mm: pagewalk: fix termination condition in walk_pte_range()
[linux-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503
CL
64 */
65int migrate_prep(void)
66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
748446bb
MG
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
9e5bcd61 86int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 105 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
9e5bcd61 137 return 0;
bda807d4
MK
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
9e5bcd61 144 return -EBUSY;
bda807d4
MK
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
5733c7d1
RA
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
59c82b70
JK
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
5733c7d1
RA
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
b20a3503 174 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
e24f0b8f 179 list_del(&page->lru);
bda807d4
MK
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
b1123ea6 185 if (unlikely(__PageMovable(page))) {
bda807d4
MK
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
e8db67eb
NH
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 197 putback_lru_page(page);
bda807d4 198 }
b20a3503 199 }
b20a3503
CL
200}
201
0697212a
CL
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
e4b82222 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 206 unsigned long addr, void *old)
0697212a 207{
3fe87967
KS
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
0697212a 216 swp_entry_t entry;
0697212a 217
3fe87967
KS
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
0697212a 225
616b8371
ZY
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
3fe87967
KS
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
0697212a 239
3fe87967
KS
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 246
df6ad698
JG
247 if (unlikely(is_zone_device_page(new))) {
248 if (is_device_private_page(new)) {
249 entry = make_device_private_entry(new, pte_write(pte));
250 pte = swp_entry_to_pte(entry);
df6ad698 251 }
d2b2c6dd 252 }
a5430dda 253
3ef8fd7f 254#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
383321ab
AK
263 } else
264#endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 267
383321ab
AK
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
3fe87967
KS
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
e125fe40
KS
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
3fe87967
KS
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
51afb12b 282
e4b82222 283 return true;
0697212a
CL
284}
285
04e62a29
CL
286/*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
e388466d 290void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 291{
051ac83a
JK
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
e388466d
KS
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
04e62a29
CL
301}
302
0697212a
CL
303/*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
0697212a 307 */
e66f17ff 308void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 309 spinlock_t *ptl)
0697212a 310{
30dad309 311 pte_t pte;
0697212a
CL
312 swp_entry_t entry;
313 struct page *page;
314
30dad309 315 spin_lock(ptl);
0697212a
CL
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
e286781d 326 /*
89eb946a 327 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
0697212a 333 pte_unmap_unlock(ptep, ptl);
9a1ea439 334 put_and_wait_on_page_locked(page);
0697212a
CL
335 return;
336out:
337 pte_unmap_unlock(ptep, ptl);
338}
339
30dad309
NH
340void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342{
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346}
347
cb900f41
KS
348void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
30dad309 350{
cb900f41 351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
352 __migration_entry_wait(mm, pte, ptl);
353}
354
616b8371
ZY
355#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357{
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
9a1ea439 368 put_and_wait_on_page_locked(page);
616b8371
ZY
369 return;
370unlock:
371 spin_unlock(ptl);
372}
373#endif
374
f900482d 375static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
376{
377 int expected_count = 1;
378
379 /*
380 * Device public or private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
f900482d 384 if (mapping)
0b3901b3
JK
385 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387 return expected_count;
388}
389
b20a3503 390/*
c3fcf8a5 391 * Replace the page in the mapping.
5b5c7120
CL
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
266cf658 396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 397 */
36bc08cc 398int migrate_page_move_mapping(struct address_space *mapping,
37109694 399 struct page *newpage, struct page *page, int extra_count)
b20a3503 400{
89eb946a 401 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
402 struct zone *oldzone, *newzone;
403 int dirty;
f900482d 404 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 405
6c5240ae 406 if (!mapping) {
0e8c7d0f 407 /* Anonymous page without mapping */
8e321fef 408 if (page_count(page) != expected_count)
6c5240ae 409 return -EAGAIN;
cf4b769a
HD
410
411 /* No turning back from here */
cf4b769a
HD
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 if (PageSwapBacked(page))
fa9949da 415 __SetPageSwapBacked(newpage);
cf4b769a 416
78bd5209 417 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
418 }
419
42cb14b1
HD
420 oldzone = page_zone(page);
421 newzone = page_zone(newpage);
422
89eb946a 423 xas_lock_irq(&xas);
89eb946a
MW
424 if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 xas_unlock_irq(&xas);
e23ca00b 426 return -EAGAIN;
b20a3503
CL
427 }
428
fe896d18 429 if (!page_ref_freeze(page, expected_count)) {
89eb946a 430 xas_unlock_irq(&xas);
e286781d
NP
431 return -EAGAIN;
432 }
433
b20a3503 434 /*
cf4b769a
HD
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
b20a3503 437 */
cf4b769a
HD
438 newpage->index = page->index;
439 newpage->mapping = page->mapping;
e71769ae 440 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
441 if (PageSwapBacked(page)) {
442 __SetPageSwapBacked(newpage);
443 if (PageSwapCache(page)) {
444 SetPageSwapCache(newpage);
445 set_page_private(newpage, page_private(page));
446 }
447 } else {
448 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
449 }
450
42cb14b1
HD
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty = PageDirty(page);
453 if (dirty) {
454 ClearPageDirty(page);
455 SetPageDirty(newpage);
456 }
457
89eb946a 458 xas_store(&xas, newpage);
e71769ae
NH
459 if (PageTransHuge(page)) {
460 int i;
e71769ae 461
013567be 462 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 463 xas_next(&xas);
4101196b 464 xas_store(&xas, newpage);
e71769ae 465 }
e71769ae 466 }
7cf9c2c7
NP
467
468 /*
937a94c9
JG
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
7cf9c2c7
NP
471 * We know this isn't the last reference.
472 */
e71769ae 473 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 474
89eb946a 475 xas_unlock(&xas);
42cb14b1
HD
476 /* Leave irq disabled to prevent preemption while updating stats */
477
0e8c7d0f
CL
478 /*
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
483 *
484 * Note that anonymous pages are accounted for
4b9d0fab 485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
486 * are mapped to swap space.
487 */
42cb14b1 488 if (newzone != oldzone) {
11fb9989
MG
489 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 491 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
492 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
494 }
495 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 497 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 498 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 499 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 500 }
4b02108a 501 }
42cb14b1 502 local_irq_enable();
b20a3503 503
78bd5209 504 return MIGRATEPAGE_SUCCESS;
b20a3503 505}
1118dce7 506EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 507
290408d4
NH
508/*
509 * The expected number of remaining references is the same as that
510 * of migrate_page_move_mapping().
511 */
512int migrate_huge_page_move_mapping(struct address_space *mapping,
513 struct page *newpage, struct page *page)
514{
89eb946a 515 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 516 int expected_count;
290408d4 517
89eb946a 518 xas_lock_irq(&xas);
290408d4 519 expected_count = 2 + page_has_private(page);
89eb946a
MW
520 if (page_count(page) != expected_count || xas_load(&xas) != page) {
521 xas_unlock_irq(&xas);
290408d4
NH
522 return -EAGAIN;
523 }
524
fe896d18 525 if (!page_ref_freeze(page, expected_count)) {
89eb946a 526 xas_unlock_irq(&xas);
290408d4
NH
527 return -EAGAIN;
528 }
529
cf4b769a
HD
530 newpage->index = page->index;
531 newpage->mapping = page->mapping;
6a93ca8f 532
290408d4
NH
533 get_page(newpage);
534
89eb946a 535 xas_store(&xas, newpage);
290408d4 536
fe896d18 537 page_ref_unfreeze(page, expected_count - 1);
290408d4 538
89eb946a 539 xas_unlock_irq(&xas);
6a93ca8f 540
78bd5209 541 return MIGRATEPAGE_SUCCESS;
290408d4
NH
542}
543
30b0a105
DH
544/*
545 * Gigantic pages are so large that we do not guarantee that page++ pointer
546 * arithmetic will work across the entire page. We need something more
547 * specialized.
548 */
549static void __copy_gigantic_page(struct page *dst, struct page *src,
550 int nr_pages)
551{
552 int i;
553 struct page *dst_base = dst;
554 struct page *src_base = src;
555
556 for (i = 0; i < nr_pages; ) {
557 cond_resched();
558 copy_highpage(dst, src);
559
560 i++;
561 dst = mem_map_next(dst, dst_base, i);
562 src = mem_map_next(src, src_base, i);
563 }
564}
565
566static void copy_huge_page(struct page *dst, struct page *src)
567{
568 int i;
569 int nr_pages;
570
571 if (PageHuge(src)) {
572 /* hugetlbfs page */
573 struct hstate *h = page_hstate(src);
574 nr_pages = pages_per_huge_page(h);
575
576 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577 __copy_gigantic_page(dst, src, nr_pages);
578 return;
579 }
580 } else {
581 /* thp page */
582 BUG_ON(!PageTransHuge(src));
583 nr_pages = hpage_nr_pages(src);
584 }
585
586 for (i = 0; i < nr_pages; i++) {
587 cond_resched();
588 copy_highpage(dst + i, src + i);
589 }
590}
591
b20a3503
CL
592/*
593 * Copy the page to its new location
594 */
2916ecc0 595void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 596{
7851a45c
RR
597 int cpupid;
598
b20a3503
CL
599 if (PageError(page))
600 SetPageError(newpage);
601 if (PageReferenced(page))
602 SetPageReferenced(newpage);
603 if (PageUptodate(page))
604 SetPageUptodate(newpage);
894bc310 605 if (TestClearPageActive(page)) {
309381fe 606 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 607 SetPageActive(newpage);
418b27ef
LS
608 } else if (TestClearPageUnevictable(page))
609 SetPageUnevictable(newpage);
1899ad18
JW
610 if (PageWorkingset(page))
611 SetPageWorkingset(newpage);
b20a3503
CL
612 if (PageChecked(page))
613 SetPageChecked(newpage);
614 if (PageMappedToDisk(page))
615 SetPageMappedToDisk(newpage);
616
42cb14b1
HD
617 /* Move dirty on pages not done by migrate_page_move_mapping() */
618 if (PageDirty(page))
619 SetPageDirty(newpage);
b20a3503 620
33c3fc71
VD
621 if (page_is_young(page))
622 set_page_young(newpage);
623 if (page_is_idle(page))
624 set_page_idle(newpage);
625
7851a45c
RR
626 /*
627 * Copy NUMA information to the new page, to prevent over-eager
628 * future migrations of this same page.
629 */
630 cpupid = page_cpupid_xchg_last(page, -1);
631 page_cpupid_xchg_last(newpage, cpupid);
632
e9995ef9 633 ksm_migrate_page(newpage, page);
c8d6553b
HD
634 /*
635 * Please do not reorder this without considering how mm/ksm.c's
636 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637 */
b3b3a99c
NH
638 if (PageSwapCache(page))
639 ClearPageSwapCache(page);
b20a3503
CL
640 ClearPagePrivate(page);
641 set_page_private(page, 0);
b20a3503
CL
642
643 /*
644 * If any waiters have accumulated on the new page then
645 * wake them up.
