Merge branch 'parisc-4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[linux-2.6-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 /* No need to invalidate - it was non-present before */
279 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280 }
51afb12b 281
e4b82222 282 return true;
0697212a
CL
283}
284
04e62a29
CL
285/*
286 * Get rid of all migration entries and replace them by
287 * references to the indicated page.
288 */
e388466d 289void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 290{
051ac83a
JK
291 struct rmap_walk_control rwc = {
292 .rmap_one = remove_migration_pte,
293 .arg = old,
294 };
295
e388466d
KS
296 if (locked)
297 rmap_walk_locked(new, &rwc);
298 else
299 rmap_walk(new, &rwc);
04e62a29
CL
300}
301
0697212a
CL
302/*
303 * Something used the pte of a page under migration. We need to
304 * get to the page and wait until migration is finished.
305 * When we return from this function the fault will be retried.
0697212a 306 */
e66f17ff 307void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 308 spinlock_t *ptl)
0697212a 309{
30dad309 310 pte_t pte;
0697212a
CL
311 swp_entry_t entry;
312 struct page *page;
313
30dad309 314 spin_lock(ptl);
0697212a
CL
315 pte = *ptep;
316 if (!is_swap_pte(pte))
317 goto out;
318
319 entry = pte_to_swp_entry(pte);
320 if (!is_migration_entry(entry))
321 goto out;
322
323 page = migration_entry_to_page(entry);
324
e286781d
NP
325 /*
326 * Once radix-tree replacement of page migration started, page_count
327 * *must* be zero. And, we don't want to call wait_on_page_locked()
328 * against a page without get_page().
329 * So, we use get_page_unless_zero(), here. Even failed, page fault
330 * will occur again.
331 */
332 if (!get_page_unless_zero(page))
333 goto out;
0697212a
CL
334 pte_unmap_unlock(ptep, ptl);
335 wait_on_page_locked(page);
336 put_page(page);
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
370 wait_on_page_locked(page);
371 put_page(page);
372 return;
373unlock:
374 spin_unlock(ptl);
375}
376#endif
377
b969c4ab
MG
378#ifdef CONFIG_BLOCK
379/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
380static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381 enum migrate_mode mode)
b969c4ab
MG
382{
383 struct buffer_head *bh = head;
384
385 /* Simple case, sync compaction */
a6bc32b8 386 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
387 do {
388 get_bh(bh);
389 lock_buffer(bh);
390 bh = bh->b_this_page;
391
392 } while (bh != head);
393
394 return true;
395 }
396
397 /* async case, we cannot block on lock_buffer so use trylock_buffer */
398 do {
399 get_bh(bh);
400 if (!trylock_buffer(bh)) {
401 /*
402 * We failed to lock the buffer and cannot stall in
403 * async migration. Release the taken locks
404 */
405 struct buffer_head *failed_bh = bh;
406 put_bh(failed_bh);
407 bh = head;
408 while (bh != failed_bh) {
409 unlock_buffer(bh);
410 put_bh(bh);
411 bh = bh->b_this_page;
412 }
413 return false;
414 }
415
416 bh = bh->b_this_page;
417 } while (bh != head);
418 return true;
419}
420#else
421static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 422 enum migrate_mode mode)
b969c4ab
MG
423{
424 return true;
425}
426#endif /* CONFIG_BLOCK */
427
b20a3503 428/*
c3fcf8a5 429 * Replace the page in the mapping.
5b5c7120
CL
430 *
431 * The number of remaining references must be:
432 * 1 for anonymous pages without a mapping
433 * 2 for pages with a mapping
266cf658 434 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 435 */
36bc08cc 436int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 437 struct page *newpage, struct page *page,
8e321fef
BL
438 struct buffer_head *head, enum migrate_mode mode,
439 int extra_count)
b20a3503 440{
42cb14b1
HD
441 struct zone *oldzone, *newzone;
442 int dirty;
8e321fef 443 int expected_count = 1 + extra_count;
7cf9c2c7 444 void **pslot;
b20a3503 445
8763cb45 446 /*
df6ad698
JG
447 * Device public or private pages have an extra refcount as they are
448 * ZONE_DEVICE pages.
8763cb45 449 */
df6ad698
JG
450 expected_count += is_device_private_page(page);
451 expected_count += is_device_public_page(page);
8763cb45 452
6c5240ae 453 if (!mapping) {
0e8c7d0f 454 /* Anonymous page without mapping */
8e321fef 455 if (page_count(page) != expected_count)
6c5240ae 456 return -EAGAIN;
cf4b769a
HD
457
458 /* No turning back from here */
cf4b769a
HD
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461 if (PageSwapBacked(page))
fa9949da 462 __SetPageSwapBacked(newpage);
cf4b769a 463
78bd5209 464 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
465 }
466
42cb14b1
HD
467 oldzone = page_zone(page);
468 newzone = page_zone(newpage);
469
b93b0163 470 xa_lock_irq(&mapping->i_pages);
b20a3503 471
b93b0163 472 pslot = radix_tree_lookup_slot(&mapping->i_pages,
7cf9c2c7 473 page_index(page));
b20a3503 474
8e321fef 475 expected_count += 1 + page_has_private(page);
e286781d 476 if (page_count(page) != expected_count ||
b93b0163
MW
477 radix_tree_deref_slot_protected(pslot,
478 &mapping->i_pages.xa_lock) != page) {
479 xa_unlock_irq(&mapping->i_pages);
e23ca00b 480 return -EAGAIN;
b20a3503
CL
481 }
482
fe896d18 483 if (!page_ref_freeze(page, expected_count)) {
b93b0163 484 xa_unlock_irq(&mapping->i_pages);
e286781d
NP
485 return -EAGAIN;
486 }
487
b969c4ab
MG
488 /*
489 * In the async migration case of moving a page with buffers, lock the
490 * buffers using trylock before the mapping is moved. If the mapping
491 * was moved, we later failed to lock the buffers and could not move
492 * the mapping back due to an elevated page count, we would have to
493 * block waiting on other references to be dropped.
494 */
a6bc32b8
MG
495 if (mode == MIGRATE_ASYNC && head &&
496 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 497 page_ref_unfreeze(page, expected_count);
b93b0163 498 xa_unlock_irq(&mapping->i_pages);
b969c4ab
MG
499 return -EAGAIN;
500 }
501
b20a3503 502 /*
cf4b769a
HD
503 * Now we know that no one else is looking at the page:
504 * no turning back from here.
b20a3503 505 */
cf4b769a
HD
506 newpage->index = page->index;
507 newpage->mapping = page->mapping;
7cf9c2c7 508 get_page(newpage); /* add cache reference */
6326fec1
NP
509 if (PageSwapBacked(page)) {
510 __SetPageSwapBacked(newpage);
511 if (PageSwapCache(page)) {
512 SetPageSwapCache(newpage);
513 set_page_private(newpage, page_private(page));
514 }
515 } else {
516 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
517 }
518
42cb14b1
HD
519 /* Move dirty while page refs frozen and newpage not yet exposed */
520 dirty = PageDirty(page);
521 if (dirty) {
522 ClearPageDirty(page);
523 SetPageDirty(newpage);
524 }
525
b93b0163 526 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
7cf9c2c7
NP
527
528 /*
937a94c9
JG
529 * Drop cache reference from old page by unfreezing
530 * to one less reference.
7cf9c2c7
NP
531 * We know this isn't the last reference.
532 */
fe896d18 533 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 534
b93b0163 535 xa_unlock(&mapping->i_pages);
42cb14b1
HD
536 /* Leave irq disabled to prevent preemption while updating stats */
537
0e8c7d0f
CL
538 /*
539 * If moved to a different zone then also account
540 * the page for that zone. Other VM counters will be
541 * taken care of when we establish references to the
542 * new page and drop references to the old page.
543 *
544 * Note that anonymous pages are accounted for
4b9d0fab 545 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
546 * are mapped to swap space.
547 */
42cb14b1 548 if (newzone != oldzone) {
11fb9989
MG
549 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
550 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 551 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
552 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
553 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
554 }
555 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 556 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 557 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 558 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 559 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 560 }
4b02108a 561 }
42cb14b1 562 local_irq_enable();
b20a3503 563
78bd5209 564 return MIGRATEPAGE_SUCCESS;
b20a3503 565}
1118dce7 566EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 567
290408d4
NH
568/*
569 * The expected number of remaining references is the same as that
570 * of migrate_page_move_mapping().
571 */
572int migrate_huge_page_move_mapping(struct address_space *mapping,
573 struct page *newpage, struct page *page)
574{
575 int expected_count;
576 void **pslot;
577
b93b0163 578 xa_lock_irq(&mapping->i_pages);
290408d4 579
b93b0163 580 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
290408d4
NH
581
582 expected_count = 2 + page_has_private(page);
583 if (page_count(page) != expected_count ||
b93b0163
MW
584 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
585 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
586 return -EAGAIN;
587 }
588
fe896d18 589 if (!page_ref_freeze(page, expected_count)) {
b93b0163 590 xa_unlock_irq(&mapping->i_pages);
290408d4
NH
591 return -EAGAIN;
592 }
593
cf4b769a
HD
594 newpage->index = page->index;
595 newpage->mapping = page->mapping;
6a93ca8f 596
290408d4
NH
597 get_page(newpage);
598
b93b0163 599 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
290408d4 600
fe896d18 601 page_ref_unfreeze(page, expected_count - 1);
290408d4 602
b93b0163 603 xa_unlock_irq(&mapping->i_pages);
6a93ca8f 604
78bd5209 605 return MIGRATEPAGE_SUCCESS;
290408d4
NH
606}
607
30b0a105
DH
608/*
609 * Gigantic pages are so large that we do not guarantee that page++ pointer
610 * arithmetic will work across the entire page. We need something more
611 * specialized.
612 */
613static void __copy_gigantic_page(struct page *dst, struct page *src,
614 int nr_pages)
615{
616 int i;
617 struct page *dst_base = dst;
618 struct page *src_base = src;
619
620 for (i = 0; i < nr_pages; ) {
621 cond_resched();
622 copy_highpage(dst, src);
623
624 i++;
625 dst = mem_map_next(dst, dst_base, i);
626 src = mem_map_next(src, src_base, i);
627 }
628}
629
630static void copy_huge_page(struct page *dst, struct page *src)
631{
632 int i;
633 int nr_pages;
634
635 if (PageHuge(src)) {
636 /* hugetlbfs page */
637 struct hstate *h = page_hstate(src);
638 nr_pages = pages_per_huge_page(h);
639
640 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641 __copy_gigantic_page(dst, src, nr_pages);
642 return;
643 }
644 } else {
645 /* thp page */
646 BUG_ON(!PageTransHuge(src));
647 nr_pages = hpage_nr_pages(src);
648 }
649
650 for (i = 0; i < nr_pages; i++) {
651 cond_resched();
652 copy_highpage(dst + i, src + i);
653 }
654}
655
b20a3503
CL
656/*
657 * Copy the page to its new location
658 */
2916ecc0 659void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 660{
7851a45c
RR
661 int cpupid;
662
b20a3503
CL
663 if (PageError(page))
664 SetPageError(newpage);
665 if (PageReferenced(page))
666 SetPageReferenced(newpage);
667 if (PageUptodate(page))
668 SetPageUptodate(newpage);
894bc310 669 if (TestClearPageActive(page)) {
309381fe 670 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 671 SetPageActive(newpage);
418b27ef
LS
672 } else if (TestClearPageUnevictable(page))
673 SetPageUnevictable(newpage);
b20a3503
CL
674 if (PageChecked(page))
675 SetPageChecked(newpage);
676 if (PageMappedToDisk(page))
677 SetPageMappedToDisk(newpage);
678
42cb14b1
HD
679 /* Move dirty on pages not done by migrate_page_move_mapping() */
680 if (PageDirty(page))
681 SetPageDirty(newpage);
b20a3503 682
33c3fc71
VD
683 if (page_is_young(page))
684 set_page_young(newpage);
685 if (page_is_idle(page))
686 set_page_idle(newpage);
687
7851a45c
RR
688 /*
689 * Copy NUMA information to the new page, to prevent over-eager
690 * future migrations of this same page.
