mm: migrate: move migrate_page_lock_buffers()
[linux-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
9a1ea439 336 put_and_wait_on_page_locked(page);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
9a1ea439 370 put_and_wait_on_page_locked(page);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
0b3901b3
JK
377static int expected_page_refs(struct page *page)
378{
379 int expected_count = 1;
380
381 /*
382 * Device public or private pages have an extra refcount as they are
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390 return expected_count;
391}
392
b20a3503 393/*
c3fcf8a5 394 * Replace the page in the mapping.
5b5c7120
CL
395 *
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
266cf658 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 400 */
36bc08cc 401int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 402 struct page *newpage, struct page *page,
8e321fef
BL
403 struct buffer_head *head, enum migrate_mode mode,
404 int extra_count)
b20a3503 405{
89eb946a 406 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
407 struct zone *oldzone, *newzone;
408 int dirty;
0b3901b3 409 int expected_count = expected_page_refs(page) + extra_count;
8763cb45 410
6c5240ae 411 if (!mapping) {
0e8c7d0f 412 /* Anonymous page without mapping */
8e321fef 413 if (page_count(page) != expected_count)
6c5240ae 414 return -EAGAIN;
cf4b769a
HD
415
416 /* No turning back from here */
cf4b769a
HD
417 newpage->index = page->index;
418 newpage->mapping = page->mapping;
419 if (PageSwapBacked(page))
fa9949da 420 __SetPageSwapBacked(newpage);
cf4b769a 421
78bd5209 422 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
423 }
424
42cb14b1
HD
425 oldzone = page_zone(page);
426 newzone = page_zone(newpage);
427
89eb946a 428 xas_lock_irq(&xas);
89eb946a
MW
429 if (page_count(page) != expected_count || xas_load(&xas) != page) {
430 xas_unlock_irq(&xas);
e23ca00b 431 return -EAGAIN;
b20a3503
CL
432 }
433
fe896d18 434 if (!page_ref_freeze(page, expected_count)) {
89eb946a 435 xas_unlock_irq(&xas);
e286781d
NP
436 return -EAGAIN;
437 }
438
b20a3503 439 /*
cf4b769a
HD
440 * Now we know that no one else is looking at the page:
441 * no turning back from here.
b20a3503 442 */
cf4b769a
HD
443 newpage->index = page->index;
444 newpage->mapping = page->mapping;
e71769ae 445 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
446 if (PageSwapBacked(page)) {
447 __SetPageSwapBacked(newpage);
448 if (PageSwapCache(page)) {
449 SetPageSwapCache(newpage);
450 set_page_private(newpage, page_private(page));
451 }
452 } else {
453 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
454 }
455
42cb14b1
HD
456 /* Move dirty while page refs frozen and newpage not yet exposed */
457 dirty = PageDirty(page);
458 if (dirty) {
459 ClearPageDirty(page);
460 SetPageDirty(newpage);
461 }
462
89eb946a 463 xas_store(&xas, newpage);
e71769ae
NH
464 if (PageTransHuge(page)) {
465 int i;
e71769ae 466
013567be 467 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a
MW
468 xas_next(&xas);
469 xas_store(&xas, newpage + i);
e71769ae 470 }
e71769ae 471 }
7cf9c2c7
NP
472
473 /*
937a94c9
JG
474 * Drop cache reference from old page by unfreezing
475 * to one less reference.
7cf9c2c7
NP
476 * We know this isn't the last reference.
477 */
e71769ae 478 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 479
89eb946a 480 xas_unlock(&xas);
42cb14b1
HD
481 /* Leave irq disabled to prevent preemption while updating stats */
482
0e8c7d0f
CL
483 /*
484 * If moved to a different zone then also account
485 * the page for that zone. Other VM counters will be
486 * taken care of when we establish references to the
487 * new page and drop references to the old page.
488 *
489 * Note that anonymous pages are accounted for
4b9d0fab 490 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
491 * are mapped to swap space.
492 */
42cb14b1 493 if (newzone != oldzone) {
11fb9989
MG
494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 496 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
497 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
499 }
500 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 501 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 502 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 503 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 504 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 505 }
4b02108a 506 }
42cb14b1 507 local_irq_enable();
b20a3503 508
78bd5209 509 return MIGRATEPAGE_SUCCESS;
b20a3503 510}
1118dce7 511EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 512
290408d4
NH
513/*
514 * The expected number of remaining references is the same as that
515 * of migrate_page_move_mapping().
516 */
517int migrate_huge_page_move_mapping(struct address_space *mapping,
518 struct page *newpage, struct page *page)
519{
89eb946a 520 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 521 int expected_count;
290408d4 522
89eb946a 523 xas_lock_irq(&xas);
290408d4 524 expected_count = 2 + page_has_private(page);
89eb946a
MW
525 if (page_count(page) != expected_count || xas_load(&xas) != page) {
526 xas_unlock_irq(&xas);
290408d4
NH
527 return -EAGAIN;
528 }
529
fe896d18 530 if (!page_ref_freeze(page, expected_count)) {
89eb946a 531 xas_unlock_irq(&xas);
290408d4
NH
532 return -EAGAIN;
533 }
534
cf4b769a
HD
535 newpage->index = page->index;
536 newpage->mapping = page->mapping;
6a93ca8f 537
290408d4
NH
538 get_page(newpage);
539
89eb946a 540 xas_store(&xas, newpage);
290408d4 541
fe896d18 542 page_ref_unfreeze(page, expected_count - 1);
290408d4 543
89eb946a 544 xas_unlock_irq(&xas);
6a93ca8f 545
78bd5209 546 return MIGRATEPAGE_SUCCESS;
290408d4
NH
547}
548
30b0a105
DH
549/*
550 * Gigantic pages are so large that we do not guarantee that page++ pointer
551 * arithmetic will work across the entire page. We need something more
552 * specialized.
553 */
554static void __copy_gigantic_page(struct page *dst, struct page *src,
555 int nr_pages)
556{
557 int i;
558 struct page *dst_base = dst;
559 struct page *src_base = src;
560
561 for (i = 0; i < nr_pages; ) {
562 cond_resched();
563 copy_highpage(dst, src);
564
565 i++;
566 dst = mem_map_next(dst, dst_base, i);
567 src = mem_map_next(src, src_base, i);
568 }
569}
570
571static void copy_huge_page(struct page *dst, struct page *src)
572{
573 int i;
574 int nr_pages;
575
576 if (PageHuge(src)) {
577 /* hugetlbfs page */
578 struct hstate *h = page_hstate(src);
579 nr_pages = pages_per_huge_page(h);
580
581 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
582 __copy_gigantic_page(dst, src, nr_pages);
583 return;
584 }
585 } else {
586 /* thp page */
587 BUG_ON(!PageTransHuge(src));
588 nr_pages = hpage_nr_pages(src);
589 }
590
591 for (i = 0; i < nr_pages; i++) {
592 cond_resched();
593 copy_highpage(dst + i, src + i);
594 }
595}
596
b20a3503
CL
597/*
598 * Copy the page to its new location
599 */
2916ecc0 600void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 601{
7851a45c
RR
602 int cpupid;
603
b20a3503
CL
604 if (PageError(page))
605 SetPageError(newpage);
606 if (PageReferenced(page))
607 SetPageReferenced(newpage);
608 if (PageUptodate(page))
609 SetPageUptodate(newpage);
894bc310 610 if (TestClearPageActive(page)) {
309381fe 611 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 612 SetPageActive(newpage);
418b27ef
LS
613 } else if (TestClearPageUnevictable(page))
614 SetPageUnevictable(newpage);
1899ad18
JW
615 if (PageWorkingset(page))
616 SetPageWorkingset(newpage);
b20a3503
CL
617 if (PageChecked(page))
618 SetPageChecked(newpage);
619 if (PageMappedToDisk(page))
620 SetPageMappedToDisk(newpage);
621
42cb14b1
HD
622 /* Move dirty on pages not done by migrate_page_move_mapping() */
623 if (PageDirty(page))
624 SetPageDirty(newpage);
b20a3503 625
33c3fc71
VD
626 if (page_is_young(page))
627 set_page_young(newpage);
628 if (page_is_idle(page))
629 set_page_idle(newpage);
630
7851a45c
RR
631 /*
632 * Copy NUMA information to the new page, to prevent over-eager
633 * future migrations of this same page.
634 */
635 cpupid = page_cpupid_xchg_last(page, -1);
636 page_cpupid_xchg_last(newpage, cpupid);
637
e9995ef9 638 ksm_migrate_page(newpage, page);
c8d6553b
HD
639 /*
640 * Please do not reorder this without considering how mm/ksm.c's
641 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642 */
b3b3a99c
NH
643 if (PageSwapCache(page))
644 ClearPageSwapCache(page);
b20a3503
CL
645 ClearPagePrivate(page);
646 set_page_private(page, 0);
b20a3503
CL
647
648 /*
649 * If any waiters have accumulated on the new page then
650 * wake them up.
651 */
652 if (PageWriteback(newpage))
653 end_page_writeback(newpage);
d435edca
VB
654
655 copy_page_owner(page, newpage);
74485cf2
JW
656
657 mem_cgroup_migrate(page, newpage);
b20a3503 658}
2916ecc0
JG
659EXPORT_SYMBOL(migrate_page_states);
660
661void migrate_page_copy(struct page *newpage, struct page *page)
662{
663 if (PageHuge(page) || PageTransHuge(page))
664 copy_huge_page(newpage, page);
665 else
666 copy_highpage(newpage, page);
667
668 migrate_page_states(newpage, page);
669}
1118dce7 670EXPORT_SYMBOL(migrate_page_copy);
b20a3503 671
1d8b85cc
CL
672/************************************************************
673 * Migration functions
674 ***********************************************************/
675
b20a3503 676/*
bda807d4 677 * Common logic to directly migrate a single LRU page suitable for
266cf658 678 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
679 *
680 * Pages are locked upon entry and exit.