646 */
647 if (PageWriteback(newpage))
648 end_page_writeback(newpage);
d435edca
VB
649
650 copy_page_owner(page, newpage);
74485cf2
JW
651
652 mem_cgroup_migrate(page, newpage);
b20a3503 653}
2916ecc0
JG
654EXPORT_SYMBOL(migrate_page_states);
655
656void migrate_page_copy(struct page *newpage, struct page *page)
657{
658 if (PageHuge(page) || PageTransHuge(page))
659 copy_huge_page(newpage, page);
660 else
661 copy_highpage(newpage, page);
662
663 migrate_page_states(newpage, page);
664}
1118dce7 665EXPORT_SYMBOL(migrate_page_copy);
b20a3503 666
1d8b85cc
CL
667/************************************************************
668 * Migration functions
669 ***********************************************************/
670
b20a3503 671/*
bda807d4 672 * Common logic to directly migrate a single LRU page suitable for
266cf658 673 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
674 *
675 * Pages are locked upon entry and exit.
676 */
2d1db3b1 677int migrate_page(struct address_space *mapping,
a6bc32b8
MG
678 struct page *newpage, struct page *page,
679 enum migrate_mode mode)
b20a3503
CL
680{
681 int rc;
682
683 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
684
37109694 685 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 686
78bd5209 687 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
688 return rc;
689
2916ecc0
JG
690 if (mode != MIGRATE_SYNC_NO_COPY)
691 migrate_page_copy(newpage, page);
692 else
693 migrate_page_states(newpage, page);
78bd5209 694 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
695}
696EXPORT_SYMBOL(migrate_page);
697
9361401e 698#ifdef CONFIG_BLOCK
84ade7c1
JK
699/* Returns true if all buffers are successfully locked */
700static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 enum migrate_mode mode)
702{
703 struct buffer_head *bh = head;
704
705 /* Simple case, sync compaction */
706 if (mode != MIGRATE_ASYNC) {
707 do {
84ade7c1
JK
708 lock_buffer(bh);
709 bh = bh->b_this_page;
710
711 } while (bh != head);
712
713 return true;
714 }
715
716 /* async case, we cannot block on lock_buffer so use trylock_buffer */
717 do {
84ade7c1
JK
718 if (!trylock_buffer(bh)) {
719 /*
720 * We failed to lock the buffer and cannot stall in
721 * async migration. Release the taken locks
722 */
723 struct buffer_head *failed_bh = bh;
84ade7c1
JK
724 bh = head;
725 while (bh != failed_bh) {
726 unlock_buffer(bh);
84ade7c1
JK
727 bh = bh->b_this_page;
728 }
729 return false;
730 }
731
732 bh = bh->b_this_page;
733 } while (bh != head);
734 return true;
735}
736
89cb0888
JK
737static int __buffer_migrate_page(struct address_space *mapping,
738 struct page *newpage, struct page *page, enum migrate_mode mode,
739 bool check_refs)
1d8b85cc 740{
1d8b85cc
CL
741 struct buffer_head *bh, *head;
742 int rc;
cc4f11e6 743 int expected_count;
1d8b85cc 744
1d8b85cc 745 if (!page_has_buffers(page))
a6bc32b8 746 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 747
cc4f11e6 748 /* Check whether page does not have extra refs before we do more work */
f900482d 749 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
750 if (page_count(page) != expected_count)
751 return -EAGAIN;
1d8b85cc 752
cc4f11e6
JK
753 head = page_buffers(page);
754 if (!buffer_migrate_lock_buffers(head, mode))
755 return -EAGAIN;
1d8b85cc 756
89cb0888
JK
757 if (check_refs) {
758 bool busy;
759 bool invalidated = false;
760
761recheck_buffers:
762 busy = false;
763 spin_lock(&mapping->private_lock);
764 bh = head;
765 do {
766 if (atomic_read(&bh->b_count)) {
767 busy = true;
768 break;
769 }
770 bh = bh->b_this_page;
771 } while (bh != head);
89cb0888
JK
772 if (busy) {
773 if (invalidated) {
774 rc = -EAGAIN;
775 goto unlock_buffers;
776 }
ebdf4de5 777 spin_unlock(&mapping->private_lock);
89cb0888
JK
778 invalidate_bh_lrus();
779 invalidated = true;
780 goto recheck_buffers;
781 }
782 }
783
37109694 784 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 785 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 786 goto unlock_buffers;
1d8b85cc
CL
787
788 ClearPagePrivate(page);
789 set_page_private(newpage, page_private(page));
790 set_page_private(page, 0);
791 put_page(page);
792 get_page(newpage);
793
794 bh = head;
795 do {
796 set_bh_page(bh, newpage, bh_offset(bh));
797 bh = bh->b_this_page;
798
799 } while (bh != head);
800
801 SetPagePrivate(newpage);
802
2916ecc0
JG
803 if (mode != MIGRATE_SYNC_NO_COPY)
804 migrate_page_copy(newpage, page);
805 else
806 migrate_page_states(newpage, page);
1d8b85cc 807
cc4f11e6
JK
808 rc = MIGRATEPAGE_SUCCESS;
809unlock_buffers:
ebdf4de5
JK
810 if (check_refs)
811 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
812 bh = head;
813 do {
814 unlock_buffer(bh);
1d8b85cc
CL
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
cc4f11e6 819 return rc;
1d8b85cc 820}
89cb0888
JK
821
822/*
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
826 */
827int buffer_migrate_page(struct address_space *mapping,
828 struct page *newpage, struct page *page, enum migrate_mode mode)
829{
830 return __buffer_migrate_page(mapping, newpage, page, mode, false);
831}
1d8b85cc 832EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
833
834/*
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
839 */
840int buffer_migrate_page_norefs(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
842{
843 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844}
9361401e 845#endif
1d8b85cc 846
04e62a29
CL
847/*
848 * Writeback a page to clean the dirty state
849 */
850static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 851{
04e62a29
CL
852 struct writeback_control wbc = {
853 .sync_mode = WB_SYNC_NONE,
854 .nr_to_write = 1,
855 .range_start = 0,
856 .range_end = LLONG_MAX,
04e62a29
CL
857 .for_reclaim = 1
858 };
859 int rc;
860
861 if (!mapping->a_ops->writepage)
862 /* No write method for the address space */
863 return -EINVAL;
864
865 if (!clear_page_dirty_for_io(page))
866 /* Someone else already triggered a write */
867 return -EAGAIN;
868
8351a6e4 869 /*
04e62a29
CL
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
875 * be successful.
8351a6e4 876 */
e388466d 877 remove_migration_ptes(page, page, false);
8351a6e4 878
04e62a29 879 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 880
04e62a29
CL
881 if (rc != AOP_WRITEPAGE_ACTIVATE)
882 /* unlocked. Relock */
883 lock_page(page);
884
bda8550d 885 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
886}
887
888/*
889 * Default handling if a filesystem does not provide a migration function.
890 */
891static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 892 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 893{
b969c4ab 894 if (PageDirty(page)) {
a6bc32b8 895 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
896 switch (mode) {
897 case MIGRATE_SYNC:
898 case MIGRATE_SYNC_NO_COPY:
899 break;
900 default:
b969c4ab 901 return -EBUSY;
2916ecc0 902 }
04e62a29 903 return writeout(mapping, page);
b969c4ab 904 }
8351a6e4
CL
905
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
266cf658 910 if (page_has_private(page) &&
8351a6e4 911 !try_to_release_page(page, GFP_KERNEL))
806031bb 912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 913
a6bc32b8 914 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
915}
916
e24f0b8f
CL
917/*
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
920 *
921 * The new page will have replaced the old page if this function
922 * is successful.
894bc310
LS
923 *
924 * Return value:
925 * < 0 - error code
78bd5209 926 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 927 */
3fe2011f 928static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 929 enum migrate_mode mode)
e24f0b8f
CL
930{
931 struct address_space *mapping;
bda807d4
MK
932 int rc = -EAGAIN;
933 bool is_lru = !__PageMovable(page);
e24f0b8f 934
7db7671f
HD
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 937
e24f0b8f 938 mapping = page_mapping(page);
bda807d4
MK
939
940 if (likely(is_lru)) {
941 if (!mapping)
942 rc = migrate_page(mapping, newpage, page, mode);
943 else if (mapping->a_ops->migratepage)
944 /*
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
950 */
951 rc = mapping->a_ops->migratepage(mapping, newpage,
952 page, mode);
953 else
954 rc = fallback_migrate_page(mapping, newpage,
955 page, mode);
956 } else {
e24f0b8f 957 /*
bda807d4
MK
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 960 */
bda807d4
MK
961 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 if (!PageMovable(page)) {
963 rc = MIGRATEPAGE_SUCCESS;
964 __ClearPageIsolated(page);
965 goto out;
966 }
967
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 !PageIsolated(page));
972 }
e24f0b8f 973
5c3f9a67
HD
974 /*
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
977 */
978 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
979 if (__PageMovable(page)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982 /*
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
985 */
986 __ClearPageIsolated(page);
987 }
988
989 /*
c23a0c99 990 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
993 */
994 if (!PageMappingFlags(page))
5c3f9a67 995 page->mapping = NULL;
d2b2c6dd 996
25b2995a 997 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
998 flush_dcache_page(newpage);
999
3fe2011f 1000 }
bda807d4 1001out:
e24f0b8f
CL
1002 return rc;
1003}
1004
0dabec93 1005static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1006 int force, enum migrate_mode mode)
e24f0b8f 1007{
0dabec93 1008 int rc = -EAGAIN;
2ebba6b7 1009 int page_was_mapped = 0;
3f6c8272 1010 struct anon_vma *anon_vma = NULL;
bda807d4 1011 bool is_lru = !__PageMovable(page);
95a402c3 1012
529ae9aa 1013 if (!trylock_page(page)) {
a6bc32b8 1014 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1015 goto out;
3e7d3449
MG
1016
1017 /*
1018 * It's not safe for direct compaction to call lock_page.
1019 * For example, during page readahead pages are added locked
1020 * to the LRU. Later, when the IO completes the pages are
1021 * marked uptodate and unlocked. However, the queueing
1022 * could be merging multiple pages for one bio (e.g.
