mm/migrate.c: fix comment spelling
[linux-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503
CL
64 */
65int migrate_prep(void)
66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
748446bb
MG
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
9e5bcd61 86int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 105 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
9e5bcd61 137 return 0;
bda807d4
MK
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
9e5bcd61 144 return -EBUSY;
bda807d4
MK
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
5733c7d1
RA
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
59c82b70
JK
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
5733c7d1
RA
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
b20a3503 174 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
e24f0b8f 179 list_del(&page->lru);
bda807d4
MK
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
b1123ea6 185 if (unlikely(__PageMovable(page))) {
bda807d4
MK
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
e8db67eb 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 196 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 197 putback_lru_page(page);
bda807d4 198 }
b20a3503 199 }
b20a3503
CL
200}
201
0697212a
CL
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
e4b82222 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 206 unsigned long addr, void *old)
0697212a 207{
3fe87967
KS
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
0697212a 216 swp_entry_t entry;
0697212a 217
3fe87967
KS
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
0697212a 225
616b8371
ZY
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
3fe87967
KS
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
0697212a 239
3fe87967
KS
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
d3cb8bf6 248
6128763f
RC
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
3d321bf8
RC
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 256 }
a5430dda 257
3ef8fd7f 258#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
383321ab
AK
267 } else
268#endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 271
383321ab
AK
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
3fe87967
KS
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
e125fe40
KS
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
3fe87967
KS
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
51afb12b 286
e4b82222 287 return true;
0697212a
CL
288}
289
04e62a29
CL
290/*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
e388466d 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 295{
051ac83a
JK
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
e388466d
KS
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
04e62a29
CL
305}
306
0697212a
CL
307/*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
0697212a 311 */
e66f17ff 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 313 spinlock_t *ptl)
0697212a 314{
30dad309 315 pte_t pte;
0697212a
CL
316 swp_entry_t entry;
317 struct page *page;
318
30dad309 319 spin_lock(ptl);
0697212a
CL
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329
e286781d 330 /*
89eb946a 331 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
0697212a 337 pte_unmap_unlock(ptep, ptl);
9a1ea439 338 put_and_wait_on_page_locked(page);
0697212a
CL
339 return;
340out:
341 pte_unmap_unlock(ptep, ptl);
342}
343
30dad309
NH
344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
346{
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
350}
351
cb900f41
KS
352void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
30dad309 354{
cb900f41 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
356 __migration_entry_wait(mm, pte, ptl);
357}
358
616b8371
ZY
359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361{
362 spinlock_t *ptl;
363 struct page *page;
364
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
9a1ea439 372 put_and_wait_on_page_locked(page);
616b8371
ZY
373 return;
374unlock:
375 spin_unlock(ptl);
376}
377#endif
378
f900482d 379static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
380{
381 int expected_count = 1;
382
383 /*
f1f4f3ab 384 * Device private pages have an extra refcount as they are
0b3901b3
JK
385 * ZONE_DEVICE pages.
386 */
387 expected_count += is_device_private_page(page);
f900482d 388 if (mapping)
6c357848 389 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
390
391 return expected_count;
392}
393
b20a3503 394/*
c3fcf8a5 395 * Replace the page in the mapping.
5b5c7120
CL
396 *
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
266cf658 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 401 */
36bc08cc 402int migrate_page_move_mapping(struct address_space *mapping,
37109694 403 struct page *newpage, struct page *page, int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
f900482d 408 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
6c357848 444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 467 xas_next(&xas);
4101196b 468 xas_store(&xas, newpage);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
6c357848 477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
0d1c2072
JW
493 struct lruvec *old_lruvec, *new_lruvec;
494 struct mem_cgroup *memcg;
495
496 memcg = page_memcg(page);
497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
42cb14b1 502 if (PageSwapBacked(page) && !PageSwapCache(page)) {
0d1c2072
JW
503 __dec_lruvec_state(old_lruvec, NR_SHMEM);
504 __inc_lruvec_state(new_lruvec, NR_SHMEM);
42cb14b1 505 }
f56753ac 506 if (dirty && mapping_can_writeback(mapping)) {
11fb9989 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 511 }
4b02108a 512 }
42cb14b1 513 local_irq_enable();
b20a3503 514
78bd5209 515 return MIGRATEPAGE_SUCCESS;
b20a3503 516}
1118dce7 517EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 518
290408d4
NH
519/*
520 * The expected number of remaining references is the same as that
521 * of migrate_page_move_mapping().
522 */
523int migrate_huge_page_move_mapping(struct address_space *mapping,
524 struct page *newpage, struct page *page)
525{
89eb946a 526 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 527 int expected_count;
290408d4 528
89eb946a 529 xas_lock_irq(&xas);
290408d4 530 expected_count = 2 + page_has_private(page);
89eb946a
MW
531 if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 xas_unlock_irq(&xas);
290408d4
NH
533 return -EAGAIN;
534 }
535
fe896d18 536 if (!page_ref_freeze(page, expected_count)) {
89eb946a 537 xas_unlock_irq(&xas);
290408d4
NH
538 return -EAGAIN;
539 }
540
cf4b769a
HD
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
6a93ca8f 543
290408d4
NH
544 get_page(newpage);
545
89eb946a 546 xas_store(&xas, newpage);
290408d4 547
fe896d18 548 page_ref_unfreeze(page, expected_count - 1);
290408d4 549
89eb946a 550 xas_unlock_irq(&xas);
6a93ca8f 551
78bd5209 552 return MIGRATEPAGE_SUCCESS;
290408d4
NH
553}
554
30b0a105
DH
555/*
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
559 */
560static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
562{
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
566
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
570
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
574 }
575}
576
577static void copy_huge_page(struct page *dst, struct page *src)
578{
579 int i;
580 int nr_pages;
581
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
586
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
590 }
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
6c357848 594 nr_pages = thp_nr_pages(src);
30b0a105
DH
595 }
596
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
600 }
601}
602
b20a3503
CL
603/*
604 * Copy the page to its new location
605 */
2916ecc0 606void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 607{
7851a45c
RR
608 int cpupid;
609
b20a3503
CL
610 if (PageError(page))
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
894bc310 616 if (TestClearPageActive(page)) {
309381fe 617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 618 SetPageActive(newpage);
418b27ef
LS
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
1899ad18
JW
621 if (PageWorkingset(page))
622 SetPageWorkingset(newpage);
b20a3503
CL
623 if (PageChecked(page))
624 SetPageChecked(newpage);
625 if (PageMappedToDisk(page))
626 SetPageMappedToDisk(newpage);
627
42cb14b1
HD
628 /* Move dirty on pages not done by migrate_page_move_mapping() */
629 if (PageDirty(page))
630 SetPageDirty(newpage);
b20a3503 631
33c3fc71
VD
632 if (page_is_young(page))
633 set_page_young(newpage);
634 if (page_is_idle(page))
635 set_page_idle(newpage);
636
7851a45c
RR
637 /*
638 * Copy NUMA information to the new page, to prevent over-eager
639 * future migrations of this same page.
640 */
641 cpupid = page_cpupid_xchg_last(page, -1);
642 page_cpupid_xchg_last(newpage, cpupid);
643
e9995ef9 644 ksm_migrate_page(newpage, page);
c8d6553b
HD
645 /*
646 * Please do not reorder this without considering how mm/ksm.c's
647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 */
b3b3a99c
NH
649 if (PageSwapCache(page))
650 ClearPageSwapCache(page);
b20a3503
CL
651 ClearPagePrivate(page);
652 set_page_private(page, 0);
b20a3503
CL
653
654 /*
655 * If any waiters have accumulated on the new page then
656 * wake them up.
657 */
658 if (PageWriteback(newpage))
659 end_page_writeback(newpage);
d435edca 660
6aeff241
YS
661 /*
662 * PG_readahead shares the same bit with PG_reclaim. The above
663 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 * bit after that.
665 */
666 if (PageReadahead(page))
667 SetPageReadahead(newpage);
668
d435edca 669 copy_page_owner(page, newpage);
74485cf2 670
a333e3e7
HD
671 if (!PageHuge(page))
672 mem_cgroup_migrate(page, newpage);
b20a3503 673}
2916ecc0
JG
674EXPORT_SYMBOL(migrate_page_states);
675
676void migrate_page_copy(struct page *newpage, struct page *page)
677{
678 if (PageHuge(page) || PageTransHuge(page))
679 copy_huge_page(newpage, page);
680 else
681 copy_highpage(newpage, page);
682
683 migrate_page_states(newpage, page);
684}
1118dce7 685EXPORT_SYMBOL(migrate_page_copy);
b20a3503 686
1d8b85cc
CL
687/************************************************************
688 * Migration functions
689 ***********************************************************/
690
b20a3503 691/*
bda807d4 692 * Common logic to directly migrate a single LRU page suitable for
266cf658 693 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
694 *
695 * Pages are locked upon entry and exit.
696 */
2d1db3b1 697int migrate_page(struct address_space *mapping,
a6bc32b8
MG
698 struct page *newpage, struct page *page,
699 enum migrate_mode mode)
b20a3503
CL
700{
701 int rc;
702
703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
704
37109694 705 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 706
78bd5209 707 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
708 return rc;
709
2916ecc0
JG
710 if (mode != MIGRATE_SYNC_NO_COPY)
711 migrate_page_copy(newpage, page);
712 else
713 migrate_page_states(newpage, page);
78bd5209 714 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
715}
716EXPORT_SYMBOL(migrate_page);
717
9361401e 718#ifdef CONFIG_BLOCK
84ade7c1
JK
719/* Returns true if all buffers are successfully locked */
720static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721 enum migrate_mode mode)
722{
723 struct buffer_head *bh = head;
724
725 /* Simple case, sync compaction */
726 if (mode != MIGRATE_ASYNC) {
727 do {
84ade7c1
JK
728 lock_buffer(bh);
729 bh = bh->b_this_page;
730
731 } while (bh != head);
732
733 return true;
734 }
735
736 /* async case, we cannot block on lock_buffer so use trylock_buffer */
737 do {
84ade7c1
JK
738 if (!trylock_buffer(bh)) {
739 /*
740 * We failed to lock the buffer and cannot stall in
741 * async migration. Release the taken locks
742 */
743 struct buffer_head *failed_bh = bh;
84ade7c1
JK
744 bh = head;
745 while (bh != failed_bh) {
746 unlock_buffer(bh);
84ade7c1
JK
747 bh = bh->b_this_page;
748 }
749 return false;
750 }
751
752 bh = bh->b_this_page;
753 } while (bh != head);
754 return true;
755}
756
89cb0888
JK
757static int __buffer_migrate_page(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode,
759 bool check_refs)
1d8b85cc 760{
1d8b85cc
CL
761 struct buffer_head *bh, *head;
762 int rc;
cc4f11e6 763 int expected_count;
1d8b85cc 764
1d8b85cc 765 if (!page_has_buffers(page))
a6bc32b8 766 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 767
cc4f11e6 768 /* Check whether page does not have extra refs before we do more work */
f900482d 769 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
770 if (page_count(page) != expected_count)
771 return -EAGAIN;
1d8b85cc 772
cc4f11e6
JK
773 head = page_buffers(page);
774 if (!buffer_migrate_lock_buffers(head, mode))
775 return -EAGAIN;
1d8b85cc 776
89cb0888
JK
777 if (check_refs) {
778 bool busy;
779 bool invalidated = false;
780
781recheck_buffers:
782 busy = false;
783 spin_lock(&mapping->private_lock);
784 bh = head;
785 do {
786 if (atomic_read(&bh->b_count)) {
787 busy = true;
788 break;
789 }
790 bh = bh->b_this_page;
791 } while (bh != head);
89cb0888
JK
792 if (busy) {
793 if (invalidated) {
794 rc = -EAGAIN;
795 goto unlock_buffers;
796 }
ebdf4de5 797 spin_unlock(&mapping->private_lock);
89cb0888
JK
798 invalidate_bh_lrus();
799 invalidated = true;
800 goto recheck_buffers;
801 }
802 }
803
37109694 804 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 805 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 806 goto unlock_buffers;
1d8b85cc 807
cd0f3715 808 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
809
810 bh = head;
811 do {
812 set_bh_page(bh, newpage, bh_offset(bh));
813 bh = bh->b_this_page;
814
815 } while (bh != head);
816
2916ecc0
JG
817 if (mode != MIGRATE_SYNC_NO_COPY)
818 migrate_page_copy(newpage, page);
819 else
820 migrate_page_states(newpage, page);
1d8b85cc 821
cc4f11e6
JK
822 rc = MIGRATEPAGE_SUCCESS;
823unlock_buffers:
ebdf4de5
JK
824 if (check_refs)
825 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
826 bh = head;
827 do {
828 unlock_buffer(bh);
1d8b85cc
CL
829 bh = bh->b_this_page;
830
831 } while (bh != head);
832
cc4f11e6 833 return rc;
1d8b85cc 834}
89cb0888
JK
835
836/*
837 * Migration function for pages with buffers. This function can only be used
838 * if the underlying filesystem guarantees that no other references to "page"
839 * exist. For example attached buffer heads are accessed only under page lock.
