mm/migrate.c: fix potential indeterminate pte entry in migrate_vma_insert_page()
[linux-2.6-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
9e5bcd61 60int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
61{
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 79 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
109 unlock_page(page);
110
9e5bcd61 111 return 0;
bda807d4
MK
112
113out_no_isolated:
114 unlock_page(page);
115out_putpage:
116 put_page(page);
117out:
9e5bcd61 118 return -EBUSY;
bda807d4
MK
119}
120
606a6f71 121static void putback_movable_page(struct page *page)
bda807d4
MK
122{
123 struct address_space *mapping;
124
bda807d4
MK
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
128}
129
5733c7d1
RA
130/*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
59c82b70
JK
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
5733c7d1
RA
137 */
138void putback_movable_pages(struct list_head *l)
139{
140 struct page *page;
141 struct page *page2;
142
b20a3503 143 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
e24f0b8f 148 list_del(&page->lru);
bda807d4
MK
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
b1123ea6 154 if (unlikely(__PageMovable(page))) {
bda807d4
MK
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 __ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
e8db67eb 164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 165 page_is_file_lru(page), -thp_nr_pages(page));
fc280fe8 166 putback_lru_page(page);
bda807d4 167 }
b20a3503 168 }
b20a3503
CL
169}
170
0697212a
CL
171/*
172 * Restore a potential migration pte to a working pte entry
173 */
e4b82222 174static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 175 unsigned long addr, void *old)
0697212a 176{
3fe87967
KS
177 struct page_vma_mapped_walk pvmw = {
178 .page = old,
179 .vma = vma,
180 .address = addr,
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
182 };
183 struct page *new;
184 pte_t pte;
0697212a 185 swp_entry_t entry;
0697212a 186
3fe87967
KS
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
189 if (PageKsm(page))
190 new = page;
191 else
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
0697212a 194
616b8371
ZY
195#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
197 if (!pvmw.pte) {
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
200 continue;
201 }
202#endif
203
3fe87967
KS
204 get_page(new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
0697212a 208
3fe87967
KS
209 /*
210 * Recheck VMA as permissions can change since migration started
211 */
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
d3cb8bf6 217
6128763f
RC
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
3d321bf8
RC
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
6128763f
RC
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
d2b2c6dd 225 }
a5430dda 226
3ef8fd7f 227#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
228 if (PageHuge(new)) {
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
232 if (PageAnon(new))
233 hugepage_add_anon_rmap(new, vma, pvmw.address);
234 else
235 page_dup_rmap(new, true);
383321ab
AK
236 } else
237#endif
238 {
239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 240
383321ab
AK
241 if (PageAnon(new))
242 page_add_anon_rmap(new, vma, pvmw.address, false);
243 else
244 page_add_file_rmap(new, false);
245 }
3fe87967
KS
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 mlock_vma_page(new);
248
e125fe40
KS
249 if (PageTransHuge(page) && PageMlocked(page))
250 clear_page_mlock(page);
251
3fe87967
KS
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 }
51afb12b 255
e4b82222 256 return true;
0697212a
CL
257}
258
04e62a29
CL
259/*
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
262 */
e388466d 263void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 264{
051ac83a
JK
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
267 .arg = old,
268 };
269
e388466d
KS
270 if (locked)
271 rmap_walk_locked(new, &rwc);
272 else
273 rmap_walk(new, &rwc);
04e62a29
CL
274}
275
0697212a
CL
276/*
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
0697212a 280 */
e66f17ff 281void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 282 spinlock_t *ptl)
0697212a 283{
30dad309 284 pte_t pte;
0697212a
CL
285 swp_entry_t entry;
286 struct page *page;
287
30dad309 288 spin_lock(ptl);
0697212a
CL
289 pte = *ptep;
290 if (!is_swap_pte(pte))
291 goto out;
292
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
295 goto out;
296
297 page = migration_entry_to_page(entry);
298
e286781d 299 /*
89eb946a 300 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
301 * is zero; but we must not call put_and_wait_on_page_locked() without
302 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
303 */
304 if (!get_page_unless_zero(page))
305 goto out;
0697212a 306 pte_unmap_unlock(ptep, ptl);
48054625 307 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
0697212a
CL
308 return;
309out:
310 pte_unmap_unlock(ptep, ptl);
311}
312
30dad309
NH
313void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 unsigned long address)
315{
316 spinlock_t *ptl = pte_lockptr(mm, pmd);
317 pte_t *ptep = pte_offset_map(pmd, address);
318 __migration_entry_wait(mm, ptep, ptl);
319}
320
cb900f41
KS
321void migration_entry_wait_huge(struct vm_area_struct *vma,
322 struct mm_struct *mm, pte_t *pte)
30dad309 323{
cb900f41 324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
325 __migration_entry_wait(mm, pte, ptl);
326}
327
616b8371
ZY
328#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
330{
331 spinlock_t *ptl;
332 struct page *page;
333
334 ptl = pmd_lock(mm, pmd);
335 if (!is_pmd_migration_entry(*pmd))
336 goto unlock;
337 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338 if (!get_page_unless_zero(page))
339 goto unlock;
340 spin_unlock(ptl);
48054625 341 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
616b8371
ZY
342 return;
343unlock:
344 spin_unlock(ptl);
345}
346#endif
347
f900482d 348static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
349{
350 int expected_count = 1;
351
352 /*
f1f4f3ab 353 * Device private pages have an extra refcount as they are
0b3901b3
JK
354 * ZONE_DEVICE pages.
355 */
356 expected_count += is_device_private_page(page);
f900482d 357 if (mapping)
6c357848 358 expected_count += thp_nr_pages(page) + page_has_private(page);
0b3901b3
JK
359
360 return expected_count;
361}
362
b20a3503 363/*
c3fcf8a5 364 * Replace the page in the mapping.
5b5c7120
CL
365 *
366 * The number of remaining references must be:
367 * 1 for anonymous pages without a mapping
368 * 2 for pages with a mapping
266cf658 369 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 370 */
36bc08cc 371int migrate_page_move_mapping(struct address_space *mapping,
37109694 372 struct page *newpage, struct page *page, int extra_count)
b20a3503 373{
89eb946a 374 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
375 struct zone *oldzone, *newzone;
376 int dirty;
f900482d 377 int expected_count = expected_page_refs(mapping, page) + extra_count;
5c447d27 378 int nr = thp_nr_pages(page);
8763cb45 379
6c5240ae 380 if (!mapping) {
0e8c7d0f 381 /* Anonymous page without mapping */
8e321fef 382 if (page_count(page) != expected_count)
6c5240ae 383 return -EAGAIN;
cf4b769a
HD
384
385 /* No turning back from here */
cf4b769a
HD
386 newpage->index = page->index;
387 newpage->mapping = page->mapping;
388 if (PageSwapBacked(page))
fa9949da 389 __SetPageSwapBacked(newpage);
cf4b769a 390
78bd5209 391 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
392 }
393
42cb14b1
HD
394 oldzone = page_zone(page);
395 newzone = page_zone(newpage);
396
89eb946a 397 xas_lock_irq(&xas);
89eb946a
MW
398 if (page_count(page) != expected_count || xas_load(&xas) != page) {
399 xas_unlock_irq(&xas);
e23ca00b 400 return -EAGAIN;
b20a3503
CL
401 }
402
fe896d18 403 if (!page_ref_freeze(page, expected_count)) {
89eb946a 404 xas_unlock_irq(&xas);
e286781d
NP
405 return -EAGAIN;
406 }
407
b20a3503 408 /*
cf4b769a
HD
409 * Now we know that no one else is looking at the page:
410 * no turning back from here.
b20a3503 411 */
cf4b769a
HD
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
5c447d27 414 page_ref_add(newpage, nr); /* add cache reference */
6326fec1
NP
415 if (PageSwapBacked(page)) {
416 __SetPageSwapBacked(newpage);
417 if (PageSwapCache(page)) {
418 SetPageSwapCache(newpage);
419 set_page_private(newpage, page_private(page));
420 }
421 } else {
422 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
423 }
424
42cb14b1
HD
425 /* Move dirty while page refs frozen and newpage not yet exposed */
426 dirty = PageDirty(page);
427 if (dirty) {
428 ClearPageDirty(page);
429 SetPageDirty(newpage);
430 }
431
89eb946a 432 xas_store(&xas, newpage);
e71769ae
NH
433 if (PageTransHuge(page)) {
434 int i;
e71769ae 435
5c447d27 436 for (i = 1; i < nr; i++) {
89eb946a 437 xas_next(&xas);
4101196b 438 xas_store(&xas, newpage);
e71769ae 439 }
e71769ae 440 }
7cf9c2c7
NP
441
442 /*
937a94c9
JG
443 * Drop cache reference from old page by unfreezing
444 * to one less reference.
7cf9c2c7
NP
445 * We know this isn't the last reference.
446 */
5c447d27 447 page_ref_unfreeze(page, expected_count - nr);
7cf9c2c7 448
89eb946a 449 xas_unlock(&xas);
42cb14b1
HD
450 /* Leave irq disabled to prevent preemption while updating stats */
451
0e8c7d0f
CL
452 /*
453 * If moved to a different zone then also account
454 * the page for that zone. Other VM counters will be
455 * taken care of when we establish references to the
456 * new page and drop references to the old page.
457 *
458 * Note that anonymous pages are accounted for
4b9d0fab 459 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
460 * are mapped to swap space.
461 */
42cb14b1 462 if (newzone != oldzone) {
0d1c2072
JW
463 struct lruvec *old_lruvec, *new_lruvec;
464 struct mem_cgroup *memcg;
465
466 memcg = page_memcg(page);
467 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
469
5c447d27
SB
470 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
42cb14b1 472 if (PageSwapBacked(page) && !PageSwapCache(page)) {
5c447d27
SB
473 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
42cb14b1 475 }
b6038942
SB
476#ifdef CONFIG_SWAP
477 if (PageSwapCache(page)) {
478 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
480 }
481#endif
f56753ac 482 if (dirty && mapping_can_writeback(mapping)) {
5c447d27
SB
483 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
42cb14b1 487 }
4b02108a 488 }
42cb14b1 489 local_irq_enable();
b20a3503 490
78bd5209 491 return MIGRATEPAGE_SUCCESS;
b20a3503 492}
1118dce7 493EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 494
290408d4
NH
495/*
496 * The expected number of remaining references is the same as that
497 * of migrate_page_move_mapping().
498 */
499int migrate_huge_page_move_mapping(struct address_space *mapping,
500 struct page *newpage, struct page *page)
501{
89eb946a 502 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 503 int expected_count;
290408d4 504
89eb946a 505 xas_lock_irq(&xas);
290408d4 506 expected_count = 2 + page_has_private(page);
89eb946a
MW
507 if (page_count(page) != expected_count || xas_load(&xas) != page) {
508 xas_unlock_irq(&xas);
290408d4
NH
509 return -EAGAIN;
510 }
511
fe896d18 512 if (!page_ref_freeze(page, expected_count)) {
89eb946a 513 xas_unlock_irq(&xas);
290408d4
NH
514 return -EAGAIN;
515 }
516
cf4b769a
HD
517 newpage->index = page->index;
518 newpage->mapping = page->mapping;
6a93ca8f 519
290408d4
NH
520 get_page(newpage);
521
89eb946a 522 xas_store(&xas, newpage);
290408d4 523
fe896d18 524 page_ref_unfreeze(page, expected_count - 1);
290408d4 525
89eb946a 526 xas_unlock_irq(&xas);
6a93ca8f 527
78bd5209 528 return MIGRATEPAGE_SUCCESS;
290408d4
NH
529}
530
30b0a105
DH
531/*
532 * Gigantic pages are so large that we do not guarantee that page++ pointer
533 * arithmetic will work across the entire page. We need something more
534 * specialized.
