127 * Only care about unaddressable device page special
128 * page table entry. Other special swap entries are not
129 * migratable, and we ignore regular swapped page.
130 */
131 entry = pte_to_swp_entry(pte);
132 if (!is_device_private_entry(entry))
133 goto next;
134
135 page = pfn_swap_entry_to_page(entry);
136 if (!(migrate->flags &
137 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
138 page->pgmap->owner != migrate->pgmap_owner)
139 goto next;
140
141 mpfn = migrate_pfn(page_to_pfn(page)) |
142 MIGRATE_PFN_MIGRATE;
143 if (is_writable_device_private_entry(entry))
144 mpfn |= MIGRATE_PFN_WRITE;
145 } else {
76cbbead 146 pfn = pte_pfn(pte);
dd19e6d8
AS
147 if (is_zero_pfn(pfn) &&
148 (migrate->flags & MIGRATE_VMA_SELECT_SYSTEM)) {
76cbbead
CH
149 mpfn = MIGRATE_PFN_MIGRATE;
150 migrate->cpages++;
151 goto next;
152 }
153 page = vm_normal_page(migrate->vma, addr, pte);
dd19e6d8
AS
154 if (page && !is_zone_device_page(page) &&
155 !(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
156 goto next;
157 else if (page && is_device_coherent_page(page) &&
158 (!(migrate->flags & MIGRATE_VMA_SELECT_DEVICE_COHERENT) ||
159 page->pgmap->owner != migrate->pgmap_owner))
160 goto next;
76cbbead
CH
161 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
162 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
163 }
164
165 /* FIXME support THP */
166 if (!page || !page->mapping || PageTransCompound(page)) {
167 mpfn = 0;
168 goto next;
169 }
170
171 /*
5b205c7f 172 * By getting a reference on the folio we pin it and that blocks
76cbbead
CH
173 * any kind of migration. Side effect is that it "freezes" the
174 * pte.
175 *
5b205c7f
DH
176 * We drop this reference after isolating the folio from the lru
177 * for non device folio (device folio are not on the lru and thus
76cbbead
CH
178 * can't be dropped from it).
179 */
5b205c7f
DH
180 folio = page_folio(page);
181 folio_get(folio);
76cbbead
CH
182
183 /*
5b205c7f 184 * We rely on folio_trylock() to avoid deadlock between
0742e490 185 * concurrent migrations where each is waiting on the others
5b205c7f 186 * folio lock. If we can't immediately lock the folio we fail this
0742e490
AP
187 * migration as it is only best effort anyway.
188 *
5b205c7f
DH
189 * If we can lock the folio it's safe to set up a migration entry
190 * now. In the common case where the folio is mapped once in a
0742e490
AP
191 * single process setting up the migration entry now is an
192 * optimisation to avoid walking the rmap later with
193 * try_to_migrate().