1023 * mpage_readpages). If an allocation happens for the
1024 * second or third page, the process can end up locking
1025 * the same page twice and deadlocking. Rather than
1026 * trying to be clever about what pages can be locked,
1027 * avoid the use of lock_page for direct compaction
1028 * altogether.
1029 */
1030 if (current->flags & PF_MEMALLOC)
0dabec93 1031 goto out;
3e7d3449 1032
e24f0b8f
CL
1033 lock_page(page);
1034 }
1035
1036 if (PageWriteback(page)) {
11bc82d6 1037 /*
fed5b64a 1038 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1039 * necessary to wait for PageWriteback. In the async case,
1040 * the retry loop is too short and in the sync-light case,
1041 * the overhead of stalling is too much
11bc82d6 1042 */
2916ecc0
JG
1043 switch (mode) {
1044 case MIGRATE_SYNC:
1045 case MIGRATE_SYNC_NO_COPY:
1046 break;
1047 default:
11bc82d6 1048 rc = -EBUSY;
0a31bc97 1049 goto out_unlock;
11bc82d6
AA
1050 }
1051 if (!force)
0a31bc97 1052 goto out_unlock;
e24f0b8f
CL
1053 wait_on_page_writeback(page);
1054 }
03f15c86 1055
e24f0b8f 1056 /*
dc386d4d
KH
1057 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1059 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1060 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1061 * File Caches may use write_page() or lock_page() in migration, then,
1062 * just care Anon page here.
03f15c86
HD
1063 *
1064 * Only page_get_anon_vma() understands the subtleties of
1065 * getting a hold on an anon_vma from outside one of its mms.
1066 * But if we cannot get anon_vma, then we won't need it anyway,
1067 * because that implies that the anon page is no longer mapped
1068 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1069 */
03f15c86 1070 if (PageAnon(page) && !PageKsm(page))
746b18d4 1071 anon_vma = page_get_anon_vma(page);
62e1c553 1072
7db7671f
HD
1073 /*
1074 * Block others from accessing the new page when we get around to
1075 * establishing additional references. We are usually the only one
1076 * holding a reference to newpage at this point. We used to have a BUG
1077 * here if trylock_page(newpage) fails, but would like to allow for
1078 * cases where there might be a race with the previous use of newpage.
1079 * This is much like races on refcount of oldpage: just don't BUG().
1080 */
1081 if (unlikely(!trylock_page(newpage)))
1082 goto out_unlock;
1083
bda807d4
MK
1084 if (unlikely(!is_lru)) {
1085 rc = move_to_new_page(newpage, page, mode);
1086 goto out_unlock_both;
1087 }
1088
dc386d4d 1089 /*
62e1c553
SL
1090 * Corner case handling:
1091 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 * and treated as swapcache but it has no rmap yet.
1093 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 * trigger a BUG. So handle it here.
1095 * 2. An orphaned page (see truncate_complete_page) might have
1096 * fs-private metadata. The page can be picked up due to memory
1097 * offlining. Everywhere else except page reclaim, the page is
1098 * invisible to the vm, so the page can not be migrated. So try to
1099 * free the metadata, so the page can be freed.
e24f0b8f 1100 */
62e1c553 1101 if (!page->mapping) {
309381fe 1102 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1103 if (page_has_private(page)) {
62e1c553 1104 try_to_free_buffers(page);
7db7671f 1105 goto out_unlock_both;
62e1c553 1106 }
7db7671f
HD
1107 } else if (page_mapped(page)) {
1108 /* Establish migration ptes */
03f15c86
HD
1109 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 page);
2ebba6b7 1111 try_to_unmap(page,
da1b13cc 1112 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1113 page_was_mapped = 1;
1114 }
dc386d4d 1115
e6a1530d 1116 if (!page_mapped(page))
5c3f9a67 1117 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1118
5c3f9a67
HD
1119 if (page_was_mapped)
1120 remove_migration_ptes(page,
e388466d 1121 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1122
7db7671f
HD
1123out_unlock_both:
1124 unlock_page(newpage);
1125out_unlock:
3f6c8272 1126 /* Drop an anon_vma reference if we took one */
76545066 1127 if (anon_vma)
9e60109f 1128 put_anon_vma(anon_vma);
e24f0b8f 1129 unlock_page(page);
0dabec93 1130out:
c6c919eb
MK
1131 /*
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1138 * state.
c6c919eb
MK
1139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1141 if (unlikely(!is_lru))
c6c919eb
MK
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
0dabec93
MK
1147 return rc;
1148}
95a402c3 1149
ef2a5153
GU
1150/*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1153 */
815f0ddb
ND
1154#if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1156#define ICE_noinline noinline
1157#else
1158#define ICE_noinline
1159#endif
1160
0dabec93
MK
1161/*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
ef2a5153
GU
1165static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
add05cec
NH
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
0dabec93 1170{
2def7424 1171 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1172 struct page *newpage = NULL;
0dabec93 1173
94723aaf
MH
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1176
0dabec93
MK
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
c6c919eb
MK
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
bda807d4
MK
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1186 }
0dabec93
MK
1187 goto out;
1188 }
1189
74d4a579
YS
1190 newpage = get_new_page(page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193
9c620e2b 1194 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1195 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1196 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1197
0dabec93 1198out:
e24f0b8f 1199 if (rc != -EAGAIN) {
0dabec93
MK
1200 /*
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
c23a0c99 1203 * migrated will have kept its references and be restored.
0dabec93
MK
1204 */
1205 list_del(&page->lru);
6afcf8ef
ML
1206
1207 /*
1208 * Compaction can migrate also non-LRU pages which are
1209 * not accounted to NR_ISOLATED_*. They can be recognized
1210 * as __PageMovable
1211 */
1212 if (likely(!__PageMovable(page)))
e8db67eb
NH
1213 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1215 }
1216
1217 /*
1218 * If migration is successful, releases reference grabbed during
1219 * isolation. Otherwise, restore the page to right list unless
1220 * we want to retry.
1221 */
1222 if (rc == MIGRATEPAGE_SUCCESS) {
1223 put_page(page);
1224 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1225 /*
c6c919eb
MK
1226 * Set PG_HWPoison on just freed page
1227 * intentionally. Although it's rather weird,
1228 * it's how HWPoison flag works at the moment.
d7e69488 1229 */
d4ae9916 1230 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1231 num_poisoned_pages_inc();
c6c919eb
MK
1232 }
1233 } else {
bda807d4
MK
1234 if (rc != -EAGAIN) {
1235 if (likely(!__PageMovable(page))) {
1236 putback_lru_page(page);
1237 goto put_new;
1238 }
1239
1240 lock_page(page);
1241 if (PageMovable(page))
1242 putback_movable_page(page);
1243 else
1244 __ClearPageIsolated(page);
1245 unlock_page(page);
1246 put_page(page);
1247 }
1248put_new:
c6c919eb
MK
1249 if (put_new_page)
1250 put_new_page(newpage, private);
1251 else
1252 put_page(newpage);
e24f0b8f 1253 }
68711a74 1254
e24f0b8f
CL
1255 return rc;
1256}
1257
290408d4
NH
1258/*
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1260 *
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1271 *
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1275 */
1276static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1277 free_page_t put_new_page, unsigned long private,
1278 struct page *hpage, int force,
7cd12b4a 1279 enum migrate_mode mode, int reason)
290408d4 1280{
2def7424 1281 int rc = -EAGAIN;
2ebba6b7 1282 int page_was_mapped = 0;
32665f2b 1283 struct page *new_hpage;
290408d4
NH
1284 struct anon_vma *anon_vma = NULL;
1285
83467efb 1286 /*
7ed2c31d 1287 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1288 * This check is necessary because some callers of hugepage migration
1289 * like soft offline and memory hotremove don't walk through page
1290 * tables or check whether the hugepage is pmd-based or not before
1291 * kicking migration.
1292 */
100873d7 1293 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1294 putback_active_hugepage(hpage);
83467efb 1295 return -ENOSYS;
32665f2b 1296 }
83467efb 1297
666feb21 1298 new_hpage = get_new_page(hpage, private);
290408d4
NH
1299 if (!new_hpage)
1300 return -ENOMEM;
1301
290408d4 1302 if (!trylock_page(hpage)) {
2916ecc0 1303 if (!force)
290408d4 1304 goto out;
2916ecc0
JG
1305 switch (mode) {
1306 case MIGRATE_SYNC:
1307 case MIGRATE_SYNC_NO_COPY:
1308 break;
1309 default:
1310 goto out;
1311 }
290408d4
NH
1312 lock_page(hpage);
1313 }
1314
cb6acd01
MK
1315 /*
1316 * Check for pages which are in the process of being freed. Without
1317 * page_mapping() set, hugetlbfs specific move page routine will not
1318 * be called and we could leak usage counts for subpools.
1319 */
1320 if (page_private(hpage) && !page_mapping(hpage)) {
1321 rc = -EBUSY;
1322 goto out_unlock;
1323 }
1324
746b18d4
PZ
1325 if (PageAnon(hpage))
1326 anon_vma = page_get_anon_vma(hpage);
290408d4 1327
7db7671f
HD
1328 if (unlikely(!trylock_page(new_hpage)))
1329 goto put_anon;
1330
2ebba6b7
HD
1331 if (page_mapped(hpage)) {
1332 try_to_unmap(hpage,
ddeaab32 1333 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1334 page_was_mapped = 1;
1335 }
290408d4
NH
1336
1337 if (!page_mapped(hpage))
5c3f9a67 1338 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1339
5c3f9a67
HD
1340 if (page_was_mapped)
1341 remove_migration_ptes(hpage,
e388466d 1342 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1343
7db7671f
HD
1344 unlock_page(new_hpage);
1345
1346put_anon:
fd4a4663 1347 if (anon_vma)
9e60109f 1348 put_anon_vma(anon_vma);
8e6ac7fa 1349
2def7424 1350 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1351 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1352 put_new_page = NULL;
1353 }
8e6ac7fa 1354
cb6acd01 1355out_unlock:
290408d4 1356 unlock_page(hpage);
09761333 1357out:
b8ec1cee
NH
1358 if (rc != -EAGAIN)
1359 putback_active_hugepage(hpage);
68711a74
DR
1360
1361 /*
1362 * If migration was not successful and there's a freeing callback, use
1363 * it. Otherwise, put_page() will drop the reference grabbed during
1364 * isolation.
1365 */
2def7424 1366 if (put_new_page)
68711a74
DR
1367 put_new_page(new_hpage, private);
1368 else
3aaa76e1 1369 putback_active_hugepage(new_hpage);
68711a74 1370
290408d4
NH
1371 return rc;
1372}
1373
b20a3503 1374/*
c73e5c9c
SB
1375 * migrate_pages - migrate the pages specified in a list, to the free pages
1376 * supplied as the target for the page migration
b20a3503 1377 *
c73e5c9c
SB
1378 * @from: The list of pages to be migrated.