840 */
841int buffer_migrate_page(struct address_space *mapping,
842 struct page *newpage, struct page *page, enum migrate_mode mode)
843{
844 return __buffer_migrate_page(mapping, newpage, page, mode, false);
845}
1d8b85cc 846EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
847
848/*
849 * Same as above except that this variant is more careful and checks that there
850 * are also no buffer head references. This function is the right one for
851 * mappings where buffer heads are directly looked up and referenced (such as
852 * block device mappings).
853 */
854int buffer_migrate_page_norefs(struct address_space *mapping,
855 struct page *newpage, struct page *page, enum migrate_mode mode)
856{
857 return __buffer_migrate_page(mapping, newpage, page, mode, true);
858}
9361401e 859#endif
1d8b85cc 860
04e62a29
CL
861/*
862 * Writeback a page to clean the dirty state
863 */
864static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 865{
04e62a29
CL
866 struct writeback_control wbc = {
867 .sync_mode = WB_SYNC_NONE,
868 .nr_to_write = 1,
869 .range_start = 0,
870 .range_end = LLONG_MAX,
04e62a29
CL
871 .for_reclaim = 1
872 };
873 int rc;
874
875 if (!mapping->a_ops->writepage)
876 /* No write method for the address space */
877 return -EINVAL;
878
879 if (!clear_page_dirty_for_io(page))
880 /* Someone else already triggered a write */
881 return -EAGAIN;
882
8351a6e4 883 /*
04e62a29
CL
884 * A dirty page may imply that the underlying filesystem has
885 * the page on some queue. So the page must be clean for
886 * migration. Writeout may mean we loose the lock and the
887 * page state is no longer what we checked for earlier.
888 * At this point we know that the migration attempt cannot
889 * be successful.
8351a6e4 890 */
e388466d 891 remove_migration_ptes(page, page, false);
8351a6e4 892
04e62a29 893 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 894
04e62a29
CL
895 if (rc != AOP_WRITEPAGE_ACTIVATE)
896 /* unlocked. Relock */
897 lock_page(page);
898
bda8550d 899 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
900}
901
902/*
903 * Default handling if a filesystem does not provide a migration function.
904 */
905static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 906 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 907{
b969c4ab 908 if (PageDirty(page)) {
a6bc32b8 909 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
910 switch (mode) {
911 case MIGRATE_SYNC:
912 case MIGRATE_SYNC_NO_COPY:
913 break;
914 default:
b969c4ab 915 return -EBUSY;
2916ecc0 916 }
04e62a29 917 return writeout(mapping, page);
b969c4ab 918 }
8351a6e4
CL
919
920 /*
921 * Buffers may be managed in a filesystem specific way.
922 * We must have no buffers or drop them.
923 */
266cf658 924 if (page_has_private(page) &&
8351a6e4 925 !try_to_release_page(page, GFP_KERNEL))
806031bb 926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 927
a6bc32b8 928 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
929}
930
e24f0b8f
CL
931/*
932 * Move a page to a newly allocated page
933 * The page is locked and all ptes have been successfully removed.
934 *
935 * The new page will have replaced the old page if this function
936 * is successful.
894bc310
LS
937 *
938 * Return value:
939 * < 0 - error code
78bd5209 940 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 941 */
3fe2011f 942static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 943 enum migrate_mode mode)
e24f0b8f
CL
944{
945 struct address_space *mapping;
bda807d4
MK
946 int rc = -EAGAIN;
947 bool is_lru = !__PageMovable(page);
e24f0b8f 948
7db7671f
HD
949 VM_BUG_ON_PAGE(!PageLocked(page), page);
950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 951
e24f0b8f 952 mapping = page_mapping(page);
bda807d4
MK
953
954 if (likely(is_lru)) {
955 if (!mapping)
956 rc = migrate_page(mapping, newpage, page, mode);
957 else if (mapping->a_ops->migratepage)
958 /*
959 * Most pages have a mapping and most filesystems
960 * provide a migratepage callback. Anonymous pages
961 * are part of swap space which also has its own
962 * migratepage callback. This is the most common path
963 * for page migration.
964 */
965 rc = mapping->a_ops->migratepage(mapping, newpage,
966 page, mode);
967 else
968 rc = fallback_migrate_page(mapping, newpage,
969 page, mode);
970 } else {
e24f0b8f 971 /*
bda807d4
MK
972 * In case of non-lru page, it could be released after
973 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 974 */
bda807d4
MK
975 VM_BUG_ON_PAGE(!PageIsolated(page), page);
976 if (!PageMovable(page)) {
977 rc = MIGRATEPAGE_SUCCESS;
978 __ClearPageIsolated(page);
979 goto out;
980 }
981
982 rc = mapping->a_ops->migratepage(mapping, newpage,
983 page, mode);
984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985 !PageIsolated(page));
986 }
e24f0b8f 987
5c3f9a67
HD
988 /*
989 * When successful, old pagecache page->mapping must be cleared before
990 * page is freed; but stats require that PageAnon be left as PageAnon.
991 */
992 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
993 if (__PageMovable(page)) {
994 VM_BUG_ON_PAGE(!PageIsolated(page), page);
995
996 /*
997 * We clear PG_movable under page_lock so any compactor
998 * cannot try to migrate this page.
999 */
1000 __ClearPageIsolated(page);
1001 }
1002
1003 /*
c23a0c99 1004 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
1005 * free_pages_prepare so don't reset it here for keeping
1006 * the type to work PageAnon, for example.
1007 */
1008 if (!PageMappingFlags(page))
5c3f9a67 1009 page->mapping = NULL;
d2b2c6dd 1010
25b2995a 1011 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
1012 flush_dcache_page(newpage);
1013
3fe2011f 1014 }
bda807d4 1015out:
e24f0b8f
CL
1016 return rc;
1017}
1018
0dabec93 1019static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1020 int force, enum migrate_mode mode)
e24f0b8f 1021{
0dabec93 1022 int rc = -EAGAIN;
2ebba6b7 1023 int page_was_mapped = 0;
3f6c8272 1024 struct anon_vma *anon_vma = NULL;
bda807d4 1025 bool is_lru = !__PageMovable(page);
95a402c3 1026
529ae9aa 1027 if (!trylock_page(page)) {
a6bc32b8 1028 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1029 goto out;
3e7d3449
MG
1030
1031 /*
1032 * It's not safe for direct compaction to call lock_page.
1033 * For example, during page readahead pages are added locked
1034 * to the LRU. Later, when the IO completes the pages are
1035 * marked uptodate and unlocked. However, the queueing
1036 * could be merging multiple pages for one bio (e.g.
d4388340 1037 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1038 * second or third page, the process can end up locking
1039 * the same page twice and deadlocking. Rather than
1040 * trying to be clever about what pages can be locked,
1041 * avoid the use of lock_page for direct compaction
1042 * altogether.
1043 */
1044 if (current->flags & PF_MEMALLOC)
0dabec93 1045 goto out;
3e7d3449 1046
e24f0b8f
CL
1047 lock_page(page);
1048 }
1049
1050 if (PageWriteback(page)) {
11bc82d6 1051 /*
fed5b64a 1052 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1053 * necessary to wait for PageWriteback. In the async case,
1054 * the retry loop is too short and in the sync-light case,
1055 * the overhead of stalling is too much
11bc82d6 1056 */
2916ecc0
JG
1057 switch (mode) {
1058 case MIGRATE_SYNC:
1059 case MIGRATE_SYNC_NO_COPY:
1060 break;
1061 default:
11bc82d6 1062 rc = -EBUSY;
0a31bc97 1063 goto out_unlock;
11bc82d6
AA
1064 }
1065 if (!force)
0a31bc97 1066 goto out_unlock;
e24f0b8f
CL
1067 wait_on_page_writeback(page);
1068 }
03f15c86 1069
e24f0b8f 1070 /*
dc386d4d
KH
1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1073 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1074 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1075 * File Caches may use write_page() or lock_page() in migration, then,
1076 * just care Anon page here.
03f15c86
HD
1077 *
1078 * Only page_get_anon_vma() understands the subtleties of
1079 * getting a hold on an anon_vma from outside one of its mms.
1080 * But if we cannot get anon_vma, then we won't need it anyway,
1081 * because that implies that the anon page is no longer mapped
1082 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1083 */
03f15c86 1084 if (PageAnon(page) && !PageKsm(page))
746b18d4 1085 anon_vma = page_get_anon_vma(page);
62e1c553 1086
7db7671f
HD
1087 /*
1088 * Block others from accessing the new page when we get around to
1089 * establishing additional references. We are usually the only one
1090 * holding a reference to newpage at this point. We used to have a BUG
1091 * here if trylock_page(newpage) fails, but would like to allow for
1092 * cases where there might be a race with the previous use of newpage.
1093 * This is much like races on refcount of oldpage: just don't BUG().
1094 */
1095 if (unlikely(!trylock_page(newpage)))
1096 goto out_unlock;
1097
bda807d4
MK
1098 if (unlikely(!is_lru)) {
1099 rc = move_to_new_page(newpage, page, mode);
1100 goto out_unlock_both;
1101 }
1102
dc386d4d 1103 /*
62e1c553
SL
1104 * Corner case handling:
1105 * 1. When a new swap-cache page is read into, it is added to the LRU
1106 * and treated as swapcache but it has no rmap yet.