691 */
692 cpupid = page_cpupid_xchg_last(page, -1);
693 page_cpupid_xchg_last(newpage, cpupid);
694
e9995ef9 695 ksm_migrate_page(newpage, page);
c8d6553b
HD
696 /*
697 * Please do not reorder this without considering how mm/ksm.c's
698 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699 */
b3b3a99c
NH
700 if (PageSwapCache(page))
701 ClearPageSwapCache(page);
b20a3503
CL
702 ClearPagePrivate(page);
703 set_page_private(page, 0);
b20a3503
CL
704
705 /*
706 * If any waiters have accumulated on the new page then
707 * wake them up.
708 */
709 if (PageWriteback(newpage))
710 end_page_writeback(newpage);
d435edca
VB
711
712 copy_page_owner(page, newpage);
74485cf2
JW
713
714 mem_cgroup_migrate(page, newpage);
b20a3503 715}
2916ecc0
JG
716EXPORT_SYMBOL(migrate_page_states);
717
718void migrate_page_copy(struct page *newpage, struct page *page)
719{
720 if (PageHuge(page) || PageTransHuge(page))
721 copy_huge_page(newpage, page);
722 else
723 copy_highpage(newpage, page);
724
725 migrate_page_states(newpage, page);
726}
1118dce7 727EXPORT_SYMBOL(migrate_page_copy);
b20a3503 728
1d8b85cc
CL
729/************************************************************
730 * Migration functions
731 ***********************************************************/
732
b20a3503 733/*
bda807d4 734 * Common logic to directly migrate a single LRU page suitable for
266cf658 735 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
736 *
737 * Pages are locked upon entry and exit.
738 */
2d1db3b1 739int migrate_page(struct address_space *mapping,
a6bc32b8
MG
740 struct page *newpage, struct page *page,
741 enum migrate_mode mode)
b20a3503
CL
742{
743 int rc;
744
745 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
746
8e321fef 747 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 748
78bd5209 749 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
750 return rc;
751
2916ecc0
JG
752 if (mode != MIGRATE_SYNC_NO_COPY)
753 migrate_page_copy(newpage, page);
754 else
755 migrate_page_states(newpage, page);
78bd5209 756 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
757}
758EXPORT_SYMBOL(migrate_page);
759
9361401e 760#ifdef CONFIG_BLOCK
1d8b85cc
CL
761/*
762 * Migration function for pages with buffers. This function can only be used
763 * if the underlying filesystem guarantees that no other references to "page"
764 * exist.
765 */
2d1db3b1 766int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 767 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 768{
1d8b85cc
CL
769 struct buffer_head *bh, *head;
770 int rc;
771
1d8b85cc 772 if (!page_has_buffers(page))
a6bc32b8 773 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
774
775 head = page_buffers(page);
776
8e321fef 777 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 778
78bd5209 779 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
780 return rc;
781
b969c4ab
MG
782 /*
783 * In the async case, migrate_page_move_mapping locked the buffers
784 * with an IRQ-safe spinlock held. In the sync case, the buffers
785 * need to be locked now
786 */
a6bc32b8
MG
787 if (mode != MIGRATE_ASYNC)
788 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
789
790 ClearPagePrivate(page);
791 set_page_private(newpage, page_private(page));
792 set_page_private(page, 0);
793 put_page(page);
794 get_page(newpage);
795
796 bh = head;
797 do {
798 set_bh_page(bh, newpage, bh_offset(bh));
799 bh = bh->b_this_page;
800
801 } while (bh != head);
802
803 SetPagePrivate(newpage);
804
2916ecc0
JG
805 if (mode != MIGRATE_SYNC_NO_COPY)
806 migrate_page_copy(newpage, page);
807 else
808 migrate_page_states(newpage, page);
1d8b85cc
CL
809
810 bh = head;
811 do {
812 unlock_buffer(bh);
2916ecc0 813 put_bh(bh);
1d8b85cc
CL
814 bh = bh->b_this_page;
815
816 } while (bh != head);
817
78bd5209 818 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
819}
820EXPORT_SYMBOL(buffer_migrate_page);
9361401e 821#endif
1d8b85cc 822
04e62a29
CL
823/*
824 * Writeback a page to clean the dirty state
825 */
826static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 827{
04e62a29
CL
828 struct writeback_control wbc = {
829 .sync_mode = WB_SYNC_NONE,
830 .nr_to_write = 1,
831 .range_start = 0,
832 .range_end = LLONG_MAX,
04e62a29
CL
833 .for_reclaim = 1
834 };
835 int rc;
836
837 if (!mapping->a_ops->writepage)
838 /* No write method for the address space */
839 return -EINVAL;
840
841 if (!clear_page_dirty_for_io(page))
842 /* Someone else already triggered a write */
843 return -EAGAIN;
844
8351a6e4 845 /*
04e62a29
CL
846 * A dirty page may imply that the underlying filesystem has
847 * the page on some queue. So the page must be clean for
848 * migration. Writeout may mean we loose the lock and the
849 * page state is no longer what we checked for earlier.
850 * At this point we know that the migration attempt cannot
851 * be successful.
8351a6e4 852 */
e388466d 853 remove_migration_ptes(page, page, false);
8351a6e4 854
04e62a29 855 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 856
04e62a29
CL
857 if (rc != AOP_WRITEPAGE_ACTIVATE)
858 /* unlocked. Relock */
859 lock_page(page);
860
bda8550d 861 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
862}
863
864/*
865 * Default handling if a filesystem does not provide a migration function.
866 */
867static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 868 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 869{
b969c4ab 870 if (PageDirty(page)) {
a6bc32b8 871 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
872 switch (mode) {
873 case MIGRATE_SYNC:
874 case MIGRATE_SYNC_NO_COPY:
875 break;
876 default:
b969c4ab 877 return -EBUSY;
2916ecc0 878 }
04e62a29 879 return writeout(mapping, page);
b969c4ab 880 }
8351a6e4
CL
881
882 /*
883 * Buffers may be managed in a filesystem specific way.
884 * We must have no buffers or drop them.
885 */
266cf658 886 if (page_has_private(page) &&
8351a6e4
CL
887 !try_to_release_page(page, GFP_KERNEL))
888 return -EAGAIN;
889
a6bc32b8 890 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
891}
892
e24f0b8f
CL
893/*
894 * Move a page to a newly allocated page
895 * The page is locked and all ptes have been successfully removed.
896 *
897 * The new page will have replaced the old page if this function
898 * is successful.
894bc310
LS
899 *
900 * Return value:
901 * < 0 - error code
78bd5209 902 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 903 */
3fe2011f 904static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 905 enum migrate_mode mode)
e24f0b8f
CL
906{
907 struct address_space *mapping;
bda807d4
MK
908 int rc = -EAGAIN;
909 bool is_lru = !__PageMovable(page);
e24f0b8f 910
7db7671f
HD
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 913
e24f0b8f 914 mapping = page_mapping(page);
bda807d4
MK
915
916 if (likely(is_lru)) {
917 if (!mapping)
918 rc = migrate_page(mapping, newpage, page, mode);
919 else if (mapping->a_ops->migratepage)
920 /*
921 * Most pages have a mapping and most filesystems
922 * provide a migratepage callback. Anonymous pages
923 * are part of swap space which also has its own
924 * migratepage callback. This is the most common path
925 * for page migration.
926 */
927 rc = mapping->a_ops->migratepage(mapping, newpage,
928 page, mode);
929 else
930 rc = fallback_migrate_page(mapping, newpage,
931 page, mode);
932 } else {
e24f0b8f 933 /*
bda807d4
MK
934 * In case of non-lru page, it could be released after
935 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 936 */
bda807d4
MK
937 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938 if (!PageMovable(page)) {
939 rc = MIGRATEPAGE_SUCCESS;
940 __ClearPageIsolated(page);
941 goto out;
942 }
943
944 rc = mapping->a_ops->migratepage(mapping, newpage,
945 page, mode);
946 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947 !PageIsolated(page));
948 }
e24f0b8f 949
5c3f9a67
HD
950 /*
951 * When successful, old pagecache page->mapping must be cleared before
952 * page is freed; but stats require that PageAnon be left as PageAnon.
953 */
954 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
955 if (__PageMovable(page)) {
956 VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958 /*
959 * We clear PG_movable under page_lock so any compactor
960 * cannot try to migrate this page.
961 */
962 __ClearPageIsolated(page);
963 }
964
965 /*
966 * Anonymous and movable page->mapping will be cleard by
967 * free_pages_prepare so don't reset it here for keeping
968 * the type to work PageAnon, for example.
969 */
970 if (!PageMappingFlags(page))
5c3f9a67 971 page->mapping = NULL;
3fe2011f 972 }
bda807d4 973out:
e24f0b8f
CL
974 return rc;
975}
976
0dabec93 977static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 978 int force, enum migrate_mode mode)
e24f0b8f 979{
0dabec93 980 int rc = -EAGAIN;
2ebba6b7 981 int page_was_mapped = 0;
3f6c8272 982 struct anon_vma *anon_vma = NULL;
bda807d4 983 bool is_lru = !__PageMovable(page);
95a402c3 984
529ae9aa 985 if (!trylock_page(page)) {
a6bc32b8 986 if (!force || mode == MIGRATE_ASYNC)
0dabec93 987 goto out;
3e7d3449
MG
988
989 /*
990 * It's not safe for direct compaction to call lock_page.
991 * For example, during page readahead pages are added locked
992 * to the LRU. Later, when the IO completes the pages are
993 * marked uptodate and unlocked. However, the queueing
994 * could be merging multiple pages for one bio (e.g.
995 * mpage_readpages). If an allocation happens for the
996 * second or third page, the process can end up locking
997 * the same page twice and deadlocking. Rather than
998 * trying to be clever about what pages can be locked,
999 * avoid the use of lock_page for direct compaction
1000 * altogether.