535 */
536static void __copy_gigantic_page(struct page *dst, struct page *src,
537 int nr_pages)
538{
539 int i;
540 struct page *dst_base = dst;
541 struct page *src_base = src;
542
543 for (i = 0; i < nr_pages; ) {
544 cond_resched();
545 copy_highpage(dst, src);
546
547 i++;
548 dst = mem_map_next(dst, dst_base, i);
549 src = mem_map_next(src, src_base, i);
550 }
551}
552
553static void copy_huge_page(struct page *dst, struct page *src)
554{
555 int i;
556 int nr_pages;
557
558 if (PageHuge(src)) {
559 /* hugetlbfs page */
560 struct hstate *h = page_hstate(src);
561 nr_pages = pages_per_huge_page(h);
562
563 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564 __copy_gigantic_page(dst, src, nr_pages);
565 return;
566 }
567 } else {
568 /* thp page */
569 BUG_ON(!PageTransHuge(src));
6c357848 570 nr_pages = thp_nr_pages(src);
30b0a105
DH
571 }
572
573 for (i = 0; i < nr_pages; i++) {
574 cond_resched();
575 copy_highpage(dst + i, src + i);
576 }
577}
578
b20a3503
CL
579/*
580 * Copy the page to its new location
581 */
2916ecc0 582void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 583{
7851a45c
RR
584 int cpupid;
585
b20a3503
CL
586 if (PageError(page))
587 SetPageError(newpage);
588 if (PageReferenced(page))
589 SetPageReferenced(newpage);
590 if (PageUptodate(page))
591 SetPageUptodate(newpage);
894bc310 592 if (TestClearPageActive(page)) {
309381fe 593 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 594 SetPageActive(newpage);
418b27ef
LS
595 } else if (TestClearPageUnevictable(page))
596 SetPageUnevictable(newpage);
1899ad18
JW
597 if (PageWorkingset(page))
598 SetPageWorkingset(newpage);
b20a3503
CL
599 if (PageChecked(page))
600 SetPageChecked(newpage);
601 if (PageMappedToDisk(page))
602 SetPageMappedToDisk(newpage);
603
42cb14b1
HD
604 /* Move dirty on pages not done by migrate_page_move_mapping() */
605 if (PageDirty(page))
606 SetPageDirty(newpage);
b20a3503 607
33c3fc71
VD
608 if (page_is_young(page))
609 set_page_young(newpage);
610 if (page_is_idle(page))
611 set_page_idle(newpage);
612
7851a45c
RR
613 /*
614 * Copy NUMA information to the new page, to prevent over-eager
615 * future migrations of this same page.
616 */
617 cpupid = page_cpupid_xchg_last(page, -1);
618 page_cpupid_xchg_last(newpage, cpupid);
619
e9995ef9 620 ksm_migrate_page(newpage, page);
c8d6553b
HD
621 /*
622 * Please do not reorder this without considering how mm/ksm.c's
623 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
624 */
b3b3a99c
NH
625 if (PageSwapCache(page))
626 ClearPageSwapCache(page);
b20a3503
CL
627 ClearPagePrivate(page);
628 set_page_private(page, 0);
b20a3503
CL
629
630 /*
631 * If any waiters have accumulated on the new page then
632 * wake them up.
633 */
634 if (PageWriteback(newpage))
635 end_page_writeback(newpage);
d435edca 636
6aeff241
YS
637 /*
638 * PG_readahead shares the same bit with PG_reclaim. The above
639 * end_page_writeback() may clear PG_readahead mistakenly, so set the
640 * bit after that.
641 */
642 if (PageReadahead(page))
643 SetPageReadahead(newpage);
644
d435edca 645 copy_page_owner(page, newpage);
74485cf2 646
a333e3e7
HD
647 if (!PageHuge(page))
648 mem_cgroup_migrate(page, newpage);
b20a3503 649}
2916ecc0
JG
650EXPORT_SYMBOL(migrate_page_states);
651
652void migrate_page_copy(struct page *newpage, struct page *page)
653{
654 if (PageHuge(page) || PageTransHuge(page))
655 copy_huge_page(newpage, page);
656 else
657 copy_highpage(newpage, page);
658
659 migrate_page_states(newpage, page);
660}
1118dce7 661EXPORT_SYMBOL(migrate_page_copy);
b20a3503 662
1d8b85cc
CL
663/************************************************************
664 * Migration functions
665 ***********************************************************/
666
b20a3503 667/*
bda807d4 668 * Common logic to directly migrate a single LRU page suitable for
266cf658 669 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
670 *
671 * Pages are locked upon entry and exit.
672 */
2d1db3b1 673int migrate_page(struct address_space *mapping,
a6bc32b8
MG
674 struct page *newpage, struct page *page,
675 enum migrate_mode mode)
b20a3503
CL
676{
677 int rc;
678
679 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
680
37109694 681 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 682
78bd5209 683 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
684 return rc;
685
2916ecc0
JG
686 if (mode != MIGRATE_SYNC_NO_COPY)
687 migrate_page_copy(newpage, page);
688 else
689 migrate_page_states(newpage, page);
78bd5209 690 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
691}
692EXPORT_SYMBOL(migrate_page);
693
9361401e 694#ifdef CONFIG_BLOCK
84ade7c1
JK
695/* Returns true if all buffers are successfully locked */
696static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697 enum migrate_mode mode)
698{
699 struct buffer_head *bh = head;
700
701 /* Simple case, sync compaction */
702 if (mode != MIGRATE_ASYNC) {
703 do {
84ade7c1
JK
704 lock_buffer(bh);
705 bh = bh->b_this_page;
706
707 } while (bh != head);
708
709 return true;
710 }
711
712 /* async case, we cannot block on lock_buffer so use trylock_buffer */
713 do {
84ade7c1
JK
714 if (!trylock_buffer(bh)) {
715 /*
716 * We failed to lock the buffer and cannot stall in
717 * async migration. Release the taken locks
718 */
719 struct buffer_head *failed_bh = bh;
84ade7c1
JK
720 bh = head;
721 while (bh != failed_bh) {
722 unlock_buffer(bh);
84ade7c1
JK
723 bh = bh->b_this_page;
724 }
725 return false;
726 }
727
728 bh = bh->b_this_page;
729 } while (bh != head);
730 return true;
731}
732
89cb0888
JK
733static int __buffer_migrate_page(struct address_space *mapping,
734 struct page *newpage, struct page *page, enum migrate_mode mode,
735 bool check_refs)
1d8b85cc 736{
1d8b85cc
CL
737 struct buffer_head *bh, *head;
738 int rc;
cc4f11e6 739 int expected_count;
1d8b85cc 740
1d8b85cc 741 if (!page_has_buffers(page))
a6bc32b8 742 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 743
cc4f11e6 744 /* Check whether page does not have extra refs before we do more work */
f900482d 745 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
746 if (page_count(page) != expected_count)
747 return -EAGAIN;
1d8b85cc 748
cc4f11e6
JK
749 head = page_buffers(page);
750 if (!buffer_migrate_lock_buffers(head, mode))
751 return -EAGAIN;
1d8b85cc 752
89cb0888
JK
753 if (check_refs) {
754 bool busy;
755 bool invalidated = false;
756
757recheck_buffers:
758 busy = false;
759 spin_lock(&mapping->private_lock);
760 bh = head;
761 do {
762 if (atomic_read(&bh->b_count)) {
763 busy = true;
764 break;
765 }
766 bh = bh->b_this_page;
767 } while (bh != head);
89cb0888
JK
768 if (busy) {
769 if (invalidated) {
770 rc = -EAGAIN;
771 goto unlock_buffers;
772 }
ebdf4de5 773 spin_unlock(&mapping->private_lock);
89cb0888
JK
774 invalidate_bh_lrus();
775 invalidated = true;
776 goto recheck_buffers;
777 }
778 }
779
37109694 780 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 781 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 782 goto unlock_buffers;
1d8b85cc 783
cd0f3715 784 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
785
786 bh = head;
787 do {
788 set_bh_page(bh, newpage, bh_offset(bh));
789 bh = bh->b_this_page;
790
791 } while (bh != head);
792
2916ecc0
JG
793 if (mode != MIGRATE_SYNC_NO_COPY)
794 migrate_page_copy(newpage, page);
795 else
796 migrate_page_states(newpage, page);
1d8b85cc 797
cc4f11e6
JK
798 rc = MIGRATEPAGE_SUCCESS;
799unlock_buffers:
ebdf4de5
JK
800 if (check_refs)
801 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
802 bh = head;
803 do {
804 unlock_buffer(bh);
1d8b85cc
CL
805 bh = bh->b_this_page;
806
807 } while (bh != head);
808
cc4f11e6 809 return rc;
1d8b85cc 810}
89cb0888
JK
811
812/*
813 * Migration function for pages with buffers. This function can only be used
814 * if the underlying filesystem guarantees that no other references to "page"
815 * exist. For example attached buffer heads are accessed only under page lock.
816 */
817int buffer_migrate_page(struct address_space *mapping,
818 struct page *newpage, struct page *page, enum migrate_mode mode)
819{
820 return __buffer_migrate_page(mapping, newpage, page, mode, false);
821}
1d8b85cc 822EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
823
824/*
825 * Same as above except that this variant is more careful and checks that there
826 * are also no buffer head references. This function is the right one for
827 * mappings where buffer heads are directly looked up and referenced (such as
828 * block device mappings).
829 */
830int buffer_migrate_page_norefs(struct address_space *mapping,
831 struct page *newpage, struct page *page, enum migrate_mode mode)
832{
833 return __buffer_migrate_page(mapping, newpage, page, mode, true);
834}
9361401e 835#endif
1d8b85cc 836
04e62a29
CL
837/*
838 * Writeback a page to clean the dirty state
839 */
840static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 841{
04e62a29
CL
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 .nr_to_write = 1,
845 .range_start = 0,
846 .range_end = LLONG_MAX,
04e62a29
CL
847 .for_reclaim = 1
848 };
849 int rc;
850
851 if (!mapping->a_ops->writepage)
852 /* No write method for the address space */
853 return -EINVAL;
854
855 if (!clear_page_dirty_for_io(page))
856 /* Someone else already triggered a write */
857 return -EAGAIN;
858
8351a6e4 859 /*
04e62a29
CL
860 * A dirty page may imply that the underlying filesystem has
861 * the page on some queue. So the page must be clean for
862 * migration. Writeout may mean we loose the lock and the
863 * page state is no longer what we checked for earlier.
864 * At this point we know that the migration attempt cannot
865 * be successful.
8351a6e4 866 */
e388466d 867 remove_migration_ptes(page, page, false);
8351a6e4 868
04e62a29 869 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 870
04e62a29
CL
871 if (rc != AOP_WRITEPAGE_ACTIVATE)
872 /* unlocked. Relock */
873 lock_page(page);
874
bda8550d 875 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
876}
877
878/*
879 * Default handling if a filesystem does not provide a migration function.
880 */
881static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 882 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 883{
b969c4ab 884 if (PageDirty(page)) {
a6bc32b8 885 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
886 switch (mode) {
887 case MIGRATE_SYNC:
888 case MIGRATE_SYNC_NO_COPY:
889 break;
890 default:
b969c4ab 891 return -EBUSY;
2916ecc0 892 }
04e62a29 893 return writeout(mapping, page);
b969c4ab 894 }
8351a6e4
CL
895
896 /*
897 * Buffers may be managed in a filesystem specific way.
898 * We must have no buffers or drop them.
899 */
266cf658 900 if (page_has_private(page) &&
8351a6e4 901 !try_to_release_page(page, GFP_KERNEL))
806031bb 902 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 903
a6bc32b8 904 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
905}
906
e24f0b8f
CL
907/*
908 * Move a page to a newly allocated page
909 * The page is locked and all ptes have been successfully removed.
910 *
911 * The new page will have replaced the old page if this function
912 * is successful.
894bc310
LS
913 *
914 * Return value:
915 * < 0 - error code
78bd5209 916 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 917 */
3fe2011f 918static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 919 enum migrate_mode mode)
e24f0b8f
CL
920{
921 struct address_space *mapping;
bda807d4
MK
922 int rc = -EAGAIN;
923 bool is_lru = !__PageMovable(page);
e24f0b8f 924
7db7671f
HD
925 VM_BUG_ON_PAGE(!PageLocked(page), page);
926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 927
e24f0b8f 928 mapping = page_mapping(page);
bda807d4
MK
929
930 if (likely(is_lru)) {
931 if (!mapping)
932 rc = migrate_page(mapping, newpage, page, mode);
933 else if (mapping->a_ops->migratepage)
934 /*
935 * Most pages have a mapping and most filesystems
936 * provide a migratepage callback. Anonymous pages
937 * are part of swap space which also has its own
938 * migratepage callback. This is the most common path
939 * for page migration.
940 */
941 rc = mapping->a_ops->migratepage(mapping, newpage,
942 page, mode);
943 else
944 rc = fallback_migrate_page(mapping, newpage,
945 page, mode);
946 } else {
e24f0b8f 947 /*
bda807d4
MK
948 * In case of non-lru page, it could be released after
949 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 950 */
bda807d4
MK
951 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 if (!PageMovable(page)) {
953 rc = MIGRATEPAGE_SUCCESS;
954 __ClearPageIsolated(page);
955 goto out;
956 }
957
958 rc = mapping->a_ops->migratepage(mapping, newpage,
959 page, mode);
960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 !PageIsolated(page));
962 }
e24f0b8f 963
5c3f9a67
HD
964 /*
965 * When successful, old pagecache page->mapping must be cleared before
966 * page is freed; but stats require that PageAnon be left as PageAnon.