681 */
2d1db3b1 682int migrate_page(struct address_space *mapping,
a6bc32b8
MG
683 struct page *newpage, struct page *page,
684 enum migrate_mode mode)
b20a3503
CL
685{
686 int rc;
687
688 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
689
8e321fef 690 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 691
78bd5209 692 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
693 return rc;
694
2916ecc0
JG
695 if (mode != MIGRATE_SYNC_NO_COPY)
696 migrate_page_copy(newpage, page);
697 else
698 migrate_page_states(newpage, page);
78bd5209 699 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
700}
701EXPORT_SYMBOL(migrate_page);
702
9361401e 703#ifdef CONFIG_BLOCK
84ade7c1
JK
704/* Returns true if all buffers are successfully locked */
705static bool buffer_migrate_lock_buffers(struct buffer_head *head,
706 enum migrate_mode mode)
707{
708 struct buffer_head *bh = head;
709
710 /* Simple case, sync compaction */
711 if (mode != MIGRATE_ASYNC) {
712 do {
713 get_bh(bh);
714 lock_buffer(bh);
715 bh = bh->b_this_page;
716
717 } while (bh != head);
718
719 return true;
720 }
721
722 /* async case, we cannot block on lock_buffer so use trylock_buffer */
723 do {
724 get_bh(bh);
725 if (!trylock_buffer(bh)) {
726 /*
727 * We failed to lock the buffer and cannot stall in
728 * async migration. Release the taken locks
729 */
730 struct buffer_head *failed_bh = bh;
731 put_bh(failed_bh);
732 bh = head;
733 while (bh != failed_bh) {
734 unlock_buffer(bh);
735 put_bh(bh);
736 bh = bh->b_this_page;
737 }
738 return false;
739 }
740
741 bh = bh->b_this_page;
742 } while (bh != head);
743 return true;
744}
745
1d8b85cc
CL
746/*
747 * Migration function for pages with buffers. This function can only be used
748 * if the underlying filesystem guarantees that no other references to "page"
749 * exist.
750 */
2d1db3b1 751int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 752 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 753{
1d8b85cc
CL
754 struct buffer_head *bh, *head;
755 int rc;
cc4f11e6 756 int expected_count;
1d8b85cc 757
1d8b85cc 758 if (!page_has_buffers(page))
a6bc32b8 759 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 760
cc4f11e6
JK
761 /* Check whether page does not have extra refs before we do more work */
762 expected_count = expected_page_refs(page);
763 if (page_count(page) != expected_count)
764 return -EAGAIN;
1d8b85cc 765
cc4f11e6
JK
766 head = page_buffers(page);
767 if (!buffer_migrate_lock_buffers(head, mode))
768 return -EAGAIN;
1d8b85cc 769
cc4f11e6 770 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
78bd5209 771 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 772 goto unlock_buffers;
1d8b85cc
CL
773
774 ClearPagePrivate(page);
775 set_page_private(newpage, page_private(page));
776 set_page_private(page, 0);
777 put_page(page);
778 get_page(newpage);
779
780 bh = head;
781 do {
782 set_bh_page(bh, newpage, bh_offset(bh));
783 bh = bh->b_this_page;
784
785 } while (bh != head);
786
787 SetPagePrivate(newpage);
788
2916ecc0
JG
789 if (mode != MIGRATE_SYNC_NO_COPY)
790 migrate_page_copy(newpage, page);
791 else
792 migrate_page_states(newpage, page);
1d8b85cc 793
cc4f11e6
JK
794 rc = MIGRATEPAGE_SUCCESS;
795unlock_buffers:
1d8b85cc
CL
796 bh = head;
797 do {
798 unlock_buffer(bh);
2916ecc0 799 put_bh(bh);
1d8b85cc
CL
800 bh = bh->b_this_page;
801
802 } while (bh != head);
803
cc4f11e6 804 return rc;
1d8b85cc
CL
805}
806EXPORT_SYMBOL(buffer_migrate_page);
9361401e 807#endif
1d8b85cc 808
04e62a29
CL
809/*
810 * Writeback a page to clean the dirty state
811 */
812static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 813{
04e62a29
CL
814 struct writeback_control wbc = {
815 .sync_mode = WB_SYNC_NONE,
816 .nr_to_write = 1,
817 .range_start = 0,
818 .range_end = LLONG_MAX,
04e62a29
CL
819 .for_reclaim = 1
820 };
821 int rc;
822
823 if (!mapping->a_ops->writepage)
824 /* No write method for the address space */
825 return -EINVAL;
826
827 if (!clear_page_dirty_for_io(page))
828 /* Someone else already triggered a write */
829 return -EAGAIN;
830
8351a6e4 831 /*
04e62a29
CL
832 * A dirty page may imply that the underlying filesystem has
833 * the page on some queue. So the page must be clean for
834 * migration. Writeout may mean we loose the lock and the
835 * page state is no longer what we checked for earlier.
836 * At this point we know that the migration attempt cannot
837 * be successful.
8351a6e4 838 */
e388466d 839 remove_migration_ptes(page, page, false);
8351a6e4 840
04e62a29 841 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 842
04e62a29
CL
843 if (rc != AOP_WRITEPAGE_ACTIVATE)
844 /* unlocked. Relock */
845 lock_page(page);
846
bda8550d 847 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
848}
849
850/*
851 * Default handling if a filesystem does not provide a migration function.
852 */
853static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 854 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 855{
b969c4ab 856 if (PageDirty(page)) {
a6bc32b8 857 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
858 switch (mode) {
859 case MIGRATE_SYNC:
860 case MIGRATE_SYNC_NO_COPY:
861 break;
862 default:
b969c4ab 863 return -EBUSY;
2916ecc0 864 }
04e62a29 865 return writeout(mapping, page);
b969c4ab 866 }
8351a6e4
CL
867
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
266cf658 872 if (page_has_private(page) &&
8351a6e4
CL
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875
a6bc32b8 876 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
877}
878
e24f0b8f
CL
879/*
880 * Move a page to a newly allocated page
881 * The page is locked and all ptes have been successfully removed.
882 *
883 * The new page will have replaced the old page if this function
884 * is successful.
894bc310
LS
885 *
886 * Return value:
887 * < 0 - error code
78bd5209 888 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 889 */
3fe2011f 890static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 891 enum migrate_mode mode)
e24f0b8f
CL
892{
893 struct address_space *mapping;
bda807d4
MK
894 int rc = -EAGAIN;
895 bool is_lru = !__PageMovable(page);
e24f0b8f 896
7db7671f
HD
897 VM_BUG_ON_PAGE(!PageLocked(page), page);
898 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 899
e24f0b8f 900 mapping = page_mapping(page);
bda807d4
MK
901
902 if (likely(is_lru)) {
903 if (!mapping)
904 rc = migrate_page(mapping, newpage, page, mode);
905 else if (mapping->a_ops->migratepage)
906 /*
907 * Most pages have a mapping and most filesystems
908 * provide a migratepage callback. Anonymous pages
909 * are part of swap space which also has its own
910 * migratepage callback. This is the most common path
911 * for page migration.
912 */
913 rc = mapping->a_ops->migratepage(mapping, newpage,
914 page, mode);
915 else
916 rc = fallback_migrate_page(mapping, newpage,
917 page, mode);
918 } else {
e24f0b8f 919 /*
bda807d4
MK
920 * In case of non-lru page, it could be released after
921 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 922 */
bda807d4
MK
923 VM_BUG_ON_PAGE(!PageIsolated(page), page);
924 if (!PageMovable(page)) {
925 rc = MIGRATEPAGE_SUCCESS;
926 __ClearPageIsolated(page);
927 goto out;
928 }
929
930 rc = mapping->a_ops->migratepage(mapping, newpage,
931 page, mode);
932 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
933 !PageIsolated(page));
934 }
e24f0b8f 935
5c3f9a67
HD
936 /*
937 * When successful, old pagecache page->mapping must be cleared before
938 * page is freed; but stats require that PageAnon be left as PageAnon.
939 */
940 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
941 if (__PageMovable(page)) {
942 VM_BUG_ON_PAGE(!PageIsolated(page), page);
943
944 /*
945 * We clear PG_movable under page_lock so any compactor
946 * cannot try to migrate this page.
947 */
948 __ClearPageIsolated(page);
949 }
950
951 /*
952 * Anonymous and movable page->mapping will be cleard by
953 * free_pages_prepare so don't reset it here for keeping
954 * the type to work PageAnon, for example.
955 */
956 if (!PageMappingFlags(page))
5c3f9a67 957 page->mapping = NULL;
3fe2011f 958 }
bda807d4 959out:
e24f0b8f
CL
960 return rc;
961}
962
0dabec93 963static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 964 int force, enum migrate_mode mode)
e24f0b8f 965{
0dabec93 966 int rc = -EAGAIN;
2ebba6b7 967 int page_was_mapped = 0;
3f6c8272 968 struct anon_vma *anon_vma = NULL;
bda807d4 969 bool is_lru = !__PageMovable(page);
95a402c3 970
529ae9aa 971 if (!trylock_page(page)) {
a6bc32b8 972 if (!force || mode == MIGRATE_ASYNC)
0dabec93 973 goto out;
3e7d3449
MG
974
975 /*
976 * It's not safe for direct compaction to call lock_page.
977 * For example, during page readahead pages are added locked
978 * to the LRU. Later, when the IO completes the pages are
979 * marked uptodate and unlocked. However, the queueing
980 * could be merging multiple pages for one bio (e.g.
981 * mpage_readpages). If an allocation happens for the
982 * second or third page, the process can end up locking
983 * the same page twice and deadlocking. Rather than
984 * trying to be clever about what pages can be locked,
985 * avoid the use of lock_page for direct compaction
986 * altogether.
987 */
988 if (current->flags & PF_MEMALLOC)
0dabec93 989 goto out;
3e7d3449 990
e24f0b8f
CL
991 lock_page(page);
992 }
993
994 if (PageWriteback(page)) {
11bc82d6 995 /*
fed5b64a 996 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
997 * necessary to wait for PageWriteback. In the async case,
998 * the retry loop is too short and in the sync-light case,
999 * the overhead of stalling is too much
11bc82d6 1000 */
2916ecc0
JG
1001 switch (mode) {
1002 case MIGRATE_SYNC:
1003 case MIGRATE_SYNC_NO_COPY:
1004 break;
1005 default:
11bc82d6 1006 rc = -EBUSY;
0a31bc97 1007 goto out_unlock;
11bc82d6
AA
1008 }
1009 if (!force)
0a31bc97 1010 goto out_unlock;
e24f0b8f
CL
1011 wait_on_page_writeback(page);
1012 }
03f15c86 1013
e24f0b8f 1014 /*
dc386d4d
KH
1015 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1016 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1017 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1018 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1019 * File Caches may use write_page() or lock_page() in migration, then,
1020 * just care Anon page here.
03f15c86
HD
1021 *
1022 * Only page_get_anon_vma() understands the subtleties of
1023 * getting a hold on an anon_vma from outside one of its mms.