1379 * @get_new_page: The function used to allocate free pages to be used
1380 * as the target of the page migration.
68711a74
DR
1381 * @put_new_page: The function used to free target pages if migration
1382 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1383 * @private: Private data to be passed on to get_new_page()
1384 * @mode: The migration mode that specifies the constraints for
1385 * page migration, if any.
1386 * @reason: The reason for page migration.
b20a3503 1387 *
c73e5c9c
SB
1388 * The function returns after 10 attempts or if no pages are movable any more
1389 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1390 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1391 * or free list only if ret != 0.
b20a3503 1392 *
c73e5c9c 1393 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1394 */
9c620e2b 1395int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1396 free_page_t put_new_page, unsigned long private,
1397 enum migrate_mode mode, int reason)
b20a3503 1398{
e24f0b8f 1399 int retry = 1;
b20a3503 1400 int nr_failed = 0;
5647bc29 1401 int nr_succeeded = 0;
b20a3503
CL
1402 int pass = 0;
1403 struct page *page;
1404 struct page *page2;
1405 int swapwrite = current->flags & PF_SWAPWRITE;
1406 int rc;
1407
1408 if (!swapwrite)
1409 current->flags |= PF_SWAPWRITE;
1410
e24f0b8f
CL
1411 for(pass = 0; pass < 10 && retry; pass++) {
1412 retry = 0;
b20a3503 1413
e24f0b8f 1414 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1415retry:
e24f0b8f 1416 cond_resched();
2d1db3b1 1417
31caf665
NH
1418 if (PageHuge(page))
1419 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1420 put_new_page, private, page,
7cd12b4a 1421 pass > 2, mode, reason);
31caf665 1422 else
68711a74 1423 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1424 private, page, pass > 2, mode,
1425 reason);
2d1db3b1 1426
e24f0b8f 1427 switch(rc) {
95a402c3 1428 case -ENOMEM:
94723aaf
MH
1429 /*
1430 * THP migration might be unsupported or the
1431 * allocation could've failed so we should
1432 * retry on the same page with the THP split
1433 * to base pages.
1434 *
1435 * Head page is retried immediately and tail
1436 * pages are added to the tail of the list so
1437 * we encounter them after the rest of the list
1438 * is processed.
1439 */
e6112fc3 1440 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1441 lock_page(page);
1442 rc = split_huge_page_to_list(page, from);
1443 unlock_page(page);
1444 if (!rc) {
1445 list_safe_reset_next(page, page2, lru);
1446 goto retry;
1447 }
1448 }
dfef2ef4 1449 nr_failed++;
95a402c3 1450 goto out;
e24f0b8f 1451 case -EAGAIN:
2d1db3b1 1452 retry++;
e24f0b8f 1453 break;
78bd5209 1454 case MIGRATEPAGE_SUCCESS:
5647bc29 1455 nr_succeeded++;
e24f0b8f
CL
1456 break;
1457 default:
354a3363
NH
1458 /*
1459 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1460 * unlike -EAGAIN case, the failed page is
1461 * removed from migration page list and not
1462 * retried in the next outer loop.
1463 */
2d1db3b1 1464 nr_failed++;
e24f0b8f 1465 break;
2d1db3b1 1466 }
b20a3503
CL
1467 }
1468 }
f2f81fb2
VB
1469 nr_failed += retry;
1470 rc = nr_failed;
95a402c3 1471out:
5647bc29
MG
1472 if (nr_succeeded)
1473 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1474 if (nr_failed)
1475 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1476 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1477
b20a3503
CL
1478 if (!swapwrite)
1479 current->flags &= ~PF_SWAPWRITE;
1480
78bd5209 1481 return rc;
b20a3503 1482}
95a402c3 1483
742755a1 1484#ifdef CONFIG_NUMA
742755a1 1485
a49bd4d7 1486static int store_status(int __user *status, int start, int value, int nr)
742755a1 1487{
a49bd4d7
MH
1488 while (nr-- > 0) {
1489 if (put_user(value, status + start))
1490 return -EFAULT;
1491 start++;
1492 }
1493
1494 return 0;
1495}
1496
1497static int do_move_pages_to_node(struct mm_struct *mm,
1498 struct list_head *pagelist, int node)
1499{
1500 int err;
1501
1502 if (list_empty(pagelist))
1503 return 0;
1504
1505 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1506 MIGRATE_SYNC, MR_SYSCALL);
1507 if (err)
1508 putback_movable_pages(pagelist);
1509 return err;
742755a1
CL
1510}
1511
1512/*
a49bd4d7
MH
1513 * Resolves the given address to a struct page, isolates it from the LRU and
1514 * puts it to the given pagelist.
e0153fc2
YS
1515 * Returns:
1516 * errno - if the page cannot be found/isolated
1517 * 0 - when it doesn't have to be migrated because it is already on the
1518 * target node
1519 * 1 - when it has been queued
742755a1 1520 */
a49bd4d7
MH
1521static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1522 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1523{
a49bd4d7
MH
1524 struct vm_area_struct *vma;
1525 struct page *page;
1526 unsigned int follflags;
742755a1 1527 int err;
742755a1
CL
1528
1529 down_read(&mm->mmap_sem);
a49bd4d7
MH
1530 err = -EFAULT;
1531 vma = find_vma(mm, addr);
1532 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1533 goto out;
742755a1 1534
a49bd4d7
MH
1535 /* FOLL_DUMP to ignore special (like zero) pages */
1536 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1537 page = follow_page(vma, addr, follflags);
89f5b7da 1538
a49bd4d7
MH
1539 err = PTR_ERR(page);
1540 if (IS_ERR(page))
1541 goto out;
89f5b7da 1542
a49bd4d7
MH
1543 err = -ENOENT;
1544 if (!page)
1545 goto out;
742755a1 1546
a49bd4d7
MH
1547 err = 0;
1548 if (page_to_nid(page) == node)
1549 goto out_putpage;
742755a1 1550
a49bd4d7
MH
1551 err = -EACCES;
1552 if (page_mapcount(page) > 1 && !migrate_all)
1553 goto out_putpage;
742755a1 1554
a49bd4d7
MH
1555 if (PageHuge(page)) {
1556 if (PageHead(page)) {
1557 isolate_huge_page(page, pagelist);
e0153fc2 1558 err = 1;
e632a938 1559 }
a49bd4d7
MH
1560 } else {
1561 struct page *head;
e632a938 1562
e8db67eb
NH
1563 head = compound_head(page);
1564 err = isolate_lru_page(head);
cf608ac1 1565 if (err)
a49bd4d7 1566 goto out_putpage;
742755a1 1567
e0153fc2 1568 err = 1;
a49bd4d7
MH
1569 list_add_tail(&head->lru, pagelist);
1570 mod_node_page_state(page_pgdat(head),
1571 NR_ISOLATED_ANON + page_is_file_cache(head),
1572 hpage_nr_pages(head));
1573 }
1574out_putpage:
1575 /*
1576 * Either remove the duplicate refcount from
1577 * isolate_lru_page() or drop the page ref if it was
1578 * not isolated.
1579 */
1580 put_page(page);
1581out:
742755a1
CL
1582 up_read(&mm->mmap_sem);
1583 return err;
1584}
1585
5e9a0f02
BG
1586/*
1587 * Migrate an array of page address onto an array of nodes and fill
1588 * the corresponding array of status.
1589 */
3268c63e 1590static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1591 unsigned long nr_pages,
1592 const void __user * __user *pages,
1593 const int __user *nodes,
1594 int __user *status, int flags)
1595{
a49bd4d7
MH
1596 int current_node = NUMA_NO_NODE;
1597 LIST_HEAD(pagelist);
1598 int start, i;
1599 int err = 0, err1;
35282a2d
BG
1600
1601 migrate_prep();
1602
a49bd4d7
MH
1603 for (i = start = 0; i < nr_pages; i++) {
1604 const void __user *p;
1605 unsigned long addr;
1606 int node;
3140a227 1607
a49bd4d7
MH
1608 err = -EFAULT;
1609 if (get_user(p, pages + i))
1610 goto out_flush;
1611 if (get_user(node, nodes + i))
1612 goto out_flush;
057d3389 1613 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1614
1615 err = -ENODEV;
1616 if (node < 0 || node >= MAX_NUMNODES)
1617 goto out_flush;
1618 if (!node_state(node, N_MEMORY))
1619 goto out_flush;
5e9a0f02 1620
a49bd4d7
MH
1621 err = -EACCES;
1622 if (!node_isset(node, task_nodes))
1623 goto out_flush;
1624
1625 if (current_node == NUMA_NO_NODE) {
1626 current_node = node;
1627 start = i;
1628 } else if (node != current_node) {
1629 err = do_move_pages_to_node(mm, &pagelist, current_node);
5984fabb
YS
1630 if (err) {
1631 /*
1632 * Positive err means the number of failed
1633 * pages to migrate. Since we are going to
1634 * abort and return the number of non-migrated
1635 * pages, so need to incude the rest of the
1636 * nr_pages that have not been attempted as
1637 * well.
1638 */
1639 if (err > 0)
1640 err += nr_pages - i - 1;
a49bd4d7 1641 goto out;
5984fabb 1642 }
a49bd4d7
MH
1643 err = store_status(status, start, current_node, i - start);
1644 if (err)
1645 goto out;
1646 start = i;
1647 current_node = node;
3140a227
BG
1648 }
1649
a49bd4d7
MH
1650 /*
1651 * Errors in the page lookup or isolation are not fatal and we simply
1652 * report them via status
1653 */
1654 err = add_page_for_migration(mm, addr, current_node,
1655 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2
YS
1656
1657 if (!err) {
1658 /* The page is already on the target node */
1659 err = store_status(status, i, current_node, 1);
1660 if (err)
1661 goto out_flush;
a49bd4d7 1662 continue;
e0153fc2
YS
1663 } else if (err > 0) {
1664 /* The page is successfully queued for migration */
1665 continue;
1666 }
3140a227 1667
a49bd4d7
MH
1668 err = store_status(status, i, err, 1);
1669 if (err)
1670 goto out_flush;
5e9a0f02 1671
a49bd4d7 1672 err = do_move_pages_to_node(mm, &pagelist, current_node);
5984fabb
YS
1673 if (err) {
1674 if (err > 0)
1675 err += nr_pages - i - 1;
a49bd4d7 1676 goto out;
5984fabb 1677 }
a49bd4d7
MH
1678 if (i > start) {
1679 err = store_status(status, start, current_node, i - start);
1680 if (err)
1681 goto out;
1682 }
1683 current_node = NUMA_NO_NODE;
3140a227 1684 }
a49bd4d7 1685out_flush:
8f175cf5
MH
1686 if (list_empty(&pagelist))
1687 return err;
1688
a49bd4d7
MH
1689 /* Make sure we do not overwrite the existing error */
1690 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
5984fabb
YS
1691 /*
1692 * Don't have to report non-attempted pages here since:
1693 * - If the above loop is done gracefully all pages have been
1694 * attempted.