967 */
968 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
969 if (__PageMovable(page)) {
970 VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972 /*
973 * We clear PG_movable under page_lock so any compactor
974 * cannot try to migrate this page.
975 */
976 __ClearPageIsolated(page);
977 }
978
979 /*
c23a0c99 980 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
981 * free_pages_prepare so don't reset it here for keeping
982 * the type to work PageAnon, for example.
983 */
984 if (!PageMappingFlags(page))
5c3f9a67 985 page->mapping = NULL;
d2b2c6dd 986
25b2995a 987 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
988 flush_dcache_page(newpage);
989
3fe2011f 990 }
bda807d4 991out:
e24f0b8f
CL
992 return rc;
993}
994
0dabec93 995static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 996 int force, enum migrate_mode mode)
e24f0b8f 997{
0dabec93 998 int rc = -EAGAIN;
2ebba6b7 999 int page_was_mapped = 0;
3f6c8272 1000 struct anon_vma *anon_vma = NULL;
bda807d4 1001 bool is_lru = !__PageMovable(page);
95a402c3 1002
529ae9aa 1003 if (!trylock_page(page)) {
a6bc32b8 1004 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1005 goto out;
3e7d3449
MG
1006
1007 /*
1008 * It's not safe for direct compaction to call lock_page.
1009 * For example, during page readahead pages are added locked
1010 * to the LRU. Later, when the IO completes the pages are
1011 * marked uptodate and unlocked. However, the queueing
1012 * could be merging multiple pages for one bio (e.g.
d4388340 1013 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1014 * second or third page, the process can end up locking
1015 * the same page twice and deadlocking. Rather than
1016 * trying to be clever about what pages can be locked,
1017 * avoid the use of lock_page for direct compaction
1018 * altogether.
1019 */
1020 if (current->flags & PF_MEMALLOC)
0dabec93 1021 goto out;
3e7d3449 1022
e24f0b8f
CL
1023 lock_page(page);
1024 }
1025
1026 if (PageWriteback(page)) {
11bc82d6 1027 /*
fed5b64a 1028 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1029 * necessary to wait for PageWriteback. In the async case,
1030 * the retry loop is too short and in the sync-light case,
1031 * the overhead of stalling is too much
11bc82d6 1032 */
2916ecc0
JG
1033 switch (mode) {
1034 case MIGRATE_SYNC:
1035 case MIGRATE_SYNC_NO_COPY:
1036 break;
1037 default:
11bc82d6 1038 rc = -EBUSY;
0a31bc97 1039 goto out_unlock;
11bc82d6
AA
1040 }
1041 if (!force)
0a31bc97 1042 goto out_unlock;
e24f0b8f
CL
1043 wait_on_page_writeback(page);
1044 }
03f15c86 1045
e24f0b8f 1046 /*
dc386d4d
KH
1047 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1049 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1050 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1051 * File Caches may use write_page() or lock_page() in migration, then,
1052 * just care Anon page here.
03f15c86
HD
1053 *
1054 * Only page_get_anon_vma() understands the subtleties of
1055 * getting a hold on an anon_vma from outside one of its mms.
1056 * But if we cannot get anon_vma, then we won't need it anyway,
1057 * because that implies that the anon page is no longer mapped
1058 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1059 */
03f15c86 1060 if (PageAnon(page) && !PageKsm(page))
746b18d4 1061 anon_vma = page_get_anon_vma(page);
62e1c553 1062
7db7671f
HD
1063 /*
1064 * Block others from accessing the new page when we get around to
1065 * establishing additional references. We are usually the only one
1066 * holding a reference to newpage at this point. We used to have a BUG
1067 * here if trylock_page(newpage) fails, but would like to allow for
1068 * cases where there might be a race with the previous use of newpage.
1069 * This is much like races on refcount of oldpage: just don't BUG().
1070 */
1071 if (unlikely(!trylock_page(newpage)))
1072 goto out_unlock;
1073
bda807d4
MK
1074 if (unlikely(!is_lru)) {
1075 rc = move_to_new_page(newpage, page, mode);
1076 goto out_unlock_both;
1077 }
1078
dc386d4d 1079 /*
62e1c553
SL
1080 * Corner case handling:
1081 * 1. When a new swap-cache page is read into, it is added to the LRU
1082 * and treated as swapcache but it has no rmap yet.
1083 * Calling try_to_unmap() against a page->mapping==NULL page will
1084 * trigger a BUG. So handle it here.
d12b8951 1085 * 2. An orphaned page (see truncate_cleanup_page) might have
62e1c553
SL
1086 * fs-private metadata. The page can be picked up due to memory
1087 * offlining. Everywhere else except page reclaim, the page is
1088 * invisible to the vm, so the page can not be migrated. So try to
1089 * free the metadata, so the page can be freed.
e24f0b8f 1090 */
62e1c553 1091 if (!page->mapping) {
309381fe 1092 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1093 if (page_has_private(page)) {
62e1c553 1094 try_to_free_buffers(page);
7db7671f 1095 goto out_unlock_both;
62e1c553 1096 }
7db7671f
HD
1097 } else if (page_mapped(page)) {
1098 /* Establish migration ptes */
03f15c86
HD
1099 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1100 page);
013339df 1101 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
2ebba6b7
HD
1102 page_was_mapped = 1;
1103 }
dc386d4d 1104
e6a1530d 1105 if (!page_mapped(page))
5c3f9a67 1106 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1107
5c3f9a67
HD
1108 if (page_was_mapped)
1109 remove_migration_ptes(page,
e388466d 1110 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1111
7db7671f
HD
1112out_unlock_both:
1113 unlock_page(newpage);
1114out_unlock:
3f6c8272 1115 /* Drop an anon_vma reference if we took one */
76545066 1116 if (anon_vma)
9e60109f 1117 put_anon_vma(anon_vma);
e24f0b8f 1118 unlock_page(page);
0dabec93 1119out:
c6c919eb
MK
1120 /*
1121 * If migration is successful, decrease refcount of the newpage
1122 * which will not free the page because new page owner increased
1123 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1124 * list in here. Use the old state of the isolated source page to
1125 * determine if we migrated a LRU page. newpage was already unlocked
1126 * and possibly modified by its owner - don't rely on the page
1127 * state.
c6c919eb
MK
1128 */
1129 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1130 if (unlikely(!is_lru))
c6c919eb
MK
1131 put_page(newpage);
1132 else
1133 putback_lru_page(newpage);
1134 }
1135
0dabec93
MK
1136 return rc;
1137}
95a402c3 1138
0dabec93
MK
1139/*
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1142 */
6ec4476a 1143static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1144 free_page_t put_new_page,
1145 unsigned long private, struct page *page,
add05cec 1146 int force, enum migrate_mode mode,
dd4ae78a
YS
1147 enum migrate_reason reason,
1148 struct list_head *ret)
0dabec93 1149{
2def7424 1150 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1151 struct page *newpage = NULL;
0dabec93 1152
94723aaf 1153 if (!thp_migration_supported() && PageTransHuge(page))
d532e2e5 1154 return -ENOSYS;
94723aaf 1155
0dabec93
MK
1156 if (page_count(page) == 1) {
1157 /* page was freed from under us. So we are done. */
c6c919eb
MK
1158 ClearPageActive(page);
1159 ClearPageUnevictable(page);
bda807d4
MK
1160 if (unlikely(__PageMovable(page))) {
1161 lock_page(page);
1162 if (!PageMovable(page))
1163 __ClearPageIsolated(page);
1164 unlock_page(page);
1165 }
0dabec93
MK
1166 goto out;
1167 }
1168
74d4a579
YS
1169 newpage = get_new_page(page, private);
1170 if (!newpage)
1171 return -ENOMEM;
1172
9c620e2b 1173 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1174 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1175 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1176
0dabec93 1177out:
e24f0b8f 1178 if (rc != -EAGAIN) {
0dabec93
MK
1179 /*
1180 * A page that has been migrated has all references
1181 * removed and will be freed. A page that has not been
c23a0c99 1182 * migrated will have kept its references and be restored.
0dabec93
MK
1183 */
1184 list_del(&page->lru);
dd4ae78a 1185 }
6afcf8ef 1186
dd4ae78a
YS
1187 /*
1188 * If migration is successful, releases reference grabbed during
1189 * isolation. Otherwise, restore the page to right list unless
1190 * we want to retry.
1191 */
1192 if (rc == MIGRATEPAGE_SUCCESS) {
6afcf8ef
ML
1193 /*
1194 * Compaction can migrate also non-LRU pages which are
1195 * not accounted to NR_ISOLATED_*. They can be recognized
1196 * as __PageMovable
1197 */
1198 if (likely(!__PageMovable(page)))
e8db67eb 1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
6c357848 1200 page_is_file_lru(page), -thp_nr_pages(page));
c6c919eb 1201
79f5f8fa 1202 if (reason != MR_MEMORY_FAILURE)
d7e69488 1203 /*
79f5f8fa 1204 * We release the page in page_handle_poison.
d7e69488 1205 */
79f5f8fa 1206 put_page(page);
c6c919eb 1207 } else {
dd4ae78a
YS
1208 if (rc != -EAGAIN)
1209 list_add_tail(&page->lru, ret);
bda807d4 1210
c6c919eb
MK
1211 if (put_new_page)
1212 put_new_page(newpage, private);
1213 else
1214 put_page(newpage);
e24f0b8f 1215 }
68711a74 1216
e24f0b8f
CL
1217 return rc;
1218}
1219
290408d4
NH
1220/*
1221 * Counterpart of unmap_and_move_page() for hugepage migration.
1222 *
1223 * This function doesn't wait the completion of hugepage I/O
1224 * because there is no race between I/O and migration for hugepage.
1225 * Note that currently hugepage I/O occurs only in direct I/O
1226 * where no lock is held and PG_writeback is irrelevant,
1227 * and writeback status of all subpages are counted in the reference
1228 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229 * under direct I/O, the reference of the head page is 512 and a bit more.)
1230 * This means that when we try to migrate hugepage whose subpages are
1231 * doing direct I/O, some references remain after try_to_unmap() and
1232 * hugepage migration fails without data corruption.
1233 *
1234 * There is also no race when direct I/O is issued on the page under migration,
1235 * because then pte is replaced with migration swap entry and direct I/O code
1236 * will wait in the page fault for migration to complete.
1237 */
1238static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1239 free_page_t put_new_page, unsigned long private,
1240 struct page *hpage, int force,
dd4ae78a
YS
1241 enum migrate_mode mode, int reason,
1242 struct list_head *ret)
290408d4 1243{
2def7424 1244 int rc = -EAGAIN;
2ebba6b7 1245 int page_was_mapped = 0;
32665f2b 1246 struct page *new_hpage;
290408d4 1247 struct anon_vma *anon_vma = NULL;
c0d0381a 1248 struct address_space *mapping = NULL;
290408d4 1249
83467efb 1250 /*
7ed2c31d 1251 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1252 * This check is necessary because some callers of hugepage migration
1253 * like soft offline and memory hotremove don't walk through page
1254 * tables or check whether the hugepage is pmd-based or not before
1255 * kicking migration.
1256 */
100873d7 1257 if (!hugepage_migration_supported(page_hstate(hpage))) {
dd4ae78a 1258 list_move_tail(&hpage->lru, ret);
83467efb 1259 return -ENOSYS;
32665f2b 1260 }
83467efb 1261
71a64f61
MS
1262 if (page_count(hpage) == 1) {
1263 /* page was freed from under us. So we are done. */
1264 putback_active_hugepage(hpage);
1265 return MIGRATEPAGE_SUCCESS;
1266 }
1267
666feb21 1268 new_hpage = get_new_page(hpage, private);
290408d4
NH
1269 if (!new_hpage)
1270 return -ENOMEM;
1271
290408d4 1272 if (!trylock_page(hpage)) {
2916ecc0 1273 if (!force)
290408d4 1274 goto out;
2916ecc0
JG
1275 switch (mode) {
1276 case MIGRATE_SYNC:
1277 case MIGRATE_SYNC_NO_COPY:
1278 break;
1279 default:
1280 goto out;
1281 }
290408d4
NH
1282 lock_page(hpage);
1283 }
1284
cb6acd01
MK
1285 /*
1286 * Check for pages which are in the process of being freed. Without
1287 * page_mapping() set, hugetlbfs specific move page routine will not
1288 * be called and we could leak usage counts for subpools.