76cbbead 194 */
5b205c7f 195 if (folio_trylock(folio)) {
6c287605 196 bool anon_exclusive;
76cbbead
CH
197 pte_t swp_pte;
198
c33c7948 199 flush_cache_page(vma, addr, pte_pfn(pte));
5b205c7f
DH
200 anon_exclusive = folio_test_anon(folio) &&
201 PageAnonExclusive(page);
6c287605 202 if (anon_exclusive) {
fd35ca3d 203 pte = ptep_clear_flush(vma, addr, ptep);
6c287605 204
e3b4b137 205 if (folio_try_share_anon_rmap_pte(folio, page)) {
6c287605 206 set_pte_at(mm, addr, ptep, pte);
5b205c7f
DH
207 folio_unlock(folio);
208 folio_put(folio);
6c287605
DH
209 mpfn = 0;
210 goto next;
211 }
212 } else {
fd35ca3d 213 pte = ptep_get_and_clear(mm, addr, ptep);
6c287605
DH
214 }
215
76cbbead 216 migrate->cpages++;
76cbbead 217
fd35ca3d
AP
218 /* Set the dirty flag on the folio now the pte is gone. */
219 if (pte_dirty(pte))
5b205c7f 220 folio_mark_dirty(folio);
fd35ca3d 221
76cbbead
CH
222 /* Setup special migration page table entry */
223 if (mpfn & MIGRATE_PFN_WRITE)
224 entry = make_writable_migration_entry(
225 page_to_pfn(page));
6c287605
DH
226 else if (anon_exclusive)
227 entry = make_readable_exclusive_migration_entry(
228 page_to_pfn(page));
76cbbead
CH
229 else
230 entry = make_readable_migration_entry(
231 page_to_pfn(page));
2e346877
PX
232 if (pte_present(pte)) {
233 if (pte_young(pte))
234 entry = make_migration_entry_young(entry);
235 if (pte_dirty(pte))
236 entry = make_migration_entry_dirty(entry);
237 }
76cbbead
CH
238 swp_pte = swp_entry_to_pte(entry);
239 if (pte_present(pte)) {
240 if (pte_soft_dirty(pte))
241 swp_pte = pte_swp_mksoft_dirty(swp_pte);
242 if (pte_uffd_wp(pte))
243 swp_pte = pte_swp_mkuffd_wp(swp_pte);
244 } else {
245 if (pte_swp_soft_dirty(pte))
246 swp_pte = pte_swp_mksoft_dirty(swp_pte);
247 if (pte_swp_uffd_wp(pte))
248 swp_pte = pte_swp_mkuffd_wp(swp_pte);
249 }
250 set_pte_at(mm, addr, ptep, swp_pte);
251
252 /*
253 * This is like regular unmap: we remove the rmap and
5b205c7f
DH
254 * drop the folio refcount. The folio won't be freed, as
255 * we took a reference just above.
76cbbead 256 */
5b205c7f
DH
257 folio_remove_rmap_pte(folio, page, vma);
258 folio_put(folio);
76cbbead
CH
259
260 if (pte_present(pte))
261 unmapped++;
262 } else {
5b205c7f 263 folio_put(folio);
76cbbead
CH
264 mpfn = 0;
265 }
266
267next:
268 migrate->dst[migrate->npages] = 0;
269 migrate->src[migrate->npages++] = mpfn;
270 }
76cbbead
CH
271
272 /* Only flush the TLB if we actually modified any entries */
273 if (unmapped)
274 flush_tlb_range(walk->vma, start, end);
275
60bae737
AP
276 arch_leave_lazy_mmu_mode();
277 pte_unmap_unlock(ptep - 1, ptl);
278
76cbbead
CH
279 return 0;
280}
281
282static const struct mm_walk_ops migrate_vma_walk_ops = {
283 .pmd_entry = migrate_vma_collect_pmd,
284 .pte_hole = migrate_vma_collect_hole,
49b06385 285 .walk_lock = PGWALK_RDLOCK,
76cbbead
CH
286};
287
288/*
289 * migrate_vma_collect() - collect pages over a range of virtual addresses
290 * @migrate: migrate struct containing all migration information
291 *
292 * This will walk the CPU page table. For each virtual address backed by a
293 * valid page, it updates the src array and takes a reference on the page, in
294 * order to pin the page until we lock it and unmap it.
295 */
296static void migrate_vma_collect(struct migrate_vma *migrate)
297{
298 struct mmu_notifier_range range;
299
300 /*
301 * Note that the pgmap_owner is passed to the mmu notifier callback so
302 * that the registered device driver can skip invalidating device
303 * private page mappings that won't be migrated.
304 */
305 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
7d4a8be0 306 migrate->vma->vm_mm, migrate->start, migrate->end,
76cbbead
CH
307 migrate->pgmap_owner);
308 mmu_notifier_invalidate_range_start(&range);
309
310 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
311 &migrate_vma_walk_ops, migrate);
312
313 mmu_notifier_invalidate_range_end(&range);
314 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
315}
316
317/*
318 * migrate_vma_check_page() - check if page is pinned or not
319 * @page: struct page to check
320 *
321 * Pinned pages cannot be migrated. This is the same test as in
322 * folio_migrate_mapping(), except that here we allow migration of a
323 * ZONE_DEVICE page.