1107 * Calling try_to_unmap() against a page->mapping==NULL page will
1108 * trigger a BUG. So handle it here.
1109 * 2. An orphaned page (see truncate_complete_page) might have
1110 * fs-private metadata. The page can be picked up due to memory
1111 * offlining. Everywhere else except page reclaim, the page is
1112 * invisible to the vm, so the page can not be migrated. So try to
1113 * free the metadata, so the page can be freed.
e24f0b8f 1114 */
62e1c553 1115 if (!page->mapping) {
309381fe 1116 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1117 if (page_has_private(page)) {
62e1c553 1118 try_to_free_buffers(page);
7db7671f 1119 goto out_unlock_both;
62e1c553 1120 }
7db7671f
HD
1121 } else if (page_mapped(page)) {
1122 /* Establish migration ptes */
03f15c86
HD
1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124 page);
013339df 1125 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1126 page_was_mapped = 1;
1127 }
dc386d4d 1128
e6a1530d 1129 if (!page_mapped(page))
5c3f9a67 1130 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1131
5c3f9a67
HD
1132 if (page_was_mapped)
1133 remove_migration_ptes(page,
e388466d 1134 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1135
7db7671f
HD
1136out_unlock_both:
1137 unlock_page(newpage);
1138out_unlock:
3f6c8272 1139 /* Drop an anon_vma reference if we took one */
76545066 1140 if (anon_vma)
9e60109f 1141 put_anon_vma(anon_vma);
e24f0b8f 1142 unlock_page(page);
0dabec93 1143out:
c6c919eb
MK
1144 /*
1145 * If migration is successful, decrease refcount of the newpage
1146 * which will not free the page because new page owner increased
1147 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1148 * list in here. Use the old state of the isolated source page to
1149 * determine if we migrated a LRU page. newpage was already unlocked
1150 * and possibly modified by its owner - don't rely on the page
1151 * state.
c6c919eb
MK
1152 */
1153 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1154 if (unlikely(!is_lru))
c6c919eb
MK
1155 put_page(newpage);
1156 else
1157 putback_lru_page(newpage);
1158 }
1159
0dabec93
MK
1160 return rc;
1161}
95a402c3 1162
0dabec93
MK
1163/*
1164 * Obtain the lock on page, remove all ptes and migrate the page
1165 * to the newly allocated page in newpage.
1166 */
6ec4476a 1167static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1168 free_page_t put_new_page,
1169 unsigned long private, struct page *page,
add05cec
NH
1170 int force, enum migrate_mode mode,
1171 enum migrate_reason reason)
0dabec93 1172{
2def7424 1173 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1174 struct page *newpage = NULL;
0dabec93 1175
94723aaf
MH
1176 if (!thp_migration_supported() && PageTransHuge(page))
1177 return -ENOMEM;
1178
0dabec93
MK
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
c6c919eb
MK
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
bda807d4
MK
1183 if (unlikely(__PageMovable(page))) {
1184 lock_page(page);
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1187 unlock_page(page);
1188 }
0dabec93
MK
1189 goto out;
1190 }
1191
74d4a579
YS
1192 newpage = get_new_page(page, private);
1193 if (!newpage)
1194 return -ENOMEM;
1195
9c620e2b 1196 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1197 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1198 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1199
0dabec93 1200out:
e24f0b8f 1201 if (rc != -EAGAIN) {
0dabec93
MK
1202 /*
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
c23a0c99 1205 * migrated will have kept its references and be restored.
0dabec93
MK
1206 */
1207 list_del(&page->lru);
6afcf8ef
ML
1208
1209 /*
1210 * Compaction can migrate also non-LRU pages which are
1211 * not accounted to NR_ISOLATED_*. They can be recognized
1212 * as __PageMovable
1213 */
1214 if (likely(!__PageMovable(page)))
e8db67eb 1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1216 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb
MK
1217 }
1218
1219 /*
1220 * If migration is successful, releases reference grabbed during
1221 * isolation. Otherwise, restore the page to right list unless
1222 * we want to retry.
1223 */
1224 if (rc == MIGRATEPAGE_SUCCESS) {
79f5f8fa 1225 if (reason != MR_MEMORY_FAILURE)
d7e69488 1226 /*
79f5f8fa 1227 * We release the page in page_handle_poison.
d7e69488 1228 */
79f5f8fa 1229 put_page(page);
c6c919eb 1230 } else {
bda807d4
MK
1231 if (rc != -EAGAIN) {
1232 if (likely(!__PageMovable(page))) {
1233 putback_lru_page(page);
1234 goto put_new;
1235 }
1236
1237 lock_page(page);
1238 if (PageMovable(page))
1239 putback_movable_page(page);
1240 else
1241 __ClearPageIsolated(page);
1242 unlock_page(page);
1243 put_page(page);
1244 }
1245put_new:
c6c919eb
MK
1246 if (put_new_page)
1247 put_new_page(newpage, private);
1248 else
1249 put_page(newpage);
e24f0b8f 1250 }
68711a74 1251
e24f0b8f
CL
1252 return rc;
1253}
1254
290408d4
NH
1255/*
1256 * Counterpart of unmap_and_move_page() for hugepage migration.
1257 *
1258 * This function doesn't wait the completion of hugepage I/O
1259 * because there is no race between I/O and migration for hugepage.
1260 * Note that currently hugepage I/O occurs only in direct I/O
1261 * where no lock is held and PG_writeback is irrelevant,
1262 * and writeback status of all subpages are counted in the reference
1263 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1264 * under direct I/O, the reference of the head page is 512 and a bit more.)
1265 * This means that when we try to migrate hugepage whose subpages are
1266 * doing direct I/O, some references remain after try_to_unmap() and
1267 * hugepage migration fails without data corruption.
1268 *
1269 * There is also no race when direct I/O is issued on the page under migration,
1270 * because then pte is replaced with migration swap entry and direct I/O code
1271 * will wait in the page fault for migration to complete.
1272 */
1273static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1274 free_page_t put_new_page, unsigned long private,
1275 struct page *hpage, int force,
7cd12b4a 1276 enum migrate_mode mode, int reason)
290408d4 1277{
2def7424 1278 int rc = -EAGAIN;
2ebba6b7 1279 int page_was_mapped = 0;
32665f2b 1280 struct page *new_hpage;
290408d4 1281 struct anon_vma *anon_vma = NULL;
c0d0381a 1282 struct address_space *mapping = NULL;
290408d4 1283
83467efb 1284 /*
7ed2c31d 1285 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1286 * This check is necessary because some callers of hugepage migration
1287 * like soft offline and memory hotremove don't walk through page
1288 * tables or check whether the hugepage is pmd-based or not before
1289 * kicking migration.
1290 */
100873d7 1291 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1292 putback_active_hugepage(hpage);
83467efb 1293 return -ENOSYS;
32665f2b 1294 }
83467efb 1295
666feb21 1296 new_hpage = get_new_page(hpage, private);
290408d4
NH
1297 if (!new_hpage)
1298 return -ENOMEM;
1299
290408d4 1300 if (!trylock_page(hpage)) {
2916ecc0 1301 if (!force)
290408d4 1302 goto out;
2916ecc0
JG
1303 switch (mode) {
1304 case MIGRATE_SYNC:
1305 case MIGRATE_SYNC_NO_COPY:
1306 break;
1307 default:
1308 goto out;
1309 }
290408d4
NH
1310 lock_page(hpage);
1311 }
1312
cb6acd01
MK
1313 /*
1314 * Check for pages which are in the process of being freed. Without
1315 * page_mapping() set, hugetlbfs specific move page routine will not
1316 * be called and we could leak usage counts for subpools.
1317 */
1318 if (page_private(hpage) && !page_mapping(hpage)) {
1319 rc = -EBUSY;
1320 goto out_unlock;
1321 }
1322
746b18d4
PZ
1323 if (PageAnon(hpage))
1324 anon_vma = page_get_anon_vma(hpage);
290408d4 1325
7db7671f
HD
1326 if (unlikely(!trylock_page(new_hpage)))
1327 goto put_anon;
1328
2ebba6b7 1329 if (page_mapped(hpage)) {
336bf30e 1330 bool mapping_locked = false;
013339df 1331 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1332
1333 if (!PageAnon(hpage)) {
1334 /*
1335 * In shared mappings, try_to_unmap could potentially
1336 * call huge_pmd_unshare. Because of this, take
1337 * semaphore in write mode here and set TTU_RMAP_LOCKED
1338 * to let lower levels know we have taken the lock.
1339 */
1340 mapping = hugetlb_page_mapping_lock_write(hpage);
1341 if (unlikely(!mapping))
1342 goto unlock_put_anon;
1343
1344 mapping_locked = true;
1345 ttu |= TTU_RMAP_LOCKED;
1346 }
c0d0381a 1347
336bf30e 1348 try_to_unmap(hpage, ttu);
2ebba6b7 1349 page_was_mapped = 1;
336bf30e
MK
1350
1351 if (mapping_locked)
1352 i_mmap_unlock_write(mapping);
2ebba6b7 1353 }
290408d4
NH
1354
1355 if (!page_mapped(hpage))
5c3f9a67 1356 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1357
336bf30e 1358 if (page_was_mapped)
5c3f9a67 1359 remove_migration_ptes(hpage,
336bf30e 1360 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1361
c0d0381a 1362unlock_put_anon:
7db7671f
HD
1363 unlock_page(new_hpage);
1364
1365put_anon:
fd4a4663 1366 if (anon_vma)
9e60109f 1367 put_anon_vma(anon_vma);
8e6ac7fa 1368
2def7424 1369 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1370 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1371 put_new_page = NULL;
1372 }
8e6ac7fa 1373
cb6acd01 1374out_unlock:
290408d4 1375 unlock_page(hpage);
09761333 1376out:
b8ec1cee
NH
1377 if (rc != -EAGAIN)
1378 putback_active_hugepage(hpage);
68711a74
DR
1379
1380 /*
1381 * If migration was not successful and there's a freeing callback, use
1382 * it. Otherwise, put_page() will drop the reference grabbed during
1383 * isolation.
1384 */
2def7424 1385 if (put_new_page)
68711a74
DR
1386 put_new_page(new_hpage, private);
1387 else
3aaa76e1 1388 putback_active_hugepage(new_hpage);
68711a74 1389
290408d4
NH
1390 return rc;
1391}
1392
b20a3503 1393/*
c73e5c9c
SB
1394 * migrate_pages - migrate the pages specified in a list, to the free pages
1395 * supplied as the target for the page migration
b20a3503 1396 *
c73e5c9c
SB
1397 * @from: The list of pages to be migrated.
1398 * @get_new_page: The function used to allocate free pages to be used
1399 * as the target of the page migration.
68711a74
DR
1400 * @put_new_page: The function used to free target pages if migration
1401 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1402 * @private: Private data to be passed on to get_new_page()
1403 * @mode: The migration mode that specifies the constraints for
1404 * page migration, if any.