1289 */
1290 if (page_private(hpage) && !page_mapping(hpage)) {
1291 rc = -EBUSY;
1292 goto out_unlock;
1293 }
1294
746b18d4
PZ
1295 if (PageAnon(hpage))
1296 anon_vma = page_get_anon_vma(hpage);
290408d4 1297
7db7671f
HD
1298 if (unlikely(!trylock_page(new_hpage)))
1299 goto put_anon;
1300
2ebba6b7 1301 if (page_mapped(hpage)) {
336bf30e 1302 bool mapping_locked = false;
013339df 1303 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
336bf30e
MK
1304
1305 if (!PageAnon(hpage)) {
1306 /*
1307 * In shared mappings, try_to_unmap could potentially
1308 * call huge_pmd_unshare. Because of this, take
1309 * semaphore in write mode here and set TTU_RMAP_LOCKED
1310 * to let lower levels know we have taken the lock.
1311 */
1312 mapping = hugetlb_page_mapping_lock_write(hpage);
1313 if (unlikely(!mapping))
1314 goto unlock_put_anon;
1315
1316 mapping_locked = true;
1317 ttu |= TTU_RMAP_LOCKED;
1318 }
c0d0381a 1319
336bf30e 1320 try_to_unmap(hpage, ttu);
2ebba6b7 1321 page_was_mapped = 1;
336bf30e
MK
1322
1323 if (mapping_locked)
1324 i_mmap_unlock_write(mapping);
2ebba6b7 1325 }
290408d4
NH
1326
1327 if (!page_mapped(hpage))
5c3f9a67 1328 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1329
336bf30e 1330 if (page_was_mapped)
5c3f9a67 1331 remove_migration_ptes(hpage,
336bf30e 1332 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1333
c0d0381a 1334unlock_put_anon:
7db7671f
HD
1335 unlock_page(new_hpage);
1336
1337put_anon:
fd4a4663 1338 if (anon_vma)
9e60109f 1339 put_anon_vma(anon_vma);
8e6ac7fa 1340
2def7424 1341 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1342 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1343 put_new_page = NULL;
1344 }
8e6ac7fa 1345
cb6acd01 1346out_unlock:
290408d4 1347 unlock_page(hpage);
09761333 1348out:
dd4ae78a 1349 if (rc == MIGRATEPAGE_SUCCESS)
b8ec1cee 1350 putback_active_hugepage(hpage);
a04840c6 1351 else if (rc != -EAGAIN)
dd4ae78a 1352 list_move_tail(&hpage->lru, ret);
68711a74
DR
1353
1354 /*
1355 * If migration was not successful and there's a freeing callback, use
1356 * it. Otherwise, put_page() will drop the reference grabbed during
1357 * isolation.
1358 */
2def7424 1359 if (put_new_page)
68711a74
DR
1360 put_new_page(new_hpage, private);
1361 else
3aaa76e1 1362 putback_active_hugepage(new_hpage);
68711a74 1363
290408d4
NH
1364 return rc;
1365}
1366
d532e2e5
YS
1367static inline int try_split_thp(struct page *page, struct page **page2,
1368 struct list_head *from)
1369{
1370 int rc = 0;
1371
1372 lock_page(page);
1373 rc = split_huge_page_to_list(page, from);
1374 unlock_page(page);
1375 if (!rc)
1376 list_safe_reset_next(page, *page2, lru);
1377
1378 return rc;
1379}
1380
b20a3503 1381/*
c73e5c9c
SB
1382 * migrate_pages - migrate the pages specified in a list, to the free pages
1383 * supplied as the target for the page migration
b20a3503 1384 *
c73e5c9c
SB
1385 * @from: The list of pages to be migrated.
1386 * @get_new_page: The function used to allocate free pages to be used
1387 * as the target of the page migration.
68711a74
DR
1388 * @put_new_page: The function used to free target pages if migration
1389 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1390 * @private: Private data to be passed on to get_new_page()
1391 * @mode: The migration mode that specifies the constraints for
1392 * page migration, if any.
1393 * @reason: The reason for page migration.
b20a3503 1394 *
c73e5c9c
SB
1395 * The function returns after 10 attempts or if no pages are movable any more
1396 * because the list has become empty or no retryable pages exist any more.
dd4ae78a
YS
1397 * It is caller's responsibility to call putback_movable_pages() to return pages
1398 * to the LRU or free list only if ret != 0.
b20a3503 1399 *
c73e5c9c 1400 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1401 */
9c620e2b 1402int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1403 free_page_t put_new_page, unsigned long private,
1404 enum migrate_mode mode, int reason)
b20a3503 1405{
e24f0b8f 1406 int retry = 1;
1a5bae25 1407 int thp_retry = 1;
b20a3503 1408 int nr_failed = 0;
5647bc29 1409 int nr_succeeded = 0;
1a5bae25
AK
1410 int nr_thp_succeeded = 0;
1411 int nr_thp_failed = 0;
1412 int nr_thp_split = 0;
b20a3503 1413 int pass = 0;
1a5bae25 1414 bool is_thp = false;
b20a3503
CL
1415 struct page *page;
1416 struct page *page2;
1417 int swapwrite = current->flags & PF_SWAPWRITE;
1a5bae25 1418 int rc, nr_subpages;
dd4ae78a 1419 LIST_HEAD(ret_pages);
b20a3503
CL
1420
1421 if (!swapwrite)
1422 current->flags |= PF_SWAPWRITE;
1423
1a5bae25 1424 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
e24f0b8f 1425 retry = 0;
1a5bae25 1426 thp_retry = 0;
b20a3503 1427
e24f0b8f 1428 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1429retry:
1a5bae25
AK
1430 /*
1431 * THP statistics is based on the source huge page.
1432 * Capture required information that might get lost
1433 * during migration.
1434 */
6c5c7b9f 1435 is_thp = PageTransHuge(page) && !PageHuge(page);
6c357848 1436 nr_subpages = thp_nr_pages(page);
e24f0b8f 1437 cond_resched();
2d1db3b1 1438
31caf665
NH
1439 if (PageHuge(page))
1440 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1441 put_new_page, private, page,
dd4ae78a
YS
1442 pass > 2, mode, reason,
1443 &ret_pages);
31caf665 1444 else
68711a74 1445 rc = unmap_and_move(get_new_page, put_new_page,
add05cec 1446 private, page, pass > 2, mode,
dd4ae78a
YS
1447 reason, &ret_pages);
1448 /*
1449 * The rules are:
1450 * Success: non hugetlb page will be freed, hugetlb
1451 * page will be put back
1452 * -EAGAIN: stay on the from list
1453 * -ENOMEM: stay on the from list
1454 * Other errno: put on ret_pages list then splice to
1455 * from list
1456 */
e24f0b8f 1457 switch(rc) {
d532e2e5
YS
1458 /*
1459 * THP migration might be unsupported or the
1460 * allocation could've failed so we should
1461 * retry on the same page with the THP split
1462 * to base pages.
1463 *
1464 * Head page is retried immediately and tail
1465 * pages are added to the tail of the list so
1466 * we encounter them after the rest of the list
1467 * is processed.
1468 */
1469 case -ENOSYS:
1470 /* THP migration is unsupported */
1471 if (is_thp) {
1472 if (!try_split_thp(page, &page2, from)) {
1473 nr_thp_split++;
1474 goto retry;
1475 }
1476
1477 nr_thp_failed++;
1478 nr_failed += nr_subpages;
1479 break;
1480 }
1481
1482 /* Hugetlb migration is unsupported */
1483 nr_failed++;
1484 break;
95a402c3 1485 case -ENOMEM:
94723aaf 1486 /*
d532e2e5
YS
1487 * When memory is low, don't bother to try to migrate
1488 * other pages, just exit.
94723aaf 1489 */
6c5c7b9f 1490 if (is_thp) {
d532e2e5 1491 if (!try_split_thp(page, &page2, from)) {
1a5bae25 1492 nr_thp_split++;
94723aaf
MH
1493 goto retry;
1494 }
6c5c7b9f 1495
1a5bae25
AK
1496 nr_thp_failed++;
1497 nr_failed += nr_subpages;
1498 goto out;
1499 }
dfef2ef4 1500 nr_failed++;
95a402c3 1501 goto out;
e24f0b8f 1502 case -EAGAIN:
1a5bae25
AK
1503 if (is_thp) {
1504 thp_retry++;
1505 break;
1506 }
2d1db3b1 1507 retry++;
e24f0b8f 1508 break;
78bd5209 1509 case MIGRATEPAGE_SUCCESS:
1a5bae25
AK
1510 if (is_thp) {
1511 nr_thp_succeeded++;
1512 nr_succeeded += nr_subpages;
1513 break;
1514 }
5647bc29 1515 nr_succeeded++;
e24f0b8f
CL
1516 break;
1517 default:
354a3363 1518 /*
d532e2e5 1519 * Permanent failure (-EBUSY, etc.):
354a3363
NH
1520 * unlike -EAGAIN case, the failed page is
1521 * removed from migration page list and not
1522 * retried in the next outer loop.
1523 */
1a5bae25
AK
1524 if (is_thp) {
1525 nr_thp_failed++;
1526 nr_failed += nr_subpages;
1527 break;
1528 }
2d1db3b1 1529 nr_failed++;
e24f0b8f 1530 break;
2d1db3b1 1531 }
b20a3503
CL
1532 }
1533 }
1a5bae25
AK
1534 nr_failed += retry + thp_retry;
1535 nr_thp_failed += thp_retry;
f2f81fb2 1536 rc = nr_failed;
95a402c3 1537out:
dd4ae78a
YS
1538 /*
1539 * Put the permanent failure page back to migration list, they
1540 * will be put back to the right list by the caller.
1541 */
1542 list_splice(&ret_pages, from);
1543
1a5bae25
AK
1544 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1545 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1546 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1547 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1548 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1549 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1550 nr_thp_failed, nr_thp_split, mode, reason);
7b2a2d4a 1551
b20a3503
CL
1552 if (!swapwrite)
1553 current->flags &= ~PF_SWAPWRITE;
1554
78bd5209 1555 return rc;
b20a3503 1556}
95a402c3 1557
19fc7bed 1558struct page *alloc_migration_target(struct page *page, unsigned long private)
b4b38223 1559{
19fc7bed
JK
1560 struct migration_target_control *mtc;
1561 gfp_t gfp_mask;
b4b38223
JK
1562 unsigned int order = 0;
1563 struct page *new_page = NULL;
19fc7bed
JK
1564 int nid;
1565 int zidx;
1566
1567 mtc = (struct migration_target_control *)private;
1568 gfp_mask = mtc->gfp_mask;
1569 nid = mtc->nid;
1570 if (nid == NUMA_NO_NODE)
1571 nid = page_to_nid(page);
b4b38223 1572
d92bbc27
JK
1573 if (PageHuge(page)) {
1574 struct hstate *h = page_hstate(compound_head(page));
1575
19fc7bed
JK
1576 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1577 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
d92bbc27 1578 }
b4b38223
JK
1579
1580 if (PageTransHuge(page)) {
9933a0c8
JK
1581 /*
1582 * clear __GFP_RECLAIM to make the migration callback
1583 * consistent with regular THP allocations.