1024 * But if we cannot get anon_vma, then we won't need it anyway,
1025 * because that implies that the anon page is no longer mapped
1026 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1027 */
03f15c86 1028 if (PageAnon(page) && !PageKsm(page))
746b18d4 1029 anon_vma = page_get_anon_vma(page);
62e1c553 1030
7db7671f
HD
1031 /*
1032 * Block others from accessing the new page when we get around to
1033 * establishing additional references. We are usually the only one
1034 * holding a reference to newpage at this point. We used to have a BUG
1035 * here if trylock_page(newpage) fails, but would like to allow for
1036 * cases where there might be a race with the previous use of newpage.
1037 * This is much like races on refcount of oldpage: just don't BUG().
1038 */
1039 if (unlikely(!trylock_page(newpage)))
1040 goto out_unlock;
1041
bda807d4
MK
1042 if (unlikely(!is_lru)) {
1043 rc = move_to_new_page(newpage, page, mode);
1044 goto out_unlock_both;
1045 }
1046
dc386d4d 1047 /*
62e1c553
SL
1048 * Corner case handling:
1049 * 1. When a new swap-cache page is read into, it is added to the LRU
1050 * and treated as swapcache but it has no rmap yet.
1051 * Calling try_to_unmap() against a page->mapping==NULL page will
1052 * trigger a BUG. So handle it here.
1053 * 2. An orphaned page (see truncate_complete_page) might have
1054 * fs-private metadata. The page can be picked up due to memory
1055 * offlining. Everywhere else except page reclaim, the page is
1056 * invisible to the vm, so the page can not be migrated. So try to
1057 * free the metadata, so the page can be freed.
e24f0b8f 1058 */
62e1c553 1059 if (!page->mapping) {
309381fe 1060 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1061 if (page_has_private(page)) {
62e1c553 1062 try_to_free_buffers(page);
7db7671f 1063 goto out_unlock_both;
62e1c553 1064 }
7db7671f
HD
1065 } else if (page_mapped(page)) {
1066 /* Establish migration ptes */
03f15c86
HD
1067 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1068 page);
2ebba6b7 1069 try_to_unmap(page,
da1b13cc 1070 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1071 page_was_mapped = 1;
1072 }
dc386d4d 1073
e6a1530d 1074 if (!page_mapped(page))
5c3f9a67 1075 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1076
5c3f9a67
HD
1077 if (page_was_mapped)
1078 remove_migration_ptes(page,
e388466d 1079 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1080
7db7671f
HD
1081out_unlock_both:
1082 unlock_page(newpage);
1083out_unlock:
3f6c8272 1084 /* Drop an anon_vma reference if we took one */
76545066 1085 if (anon_vma)
9e60109f 1086 put_anon_vma(anon_vma);
e24f0b8f 1087 unlock_page(page);
0dabec93 1088out:
c6c919eb
MK
1089 /*
1090 * If migration is successful, decrease refcount of the newpage
1091 * which will not free the page because new page owner increased
1092 * refcounter. As well, if it is LRU page, add the page to LRU
1093 * list in here.
1094 */
1095 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1096 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1097 put_page(newpage);
1098 else
1099 putback_lru_page(newpage);
1100 }
1101
0dabec93
MK
1102 return rc;
1103}
95a402c3 1104
ef2a5153
GU
1105/*
1106 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1107 * around it.
1108 */
815f0ddb
ND
1109#if defined(CONFIG_ARM) && \
1110 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1111#define ICE_noinline noinline
1112#else
1113#define ICE_noinline
1114#endif
1115
0dabec93
MK
1116/*
1117 * Obtain the lock on page, remove all ptes and migrate the page
1118 * to the newly allocated page in newpage.
1119 */
ef2a5153
GU
1120static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1121 free_page_t put_new_page,
1122 unsigned long private, struct page *page,
add05cec
NH
1123 int force, enum migrate_mode mode,
1124 enum migrate_reason reason)
0dabec93 1125{
2def7424 1126 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1127 struct page *newpage;
0dabec93 1128
94723aaf
MH
1129 if (!thp_migration_supported() && PageTransHuge(page))
1130 return -ENOMEM;
1131
666feb21 1132 newpage = get_new_page(page, private);
0dabec93
MK
1133 if (!newpage)
1134 return -ENOMEM;
1135
1136 if (page_count(page) == 1) {
1137 /* page was freed from under us. So we are done. */
c6c919eb
MK
1138 ClearPageActive(page);
1139 ClearPageUnevictable(page);
bda807d4
MK
1140 if (unlikely(__PageMovable(page))) {
1141 lock_page(page);
1142 if (!PageMovable(page))
1143 __ClearPageIsolated(page);
1144 unlock_page(page);
1145 }
c6c919eb
MK
1146 if (put_new_page)
1147 put_new_page(newpage, private);
1148 else
1149 put_page(newpage);
0dabec93
MK
1150 goto out;
1151 }
1152
9c620e2b 1153 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1154 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1155 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1156
0dabec93 1157out:
e24f0b8f 1158 if (rc != -EAGAIN) {
0dabec93
MK
1159 /*
1160 * A page that has been migrated has all references
1161 * removed and will be freed. A page that has not been
1162 * migrated will have kepts its references and be
1163 * restored.
1164 */
1165 list_del(&page->lru);
6afcf8ef
ML
1166
1167 /*
1168 * Compaction can migrate also non-LRU pages which are
1169 * not accounted to NR_ISOLATED_*. They can be recognized
1170 * as __PageMovable
1171 */
1172 if (likely(!__PageMovable(page)))
e8db67eb
NH
1173 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1174 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1175 }
1176
1177 /*
1178 * If migration is successful, releases reference grabbed during
1179 * isolation. Otherwise, restore the page to right list unless
1180 * we want to retry.
1181 */
1182 if (rc == MIGRATEPAGE_SUCCESS) {
1183 put_page(page);
1184 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1185 /*
c6c919eb
MK
1186 * Set PG_HWPoison on just freed page
1187 * intentionally. Although it's rather weird,
1188 * it's how HWPoison flag works at the moment.
d7e69488 1189 */
d4ae9916 1190 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1191 num_poisoned_pages_inc();
c6c919eb
MK
1192 }
1193 } else {
bda807d4
MK
1194 if (rc != -EAGAIN) {
1195 if (likely(!__PageMovable(page))) {
1196 putback_lru_page(page);
1197 goto put_new;
1198 }
1199
1200 lock_page(page);
1201 if (PageMovable(page))
1202 putback_movable_page(page);
1203 else
1204 __ClearPageIsolated(page);
1205 unlock_page(page);
1206 put_page(page);
1207 }
1208put_new:
c6c919eb
MK
1209 if (put_new_page)
1210 put_new_page(newpage, private);
1211 else
1212 put_page(newpage);
e24f0b8f 1213 }
68711a74 1214
e24f0b8f
CL
1215 return rc;
1216}
1217
290408d4
NH
1218/*
1219 * Counterpart of unmap_and_move_page() for hugepage migration.
1220 *
1221 * This function doesn't wait the completion of hugepage I/O
1222 * because there is no race between I/O and migration for hugepage.
1223 * Note that currently hugepage I/O occurs only in direct I/O
1224 * where no lock is held and PG_writeback is irrelevant,
1225 * and writeback status of all subpages are counted in the reference
1226 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1227 * under direct I/O, the reference of the head page is 512 and a bit more.)
1228 * This means that when we try to migrate hugepage whose subpages are
1229 * doing direct I/O, some references remain after try_to_unmap() and
1230 * hugepage migration fails without data corruption.
1231 *
1232 * There is also no race when direct I/O is issued on the page under migration,
1233 * because then pte is replaced with migration swap entry and direct I/O code
1234 * will wait in the page fault for migration to complete.
1235 */
1236static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1237 free_page_t put_new_page, unsigned long private,
1238 struct page *hpage, int force,
7cd12b4a 1239 enum migrate_mode mode, int reason)
290408d4 1240{
2def7424 1241 int rc = -EAGAIN;
2ebba6b7 1242 int page_was_mapped = 0;
32665f2b 1243 struct page *new_hpage;
290408d4
NH
1244 struct anon_vma *anon_vma = NULL;
1245
83467efb
NH
1246 /*
1247 * Movability of hugepages depends on architectures and hugepage size.
1248 * This check is necessary because some callers of hugepage migration
1249 * like soft offline and memory hotremove don't walk through page
1250 * tables or check whether the hugepage is pmd-based or not before
1251 * kicking migration.
1252 */
100873d7 1253 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1254 putback_active_hugepage(hpage);
83467efb 1255 return -ENOSYS;
32665f2b 1256 }
83467efb 1257
666feb21 1258 new_hpage = get_new_page(hpage, private);
290408d4
NH
1259 if (!new_hpage)
1260 return -ENOMEM;
1261
290408d4 1262 if (!trylock_page(hpage)) {
2916ecc0 1263 if (!force)
290408d4 1264 goto out;
2916ecc0
JG
1265 switch (mode) {
1266 case MIGRATE_SYNC:
1267 case MIGRATE_SYNC_NO_COPY:
1268 break;
1269 default:
1270 goto out;
1271 }
290408d4
NH
1272 lock_page(hpage);
1273 }
1274
746b18d4
PZ
1275 if (PageAnon(hpage))
1276 anon_vma = page_get_anon_vma(hpage);
290408d4 1277
7db7671f
HD
1278 if (unlikely(!trylock_page(new_hpage)))
1279 goto put_anon;
1280
2ebba6b7
HD
1281 if (page_mapped(hpage)) {
1282 try_to_unmap(hpage,
1283 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1284 page_was_mapped = 1;
1285 }
290408d4
NH
1286
1287 if (!page_mapped(hpage))
5c3f9a67 1288 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1289
5c3f9a67
HD
1290 if (page_was_mapped)
1291 remove_migration_ptes(hpage,
e388466d 1292 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1293
7db7671f
HD
1294 unlock_page(new_hpage);
1295
1296put_anon:
fd4a4663 1297 if (anon_vma)
9e60109f 1298 put_anon_vma(anon_vma);
8e6ac7fa 1299
2def7424 1300 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1301 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1302 put_new_page = NULL;
1303 }
8e6ac7fa 1304
290408d4 1305 unlock_page(hpage);
09761333 1306out:
b8ec1cee
NH
1307 if (rc != -EAGAIN)
1308 putback_active_hugepage(hpage);
68711a74
DR
1309
1310 /*
1311 * If migration was not successful and there's a freeing callback, use
1312 * it. Otherwise, put_page() will drop the reference grabbed during
1313 * isolation.