1001 */
1002 if (current->flags & PF_MEMALLOC)
0dabec93 1003 goto out;
3e7d3449 1004
e24f0b8f
CL
1005 lock_page(page);
1006 }
1007
1008 if (PageWriteback(page)) {
11bc82d6 1009 /*
fed5b64a 1010 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1011 * necessary to wait for PageWriteback. In the async case,
1012 * the retry loop is too short and in the sync-light case,
1013 * the overhead of stalling is too much
11bc82d6 1014 */
2916ecc0
JG
1015 switch (mode) {
1016 case MIGRATE_SYNC:
1017 case MIGRATE_SYNC_NO_COPY:
1018 break;
1019 default:
11bc82d6 1020 rc = -EBUSY;
0a31bc97 1021 goto out_unlock;
11bc82d6
AA
1022 }
1023 if (!force)
0a31bc97 1024 goto out_unlock;
e24f0b8f
CL
1025 wait_on_page_writeback(page);
1026 }
03f15c86 1027
e24f0b8f 1028 /*
dc386d4d
KH
1029 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1031 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1032 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1033 * File Caches may use write_page() or lock_page() in migration, then,
1034 * just care Anon page here.
03f15c86
HD
1035 *
1036 * Only page_get_anon_vma() understands the subtleties of
1037 * getting a hold on an anon_vma from outside one of its mms.
1038 * But if we cannot get anon_vma, then we won't need it anyway,
1039 * because that implies that the anon page is no longer mapped
1040 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1041 */
03f15c86 1042 if (PageAnon(page) && !PageKsm(page))
746b18d4 1043 anon_vma = page_get_anon_vma(page);
62e1c553 1044
7db7671f
HD
1045 /*
1046 * Block others from accessing the new page when we get around to
1047 * establishing additional references. We are usually the only one
1048 * holding a reference to newpage at this point. We used to have a BUG
1049 * here if trylock_page(newpage) fails, but would like to allow for
1050 * cases where there might be a race with the previous use of newpage.
1051 * This is much like races on refcount of oldpage: just don't BUG().
1052 */
1053 if (unlikely(!trylock_page(newpage)))
1054 goto out_unlock;
1055
bda807d4
MK
1056 if (unlikely(!is_lru)) {
1057 rc = move_to_new_page(newpage, page, mode);
1058 goto out_unlock_both;
1059 }
1060
dc386d4d 1061 /*
62e1c553
SL
1062 * Corner case handling:
1063 * 1. When a new swap-cache page is read into, it is added to the LRU
1064 * and treated as swapcache but it has no rmap yet.
1065 * Calling try_to_unmap() against a page->mapping==NULL page will
1066 * trigger a BUG. So handle it here.
1067 * 2. An orphaned page (see truncate_complete_page) might have
1068 * fs-private metadata. The page can be picked up due to memory
1069 * offlining. Everywhere else except page reclaim, the page is
1070 * invisible to the vm, so the page can not be migrated. So try to
1071 * free the metadata, so the page can be freed.
e24f0b8f 1072 */
62e1c553 1073 if (!page->mapping) {
309381fe 1074 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1075 if (page_has_private(page)) {
62e1c553 1076 try_to_free_buffers(page);
7db7671f 1077 goto out_unlock_both;
62e1c553 1078 }
7db7671f
HD
1079 } else if (page_mapped(page)) {
1080 /* Establish migration ptes */
03f15c86
HD
1081 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082 page);
2ebba6b7 1083 try_to_unmap(page,
da1b13cc 1084 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1085 page_was_mapped = 1;
1086 }
dc386d4d 1087
e6a1530d 1088 if (!page_mapped(page))
5c3f9a67 1089 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1090
5c3f9a67
HD
1091 if (page_was_mapped)
1092 remove_migration_ptes(page,
e388466d 1093 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1094
7db7671f
HD
1095out_unlock_both:
1096 unlock_page(newpage);
1097out_unlock:
3f6c8272 1098 /* Drop an anon_vma reference if we took one */
76545066 1099 if (anon_vma)
9e60109f 1100 put_anon_vma(anon_vma);
e24f0b8f 1101 unlock_page(page);
0dabec93 1102out:
c6c919eb
MK
1103 /*
1104 * If migration is successful, decrease refcount of the newpage
1105 * which will not free the page because new page owner increased
1106 * refcounter. As well, if it is LRU page, add the page to LRU
1107 * list in here.
1108 */
1109 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1110 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1111 put_page(newpage);
1112 else
1113 putback_lru_page(newpage);
1114 }
1115
0dabec93
MK
1116 return rc;
1117}
95a402c3 1118
ef2a5153
GU
1119/*
1120 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1121 * around it.
1122 */
1123#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124#define ICE_noinline noinline
1125#else
1126#define ICE_noinline
1127#endif
1128
0dabec93
MK
1129/*
1130 * Obtain the lock on page, remove all ptes and migrate the page
1131 * to the newly allocated page in newpage.
1132 */
ef2a5153
GU
1133static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134 free_page_t put_new_page,
1135 unsigned long private, struct page *page,
add05cec
NH
1136 int force, enum migrate_mode mode,
1137 enum migrate_reason reason)
0dabec93 1138{
2def7424 1139 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1140 struct page *newpage;
0dabec93 1141
94723aaf
MH
1142 if (!thp_migration_supported() && PageTransHuge(page))
1143 return -ENOMEM;
1144
666feb21 1145 newpage = get_new_page(page, private);
0dabec93
MK
1146 if (!newpage)
1147 return -ENOMEM;
1148
1149 if (page_count(page) == 1) {
1150 /* page was freed from under us. So we are done. */
c6c919eb
MK
1151 ClearPageActive(page);
1152 ClearPageUnevictable(page);
bda807d4
MK
1153 if (unlikely(__PageMovable(page))) {
1154 lock_page(page);
1155 if (!PageMovable(page))
1156 __ClearPageIsolated(page);
1157 unlock_page(page);
1158 }
c6c919eb
MK
1159 if (put_new_page)
1160 put_new_page(newpage, private);
1161 else
1162 put_page(newpage);
0dabec93
MK
1163 goto out;
1164 }
1165
9c620e2b 1166 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1167 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1168 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1169
0dabec93 1170out:
e24f0b8f 1171 if (rc != -EAGAIN) {
0dabec93
MK
1172 /*
1173 * A page that has been migrated has all references
1174 * removed and will be freed. A page that has not been
1175 * migrated will have kepts its references and be
1176 * restored.
1177 */
1178 list_del(&page->lru);
6afcf8ef
ML
1179
1180 /*
1181 * Compaction can migrate also non-LRU pages which are
1182 * not accounted to NR_ISOLATED_*. They can be recognized
1183 * as __PageMovable
1184 */
1185 if (likely(!__PageMovable(page)))
e8db67eb
NH
1186 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1187 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1188 }
1189
1190 /*
1191 * If migration is successful, releases reference grabbed during
1192 * isolation. Otherwise, restore the page to right list unless
1193 * we want to retry.
1194 */
1195 if (rc == MIGRATEPAGE_SUCCESS) {
1196 put_page(page);
1197 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1198 /*
c6c919eb
MK
1199 * Set PG_HWPoison on just freed page
1200 * intentionally. Although it's rather weird,
1201 * it's how HWPoison flag works at the moment.
d7e69488 1202 */
da1b13cc
WL
1203 if (!test_set_page_hwpoison(page))
1204 num_poisoned_pages_inc();
c6c919eb
MK
1205 }
1206 } else {
bda807d4
MK
1207 if (rc != -EAGAIN) {
1208 if (likely(!__PageMovable(page))) {
1209 putback_lru_page(page);
1210 goto put_new;
1211 }
1212
1213 lock_page(page);
1214 if (PageMovable(page))
1215 putback_movable_page(page);
1216 else
1217 __ClearPageIsolated(page);
1218 unlock_page(page);
1219 put_page(page);
1220 }
1221put_new:
c6c919eb
MK
1222 if (put_new_page)
1223 put_new_page(newpage, private);
1224 else
1225 put_page(newpage);
e24f0b8f 1226 }
68711a74 1227
e24f0b8f
CL
1228 return rc;
1229}
1230
290408d4
NH
1231/*
1232 * Counterpart of unmap_and_move_page() for hugepage migration.
1233 *
1234 * This function doesn't wait the completion of hugepage I/O
1235 * because there is no race between I/O and migration for hugepage.
1236 * Note that currently hugepage I/O occurs only in direct I/O
1237 * where no lock is held and PG_writeback is irrelevant,
1238 * and writeback status of all subpages are counted in the reference
1239 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240 * under direct I/O, the reference of the head page is 512 and a bit more.)
1241 * This means that when we try to migrate hugepage whose subpages are
1242 * doing direct I/O, some references remain after try_to_unmap() and
1243 * hugepage migration fails without data corruption.
1244 *
1245 * There is also no race when direct I/O is issued on the page under migration,
1246 * because then pte is replaced with migration swap entry and direct I/O code
1247 * will wait in the page fault for migration to complete.
1248 */
1249static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1250 free_page_t put_new_page, unsigned long private,
1251 struct page *hpage, int force,
7cd12b4a 1252 enum migrate_mode mode, int reason)
290408d4 1253{
2def7424 1254 int rc = -EAGAIN;
2ebba6b7 1255 int page_was_mapped = 0;
32665f2b 1256 struct page *new_hpage;
290408d4
NH
1257 struct anon_vma *anon_vma = NULL;
1258
83467efb
NH
1259 /*
1260 * Movability of hugepages depends on architectures and hugepage size.
1261 * This check is necessary because some callers of hugepage migration
1262 * like soft offline and memory hotremove don't walk through page
1263 * tables or check whether the hugepage is pmd-based or not before
1264 * kicking migration.
1265 */
100873d7 1266 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1267 putback_active_hugepage(hpage);
83467efb 1268 return -ENOSYS;
32665f2b 1269 }
83467efb 1270
666feb21 1271 new_hpage = get_new_page(hpage, private);
290408d4
NH
1272 if (!new_hpage)
1273 return -ENOMEM;
1274
290408d4 1275 if (!trylock_page(hpage)) {
2916ecc0 1276 if (!force)
290408d4 1277 goto out;
2916ecc0
JG
1278 switch (mode) {
1279 case MIGRATE_SYNC:
1280 case MIGRATE_SYNC_NO_COPY:
1281 break;
1282 default:
1283 goto out;
1284 }
290408d4
NH
1285 lock_page(hpage);
1286 }
1287
746b18d4
PZ
1288 if (PageAnon(hpage))
1289 anon_vma = page_get_anon_vma(hpage);
290408d4 1290
7db7671f
HD
1291 if (unlikely(!trylock_page(new_hpage)))
1292 goto put_anon;
1293
2ebba6b7
HD
1294 if (page_mapped(hpage)) {
1295 try_to_unmap(hpage,
1296 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1297 page_was_mapped = 1;
1298 }
290408d4
NH
1299
1300 if (!page_mapped(hpage))
5c3f9a67 1301 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1302
5c3f9a67
HD
1303 if (page_was_mapped)
1304 remove_migration_ptes(hpage,
e388466d 1305 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1306
7db7671f
HD
1307 unlock_page(new_hpage);
1308
1309put_anon:
fd4a4663 1310 if (anon_vma)
9e60109f 1311 put_anon_vma(anon_vma);
8e6ac7fa 1312
2def7424 1313 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1314 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1315 put_new_page = NULL;
1316 }
8e6ac7fa 1317
290408d4 1318 unlock_page(hpage);
09761333 1319out:
b8ec1cee
NH
1320 if (rc != -EAGAIN)
1321 putback_active_hugepage(hpage);
c3114a84
AK
1322 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1323 num_poisoned_pages_inc();
68711a74
DR
1324
1325 /*
1326 * If migration was not successful and there's a freeing callback, use
1327 * it. Otherwise, put_page() will drop the reference grabbed during
1328 * isolation.