1695 * - If the above loop is aborted it means a fatal error
1696 * happened, should return ret.
1697 */
a49bd4d7
MH
1698 if (!err1)
1699 err1 = store_status(status, start, current_node, i - start);
dfe9aa23 1700 if (err >= 0)
a49bd4d7 1701 err = err1;
5e9a0f02
BG
1702out:
1703 return err;
1704}
1705
742755a1 1706/*
2f007e74 1707 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1708 */
80bba129
BG
1709static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1710 const void __user **pages, int *status)
742755a1 1711{
2f007e74 1712 unsigned long i;
2f007e74 1713
742755a1
CL
1714 down_read(&mm->mmap_sem);
1715
2f007e74 1716 for (i = 0; i < nr_pages; i++) {
80bba129 1717 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1718 struct vm_area_struct *vma;
1719 struct page *page;
c095adbc 1720 int err = -EFAULT;
2f007e74
BG
1721
1722 vma = find_vma(mm, addr);
70384dc6 1723 if (!vma || addr < vma->vm_start)
742755a1
CL
1724 goto set_status;
1725
d899844e
KS
1726 /* FOLL_DUMP to ignore special (like zero) pages */
1727 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1728
1729 err = PTR_ERR(page);
1730 if (IS_ERR(page))
1731 goto set_status;
1732
d899844e 1733 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1734set_status:
80bba129
BG
1735 *status = err;
1736
1737 pages++;
1738 status++;
1739 }
1740
1741 up_read(&mm->mmap_sem);
1742}
1743
1744/*
1745 * Determine the nodes of a user array of pages and store it in
1746 * a user array of status.
1747 */
1748static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1749 const void __user * __user *pages,
1750 int __user *status)
1751{
1752#define DO_PAGES_STAT_CHUNK_NR 16
1753 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1754 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1755
87b8d1ad
PA
1756 while (nr_pages) {
1757 unsigned long chunk_nr;
80bba129 1758
87b8d1ad
PA
1759 chunk_nr = nr_pages;
1760 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1761 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1762
1763 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1764 break;
80bba129
BG
1765
1766 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1767
87b8d1ad
PA
1768 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1769 break;
742755a1 1770
87b8d1ad
PA
1771 pages += chunk_nr;
1772 status += chunk_nr;
1773 nr_pages -= chunk_nr;
1774 }
1775 return nr_pages ? -EFAULT : 0;
742755a1
CL
1776}
1777
1778/*
1779 * Move a list of pages in the address space of the currently executing
1780 * process.
1781 */
7addf443
DB
1782static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1783 const void __user * __user *pages,
1784 const int __user *nodes,
1785 int __user *status, int flags)
742755a1 1786{
742755a1 1787 struct task_struct *task;
742755a1 1788 struct mm_struct *mm;
5e9a0f02 1789 int err;
3268c63e 1790 nodemask_t task_nodes;
742755a1
CL
1791
1792 /* Check flags */
1793 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1794 return -EINVAL;
1795
1796 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1797 return -EPERM;
1798
1799 /* Find the mm_struct */
a879bf58 1800 rcu_read_lock();
228ebcbe 1801 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1802 if (!task) {
a879bf58 1803 rcu_read_unlock();
742755a1
CL
1804 return -ESRCH;
1805 }
3268c63e 1806 get_task_struct(task);
742755a1
CL
1807
1808 /*
1809 * Check if this process has the right to modify the specified
197e7e52 1810 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1811 */
197e7e52 1812 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1813 rcu_read_unlock();
742755a1 1814 err = -EPERM;
5e9a0f02 1815 goto out;
742755a1 1816 }
c69e8d9c 1817 rcu_read_unlock();
742755a1 1818
86c3a764
DQ
1819 err = security_task_movememory(task);
1820 if (err)
5e9a0f02 1821 goto out;
86c3a764 1822
3268c63e
CL
1823 task_nodes = cpuset_mems_allowed(task);
1824 mm = get_task_mm(task);
1825 put_task_struct(task);
1826
6e8b09ea
SL
1827 if (!mm)
1828 return -EINVAL;
1829
1830 if (nodes)
1831 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1832 nodes, status, flags);
1833 else
1834 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1835
742755a1
CL
1836 mmput(mm);
1837 return err;
3268c63e
CL
1838
1839out:
1840 put_task_struct(task);
1841 return err;
742755a1 1842}
742755a1 1843
7addf443
DB
1844SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1845 const void __user * __user *, pages,
1846 const int __user *, nodes,
1847 int __user *, status, int, flags)
1848{
1849 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1850}
1851
1852#ifdef CONFIG_COMPAT
1853COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1854 compat_uptr_t __user *, pages32,
1855 const int __user *, nodes,
1856 int __user *, status,
1857 int, flags)
1858{
1859 const void __user * __user *pages;
1860 int i;
1861
1862 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1863 for (i = 0; i < nr_pages; i++) {
1864 compat_uptr_t p;
1865
1866 if (get_user(p, pages32 + i) ||
1867 put_user(compat_ptr(p), pages + i))
1868 return -EFAULT;
1869 }
1870 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1871}
1872#endif /* CONFIG_COMPAT */
1873
7039e1db
PZ
1874#ifdef CONFIG_NUMA_BALANCING
1875/*
1876 * Returns true if this is a safe migration target node for misplaced NUMA
1877 * pages. Currently it only checks the watermarks which crude
1878 */
1879static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1880 unsigned long nr_migrate_pages)
7039e1db
PZ
1881{
1882 int z;
599d0c95 1883
7039e1db
PZ
1884 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1885 struct zone *zone = pgdat->node_zones + z;
1886
1887 if (!populated_zone(zone))
1888 continue;
1889
7039e1db
PZ
1890 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1891 if (!zone_watermark_ok(zone, 0,
1892 high_wmark_pages(zone) +
1893 nr_migrate_pages,
bfe9d006 1894 ZONE_MOVABLE, 0))
7039e1db
PZ
1895 continue;
1896 return true;
1897 }
1898 return false;
1899}
1900
1901static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1902 unsigned long data)
7039e1db
PZ
1903{
1904 int nid = (int) data;
1905 struct page *newpage;
1906
96db800f 1907 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1908 (GFP_HIGHUSER_MOVABLE |
1909 __GFP_THISNODE | __GFP_NOMEMALLOC |
1910 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1911 ~__GFP_RECLAIM, 0);
bac0382c 1912
7039e1db
PZ
1913 return newpage;
1914}
1915
1c30e017 1916static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1917{
340ef390 1918 int page_lru;
a8f60772 1919
309381fe 1920 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1921
7039e1db 1922 /* Avoid migrating to a node that is nearly full */
d8c6546b 1923 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 1924 return 0;
7039e1db 1925
340ef390
HD
1926 if (isolate_lru_page(page))
1927 return 0;
7039e1db 1928
340ef390
HD
1929 /*
1930 * migrate_misplaced_transhuge_page() skips page migration's usual
1931 * check on page_count(), so we must do it here, now that the page
1932 * has been isolated: a GUP pin, or any other pin, prevents migration.
1933 * The expected page count is 3: 1 for page's mapcount and 1 for the
1934 * caller's pin and 1 for the reference taken by isolate_lru_page().
1935 */
1936 if (PageTransHuge(page) && page_count(page) != 3) {
1937 putback_lru_page(page);
1938 return 0;
7039e1db
PZ
1939 }
1940
340ef390 1941 page_lru = page_is_file_cache(page);
599d0c95 1942 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1943 hpage_nr_pages(page));
1944
149c33e1 1945 /*
340ef390
HD
1946 * Isolating the page has taken another reference, so the
1947 * caller's reference can be safely dropped without the page
1948 * disappearing underneath us during migration.
149c33e1
MG
1949 */
1950 put_page(page);
340ef390 1951 return 1;
b32967ff
MG
1952}
1953
de466bd6
MG
1954bool pmd_trans_migrating(pmd_t pmd)
1955{
1956 struct page *page = pmd_page(pmd);
1957 return PageLocked(page);
1958}
1959
b32967ff
MG
1960/*
1961 * Attempt to migrate a misplaced page to the specified destination
1962 * node. Caller is expected to have an elevated reference count on
1963 * the page that will be dropped by this function before returning.
1964 */
1bc115d8
MG
1965int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1966 int node)
b32967ff
MG
1967{
1968 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1969 int isolated;
b32967ff
MG
1970 int nr_remaining;
1971 LIST_HEAD(migratepages);
1972
1973 /*
1bc115d8
MG
1974 * Don't migrate file pages that are mapped in multiple processes
1975 * with execute permissions as they are probably shared libraries.
b32967ff 1976 */
1bc115d8
MG
1977 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1978 (vma->vm_flags & VM_EXEC))
b32967ff 1979 goto out;
b32967ff 1980
09a913a7
MG
1981 /*
1982 * Also do not migrate dirty pages as not all filesystems can move
1983 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1984 */
1985 if (page_is_file_cache(page) && PageDirty(page))
1986 goto out;
1987
b32967ff
MG
1988 isolated = numamigrate_isolate_page(pgdat, page);
1989 if (!isolated)
1990 goto out;
1991
1992 list_add(&page->lru, &migratepages);
9c620e2b 1993 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1994 NULL, node, MIGRATE_ASYNC,
1995 MR_NUMA_MISPLACED);
b32967ff 1996 if (nr_remaining) {
59c82b70
JK
1997 if (!list_empty(&migratepages)) {
1998 list_del(&page->lru);
599d0c95 1999 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
2000 page_is_file_cache(page));
2001 putback_lru_page(page);
2002 }
b32967ff
MG
2003 isolated = 0;
2004 } else
2005 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2006 BUG_ON(!list_empty(&migratepages));
7039e1db 2007 return isolated;
340ef390
HD
2008
2009out:
2010 put_page(page);
2011 return 0;
7039e1db 2012}
220018d3 2013#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2014
220018d3 2015#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2016/*
2017 * Migrates a THP to a given target node. page must be locked and is unlocked
2018 * before returning.