1314 */
2def7424 1315 if (put_new_page)
68711a74
DR
1316 put_new_page(new_hpage, private);
1317 else
3aaa76e1 1318 putback_active_hugepage(new_hpage);
68711a74 1319
290408d4
NH
1320 return rc;
1321}
1322
b20a3503 1323/*
c73e5c9c
SB
1324 * migrate_pages - migrate the pages specified in a list, to the free pages
1325 * supplied as the target for the page migration
b20a3503 1326 *
c73e5c9c
SB
1327 * @from: The list of pages to be migrated.
1328 * @get_new_page: The function used to allocate free pages to be used
1329 * as the target of the page migration.
68711a74
DR
1330 * @put_new_page: The function used to free target pages if migration
1331 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1332 * @private: Private data to be passed on to get_new_page()
1333 * @mode: The migration mode that specifies the constraints for
1334 * page migration, if any.
1335 * @reason: The reason for page migration.
b20a3503 1336 *
c73e5c9c
SB
1337 * The function returns after 10 attempts or if no pages are movable any more
1338 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1339 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1340 * or free list only if ret != 0.
b20a3503 1341 *
c73e5c9c 1342 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1343 */
9c620e2b 1344int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1345 free_page_t put_new_page, unsigned long private,
1346 enum migrate_mode mode, int reason)
b20a3503 1347{
e24f0b8f 1348 int retry = 1;
b20a3503 1349 int nr_failed = 0;
5647bc29 1350 int nr_succeeded = 0;
b20a3503
CL
1351 int pass = 0;
1352 struct page *page;
1353 struct page *page2;
1354 int swapwrite = current->flags & PF_SWAPWRITE;
1355 int rc;
1356
1357 if (!swapwrite)
1358 current->flags |= PF_SWAPWRITE;
1359
e24f0b8f
CL
1360 for(pass = 0; pass < 10 && retry; pass++) {
1361 retry = 0;
b20a3503 1362
e24f0b8f 1363 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1364retry:
e24f0b8f 1365 cond_resched();
2d1db3b1 1366
31caf665
NH
1367 if (PageHuge(page))
1368 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1369 put_new_page, private, page,
7cd12b4a 1370 pass > 2, mode, reason);
31caf665 1371 else
68711a74 1372 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1373 private, page, pass > 2, mode,
1374 reason);
2d1db3b1 1375
e24f0b8f 1376 switch(rc) {
95a402c3 1377 case -ENOMEM:
94723aaf
MH
1378 /*
1379 * THP migration might be unsupported or the
1380 * allocation could've failed so we should
1381 * retry on the same page with the THP split
1382 * to base pages.
1383 *
1384 * Head page is retried immediately and tail
1385 * pages are added to the tail of the list so
1386 * we encounter them after the rest of the list
1387 * is processed.
1388 */
e6112fc3 1389 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1390 lock_page(page);
1391 rc = split_huge_page_to_list(page, from);
1392 unlock_page(page);
1393 if (!rc) {
1394 list_safe_reset_next(page, page2, lru);
1395 goto retry;
1396 }
1397 }
dfef2ef4 1398 nr_failed++;
95a402c3 1399 goto out;
e24f0b8f 1400 case -EAGAIN:
2d1db3b1 1401 retry++;
e24f0b8f 1402 break;
78bd5209 1403 case MIGRATEPAGE_SUCCESS:
5647bc29 1404 nr_succeeded++;
e24f0b8f
CL
1405 break;
1406 default:
354a3363
NH
1407 /*
1408 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1409 * unlike -EAGAIN case, the failed page is
1410 * removed from migration page list and not
1411 * retried in the next outer loop.
1412 */
2d1db3b1 1413 nr_failed++;
e24f0b8f 1414 break;
2d1db3b1 1415 }
b20a3503
CL
1416 }
1417 }
f2f81fb2
VB
1418 nr_failed += retry;
1419 rc = nr_failed;
95a402c3 1420out:
5647bc29
MG
1421 if (nr_succeeded)
1422 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1423 if (nr_failed)
1424 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1425 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1426
b20a3503
CL
1427 if (!swapwrite)
1428 current->flags &= ~PF_SWAPWRITE;
1429
78bd5209 1430 return rc;
b20a3503 1431}
95a402c3 1432
742755a1 1433#ifdef CONFIG_NUMA
742755a1 1434
a49bd4d7 1435static int store_status(int __user *status, int start, int value, int nr)
742755a1 1436{
a49bd4d7
MH
1437 while (nr-- > 0) {
1438 if (put_user(value, status + start))
1439 return -EFAULT;
1440 start++;
1441 }
1442
1443 return 0;
1444}
1445
1446static int do_move_pages_to_node(struct mm_struct *mm,
1447 struct list_head *pagelist, int node)
1448{
1449 int err;
1450
1451 if (list_empty(pagelist))
1452 return 0;
1453
1454 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1455 MIGRATE_SYNC, MR_SYSCALL);
1456 if (err)
1457 putback_movable_pages(pagelist);
1458 return err;
742755a1
CL
1459}
1460
1461/*
a49bd4d7
MH
1462 * Resolves the given address to a struct page, isolates it from the LRU and
1463 * puts it to the given pagelist.
1464 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1465 * queued or the page doesn't need to be migrated because it is already on
1466 * the target node
742755a1 1467 */
a49bd4d7
MH
1468static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1469 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1470{
a49bd4d7
MH
1471 struct vm_area_struct *vma;
1472 struct page *page;
1473 unsigned int follflags;
742755a1 1474 int err;
742755a1
CL
1475
1476 down_read(&mm->mmap_sem);
a49bd4d7
MH
1477 err = -EFAULT;
1478 vma = find_vma(mm, addr);
1479 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1480 goto out;
742755a1 1481
a49bd4d7
MH
1482 /* FOLL_DUMP to ignore special (like zero) pages */
1483 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1484 page = follow_page(vma, addr, follflags);
89f5b7da 1485
a49bd4d7
MH
1486 err = PTR_ERR(page);
1487 if (IS_ERR(page))
1488 goto out;
89f5b7da 1489
a49bd4d7
MH
1490 err = -ENOENT;
1491 if (!page)
1492 goto out;
742755a1 1493
a49bd4d7
MH
1494 err = 0;
1495 if (page_to_nid(page) == node)
1496 goto out_putpage;
742755a1 1497
a49bd4d7
MH
1498 err = -EACCES;
1499 if (page_mapcount(page) > 1 && !migrate_all)
1500 goto out_putpage;
742755a1 1501
a49bd4d7
MH
1502 if (PageHuge(page)) {
1503 if (PageHead(page)) {
1504 isolate_huge_page(page, pagelist);
1505 err = 0;
e632a938 1506 }
a49bd4d7
MH
1507 } else {
1508 struct page *head;
e632a938 1509
e8db67eb
NH
1510 head = compound_head(page);
1511 err = isolate_lru_page(head);
cf608ac1 1512 if (err)
a49bd4d7 1513 goto out_putpage;
742755a1 1514
a49bd4d7
MH
1515 err = 0;
1516 list_add_tail(&head->lru, pagelist);
1517 mod_node_page_state(page_pgdat(head),
1518 NR_ISOLATED_ANON + page_is_file_cache(head),
1519 hpage_nr_pages(head));
1520 }
1521out_putpage:
1522 /*
1523 * Either remove the duplicate refcount from
1524 * isolate_lru_page() or drop the page ref if it was
1525 * not isolated.
1526 */
1527 put_page(page);
1528out:
742755a1
CL
1529 up_read(&mm->mmap_sem);
1530 return err;
1531}
1532
5e9a0f02
BG
1533/*
1534 * Migrate an array of page address onto an array of nodes and fill
1535 * the corresponding array of status.
1536 */
3268c63e 1537static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1538 unsigned long nr_pages,
1539 const void __user * __user *pages,
1540 const int __user *nodes,
1541 int __user *status, int flags)
1542{
a49bd4d7
MH
1543 int current_node = NUMA_NO_NODE;
1544 LIST_HEAD(pagelist);
1545 int start, i;
1546 int err = 0, err1;
35282a2d
BG
1547
1548 migrate_prep();
1549
a49bd4d7
MH
1550 for (i = start = 0; i < nr_pages; i++) {
1551 const void __user *p;
1552 unsigned long addr;
1553 int node;
3140a227 1554
a49bd4d7
MH
1555 err = -EFAULT;
1556 if (get_user(p, pages + i))
1557 goto out_flush;
1558 if (get_user(node, nodes + i))
1559 goto out_flush;
1560 addr = (unsigned long)p;
1561
1562 err = -ENODEV;
1563 if (node < 0 || node >= MAX_NUMNODES)
1564 goto out_flush;
1565 if (!node_state(node, N_MEMORY))
1566 goto out_flush;
5e9a0f02 1567
a49bd4d7
MH
1568 err = -EACCES;
1569 if (!node_isset(node, task_nodes))
1570 goto out_flush;
1571
1572 if (current_node == NUMA_NO_NODE) {
1573 current_node = node;
1574 start = i;
1575 } else if (node != current_node) {
1576 err = do_move_pages_to_node(mm, &pagelist, current_node);
1577 if (err)
1578 goto out;
1579 err = store_status(status, start, current_node, i - start);
1580 if (err)
1581 goto out;
1582 start = i;
1583 current_node = node;
3140a227
BG
1584 }
1585
a49bd4d7
MH
1586 /*
1587 * Errors in the page lookup or isolation are not fatal and we simply
1588 * report them via status
1589 */
1590 err = add_page_for_migration(mm, addr, current_node,
1591 &pagelist, flags & MPOL_MF_MOVE_ALL);
1592 if (!err)
1593 continue;
3140a227 1594
a49bd4d7
MH
1595 err = store_status(status, i, err, 1);
1596 if (err)
1597 goto out_flush;
5e9a0f02 1598
a49bd4d7
MH
1599 err = do_move_pages_to_node(mm, &pagelist, current_node);
1600 if (err)
1601 goto out;
1602 if (i > start) {
1603 err = store_status(status, start, current_node, i - start);
1604 if (err)
1605 goto out;
1606 }
1607 current_node = NUMA_NO_NODE;
3140a227 1608 }
a49bd4d7 1609out_flush:
8f175cf5
MH
1610 if (list_empty(&pagelist))
1611 return err;
1612
a49bd4d7
MH
1613 /* Make sure we do not overwrite the existing error */
1614 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1615 if (!err1)
1616 err1 = store_status(status, start, current_node, i - start);
1617 if (!err)
1618 err = err1;
5e9a0f02
BG
1619out:
1620 return err;
1621}
1622
742755a1 1623/*
2f007e74 1624 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1625 */
80bba129
BG
1626static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1627 const void __user **pages, int *status)
742755a1 1628{
2f007e74 1629 unsigned long i;
2f007e74 1630
742755a1
CL
1631 down_read(&mm->mmap_sem);
1632
2f007e74 1633 for (i = 0; i < nr_pages; i++) {
80bba129 1634 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1635 struct vm_area_struct *vma;
1636 struct page *page;
c095adbc 1637 int err = -EFAULT;
2f007e74
BG
1638
1639 vma = find_vma(mm, addr);
70384dc6 1640 if (!vma || addr < vma->vm_start)
742755a1
CL
1641 goto set_status;
1642
d899844e
KS
1643 /* FOLL_DUMP to ignore special (like zero) pages */
1644 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1645
1646 err = PTR_ERR(page);
1647 if (IS_ERR(page))
1648 goto set_status;
1649
d899844e 1650 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1651set_status:
80bba129
BG
1652 *status = err;
1653
1654 pages++;
1655 status++;
1656 }
1657
1658 up_read(&mm->mmap_sem);
1659}
1660
1661/*
1662 * Determine the nodes of a user array of pages and store it in
1663 * a user array of status.