324 */
16ce101d 325static bool migrate_vma_check_page(struct page *page, struct page *fault_page)
76cbbead
CH
326{
327 /*
328 * One extra ref because caller holds an extra reference, either from
329 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
330 * a device page.
331 */
16ce101d 332 int extra = 1 + (page == fault_page);
76cbbead
CH
333
334 /*
335 * FIXME support THP (transparent huge page), it is bit more complex to
336 * check them than regular pages, because they can be mapped with a pmd
337 * or with a pte (split pte mapping).
338 */
339 if (PageCompound(page))
340 return false;
341
342 /* Page from ZONE_DEVICE have one extra reference */
343 if (is_zone_device_page(page))
344 extra++;
345
346 /* For file back page */
347 if (page_mapping(page))
348 extra += 1 + page_has_private(page);
349
350 if ((page_count(page) - extra) > page_mapcount(page))
351 return false;
352
353 return true;
354}
355
356/*
44af0b45
AP
357 * Unmaps pages for migration. Returns number of source pfns marked as
358 * migrating.
76cbbead 359 */
241f6885
AP
360static unsigned long migrate_device_unmap(unsigned long *src_pfns,
361 unsigned long npages,
362 struct page *fault_page)
76cbbead 363{
76cbbead
CH
364 unsigned long i, restore = 0;
365 bool allow_drain = true;
241f6885 366 unsigned long unmapped = 0;
76cbbead
CH
367
368 lru_add_drain();
369
370 for (i = 0; i < npages; i++) {
241f6885 371 struct page *page = migrate_pfn_to_page(src_pfns[i]);
4b8554c5 372 struct folio *folio;
76cbbead 373
44af0b45
AP
374 if (!page) {
375 if (src_pfns[i] & MIGRATE_PFN_MIGRATE)
376 unmapped++;
76cbbead 377 continue;
44af0b45 378 }
76cbbead
CH
379
380 /* ZONE_DEVICE pages are not on LRU */
381 if (!is_zone_device_page(page)) {
382 if (!PageLRU(page) && allow_drain) {
1fec6890 383 /* Drain CPU's lru cache */
76cbbead
CH
384 lru_add_drain_all();
385 allow_drain = false;
386 }
387
f7f9c00d 388 if (!isolate_lru_page(page)) {
241f6885 389 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
76cbbead
CH
390 restore++;
391 continue;
392 }
393
394 /* Drop the reference we took in collect */
395 put_page(page);
396 }
397
4b8554c5
MWO
398 folio = page_folio(page);
399 if (folio_mapped(folio))
400 try_to_migrate(folio, 0);
76cbbead 401
16ce101d 402 if (page_mapped(page) ||
241f6885 403 !migrate_vma_check_page(page, fault_page)) {
76cbbead
CH
404 if (!is_zone_device_page(page)) {
405 get_page(page);
406 putback_lru_page(page);
407 }
408
241f6885 409 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
76cbbead
CH
410 restore++;
411 continue;
412 }
241f6885
AP
413
414 unmapped++;
76cbbead
CH
415 }
416
417 for (i = 0; i < npages && restore; i++) {
241f6885 418 struct page *page = migrate_pfn_to_page(src_pfns[i]);
4eecb8b9 419 struct folio *folio;
76cbbead 420
241f6885 421 if (!page || (src_pfns[i] & MIGRATE_PFN_MIGRATE))
76cbbead
CH
422 continue;
423
4eecb8b9
MWO
424 folio = page_folio(page);
425 remove_migration_ptes(folio, folio, false);
76cbbead 426
241f6885 427 src_pfns[i] = 0;
4eecb8b9
MWO
428 folio_unlock(folio);
429 folio_put(folio);
76cbbead
CH
430 restore--;
431 }
241f6885
AP
432
433 return unmapped;
434}
435
436/*
437 * migrate_vma_unmap() - replace page mapping with special migration pte entry
438 * @migrate: migrate struct containing all migration information
439 *
440 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
441 * special migration pte entry and check if it has been pinned. Pinned pages are
442 * restored because we cannot migrate them.