1329 */
2def7424 1330 if (put_new_page)
68711a74
DR
1331 put_new_page(new_hpage, private);
1332 else
3aaa76e1 1333 putback_active_hugepage(new_hpage);
68711a74 1334
290408d4
NH
1335 return rc;
1336}
1337
b20a3503 1338/*
c73e5c9c
SB
1339 * migrate_pages - migrate the pages specified in a list, to the free pages
1340 * supplied as the target for the page migration
b20a3503 1341 *
c73e5c9c
SB
1342 * @from: The list of pages to be migrated.
1343 * @get_new_page: The function used to allocate free pages to be used
1344 * as the target of the page migration.
68711a74
DR
1345 * @put_new_page: The function used to free target pages if migration
1346 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1347 * @private: Private data to be passed on to get_new_page()
1348 * @mode: The migration mode that specifies the constraints for
1349 * page migration, if any.
1350 * @reason: The reason for page migration.
b20a3503 1351 *
c73e5c9c
SB
1352 * The function returns after 10 attempts or if no pages are movable any more
1353 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1354 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1355 * or free list only if ret != 0.
b20a3503 1356 *
c73e5c9c 1357 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1358 */
9c620e2b 1359int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1360 free_page_t put_new_page, unsigned long private,
1361 enum migrate_mode mode, int reason)
b20a3503 1362{
e24f0b8f 1363 int retry = 1;
b20a3503 1364 int nr_failed = 0;
5647bc29 1365 int nr_succeeded = 0;
b20a3503
CL
1366 int pass = 0;
1367 struct page *page;
1368 struct page *page2;
1369 int swapwrite = current->flags & PF_SWAPWRITE;
1370 int rc;
1371
1372 if (!swapwrite)
1373 current->flags |= PF_SWAPWRITE;
1374
e24f0b8f
CL
1375 for(pass = 0; pass < 10 && retry; pass++) {
1376 retry = 0;
b20a3503 1377
e24f0b8f 1378 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1379retry:
e24f0b8f 1380 cond_resched();
2d1db3b1 1381
31caf665
NH
1382 if (PageHuge(page))
1383 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1384 put_new_page, private, page,
7cd12b4a 1385 pass > 2, mode, reason);
31caf665 1386 else
68711a74 1387 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1388 private, page, pass > 2, mode,
1389 reason);
2d1db3b1 1390
e24f0b8f 1391 switch(rc) {
95a402c3 1392 case -ENOMEM:
94723aaf
MH
1393 /*
1394 * THP migration might be unsupported or the
1395 * allocation could've failed so we should
1396 * retry on the same page with the THP split
1397 * to base pages.
1398 *
1399 * Head page is retried immediately and tail
1400 * pages are added to the tail of the list so
1401 * we encounter them after the rest of the list
1402 * is processed.
1403 */
1404 if (PageTransHuge(page)) {
1405 lock_page(page);
1406 rc = split_huge_page_to_list(page, from);
1407 unlock_page(page);
1408 if (!rc) {
1409 list_safe_reset_next(page, page2, lru);
1410 goto retry;
1411 }
1412 }
dfef2ef4 1413 nr_failed++;
95a402c3 1414 goto out;
e24f0b8f 1415 case -EAGAIN:
2d1db3b1 1416 retry++;
e24f0b8f 1417 break;
78bd5209 1418 case MIGRATEPAGE_SUCCESS:
5647bc29 1419 nr_succeeded++;
e24f0b8f
CL
1420 break;
1421 default:
354a3363
NH
1422 /*
1423 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1424 * unlike -EAGAIN case, the failed page is
1425 * removed from migration page list and not
1426 * retried in the next outer loop.
1427 */
2d1db3b1 1428 nr_failed++;
e24f0b8f 1429 break;
2d1db3b1 1430 }
b20a3503
CL
1431 }
1432 }
f2f81fb2
VB
1433 nr_failed += retry;
1434 rc = nr_failed;
95a402c3 1435out:
5647bc29
MG
1436 if (nr_succeeded)
1437 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1438 if (nr_failed)
1439 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1440 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1441
b20a3503
CL
1442 if (!swapwrite)
1443 current->flags &= ~PF_SWAPWRITE;
1444
78bd5209 1445 return rc;
b20a3503 1446}
95a402c3 1447
742755a1 1448#ifdef CONFIG_NUMA
742755a1 1449
a49bd4d7 1450static int store_status(int __user *status, int start, int value, int nr)
742755a1 1451{
a49bd4d7
MH
1452 while (nr-- > 0) {
1453 if (put_user(value, status + start))
1454 return -EFAULT;
1455 start++;
1456 }
1457
1458 return 0;
1459}
1460
1461static int do_move_pages_to_node(struct mm_struct *mm,
1462 struct list_head *pagelist, int node)
1463{
1464 int err;
1465
1466 if (list_empty(pagelist))
1467 return 0;
1468
1469 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1470 MIGRATE_SYNC, MR_SYSCALL);
1471 if (err)
1472 putback_movable_pages(pagelist);
1473 return err;
742755a1
CL
1474}
1475
1476/*
a49bd4d7
MH
1477 * Resolves the given address to a struct page, isolates it from the LRU and
1478 * puts it to the given pagelist.
1479 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1480 * queued or the page doesn't need to be migrated because it is already on
1481 * the target node
742755a1 1482 */
a49bd4d7
MH
1483static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1484 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1485{
a49bd4d7
MH
1486 struct vm_area_struct *vma;
1487 struct page *page;
1488 unsigned int follflags;
742755a1 1489 int err;
742755a1
CL
1490
1491 down_read(&mm->mmap_sem);
a49bd4d7
MH
1492 err = -EFAULT;
1493 vma = find_vma(mm, addr);
1494 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1495 goto out;
742755a1 1496
a49bd4d7
MH
1497 /* FOLL_DUMP to ignore special (like zero) pages */
1498 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1499 page = follow_page(vma, addr, follflags);
89f5b7da 1500
a49bd4d7
MH
1501 err = PTR_ERR(page);
1502 if (IS_ERR(page))
1503 goto out;
89f5b7da 1504
a49bd4d7
MH
1505 err = -ENOENT;
1506 if (!page)
1507 goto out;
742755a1 1508
a49bd4d7
MH
1509 err = 0;
1510 if (page_to_nid(page) == node)
1511 goto out_putpage;
742755a1 1512
a49bd4d7
MH
1513 err = -EACCES;
1514 if (page_mapcount(page) > 1 && !migrate_all)
1515 goto out_putpage;
742755a1 1516
a49bd4d7
MH
1517 if (PageHuge(page)) {
1518 if (PageHead(page)) {
1519 isolate_huge_page(page, pagelist);
1520 err = 0;
e632a938 1521 }
a49bd4d7
MH
1522 } else {
1523 struct page *head;
e632a938 1524
e8db67eb
NH
1525 head = compound_head(page);
1526 err = isolate_lru_page(head);
cf608ac1 1527 if (err)
a49bd4d7 1528 goto out_putpage;
742755a1 1529
a49bd4d7
MH
1530 err = 0;
1531 list_add_tail(&head->lru, pagelist);
1532 mod_node_page_state(page_pgdat(head),
1533 NR_ISOLATED_ANON + page_is_file_cache(head),
1534 hpage_nr_pages(head));
1535 }
1536out_putpage:
1537 /*
1538 * Either remove the duplicate refcount from
1539 * isolate_lru_page() or drop the page ref if it was
1540 * not isolated.
1541 */
1542 put_page(page);
1543out:
742755a1
CL
1544 up_read(&mm->mmap_sem);
1545 return err;
1546}
1547
5e9a0f02
BG
1548/*
1549 * Migrate an array of page address onto an array of nodes and fill
1550 * the corresponding array of status.
1551 */
3268c63e 1552static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1553 unsigned long nr_pages,
1554 const void __user * __user *pages,
1555 const int __user *nodes,
1556 int __user *status, int flags)
1557{
a49bd4d7
MH
1558 int current_node = NUMA_NO_NODE;
1559 LIST_HEAD(pagelist);
1560 int start, i;
1561 int err = 0, err1;
35282a2d
BG
1562
1563 migrate_prep();
1564
a49bd4d7
MH
1565 for (i = start = 0; i < nr_pages; i++) {
1566 const void __user *p;
1567 unsigned long addr;
1568 int node;
3140a227 1569
a49bd4d7
MH
1570 err = -EFAULT;
1571 if (get_user(p, pages + i))
1572 goto out_flush;
1573 if (get_user(node, nodes + i))
1574 goto out_flush;
1575 addr = (unsigned long)p;
1576
1577 err = -ENODEV;
1578 if (node < 0 || node >= MAX_NUMNODES)
1579 goto out_flush;
1580 if (!node_state(node, N_MEMORY))
1581 goto out_flush;
5e9a0f02 1582
a49bd4d7
MH
1583 err = -EACCES;
1584 if (!node_isset(node, task_nodes))
1585 goto out_flush;
1586
1587 if (current_node == NUMA_NO_NODE) {
1588 current_node = node;
1589 start = i;
1590 } else if (node != current_node) {
1591 err = do_move_pages_to_node(mm, &pagelist, current_node);
1592 if (err)
1593 goto out;
1594 err = store_status(status, start, current_node, i - start);
1595 if (err)
1596 goto out;
1597 start = i;
1598 current_node = node;
3140a227
BG
1599 }
1600
a49bd4d7
MH
1601 /*
1602 * Errors in the page lookup or isolation are not fatal and we simply
1603 * report them via status
1604 */
1605 err = add_page_for_migration(mm, addr, current_node,
1606 &pagelist, flags & MPOL_MF_MOVE_ALL);
1607 if (!err)
1608 continue;
3140a227 1609
a49bd4d7
MH
1610 err = store_status(status, i, err, 1);
1611 if (err)
1612 goto out_flush;
5e9a0f02 1613
a49bd4d7
MH
1614 err = do_move_pages_to_node(mm, &pagelist, current_node);
1615 if (err)
1616 goto out;
1617 if (i > start) {
1618 err = store_status(status, start, current_node, i - start);
1619 if (err)
1620 goto out;
1621 }
1622 current_node = NUMA_NO_NODE;
3140a227 1623 }
a49bd4d7
MH
1624out_flush:
1625 /* Make sure we do not overwrite the existing error */
1626 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1627 if (!err1)
1628 err1 = store_status(status, start, current_node, i - start);
1629 if (!err)
1630 err = err1;
5e9a0f02
BG
1631out:
1632 return err;
1633}
1634
742755a1 1635/*
2f007e74 1636 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1637 */
80bba129
BG
1638static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1639 const void __user **pages, int *status)
742755a1 1640{
2f007e74 1641 unsigned long i;
2f007e74 1642
742755a1
CL
1643 down_read(&mm->mmap_sem);
1644
2f007e74 1645 for (i = 0; i < nr_pages; i++) {
80bba129 1646 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1647 struct vm_area_struct *vma;
1648 struct page *page;
c095adbc 1649 int err = -EFAULT;
2f007e74
BG
1650
1651 vma = find_vma(mm, addr);
70384dc6 1652 if (!vma || addr < vma->vm_start)
742755a1
CL
1653 goto set_status;
1654
d899844e
KS
1655 /* FOLL_DUMP to ignore special (like zero) pages */
1656 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1657
1658 err = PTR_ERR(page);
1659 if (IS_ERR(page))
1660 goto set_status;
1661
d899844e 1662 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1663set_status:
80bba129
BG
1664 *status = err;
1665
1666 pages++;
1667 status++;
1668 }
1669
1670 up_read(&mm->mmap_sem);
1671}
1672
1673/*
1674 * Determine the nodes of a user array of pages and store it in
1675 * a user array of status.