1584 */
1585 gfp_mask &= ~__GFP_RECLAIM;
b4b38223
JK
1586 gfp_mask |= GFP_TRANSHUGE;
1587 order = HPAGE_PMD_ORDER;
1588 }
19fc7bed
JK
1589 zidx = zone_idx(page_zone(page));
1590 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
b4b38223
JK
1591 gfp_mask |= __GFP_HIGHMEM;
1592
84172f4b 1593 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
b4b38223
JK
1594
1595 if (new_page && PageTransHuge(new_page))
1596 prep_transhuge_page(new_page);
1597
1598 return new_page;
1599}
1600
742755a1 1601#ifdef CONFIG_NUMA
742755a1 1602
a49bd4d7 1603static int store_status(int __user *status, int start, int value, int nr)
742755a1 1604{
a49bd4d7
MH
1605 while (nr-- > 0) {
1606 if (put_user(value, status + start))
1607 return -EFAULT;
1608 start++;
1609 }
1610
1611 return 0;
1612}
1613
1614static int do_move_pages_to_node(struct mm_struct *mm,
1615 struct list_head *pagelist, int node)
1616{
1617 int err;
a0976311
JK
1618 struct migration_target_control mtc = {
1619 .nid = node,
1620 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1621 };
a49bd4d7 1622
a0976311
JK
1623 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1624 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
a49bd4d7
MH
1625 if (err)
1626 putback_movable_pages(pagelist);
1627 return err;
742755a1
CL
1628}
1629
1630/*
a49bd4d7
MH
1631 * Resolves the given address to a struct page, isolates it from the LRU and
1632 * puts it to the given pagelist.
e0153fc2
YS
1633 * Returns:
1634 * errno - if the page cannot be found/isolated
1635 * 0 - when it doesn't have to be migrated because it is already on the
1636 * target node
1637 * 1 - when it has been queued
742755a1 1638 */
a49bd4d7
MH
1639static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1640 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1641{
a49bd4d7
MH
1642 struct vm_area_struct *vma;
1643 struct page *page;
1644 unsigned int follflags;
742755a1 1645 int err;
742755a1 1646
d8ed45c5 1647 mmap_read_lock(mm);
a49bd4d7
MH
1648 err = -EFAULT;
1649 vma = find_vma(mm, addr);
1650 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1651 goto out;
742755a1 1652
a49bd4d7
MH
1653 /* FOLL_DUMP to ignore special (like zero) pages */
1654 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1655 page = follow_page(vma, addr, follflags);
89f5b7da 1656
a49bd4d7
MH
1657 err = PTR_ERR(page);
1658 if (IS_ERR(page))
1659 goto out;
89f5b7da 1660
a49bd4d7
MH
1661 err = -ENOENT;
1662 if (!page)
1663 goto out;
742755a1 1664
a49bd4d7
MH
1665 err = 0;
1666 if (page_to_nid(page) == node)
1667 goto out_putpage;
742755a1 1668
a49bd4d7
MH
1669 err = -EACCES;
1670 if (page_mapcount(page) > 1 && !migrate_all)
1671 goto out_putpage;
742755a1 1672
a49bd4d7
MH
1673 if (PageHuge(page)) {
1674 if (PageHead(page)) {
1675 isolate_huge_page(page, pagelist);
e0153fc2 1676 err = 1;
e632a938 1677 }
a49bd4d7
MH
1678 } else {
1679 struct page *head;
e632a938 1680
e8db67eb
NH
1681 head = compound_head(page);
1682 err = isolate_lru_page(head);
cf608ac1 1683 if (err)
a49bd4d7 1684 goto out_putpage;
742755a1 1685
e0153fc2 1686 err = 1;
a49bd4d7
MH
1687 list_add_tail(&head->lru, pagelist);
1688 mod_node_page_state(page_pgdat(head),
9de4f22a 1689 NR_ISOLATED_ANON + page_is_file_lru(head),
6c357848 1690 thp_nr_pages(head));
a49bd4d7
MH
1691 }
1692out_putpage:
1693 /*
1694 * Either remove the duplicate refcount from
1695 * isolate_lru_page() or drop the page ref if it was
1696 * not isolated.
1697 */
1698 put_page(page);
1699out:
d8ed45c5 1700 mmap_read_unlock(mm);
742755a1
CL
1701 return err;
1702}
1703
7ca8783a
WY
1704static int move_pages_and_store_status(struct mm_struct *mm, int node,
1705 struct list_head *pagelist, int __user *status,
1706 int start, int i, unsigned long nr_pages)
1707{
1708 int err;
1709
5d7ae891
WY
1710 if (list_empty(pagelist))
1711 return 0;
1712
7ca8783a
WY
1713 err = do_move_pages_to_node(mm, pagelist, node);
1714 if (err) {
1715 /*
1716 * Positive err means the number of failed
1717 * pages to migrate. Since we are going to
1718 * abort and return the number of non-migrated
ab9dd4f8 1719 * pages, so need to include the rest of the
7ca8783a
WY
1720 * nr_pages that have not been attempted as
1721 * well.
1722 */
1723 if (err > 0)
1724 err += nr_pages - i - 1;
1725 return err;
1726 }
1727 return store_status(status, start, node, i - start);
1728}
1729
5e9a0f02
BG
1730/*
1731 * Migrate an array of page address onto an array of nodes and fill
1732 * the corresponding array of status.
1733 */
3268c63e 1734static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1735 unsigned long nr_pages,
1736 const void __user * __user *pages,
1737 const int __user *nodes,
1738 int __user *status, int flags)
1739{
a49bd4d7
MH
1740 int current_node = NUMA_NO_NODE;
1741 LIST_HEAD(pagelist);
1742 int start, i;
1743 int err = 0, err1;
35282a2d 1744
361a2a22 1745 lru_cache_disable();
35282a2d 1746
a49bd4d7
MH
1747 for (i = start = 0; i < nr_pages; i++) {
1748 const void __user *p;
1749 unsigned long addr;
1750 int node;
3140a227 1751
a49bd4d7
MH
1752 err = -EFAULT;
1753 if (get_user(p, pages + i))
1754 goto out_flush;
1755 if (get_user(node, nodes + i))
1756 goto out_flush;
057d3389 1757 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1758
1759 err = -ENODEV;
1760 if (node < 0 || node >= MAX_NUMNODES)
1761 goto out_flush;
1762 if (!node_state(node, N_MEMORY))
1763 goto out_flush;
5e9a0f02 1764
a49bd4d7
MH
1765 err = -EACCES;
1766 if (!node_isset(node, task_nodes))
1767 goto out_flush;
1768
1769 if (current_node == NUMA_NO_NODE) {
1770 current_node = node;
1771 start = i;
1772 } else if (node != current_node) {
7ca8783a
WY
1773 err = move_pages_and_store_status(mm, current_node,
1774 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1775 if (err)
1776 goto out;
1777 start = i;
1778 current_node = node;
3140a227
BG
1779 }
1780
a49bd4d7
MH
1781 /*
1782 * Errors in the page lookup or isolation are not fatal and we simply
1783 * report them via status
1784 */
1785 err = add_page_for_migration(mm, addr, current_node,
1786 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1787
d08221a0 1788 if (err > 0) {
e0153fc2
YS
1789 /* The page is successfully queued for migration */
1790 continue;
1791 }
3140a227 1792
d08221a0
WY
1793 /*
1794 * If the page is already on the target node (!err), store the
1795 * node, otherwise, store the err.
1796 */
1797 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1798 if (err)
1799 goto out_flush;
5e9a0f02 1800
7ca8783a
WY
1801 err = move_pages_and_store_status(mm, current_node, &pagelist,
1802 status, start, i, nr_pages);
4afdacec
WY
1803 if (err)
1804 goto out;
a49bd4d7 1805 current_node = NUMA_NO_NODE;
3140a227 1806 }
a49bd4d7
MH
1807out_flush:
1808 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1809 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1810 status, start, i, nr_pages);
dfe9aa23 1811 if (err >= 0)
a49bd4d7 1812 err = err1;
5e9a0f02 1813out:
361a2a22 1814 lru_cache_enable();
5e9a0f02
BG
1815 return err;
1816}
1817
742755a1 1818/*
2f007e74 1819 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1820 */
80bba129
BG
1821static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1822 const void __user **pages, int *status)
742755a1 1823{
2f007e74 1824 unsigned long i;
2f007e74 1825
d8ed45c5 1826 mmap_read_lock(mm);
742755a1 1827
2f007e74 1828 for (i = 0; i < nr_pages; i++) {
80bba129 1829 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1830 struct vm_area_struct *vma;
1831 struct page *page;
c095adbc 1832 int err = -EFAULT;
2f007e74
BG
1833
1834 vma = find_vma(mm, addr);
70384dc6 1835 if (!vma || addr < vma->vm_start)
742755a1
CL
1836 goto set_status;
1837
d899844e
KS
1838 /* FOLL_DUMP to ignore special (like zero) pages */
1839 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1840
1841 err = PTR_ERR(page);
1842 if (IS_ERR(page))
1843 goto set_status;
1844
d899844e 1845 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1846set_status:
80bba129
BG
1847 *status = err;
1848
1849 pages++;
1850 status++;
1851 }
1852
d8ed45c5 1853 mmap_read_unlock(mm);
80bba129
BG
1854}
1855
1856/*
1857 * Determine the nodes of a user array of pages and store it in
1858 * a user array of status.
1859 */
1860static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1861 const void __user * __user *pages,
1862 int __user *status)
1863{
1864#define DO_PAGES_STAT_CHUNK_NR 16
1865 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1866 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1867
87b8d1ad
PA
1868 while (nr_pages) {
1869 unsigned long chunk_nr;
80bba129 1870
87b8d1ad
PA
1871 chunk_nr = nr_pages;
1872 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1873 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1874
1875 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1876 break;
80bba129
BG
1877
1878 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1879
87b8d1ad
PA
1880 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1881 break;
742755a1 1882
87b8d1ad
PA
1883 pages += chunk_nr;
1884 status += chunk_nr;
1885 nr_pages -= chunk_nr;
1886 }
1887 return nr_pages ? -EFAULT : 0;
742755a1
CL
1888}
1889
4dc200ce 1890static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
742755a1 1891{
742755a1 1892 struct task_struct *task;
742755a1 1893 struct mm_struct *mm;
742755a1 1894
4dc200ce
ML
1895 /*
1896 * There is no need to check if current process has the right to modify
1897 * the specified process when they are same.
1898 */
1899 if (!pid) {
1900 mmget(current->mm);
1901 *mem_nodes = cpuset_mems_allowed(current);
1902 return current->mm;
1903 }
742755a1
CL
1904
1905 /* Find the mm_struct */
a879bf58 1906 rcu_read_lock();
4dc200ce 1907 task = find_task_by_vpid(pid);
742755a1 1908 if (!task) {
a879bf58 1909 rcu_read_unlock();
4dc200ce 1910 return ERR_PTR(-ESRCH);
742755a1 1911 }
3268c63e 1912 get_task_struct(task);
742755a1
CL
1913
1914 /*
1915 * Check if this process has the right to modify the specified
197e7e52 1916 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1917 */
197e7e52 1918 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1919 rcu_read_unlock();
4dc200ce 1920 mm = ERR_PTR(-EPERM);
5e9a0f02 1921 goto out;
742755a1 1922 }
c69e8d9c 1923 rcu_read_unlock();
742755a1 1924
4dc200ce
ML
1925 mm = ERR_PTR(security_task_movememory(task));
1926 if (IS_ERR(mm))
5e9a0f02 1927 goto out;
4dc200ce 1928 *mem_nodes = cpuset_mems_allowed(task);
3268c63e 1929 mm = get_task_mm(task);
4dc200ce 1930out:
3268c63e 1931 put_task_struct(task);
6e8b09ea 1932 if (!mm)
4dc200ce
ML
1933 mm = ERR_PTR(-EINVAL);
1934 return mm;
1935}
1936
1937/*
1938 * Move a list of pages in the address space of the currently executing
1939 * process.
1940 */
1941static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1942 const void __user * __user *pages,
1943 const int __user *nodes,
1944 int __user *status, int flags)
1945{
1946 struct mm_struct *mm;
1947 int err;
1948 nodemask_t task_nodes;
1949
1950 /* Check flags */
1951 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
6e8b09ea
SL
1952 return -EINVAL;
1953
4dc200ce
ML
1954 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1955 return -EPERM;
1956
1957 mm = find_mm_struct(pid, &task_nodes);
1958 if (IS_ERR(mm))
1959 return PTR_ERR(mm);
1960
6e8b09ea
SL
1961 if (nodes)
1962 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1963 nodes, status, flags);
1964 else
1965 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1966
742755a1
CL
1967 mmput(mm);
1968 return err;
1969}
742755a1 1970
7addf443
DB
1971SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1972 const void __user * __user *, pages,
1973 const int __user *, nodes,
1974 int __user *, status, int, flags)
1975{
1976 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1977}
1978
1979#ifdef CONFIG_COMPAT
1980COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1981 compat_uptr_t __user *, pages32,
1982 const int __user *, nodes,
1983 int __user *, status,
1984 int, flags)
1985{
1986 const void __user * __user *pages;
1987 int i;
1988
1989 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1990 for (i = 0; i < nr_pages; i++) {
1991 compat_uptr_t p;
1992
1993 if (get_user(p, pages32 + i) ||
1994 put_user(compat_ptr(p), pages + i))
1995 return -EFAULT;
1996 }
1997 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1998}
1999#endif /* CONFIG_COMPAT */
2000
7039e1db
PZ
2001#ifdef CONFIG_NUMA_BALANCING
2002/*
2003 * Returns true if this is a safe migration target node for misplaced NUMA
2004 * pages. Currently it only checks the watermarks which crude
2005 */
2006static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 2007 unsigned long nr_migrate_pages)
7039e1db
PZ
2008{
2009 int z;
599d0c95 2010
7039e1db
PZ
2011 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2012 struct zone *zone = pgdat->node_zones + z;
2013
2014 if (!populated_zone(zone))
2015 continue;
2016
7039e1db
PZ
2017 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2018 if (!zone_watermark_ok(zone, 0,
2019 high_wmark_pages(zone) +
2020 nr_migrate_pages,
bfe9d006 2021 ZONE_MOVABLE, 0))
7039e1db
PZ
2022 continue;
2023 return true;
2024 }
2025 return false;
2026}
2027
2028static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 2029 unsigned long data)
7039e1db
PZ
2030{
2031 int nid = (int) data;
2032 struct page *newpage;
2033
96db800f 2034 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
2035 (GFP_HIGHUSER_MOVABLE |
2036 __GFP_THISNODE | __GFP_NOMEMALLOC |
2037 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 2038 ~__GFP_RECLAIM, 0);
bac0382c 2039
7039e1db
PZ
2040 return newpage;
2041}
2042
1c30e017 2043static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 2044{
340ef390 2045 int page_lru;
a8f60772 2046
309381fe 2047 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 2048
7039e1db 2049 /* Avoid migrating to a node that is nearly full */
d8c6546b 2050 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 2051 return 0;
7039e1db 2052
340ef390
HD
2053 if (isolate_lru_page(page))
2054 return 0;
7039e1db 2055
340ef390
HD
2056 /*
2057 * migrate_misplaced_transhuge_page() skips page migration's usual
2058 * check on page_count(), so we must do it here, now that the page
2059 * has been isolated: a GUP pin, or any other pin, prevents migration.