443 *
444 * This is the last step before we call the device driver callback to allocate
445 * destination memory and copy contents of original page over to new page.
446 */
447static void migrate_vma_unmap(struct migrate_vma *migrate)
448{
449 migrate->cpages = migrate_device_unmap(migrate->src, migrate->npages,
450 migrate->fault_page);
76cbbead
CH
451}
452
453/**
454 * migrate_vma_setup() - prepare to migrate a range of memory
455 * @args: contains the vma, start, and pfns arrays for the migration
456 *
457 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
458 * without an error.
459 *
460 * Prepare to migrate a range of memory virtual address range by collecting all
461 * the pages backing each virtual address in the range, saving them inside the
462 * src array. Then lock those pages and unmap them. Once the pages are locked
463 * and unmapped, check whether each page is pinned or not. Pages that aren't
464 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
465 * corresponding src array entry. Then restores any pages that are pinned, by
466 * remapping and unlocking those pages.
467 *
468 * The caller should then allocate destination memory and copy source memory to
469 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
470 * flag set). Once these are allocated and copied, the caller must update each
471 * corresponding entry in the dst array with the pfn value of the destination
472 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
473 * lock_page().
474 *
475 * Note that the caller does not have to migrate all the pages that are marked
476 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
477 * device memory to system memory. If the caller cannot migrate a device page
478 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
479 * consequences for the userspace process, so it must be avoided if at all
480 * possible.
481 *
482 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
483 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
484 * allowing the caller to allocate device memory for those unbacked virtual
485 * addresses. For this the caller simply has to allocate device memory and
486 * properly set the destination entry like for regular migration. Note that
487 * this can still fail, and thus inside the device driver you must check if the
488 * migration was successful for those entries after calling migrate_vma_pages(),
489 * just like for regular migration.
490 *
491 * After that, the callers must call migrate_vma_pages() to go over each entry
492 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
493 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
494 * then migrate_vma_pages() to migrate struct page information from the source
495 * struct page to the destination struct page. If it fails to migrate the
496 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
497 * src array.
498 *
499 * At this point all successfully migrated pages have an entry in the src
500 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
501 * array entry with MIGRATE_PFN_VALID flag set.
502 *
503 * Once migrate_vma_pages() returns the caller may inspect which pages were
504 * successfully migrated, and which were not. Successfully migrated pages will
505 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
506 *
507 * It is safe to update device page table after migrate_vma_pages() because
508 * both destination and source page are still locked, and the mmap_lock is held
509 * in read mode (hence no one can unmap the range being migrated).
510 *
511 * Once the caller is done cleaning up things and updating its page table (if it
512 * chose to do so, this is not an obligation) it finally calls
513 * migrate_vma_finalize() to update the CPU page table to point to new pages
514 * for successfully migrated pages or otherwise restore the CPU page table to
515 * point to the original source pages.
516 */
517int migrate_vma_setup(struct migrate_vma *args)
518{
519 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
520
521 args->start &= PAGE_MASK;
522 args->end &= PAGE_MASK;
523 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
524 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
525 return -EINVAL;
526 if (nr_pages <= 0)
527 return -EINVAL;
528 if (args->start < args->vma->vm_start ||
529 args->start >= args->vma->vm_end)
530 return -EINVAL;
531 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
532 return -EINVAL;
533 if (!args->src || !args->dst)
534 return -EINVAL;
16ce101d
AP
535 if (args->fault_page && !is_device_private_page(args->fault_page))
536 return -EINVAL;
76cbbead
CH
537
538 memset(args->src, 0, sizeof(*args->src) * nr_pages);
539 args->cpages = 0;
540 args->npages = 0;
541
542 migrate_vma_collect(args);
543
544 if (args->cpages)
545 migrate_vma_unmap(args);
546
547 /*
548 * At this point pages are locked and unmapped, and thus they have
549 * stable content and can safely be copied to destination memory that
550 * is allocated by the drivers.