2019 */
b32967ff
MG
2020int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2021 struct vm_area_struct *vma,
2022 pmd_t *pmd, pmd_t entry,
2023 unsigned long address,
2024 struct page *page, int node)
2025{
c4088ebd 2026 spinlock_t *ptl;
b32967ff
MG
2027 pg_data_t *pgdat = NODE_DATA(node);
2028 int isolated = 0;
2029 struct page *new_page = NULL;
b32967ff 2030 int page_lru = page_is_file_cache(page);
7066f0f9 2031 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2032
b32967ff 2033 new_page = alloc_pages_node(node,
25160354 2034 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2035 HPAGE_PMD_ORDER);
340ef390
HD
2036 if (!new_page)
2037 goto out_fail;
9a982250 2038 prep_transhuge_page(new_page);
340ef390 2039
b32967ff 2040 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2041 if (!isolated) {
b32967ff 2042 put_page(new_page);
340ef390 2043 goto out_fail;
b32967ff 2044 }
b0943d61 2045
b32967ff 2046 /* Prepare a page as a migration target */
48c935ad 2047 __SetPageLocked(new_page);
d44d363f
SL
2048 if (PageSwapBacked(page))
2049 __SetPageSwapBacked(new_page);
b32967ff
MG
2050
2051 /* anon mapping, we can simply copy page->mapping to the new page: */
2052 new_page->mapping = page->mapping;
2053 new_page->index = page->index;
7eef5f97
AA
2054 /* flush the cache before copying using the kernel virtual address */
2055 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2056 migrate_page_copy(new_page, page);
2057 WARN_ON(PageLRU(new_page));
2058
2059 /* Recheck the target PMD */
c4088ebd 2060 ptl = pmd_lock(mm, pmd);
f4e177d1 2061 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2062 spin_unlock(ptl);
b32967ff
MG
2063
2064 /* Reverse changes made by migrate_page_copy() */
2065 if (TestClearPageActive(new_page))
2066 SetPageActive(page);
2067 if (TestClearPageUnevictable(new_page))
2068 SetPageUnevictable(page);
b32967ff
MG
2069
2070 unlock_page(new_page);
2071 put_page(new_page); /* Free it */
2072
a54a407f
MG
2073 /* Retake the callers reference and putback on LRU */
2074 get_page(page);
b32967ff 2075 putback_lru_page(page);
599d0c95 2076 mod_node_page_state(page_pgdat(page),
a54a407f 2077 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2078
2079 goto out_unlock;
b32967ff
MG
2080 }
2081
10102459 2082 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2083 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2084
2b4847e7 2085 /*
d7c33934
AA
2086 * Overwrite the old entry under pagetable lock and establish
2087 * the new PTE. Any parallel GUP will either observe the old
2088 * page blocking on the page lock, block on the page table
2089 * lock or observe the new page. The SetPageUptodate on the
2090 * new page and page_add_new_anon_rmap guarantee the copy is
2091 * visible before the pagetable update.
2b4847e7 2092 */
7066f0f9 2093 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2094 /*
2095 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2096 * has already been flushed globally. So no TLB can be currently
2097 * caching this non present pmd mapping. There's no need to clear the
2098 * pmd before doing set_pmd_at(), nor to flush the TLB after
2099 * set_pmd_at(). Clearing the pmd here would introduce a race
2100 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2101 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2102 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2103 * pmd.
2104 */
7066f0f9 2105 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2106 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2107
f4e177d1 2108 page_ref_unfreeze(page, 2);
51afb12b 2109 mlock_migrate_page(new_page, page);
d281ee61 2110 page_remove_rmap(page, true);
7cd12b4a 2111 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2112
c4088ebd 2113 spin_unlock(ptl);
b32967ff 2114
11de9927
MG
2115 /* Take an "isolate" reference and put new page on the LRU. */
2116 get_page(new_page);
2117 putback_lru_page(new_page);
2118
b32967ff
MG
2119 unlock_page(new_page);
2120 unlock_page(page);
2121 put_page(page); /* Drop the rmap reference */
2122 put_page(page); /* Drop the LRU isolation reference */
2123
2124 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2125 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2126
599d0c95 2127 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2128 NR_ISOLATED_ANON + page_lru,
2129 -HPAGE_PMD_NR);
2130 return isolated;
2131
340ef390
HD
2132out_fail:
2133 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2134 ptl = pmd_lock(mm, pmd);
2135 if (pmd_same(*pmd, entry)) {
4d942466 2136 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2137 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2138 update_mmu_cache_pmd(vma, address, &entry);
2139 }
2140 spin_unlock(ptl);
a54a407f 2141
eb4489f6 2142out_unlock:
340ef390 2143 unlock_page(page);
b32967ff 2144 put_page(page);
b32967ff
MG
2145 return 0;
2146}
7039e1db
PZ
2147#endif /* CONFIG_NUMA_BALANCING */
2148
2149#endif /* CONFIG_NUMA */
8763cb45 2150
9b2ed9cb 2151#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2152static int migrate_vma_collect_hole(unsigned long start,
2153 unsigned long end,
2154 struct mm_walk *walk)
2155{
2156 struct migrate_vma *migrate = walk->private;
2157 unsigned long addr;
2158
872ea707 2159 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2160 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2161 migrate->dst[migrate->npages] = 0;
e20d103b 2162 migrate->npages++;
8315ada7
JG
2163 migrate->cpages++;
2164 }
2165
2166 return 0;
2167}
2168
2169static int migrate_vma_collect_skip(unsigned long start,
2170 unsigned long end,
2171 struct mm_walk *walk)
2172{
2173 struct migrate_vma *migrate = walk->private;
2174 unsigned long addr;
2175
872ea707 2176 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2177 migrate->dst[migrate->npages] = 0;
2178 migrate->src[migrate->npages++] = 0;
2179 }
2180
2181 return 0;
2182}
2183
2184static int migrate_vma_collect_pmd(pmd_t *pmdp,
2185 unsigned long start,
2186 unsigned long end,
2187 struct mm_walk *walk)
2188{
2189 struct migrate_vma *migrate = walk->private;
2190 struct vm_area_struct *vma = walk->vma;
2191 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2192 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2193 spinlock_t *ptl;
2194 pte_t *ptep;
2195
2196again:
2197 if (pmd_none(*pmdp))
2198 return migrate_vma_collect_hole(start, end, walk);
2199
2200 if (pmd_trans_huge(*pmdp)) {
2201 struct page *page;
2202
2203 ptl = pmd_lock(mm, pmdp);
2204 if (unlikely(!pmd_trans_huge(*pmdp))) {
2205 spin_unlock(ptl);
2206 goto again;
2207 }
2208
2209 page = pmd_page(*pmdp);
2210 if (is_huge_zero_page(page)) {
2211 spin_unlock(ptl);
2212 split_huge_pmd(vma, pmdp, addr);
2213 if (pmd_trans_unstable(pmdp))
8315ada7 2214 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2215 walk);
2216 } else {
2217 int ret;
2218
2219 get_page(page);
2220 spin_unlock(ptl);
2221 if (unlikely(!trylock_page(page)))
8315ada7 2222 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2223 walk);
2224 ret = split_huge_page(page);
2225 unlock_page(page);
2226 put_page(page);
8315ada7
JG
2227 if (ret)
2228 return migrate_vma_collect_skip(start, end,
2229 walk);
2230 if (pmd_none(*pmdp))
8763cb45
JG
2231 return migrate_vma_collect_hole(start, end,
2232 walk);
2233 }
2234 }
2235
2236 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2237 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2238
2239 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2240 arch_enter_lazy_mmu_mode();
2241
8763cb45
JG
2242 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2243 unsigned long mpfn, pfn;
2244 struct page *page;
8c3328f1 2245 swp_entry_t entry;
8763cb45
JG
2246 pte_t pte;
2247
2248 pte = *ptep;
8763cb45 2249
a5430dda 2250 if (pte_none(pte)) {
8315ada7
JG
2251 mpfn = MIGRATE_PFN_MIGRATE;
2252 migrate->cpages++;
8763cb45
JG
2253 goto next;
2254 }
2255
a5430dda 2256 if (!pte_present(pte)) {
276f756d 2257 mpfn = 0;
a5430dda
JG
2258
2259 /*
2260 * Only care about unaddressable device page special
2261 * page table entry. Other special swap entries are not
2262 * migratable, and we ignore regular swapped page.
2263 */
2264 entry = pte_to_swp_entry(pte);
2265 if (!is_device_private_entry(entry))
2266 goto next;
2267
2268 page = device_private_entry_to_page(entry);
06d462be
CH
2269 mpfn = migrate_pfn(page_to_pfn(page)) |
2270 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2271 if (is_write_device_private_entry(entry))
2272 mpfn |= MIGRATE_PFN_WRITE;
2273 } else {
276f756d 2274 pfn = pte_pfn(pte);
8315ada7
JG
2275 if (is_zero_pfn(pfn)) {
2276 mpfn = MIGRATE_PFN_MIGRATE;
2277 migrate->cpages++;
8315ada7
JG
2278 goto next;
2279 }
25b2995a 2280 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2281 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2282 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2283 }
2284
8763cb45 2285 /* FIXME support THP */
8763cb45 2286 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2287 mpfn = 0;
8763cb45
JG
2288 goto next;
2289 }
2290
2291 /*
2292 * By getting a reference on the page we pin it and that blocks
2293 * any kind of migration. Side effect is that it "freezes" the
2294 * pte.
2295 *
2296 * We drop this reference after isolating the page from the lru
2297 * for non device page (device page are not on the lru and thus
2298 * can't be dropped from it).
2299 */
2300 get_page(page);
2301 migrate->cpages++;
8763cb45 2302
8c3328f1
JG
2303 /*
2304 * Optimize for the common case where page is only mapped once
2305 * in one process. If we can lock the page, then we can safely
2306 * set up a special migration page table entry now.
2307 */
2308 if (trylock_page(page)) {
2309 pte_t swp_pte;
2310
2311 mpfn |= MIGRATE_PFN_LOCKED;
2312 ptep_get_and_clear(mm, addr, ptep);
2313
2314 /* Setup special migration page table entry */
07707125
RC
2315 entry = make_migration_entry(page, mpfn &
2316 MIGRATE_PFN_WRITE);
8c3328f1
JG
2317 swp_pte = swp_entry_to_pte(entry);
2318 if (pte_soft_dirty(pte))
2319 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2320 set_pte_at(mm, addr, ptep, swp_pte);
2321
2322 /*
2323 * This is like regular unmap: we remove the rmap and
2324 * drop page refcount. Page won't be freed, as we took
2325 * a reference just above.