1405 * @reason: The reason for page migration.
b20a3503 1406 *
c73e5c9c
SB
1407 * The function returns after 10 attempts or if no pages are movable any more
1408 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1409 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1410 * or free list only if ret != 0.
b20a3503 1411 *
c73e5c9c 1412 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1413 */
9c620e2b 1414int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1415 free_page_t put_new_page, unsigned long private,
1416 enum migrate_mode mode, int reason)
b20a3503 1417{
e24f0b8f 1418 int retry = 1;
1a5bae25 1419 int thp_retry = 1;
b20a3503 1420 int nr_failed = 0;
5647bc29 1421 int nr_succeeded = 0;
1a5bae25
AK
1422 int nr_thp_succeeded = 0;
1423 int nr_thp_failed = 0;
1424 int nr_thp_split = 0;
b20a3503 1425 int pass = 0;
1a5bae25 1426 bool is_thp = false;
b20a3503
CL
1427 struct page *page;
1428 struct page *page2;
1429 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1430 int rc, nr_subpages;
b20a3503
CL
1431
1432 if (!swapwrite)
1433 current->flags |= PF_SWAPWRITE;
1434
1a5bae25 1435 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1436 retry = 0;
1a5bae25 1437 thp_retry = 0;
b20a3503 1438
e24f0b8f 1439 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1440retry:
1a5bae25
AK
1441 /*
1442 * THP statistics is based on the source huge page.
1443 * Capture required information that might get lost
1444 * during migration.
1445 */
6c5c7b9f 1446 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1447 nr_subpages = thp_nr_pages(page);
e24f0b8f 1448 cond_resched();
2d1db3b1 1449
31caf665
NH
1450 if (PageHuge(page))
1451 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1452 put_new_page, private, page,
7cd12b4a 1453 pass > 2, mode, reason);
31caf665 1454 else
68711a74 1455 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1456 private, page, pass > 2, mode,
1457 reason);
2d1db3b1 1458
e24f0b8f 1459 switch(rc) {
95a402c3 1460 case -ENOMEM:
94723aaf
MH
1461 /*
1462 * THP migration might be unsupported or the
1463 * allocation could've failed so we should
1464 * retry on the same page with the THP split
1465 * to base pages.
1466 *
1467 * Head page is retried immediately and tail
1468 * pages are added to the tail of the list so
1469 * we encounter them after the rest of the list
1470 * is processed.
1471 */
6c5c7b9f 1472 if (is_thp) {
94723aaf
MH
1473 lock_page(page);
1474 rc = split_huge_page_to_list(page, from);
1475 unlock_page(page);
1476 if (!rc) {
1477 list_safe_reset_next(page, page2, lru);
1a5bae25 1478 nr_thp_split++;
94723aaf
MH
1479 goto retry;
1480 }
6c5c7b9f 1481
1a5bae25
AK
1482 nr_thp_failed++;
1483 nr_failed += nr_subpages;
1484 goto out;
1485 }
dfef2ef4 1486 nr_failed++;
95a402c3 1487 goto out;
e24f0b8f 1488 case -EAGAIN:
1a5bae25
AK
1489 if (is_thp) {
1490 thp_retry++;
1491 break;
1492 }
2d1db3b1 1493 retry++;
e24f0b8f 1494 break;
78bd5209 1495 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1496 if (is_thp) {
1497 nr_thp_succeeded++;
1498 nr_succeeded += nr_subpages;
1499 break;
1500 }
5647bc29 1501 nr_succeeded++;
e24f0b8f
CL
1502 break;
1503 default:
354a3363
NH
1504 /*
1505 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1506 * unlike -EAGAIN case, the failed page is
1507 * removed from migration page list and not
1508 * retried in the next outer loop.
1509 */
1a5bae25
AK
1510 if (is_thp) {
1511 nr_thp_failed++;
1512 nr_failed += nr_subpages;
1513 break;
1514 }
2d1db3b1 1515 nr_failed++;
e24f0b8f 1516 break;
2d1db3b1 1517 }
b20a3503
CL
1518 }
1519 }
1a5bae25
AK
1520 nr_failed += retry + thp_retry;
1521 nr_thp_failed += thp_retry;
f2f81fb2 1522 rc = nr_failed;
95a402c3 1523out:
1a5bae25
AK
1524 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1525 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1526 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1527 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1528 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1529 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1530 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1531
b20a3503
CL
1532 if (!swapwrite)
1533 current->flags &= ~PF_SWAPWRITE;
1534
78bd5209 1535 return rc;
b20a3503 1536}
95a402c3 1537
19fc7bed 1538struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1539{
19fc7bed
JK
1540 struct migration_target_control *mtc;
1541 gfp_t gfp_mask;
b4b38223
JK
1542 unsigned int order = 0;
1543 struct page *new_page = NULL;
19fc7bed
JK
1544 int nid;
1545 int zidx;
1546
1547 mtc = (struct migration_target_control *)private;
1548 gfp_mask = mtc->gfp_mask;
1549 nid = mtc->nid;
1550 if (nid == NUMA_NO_NODE)
1551 nid = page_to_nid(page);
b4b38223 1552
d92bbc27
JK
1553 if (PageHuge(page)) {
1554 struct hstate *h = page_hstate(compound_head(page));
1555
19fc7bed
JK
1556 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1557 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1558 }
b4b38223
JK
1559
1560 if (PageTransHuge(page)) {
9933a0c8
JK
1561 /*
1562 * clear __GFP_RECLAIM to make the migration callback
1563 * consistent with regular THP allocations.
1564 */
1565 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1566 gfp_mask |= GFP_TRANSHUGE;
1567 order = HPAGE_PMD_ORDER;
1568 }
19fc7bed
JK
1569 zidx = zone_idx(page_zone(page));
1570 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1571 gfp_mask |= __GFP_HIGHMEM;
1572
19fc7bed 1573 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1574
1575 if (new_page && PageTransHuge(new_page))
1576 prep_transhuge_page(new_page);
1577
1578 return new_page;
1579}
1580
742755a1 1581#ifdef CONFIG_NUMA
742755a1 1582
a49bd4d7 1583static int store_status(int __user *status, int start, int value, int nr)
742755a1 1584{
a49bd4d7
MH
1585 while (nr-- > 0) {
1586 if (put_user(value, status + start))
1587 return -EFAULT;
1588 start++;
1589 }
1590
1591 return 0;
1592}
1593
1594static int do_move_pages_to_node(struct mm_struct *mm,
1595 struct list_head *pagelist, int node)
1596{
1597 int err;
a0976311
JK
1598 struct migration_target_control mtc = {
1599 .nid = node,
1600 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1601 };
a49bd4d7 1602
a0976311
JK
1603 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1604 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1605 if (err)
1606 putback_movable_pages(pagelist);
1607 return err;
742755a1
CL
1608}
1609
1610/*
a49bd4d7
MH
1611 * Resolves the given address to a struct page, isolates it from the LRU and
1612 * puts it to the given pagelist.
e0153fc2
YS
1613 * Returns:
1614 * errno - if the page cannot be found/isolated
1615 * 0 - when it doesn't have to be migrated because it is already on the
1616 * target node
1617 * 1 - when it has been queued
742755a1 1618 */
a49bd4d7
MH
1619static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1620 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1621{
a49bd4d7
MH
1622 struct vm_area_struct *vma;
1623 struct page *page;
1624 unsigned int follflags;
742755a1 1625 int err;
742755a1 1626
d8ed45c5 1627 mmap_read_lock(mm);
a49bd4d7
MH
1628 err = -EFAULT;
1629 vma = find_vma(mm, addr);
1630 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1631 goto out;
742755a1 1632
a49bd4d7
MH
1633 /* FOLL_DUMP to ignore special (like zero) pages */
1634 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1635 page = follow_page(vma, addr, follflags);
89f5b7da 1636
a49bd4d7
MH
1637 err = PTR_ERR(page);
1638 if (IS_ERR(page))
1639 goto out;
89f5b7da 1640
a49bd4d7
MH
1641 err = -ENOENT;
1642 if (!page)
1643 goto out;
742755a1 1644
a49bd4d7
MH
1645 err = 0;
1646 if (page_to_nid(page) == node)
1647 goto out_putpage;
742755a1 1648
a49bd4d7
MH
1649 err = -EACCES;
1650 if (page_mapcount(page) > 1 && !migrate_all)
1651 goto out_putpage;
742755a1 1652
a49bd4d7
MH
1653 if (PageHuge(page)) {
1654 if (PageHead(page)) {
1655 isolate_huge_page(page, pagelist);
e0153fc2 1656 err = 1;
e632a938 1657 }
a49bd4d7
MH
1658 } else {
1659 struct page *head;
e632a938 1660
e8db67eb
NH
1661 head = compound_head(page);
1662 err = isolate_lru_page(head);
cf608ac1 1663 if (err)
a49bd4d7 1664 goto out_putpage;
742755a1 1665
e0153fc2 1666 err = 1;
a49bd4d7
MH
1667 list_add_tail(&head->lru, pagelist);
1668 mod_node_page_state(page_pgdat(head),
9de4f22a 1669 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1670 thp_nr_pages(head));
a49bd4d7
MH
1671 }
1672out_putpage:
1673 /*
1674 * Either remove the duplicate refcount from
1675 * isolate_lru_page() or drop the page ref if it was
1676 * not isolated.
1677 */
1678 put_page(page);
1679out:
d8ed45c5 1680 mmap_read_unlock(mm);
742755a1
CL
1681 return err;
1682}
1683
7ca8783a
WY
1684static int move_pages_and_store_status(struct mm_struct *mm, int node,
1685 struct list_head *pagelist, int __user *status,
1686 int start, int i, unsigned long nr_pages)
1687{
1688 int err;
1689
5d7ae891
WY
1690 if (list_empty(pagelist))
1691 return 0;
1692
7ca8783a
WY
1693 err = do_move_pages_to_node(mm, pagelist, node);
1694 if (err) {
1695 /*
1696 * Positive err means the number of failed
1697 * pages to migrate. Since we are going to
1698 * abort and return the number of non-migrated
ab9dd4f8 1699 * pages, so need to include the rest of the
7ca8783a
WY
1700 * nr_pages that have not been attempted as
1701 * well.
1702 */
1703 if (err > 0)
1704 err += nr_pages - i - 1;
1705 return err;
1706 }
1707 return store_status(status, start, node, i - start);
1708}
1709
5e9a0f02
BG
1710/*
1711 * Migrate an array of page address onto an array of nodes and fill
1712 * the corresponding array of status.