551 */
552 return 0;
553
554}
555EXPORT_SYMBOL(migrate_vma_setup);
556
557/*
558 * This code closely matches the code in:
559 * __handle_mm_fault()
560 * handle_pte_fault()
561 * do_anonymous_page()
562 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
f25cbb7a 563 * private or coherent page.
76cbbead
CH
564 */
565static void migrate_vma_insert_page(struct migrate_vma *migrate,
566 unsigned long addr,
567 struct page *page,
568 unsigned long *src)
569{
d3b08273 570 struct folio *folio = page_folio(page);
76cbbead
CH
571 struct vm_area_struct *vma = migrate->vma;
572 struct mm_struct *mm = vma->vm_mm;
573 bool flush = false;
574 spinlock_t *ptl;
575 pte_t entry;
576 pgd_t *pgdp;
577 p4d_t *p4dp;
578 pud_t *pudp;
579 pmd_t *pmdp;
580 pte_t *ptep;
c33c7948 581 pte_t orig_pte;
76cbbead
CH
582
583 /* Only allow populating anonymous memory */
584 if (!vma_is_anonymous(vma))
585 goto abort;
586
587 pgdp = pgd_offset(mm, addr);
588 p4dp = p4d_alloc(mm, pgdp, addr);
589 if (!p4dp)
590 goto abort;
591 pudp = pud_alloc(mm, p4dp, addr);
592 if (!pudp)
593 goto abort;
594 pmdp = pmd_alloc(mm, pudp, addr);
595 if (!pmdp)
596 goto abort;
76cbbead
CH
597 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
598 goto abort;
76cbbead
CH
599 if (pte_alloc(mm, pmdp))
600 goto abort;
76cbbead
CH
601 if (unlikely(anon_vma_prepare(vma)))
602 goto abort;
d3b08273 603 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
76cbbead
CH
604 goto abort;
605
606 /*
d3b08273
MWO
607 * The memory barrier inside __folio_mark_uptodate makes sure that
608 * preceding stores to the folio contents become visible before
76cbbead
CH
609 * the set_pte_at() write.
610 */
d3b08273 611 __folio_mark_uptodate(folio);
76cbbead 612
d3b08273 613 if (folio_is_device_private(folio)) {
76cbbead
CH
614 swp_entry_t swp_entry;
615
616 if (vma->vm_flags & VM_WRITE)
617 swp_entry = make_writable_device_private_entry(
618 page_to_pfn(page));
619 else
620 swp_entry = make_readable_device_private_entry(
621 page_to_pfn(page));
622 entry = swp_entry_to_pte(swp_entry);
623 } else {
d3b08273
MWO
624 if (folio_is_zone_device(folio) &&
625 !folio_is_device_coherent(folio)) {
76cbbead
CH
626 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
627 goto abort;
628 }
629 entry = mk_pte(page, vma->vm_page_prot);
630 if (vma->vm_flags & VM_WRITE)
161e393c 631 entry = pte_mkwrite(pte_mkdirty(entry), vma);
76cbbead
CH
632 }
633
634 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
4b56069c
HD
635 if (!ptep)
636 goto abort;
c33c7948
RR
637 orig_pte = ptep_get(ptep);
638
76cbbead
CH
639 if (check_stable_address_space(mm))
640 goto unlock_abort;
641
c33c7948
RR
642 if (pte_present(orig_pte)) {
643 unsigned long pfn = pte_pfn(orig_pte);
76cbbead
CH
644
645 if (!is_zero_pfn(pfn))
646 goto unlock_abort;
647 flush = true;
c33c7948 648 } else if (!pte_none(orig_pte))
76cbbead
CH
649 goto unlock_abort;
650
651 /*
652 * Check for userfaultfd but do not deliver the fault. Instead,
653 * just back off.