2326 */
2327 page_remove_rmap(page, false);
2328 put_page(page);
a5430dda
JG
2329
2330 if (pte_present(pte))
2331 unmapped++;
8c3328f1
JG
2332 }
2333
8763cb45 2334next:
a5430dda 2335 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2336 migrate->src[migrate->npages++] = mpfn;
2337 }
8c3328f1 2338 arch_leave_lazy_mmu_mode();
8763cb45
JG
2339 pte_unmap_unlock(ptep - 1, ptl);
2340
8c3328f1
JG
2341 /* Only flush the TLB if we actually modified any entries */
2342 if (unmapped)
2343 flush_tlb_range(walk->vma, start, end);
2344
8763cb45
JG
2345 return 0;
2346}
2347
7b86ac33
CH
2348static const struct mm_walk_ops migrate_vma_walk_ops = {
2349 .pmd_entry = migrate_vma_collect_pmd,
2350 .pte_hole = migrate_vma_collect_hole,
2351};
2352
8763cb45
JG
2353/*
2354 * migrate_vma_collect() - collect pages over a range of virtual addresses
2355 * @migrate: migrate struct containing all migration information
2356 *
2357 * This will walk the CPU page table. For each virtual address backed by a
2358 * valid page, it updates the src array and takes a reference on the page, in
2359 * order to pin the page until we lock it and unmap it.
2360 */
2361static void migrate_vma_collect(struct migrate_vma *migrate)
2362{
ac46d4f3 2363 struct mmu_notifier_range range;
8763cb45 2364
7b86ac33
CH
2365 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2366 migrate->vma->vm_mm, migrate->start, migrate->end);
ac46d4f3 2367 mmu_notifier_invalidate_range_start(&range);
8763cb45 2368
7b86ac33
CH
2369 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2370 &migrate_vma_walk_ops, migrate);
2371
2372 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2373 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2374}
2375
2376/*
2377 * migrate_vma_check_page() - check if page is pinned or not
2378 * @page: struct page to check
2379 *
2380 * Pinned pages cannot be migrated. This is the same test as in
2381 * migrate_page_move_mapping(), except that here we allow migration of a
2382 * ZONE_DEVICE page.
2383 */
2384static bool migrate_vma_check_page(struct page *page)
2385{
2386 /*
2387 * One extra ref because caller holds an extra reference, either from
2388 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2389 * a device page.
2390 */
2391 int extra = 1;
2392
2393 /*
2394 * FIXME support THP (transparent huge page), it is bit more complex to
2395 * check them than regular pages, because they can be mapped with a pmd
2396 * or with a pte (split pte mapping).
2397 */
2398 if (PageCompound(page))
2399 return false;
2400
a5430dda
JG
2401 /* Page from ZONE_DEVICE have one extra reference */
2402 if (is_zone_device_page(page)) {
2403 /*
2404 * Private page can never be pin as they have no valid pte and
2405 * GUP will fail for those. Yet if there is a pending migration
2406 * a thread might try to wait on the pte migration entry and
2407 * will bump the page reference count. Sadly there is no way to
2408 * differentiate a regular pin from migration wait. Hence to
2409 * avoid 2 racing thread trying to migrate back to CPU to enter
2410 * infinite loop (one stoping migration because the other is
2411 * waiting on pte migration entry). We always return true here.
2412 *
2413 * FIXME proper solution is to rework migration_entry_wait() so
2414 * it does not need to take a reference on page.
2415 */
25b2995a 2416 return is_device_private_page(page);
a5430dda
JG
2417 }
2418
df6ad698
JG
2419 /* For file back page */
2420 if (page_mapping(page))
2421 extra += 1 + page_has_private(page);
2422
8763cb45
JG
2423 if ((page_count(page) - extra) > page_mapcount(page))
2424 return false;
2425
2426 return true;
2427}
2428
2429/*
2430 * migrate_vma_prepare() - lock pages and isolate them from the lru
2431 * @migrate: migrate struct containing all migration information
2432 *
2433 * This locks pages that have been collected by migrate_vma_collect(). Once each
2434 * page is locked it is isolated from the lru (for non-device pages). Finally,
2435 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2436 * migrated by concurrent kernel threads.
2437 */
2438static void migrate_vma_prepare(struct migrate_vma *migrate)
2439{
2440 const unsigned long npages = migrate->npages;
8c3328f1
JG
2441 const unsigned long start = migrate->start;
2442 unsigned long addr, i, restore = 0;
8763cb45 2443 bool allow_drain = true;
8763cb45
JG
2444
2445 lru_add_drain();
2446
2447 for (i = 0; (i < npages) && migrate->cpages; i++) {
2448 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2449 bool remap = true;
8763cb45
JG
2450
2451 if (!page)
2452 continue;
2453
8c3328f1
JG
2454 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2455 /*
2456 * Because we are migrating several pages there can be
2457 * a deadlock between 2 concurrent migration where each
2458 * are waiting on each other page lock.
2459 *
2460 * Make migrate_vma() a best effort thing and backoff
2461 * for any page we can not lock right away.
2462 */
2463 if (!trylock_page(page)) {
2464 migrate->src[i] = 0;
2465 migrate->cpages--;
2466 put_page(page);
2467 continue;
2468 }
2469 remap = false;
2470 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2471 }
8763cb45 2472
a5430dda
JG
2473 /* ZONE_DEVICE pages are not on LRU */
2474 if (!is_zone_device_page(page)) {
2475 if (!PageLRU(page) && allow_drain) {
2476 /* Drain CPU's pagevec */
2477 lru_add_drain_all();
2478 allow_drain = false;
2479 }
8763cb45 2480
a5430dda
JG
2481 if (isolate_lru_page(page)) {
2482 if (remap) {
2483 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2484 migrate->cpages--;
2485 restore++;
2486 } else {
2487 migrate->src[i] = 0;
2488 unlock_page(page);
2489 migrate->cpages--;
2490 put_page(page);
2491 }
2492 continue;
8c3328f1 2493 }
a5430dda
JG
2494
2495 /* Drop the reference we took in collect */
2496 put_page(page);
8763cb45
JG
2497 }
2498
2499 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2500 if (remap) {
2501 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2502 migrate->cpages--;
2503 restore++;
8763cb45 2504
a5430dda
JG
2505 if (!is_zone_device_page(page)) {
2506 get_page(page);
2507 putback_lru_page(page);
2508 }
8c3328f1
JG
2509 } else {
2510 migrate->src[i] = 0;
2511 unlock_page(page);
2512 migrate->cpages--;
2513
a5430dda
JG
2514 if (!is_zone_device_page(page))
2515 putback_lru_page(page);
2516 else
2517 put_page(page);
8c3328f1 2518 }
8763cb45
JG
2519 }
2520 }
8c3328f1
JG
2521
2522 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2523 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2524
2525 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526 continue;
2527
2528 remove_migration_pte(page, migrate->vma, addr, page);
2529
2530 migrate->src[i] = 0;
2531 unlock_page(page);
2532 put_page(page);
2533 restore--;
2534 }
8763cb45
JG
2535}
2536
2537/*
2538 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2539 * @migrate: migrate struct containing all migration information
2540 *
2541 * Replace page mapping (CPU page table pte) with a special migration pte entry
2542 * and check again if it has been pinned. Pinned pages are restored because we
2543 * cannot migrate them.
2544 *
2545 * This is the last step before we call the device driver callback to allocate
2546 * destination memory and copy contents of original page over to new page.
2547 */
2548static void migrate_vma_unmap(struct migrate_vma *migrate)
2549{
2550 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2551 const unsigned long npages = migrate->npages;
2552 const unsigned long start = migrate->start;
2553 unsigned long addr, i, restore = 0;
2554
2555 for (i = 0; i < npages; i++) {
2556 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2557
2558 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2559 continue;
2560
8c3328f1
JG
2561 if (page_mapped(page)) {
2562 try_to_unmap(page, flags);
2563 if (page_mapped(page))
2564 goto restore;
8763cb45 2565 }
8c3328f1
JG
2566
2567 if (migrate_vma_check_page(page))
2568 continue;
2569
2570restore:
2571 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2572 migrate->cpages--;
2573 restore++;
8763cb45
JG
2574 }
2575
2576 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2577 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2578
2579 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2580 continue;
2581
2582 remove_migration_ptes(page, page, false);
2583
2584 migrate->src[i] = 0;
2585 unlock_page(page);
2586 restore--;
2587
a5430dda
JG
2588 if (is_zone_device_page(page))
2589 put_page(page);
2590 else
2591 putback_lru_page(page);
8763cb45
JG
2592 }
2593}
2594
a7d1f22b
CH
2595/**
2596 * migrate_vma_setup() - prepare to migrate a range of memory
2597 * @args: contains the vma, start, and and pfns arrays for the migration
2598 *
2599 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2600 * without an error.
2601 *
2602 * Prepare to migrate a range of memory virtual address range by collecting all
2603 * the pages backing each virtual address in the range, saving them inside the
2604 * src array. Then lock those pages and unmap them. Once the pages are locked
2605 * and unmapped, check whether each page is pinned or not. Pages that aren't
2606 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2607 * corresponding src array entry. Then restores any pages that are pinned, by
2608 * remapping and unlocking those pages.
2609 *
2610 * The caller should then allocate destination memory and copy source memory to
2611 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2612 * flag set). Once these are allocated and copied, the caller must update each
2613 * corresponding entry in the dst array with the pfn value of the destination
2614 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2615 * (destination pages must have their struct pages locked, via lock_page()).
2616 *
2617 * Note that the caller does not have to migrate all the pages that are marked
2618 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2619 * device memory to system memory. If the caller cannot migrate a device page
2620 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2621 * consequences for the userspace process, so it must be avoided if at all
2622 * possible.
2623 *
2624 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2625 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2626 * allowing the caller to allocate device memory for those unback virtual
2627 * address. For this the caller simply has to allocate device memory and
2628 * properly set the destination entry like for regular migration. Note that
2629 * this can still fails and thus inside the device driver must check if the
2630 * migration was successful for those entries after calling migrate_vma_pages()
2631 * just like for regular migration.
2632 *
2633 * After that, the callers must call migrate_vma_pages() to go over each entry
2634 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2635 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2636 * then migrate_vma_pages() to migrate struct page information from the source
2637 * struct page to the destination struct page. If it fails to migrate the
2638 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2639 * src array.
2640 *
2641 * At this point all successfully migrated pages have an entry in the src
2642 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2643 * array entry with MIGRATE_PFN_VALID flag set.
2644 *
2645 * Once migrate_vma_pages() returns the caller may inspect which pages were
2646 * successfully migrated, and which were not. Successfully migrated pages will
2647 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2648 *
2649 * It is safe to update device page table after migrate_vma_pages() because
2650 * both destination and source page are still locked, and the mmap_sem is held
2651 * in read mode (hence no one can unmap the range being migrated).