1713 */
3268c63e 1714static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1715 unsigned long nr_pages,
1716 const void __user * __user *pages,
1717 const int __user *nodes,
1718 int __user *status, int flags)
1719{
a49bd4d7
MH
1720 int current_node = NUMA_NO_NODE;
1721 LIST_HEAD(pagelist);
1722 int start, i;
1723 int err = 0, err1;
35282a2d
BG
1724
1725 migrate_prep();
1726
a49bd4d7
MH
1727 for (i = start = 0; i < nr_pages; i++) {
1728 const void __user *p;
1729 unsigned long addr;
1730 int node;
3140a227 1731
a49bd4d7
MH
1732 err = -EFAULT;
1733 if (get_user(p, pages + i))
1734 goto out_flush;
1735 if (get_user(node, nodes + i))
1736 goto out_flush;
057d3389 1737 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1738
1739 err = -ENODEV;
1740 if (node < 0 || node >= MAX_NUMNODES)
1741 goto out_flush;
1742 if (!node_state(node, N_MEMORY))
1743 goto out_flush;
5e9a0f02 1744
a49bd4d7
MH
1745 err = -EACCES;
1746 if (!node_isset(node, task_nodes))
1747 goto out_flush;
1748
1749 if (current_node == NUMA_NO_NODE) {
1750 current_node = node;
1751 start = i;
1752 } else if (node != current_node) {
7ca8783a
WY
1753 err = move_pages_and_store_status(mm, current_node,
1754 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1755 if (err)
1756 goto out;
1757 start = i;
1758 current_node = node;
3140a227
BG
1759 }
1760
a49bd4d7
MH
1761 /*
1762 * Errors in the page lookup or isolation are not fatal and we simply
1763 * report them via status
1764 */
1765 err = add_page_for_migration(mm, addr, current_node,
1766 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1767
d08221a0 1768 if (err > 0) {
e0153fc2
YS
1769 /* The page is successfully queued for migration */
1770 continue;
1771 }
3140a227 1772
d08221a0
WY
1773 /*
1774 * If the page is already on the target node (!err), store the
1775 * node, otherwise, store the err.
1776 */
1777 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1778 if (err)
1779 goto out_flush;
5e9a0f02 1780
7ca8783a
WY
1781 err = move_pages_and_store_status(mm, current_node, &pagelist,
1782 status, start, i, nr_pages);
4afdacec
WY
1783 if (err)
1784 goto out;
a49bd4d7 1785 current_node = NUMA_NO_NODE;
3140a227 1786 }
a49bd4d7
MH
1787out_flush:
1788 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1789 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1790 status, start, i, nr_pages);
dfe9aa23 1791 if (err >= 0)
a49bd4d7 1792 err = err1;
5e9a0f02
BG
1793out:
1794 return err;
1795}
1796
742755a1 1797/*
2f007e74 1798 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1799 */
80bba129
BG
1800static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1801 const void __user **pages, int *status)
742755a1 1802{
2f007e74 1803 unsigned long i;
2f007e74 1804
d8ed45c5 1805 mmap_read_lock(mm);
742755a1 1806
2f007e74 1807 for (i = 0; i < nr_pages; i++) {
80bba129 1808 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1809 struct vm_area_struct *vma;
1810 struct page *page;
c095adbc 1811 int err = -EFAULT;
2f007e74
BG
1812
1813 vma = find_vma(mm, addr);
70384dc6 1814 if (!vma || addr < vma->vm_start)
742755a1
CL
1815 goto set_status;
1816
d899844e
KS
1817 /* FOLL_DUMP to ignore special (like zero) pages */
1818 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1819
1820 err = PTR_ERR(page);
1821 if (IS_ERR(page))
1822 goto set_status;
1823
d899844e 1824 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1825set_status:
80bba129
BG
1826 *status = err;
1827
1828 pages++;
1829 status++;
1830 }
1831
d8ed45c5 1832 mmap_read_unlock(mm);
80bba129
BG
1833}
1834
1835/*
1836 * Determine the nodes of a user array of pages and store it in
1837 * a user array of status.
1838 */
1839static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1840 const void __user * __user *pages,
1841 int __user *status)
1842{
1843#define DO_PAGES_STAT_CHUNK_NR 16
1844 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1845 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1846
87b8d1ad
PA
1847 while (nr_pages) {
1848 unsigned long chunk_nr;
80bba129 1849
87b8d1ad
PA
1850 chunk_nr = nr_pages;
1851 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1852 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1853
1854 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1855 break;
80bba129
BG
1856
1857 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1858
87b8d1ad
PA
1859 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1860 break;
742755a1 1861
87b8d1ad
PA
1862 pages += chunk_nr;
1863 status += chunk_nr;
1864 nr_pages -= chunk_nr;
1865 }
1866 return nr_pages ? -EFAULT : 0;
742755a1
CL
1867}
1868
4dc200ce 1869static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1870{
742755a1 1871 struct task_struct *task;
742755a1 1872 struct mm_struct *mm;
742755a1 1873
4dc200ce
ML
1874 /*
1875 * There is no need to check if current process has the right to modify
1876 * the specified process when they are same.
1877 */
1878 if (!pid) {
1879 mmget(current->mm);
1880 *mem_nodes = cpuset_mems_allowed(current);
1881 return current->mm;
1882 }
742755a1
CL
1883
1884 /* Find the mm_struct */
a879bf58 1885 rcu_read_lock();
4dc200ce 1886 task = find_task_by_vpid(pid);
742755a1 1887 if (!task) {
a879bf58 1888 rcu_read_unlock();
4dc200ce 1889 return ERR_PTR(-ESRCH);
742755a1 1890 }
3268c63e 1891 get_task_struct(task);
742755a1
CL
1892
1893 /*
1894 * Check if this process has the right to modify the specified
197e7e52 1895 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1896 */
197e7e52 1897 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1898 rcu_read_unlock();
4dc200ce 1899 mm = ERR_PTR(-EPERM);
5e9a0f02 1900 goto out;
742755a1 1901 }
c69e8d9c 1902 rcu_read_unlock();
742755a1 1903
4dc200ce
ML
1904 mm = ERR_PTR(security_task_movememory(task));
1905 if (IS_ERR(mm))
5e9a0f02 1906 goto out;
4dc200ce 1907 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1908 mm = get_task_mm(task);
4dc200ce 1909out:
3268c63e 1910 put_task_struct(task);
6e8b09ea 1911 if (!mm)
4dc200ce
ML
1912 mm = ERR_PTR(-EINVAL);
1913 return mm;
1914}
1915
1916/*
1917 * Move a list of pages in the address space of the currently executing
1918 * process.
1919 */
1920static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1921 const void __user * __user *pages,
1922 const int __user *nodes,
1923 int __user *status, int flags)
1924{
1925 struct mm_struct *mm;
1926 int err;
1927 nodemask_t task_nodes;
1928
1929 /* Check flags */
1930 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1931 return -EINVAL;
1932
4dc200ce
ML
1933 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1934 return -EPERM;
1935
1936 mm = find_mm_struct(pid, &task_nodes);
1937 if (IS_ERR(mm))
1938 return PTR_ERR(mm);
1939
6e8b09ea
SL
1940 if (nodes)
1941 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1942 nodes, status, flags);
1943 else
1944 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1945
742755a1
CL
1946 mmput(mm);
1947 return err;
1948}
742755a1 1949
7addf443
DB
1950SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1951 const void __user * __user *, pages,
1952 const int __user *, nodes,
1953 int __user *, status, int, flags)
1954{
1955 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1956}
1957
1958#ifdef CONFIG_COMPAT
1959COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1960 compat_uptr_t __user *, pages32,
1961 const int __user *, nodes,
1962 int __user *, status,
1963 int, flags)
1964{
1965 const void __user * __user *pages;
1966 int i;
1967
1968 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1969 for (i = 0; i < nr_pages; i++) {
1970 compat_uptr_t p;
1971
1972 if (get_user(p, pages32 + i) ||
1973 put_user(compat_ptr(p), pages + i))
1974 return -EFAULT;
1975 }
1976 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1977}
1978#endif /* CONFIG_COMPAT */
1979
7039e1db
PZ
1980#ifdef CONFIG_NUMA_BALANCING
1981/*
1982 * Returns true if this is a safe migration target node for misplaced NUMA
1983 * pages. Currently it only checks the watermarks which crude
1984 */
1985static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1986 unsigned long nr_migrate_pages)
7039e1db
PZ
1987{
1988 int z;
599d0c95 1989
7039e1db
PZ
1990 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1991 struct zone *zone = pgdat->node_zones + z;
1992
1993 if (!populated_zone(zone))
1994 continue;
1995
7039e1db
PZ
1996 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1997 if (!zone_watermark_ok(zone, 0,
1998 high_wmark_pages(zone) +
1999 nr_migrate_pages,
bfe9d006 2000 ZONE_MOVABLE, 0))
7039e1db
PZ
2001 continue;
2002 return true;
2003 }
2004 return false;
2005}
2006
2007static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2008 unsigned long data)
7039e1db
PZ
2009{
2010 int nid = (int) data;
2011 struct page *newpage;
2012
96db800f 2013 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2014 (GFP_HIGHUSER_MOVABLE |
2015 __GFP_THISNODE | __GFP_NOMEMALLOC |
2016 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2017 ~__GFP_RECLAIM, 0);
bac0382c 2018
7039e1db
PZ
2019 return newpage;
2020}
2021
1c30e017 2022static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2023{
340ef390 2024 int page_lru;
a8f60772 2025
309381fe 2026 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2027
7039e1db 2028 /* Avoid migrating to a node that is nearly full */
d8c6546b 2029 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2030 return 0;
7039e1db 2031
340ef390
HD
2032 if (isolate_lru_page(page))
2033 return 0;
7039e1db 2034
340ef390
HD
2035 /*
2036 * migrate_misplaced_transhuge_page() skips page migration's usual
2037 * check on page_count(), so we must do it here, now that the page
2038 * has been isolated: a GUP pin, or any other pin, prevents migration.
2039 * The expected page count is 3: 1 for page's mapcount and 1 for the
2040 * caller's pin and 1 for the reference taken by isolate_lru_page().
2041 */
2042 if (PageTransHuge(page) && page_count(page) != 3) {
2043 putback_lru_page(page);
2044 return 0;
7039e1db
PZ
2045 }
2046
9de4f22a 2047 page_lru = page_is_file_lru(page);
599d0c95 2048 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2049 thp_nr_pages(page));
340ef390 2050
149c33e1 2051 /*
340ef390
HD
2052 * Isolating the page has taken another reference, so the
2053 * caller's reference can be safely dropped without the page
2054 * disappearing underneath us during migration.
149c33e1
MG
2055 */
2056 put_page(page);
340ef390 2057 return 1;
b32967ff
MG
2058}
2059
de466bd6
MG
2060bool pmd_trans_migrating(pmd_t pmd)
2061{
2062 struct page *page = pmd_page(pmd);
2063 return PageLocked(page);
2064}
2065
b32967ff
MG
2066/*
2067 * Attempt to migrate a misplaced page to the specified destination
2068 * node. Caller is expected to have an elevated reference count on
2069 * the page that will be dropped by this function before returning.