1676 */
1677static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1678 const void __user * __user *pages,
1679 int __user *status)
1680{
1681#define DO_PAGES_STAT_CHUNK_NR 16
1682 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1683 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1684
87b8d1ad
PA
1685 while (nr_pages) {
1686 unsigned long chunk_nr;
80bba129 1687
87b8d1ad
PA
1688 chunk_nr = nr_pages;
1689 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1690 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1691
1692 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1693 break;
80bba129
BG
1694
1695 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1696
87b8d1ad
PA
1697 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1698 break;
742755a1 1699
87b8d1ad
PA
1700 pages += chunk_nr;
1701 status += chunk_nr;
1702 nr_pages -= chunk_nr;
1703 }
1704 return nr_pages ? -EFAULT : 0;
742755a1
CL
1705}
1706
1707/*
1708 * Move a list of pages in the address space of the currently executing
1709 * process.
1710 */
7addf443
DB
1711static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1712 const void __user * __user *pages,
1713 const int __user *nodes,
1714 int __user *status, int flags)
742755a1 1715{
742755a1 1716 struct task_struct *task;
742755a1 1717 struct mm_struct *mm;
5e9a0f02 1718 int err;
3268c63e 1719 nodemask_t task_nodes;
742755a1
CL
1720
1721 /* Check flags */
1722 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1723 return -EINVAL;
1724
1725 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1726 return -EPERM;
1727
1728 /* Find the mm_struct */
a879bf58 1729 rcu_read_lock();
228ebcbe 1730 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1731 if (!task) {
a879bf58 1732 rcu_read_unlock();
742755a1
CL
1733 return -ESRCH;
1734 }
3268c63e 1735 get_task_struct(task);
742755a1
CL
1736
1737 /*
1738 * Check if this process has the right to modify the specified
197e7e52 1739 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1740 */
197e7e52 1741 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1742 rcu_read_unlock();
742755a1 1743 err = -EPERM;
5e9a0f02 1744 goto out;
742755a1 1745 }
c69e8d9c 1746 rcu_read_unlock();
742755a1 1747
86c3a764
DQ
1748 err = security_task_movememory(task);
1749 if (err)
5e9a0f02 1750 goto out;
86c3a764 1751
3268c63e
CL
1752 task_nodes = cpuset_mems_allowed(task);
1753 mm = get_task_mm(task);
1754 put_task_struct(task);
1755
6e8b09ea
SL
1756 if (!mm)
1757 return -EINVAL;
1758
1759 if (nodes)
1760 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1761 nodes, status, flags);
1762 else
1763 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1764
742755a1
CL
1765 mmput(mm);
1766 return err;
3268c63e
CL
1767
1768out:
1769 put_task_struct(task);
1770 return err;
742755a1 1771}
742755a1 1772
7addf443
DB
1773SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1774 const void __user * __user *, pages,
1775 const int __user *, nodes,
1776 int __user *, status, int, flags)
1777{
1778 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1779}
1780
1781#ifdef CONFIG_COMPAT
1782COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1783 compat_uptr_t __user *, pages32,
1784 const int __user *, nodes,
1785 int __user *, status,
1786 int, flags)
1787{
1788 const void __user * __user *pages;
1789 int i;
1790
1791 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1792 for (i = 0; i < nr_pages; i++) {
1793 compat_uptr_t p;
1794
1795 if (get_user(p, pages32 + i) ||
1796 put_user(compat_ptr(p), pages + i))
1797 return -EFAULT;
1798 }
1799 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1800}
1801#endif /* CONFIG_COMPAT */
1802
7039e1db
PZ
1803#ifdef CONFIG_NUMA_BALANCING
1804/*
1805 * Returns true if this is a safe migration target node for misplaced NUMA
1806 * pages. Currently it only checks the watermarks which crude
1807 */
1808static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1809 unsigned long nr_migrate_pages)
7039e1db
PZ
1810{
1811 int z;
599d0c95 1812
7039e1db
PZ
1813 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1814 struct zone *zone = pgdat->node_zones + z;
1815
1816 if (!populated_zone(zone))
1817 continue;
1818
7039e1db
PZ
1819 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1820 if (!zone_watermark_ok(zone, 0,
1821 high_wmark_pages(zone) +
1822 nr_migrate_pages,
1823 0, 0))
1824 continue;
1825 return true;
1826 }
1827 return false;
1828}
1829
1830static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1831 unsigned long data)
7039e1db
PZ
1832{
1833 int nid = (int) data;
1834 struct page *newpage;
1835
96db800f 1836 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1837 (GFP_HIGHUSER_MOVABLE |
1838 __GFP_THISNODE | __GFP_NOMEMALLOC |
1839 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1840 ~__GFP_RECLAIM, 0);
bac0382c 1841
7039e1db
PZ
1842 return newpage;
1843}
1844
a8f60772
MG
1845/*
1846 * page migration rate limiting control.
1847 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1848 * window of time. Default here says do not migrate more than 1280M per second.
1849 */
1850static unsigned int migrate_interval_millisecs __read_mostly = 100;
1851static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1852
b32967ff 1853/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1854static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1855 unsigned long nr_pages)
7039e1db 1856{
a8f60772
MG
1857 /*
1858 * Rate-limit the amount of data that is being migrated to a node.
1859 * Optimal placement is no good if the memory bus is saturated and
1860 * all the time is being spent migrating!
1861 */
a8f60772 1862 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1863 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1864 pgdat->numabalancing_migrate_nr_pages = 0;
1865 pgdat->numabalancing_migrate_next_window = jiffies +
1866 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1867 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1868 }
af1839d7
MG
1869 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1870 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1871 nr_pages);
1c5e9c27 1872 return true;
af1839d7 1873 }
1c5e9c27
MG
1874
1875 /*
1876 * This is an unlocked non-atomic update so errors are possible.
1877 * The consequences are failing to migrate when we potentiall should
1878 * have which is not severe enough to warrant locking. If it is ever
1879 * a problem, it can be converted to a per-cpu counter.
1880 */
1881 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1882 return false;
b32967ff
MG
1883}
1884
1c30e017 1885static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1886{
340ef390 1887 int page_lru;
a8f60772 1888
309381fe 1889 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1890
7039e1db 1891 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1892 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1893 return 0;
7039e1db 1894
340ef390
HD
1895 if (isolate_lru_page(page))
1896 return 0;
7039e1db 1897
340ef390
HD
1898 /*
1899 * migrate_misplaced_transhuge_page() skips page migration's usual
1900 * check on page_count(), so we must do it here, now that the page
1901 * has been isolated: a GUP pin, or any other pin, prevents migration.
1902 * The expected page count is 3: 1 for page's mapcount and 1 for the
1903 * caller's pin and 1 for the reference taken by isolate_lru_page().
1904 */
1905 if (PageTransHuge(page) && page_count(page) != 3) {
1906 putback_lru_page(page);
1907 return 0;
7039e1db
PZ
1908 }
1909
340ef390 1910 page_lru = page_is_file_cache(page);
599d0c95 1911 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1912 hpage_nr_pages(page));
1913
149c33e1 1914 /*
340ef390
HD
1915 * Isolating the page has taken another reference, so the
1916 * caller's reference can be safely dropped without the page
1917 * disappearing underneath us during migration.
149c33e1
MG
1918 */
1919 put_page(page);
340ef390 1920 return 1;
b32967ff
MG
1921}
1922
de466bd6
MG
1923bool pmd_trans_migrating(pmd_t pmd)
1924{
1925 struct page *page = pmd_page(pmd);
1926 return PageLocked(page);
1927}
1928
b32967ff
MG
1929/*
1930 * Attempt to migrate a misplaced page to the specified destination
1931 * node. Caller is expected to have an elevated reference count on
1932 * the page that will be dropped by this function before returning.
1933 */
1bc115d8
MG
1934int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1935 int node)
b32967ff
MG
1936{
1937 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1938 int isolated;
b32967ff
MG
1939 int nr_remaining;
1940 LIST_HEAD(migratepages);
1941
1942 /*
1bc115d8
MG
1943 * Don't migrate file pages that are mapped in multiple processes
1944 * with execute permissions as they are probably shared libraries.
b32967ff 1945 */
1bc115d8
MG
1946 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947 (vma->vm_flags & VM_EXEC))
b32967ff 1948 goto out;
b32967ff 1949
09a913a7
MG
1950 /*
1951 * Also do not migrate dirty pages as not all filesystems can move
1952 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1953 */
1954 if (page_is_file_cache(page) && PageDirty(page))
1955 goto out;
1956
b32967ff
MG
1957 /*
1958 * Rate-limit the amount of data that is being migrated to a node.
1959 * Optimal placement is no good if the memory bus is saturated and
1960 * all the time is being spent migrating!
1961 */
340ef390 1962 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1963 goto out;
b32967ff
MG
1964
1965 isolated = numamigrate_isolate_page(pgdat, page);
1966 if (!isolated)
1967 goto out;
1968
1969 list_add(&page->lru, &migratepages);
9c620e2b 1970 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1971 NULL, node, MIGRATE_ASYNC,
1972 MR_NUMA_MISPLACED);
b32967ff 1973 if (nr_remaining) {
59c82b70
JK
1974 if (!list_empty(&migratepages)) {
1975 list_del(&page->lru);
599d0c95 1976 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1977 page_is_file_cache(page));
1978 putback_lru_page(page);
1979 }
b32967ff
MG
1980 isolated = 0;
1981 } else
1982 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1983 BUG_ON(!list_empty(&migratepages));
7039e1db 1984 return isolated;
340ef390
HD
1985
1986out:
1987 put_page(page);
1988 return 0;
7039e1db 1989}
220018d3 1990#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1991
220018d3 1992#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1993/*
1994 * Migrates a THP to a given target node. page must be locked and is unlocked
1995 * before returning.