2652 *
2653 * Once the caller is done cleaning up things and updating its page table (if it
2654 * chose to do so, this is not an obligation) it finally calls
2655 * migrate_vma_finalize() to update the CPU page table to point to new pages
2656 * for successfully migrated pages or otherwise restore the CPU page table to
2657 * point to the original source pages.
2658 */
2659int migrate_vma_setup(struct migrate_vma *args)
2660{
2661 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2662
2663 args->start &= PAGE_MASK;
2664 args->end &= PAGE_MASK;
2665 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2666 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2667 return -EINVAL;
2668 if (nr_pages <= 0)
2669 return -EINVAL;
2670 if (args->start < args->vma->vm_start ||
2671 args->start >= args->vma->vm_end)
2672 return -EINVAL;
2673 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2674 return -EINVAL;
2675 if (!args->src || !args->dst)
2676 return -EINVAL;
2677
2678 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2679 args->cpages = 0;
2680 args->npages = 0;
2681
2682 migrate_vma_collect(args);
2683
2684 if (args->cpages)
2685 migrate_vma_prepare(args);
2686 if (args->cpages)
2687 migrate_vma_unmap(args);
2688
2689 /*
2690 * At this point pages are locked and unmapped, and thus they have
2691 * stable content and can safely be copied to destination memory that
2692 * is allocated by the drivers.
2693 */
2694 return 0;
2695
2696}
2697EXPORT_SYMBOL(migrate_vma_setup);
2698
34290e2c
RC
2699/*
2700 * This code closely matches the code in:
2701 * __handle_mm_fault()
2702 * handle_pte_fault()
2703 * do_anonymous_page()
2704 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2705 * private page.
2706 */
8315ada7
JG
2707static void migrate_vma_insert_page(struct migrate_vma *migrate,
2708 unsigned long addr,
2709 struct page *page,
2710 unsigned long *src,
2711 unsigned long *dst)
2712{
2713 struct vm_area_struct *vma = migrate->vma;
2714 struct mm_struct *mm = vma->vm_mm;
2715 struct mem_cgroup *memcg;
2716 bool flush = false;
2717 spinlock_t *ptl;
2718 pte_t entry;
2719 pgd_t *pgdp;
2720 p4d_t *p4dp;
2721 pud_t *pudp;
2722 pmd_t *pmdp;
2723 pte_t *ptep;
2724
2725 /* Only allow populating anonymous memory */
2726 if (!vma_is_anonymous(vma))
2727 goto abort;
2728
2729 pgdp = pgd_offset(mm, addr);
2730 p4dp = p4d_alloc(mm, pgdp, addr);
2731 if (!p4dp)
2732 goto abort;
2733 pudp = pud_alloc(mm, p4dp, addr);
2734 if (!pudp)
2735 goto abort;
2736 pmdp = pmd_alloc(mm, pudp, addr);
2737 if (!pmdp)
2738 goto abort;
2739
2740 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2741 goto abort;
2742
2743 /*
2744 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2745 * pte_offset_map() on pmds where a huge pmd might be created
2746 * from a different thread.
2747 *
2748 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2749 * parallel threads are excluded by other means.
2750 *
2751 * Here we only have down_read(mmap_sem).
2752 */
4cf58924 2753 if (pte_alloc(mm, pmdp))
8315ada7
JG
2754 goto abort;
2755
2756 /* See the comment in pte_alloc_one_map() */
2757 if (unlikely(pmd_trans_unstable(pmdp)))
2758 goto abort;
2759
2760 if (unlikely(anon_vma_prepare(vma)))
2761 goto abort;
2762 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2763 goto abort;
2764
2765 /*
2766 * The memory barrier inside __SetPageUptodate makes sure that
2767 * preceding stores to the page contents become visible before
2768 * the set_pte_at() write.
2769 */
2770 __SetPageUptodate(page);
2771
df6ad698
JG
2772 if (is_zone_device_page(page)) {
2773 if (is_device_private_page(page)) {
2774 swp_entry_t swp_entry;
2775
2776 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2777 entry = swp_entry_to_pte(swp_entry);
df6ad698 2778 }
8315ada7
JG
2779 } else {
2780 entry = mk_pte(page, vma->vm_page_prot);
2781 if (vma->vm_flags & VM_WRITE)
2782 entry = pte_mkwrite(pte_mkdirty(entry));
2783 }
2784
2785 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2786
34290e2c
RC
2787 if (check_stable_address_space(mm))
2788 goto unlock_abort;
2789
8315ada7
JG
2790 if (pte_present(*ptep)) {
2791 unsigned long pfn = pte_pfn(*ptep);
2792
c23a0c99
RC
2793 if (!is_zero_pfn(pfn))
2794 goto unlock_abort;
8315ada7 2795 flush = true;
c23a0c99
RC
2796 } else if (!pte_none(*ptep))
2797 goto unlock_abort;
8315ada7
JG
2798
2799 /*
c23a0c99 2800 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2801 * just back off.
2802 */
c23a0c99
RC
2803 if (userfaultfd_missing(vma))
2804 goto unlock_abort;
8315ada7
JG
2805
2806 inc_mm_counter(mm, MM_ANONPAGES);
2807 page_add_new_anon_rmap(page, vma, addr, false);
2808 mem_cgroup_commit_charge(page, memcg, false, false);
2809 if (!is_zone_device_page(page))
2810 lru_cache_add_active_or_unevictable(page, vma);
2811 get_page(page);
2812
2813 if (flush) {
2814 flush_cache_page(vma, addr, pte_pfn(*ptep));
2815 ptep_clear_flush_notify(vma, addr, ptep);
2816 set_pte_at_notify(mm, addr, ptep, entry);
2817 update_mmu_cache(vma, addr, ptep);
2818 } else {
2819 /* No need to invalidate - it was non-present before */
2820 set_pte_at(mm, addr, ptep, entry);
2821 update_mmu_cache(vma, addr, ptep);
2822 }
2823
2824 pte_unmap_unlock(ptep, ptl);
2825 *src = MIGRATE_PFN_MIGRATE;
2826 return;
2827
c23a0c99
RC
2828unlock_abort:
2829 pte_unmap_unlock(ptep, ptl);
2830 mem_cgroup_cancel_charge(page, memcg, false);
8315ada7
JG
2831abort:
2832 *src &= ~MIGRATE_PFN_MIGRATE;
2833}
2834
a7d1f22b 2835/**
8763cb45
JG
2836 * migrate_vma_pages() - migrate meta-data from src page to dst page
2837 * @migrate: migrate struct containing all migration information
2838 *
2839 * This migrates struct page meta-data from source struct page to destination
2840 * struct page. This effectively finishes the migration from source page to the
2841 * destination page.
2842 */
a7d1f22b 2843void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2844{
2845 const unsigned long npages = migrate->npages;
2846 const unsigned long start = migrate->start;
ac46d4f3
JG
2847 struct mmu_notifier_range range;
2848 unsigned long addr, i;
8315ada7 2849 bool notified = false;
8763cb45
JG
2850
2851 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2852 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2854 struct address_space *mapping;
2855 int r;
2856
8315ada7
JG
2857 if (!newpage) {
2858 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2859 continue;
8315ada7
JG
2860 }
2861
2862 if (!page) {
c23a0c99 2863 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 2864 continue;
8315ada7 2865 if (!notified) {
8315ada7 2866 notified = true;
ac46d4f3
JG
2867
2868 mmu_notifier_range_init(&range,
7269f999 2869 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 2870 NULL,
ac46d4f3
JG
2871 migrate->vma->vm_mm,
2872 addr, migrate->end);
2873 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2874 }
2875 migrate_vma_insert_page(migrate, addr, newpage,
2876 &migrate->src[i],
2877 &migrate->dst[i]);
8763cb45 2878 continue;
8315ada7 2879 }
8763cb45
JG
2880
2881 mapping = page_mapping(page);
2882
a5430dda
JG
2883 if (is_zone_device_page(newpage)) {
2884 if (is_device_private_page(newpage)) {
2885 /*
2886 * For now only support private anonymous when
2887 * migrating to un-addressable device memory.
2888 */
2889 if (mapping) {
2890 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2891 continue;
2892 }
25b2995a 2893 } else {
a5430dda
JG
2894 /*
2895 * Other types of ZONE_DEVICE page are not
2896 * supported.
2897 */
2898 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2899 continue;
2900 }
2901 }
2902
8763cb45
JG
2903 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2904 if (r != MIGRATEPAGE_SUCCESS)
2905 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2906 }
8315ada7 2907
4645b9fe
JG
2908 /*
2909 * No need to double call mmu_notifier->invalidate_range() callback as
2910 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2911 * did already call it.
2912 */
8315ada7 2913 if (notified)
ac46d4f3 2914 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 2915}
a7d1f22b 2916EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 2917
a7d1f22b 2918/**
8763cb45
JG
2919 * migrate_vma_finalize() - restore CPU page table entry
2920 * @migrate: migrate struct containing all migration information
2921 *
2922 * This replaces the special migration pte entry with either a mapping to the
2923 * new page if migration was successful for that page, or to the original page
2924 * otherwise.
2925 *
2926 * This also unlocks the pages and puts them back on the lru, or drops the extra
2927 * refcount, for device pages.
2928 */
a7d1f22b 2929void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
2930{
2931 const unsigned long npages = migrate->npages;
2932 unsigned long i;
2933
2934 for (i = 0; i < npages; i++) {
2935 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2936 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2937
8315ada7
JG
2938 if (!page) {
2939 if (newpage) {
2940 unlock_page(newpage);
2941 put_page(newpage);
2942 }
8763cb45 2943 continue;
8315ada7
JG
2944 }
2945
8763cb45
JG
2946 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2947 if (newpage) {
2948 unlock_page(newpage);
2949 put_page(newpage);
2950 }
2951 newpage = page;
2952 }
2953
2954 remove_migration_ptes(page, newpage, false);
2955 unlock_page(page);
2956 migrate->cpages--;
2957
a5430dda
JG
2958 if (is_zone_device_page(page))
2959 put_page(page);
2960 else
2961 putback_lru_page(page);
8763cb45
JG
2962
2963 if (newpage != page) {
2964 unlock_page(newpage);
a5430dda
JG
2965 if (is_zone_device_page(newpage))
2966 put_page(newpage);
2967 else
2968 putback_lru_page(newpage);
8763cb45
JG
2969 }
2970 }
2971}
a7d1f22b 2972EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 2973#endif /* CONFIG_DEVICE_PRIVATE */