1664 */
1665static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1666 const void __user * __user *pages,
1667 int __user *status)
1668{
1669#define DO_PAGES_STAT_CHUNK_NR 16
1670 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1671 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1672
87b8d1ad
PA
1673 while (nr_pages) {
1674 unsigned long chunk_nr;
80bba129 1675
87b8d1ad
PA
1676 chunk_nr = nr_pages;
1677 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1678 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1679
1680 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1681 break;
80bba129
BG
1682
1683 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1684
87b8d1ad
PA
1685 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1686 break;
742755a1 1687
87b8d1ad
PA
1688 pages += chunk_nr;
1689 status += chunk_nr;
1690 nr_pages -= chunk_nr;
1691 }
1692 return nr_pages ? -EFAULT : 0;
742755a1
CL
1693}
1694
1695/*
1696 * Move a list of pages in the address space of the currently executing
1697 * process.
1698 */
7addf443
DB
1699static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1700 const void __user * __user *pages,
1701 const int __user *nodes,
1702 int __user *status, int flags)
742755a1 1703{
742755a1 1704 struct task_struct *task;
742755a1 1705 struct mm_struct *mm;
5e9a0f02 1706 int err;
3268c63e 1707 nodemask_t task_nodes;
742755a1
CL
1708
1709 /* Check flags */
1710 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1711 return -EINVAL;
1712
1713 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1714 return -EPERM;
1715
1716 /* Find the mm_struct */
a879bf58 1717 rcu_read_lock();
228ebcbe 1718 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1719 if (!task) {
a879bf58 1720 rcu_read_unlock();
742755a1
CL
1721 return -ESRCH;
1722 }
3268c63e 1723 get_task_struct(task);
742755a1
CL
1724
1725 /*
1726 * Check if this process has the right to modify the specified
197e7e52 1727 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1728 */
197e7e52 1729 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1730 rcu_read_unlock();
742755a1 1731 err = -EPERM;
5e9a0f02 1732 goto out;
742755a1 1733 }
c69e8d9c 1734 rcu_read_unlock();
742755a1 1735
86c3a764
DQ
1736 err = security_task_movememory(task);
1737 if (err)
5e9a0f02 1738 goto out;
86c3a764 1739
3268c63e
CL
1740 task_nodes = cpuset_mems_allowed(task);
1741 mm = get_task_mm(task);
1742 put_task_struct(task);
1743
6e8b09ea
SL
1744 if (!mm)
1745 return -EINVAL;
1746
1747 if (nodes)
1748 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1749 nodes, status, flags);
1750 else
1751 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1752
742755a1
CL
1753 mmput(mm);
1754 return err;
3268c63e
CL
1755
1756out:
1757 put_task_struct(task);
1758 return err;
742755a1 1759}
742755a1 1760
7addf443
DB
1761SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1762 const void __user * __user *, pages,
1763 const int __user *, nodes,
1764 int __user *, status, int, flags)
1765{
1766 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1767}
1768
1769#ifdef CONFIG_COMPAT
1770COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1771 compat_uptr_t __user *, pages32,
1772 const int __user *, nodes,
1773 int __user *, status,
1774 int, flags)
1775{
1776 const void __user * __user *pages;
1777 int i;
1778
1779 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1780 for (i = 0; i < nr_pages; i++) {
1781 compat_uptr_t p;
1782
1783 if (get_user(p, pages32 + i) ||
1784 put_user(compat_ptr(p), pages + i))
1785 return -EFAULT;
1786 }
1787 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1788}
1789#endif /* CONFIG_COMPAT */
1790
7039e1db
PZ
1791#ifdef CONFIG_NUMA_BALANCING
1792/*
1793 * Returns true if this is a safe migration target node for misplaced NUMA
1794 * pages. Currently it only checks the watermarks which crude
1795 */
1796static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1797 unsigned long nr_migrate_pages)
7039e1db
PZ
1798{
1799 int z;
599d0c95 1800
7039e1db
PZ
1801 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1802 struct zone *zone = pgdat->node_zones + z;
1803
1804 if (!populated_zone(zone))
1805 continue;
1806
7039e1db
PZ
1807 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1808 if (!zone_watermark_ok(zone, 0,
1809 high_wmark_pages(zone) +
1810 nr_migrate_pages,
1811 0, 0))
1812 continue;
1813 return true;
1814 }
1815 return false;
1816}
1817
1818static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1819 unsigned long data)
7039e1db
PZ
1820{
1821 int nid = (int) data;
1822 struct page *newpage;
1823
96db800f 1824 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1825 (GFP_HIGHUSER_MOVABLE |
1826 __GFP_THISNODE | __GFP_NOMEMALLOC |
1827 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1828 ~__GFP_RECLAIM, 0);
bac0382c 1829
7039e1db
PZ
1830 return newpage;
1831}
1832
1c30e017 1833static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1834{
340ef390 1835 int page_lru;
a8f60772 1836
309381fe 1837 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1838
7039e1db 1839 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1840 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1841 return 0;
7039e1db 1842
340ef390
HD
1843 if (isolate_lru_page(page))
1844 return 0;
7039e1db 1845
340ef390
HD
1846 /*
1847 * migrate_misplaced_transhuge_page() skips page migration's usual
1848 * check on page_count(), so we must do it here, now that the page
1849 * has been isolated: a GUP pin, or any other pin, prevents migration.
1850 * The expected page count is 3: 1 for page's mapcount and 1 for the
1851 * caller's pin and 1 for the reference taken by isolate_lru_page().
1852 */
1853 if (PageTransHuge(page) && page_count(page) != 3) {
1854 putback_lru_page(page);
1855 return 0;
7039e1db
PZ
1856 }
1857
340ef390 1858 page_lru = page_is_file_cache(page);
599d0c95 1859 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1860 hpage_nr_pages(page));
1861
149c33e1 1862 /*
340ef390
HD
1863 * Isolating the page has taken another reference, so the
1864 * caller's reference can be safely dropped without the page
1865 * disappearing underneath us during migration.
149c33e1
MG
1866 */
1867 put_page(page);
340ef390 1868 return 1;
b32967ff
MG
1869}
1870
de466bd6
MG
1871bool pmd_trans_migrating(pmd_t pmd)
1872{
1873 struct page *page = pmd_page(pmd);
1874 return PageLocked(page);
1875}
1876
b32967ff
MG
1877/*
1878 * Attempt to migrate a misplaced page to the specified destination
1879 * node. Caller is expected to have an elevated reference count on
1880 * the page that will be dropped by this function before returning.
1881 */
1bc115d8
MG
1882int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1883 int node)
b32967ff
MG
1884{
1885 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1886 int isolated;
b32967ff
MG
1887 int nr_remaining;
1888 LIST_HEAD(migratepages);
1889
1890 /*
1bc115d8
MG
1891 * Don't migrate file pages that are mapped in multiple processes
1892 * with execute permissions as they are probably shared libraries.
b32967ff 1893 */
1bc115d8
MG
1894 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1895 (vma->vm_flags & VM_EXEC))
b32967ff 1896 goto out;
b32967ff 1897
09a913a7
MG
1898 /*
1899 * Also do not migrate dirty pages as not all filesystems can move
1900 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1901 */
1902 if (page_is_file_cache(page) && PageDirty(page))
1903 goto out;
1904
b32967ff
MG
1905 isolated = numamigrate_isolate_page(pgdat, page);
1906 if (!isolated)
1907 goto out;
1908
1909 list_add(&page->lru, &migratepages);
9c620e2b 1910 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1911 NULL, node, MIGRATE_ASYNC,
1912 MR_NUMA_MISPLACED);
b32967ff 1913 if (nr_remaining) {
59c82b70
JK
1914 if (!list_empty(&migratepages)) {
1915 list_del(&page->lru);
599d0c95 1916 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1917 page_is_file_cache(page));
1918 putback_lru_page(page);
1919 }
b32967ff
MG
1920 isolated = 0;
1921 } else
1922 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1923 BUG_ON(!list_empty(&migratepages));
7039e1db 1924 return isolated;
340ef390
HD
1925
1926out:
1927 put_page(page);
1928 return 0;
7039e1db 1929}
220018d3 1930#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1931
220018d3 1932#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1933/*
1934 * Migrates a THP to a given target node. page must be locked and is unlocked
1935 * before returning.