1996 */
b32967ff
MG
1997int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1998 struct vm_area_struct *vma,
1999 pmd_t *pmd, pmd_t entry,
2000 unsigned long address,
2001 struct page *page, int node)
2002{
c4088ebd 2003 spinlock_t *ptl;
b32967ff
MG
2004 pg_data_t *pgdat = NODE_DATA(node);
2005 int isolated = 0;
2006 struct page *new_page = NULL;
b32967ff 2007 int page_lru = page_is_file_cache(page);
f714f4f2
MG
2008 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2009 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 2010
b32967ff
MG
2011 /*
2012 * Rate-limit the amount of data that is being migrated to a node.
2013 * Optimal placement is no good if the memory bus is saturated and
2014 * all the time is being spent migrating!
2015 */
d28d4335 2016 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
2017 goto out_dropref;
2018
2019 new_page = alloc_pages_node(node,
25160354 2020 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2021 HPAGE_PMD_ORDER);
340ef390
HD
2022 if (!new_page)
2023 goto out_fail;
9a982250 2024 prep_transhuge_page(new_page);
340ef390 2025
b32967ff 2026 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2027 if (!isolated) {
b32967ff 2028 put_page(new_page);
340ef390 2029 goto out_fail;
b32967ff 2030 }
b0943d61 2031
b32967ff 2032 /* Prepare a page as a migration target */
48c935ad 2033 __SetPageLocked(new_page);
d44d363f
SL
2034 if (PageSwapBacked(page))
2035 __SetPageSwapBacked(new_page);
b32967ff
MG
2036
2037 /* anon mapping, we can simply copy page->mapping to the new page: */
2038 new_page->mapping = page->mapping;
2039 new_page->index = page->index;
2040 migrate_page_copy(new_page, page);
2041 WARN_ON(PageLRU(new_page));
2042
2043 /* Recheck the target PMD */
f714f4f2 2044 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2045 ptl = pmd_lock(mm, pmd);
f4e177d1 2046 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2047 spin_unlock(ptl);
f714f4f2 2048 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
2049
2050 /* Reverse changes made by migrate_page_copy() */
2051 if (TestClearPageActive(new_page))
2052 SetPageActive(page);
2053 if (TestClearPageUnevictable(new_page))
2054 SetPageUnevictable(page);
b32967ff
MG
2055
2056 unlock_page(new_page);
2057 put_page(new_page); /* Free it */
2058
a54a407f
MG
2059 /* Retake the callers reference and putback on LRU */
2060 get_page(page);
b32967ff 2061 putback_lru_page(page);
599d0c95 2062 mod_node_page_state(page_pgdat(page),
a54a407f 2063 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2064
2065 goto out_unlock;
b32967ff
MG
2066 }
2067
10102459 2068 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2069 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2070
2b4847e7
MG
2071 /*
2072 * Clear the old entry under pagetable lock and establish the new PTE.
2073 * Any parallel GUP will either observe the old page blocking on the
2074 * page lock, block on the page table lock or observe the new page.
2075 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2076 * guarantee the copy is visible before the pagetable update.
2077 */
f714f4f2 2078 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 2079 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 2080 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 2081 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 2082 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2083
f4e177d1 2084 page_ref_unfreeze(page, 2);
51afb12b 2085 mlock_migrate_page(new_page, page);
d281ee61 2086 page_remove_rmap(page, true);
7cd12b4a 2087 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2088
c4088ebd 2089 spin_unlock(ptl);
4645b9fe
JG
2090 /*
2091 * No need to double call mmu_notifier->invalidate_range() callback as
2092 * the above pmdp_huge_clear_flush_notify() did already call it.
2093 */
2094 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
b32967ff 2095
11de9927
MG
2096 /* Take an "isolate" reference and put new page on the LRU. */
2097 get_page(new_page);
2098 putback_lru_page(new_page);
2099
b32967ff
MG
2100 unlock_page(new_page);
2101 unlock_page(page);
2102 put_page(page); /* Drop the rmap reference */
2103 put_page(page); /* Drop the LRU isolation reference */
2104
2105 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2106 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2107
599d0c95 2108 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2109 NR_ISOLATED_ANON + page_lru,
2110 -HPAGE_PMD_NR);
2111 return isolated;
2112
340ef390
HD
2113out_fail:
2114 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2115out_dropref:
2b4847e7
MG
2116 ptl = pmd_lock(mm, pmd);
2117 if (pmd_same(*pmd, entry)) {
4d942466 2118 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2119 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2120 update_mmu_cache_pmd(vma, address, &entry);
2121 }
2122 spin_unlock(ptl);
a54a407f 2123
eb4489f6 2124out_unlock:
340ef390 2125 unlock_page(page);
b32967ff 2126 put_page(page);
b32967ff
MG
2127 return 0;
2128}
7039e1db
PZ
2129#endif /* CONFIG_NUMA_BALANCING */
2130
2131#endif /* CONFIG_NUMA */
8763cb45 2132
6b368cd4 2133#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2134struct migrate_vma {
2135 struct vm_area_struct *vma;
2136 unsigned long *dst;
2137 unsigned long *src;
2138 unsigned long cpages;
2139 unsigned long npages;
2140 unsigned long start;
2141 unsigned long end;
2142};
2143
2144static int migrate_vma_collect_hole(unsigned long start,
2145 unsigned long end,
2146 struct mm_walk *walk)
2147{
2148 struct migrate_vma *migrate = walk->private;
2149 unsigned long addr;
2150
8315ada7 2151 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2152 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2153 migrate->dst[migrate->npages] = 0;
e20d103b 2154 migrate->npages++;
8315ada7
JG
2155 migrate->cpages++;
2156 }
2157
2158 return 0;
2159}
2160
2161static int migrate_vma_collect_skip(unsigned long start,
2162 unsigned long end,
2163 struct mm_walk *walk)
2164{
2165 struct migrate_vma *migrate = walk->private;
2166 unsigned long addr;
2167
8763cb45
JG
2168 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2169 migrate->dst[migrate->npages] = 0;
2170 migrate->src[migrate->npages++] = 0;
2171 }
2172
2173 return 0;
2174}
2175
2176static int migrate_vma_collect_pmd(pmd_t *pmdp,
2177 unsigned long start,
2178 unsigned long end,
2179 struct mm_walk *walk)
2180{
2181 struct migrate_vma *migrate = walk->private;
2182 struct vm_area_struct *vma = walk->vma;
2183 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2184 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2185 spinlock_t *ptl;
2186 pte_t *ptep;
2187
2188again:
2189 if (pmd_none(*pmdp))
2190 return migrate_vma_collect_hole(start, end, walk);
2191
2192 if (pmd_trans_huge(*pmdp)) {
2193 struct page *page;
2194
2195 ptl = pmd_lock(mm, pmdp);
2196 if (unlikely(!pmd_trans_huge(*pmdp))) {
2197 spin_unlock(ptl);
2198 goto again;
2199 }
2200
2201 page = pmd_page(*pmdp);
2202 if (is_huge_zero_page(page)) {
2203 spin_unlock(ptl);
2204 split_huge_pmd(vma, pmdp, addr);
2205 if (pmd_trans_unstable(pmdp))
8315ada7 2206 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2207 walk);
2208 } else {
2209 int ret;
2210
2211 get_page(page);
2212 spin_unlock(ptl);
2213 if (unlikely(!trylock_page(page)))
8315ada7 2214 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2215 walk);
2216 ret = split_huge_page(page);
2217 unlock_page(page);
2218 put_page(page);
8315ada7
JG
2219 if (ret)
2220 return migrate_vma_collect_skip(start, end,
2221 walk);
2222 if (pmd_none(*pmdp))
8763cb45
JG
2223 return migrate_vma_collect_hole(start, end,
2224 walk);
2225 }
2226 }
2227
2228 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2229 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2230
2231 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2232 arch_enter_lazy_mmu_mode();
2233
8763cb45
JG
2234 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2235 unsigned long mpfn, pfn;
2236 struct page *page;
8c3328f1 2237 swp_entry_t entry;
8763cb45
JG
2238 pte_t pte;
2239
2240 pte = *ptep;
2241 pfn = pte_pfn(pte);
2242
a5430dda 2243 if (pte_none(pte)) {
8315ada7
JG
2244 mpfn = MIGRATE_PFN_MIGRATE;
2245 migrate->cpages++;
2246 pfn = 0;
8763cb45
JG
2247 goto next;
2248 }
2249
a5430dda
JG
2250 if (!pte_present(pte)) {
2251 mpfn = pfn = 0;
2252
2253 /*
2254 * Only care about unaddressable device page special
2255 * page table entry. Other special swap entries are not
2256 * migratable, and we ignore regular swapped page.
2257 */
2258 entry = pte_to_swp_entry(pte);
2259 if (!is_device_private_entry(entry))
2260 goto next;
2261
2262 page = device_private_entry_to_page(entry);
2263 mpfn = migrate_pfn(page_to_pfn(page))|
2264 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2265 if (is_write_device_private_entry(entry))
2266 mpfn |= MIGRATE_PFN_WRITE;
2267 } else {
8315ada7
JG
2268 if (is_zero_pfn(pfn)) {
2269 mpfn = MIGRATE_PFN_MIGRATE;
2270 migrate->cpages++;
2271 pfn = 0;
2272 goto next;
2273 }
df6ad698 2274 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2275 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2276 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2277 }
2278
8763cb45 2279 /* FIXME support THP */
8763cb45
JG
2280 if (!page || !page->mapping || PageTransCompound(page)) {
2281 mpfn = pfn = 0;
2282 goto next;
2283 }
a5430dda 2284 pfn = page_to_pfn(page);
8763cb45
JG
2285
2286 /*
2287 * By getting a reference on the page we pin it and that blocks
2288 * any kind of migration. Side effect is that it "freezes" the
2289 * pte.
2290 *
2291 * We drop this reference after isolating the page from the lru
2292 * for non device page (device page are not on the lru and thus
2293 * can't be dropped from it).
2294 */
2295 get_page(page);
2296 migrate->cpages++;
8763cb45 2297
8c3328f1
JG
2298 /*
2299 * Optimize for the common case where page is only mapped once
2300 * in one process. If we can lock the page, then we can safely
2301 * set up a special migration page table entry now.
2302 */
2303 if (trylock_page(page)) {
2304 pte_t swp_pte;
2305
2306 mpfn |= MIGRATE_PFN_LOCKED;
2307 ptep_get_and_clear(mm, addr, ptep);
2308
2309 /* Setup special migration page table entry */
07707125
RC
2310 entry = make_migration_entry(page, mpfn &
2311 MIGRATE_PFN_WRITE);
8c3328f1
JG
2312 swp_pte = swp_entry_to_pte(entry);
2313 if (pte_soft_dirty(pte))
2314 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315 set_pte_at(mm, addr, ptep, swp_pte);
2316
2317 /*
2318 * This is like regular unmap: we remove the rmap and
2319 * drop page refcount. Page won't be freed, as we took
2320 * a reference just above.