2060 * The expected page count is 3: 1 for page's mapcount and 1 for the
2061 * caller's pin and 1 for the reference taken by isolate_lru_page().
2062 */
2063 if (PageTransHuge(page) && page_count(page) != 3) {
2064 putback_lru_page(page);
2065 return 0;
7039e1db
PZ
2066 }
2067
9de4f22a 2068 page_lru = page_is_file_lru(page);
599d0c95 2069 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
6c357848 2070 thp_nr_pages(page));
340ef390 2071
149c33e1 2072 /*
340ef390
HD
2073 * Isolating the page has taken another reference, so the
2074 * caller's reference can be safely dropped without the page
2075 * disappearing underneath us during migration.
149c33e1
MG
2076 */
2077 put_page(page);
340ef390 2078 return 1;
b32967ff
MG
2079}
2080
de466bd6
MG
2081bool pmd_trans_migrating(pmd_t pmd)
2082{
2083 struct page *page = pmd_page(pmd);
2084 return PageLocked(page);
2085}
2086
c77c5cba
YS
2087static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2088 struct page *page)
2089{
2090 if (page_mapcount(page) != 1 &&
2091 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2092 (vma->vm_flags & VM_EXEC))
2093 return true;
2094
2095 return false;
2096}
2097
b32967ff
MG
2098/*
2099 * Attempt to migrate a misplaced page to the specified destination
2100 * node. Caller is expected to have an elevated reference count on
2101 * the page that will be dropped by this function before returning.
2102 */
1bc115d8
MG
2103int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2104 int node)
b32967ff
MG
2105{
2106 pg_data_t *pgdat = NODE_DATA(node);
340ef390 2107 int isolated;
b32967ff
MG
2108 int nr_remaining;
2109 LIST_HEAD(migratepages);
2110
2111 /*
1bc115d8
MG
2112 * Don't migrate file pages that are mapped in multiple processes
2113 * with execute permissions as they are probably shared libraries.
b32967ff 2114 */
c77c5cba 2115 if (is_shared_exec_page(vma, page))
b32967ff 2116 goto out;
b32967ff 2117
09a913a7
MG
2118 /*
2119 * Also do not migrate dirty pages as not all filesystems can move
2120 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2121 */
9de4f22a 2122 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
2123 goto out;
2124
b32967ff
MG
2125 isolated = numamigrate_isolate_page(pgdat, page);
2126 if (!isolated)
2127 goto out;
2128
2129 list_add(&page->lru, &migratepages);
9c620e2b 2130 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2131 NULL, node, MIGRATE_ASYNC,
2132 MR_NUMA_MISPLACED);
b32967ff 2133 if (nr_remaining) {
59c82b70
JK
2134 if (!list_empty(&migratepages)) {
2135 list_del(&page->lru);
599d0c95 2136 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2137 page_is_file_lru(page));
59c82b70
JK
2138 putback_lru_page(page);
2139 }
b32967ff
MG
2140 isolated = 0;
2141 } else
2142 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2143 BUG_ON(!list_empty(&migratepages));
7039e1db 2144 return isolated;
340ef390
HD
2145
2146out:
2147 put_page(page);
2148 return 0;
7039e1db 2149}
220018d3 2150#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2151
220018d3 2152#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2153/*
2154 * Migrates a THP to a given target node. page must be locked and is unlocked
2155 * before returning.
2156 */
b32967ff
MG
2157int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2158 struct vm_area_struct *vma,
2159 pmd_t *pmd, pmd_t entry,
2160 unsigned long address,
2161 struct page *page, int node)
2162{
c4088ebd 2163 spinlock_t *ptl;
b32967ff
MG
2164 pg_data_t *pgdat = NODE_DATA(node);
2165 int isolated = 0;
2166 struct page *new_page = NULL;
9de4f22a 2167 int page_lru = page_is_file_lru(page);
7066f0f9 2168 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2169
c77c5cba
YS
2170 if (is_shared_exec_page(vma, page))
2171 goto out;
2172
b32967ff 2173 new_page = alloc_pages_node(node,
25160354 2174 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2175 HPAGE_PMD_ORDER);
340ef390
HD
2176 if (!new_page)
2177 goto out_fail;
9a982250 2178 prep_transhuge_page(new_page);
340ef390 2179
b32967ff 2180 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2181 if (!isolated) {
b32967ff 2182 put_page(new_page);
340ef390 2183 goto out_fail;
b32967ff 2184 }
b0943d61 2185
b32967ff 2186 /* Prepare a page as a migration target */
48c935ad 2187 __SetPageLocked(new_page);
d44d363f
SL
2188 if (PageSwapBacked(page))
2189 __SetPageSwapBacked(new_page);
b32967ff
MG
2190
2191 /* anon mapping, we can simply copy page->mapping to the new page: */
2192 new_page->mapping = page->mapping;
2193 new_page->index = page->index;
7eef5f97
AA
2194 /* flush the cache before copying using the kernel virtual address */
2195 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2196 migrate_page_copy(new_page, page);
2197 WARN_ON(PageLRU(new_page));
2198
2199 /* Recheck the target PMD */
c4088ebd 2200 ptl = pmd_lock(mm, pmd);
f4e177d1 2201 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2202 spin_unlock(ptl);
b32967ff
MG
2203
2204 /* Reverse changes made by migrate_page_copy() */
2205 if (TestClearPageActive(new_page))
2206 SetPageActive(page);
2207 if (TestClearPageUnevictable(new_page))
2208 SetPageUnevictable(page);
b32967ff
MG
2209
2210 unlock_page(new_page);
2211 put_page(new_page); /* Free it */
2212
a54a407f
MG
2213 /* Retake the callers reference and putback on LRU */
2214 get_page(page);
b32967ff 2215 putback_lru_page(page);
599d0c95 2216 mod_node_page_state(page_pgdat(page),
a54a407f 2217 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2218
2219 goto out_unlock;
b32967ff
MG
2220 }
2221
10102459 2222 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2223 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2224
2b4847e7 2225 /*
d7c33934
AA
2226 * Overwrite the old entry under pagetable lock and establish
2227 * the new PTE. Any parallel GUP will either observe the old
2228 * page blocking on the page lock, block on the page table
2229 * lock or observe the new page. The SetPageUptodate on the
2230 * new page and page_add_new_anon_rmap guarantee the copy is
2231 * visible before the pagetable update.
2b4847e7 2232 */
7066f0f9 2233 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2234 /*
2235 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2236 * has already been flushed globally. So no TLB can be currently
2237 * caching this non present pmd mapping. There's no need to clear the
2238 * pmd before doing set_pmd_at(), nor to flush the TLB after
2239 * set_pmd_at(). Clearing the pmd here would introduce a race
2240 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2241 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2242 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2243 * pmd.
2244 */
7066f0f9 2245 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2246 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2247
f4e177d1 2248 page_ref_unfreeze(page, 2);
51afb12b 2249 mlock_migrate_page(new_page, page);
d281ee61 2250 page_remove_rmap(page, true);
7cd12b4a 2251 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2252
c4088ebd 2253 spin_unlock(ptl);
b32967ff 2254
11de9927
MG
2255 /* Take an "isolate" reference and put new page on the LRU. */
2256 get_page(new_page);
2257 putback_lru_page(new_page);
2258
b32967ff
MG
2259 unlock_page(new_page);
2260 unlock_page(page);
2261 put_page(page); /* Drop the rmap reference */
2262 put_page(page); /* Drop the LRU isolation reference */
2263
2264 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2265 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2266
599d0c95 2267 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2268 NR_ISOLATED_ANON + page_lru,
2269 -HPAGE_PMD_NR);
2270 return isolated;
2271
340ef390
HD
2272out_fail:
2273 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2274 ptl = pmd_lock(mm, pmd);
2275 if (pmd_same(*pmd, entry)) {
4d942466 2276 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2277 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2278 update_mmu_cache_pmd(vma, address, &entry);
2279 }
2280 spin_unlock(ptl);
a54a407f 2281
eb4489f6 2282out_unlock:
340ef390 2283 unlock_page(page);
c77c5cba 2284out:
b32967ff 2285 put_page(page);
b32967ff
MG
2286 return 0;
2287}
7039e1db
PZ
2288#endif /* CONFIG_NUMA_BALANCING */
2289
2290#endif /* CONFIG_NUMA */
8763cb45 2291
9b2ed9cb 2292#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2293static int migrate_vma_collect_hole(unsigned long start,
2294 unsigned long end,
b7a16c7a 2295 __always_unused int depth,
8763cb45
JG
2296 struct mm_walk *walk)
2297{
2298 struct migrate_vma *migrate = walk->private;
2299 unsigned long addr;
2300
0744f280
RC
2301 /* Only allow populating anonymous memory. */
2302 if (!vma_is_anonymous(walk->vma)) {
2303 for (addr = start; addr < end; addr += PAGE_SIZE) {
2304 migrate->src[migrate->npages] = 0;
2305 migrate->dst[migrate->npages] = 0;
2306 migrate->npages++;
2307 }
2308 return 0;
2309 }
2310
872ea707 2311 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2312 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2313 migrate->dst[migrate->npages] = 0;
e20d103b 2314 migrate->npages++;
8315ada7
JG
2315 migrate->cpages++;
2316 }
2317
2318 return 0;
2319}
2320
2321static int migrate_vma_collect_skip(unsigned long start,
2322 unsigned long end,
2323 struct mm_walk *walk)
2324{
2325 struct migrate_vma *migrate = walk->private;
2326 unsigned long addr;
2327
872ea707 2328 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2329 migrate->dst[migrate->npages] = 0;
2330 migrate->src[migrate->npages++] = 0;
2331 }
2332
2333 return 0;
2334}
2335
2336static int migrate_vma_collect_pmd(pmd_t *pmdp,
2337 unsigned long start,
2338 unsigned long end,
2339 struct mm_walk *walk)
2340{
2341 struct migrate_vma *migrate = walk->private;
2342 struct vm_area_struct *vma = walk->vma;
2343 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2344 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2345 spinlock_t *ptl;
2346 pte_t *ptep;
2347
2348again:
2349 if (pmd_none(*pmdp))
b7a16c7a 2350 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2351
2352 if (pmd_trans_huge(*pmdp)) {
2353 struct page *page;
2354
2355 ptl = pmd_lock(mm, pmdp);
2356 if (unlikely(!pmd_trans_huge(*pmdp))) {
2357 spin_unlock(ptl);
2358 goto again;
2359 }
2360
2361 page = pmd_page(*pmdp);
2362 if (is_huge_zero_page(page)) {
2363 spin_unlock(ptl);
2364 split_huge_pmd(vma, pmdp, addr);
2365 if (pmd_trans_unstable(pmdp))
8315ada7 2366 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2367 walk);
2368 } else {
2369 int ret;
2370
2371 get_page(page);
2372 spin_unlock(ptl);
2373 if (unlikely(!trylock_page(page)))
8315ada7 2374 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2375 walk);
2376 ret = split_huge_page(page);
2377 unlock_page(page);
2378 put_page(page);
8315ada7
JG
2379 if (ret)
2380 return migrate_vma_collect_skip(start, end,
2381 walk);
2382 if (pmd_none(*pmdp))
b7a16c7a 2383 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2384 walk);
2385 }
2386 }
2387
2388 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2389 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2390
2391 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2392 arch_enter_lazy_mmu_mode();
2393
8763cb45 2394 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2395 unsigned long mpfn = 0, pfn;
8763cb45 2396 struct page *page;
8c3328f1 2397 swp_entry_t entry;
8763cb45
JG
2398 pte_t pte;
2399
2400 pte = *ptep;
8763cb45 2401
a5430dda 2402 if (pte_none(pte)) {
0744f280
RC
2403 if (vma_is_anonymous(vma)) {
2404 mpfn = MIGRATE_PFN_MIGRATE;
2405 migrate->cpages++;
2406 }
8763cb45
JG
2407 goto next;
2408 }
2409
a5430dda 2410 if (!pte_present(pte)) {
a5430dda
JG
2411 /*
2412 * Only care about unaddressable device page special
2413 * page table entry. Other special swap entries are not
2414 * migratable, and we ignore regular swapped page.