1936 */
b32967ff
MG
1937int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1938 struct vm_area_struct *vma,
1939 pmd_t *pmd, pmd_t entry,
1940 unsigned long address,
1941 struct page *page, int node)
1942{
c4088ebd 1943 spinlock_t *ptl;
b32967ff
MG
1944 pg_data_t *pgdat = NODE_DATA(node);
1945 int isolated = 0;
1946 struct page *new_page = NULL;
b32967ff 1947 int page_lru = page_is_file_cache(page);
7066f0f9 1948 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 1949
b32967ff 1950 new_page = alloc_pages_node(node,
25160354 1951 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1952 HPAGE_PMD_ORDER);
340ef390
HD
1953 if (!new_page)
1954 goto out_fail;
9a982250 1955 prep_transhuge_page(new_page);
340ef390 1956
b32967ff 1957 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1958 if (!isolated) {
b32967ff 1959 put_page(new_page);
340ef390 1960 goto out_fail;
b32967ff 1961 }
b0943d61 1962
b32967ff 1963 /* Prepare a page as a migration target */
48c935ad 1964 __SetPageLocked(new_page);
d44d363f
SL
1965 if (PageSwapBacked(page))
1966 __SetPageSwapBacked(new_page);
b32967ff
MG
1967
1968 /* anon mapping, we can simply copy page->mapping to the new page: */
1969 new_page->mapping = page->mapping;
1970 new_page->index = page->index;
7eef5f97
AA
1971 /* flush the cache before copying using the kernel virtual address */
1972 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
1973 migrate_page_copy(new_page, page);
1974 WARN_ON(PageLRU(new_page));
1975
1976 /* Recheck the target PMD */
c4088ebd 1977 ptl = pmd_lock(mm, pmd);
f4e177d1 1978 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 1979 spin_unlock(ptl);
b32967ff
MG
1980
1981 /* Reverse changes made by migrate_page_copy() */
1982 if (TestClearPageActive(new_page))
1983 SetPageActive(page);
1984 if (TestClearPageUnevictable(new_page))
1985 SetPageUnevictable(page);
b32967ff
MG
1986
1987 unlock_page(new_page);
1988 put_page(new_page); /* Free it */
1989
a54a407f
MG
1990 /* Retake the callers reference and putback on LRU */
1991 get_page(page);
b32967ff 1992 putback_lru_page(page);
599d0c95 1993 mod_node_page_state(page_pgdat(page),
a54a407f 1994 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1995
1996 goto out_unlock;
b32967ff
MG
1997 }
1998
10102459 1999 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2000 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2001
2b4847e7 2002 /*
d7c33934
AA
2003 * Overwrite the old entry under pagetable lock and establish
2004 * the new PTE. Any parallel GUP will either observe the old
2005 * page blocking on the page lock, block on the page table
2006 * lock or observe the new page. The SetPageUptodate on the
2007 * new page and page_add_new_anon_rmap guarantee the copy is
2008 * visible before the pagetable update.
2b4847e7 2009 */
7066f0f9 2010 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2011 /*
2012 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2013 * has already been flushed globally. So no TLB can be currently
2014 * caching this non present pmd mapping. There's no need to clear the
2015 * pmd before doing set_pmd_at(), nor to flush the TLB after
2016 * set_pmd_at(). Clearing the pmd here would introduce a race
2017 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2018 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2019 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2020 * pmd.
2021 */
7066f0f9 2022 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2023 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2024
f4e177d1 2025 page_ref_unfreeze(page, 2);
51afb12b 2026 mlock_migrate_page(new_page, page);
d281ee61 2027 page_remove_rmap(page, true);
7cd12b4a 2028 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2029
c4088ebd 2030 spin_unlock(ptl);
b32967ff 2031
11de9927
MG
2032 /* Take an "isolate" reference and put new page on the LRU. */
2033 get_page(new_page);
2034 putback_lru_page(new_page);
2035
b32967ff
MG
2036 unlock_page(new_page);
2037 unlock_page(page);
2038 put_page(page); /* Drop the rmap reference */
2039 put_page(page); /* Drop the LRU isolation reference */
2040
2041 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2042 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2043
599d0c95 2044 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2045 NR_ISOLATED_ANON + page_lru,
2046 -HPAGE_PMD_NR);
2047 return isolated;
2048
340ef390
HD
2049out_fail:
2050 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2051 ptl = pmd_lock(mm, pmd);
2052 if (pmd_same(*pmd, entry)) {
4d942466 2053 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2054 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2055 update_mmu_cache_pmd(vma, address, &entry);
2056 }
2057 spin_unlock(ptl);
a54a407f 2058
eb4489f6 2059out_unlock:
340ef390 2060 unlock_page(page);
b32967ff 2061 put_page(page);
b32967ff
MG
2062 return 0;
2063}
7039e1db
PZ
2064#endif /* CONFIG_NUMA_BALANCING */
2065
2066#endif /* CONFIG_NUMA */
8763cb45 2067
6b368cd4 2068#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2069struct migrate_vma {
2070 struct vm_area_struct *vma;
2071 unsigned long *dst;
2072 unsigned long *src;
2073 unsigned long cpages;
2074 unsigned long npages;
2075 unsigned long start;
2076 unsigned long end;
2077};
2078
2079static int migrate_vma_collect_hole(unsigned long start,
2080 unsigned long end,
2081 struct mm_walk *walk)
2082{
2083 struct migrate_vma *migrate = walk->private;
2084 unsigned long addr;
2085
8315ada7 2086 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2087 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2088 migrate->dst[migrate->npages] = 0;
e20d103b 2089 migrate->npages++;
8315ada7
JG
2090 migrate->cpages++;
2091 }
2092
2093 return 0;
2094}
2095
2096static int migrate_vma_collect_skip(unsigned long start,
2097 unsigned long end,
2098 struct mm_walk *walk)
2099{
2100 struct migrate_vma *migrate = walk->private;
2101 unsigned long addr;
2102
8763cb45
JG
2103 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2104 migrate->dst[migrate->npages] = 0;
2105 migrate->src[migrate->npages++] = 0;
2106 }
2107
2108 return 0;
2109}
2110
2111static int migrate_vma_collect_pmd(pmd_t *pmdp,
2112 unsigned long start,
2113 unsigned long end,
2114 struct mm_walk *walk)
2115{
2116 struct migrate_vma *migrate = walk->private;
2117 struct vm_area_struct *vma = walk->vma;
2118 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2119 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2120 spinlock_t *ptl;
2121 pte_t *ptep;
2122
2123again:
2124 if (pmd_none(*pmdp))
2125 return migrate_vma_collect_hole(start, end, walk);
2126
2127 if (pmd_trans_huge(*pmdp)) {
2128 struct page *page;
2129
2130 ptl = pmd_lock(mm, pmdp);
2131 if (unlikely(!pmd_trans_huge(*pmdp))) {
2132 spin_unlock(ptl);
2133 goto again;
2134 }
2135
2136 page = pmd_page(*pmdp);
2137 if (is_huge_zero_page(page)) {
2138 spin_unlock(ptl);
2139 split_huge_pmd(vma, pmdp, addr);
2140 if (pmd_trans_unstable(pmdp))
8315ada7 2141 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2142 walk);
2143 } else {
2144 int ret;
2145
2146 get_page(page);
2147 spin_unlock(ptl);
2148 if (unlikely(!trylock_page(page)))
8315ada7 2149 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2150 walk);
2151 ret = split_huge_page(page);
2152 unlock_page(page);
2153 put_page(page);
8315ada7
JG
2154 if (ret)
2155 return migrate_vma_collect_skip(start, end,
2156 walk);
2157 if (pmd_none(*pmdp))
8763cb45
JG
2158 return migrate_vma_collect_hole(start, end,
2159 walk);
2160 }
2161 }
2162
2163 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2164 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2165
2166 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2167 arch_enter_lazy_mmu_mode();
2168
8763cb45
JG
2169 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2170 unsigned long mpfn, pfn;
2171 struct page *page;
8c3328f1 2172 swp_entry_t entry;
8763cb45
JG
2173 pte_t pte;
2174
2175 pte = *ptep;
2176 pfn = pte_pfn(pte);
2177
a5430dda 2178 if (pte_none(pte)) {
8315ada7
JG
2179 mpfn = MIGRATE_PFN_MIGRATE;
2180 migrate->cpages++;
2181 pfn = 0;
8763cb45
JG
2182 goto next;
2183 }
2184
a5430dda
JG
2185 if (!pte_present(pte)) {
2186 mpfn = pfn = 0;
2187
2188 /*
2189 * Only care about unaddressable device page special
2190 * page table entry. Other special swap entries are not
2191 * migratable, and we ignore regular swapped page.
2192 */
2193 entry = pte_to_swp_entry(pte);
2194 if (!is_device_private_entry(entry))
2195 goto next;
2196
2197 page = device_private_entry_to_page(entry);
2198 mpfn = migrate_pfn(page_to_pfn(page))|
2199 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2200 if (is_write_device_private_entry(entry))
2201 mpfn |= MIGRATE_PFN_WRITE;
2202 } else {
8315ada7
JG
2203 if (is_zero_pfn(pfn)) {
2204 mpfn = MIGRATE_PFN_MIGRATE;
2205 migrate->cpages++;
2206 pfn = 0;
2207 goto next;
2208 }
df6ad698 2209 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2210 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2211 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2212 }
2213
8763cb45 2214 /* FIXME support THP */
8763cb45
JG
2215 if (!page || !page->mapping || PageTransCompound(page)) {
2216 mpfn = pfn = 0;
2217 goto next;
2218 }
a5430dda 2219 pfn = page_to_pfn(page);
8763cb45
JG
2220
2221 /*
2222 * By getting a reference on the page we pin it and that blocks
2223 * any kind of migration. Side effect is that it "freezes" the
2224 * pte.
2225 *
2226 * We drop this reference after isolating the page from the lru
2227 * for non device page (device page are not on the lru and thus
2228 * can't be dropped from it).
2229 */
2230 get_page(page);
2231 migrate->cpages++;
8763cb45 2232
8c3328f1
JG
2233 /*
2234 * Optimize for the common case where page is only mapped once
2235 * in one process. If we can lock the page, then we can safely
2236 * set up a special migration page table entry now.
2237 */
2238 if (trylock_page(page)) {
2239 pte_t swp_pte;
2240
2241 mpfn |= MIGRATE_PFN_LOCKED;
2242 ptep_get_and_clear(mm, addr, ptep);
2243
2244 /* Setup special migration page table entry */
07707125
RC
2245 entry = make_migration_entry(page, mpfn &
2246 MIGRATE_PFN_WRITE);
8c3328f1
JG
2247 swp_pte = swp_entry_to_pte(entry);
2248 if (pte_soft_dirty(pte))
2249 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2250 set_pte_at(mm, addr, ptep, swp_pte);
2251
2252 /*
2253 * This is like regular unmap: we remove the rmap and
2254 * drop page refcount. Page won't be freed, as we took
2255 * a reference just above.
2256 */
2257 page_remove_rmap(page, false);
2258 put_page(page);
a5430dda
JG
2259
2260 if (pte_present(pte))
2261 unmapped++;
8c3328f1
JG
2262 }
2263
8763cb45 2264next:
a5430dda 2265 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2266 migrate->src[migrate->npages++] = mpfn;
2267 }
8c3328f1 2268 arch_leave_lazy_mmu_mode();
8763cb45
JG
2269 pte_unmap_unlock(ptep - 1, ptl);
2270
8c3328f1
JG
2271 /* Only flush the TLB if we actually modified any entries */
2272 if (unmapped)
2273 flush_tlb_range(walk->vma, start, end);
2274
8763cb45
JG
2275 return 0;
2276}
2277
2278/*
2279 * migrate_vma_collect() - collect pages over a range of virtual addresses
2280 * @migrate: migrate struct containing all migration information
2281 *
2282 * This will walk the CPU page table. For each virtual address backed by a
2283 * valid page, it updates the src array and takes a reference on the page, in
2284 * order to pin the page until we lock it and unmap it.