2321 */
2322 page_remove_rmap(page, false);
2323 put_page(page);
a5430dda
JG
2324
2325 if (pte_present(pte))
2326 unmapped++;
8c3328f1
JG
2327 }
2328
8763cb45 2329next:
a5430dda 2330 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2331 migrate->src[migrate->npages++] = mpfn;
2332 }
8c3328f1 2333 arch_leave_lazy_mmu_mode();
8763cb45
JG
2334 pte_unmap_unlock(ptep - 1, ptl);
2335
8c3328f1
JG
2336 /* Only flush the TLB if we actually modified any entries */
2337 if (unmapped)
2338 flush_tlb_range(walk->vma, start, end);
2339
8763cb45
JG
2340 return 0;
2341}
2342
2343/*
2344 * migrate_vma_collect() - collect pages over a range of virtual addresses
2345 * @migrate: migrate struct containing all migration information
2346 *
2347 * This will walk the CPU page table. For each virtual address backed by a
2348 * valid page, it updates the src array and takes a reference on the page, in
2349 * order to pin the page until we lock it and unmap it.
2350 */
2351static void migrate_vma_collect(struct migrate_vma *migrate)
2352{
2353 struct mm_walk mm_walk;
2354
2355 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2356 mm_walk.pte_entry = NULL;
2357 mm_walk.pte_hole = migrate_vma_collect_hole;
2358 mm_walk.hugetlb_entry = NULL;
2359 mm_walk.test_walk = NULL;
2360 mm_walk.vma = migrate->vma;
2361 mm_walk.mm = migrate->vma->vm_mm;
2362 mm_walk.private = migrate;
2363
8c3328f1
JG
2364 mmu_notifier_invalidate_range_start(mm_walk.mm,
2365 migrate->start,
2366 migrate->end);
8763cb45 2367 walk_page_range(migrate->start, migrate->end, &mm_walk);
8c3328f1
JG
2368 mmu_notifier_invalidate_range_end(mm_walk.mm,
2369 migrate->start,
2370 migrate->end);
8763cb45
JG
2371
2372 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2373}
2374
2375/*
2376 * migrate_vma_check_page() - check if page is pinned or not
2377 * @page: struct page to check
2378 *
2379 * Pinned pages cannot be migrated. This is the same test as in
2380 * migrate_page_move_mapping(), except that here we allow migration of a
2381 * ZONE_DEVICE page.
2382 */
2383static bool migrate_vma_check_page(struct page *page)
2384{
2385 /*
2386 * One extra ref because caller holds an extra reference, either from
2387 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2388 * a device page.
2389 */
2390 int extra = 1;
2391
2392 /*
2393 * FIXME support THP (transparent huge page), it is bit more complex to
2394 * check them than regular pages, because they can be mapped with a pmd
2395 * or with a pte (split pte mapping).
2396 */
2397 if (PageCompound(page))
2398 return false;
2399
a5430dda
JG
2400 /* Page from ZONE_DEVICE have one extra reference */
2401 if (is_zone_device_page(page)) {
2402 /*
2403 * Private page can never be pin as they have no valid pte and
2404 * GUP will fail for those. Yet if there is a pending migration
2405 * a thread might try to wait on the pte migration entry and
2406 * will bump the page reference count. Sadly there is no way to
2407 * differentiate a regular pin from migration wait. Hence to
2408 * avoid 2 racing thread trying to migrate back to CPU to enter
2409 * infinite loop (one stoping migration because the other is
2410 * waiting on pte migration entry). We always return true here.
2411 *
2412 * FIXME proper solution is to rework migration_entry_wait() so
2413 * it does not need to take a reference on page.
2414 */
2415 if (is_device_private_page(page))
2416 return true;
2417
df6ad698
JG
2418 /*
2419 * Only allow device public page to be migrated and account for
2420 * the extra reference count imply by ZONE_DEVICE pages.
2421 */
2422 if (!is_device_public_page(page))
2423 return false;
2424 extra++;
a5430dda
JG
2425 }
2426
df6ad698
JG
2427 /* For file back page */
2428 if (page_mapping(page))
2429 extra += 1 + page_has_private(page);
2430
8763cb45
JG
2431 if ((page_count(page) - extra) > page_mapcount(page))
2432 return false;
2433
2434 return true;
2435}
2436
2437/*
2438 * migrate_vma_prepare() - lock pages and isolate them from the lru
2439 * @migrate: migrate struct containing all migration information
2440 *
2441 * This locks pages that have been collected by migrate_vma_collect(). Once each
2442 * page is locked it is isolated from the lru (for non-device pages). Finally,
2443 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444 * migrated by concurrent kernel threads.
2445 */
2446static void migrate_vma_prepare(struct migrate_vma *migrate)
2447{
2448 const unsigned long npages = migrate->npages;
8c3328f1
JG
2449 const unsigned long start = migrate->start;
2450 unsigned long addr, i, restore = 0;
8763cb45 2451 bool allow_drain = true;
8763cb45
JG
2452
2453 lru_add_drain();
2454
2455 for (i = 0; (i < npages) && migrate->cpages; i++) {
2456 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2457 bool remap = true;
8763cb45
JG
2458
2459 if (!page)
2460 continue;
2461
8c3328f1
JG
2462 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2463 /*
2464 * Because we are migrating several pages there can be
2465 * a deadlock between 2 concurrent migration where each
2466 * are waiting on each other page lock.
2467 *
2468 * Make migrate_vma() a best effort thing and backoff
2469 * for any page we can not lock right away.
2470 */
2471 if (!trylock_page(page)) {
2472 migrate->src[i] = 0;
2473 migrate->cpages--;
2474 put_page(page);
2475 continue;
2476 }
2477 remap = false;
2478 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2479 }
8763cb45 2480
a5430dda
JG
2481 /* ZONE_DEVICE pages are not on LRU */
2482 if (!is_zone_device_page(page)) {
2483 if (!PageLRU(page) && allow_drain) {
2484 /* Drain CPU's pagevec */
2485 lru_add_drain_all();
2486 allow_drain = false;
2487 }
8763cb45 2488
a5430dda
JG
2489 if (isolate_lru_page(page)) {
2490 if (remap) {
2491 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2492 migrate->cpages--;
2493 restore++;
2494 } else {
2495 migrate->src[i] = 0;
2496 unlock_page(page);
2497 migrate->cpages--;
2498 put_page(page);
2499 }
2500 continue;
8c3328f1 2501 }
a5430dda
JG
2502
2503 /* Drop the reference we took in collect */
2504 put_page(page);
8763cb45
JG
2505 }
2506
2507 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2508 if (remap) {
2509 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510 migrate->cpages--;
2511 restore++;
8763cb45 2512
a5430dda
JG
2513 if (!is_zone_device_page(page)) {
2514 get_page(page);
2515 putback_lru_page(page);
2516 }
8c3328f1
JG
2517 } else {
2518 migrate->src[i] = 0;
2519 unlock_page(page);
2520 migrate->cpages--;
2521
a5430dda
JG
2522 if (!is_zone_device_page(page))
2523 putback_lru_page(page);
2524 else
2525 put_page(page);
8c3328f1 2526 }
8763cb45
JG
2527 }
2528 }
8c3328f1
JG
2529
2530 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2532
2533 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2534 continue;
2535
2536 remove_migration_pte(page, migrate->vma, addr, page);
2537
2538 migrate->src[i] = 0;
2539 unlock_page(page);
2540 put_page(page);
2541 restore--;
2542 }
8763cb45
JG
2543}
2544
2545/*
2546 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547 * @migrate: migrate struct containing all migration information
2548 *
2549 * Replace page mapping (CPU page table pte) with a special migration pte entry
2550 * and check again if it has been pinned. Pinned pages are restored because we
2551 * cannot migrate them.
2552 *
2553 * This is the last step before we call the device driver callback to allocate
2554 * destination memory and copy contents of original page over to new page.
2555 */
2556static void migrate_vma_unmap(struct migrate_vma *migrate)
2557{
2558 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559 const unsigned long npages = migrate->npages;
2560 const unsigned long start = migrate->start;
2561 unsigned long addr, i, restore = 0;
2562
2563 for (i = 0; i < npages; i++) {
2564 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 continue;
2568
8c3328f1
JG
2569 if (page_mapped(page)) {
2570 try_to_unmap(page, flags);
2571 if (page_mapped(page))
2572 goto restore;
8763cb45 2573 }
8c3328f1
JG
2574
2575 if (migrate_vma_check_page(page))
2576 continue;
2577
2578restore:
2579 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2580 migrate->cpages--;
2581 restore++;
8763cb45
JG
2582 }
2583
2584 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2586
2587 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2588 continue;
2589
2590 remove_migration_ptes(page, page, false);
2591
2592 migrate->src[i] = 0;
2593 unlock_page(page);
2594 restore--;
2595
a5430dda
JG
2596 if (is_zone_device_page(page))
2597 put_page(page);
2598 else
2599 putback_lru_page(page);
8763cb45
JG
2600 }
2601}
2602
8315ada7
JG
2603static void migrate_vma_insert_page(struct migrate_vma *migrate,
2604 unsigned long addr,
2605 struct page *page,
2606 unsigned long *src,
2607 unsigned long *dst)
2608{
2609 struct vm_area_struct *vma = migrate->vma;
2610 struct mm_struct *mm = vma->vm_mm;
2611 struct mem_cgroup *memcg;
2612 bool flush = false;
2613 spinlock_t *ptl;
2614 pte_t entry;
2615 pgd_t *pgdp;
2616 p4d_t *p4dp;
2617 pud_t *pudp;
2618 pmd_t *pmdp;
2619 pte_t *ptep;
2620
2621 /* Only allow populating anonymous memory */
2622 if (!vma_is_anonymous(vma))
2623 goto abort;
2624
2625 pgdp = pgd_offset(mm, addr);
2626 p4dp = p4d_alloc(mm, pgdp, addr);
2627 if (!p4dp)
2628 goto abort;
2629 pudp = pud_alloc(mm, p4dp, addr);
2630 if (!pudp)
2631 goto abort;
2632 pmdp = pmd_alloc(mm, pudp, addr);
2633 if (!pmdp)
2634 goto abort;
2635
2636 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2637 goto abort;
2638
2639 /*
2640 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2641 * pte_offset_map() on pmds where a huge pmd might be created
2642 * from a different thread.
2643 *
2644 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2645 * parallel threads are excluded by other means.
2646 *
2647 * Here we only have down_read(mmap_sem).
2648 */
2649 if (pte_alloc(mm, pmdp, addr))
2650 goto abort;
2651
2652 /* See the comment in pte_alloc_one_map() */
2653 if (unlikely(pmd_trans_unstable(pmdp)))
2654 goto abort;
2655
2656 if (unlikely(anon_vma_prepare(vma)))
2657 goto abort;
2658 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2659 goto abort;
2660
2661 /*
2662 * The memory barrier inside __SetPageUptodate makes sure that
2663 * preceding stores to the page contents become visible before
2664 * the set_pte_at() write.