2415 */
2416 entry = pte_to_swp_entry(pte);
2417 if (!is_device_private_entry(entry))
2418 goto next;
2419
2420 page = device_private_entry_to_page(entry);
5143192c
RC
2421 if (!(migrate->flags &
2422 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2423 page->pgmap->owner != migrate->pgmap_owner)
800bb1c8
CH
2424 goto next;
2425
06d462be
CH
2426 mpfn = migrate_pfn(page_to_pfn(page)) |
2427 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2428 if (is_write_device_private_entry(entry))
2429 mpfn |= MIGRATE_PFN_WRITE;
2430 } else {
5143192c 2431 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
800bb1c8 2432 goto next;
276f756d 2433 pfn = pte_pfn(pte);
8315ada7
JG
2434 if (is_zero_pfn(pfn)) {
2435 mpfn = MIGRATE_PFN_MIGRATE;
2436 migrate->cpages++;
8315ada7
JG
2437 goto next;
2438 }
25b2995a 2439 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2440 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2441 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2442 }
2443
8763cb45 2444 /* FIXME support THP */
8763cb45 2445 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2446 mpfn = 0;
8763cb45
JG
2447 goto next;
2448 }
2449
2450 /*
2451 * By getting a reference on the page we pin it and that blocks
2452 * any kind of migration. Side effect is that it "freezes" the
2453 * pte.
2454 *
2455 * We drop this reference after isolating the page from the lru
2456 * for non device page (device page are not on the lru and thus
2457 * can't be dropped from it).
2458 */
2459 get_page(page);
2460 migrate->cpages++;
8763cb45 2461
8c3328f1
JG
2462 /*
2463 * Optimize for the common case where page is only mapped once
2464 * in one process. If we can lock the page, then we can safely
2465 * set up a special migration page table entry now.
2466 */
2467 if (trylock_page(page)) {
2468 pte_t swp_pte;
2469
2470 mpfn |= MIGRATE_PFN_LOCKED;
2471 ptep_get_and_clear(mm, addr, ptep);
2472
2473 /* Setup special migration page table entry */
07707125
RC
2474 entry = make_migration_entry(page, mpfn &
2475 MIGRATE_PFN_WRITE);
8c3328f1 2476 swp_pte = swp_entry_to_pte(entry);
ad7df764
AP
2477 if (pte_present(pte)) {
2478 if (pte_soft_dirty(pte))
2479 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2480 if (pte_uffd_wp(pte))
2481 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2482 } else {
2483 if (pte_swp_soft_dirty(pte))
2484 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2485 if (pte_swp_uffd_wp(pte))
2486 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2487 }
8c3328f1
JG
2488 set_pte_at(mm, addr, ptep, swp_pte);
2489
2490 /*
2491 * This is like regular unmap: we remove the rmap and
2492 * drop page refcount. Page won't be freed, as we took
2493 * a reference just above.
2494 */
2495 page_remove_rmap(page, false);
2496 put_page(page);
a5430dda
JG
2497
2498 if (pte_present(pte))
2499 unmapped++;
8c3328f1
JG
2500 }
2501
8763cb45 2502next:
a5430dda 2503 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2504 migrate->src[migrate->npages++] = mpfn;
2505 }
8c3328f1 2506 arch_leave_lazy_mmu_mode();
8763cb45
JG
2507 pte_unmap_unlock(ptep - 1, ptl);
2508
8c3328f1
JG
2509 /* Only flush the TLB if we actually modified any entries */
2510 if (unmapped)
2511 flush_tlb_range(walk->vma, start, end);
2512
8763cb45
JG
2513 return 0;
2514}
2515
7b86ac33
CH
2516static const struct mm_walk_ops migrate_vma_walk_ops = {
2517 .pmd_entry = migrate_vma_collect_pmd,
2518 .pte_hole = migrate_vma_collect_hole,
2519};
2520
8763cb45
JG
2521/*
2522 * migrate_vma_collect() - collect pages over a range of virtual addresses
2523 * @migrate: migrate struct containing all migration information
2524 *
2525 * This will walk the CPU page table. For each virtual address backed by a
2526 * valid page, it updates the src array and takes a reference on the page, in
2527 * order to pin the page until we lock it and unmap it.
2528 */
2529static void migrate_vma_collect(struct migrate_vma *migrate)
2530{
ac46d4f3 2531 struct mmu_notifier_range range;
8763cb45 2532
998427b3
RC
2533 /*
2534 * Note that the pgmap_owner is passed to the mmu notifier callback so
2535 * that the registered device driver can skip invalidating device
2536 * private page mappings that won't be migrated.
2537 */
c1a06df6
RC
2538 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2539 migrate->vma->vm_mm, migrate->start, migrate->end,
2540 migrate->pgmap_owner);
ac46d4f3 2541 mmu_notifier_invalidate_range_start(&range);
8763cb45 2542
7b86ac33
CH
2543 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2544 &migrate_vma_walk_ops, migrate);
2545
2546 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2547 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2548}
2549
2550/*
2551 * migrate_vma_check_page() - check if page is pinned or not
2552 * @page: struct page to check
2553 *
2554 * Pinned pages cannot be migrated. This is the same test as in
2555 * migrate_page_move_mapping(), except that here we allow migration of a
2556 * ZONE_DEVICE page.
2557 */
2558static bool migrate_vma_check_page(struct page *page)
2559{
2560 /*
2561 * One extra ref because caller holds an extra reference, either from
2562 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2563 * a device page.
2564 */
2565 int extra = 1;
2566
2567 /*
2568 * FIXME support THP (transparent huge page), it is bit more complex to
2569 * check them than regular pages, because they can be mapped with a pmd
2570 * or with a pte (split pte mapping).
2571 */
2572 if (PageCompound(page))
2573 return false;
2574
a5430dda
JG
2575 /* Page from ZONE_DEVICE have one extra reference */
2576 if (is_zone_device_page(page)) {
2577 /*
2578 * Private page can never be pin as they have no valid pte and
2579 * GUP will fail for those. Yet if there is a pending migration
2580 * a thread might try to wait on the pte migration entry and
2581 * will bump the page reference count. Sadly there is no way to
2582 * differentiate a regular pin from migration wait. Hence to
2583 * avoid 2 racing thread trying to migrate back to CPU to enter
8958b249 2584 * infinite loop (one stopping migration because the other is
a5430dda
JG
2585 * waiting on pte migration entry). We always return true here.
2586 *
2587 * FIXME proper solution is to rework migration_entry_wait() so
2588 * it does not need to take a reference on page.
2589 */
25b2995a 2590 return is_device_private_page(page);
a5430dda
JG
2591 }
2592
df6ad698
JG
2593 /* For file back page */
2594 if (page_mapping(page))
2595 extra += 1 + page_has_private(page);
2596
8763cb45
JG
2597 if ((page_count(page) - extra) > page_mapcount(page))
2598 return false;
2599
2600 return true;
2601}
2602
2603/*
2604 * migrate_vma_prepare() - lock pages and isolate them from the lru
2605 * @migrate: migrate struct containing all migration information
2606 *
2607 * This locks pages that have been collected by migrate_vma_collect(). Once each
2608 * page is locked it is isolated from the lru (for non-device pages). Finally,
2609 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2610 * migrated by concurrent kernel threads.
2611 */
2612static void migrate_vma_prepare(struct migrate_vma *migrate)
2613{
2614 const unsigned long npages = migrate->npages;
8c3328f1
JG
2615 const unsigned long start = migrate->start;
2616 unsigned long addr, i, restore = 0;
8763cb45 2617 bool allow_drain = true;
8763cb45
JG
2618
2619 lru_add_drain();
2620
2621 for (i = 0; (i < npages) && migrate->cpages; i++) {
2622 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2623 bool remap = true;
8763cb45
JG
2624
2625 if (!page)
2626 continue;
2627
8c3328f1
JG
2628 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2629 /*
2630 * Because we are migrating several pages there can be
2631 * a deadlock between 2 concurrent migration where each
2632 * are waiting on each other page lock.
2633 *
2634 * Make migrate_vma() a best effort thing and backoff
2635 * for any page we can not lock right away.
2636 */
2637 if (!trylock_page(page)) {
2638 migrate->src[i] = 0;
2639 migrate->cpages--;
2640 put_page(page);
2641 continue;
2642 }
2643 remap = false;
2644 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2645 }
8763cb45 2646
a5430dda
JG
2647 /* ZONE_DEVICE pages are not on LRU */
2648 if (!is_zone_device_page(page)) {
2649 if (!PageLRU(page) && allow_drain) {
2650 /* Drain CPU's pagevec */
2651 lru_add_drain_all();
2652 allow_drain = false;
2653 }
8763cb45 2654
a5430dda
JG
2655 if (isolate_lru_page(page)) {
2656 if (remap) {
2657 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2658 migrate->cpages--;
2659 restore++;
2660 } else {
2661 migrate->src[i] = 0;
2662 unlock_page(page);
2663 migrate->cpages--;
2664 put_page(page);
2665 }
2666 continue;
8c3328f1 2667 }
a5430dda
JG
2668
2669 /* Drop the reference we took in collect */
2670 put_page(page);
8763cb45
JG
2671 }
2672
2673 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2674 if (remap) {
2675 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2676 migrate->cpages--;
2677 restore++;
8763cb45 2678
a5430dda
JG
2679 if (!is_zone_device_page(page)) {
2680 get_page(page);
2681 putback_lru_page(page);
2682 }
8c3328f1
JG
2683 } else {
2684 migrate->src[i] = 0;
2685 unlock_page(page);
2686 migrate->cpages--;
2687
a5430dda
JG
2688 if (!is_zone_device_page(page))
2689 putback_lru_page(page);
2690 else
2691 put_page(page);
8c3328f1 2692 }
8763cb45
JG
2693 }
2694 }
8c3328f1
JG
2695
2696 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2697 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2698
2699 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700 continue;
2701
2702 remove_migration_pte(page, migrate->vma, addr, page);
2703
2704 migrate->src[i] = 0;
2705 unlock_page(page);
2706 put_page(page);
2707 restore--;
2708 }
8763cb45
JG
2709}
2710
2711/*
2712 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2713 * @migrate: migrate struct containing all migration information
2714 *
2715 * Replace page mapping (CPU page table pte) with a special migration pte entry
2716 * and check again if it has been pinned. Pinned pages are restored because we
2717 * cannot migrate them.
2718 *
2719 * This is the last step before we call the device driver callback to allocate
2720 * destination memory and copy contents of original page over to new page.
2721 */
2722static void migrate_vma_unmap(struct migrate_vma *migrate)
2723{
013339df 2724 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
8763cb45
JG
2725 const unsigned long npages = migrate->npages;
2726 const unsigned long start = migrate->start;
2727 unsigned long addr, i, restore = 0;
2728
2729 for (i = 0; i < npages; i++) {
2730 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2731
2732 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2733 continue;
2734
8c3328f1
JG
2735 if (page_mapped(page)) {
2736 try_to_unmap(page, flags);
2737 if (page_mapped(page))
2738 goto restore;
8763cb45 2739 }
8c3328f1
JG
2740
2741 if (migrate_vma_check_page(page))
2742 continue;
2743
2744restore:
2745 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2746 migrate->cpages--;
2747 restore++;
8763cb45
JG
2748 }
2749
2750 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2751 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2752
2753 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2754 continue;
2755
2756 remove_migration_ptes(page, page, false);
2757
2758 migrate->src[i] = 0;
2759 unlock_page(page);
2760 restore--;
2761
a5430dda
JG
2762 if (is_zone_device_page(page))
2763 put_page(page);
2764 else
2765 putback_lru_page(page);
8763cb45
JG
2766 }
2767}
2768
a7d1f22b
CH
2769/**
2770 * migrate_vma_setup() - prepare to migrate a range of memory
eaf444de 2771 * @args: contains the vma, start, and pfns arrays for the migration
a7d1f22b
CH
2772 *
2773 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2774 * without an error.