2285 */
2286static void migrate_vma_collect(struct migrate_vma *migrate)
2287{
ac46d4f3 2288 struct mmu_notifier_range range;
8763cb45
JG
2289 struct mm_walk mm_walk;
2290
2291 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2292 mm_walk.pte_entry = NULL;
2293 mm_walk.pte_hole = migrate_vma_collect_hole;
2294 mm_walk.hugetlb_entry = NULL;
2295 mm_walk.test_walk = NULL;
2296 mm_walk.vma = migrate->vma;
2297 mm_walk.mm = migrate->vma->vm_mm;
2298 mm_walk.private = migrate;
2299
ac46d4f3
JG
2300 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2301 migrate->end);
2302 mmu_notifier_invalidate_range_start(&range);
8763cb45 2303 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2304 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2305
2306 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2307}
2308
2309/*
2310 * migrate_vma_check_page() - check if page is pinned or not
2311 * @page: struct page to check
2312 *
2313 * Pinned pages cannot be migrated. This is the same test as in
2314 * migrate_page_move_mapping(), except that here we allow migration of a
2315 * ZONE_DEVICE page.
2316 */
2317static bool migrate_vma_check_page(struct page *page)
2318{
2319 /*
2320 * One extra ref because caller holds an extra reference, either from
2321 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2322 * a device page.
2323 */
2324 int extra = 1;
2325
2326 /*
2327 * FIXME support THP (transparent huge page), it is bit more complex to
2328 * check them than regular pages, because they can be mapped with a pmd
2329 * or with a pte (split pte mapping).
2330 */
2331 if (PageCompound(page))
2332 return false;
2333
a5430dda
JG
2334 /* Page from ZONE_DEVICE have one extra reference */
2335 if (is_zone_device_page(page)) {
2336 /*
2337 * Private page can never be pin as they have no valid pte and
2338 * GUP will fail for those. Yet if there is a pending migration
2339 * a thread might try to wait on the pte migration entry and
2340 * will bump the page reference count. Sadly there is no way to
2341 * differentiate a regular pin from migration wait. Hence to
2342 * avoid 2 racing thread trying to migrate back to CPU to enter
2343 * infinite loop (one stoping migration because the other is
2344 * waiting on pte migration entry). We always return true here.
2345 *
2346 * FIXME proper solution is to rework migration_entry_wait() so
2347 * it does not need to take a reference on page.
2348 */
2349 if (is_device_private_page(page))
2350 return true;
2351
df6ad698
JG
2352 /*
2353 * Only allow device public page to be migrated and account for
2354 * the extra reference count imply by ZONE_DEVICE pages.
2355 */
2356 if (!is_device_public_page(page))
2357 return false;
2358 extra++;
a5430dda
JG
2359 }
2360
df6ad698
JG
2361 /* For file back page */
2362 if (page_mapping(page))
2363 extra += 1 + page_has_private(page);
2364
8763cb45
JG
2365 if ((page_count(page) - extra) > page_mapcount(page))
2366 return false;
2367
2368 return true;
2369}
2370
2371/*
2372 * migrate_vma_prepare() - lock pages and isolate them from the lru
2373 * @migrate: migrate struct containing all migration information
2374 *
2375 * This locks pages that have been collected by migrate_vma_collect(). Once each
2376 * page is locked it is isolated from the lru (for non-device pages). Finally,
2377 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2378 * migrated by concurrent kernel threads.
2379 */
2380static void migrate_vma_prepare(struct migrate_vma *migrate)
2381{
2382 const unsigned long npages = migrate->npages;
8c3328f1
JG
2383 const unsigned long start = migrate->start;
2384 unsigned long addr, i, restore = 0;
8763cb45 2385 bool allow_drain = true;
8763cb45
JG
2386
2387 lru_add_drain();
2388
2389 for (i = 0; (i < npages) && migrate->cpages; i++) {
2390 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2391 bool remap = true;
8763cb45
JG
2392
2393 if (!page)
2394 continue;
2395
8c3328f1
JG
2396 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2397 /*
2398 * Because we are migrating several pages there can be
2399 * a deadlock between 2 concurrent migration where each
2400 * are waiting on each other page lock.
2401 *
2402 * Make migrate_vma() a best effort thing and backoff
2403 * for any page we can not lock right away.
2404 */
2405 if (!trylock_page(page)) {
2406 migrate->src[i] = 0;
2407 migrate->cpages--;
2408 put_page(page);
2409 continue;
2410 }
2411 remap = false;
2412 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2413 }
8763cb45 2414
a5430dda
JG
2415 /* ZONE_DEVICE pages are not on LRU */
2416 if (!is_zone_device_page(page)) {
2417 if (!PageLRU(page) && allow_drain) {
2418 /* Drain CPU's pagevec */
2419 lru_add_drain_all();
2420 allow_drain = false;
2421 }
8763cb45 2422
a5430dda
JG
2423 if (isolate_lru_page(page)) {
2424 if (remap) {
2425 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2426 migrate->cpages--;
2427 restore++;
2428 } else {
2429 migrate->src[i] = 0;
2430 unlock_page(page);
2431 migrate->cpages--;
2432 put_page(page);
2433 }
2434 continue;
8c3328f1 2435 }
a5430dda
JG
2436
2437 /* Drop the reference we took in collect */
2438 put_page(page);
8763cb45
JG
2439 }
2440
2441 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2442 if (remap) {
2443 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2444 migrate->cpages--;
2445 restore++;
8763cb45 2446
a5430dda
JG
2447 if (!is_zone_device_page(page)) {
2448 get_page(page);
2449 putback_lru_page(page);
2450 }
8c3328f1
JG
2451 } else {
2452 migrate->src[i] = 0;
2453 unlock_page(page);
2454 migrate->cpages--;
2455
a5430dda
JG
2456 if (!is_zone_device_page(page))
2457 putback_lru_page(page);
2458 else
2459 put_page(page);
8c3328f1 2460 }
8763cb45
JG
2461 }
2462 }
8c3328f1
JG
2463
2464 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2465 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2466
2467 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2468 continue;
2469
2470 remove_migration_pte(page, migrate->vma, addr, page);
2471
2472 migrate->src[i] = 0;
2473 unlock_page(page);
2474 put_page(page);
2475 restore--;
2476 }
8763cb45
JG
2477}
2478
2479/*
2480 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2481 * @migrate: migrate struct containing all migration information
2482 *
2483 * Replace page mapping (CPU page table pte) with a special migration pte entry
2484 * and check again if it has been pinned. Pinned pages are restored because we
2485 * cannot migrate them.
2486 *
2487 * This is the last step before we call the device driver callback to allocate
2488 * destination memory and copy contents of original page over to new page.
2489 */
2490static void migrate_vma_unmap(struct migrate_vma *migrate)
2491{
2492 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2493 const unsigned long npages = migrate->npages;
2494 const unsigned long start = migrate->start;
2495 unsigned long addr, i, restore = 0;
2496
2497 for (i = 0; i < npages; i++) {
2498 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2499
2500 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2501 continue;
2502
8c3328f1
JG
2503 if (page_mapped(page)) {
2504 try_to_unmap(page, flags);
2505 if (page_mapped(page))
2506 goto restore;
8763cb45 2507 }
8c3328f1
JG
2508
2509 if (migrate_vma_check_page(page))
2510 continue;
2511
2512restore:
2513 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2514 migrate->cpages--;
2515 restore++;
8763cb45
JG
2516 }
2517
2518 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2519 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2520
2521 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2522 continue;
2523
2524 remove_migration_ptes(page, page, false);
2525
2526 migrate->src[i] = 0;
2527 unlock_page(page);
2528 restore--;
2529
a5430dda
JG
2530 if (is_zone_device_page(page))
2531 put_page(page);
2532 else
2533 putback_lru_page(page);
8763cb45
JG
2534 }
2535}
2536
8315ada7
JG
2537static void migrate_vma_insert_page(struct migrate_vma *migrate,
2538 unsigned long addr,
2539 struct page *page,
2540 unsigned long *src,
2541 unsigned long *dst)
2542{
2543 struct vm_area_struct *vma = migrate->vma;
2544 struct mm_struct *mm = vma->vm_mm;
2545 struct mem_cgroup *memcg;
2546 bool flush = false;
2547 spinlock_t *ptl;
2548 pte_t entry;
2549 pgd_t *pgdp;
2550 p4d_t *p4dp;
2551 pud_t *pudp;
2552 pmd_t *pmdp;
2553 pte_t *ptep;
2554
2555 /* Only allow populating anonymous memory */
2556 if (!vma_is_anonymous(vma))
2557 goto abort;
2558
2559 pgdp = pgd_offset(mm, addr);
2560 p4dp = p4d_alloc(mm, pgdp, addr);
2561 if (!p4dp)
2562 goto abort;
2563 pudp = pud_alloc(mm, p4dp, addr);
2564 if (!pudp)
2565 goto abort;
2566 pmdp = pmd_alloc(mm, pudp, addr);
2567 if (!pmdp)
2568 goto abort;
2569
2570 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2571 goto abort;
2572
2573 /*
2574 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2575 * pte_offset_map() on pmds where a huge pmd might be created
2576 * from a different thread.
2577 *
2578 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2579 * parallel threads are excluded by other means.
2580 *
2581 * Here we only have down_read(mmap_sem).
2582 */
2583 if (pte_alloc(mm, pmdp, addr))
2584 goto abort;
2585
2586 /* See the comment in pte_alloc_one_map() */
2587 if (unlikely(pmd_trans_unstable(pmdp)))
2588 goto abort;
2589
2590 if (unlikely(anon_vma_prepare(vma)))
2591 goto abort;
2592 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2593 goto abort;
2594
2595 /*
2596 * The memory barrier inside __SetPageUptodate makes sure that
2597 * preceding stores to the page contents become visible before
2598 * the set_pte_at() write.