2070 */
1bc115d8
MG
2071int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2072 int node)
b32967ff
MG
2073{
2074 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2075 int isolated;
b32967ff
MG
2076 int nr_remaining;
2077 LIST_HEAD(migratepages);
2078
2079 /*
1bc115d8
MG
2080 * Don't migrate file pages that are mapped in multiple processes
2081 * with execute permissions as they are probably shared libraries.
b32967ff 2082 */
9de4f22a 2083 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1bc115d8 2084 (vma->vm_flags & VM_EXEC))
b32967ff 2085 goto out;
b32967ff 2086
09a913a7
MG
2087 /*
2088 * Also do not migrate dirty pages as not all filesystems can move
2089 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2090 */
9de4f22a 2091 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2092 goto out;
2093
b32967ff
MG
2094 isolated = numamigrate_isolate_page(pgdat, page);
2095 if (!isolated)
2096 goto out;
2097
2098 list_add(&page->lru, &migratepages);
9c620e2b 2099 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2100 NULL, node, MIGRATE_ASYNC,
2101 MR_NUMA_MISPLACED);
b32967ff 2102 if (nr_remaining) {
59c82b70
JK
2103 if (!list_empty(&migratepages)) {
2104 list_del(&page->lru);
599d0c95 2105 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2106 page_is_file_lru(page));
59c82b70
JK
2107 putback_lru_page(page);
2108 }
b32967ff
MG
2109 isolated = 0;
2110 } else
2111 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2112 BUG_ON(!list_empty(&migratepages));
7039e1db 2113 return isolated;
340ef390
HD
2114
2115out:
2116 put_page(page);
2117 return 0;
7039e1db 2118}
220018d3 2119#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2120
220018d3 2121#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2122/*
2123 * Migrates a THP to a given target node. page must be locked and is unlocked
2124 * before returning.
2125 */
b32967ff
MG
2126int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2127 struct vm_area_struct *vma,
2128 pmd_t *pmd, pmd_t entry,
2129 unsigned long address,
2130 struct page *page, int node)
2131{
c4088ebd 2132 spinlock_t *ptl;
b32967ff
MG
2133 pg_data_t *pgdat = NODE_DATA(node);
2134 int isolated = 0;
2135 struct page *new_page = NULL;
9de4f22a 2136 int page_lru = page_is_file_lru(page);
7066f0f9 2137 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2138
b32967ff 2139 new_page = alloc_pages_node(node,
25160354 2140 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2141 HPAGE_PMD_ORDER);
340ef390
HD
2142 if (!new_page)
2143 goto out_fail;
9a982250 2144 prep_transhuge_page(new_page);
340ef390 2145
b32967ff 2146 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2147 if (!isolated) {
b32967ff 2148 put_page(new_page);
340ef390 2149 goto out_fail;
b32967ff 2150 }
b0943d61 2151
b32967ff 2152 /* Prepare a page as a migration target */
48c935ad 2153 __SetPageLocked(new_page);
d44d363f
SL
2154 if (PageSwapBacked(page))
2155 __SetPageSwapBacked(new_page);
b32967ff
MG
2156
2157 /* anon mapping, we can simply copy page->mapping to the new page: */
2158 new_page->mapping = page->mapping;
2159 new_page->index = page->index;
7eef5f97
AA
2160 /* flush the cache before copying using the kernel virtual address */
2161 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2162 migrate_page_copy(new_page, page);
2163 WARN_ON(PageLRU(new_page));
2164
2165 /* Recheck the target PMD */
c4088ebd 2166 ptl = pmd_lock(mm, pmd);
f4e177d1 2167 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2168 spin_unlock(ptl);
b32967ff
MG
2169
2170 /* Reverse changes made by migrate_page_copy() */
2171 if (TestClearPageActive(new_page))
2172 SetPageActive(page);
2173 if (TestClearPageUnevictable(new_page))
2174 SetPageUnevictable(page);
b32967ff
MG
2175
2176 unlock_page(new_page);
2177 put_page(new_page); /* Free it */
2178
a54a407f
MG
2179 /* Retake the callers reference and putback on LRU */
2180 get_page(page);
b32967ff 2181 putback_lru_page(page);
599d0c95 2182 mod_node_page_state(page_pgdat(page),
a54a407f 2183 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2184
2185 goto out_unlock;
b32967ff
MG
2186 }
2187
10102459 2188 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2189 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2190
2b4847e7 2191 /*
d7c33934
AA
2192 * Overwrite the old entry under pagetable lock and establish
2193 * the new PTE. Any parallel GUP will either observe the old
2194 * page blocking on the page lock, block on the page table
2195 * lock or observe the new page. The SetPageUptodate on the
2196 * new page and page_add_new_anon_rmap guarantee the copy is
2197 * visible before the pagetable update.
2b4847e7 2198 */
7066f0f9 2199 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2200 /*
2201 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2202 * has already been flushed globally. So no TLB can be currently
2203 * caching this non present pmd mapping. There's no need to clear the
2204 * pmd before doing set_pmd_at(), nor to flush the TLB after
2205 * set_pmd_at(). Clearing the pmd here would introduce a race
2206 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2207 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2208 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2209 * pmd.
2210 */
7066f0f9 2211 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2212 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2213
f4e177d1 2214 page_ref_unfreeze(page, 2);
51afb12b 2215 mlock_migrate_page(new_page, page);
d281ee61 2216 page_remove_rmap(page, true);
7cd12b4a 2217 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2218
c4088ebd 2219 spin_unlock(ptl);
b32967ff 2220
11de9927
MG
2221 /* Take an "isolate" reference and put new page on the LRU. */
2222 get_page(new_page);
2223 putback_lru_page(new_page);
2224
b32967ff
MG
2225 unlock_page(new_page);
2226 unlock_page(page);
2227 put_page(page); /* Drop the rmap reference */
2228 put_page(page); /* Drop the LRU isolation reference */
2229
2230 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2231 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2232
599d0c95 2233 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2234 NR_ISOLATED_ANON + page_lru,
2235 -HPAGE_PMD_NR);
2236 return isolated;
2237
340ef390
HD
2238out_fail:
2239 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2240 ptl = pmd_lock(mm, pmd);
2241 if (pmd_same(*pmd, entry)) {
4d942466 2242 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2243 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2244 update_mmu_cache_pmd(vma, address, &entry);
2245 }
2246 spin_unlock(ptl);
a54a407f 2247
eb4489f6 2248out_unlock:
340ef390 2249 unlock_page(page);
b32967ff 2250 put_page(page);
b32967ff
MG
2251 return 0;
2252}
7039e1db
PZ
2253#endif /* CONFIG_NUMA_BALANCING */
2254
2255#endif /* CONFIG_NUMA */
8763cb45 2256
9b2ed9cb 2257#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2258static int migrate_vma_collect_hole(unsigned long start,
2259 unsigned long end,
b7a16c7a 2260 __always_unused int depth,
8763cb45
JG
2261 struct mm_walk *walk)
2262{
2263 struct migrate_vma *migrate = walk->private;
2264 unsigned long addr;
2265
0744f280
RC
2266 /* Only allow populating anonymous memory. */
2267 if (!vma_is_anonymous(walk->vma)) {
2268 for (addr = start; addr < end; addr += PAGE_SIZE) {
2269 migrate->src[migrate->npages] = 0;
2270 migrate->dst[migrate->npages] = 0;
2271 migrate->npages++;
2272 }
2273 return 0;
2274 }
2275
872ea707 2276 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2277 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2278 migrate->dst[migrate->npages] = 0;
e20d103b 2279 migrate->npages++;
8315ada7
JG
2280 migrate->cpages++;
2281 }
2282
2283 return 0;
2284}
2285
2286static int migrate_vma_collect_skip(unsigned long start,
2287 unsigned long end,
2288 struct mm_walk *walk)
2289{
2290 struct migrate_vma *migrate = walk->private;
2291 unsigned long addr;
2292
872ea707 2293 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2294 migrate->dst[migrate->npages] = 0;
2295 migrate->src[migrate->npages++] = 0;
2296 }
2297
2298 return 0;
2299}
2300
2301static int migrate_vma_collect_pmd(pmd_t *pmdp,
2302 unsigned long start,
2303 unsigned long end,
2304 struct mm_walk *walk)
2305{
2306 struct migrate_vma *migrate = walk->private;
2307 struct vm_area_struct *vma = walk->vma;
2308 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2309 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2310 spinlock_t *ptl;
2311 pte_t *ptep;
2312
2313again:
2314 if (pmd_none(*pmdp))
b7a16c7a 2315 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2316
2317 if (pmd_trans_huge(*pmdp)) {
2318 struct page *page;
2319
2320 ptl = pmd_lock(mm, pmdp);
2321 if (unlikely(!pmd_trans_huge(*pmdp))) {
2322 spin_unlock(ptl);
2323 goto again;
2324 }
2325
2326 page = pmd_page(*pmdp);
2327 if (is_huge_zero_page(page)) {
2328 spin_unlock(ptl);
2329 split_huge_pmd(vma, pmdp, addr);
2330 if (pmd_trans_unstable(pmdp))
8315ada7 2331 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2332 walk);
2333 } else {
2334 int ret;
2335
2336 get_page(page);
2337 spin_unlock(ptl);
2338 if (unlikely(!trylock_page(page)))
8315ada7 2339 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2340 walk);
2341 ret = split_huge_page(page);
2342 unlock_page(page);
2343 put_page(page);
8315ada7
JG
2344 if (ret)
2345 return migrate_vma_collect_skip(start, end,
2346 walk);
2347 if (pmd_none(*pmdp))
b7a16c7a 2348 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2349 walk);
2350 }
2351 }
2352
2353 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2354 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2355
2356 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2357 arch_enter_lazy_mmu_mode();
2358
8763cb45 2359 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2360 unsigned long mpfn = 0, pfn;
8763cb45 2361 struct page *page;
8c3328f1 2362 swp_entry_t entry;
8763cb45
JG
2363 pte_t pte;
2364
2365 pte = *ptep;
8763cb45 2366
a5430dda 2367 if (pte_none(pte)) {
0744f280
RC
2368 if (vma_is_anonymous(vma)) {
2369 mpfn = MIGRATE_PFN_MIGRATE;
2370 migrate->cpages++;
2371 }
8763cb45
JG
2372 goto next;
2373 }
2374
a5430dda 2375 if (!pte_present(pte)) {
a5430dda
JG
2376 /*
2377 * Only care about unaddressable device page special
2378 * page table entry. Other special swap entries are not
2379 * migratable, and we ignore regular swapped page.
2380 */
2381 entry = pte_to_swp_entry(pte);
2382 if (!is_device_private_entry(entry))
2383 goto next;
2384
2385 page = device_private_entry_to_page(entry);
5143192c
RC
2386 if (!(migrate->flags &
2387 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2388 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2389 goto next;
2390
06d462be
CH
2391 mpfn = migrate_pfn(page_to_pfn(page)) |
2392 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2393 if (is_write_device_private_entry(entry))
2394 mpfn |= MIGRATE_PFN_WRITE;
2395 } else {
5143192c 2396 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2397 goto next;
276f756d 2398 pfn = pte_pfn(pte);
8315ada7
JG
2399 if (is_zero_pfn(pfn)) {
2400 mpfn = MIGRATE_PFN_MIGRATE;
2401 migrate->cpages++;
8315ada7
JG
2402 goto next;
2403 }
25b2995a 2404 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2405 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2406 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2407 }
2408
8763cb45 2409 /* FIXME support THP */
8763cb45 2410 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2411 mpfn = 0;
8763cb45
JG
2412 goto next;
2413 }
2414
2415 /*
2416 * By getting a reference on the page we pin it and that blocks
2417 * any kind of migration. Side effect is that it "freezes" the
2418 * pte.