654 */
655 if (userfaultfd_missing(vma))
656 goto unlock_abort;
657
658 inc_mm_counter(mm, MM_ANONPAGES);
d3b08273
MWO
659 folio_add_new_anon_rmap(folio, vma, addr);
660 if (!folio_is_zone_device(folio))
661 folio_add_lru_vma(folio, vma);
662 folio_get(folio);
76cbbead
CH
663
664 if (flush) {
c33c7948 665 flush_cache_page(vma, addr, pte_pfn(orig_pte));
ec8832d0 666 ptep_clear_flush(vma, addr, ptep);
76cbbead 667 }
f7842747
PB
668 set_pte_at(mm, addr, ptep, entry);
669 update_mmu_cache(vma, addr, ptep);
76cbbead
CH
670
671 pte_unmap_unlock(ptep, ptl);
672 *src = MIGRATE_PFN_MIGRATE;
673 return;
674
675unlock_abort:
676 pte_unmap_unlock(ptep, ptl);
677abort:
678 *src &= ~MIGRATE_PFN_MIGRATE;
679}
680
e778406b 681static void __migrate_device_pages(unsigned long *src_pfns,
241f6885
AP
682 unsigned long *dst_pfns, unsigned long npages,
683 struct migrate_vma *migrate)
76cbbead 684{
76cbbead 685 struct mmu_notifier_range range;
241f6885 686 unsigned long i;
76cbbead
CH
687 bool notified = false;
688
241f6885
AP
689 for (i = 0; i < npages; i++) {
690 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
691 struct page *page = migrate_pfn_to_page(src_pfns[i]);
76cbbead
CH
692 struct address_space *mapping;
693 int r;
694
695 if (!newpage) {
241f6885 696 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
76cbbead
CH
697 continue;
698 }
699
700 if (!page) {
241f6885
AP
701 unsigned long addr;
702
e778406b
AP
703 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE))
704 continue;
705
b05a79d4
AP
706 /*
707 * The only time there is no vma is when called from
708 * migrate_device_coherent_page(). However this isn't
709 * called if the page could not be unmapped.
710 */
241f6885
AP
711 VM_BUG_ON(!migrate);
712 addr = migrate->start + i*PAGE_SIZE;
76cbbead
CH
713 if (!notified) {
714 notified = true;
715
716 mmu_notifier_range_init_owner(&range,
7d4a8be0 717 MMU_NOTIFY_MIGRATE, 0,
76cbbead
CH
718 migrate->vma->vm_mm, addr, migrate->end,
719 migrate->pgmap_owner);
720 mmu_notifier_invalidate_range_start(&range);
721 }
722 migrate_vma_insert_page(migrate, addr, newpage,
241f6885 723 &src_pfns[i]);
76cbbead
CH
724 continue;
725 }
726
727 mapping = page_mapping(page);
728
f25cbb7a
AS
729 if (is_device_private_page(newpage) ||
730 is_device_coherent_page(newpage)) {
76cbbead 731 if (mapping) {
df263d9a
MP
732 struct folio *folio;
733
734 folio = page_folio(page);
735
736 /*
737 * For now only support anonymous memory migrating to
738 * device private or coherent memory.
739 *
740 * Try to get rid of swap cache if possible.
741 */
742 if (!folio_test_anon(folio) ||
743 !folio_free_swap(folio)) {
744 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
745 continue;
746 }
76cbbead
CH
747 }
748 } else if (is_zone_device_page(newpage)) {
749 /*
750 * Other types of ZONE_DEVICE page are not supported.