2599 */
2600 __SetPageUptodate(page);
2601
df6ad698
JG
2602 if (is_zone_device_page(page)) {
2603 if (is_device_private_page(page)) {
2604 swp_entry_t swp_entry;
2605
2606 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2607 entry = swp_entry_to_pte(swp_entry);
2608 } else if (is_device_public_page(page)) {
2609 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2610 if (vma->vm_flags & VM_WRITE)
2611 entry = pte_mkwrite(pte_mkdirty(entry));
2612 entry = pte_mkdevmap(entry);
2613 }
8315ada7
JG
2614 } else {
2615 entry = mk_pte(page, vma->vm_page_prot);
2616 if (vma->vm_flags & VM_WRITE)
2617 entry = pte_mkwrite(pte_mkdirty(entry));
2618 }
2619
2620 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2621
2622 if (pte_present(*ptep)) {
2623 unsigned long pfn = pte_pfn(*ptep);
2624
2625 if (!is_zero_pfn(pfn)) {
2626 pte_unmap_unlock(ptep, ptl);
2627 mem_cgroup_cancel_charge(page, memcg, false);
2628 goto abort;
2629 }
2630 flush = true;
2631 } else if (!pte_none(*ptep)) {
2632 pte_unmap_unlock(ptep, ptl);
2633 mem_cgroup_cancel_charge(page, memcg, false);
2634 goto abort;
2635 }
2636
2637 /*
2638 * Check for usefaultfd but do not deliver the fault. Instead,
2639 * just back off.
2640 */
2641 if (userfaultfd_missing(vma)) {
2642 pte_unmap_unlock(ptep, ptl);
2643 mem_cgroup_cancel_charge(page, memcg, false);
2644 goto abort;
2645 }
2646
2647 inc_mm_counter(mm, MM_ANONPAGES);
2648 page_add_new_anon_rmap(page, vma, addr, false);
2649 mem_cgroup_commit_charge(page, memcg, false, false);
2650 if (!is_zone_device_page(page))
2651 lru_cache_add_active_or_unevictable(page, vma);
2652 get_page(page);
2653
2654 if (flush) {
2655 flush_cache_page(vma, addr, pte_pfn(*ptep));
2656 ptep_clear_flush_notify(vma, addr, ptep);
2657 set_pte_at_notify(mm, addr, ptep, entry);
2658 update_mmu_cache(vma, addr, ptep);
2659 } else {
2660 /* No need to invalidate - it was non-present before */
2661 set_pte_at(mm, addr, ptep, entry);
2662 update_mmu_cache(vma, addr, ptep);
2663 }
2664
2665 pte_unmap_unlock(ptep, ptl);
2666 *src = MIGRATE_PFN_MIGRATE;
2667 return;
2668
2669abort:
2670 *src &= ~MIGRATE_PFN_MIGRATE;
2671}
2672
8763cb45
JG
2673/*
2674 * migrate_vma_pages() - migrate meta-data from src page to dst page
2675 * @migrate: migrate struct containing all migration information
2676 *
2677 * This migrates struct page meta-data from source struct page to destination
2678 * struct page. This effectively finishes the migration from source page to the
2679 * destination page.
2680 */
2681static void migrate_vma_pages(struct migrate_vma *migrate)
2682{
2683 const unsigned long npages = migrate->npages;
2684 const unsigned long start = migrate->start;
ac46d4f3
JG
2685 struct mmu_notifier_range range;
2686 unsigned long addr, i;
8315ada7 2687 bool notified = false;
8763cb45
JG
2688
2689 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2690 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2691 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2692 struct address_space *mapping;
2693 int r;
2694
8315ada7
JG
2695 if (!newpage) {
2696 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2697 continue;
8315ada7
JG
2698 }
2699
2700 if (!page) {
2701 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2702 continue;
2703 }
2704 if (!notified) {
8315ada7 2705 notified = true;
ac46d4f3
JG
2706
2707 mmu_notifier_range_init(&range,
2708 migrate->vma->vm_mm,
2709 addr, migrate->end);
2710 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2711 }
2712 migrate_vma_insert_page(migrate, addr, newpage,
2713 &migrate->src[i],
2714 &migrate->dst[i]);
8763cb45 2715 continue;
8315ada7 2716 }
8763cb45
JG
2717
2718 mapping = page_mapping(page);
2719
a5430dda
JG
2720 if (is_zone_device_page(newpage)) {
2721 if (is_device_private_page(newpage)) {
2722 /*
2723 * For now only support private anonymous when
2724 * migrating to un-addressable device memory.
2725 */
2726 if (mapping) {
2727 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2728 continue;
2729 }
df6ad698 2730 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2731 /*
2732 * Other types of ZONE_DEVICE page are not
2733 * supported.
2734 */
2735 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2736 continue;
2737 }
2738 }
2739
8763cb45
JG
2740 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2741 if (r != MIGRATEPAGE_SUCCESS)
2742 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2743 }
8315ada7 2744
4645b9fe
JG
2745 /*
2746 * No need to double call mmu_notifier->invalidate_range() callback as
2747 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2748 * did already call it.
2749 */
8315ada7 2750 if (notified)
ac46d4f3 2751 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2752}
2753
2754/*
2755 * migrate_vma_finalize() - restore CPU page table entry
2756 * @migrate: migrate struct containing all migration information
2757 *
2758 * This replaces the special migration pte entry with either a mapping to the
2759 * new page if migration was successful for that page, or to the original page
2760 * otherwise.
2761 *
2762 * This also unlocks the pages and puts them back on the lru, or drops the extra
2763 * refcount, for device pages.
2764 */
2765static void migrate_vma_finalize(struct migrate_vma *migrate)
2766{
2767 const unsigned long npages = migrate->npages;
2768 unsigned long i;
2769
2770 for (i = 0; i < npages; i++) {
2771 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773
8315ada7
JG
2774 if (!page) {
2775 if (newpage) {
2776 unlock_page(newpage);
2777 put_page(newpage);
2778 }
8763cb45 2779 continue;
8315ada7
JG
2780 }
2781
8763cb45
JG
2782 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2783 if (newpage) {
2784 unlock_page(newpage);
2785 put_page(newpage);
2786 }
2787 newpage = page;
2788 }
2789
2790 remove_migration_ptes(page, newpage, false);
2791 unlock_page(page);
2792 migrate->cpages--;
2793
a5430dda
JG
2794 if (is_zone_device_page(page))
2795 put_page(page);
2796 else
2797 putback_lru_page(page);
8763cb45
JG
2798
2799 if (newpage != page) {
2800 unlock_page(newpage);
a5430dda
JG
2801 if (is_zone_device_page(newpage))
2802 put_page(newpage);
2803 else
2804 putback_lru_page(newpage);
8763cb45
JG
2805 }
2806 }
2807}
2808
2809/*
2810 * migrate_vma() - migrate a range of memory inside vma
2811 *
2812 * @ops: migration callback for allocating destination memory and copying
2813 * @vma: virtual memory area containing the range to be migrated
2814 * @start: start address of the range to migrate (inclusive)
2815 * @end: end address of the range to migrate (exclusive)
2816 * @src: array of hmm_pfn_t containing source pfns
2817 * @dst: array of hmm_pfn_t containing destination pfns
2818 * @private: pointer passed back to each of the callback
2819 * Returns: 0 on success, error code otherwise
2820 *
2821 * This function tries to migrate a range of memory virtual address range, using
2822 * callbacks to allocate and copy memory from source to destination. First it
2823 * collects all the pages backing each virtual address in the range, saving this
2824 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2825 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2826 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2827 * in the corresponding src array entry. It then restores any pages that are
2828 * pinned, by remapping and unlocking those pages.
2829 *
2830 * At this point it calls the alloc_and_copy() callback. For documentation on
2831 * what is expected from that callback, see struct migrate_vma_ops comments in
2832 * include/linux/migrate.h
2833 *
2834 * After the alloc_and_copy() callback, this function goes over each entry in
2835 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2836 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2837 * then the function tries to migrate struct page information from the source
2838 * struct page to the destination struct page. If it fails to migrate the struct
2839 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2840 * array.
2841 *
2842 * At this point all successfully migrated pages have an entry in the src
2843 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2844 * array entry with MIGRATE_PFN_VALID flag set.
2845 *
2846 * It then calls the finalize_and_map() callback. See comments for "struct
2847 * migrate_vma_ops", in include/linux/migrate.h for details about
2848 * finalize_and_map() behavior.
2849 *
2850 * After the finalize_and_map() callback, for successfully migrated pages, this
2851 * function updates the CPU page table to point to new pages, otherwise it
2852 * restores the CPU page table to point to the original source pages.
2853 *
2854 * Function returns 0 after the above steps, even if no pages were migrated
2855 * (The function only returns an error if any of the arguments are invalid.)
2856 *
2857 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2858 * unsigned long entries.
2859 */
2860int migrate_vma(const struct migrate_vma_ops *ops,
2861 struct vm_area_struct *vma,
2862 unsigned long start,
2863 unsigned long end,
2864 unsigned long *src,
2865 unsigned long *dst,
2866 void *private)
2867{
2868 struct migrate_vma migrate;
2869
2870 /* Sanity check the arguments */
2871 start &= PAGE_MASK;
2872 end &= PAGE_MASK;
e1fb4a08
DJ
2873 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2874 vma_is_dax(vma))
8763cb45
JG
2875 return -EINVAL;
2876 if (start < vma->vm_start || start >= vma->vm_end)
2877 return -EINVAL;
2878 if (end <= vma->vm_start || end > vma->vm_end)
2879 return -EINVAL;
2880 if (!ops || !src || !dst || start >= end)
2881 return -EINVAL;
2882
2883 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2884 migrate.src = src;
2885 migrate.dst = dst;
2886 migrate.start = start;
2887 migrate.npages = 0;
2888 migrate.cpages = 0;
2889 migrate.end = end;
2890 migrate.vma = vma;
2891
2892 /* Collect, and try to unmap source pages */
2893 migrate_vma_collect(&migrate);
2894 if (!migrate.cpages)
2895 return 0;
2896
2897 /* Lock and isolate page */
2898 migrate_vma_prepare(&migrate);
2899 if (!migrate.cpages)
2900 return 0;
2901
2902 /* Unmap pages */
2903 migrate_vma_unmap(&migrate);
2904 if (!migrate.cpages)
2905 return 0;
2906
2907 /*
2908 * At this point pages are locked and unmapped, and thus they have
2909 * stable content and can safely be copied to destination memory that
2910 * is allocated by the callback.
2911 *
2912 * Note that migration can fail in migrate_vma_struct_page() for each
2913 * individual page.
2914 */
2915 ops->alloc_and_copy(vma, src, dst, start, end, private);
2916
2917 /* This does the real migration of struct page */
2918 migrate_vma_pages(&migrate);
2919
2920 ops->finalize_and_map(vma, src, dst, start, end, private);
2921
2922 /* Unlock and remap pages */
2923 migrate_vma_finalize(&migrate);
2924
2925 return 0;
2926}
2927EXPORT_SYMBOL(migrate_vma);
6b368cd4 2928#endif /* defined(MIGRATE_VMA_HELPER) */