2419 *
2420 * We drop this reference after isolating the page from the lru
2421 * for non device page (device page are not on the lru and thus
2422 * can't be dropped from it).
2423 */
2424 get_page(page);
2425 migrate->cpages++;
8763cb45 2426
8c3328f1
JG
2427 /*
2428 * Optimize for the common case where page is only mapped once
2429 * in one process. If we can lock the page, then we can safely
2430 * set up a special migration page table entry now.
2431 */
2432 if (trylock_page(page)) {
2433 pte_t swp_pte;
2434
2435 mpfn |= MIGRATE_PFN_LOCKED;
2436 ptep_get_and_clear(mm, addr, ptep);
2437
2438 /* Setup special migration page table entry */
07707125
RC
2439 entry = make_migration_entry(page, mpfn &
2440 MIGRATE_PFN_WRITE);
8c3328f1 2441 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2442 if (pte_present(pte)) {
2443 if (pte_soft_dirty(pte))
2444 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2445 if (pte_uffd_wp(pte))
2446 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2447 } else {
2448 if (pte_swp_soft_dirty(pte))
2449 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2450 if (pte_swp_uffd_wp(pte))
2451 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2452 }
8c3328f1
JG
2453 set_pte_at(mm, addr, ptep, swp_pte);
2454
2455 /*
2456 * This is like regular unmap: we remove the rmap and
2457 * drop page refcount. Page won't be freed, as we took
2458 * a reference just above.
2459 */
2460 page_remove_rmap(page, false);
2461 put_page(page);
a5430dda
JG
2462
2463 if (pte_present(pte))
2464 unmapped++;
8c3328f1
JG
2465 }
2466
8763cb45 2467next:
a5430dda 2468 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2469 migrate->src[migrate->npages++] = mpfn;
2470 }
8c3328f1 2471 arch_leave_lazy_mmu_mode();
8763cb45
JG
2472 pte_unmap_unlock(ptep - 1, ptl);
2473
8c3328f1
JG
2474 /* Only flush the TLB if we actually modified any entries */
2475 if (unmapped)
2476 flush_tlb_range(walk->vma, start, end);
2477
8763cb45
JG
2478 return 0;
2479}
2480
7b86ac33
CH
2481static const struct mm_walk_ops migrate_vma_walk_ops = {
2482 .pmd_entry = migrate_vma_collect_pmd,
2483 .pte_hole = migrate_vma_collect_hole,
2484};
2485
8763cb45
JG
2486/*
2487 * migrate_vma_collect() - collect pages over a range of virtual addresses
2488 * @migrate: migrate struct containing all migration information
2489 *
2490 * This will walk the CPU page table. For each virtual address backed by a
2491 * valid page, it updates the src array and takes a reference on the page, in
2492 * order to pin the page until we lock it and unmap it.
2493 */
2494static void migrate_vma_collect(struct migrate_vma *migrate)
2495{
ac46d4f3 2496 struct mmu_notifier_range range;
8763cb45 2497
998427b3
RC
2498 /*
2499 * Note that the pgmap_owner is passed to the mmu notifier callback so
2500 * that the registered device driver can skip invalidating device
2501 * private page mappings that won't be migrated.
2502 */
c1a06df6
RC
2503 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2504 migrate->vma->vm_mm, migrate->start, migrate->end,
2505 migrate->pgmap_owner);
ac46d4f3 2506 mmu_notifier_invalidate_range_start(&range);
8763cb45 2507
7b86ac33
CH
2508 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2509 &migrate_vma_walk_ops, migrate);
2510
2511 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2512 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2513}
2514
2515/*
2516 * migrate_vma_check_page() - check if page is pinned or not
2517 * @page: struct page to check
2518 *
2519 * Pinned pages cannot be migrated. This is the same test as in
2520 * migrate_page_move_mapping(), except that here we allow migration of a
2521 * ZONE_DEVICE page.
2522 */
2523static bool migrate_vma_check_page(struct page *page)
2524{
2525 /*
2526 * One extra ref because caller holds an extra reference, either from
2527 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2528 * a device page.
2529 */
2530 int extra = 1;
2531
2532 /*
2533 * FIXME support THP (transparent huge page), it is bit more complex to
2534 * check them than regular pages, because they can be mapped with a pmd
2535 * or with a pte (split pte mapping).
2536 */
2537 if (PageCompound(page))
2538 return false;
2539
a5430dda
JG
2540 /* Page from ZONE_DEVICE have one extra reference */
2541 if (is_zone_device_page(page)) {
2542 /*
2543 * Private page can never be pin as they have no valid pte and
2544 * GUP will fail for those. Yet if there is a pending migration
2545 * a thread might try to wait on the pte migration entry and
2546 * will bump the page reference count. Sadly there is no way to
2547 * differentiate a regular pin from migration wait. Hence to
2548 * avoid 2 racing thread trying to migrate back to CPU to enter
2549 * infinite loop (one stoping migration because the other is
2550 * waiting on pte migration entry). We always return true here.
2551 *
2552 * FIXME proper solution is to rework migration_entry_wait() so
2553 * it does not need to take a reference on page.
2554 */
25b2995a 2555 return is_device_private_page(page);
a5430dda
JG
2556 }
2557
df6ad698
JG
2558 /* For file back page */
2559 if (page_mapping(page))
2560 extra += 1 + page_has_private(page);
2561
8763cb45
JG
2562 if ((page_count(page) - extra) > page_mapcount(page))
2563 return false;
2564
2565 return true;
2566}
2567
2568/*
2569 * migrate_vma_prepare() - lock pages and isolate them from the lru
2570 * @migrate: migrate struct containing all migration information
2571 *
2572 * This locks pages that have been collected by migrate_vma_collect(). Once each
2573 * page is locked it is isolated from the lru (for non-device pages). Finally,
2574 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2575 * migrated by concurrent kernel threads.
2576 */
2577static void migrate_vma_prepare(struct migrate_vma *migrate)
2578{
2579 const unsigned long npages = migrate->npages;
8c3328f1
JG
2580 const unsigned long start = migrate->start;
2581 unsigned long addr, i, restore = 0;
8763cb45 2582 bool allow_drain = true;
8763cb45
JG
2583
2584 lru_add_drain();
2585
2586 for (i = 0; (i < npages) && migrate->cpages; i++) {
2587 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2588 bool remap = true;
8763cb45
JG
2589
2590 if (!page)
2591 continue;
2592
8c3328f1
JG
2593 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2594 /*
2595 * Because we are migrating several pages there can be
2596 * a deadlock between 2 concurrent migration where each
2597 * are waiting on each other page lock.
2598 *
2599 * Make migrate_vma() a best effort thing and backoff
2600 * for any page we can not lock right away.
2601 */
2602 if (!trylock_page(page)) {
2603 migrate->src[i] = 0;
2604 migrate->cpages--;
2605 put_page(page);
2606 continue;
2607 }
2608 remap = false;
2609 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2610 }
8763cb45 2611
a5430dda
JG
2612 /* ZONE_DEVICE pages are not on LRU */
2613 if (!is_zone_device_page(page)) {
2614 if (!PageLRU(page) && allow_drain) {
2615 /* Drain CPU's pagevec */
2616 lru_add_drain_all();
2617 allow_drain = false;
2618 }
8763cb45 2619
a5430dda
JG
2620 if (isolate_lru_page(page)) {
2621 if (remap) {
2622 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2623 migrate->cpages--;
2624 restore++;
2625 } else {
2626 migrate->src[i] = 0;
2627 unlock_page(page);
2628 migrate->cpages--;
2629 put_page(page);
2630 }
2631 continue;
8c3328f1 2632 }
a5430dda
JG
2633
2634 /* Drop the reference we took in collect */
2635 put_page(page);
8763cb45
JG
2636 }
2637
2638 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2639 if (remap) {
2640 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2641 migrate->cpages--;
2642 restore++;
8763cb45 2643
a5430dda
JG
2644 if (!is_zone_device_page(page)) {
2645 get_page(page);
2646 putback_lru_page(page);
2647 }
8c3328f1
JG
2648 } else {
2649 migrate->src[i] = 0;
2650 unlock_page(page);
2651 migrate->cpages--;
2652
a5430dda
JG
2653 if (!is_zone_device_page(page))
2654 putback_lru_page(page);
2655 else
2656 put_page(page);
8c3328f1 2657 }
8763cb45
JG
2658 }
2659 }
8c3328f1
JG
2660
2661 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2662 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2663
2664 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2665 continue;
2666
2667 remove_migration_pte(page, migrate->vma, addr, page);
2668
2669 migrate->src[i] = 0;
2670 unlock_page(page);
2671 put_page(page);
2672 restore--;
2673 }
8763cb45
JG
2674}
2675
2676/*
2677 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2678 * @migrate: migrate struct containing all migration information
2679 *
2680 * Replace page mapping (CPU page table pte) with a special migration pte entry
2681 * and check again if it has been pinned. Pinned pages are restored because we
2682 * cannot migrate them.
2683 *
2684 * This is the last step before we call the device driver callback to allocate
2685 * destination memory and copy contents of original page over to new page.
2686 */
2687static void migrate_vma_unmap(struct migrate_vma *migrate)
2688{
013339df 2689 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2690 const unsigned long npages = migrate->npages;
2691 const unsigned long start = migrate->start;
2692 unsigned long addr, i, restore = 0;
2693
2694 for (i = 0; i < npages; i++) {
2695 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2696
2697 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2698 continue;
2699
8c3328f1
JG
2700 if (page_mapped(page)) {
2701 try_to_unmap(page, flags);
2702 if (page_mapped(page))
2703 goto restore;
8763cb45 2704 }
8c3328f1
JG
2705
2706 if (migrate_vma_check_page(page))
2707 continue;
2708
2709restore:
2710 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2711 migrate->cpages--;
2712 restore++;
8763cb45
JG
2713 }
2714
2715 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2716 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2717
2718 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2719 continue;
2720
2721 remove_migration_ptes(page, page, false);
2722
2723 migrate->src[i] = 0;
2724 unlock_page(page);
2725 restore--;
2726
a5430dda
JG
2727 if (is_zone_device_page(page))
2728 put_page(page);
2729 else
2730 putback_lru_page(page);
8763cb45
JG
2731 }
2732}
2733
a7d1f22b
CH
2734/**
2735 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2736 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2737 *
2738 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2739 * without an error.
2740 *
2741 * Prepare to migrate a range of memory virtual address range by collecting all
2742 * the pages backing each virtual address in the range, saving them inside the
2743 * src array. Then lock those pages and unmap them. Once the pages are locked
2744 * and unmapped, check whether each page is pinned or not. Pages that aren't
2745 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2746 * corresponding src array entry. Then restores any pages that are pinned, by
2747 * remapping and unlocking those pages.
2748 *
2749 * The caller should then allocate destination memory and copy source memory to
2750 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2751 * flag set). Once these are allocated and copied, the caller must update each
2752 * corresponding entry in the dst array with the pfn value of the destination
2753 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2754 * (destination pages must have their struct pages locked, via lock_page()).
2755 *
2756 * Note that the caller does not have to migrate all the pages that are marked
2757 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2758 * device memory to system memory. If the caller cannot migrate a device page
2759 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2760 * consequences for the userspace process, so it must be avoided if at all
2761 * possible.