751 */
241f6885 752 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
76cbbead
CH
753 continue;
754 }
755
241f6885 756 if (migrate && migrate->fault_page == page)
16ce101d
AP
757 r = migrate_folio_extra(mapping, page_folio(newpage),
758 page_folio(page),
759 MIGRATE_SYNC_NO_COPY, 1);
760 else
761 r = migrate_folio(mapping, page_folio(newpage),
762 page_folio(page), MIGRATE_SYNC_NO_COPY);
76cbbead 763 if (r != MIGRATEPAGE_SUCCESS)
241f6885 764 src_pfns[i] &= ~MIGRATE_PFN_MIGRATE;
76cbbead
CH
765 }
766
76cbbead 767 if (notified)
ec8832d0 768 mmu_notifier_invalidate_range_end(&range);
76cbbead 769}
76cbbead 770
e778406b
AP
771/**
772 * migrate_device_pages() - migrate meta-data from src page to dst page
773 * @src_pfns: src_pfns returned from migrate_device_range()
774 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
775 * @npages: number of pages in the range
776 *
777 * Equivalent to migrate_vma_pages(). This is called to migrate struct page
778 * meta-data from source struct page to destination.
779 */
780void migrate_device_pages(unsigned long *src_pfns, unsigned long *dst_pfns,
781 unsigned long npages)
782{
783 __migrate_device_pages(src_pfns, dst_pfns, npages, NULL);
784}
785EXPORT_SYMBOL(migrate_device_pages);
786
76cbbead 787/**
241f6885 788 * migrate_vma_pages() - migrate meta-data from src page to dst page
76cbbead
CH
789 * @migrate: migrate struct containing all migration information
790 *
241f6885
AP
791 * This migrates struct page meta-data from source struct page to destination
792 * struct page. This effectively finishes the migration from source page to the
793 * destination page.
76cbbead 794 */
241f6885
AP
795void migrate_vma_pages(struct migrate_vma *migrate)
796{
e778406b 797 __migrate_device_pages(migrate->src, migrate->dst, migrate->npages, migrate);
241f6885
AP
798}
799EXPORT_SYMBOL(migrate_vma_pages);
800
e778406b
AP
801/*
802 * migrate_device_finalize() - complete page migration
803 * @src_pfns: src_pfns returned from migrate_device_range()
804 * @dst_pfns: array of pfns allocated by the driver to migrate memory to
805 * @npages: number of pages in the range
806 *
807 * Completes migration of the page by removing special migration entries.
808 * Drivers must ensure copying of page data is complete and visible to the CPU
809 * before calling this.
810 */
811void migrate_device_finalize(unsigned long *src_pfns,
812 unsigned long *dst_pfns, unsigned long npages)
76cbbead 813{
76cbbead
CH
814 unsigned long i;
815
816 for (i = 0; i < npages; i++) {
4eecb8b9 817 struct folio *dst, *src;
241f6885
AP
818 struct page *newpage = migrate_pfn_to_page(dst_pfns[i]);
819 struct page *page = migrate_pfn_to_page(src_pfns[i]);
76cbbead
CH
820
821 if (!page) {
822 if (newpage) {
823 unlock_page(newpage);
824 put_page(newpage);
825 }
826 continue;
827 }
828
241f6885 829 if (!(src_pfns[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
76cbbead
CH
830 if (newpage) {
831 unlock_page(newpage);
832 put_page(newpage);
833 }
834 newpage = page;
835 }
836
4eecb8b9
MWO
837 src = page_folio(page);
838 dst = page_folio(newpage);
839 remove_migration_ptes(src, dst, false);
840 folio_unlock(src);
76cbbead
CH
841
842 if (is_zone_device_page(page))
843 put_page(page);
844 else
845 putback_lru_page(page);
846
847 if (newpage != page) {
848 unlock_page(newpage);
849 if (is_zone_device_page(newpage))
850 put_page(newpage);
851 else
852 putback_lru_page(newpage);
853 }
854 }
855}
e778406b 856EXPORT_SYMBOL(migrate_device_finalize);
241f6885
AP
857
858/**
859 * migrate_vma_finalize() - restore CPU page table entry
860 * @migrate: migrate struct containing all migration information
861 *
862 * This replaces the special migration pte entry with either a mapping to the
863 * new page if migration was successful for that page, or to the original page
864 * otherwise.