2665 */
2666 __SetPageUptodate(page);
2667
df6ad698
JG
2668 if (is_zone_device_page(page)) {
2669 if (is_device_private_page(page)) {
2670 swp_entry_t swp_entry;
2671
2672 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2673 entry = swp_entry_to_pte(swp_entry);
2674 } else if (is_device_public_page(page)) {
2675 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2676 if (vma->vm_flags & VM_WRITE)
2677 entry = pte_mkwrite(pte_mkdirty(entry));
2678 entry = pte_mkdevmap(entry);
2679 }
8315ada7
JG
2680 } else {
2681 entry = mk_pte(page, vma->vm_page_prot);
2682 if (vma->vm_flags & VM_WRITE)
2683 entry = pte_mkwrite(pte_mkdirty(entry));
2684 }
2685
2686 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2687
2688 if (pte_present(*ptep)) {
2689 unsigned long pfn = pte_pfn(*ptep);
2690
2691 if (!is_zero_pfn(pfn)) {
2692 pte_unmap_unlock(ptep, ptl);
2693 mem_cgroup_cancel_charge(page, memcg, false);
2694 goto abort;
2695 }
2696 flush = true;
2697 } else if (!pte_none(*ptep)) {
2698 pte_unmap_unlock(ptep, ptl);
2699 mem_cgroup_cancel_charge(page, memcg, false);
2700 goto abort;
2701 }
2702
2703 /*
2704 * Check for usefaultfd but do not deliver the fault. Instead,
2705 * just back off.
2706 */
2707 if (userfaultfd_missing(vma)) {
2708 pte_unmap_unlock(ptep, ptl);
2709 mem_cgroup_cancel_charge(page, memcg, false);
2710 goto abort;
2711 }
2712
2713 inc_mm_counter(mm, MM_ANONPAGES);
2714 page_add_new_anon_rmap(page, vma, addr, false);
2715 mem_cgroup_commit_charge(page, memcg, false, false);
2716 if (!is_zone_device_page(page))
2717 lru_cache_add_active_or_unevictable(page, vma);
2718 get_page(page);
2719
2720 if (flush) {
2721 flush_cache_page(vma, addr, pte_pfn(*ptep));
2722 ptep_clear_flush_notify(vma, addr, ptep);
2723 set_pte_at_notify(mm, addr, ptep, entry);
2724 update_mmu_cache(vma, addr, ptep);
2725 } else {
2726 /* No need to invalidate - it was non-present before */
2727 set_pte_at(mm, addr, ptep, entry);
2728 update_mmu_cache(vma, addr, ptep);
2729 }
2730
2731 pte_unmap_unlock(ptep, ptl);
2732 *src = MIGRATE_PFN_MIGRATE;
2733 return;
2734
2735abort:
2736 *src &= ~MIGRATE_PFN_MIGRATE;
2737}
2738
8763cb45
JG
2739/*
2740 * migrate_vma_pages() - migrate meta-data from src page to dst page
2741 * @migrate: migrate struct containing all migration information
2742 *
2743 * This migrates struct page meta-data from source struct page to destination
2744 * struct page. This effectively finishes the migration from source page to the
2745 * destination page.
2746 */
2747static void migrate_vma_pages(struct migrate_vma *migrate)
2748{
2749 const unsigned long npages = migrate->npages;
2750 const unsigned long start = migrate->start;
8315ada7
JG
2751 struct vm_area_struct *vma = migrate->vma;
2752 struct mm_struct *mm = vma->vm_mm;
2753 unsigned long addr, i, mmu_start;
2754 bool notified = false;
8763cb45
JG
2755
2756 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2757 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2758 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2759 struct address_space *mapping;
2760 int r;
2761
8315ada7
JG
2762 if (!newpage) {
2763 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2764 continue;
8315ada7
JG
2765 }
2766
2767 if (!page) {
2768 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2769 continue;
2770 }
2771 if (!notified) {
2772 mmu_start = addr;
2773 notified = true;
2774 mmu_notifier_invalidate_range_start(mm,
2775 mmu_start,
2776 migrate->end);
2777 }
2778 migrate_vma_insert_page(migrate, addr, newpage,
2779 &migrate->src[i],
2780 &migrate->dst[i]);
8763cb45 2781 continue;
8315ada7 2782 }
8763cb45
JG
2783
2784 mapping = page_mapping(page);
2785
a5430dda
JG
2786 if (is_zone_device_page(newpage)) {
2787 if (is_device_private_page(newpage)) {
2788 /*
2789 * For now only support private anonymous when
2790 * migrating to un-addressable device memory.
2791 */
2792 if (mapping) {
2793 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2794 continue;
2795 }
df6ad698 2796 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2797 /*
2798 * Other types of ZONE_DEVICE page are not
2799 * supported.
2800 */
2801 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802 continue;
2803 }
2804 }
2805
8763cb45
JG
2806 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2807 if (r != MIGRATEPAGE_SUCCESS)
2808 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2809 }
8315ada7 2810
4645b9fe
JG
2811 /*
2812 * No need to double call mmu_notifier->invalidate_range() callback as
2813 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2814 * did already call it.
2815 */
8315ada7 2816 if (notified)
4645b9fe
JG
2817 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2818 migrate->end);
8763cb45
JG
2819}
2820
2821/*
2822 * migrate_vma_finalize() - restore CPU page table entry
2823 * @migrate: migrate struct containing all migration information
2824 *
2825 * This replaces the special migration pte entry with either a mapping to the
2826 * new page if migration was successful for that page, or to the original page
2827 * otherwise.
2828 *
2829 * This also unlocks the pages and puts them back on the lru, or drops the extra
2830 * refcount, for device pages.
2831 */
2832static void migrate_vma_finalize(struct migrate_vma *migrate)
2833{
2834 const unsigned long npages = migrate->npages;
2835 unsigned long i;
2836
2837 for (i = 0; i < npages; i++) {
2838 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2839 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2840
8315ada7
JG
2841 if (!page) {
2842 if (newpage) {
2843 unlock_page(newpage);
2844 put_page(newpage);
2845 }
8763cb45 2846 continue;
8315ada7
JG
2847 }
2848
8763cb45
JG
2849 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2850 if (newpage) {
2851 unlock_page(newpage);
2852 put_page(newpage);
2853 }
2854 newpage = page;
2855 }
2856
2857 remove_migration_ptes(page, newpage, false);
2858 unlock_page(page);
2859 migrate->cpages--;
2860
a5430dda
JG
2861 if (is_zone_device_page(page))
2862 put_page(page);
2863 else
2864 putback_lru_page(page);
8763cb45
JG
2865
2866 if (newpage != page) {
2867 unlock_page(newpage);
a5430dda
JG
2868 if (is_zone_device_page(newpage))
2869 put_page(newpage);
2870 else
2871 putback_lru_page(newpage);
8763cb45
JG
2872 }
2873 }
2874}
2875
2876/*
2877 * migrate_vma() - migrate a range of memory inside vma
2878 *
2879 * @ops: migration callback for allocating destination memory and copying
2880 * @vma: virtual memory area containing the range to be migrated
2881 * @start: start address of the range to migrate (inclusive)
2882 * @end: end address of the range to migrate (exclusive)
2883 * @src: array of hmm_pfn_t containing source pfns
2884 * @dst: array of hmm_pfn_t containing destination pfns
2885 * @private: pointer passed back to each of the callback
2886 * Returns: 0 on success, error code otherwise
2887 *
2888 * This function tries to migrate a range of memory virtual address range, using
2889 * callbacks to allocate and copy memory from source to destination. First it
2890 * collects all the pages backing each virtual address in the range, saving this
2891 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2892 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2893 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2894 * in the corresponding src array entry. It then restores any pages that are
2895 * pinned, by remapping and unlocking those pages.
2896 *
2897 * At this point it calls the alloc_and_copy() callback. For documentation on
2898 * what is expected from that callback, see struct migrate_vma_ops comments in
2899 * include/linux/migrate.h
2900 *
2901 * After the alloc_and_copy() callback, this function goes over each entry in
2902 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2903 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2904 * then the function tries to migrate struct page information from the source
2905 * struct page to the destination struct page. If it fails to migrate the struct
2906 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2907 * array.
2908 *
2909 * At this point all successfully migrated pages have an entry in the src
2910 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2911 * array entry with MIGRATE_PFN_VALID flag set.
2912 *
2913 * It then calls the finalize_and_map() callback. See comments for "struct
2914 * migrate_vma_ops", in include/linux/migrate.h for details about
2915 * finalize_and_map() behavior.
2916 *
2917 * After the finalize_and_map() callback, for successfully migrated pages, this
2918 * function updates the CPU page table to point to new pages, otherwise it
2919 * restores the CPU page table to point to the original source pages.
2920 *
2921 * Function returns 0 after the above steps, even if no pages were migrated
2922 * (The function only returns an error if any of the arguments are invalid.)
2923 *
2924 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2925 * unsigned long entries.
2926 */
2927int migrate_vma(const struct migrate_vma_ops *ops,
2928 struct vm_area_struct *vma,
2929 unsigned long start,
2930 unsigned long end,
2931 unsigned long *src,
2932 unsigned long *dst,
2933 void *private)
2934{
2935 struct migrate_vma migrate;
2936
2937 /* Sanity check the arguments */
2938 start &= PAGE_MASK;
2939 end &= PAGE_MASK;
2940 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2941 return -EINVAL;
2942 if (start < vma->vm_start || start >= vma->vm_end)
2943 return -EINVAL;
2944 if (end <= vma->vm_start || end > vma->vm_end)
2945 return -EINVAL;
2946 if (!ops || !src || !dst || start >= end)
2947 return -EINVAL;
2948
2949 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2950 migrate.src = src;
2951 migrate.dst = dst;
2952 migrate.start = start;
2953 migrate.npages = 0;
2954 migrate.cpages = 0;
2955 migrate.end = end;
2956 migrate.vma = vma;
2957
2958 /* Collect, and try to unmap source pages */
2959 migrate_vma_collect(&migrate);
2960 if (!migrate.cpages)
2961 return 0;
2962
2963 /* Lock and isolate page */
2964 migrate_vma_prepare(&migrate);
2965 if (!migrate.cpages)
2966 return 0;
2967
2968 /* Unmap pages */
2969 migrate_vma_unmap(&migrate);
2970 if (!migrate.cpages)
2971 return 0;
2972
2973 /*
2974 * At this point pages are locked and unmapped, and thus they have
2975 * stable content and can safely be copied to destination memory that
2976 * is allocated by the callback.
2977 *
2978 * Note that migration can fail in migrate_vma_struct_page() for each
2979 * individual page.
2980 */
2981 ops->alloc_and_copy(vma, src, dst, start, end, private);
2982
2983 /* This does the real migration of struct page */
2984 migrate_vma_pages(&migrate);
2985
2986 ops->finalize_and_map(vma, src, dst, start, end, private);
2987
2988 /* Unlock and remap pages */
2989 migrate_vma_finalize(&migrate);
2990
2991 return 0;
2992}
2993EXPORT_SYMBOL(migrate_vma);
6b368cd4 2994#endif /* defined(MIGRATE_VMA_HELPER) */