2762 *
2763 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2764 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2765 * allowing the caller to allocate device memory for those unback virtual
2766 * address. For this the caller simply has to allocate device memory and
2767 * properly set the destination entry like for regular migration. Note that
2768 * this can still fails and thus inside the device driver must check if the
2769 * migration was successful for those entries after calling migrate_vma_pages()
2770 * just like for regular migration.
2771 *
2772 * After that, the callers must call migrate_vma_pages() to go over each entry
2773 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2774 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2775 * then migrate_vma_pages() to migrate struct page information from the source
2776 * struct page to the destination struct page. If it fails to migrate the
2777 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2778 * src array.
2779 *
2780 * At this point all successfully migrated pages have an entry in the src
2781 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2782 * array entry with MIGRATE_PFN_VALID flag set.
2783 *
2784 * Once migrate_vma_pages() returns the caller may inspect which pages were
2785 * successfully migrated, and which were not. Successfully migrated pages will
2786 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2787 *
2788 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2789 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2790 * in read mode (hence no one can unmap the range being migrated).
2791 *
2792 * Once the caller is done cleaning up things and updating its page table (if it
2793 * chose to do so, this is not an obligation) it finally calls
2794 * migrate_vma_finalize() to update the CPU page table to point to new pages
2795 * for successfully migrated pages or otherwise restore the CPU page table to
2796 * point to the original source pages.
2797 */
2798int migrate_vma_setup(struct migrate_vma *args)
2799{
2800 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2801
2802 args->start &= PAGE_MASK;
2803 args->end &= PAGE_MASK;
2804 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2805 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2806 return -EINVAL;
2807 if (nr_pages <= 0)
2808 return -EINVAL;
2809 if (args->start < args->vma->vm_start ||
2810 args->start >= args->vma->vm_end)
2811 return -EINVAL;
2812 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2813 return -EINVAL;
2814 if (!args->src || !args->dst)
2815 return -EINVAL;
2816
2817 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2818 args->cpages = 0;
2819 args->npages = 0;
2820
2821 migrate_vma_collect(args);
2822
2823 if (args->cpages)
2824 migrate_vma_prepare(args);
2825 if (args->cpages)
2826 migrate_vma_unmap(args);
2827
2828 /*
2829 * At this point pages are locked and unmapped, and thus they have
2830 * stable content and can safely be copied to destination memory that
2831 * is allocated by the drivers.
2832 */
2833 return 0;
2834
2835}
2836EXPORT_SYMBOL(migrate_vma_setup);
2837
34290e2c
RC
2838/*
2839 * This code closely matches the code in:
2840 * __handle_mm_fault()
2841 * handle_pte_fault()
2842 * do_anonymous_page()
2843 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2844 * private page.
2845 */
8315ada7
JG
2846static void migrate_vma_insert_page(struct migrate_vma *migrate,
2847 unsigned long addr,
2848 struct page *page,
2849 unsigned long *src,
2850 unsigned long *dst)
2851{
2852 struct vm_area_struct *vma = migrate->vma;
2853 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2854 bool flush = false;
2855 spinlock_t *ptl;
2856 pte_t entry;
2857 pgd_t *pgdp;
2858 p4d_t *p4dp;
2859 pud_t *pudp;
2860 pmd_t *pmdp;
2861 pte_t *ptep;
2862
2863 /* Only allow populating anonymous memory */
2864 if (!vma_is_anonymous(vma))
2865 goto abort;
2866
2867 pgdp = pgd_offset(mm, addr);
2868 p4dp = p4d_alloc(mm, pgdp, addr);
2869 if (!p4dp)
2870 goto abort;
2871 pudp = pud_alloc(mm, p4dp, addr);
2872 if (!pudp)
2873 goto abort;
2874 pmdp = pmd_alloc(mm, pudp, addr);
2875 if (!pmdp)
2876 goto abort;
2877
2878 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2879 goto abort;
2880
2881 /*
2882 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2883 * pte_offset_map() on pmds where a huge pmd might be created
2884 * from a different thread.
2885 *
3e4e28c5 2886 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2887 * parallel threads are excluded by other means.
2888 *
3e4e28c5 2889 * Here we only have mmap_read_lock(mm).
8315ada7 2890 */
4cf58924 2891 if (pte_alloc(mm, pmdp))
8315ada7
JG
2892 goto abort;
2893
2894 /* See the comment in pte_alloc_one_map() */
2895 if (unlikely(pmd_trans_unstable(pmdp)))
2896 goto abort;
2897
2898 if (unlikely(anon_vma_prepare(vma)))
2899 goto abort;
d9eb1ea2 2900 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2901 goto abort;
2902
2903 /*
2904 * The memory barrier inside __SetPageUptodate makes sure that
2905 * preceding stores to the page contents become visible before
2906 * the set_pte_at() write.
2907 */
2908 __SetPageUptodate(page);
2909
df6ad698
JG
2910 if (is_zone_device_page(page)) {
2911 if (is_device_private_page(page)) {
2912 swp_entry_t swp_entry;
2913
2914 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2915 entry = swp_entry_to_pte(swp_entry);
df6ad698 2916 }
8315ada7
JG
2917 } else {
2918 entry = mk_pte(page, vma->vm_page_prot);
2919 if (vma->vm_flags & VM_WRITE)
2920 entry = pte_mkwrite(pte_mkdirty(entry));
2921 }
2922
2923 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2924
34290e2c
RC
2925 if (check_stable_address_space(mm))
2926 goto unlock_abort;
2927
8315ada7
JG
2928 if (pte_present(*ptep)) {
2929 unsigned long pfn = pte_pfn(*ptep);
2930
c23a0c99
RC
2931 if (!is_zero_pfn(pfn))
2932 goto unlock_abort;
8315ada7 2933 flush = true;
c23a0c99
RC
2934 } else if (!pte_none(*ptep))
2935 goto unlock_abort;
8315ada7
JG
2936
2937 /*
c23a0c99 2938 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2939 * just back off.
2940 */
c23a0c99
RC
2941 if (userfaultfd_missing(vma))
2942 goto unlock_abort;
8315ada7
JG
2943
2944 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2945 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2946 if (!is_zone_device_page(page))
b518154e 2947 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2948 get_page(page);
2949
2950 if (flush) {
2951 flush_cache_page(vma, addr, pte_pfn(*ptep));
2952 ptep_clear_flush_notify(vma, addr, ptep);
2953 set_pte_at_notify(mm, addr, ptep, entry);
2954 update_mmu_cache(vma, addr, ptep);
2955 } else {
2956 /* No need to invalidate - it was non-present before */
2957 set_pte_at(mm, addr, ptep, entry);
2958 update_mmu_cache(vma, addr, ptep);
2959 }
2960
2961 pte_unmap_unlock(ptep, ptl);
2962 *src = MIGRATE_PFN_MIGRATE;
2963 return;
2964
c23a0c99
RC
2965unlock_abort:
2966 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
2967abort:
2968 *src &= ~MIGRATE_PFN_MIGRATE;
2969}
2970
a7d1f22b 2971/**
8763cb45
JG
2972 * migrate_vma_pages() - migrate meta-data from src page to dst page
2973 * @migrate: migrate struct containing all migration information
2974 *
2975 * This migrates struct page meta-data from source struct page to destination
2976 * struct page. This effectively finishes the migration from source page to the
2977 * destination page.
2978 */
a7d1f22b 2979void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2980{
2981 const unsigned long npages = migrate->npages;
2982 const unsigned long start = migrate->start;
ac46d4f3
JG
2983 struct mmu_notifier_range range;
2984 unsigned long addr, i;
8315ada7 2985 bool notified = false;
8763cb45
JG
2986
2987 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2988 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2989 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2990 struct address_space *mapping;
2991 int r;
2992
8315ada7
JG
2993 if (!newpage) {
2994 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2995 continue;
8315ada7
JG
2996 }
2997
2998 if (!page) {
c23a0c99 2999 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 3000 continue;
8315ada7 3001 if (!notified) {
8315ada7 3002 notified = true;
ac46d4f3
JG
3003
3004 mmu_notifier_range_init(&range,
7269f999 3005 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 3006 NULL,
ac46d4f3
JG
3007 migrate->vma->vm_mm,
3008 addr, migrate->end);
3009 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3010 }
3011 migrate_vma_insert_page(migrate, addr, newpage,
3012 &migrate->src[i],
3013 &migrate->dst[i]);
8763cb45 3014 continue;
8315ada7 3015 }
8763cb45
JG
3016
3017 mapping = page_mapping(page);
3018
a5430dda
JG
3019 if (is_zone_device_page(newpage)) {
3020 if (is_device_private_page(newpage)) {
3021 /*
3022 * For now only support private anonymous when
3023 * migrating to un-addressable device memory.
3024 */
3025 if (mapping) {
3026 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3027 continue;
3028 }
25b2995a 3029 } else {
a5430dda
JG
3030 /*
3031 * Other types of ZONE_DEVICE page are not
3032 * supported.
3033 */
3034 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3035 continue;
3036 }
3037 }
3038
8763cb45
JG
3039 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3040 if (r != MIGRATEPAGE_SUCCESS)
3041 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3042 }
8315ada7 3043
4645b9fe
JG
3044 /*
3045 * No need to double call mmu_notifier->invalidate_range() callback as
3046 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3047 * did already call it.
3048 */
8315ada7 3049 if (notified)
ac46d4f3 3050 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3051}
a7d1f22b 3052EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3053
a7d1f22b 3054/**
8763cb45
JG
3055 * migrate_vma_finalize() - restore CPU page table entry
3056 * @migrate: migrate struct containing all migration information
3057 *
3058 * This replaces the special migration pte entry with either a mapping to the
3059 * new page if migration was successful for that page, or to the original page
3060 * otherwise.
3061 *
3062 * This also unlocks the pages and puts them back on the lru, or drops the extra
3063 * refcount, for device pages.
3064 */
a7d1f22b 3065void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3066{
3067 const unsigned long npages = migrate->npages;
3068 unsigned long i;
3069
3070 for (i = 0; i < npages; i++) {
3071 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3072 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3073
8315ada7
JG
3074 if (!page) {
3075 if (newpage) {
3076 unlock_page(newpage);
3077 put_page(newpage);
3078 }
8763cb45 3079 continue;
8315ada7
JG
3080 }
3081
8763cb45
JG
3082 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3083 if (newpage) {
3084 unlock_page(newpage);
3085 put_page(newpage);
3086 }
3087 newpage = page;
3088 }
3089
3090 remove_migration_ptes(page, newpage, false);
3091 unlock_page(page);
8763cb45 3092
a5430dda
JG
3093 if (is_zone_device_page(page))
3094 put_page(page);
3095 else
3096 putback_lru_page(page);
8763cb45
JG
3097
3098 if (newpage != page) {
3099 unlock_page(newpage);
a5430dda
JG
3100 if (is_zone_device_page(newpage))
3101 put_page(newpage);
3102 else
3103 putback_lru_page(newpage);
8763cb45
JG
3104 }
3105 }
3106}
a7d1f22b 3107EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3108#endif /* CONFIG_DEVICE_PRIVATE */