2775 *
2776 * Prepare to migrate a range of memory virtual address range by collecting all
2777 * the pages backing each virtual address in the range, saving them inside the
2778 * src array. Then lock those pages and unmap them. Once the pages are locked
2779 * and unmapped, check whether each page is pinned or not. Pages that aren't
2780 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2781 * corresponding src array entry. Then restores any pages that are pinned, by
2782 * remapping and unlocking those pages.
2783 *
2784 * The caller should then allocate destination memory and copy source memory to
2785 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2786 * flag set). Once these are allocated and copied, the caller must update each
2787 * corresponding entry in the dst array with the pfn value of the destination
2788 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2789 * (destination pages must have their struct pages locked, via lock_page()).
2790 *
2791 * Note that the caller does not have to migrate all the pages that are marked
2792 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2793 * device memory to system memory. If the caller cannot migrate a device page
2794 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2795 * consequences for the userspace process, so it must be avoided if at all
2796 * possible.
2797 *
2798 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2799 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2800 * allowing the caller to allocate device memory for those unback virtual
2801 * address. For this the caller simply has to allocate device memory and
2802 * properly set the destination entry like for regular migration. Note that
2803 * this can still fails and thus inside the device driver must check if the
2804 * migration was successful for those entries after calling migrate_vma_pages()
2805 * just like for regular migration.
2806 *
2807 * After that, the callers must call migrate_vma_pages() to go over each entry
2808 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2809 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2810 * then migrate_vma_pages() to migrate struct page information from the source
2811 * struct page to the destination struct page. If it fails to migrate the
2812 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2813 * src array.
2814 *
2815 * At this point all successfully migrated pages have an entry in the src
2816 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2817 * array entry with MIGRATE_PFN_VALID flag set.
2818 *
2819 * Once migrate_vma_pages() returns the caller may inspect which pages were
2820 * successfully migrated, and which were not. Successfully migrated pages will
2821 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2822 *
2823 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2824 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2825 * in read mode (hence no one can unmap the range being migrated).
2826 *
2827 * Once the caller is done cleaning up things and updating its page table (if it
2828 * chose to do so, this is not an obligation) it finally calls
2829 * migrate_vma_finalize() to update the CPU page table to point to new pages
2830 * for successfully migrated pages or otherwise restore the CPU page table to
2831 * point to the original source pages.
2832 */
2833int migrate_vma_setup(struct migrate_vma *args)
2834{
2835 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2836
2837 args->start &= PAGE_MASK;
2838 args->end &= PAGE_MASK;
2839 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2840 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2841 return -EINVAL;
2842 if (nr_pages <= 0)
2843 return -EINVAL;
2844 if (args->start < args->vma->vm_start ||
2845 args->start >= args->vma->vm_end)
2846 return -EINVAL;
2847 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2848 return -EINVAL;
2849 if (!args->src || !args->dst)
2850 return -EINVAL;
2851
2852 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2853 args->cpages = 0;
2854 args->npages = 0;
2855
2856 migrate_vma_collect(args);
2857
2858 if (args->cpages)
2859 migrate_vma_prepare(args);
2860 if (args->cpages)
2861 migrate_vma_unmap(args);
2862
2863 /*
2864 * At this point pages are locked and unmapped, and thus they have
2865 * stable content and can safely be copied to destination memory that
2866 * is allocated by the drivers.
2867 */
2868 return 0;
2869
2870}
2871EXPORT_SYMBOL(migrate_vma_setup);
2872
34290e2c
RC
2873/*
2874 * This code closely matches the code in:
2875 * __handle_mm_fault()
2876 * handle_pte_fault()
2877 * do_anonymous_page()
2878 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2879 * private page.
2880 */
8315ada7
JG
2881static void migrate_vma_insert_page(struct migrate_vma *migrate,
2882 unsigned long addr,
2883 struct page *page,
d85c6db4 2884 unsigned long *src)
8315ada7
JG
2885{
2886 struct vm_area_struct *vma = migrate->vma;
2887 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2888 bool flush = false;
2889 spinlock_t *ptl;
2890 pte_t entry;
2891 pgd_t *pgdp;
2892 p4d_t *p4dp;
2893 pud_t *pudp;
2894 pmd_t *pmdp;
2895 pte_t *ptep;
2896
2897 /* Only allow populating anonymous memory */
2898 if (!vma_is_anonymous(vma))
2899 goto abort;
2900
2901 pgdp = pgd_offset(mm, addr);
2902 p4dp = p4d_alloc(mm, pgdp, addr);
2903 if (!p4dp)
2904 goto abort;
2905 pudp = pud_alloc(mm, p4dp, addr);
2906 if (!pudp)
2907 goto abort;
2908 pmdp = pmd_alloc(mm, pudp, addr);
2909 if (!pmdp)
2910 goto abort;
2911
2912 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2913 goto abort;
2914
2915 /*
2916 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2917 * pte_offset_map() on pmds where a huge pmd might be created
2918 * from a different thread.
2919 *
3e4e28c5 2920 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2921 * parallel threads are excluded by other means.
2922 *
3e4e28c5 2923 * Here we only have mmap_read_lock(mm).
8315ada7 2924 */
4cf58924 2925 if (pte_alloc(mm, pmdp))
8315ada7
JG
2926 goto abort;
2927
2928 /* See the comment in pte_alloc_one_map() */
2929 if (unlikely(pmd_trans_unstable(pmdp)))
2930 goto abort;
2931
2932 if (unlikely(anon_vma_prepare(vma)))
2933 goto abort;
d9eb1ea2 2934 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2935 goto abort;
2936
2937 /*
2938 * The memory barrier inside __SetPageUptodate makes sure that
2939 * preceding stores to the page contents become visible before
2940 * the set_pte_at() write.
2941 */
2942 __SetPageUptodate(page);
2943
df6ad698
JG
2944 if (is_zone_device_page(page)) {
2945 if (is_device_private_page(page)) {
2946 swp_entry_t swp_entry;
2947
2948 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2949 entry = swp_entry_to_pte(swp_entry);
34f5e9b9
ML
2950 } else {
2951 /*
2952 * For now we only support migrating to un-addressable
2953 * device memory.
2954 */
2955 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2956 goto abort;
df6ad698 2957 }
8315ada7
JG
2958 } else {
2959 entry = mk_pte(page, vma->vm_page_prot);
2960 if (vma->vm_flags & VM_WRITE)
2961 entry = pte_mkwrite(pte_mkdirty(entry));
2962 }
2963
2964 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2965
34290e2c
RC
2966 if (check_stable_address_space(mm))
2967 goto unlock_abort;
2968
8315ada7
JG
2969 if (pte_present(*ptep)) {
2970 unsigned long pfn = pte_pfn(*ptep);
2971
c23a0c99
RC
2972 if (!is_zero_pfn(pfn))
2973 goto unlock_abort;
8315ada7 2974 flush = true;
c23a0c99
RC
2975 } else if (!pte_none(*ptep))
2976 goto unlock_abort;
8315ada7
JG
2977
2978 /*
c23a0c99 2979 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2980 * just back off.
2981 */
c23a0c99
RC
2982 if (userfaultfd_missing(vma))
2983 goto unlock_abort;
8315ada7
JG
2984
2985 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2986 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7 2987 if (!is_zone_device_page(page))
b518154e 2988 lru_cache_add_inactive_or_unevictable(page, vma);
8315ada7
JG
2989 get_page(page);
2990
2991 if (flush) {
2992 flush_cache_page(vma, addr, pte_pfn(*ptep));
2993 ptep_clear_flush_notify(vma, addr, ptep);
2994 set_pte_at_notify(mm, addr, ptep, entry);
2995 update_mmu_cache(vma, addr, ptep);
2996 } else {
2997 /* No need to invalidate - it was non-present before */
2998 set_pte_at(mm, addr, ptep, entry);
2999 update_mmu_cache(vma, addr, ptep);
3000 }
3001
3002 pte_unmap_unlock(ptep, ptl);
3003 *src = MIGRATE_PFN_MIGRATE;
3004 return;
3005
c23a0c99
RC
3006unlock_abort:
3007 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
3008abort:
3009 *src &= ~MIGRATE_PFN_MIGRATE;
3010}
3011
a7d1f22b 3012/**
8763cb45
JG
3013 * migrate_vma_pages() - migrate meta-data from src page to dst page
3014 * @migrate: migrate struct containing all migration information
3015 *
3016 * This migrates struct page meta-data from source struct page to destination
3017 * struct page. This effectively finishes the migration from source page to the
3018 * destination page.
3019 */
a7d1f22b 3020void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
3021{
3022 const unsigned long npages = migrate->npages;
3023 const unsigned long start = migrate->start;
ac46d4f3
JG
3024 struct mmu_notifier_range range;
3025 unsigned long addr, i;
8315ada7 3026 bool notified = false;
8763cb45
JG
3027
3028 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3029 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3030 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3031 struct address_space *mapping;
3032 int r;
3033
8315ada7
JG
3034 if (!newpage) {
3035 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 3036 continue;
8315ada7
JG
3037 }
3038
3039 if (!page) {
c23a0c99 3040 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 3041 continue;
8315ada7 3042 if (!notified) {
8315ada7 3043 notified = true;
ac46d4f3 3044
5e5dda81
RC
3045 mmu_notifier_range_init_migrate(&range, 0,
3046 migrate->vma, migrate->vma->vm_mm,
3047 addr, migrate->end,
3048 migrate->pgmap_owner);
ac46d4f3 3049 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
3050 }
3051 migrate_vma_insert_page(migrate, addr, newpage,
d85c6db4 3052 &migrate->src[i]);
8763cb45 3053 continue;
8315ada7 3054 }
8763cb45
JG
3055
3056 mapping = page_mapping(page);
3057
a5430dda
JG
3058 if (is_zone_device_page(newpage)) {
3059 if (is_device_private_page(newpage)) {
3060 /*
3061 * For now only support private anonymous when
3062 * migrating to un-addressable device memory.
3063 */
3064 if (mapping) {
3065 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3066 continue;
3067 }
25b2995a 3068 } else {
a5430dda
JG
3069 /*
3070 * Other types of ZONE_DEVICE page are not
3071 * supported.
3072 */
3073 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3074 continue;
3075 }
3076 }
3077
8763cb45
JG
3078 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3079 if (r != MIGRATEPAGE_SUCCESS)
3080 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3081 }
8315ada7 3082
4645b9fe
JG
3083 /*
3084 * No need to double call mmu_notifier->invalidate_range() callback as
3085 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3086 * did already call it.
3087 */
8315ada7 3088 if (notified)
ac46d4f3 3089 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 3090}
a7d1f22b 3091EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 3092
a7d1f22b 3093/**
8763cb45
JG
3094 * migrate_vma_finalize() - restore CPU page table entry
3095 * @migrate: migrate struct containing all migration information
3096 *
3097 * This replaces the special migration pte entry with either a mapping to the
3098 * new page if migration was successful for that page, or to the original page
3099 * otherwise.
3100 *
3101 * This also unlocks the pages and puts them back on the lru, or drops the extra
3102 * refcount, for device pages.
3103 */
a7d1f22b 3104void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
3105{
3106 const unsigned long npages = migrate->npages;
3107 unsigned long i;
3108
3109 for (i = 0; i < npages; i++) {
3110 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3111 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3112
8315ada7
JG
3113 if (!page) {
3114 if (newpage) {
3115 unlock_page(newpage);
3116 put_page(newpage);
3117 }
8763cb45 3118 continue;
8315ada7
JG
3119 }
3120
8763cb45
JG
3121 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3122 if (newpage) {
3123 unlock_page(newpage);
3124 put_page(newpage);
3125 }
3126 newpage = page;
3127 }
3128
3129 remove_migration_ptes(page, newpage, false);
3130 unlock_page(page);
8763cb45 3131
a5430dda
JG
3132 if (is_zone_device_page(page))
3133 put_page(page);
3134 else
3135 putback_lru_page(page);
8763cb45
JG
3136
3137 if (newpage != page) {
3138 unlock_page(newpage);
a5430dda
JG
3139 if (is_zone_device_page(newpage))
3140 put_page(newpage);
3141 else
3142 putback_lru_page(newpage);
8763cb45
JG
3143 }
3144 }
3145}
a7d1f22b 3146EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 3147#endif /* CONFIG_DEVICE_PRIVATE */