865 *
866 * This also unlocks the pages and puts them back on the lru, or drops the extra
867 * refcount, for device pages.
868 */
869void migrate_vma_finalize(struct migrate_vma *migrate)
870{
871 migrate_device_finalize(migrate->src, migrate->dst, migrate->npages);
872}
76cbbead 873EXPORT_SYMBOL(migrate_vma_finalize);
b05a79d4 874
e778406b
AP
875/**
876 * migrate_device_range() - migrate device private pfns to normal memory.
877 * @src_pfns: array large enough to hold migrating source device private pfns.
878 * @start: starting pfn in the range to migrate.
879 * @npages: number of pages to migrate.
880 *
881 * migrate_vma_setup() is similar in concept to migrate_vma_setup() except that
882 * instead of looking up pages based on virtual address mappings a range of
883 * device pfns that should be migrated to system memory is used instead.
884 *
885 * This is useful when a driver needs to free device memory but doesn't know the
886 * virtual mappings of every page that may be in device memory. For example this
887 * is often the case when a driver is being unloaded or unbound from a device.
888 *
889 * Like migrate_vma_setup() this function will take a reference and lock any
890 * migrating pages that aren't free before unmapping them. Drivers may then
891 * allocate destination pages and start copying data from the device to CPU
892 * memory before calling migrate_device_pages().
893 */
894int migrate_device_range(unsigned long *src_pfns, unsigned long start,
895 unsigned long npages)
896{
897 unsigned long i, pfn;
898
899 for (pfn = start, i = 0; i < npages; pfn++, i++) {
900 struct page *page = pfn_to_page(pfn);
901
902 if (!get_page_unless_zero(page)) {
903 src_pfns[i] = 0;
904 continue;
905 }
906
907 if (!trylock_page(page)) {
908 src_pfns[i] = 0;
909 put_page(page);
910 continue;
911 }
912
913 src_pfns[i] = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
914 }
915
916 migrate_device_unmap(src_pfns, npages, NULL);
917
918 return 0;
919}
920EXPORT_SYMBOL(migrate_device_range);
921
b05a79d4
AP
922/*
923 * Migrate a device coherent page back to normal memory. The caller should have
924 * a reference on page which will be copied to the new page if migration is
925 * successful or dropped on failure.
926 */
927int migrate_device_coherent_page(struct page *page)
928{
929 unsigned long src_pfn, dst_pfn = 0;
b05a79d4
AP
930 struct page *dpage;
931
932 WARN_ON_ONCE(PageCompound(page));
933
934 lock_page(page);
935 src_pfn = migrate_pfn(page_to_pfn(page)) | MIGRATE_PFN_MIGRATE;
b05a79d4
AP
936
937 /*
938 * We don't have a VMA and don't need to walk the page tables to find
939 * the source page. So call migrate_vma_unmap() directly to unmap the
940 * page as migrate_vma_setup() will fail if args.vma == NULL.
941 */
241f6885 942 migrate_device_unmap(&src_pfn, 1, NULL);
b05a79d4
AP
943 if (!(src_pfn & MIGRATE_PFN_MIGRATE))
944 return -EBUSY;
945
946 dpage = alloc_page(GFP_USER | __GFP_NOWARN);
947 if (dpage) {
948 lock_page(dpage);
949 dst_pfn = migrate_pfn(page_to_pfn(dpage));
950 }
951
e778406b 952 migrate_device_pages(&src_pfn, &dst_pfn, 1);
b05a79d4
AP
953 if (src_pfn & MIGRATE_PFN_MIGRATE)
954 copy_highpage(dpage, page);
241f6885 955 migrate_device_finalize(&src_pfn, &dst_pfn, 1);
b05a79d4
AP
956
957 if (src_pfn & MIGRATE_PFN_MIGRATE)
958 return 0;
959 return -EBUSY;
960}