Merge tag 'pci-v5.0-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[linux-2.6-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
df6ad698 41#include <linux/pfn_t.h>
a5430dda 42#include <linux/memremap.h>
8315ada7 43#include <linux/userfaultfd_k.h>
bf6bddf1 44#include <linux/balloon_compaction.h>
f714f4f2 45#include <linux/mmu_notifier.h>
33c3fc71 46#include <linux/page_idle.h>
d435edca 47#include <linux/page_owner.h>
6e84f315 48#include <linux/sched/mm.h>
197e7e52 49#include <linux/ptrace.h>
b20a3503 50
0d1836c3
MN
51#include <asm/tlbflush.h>
52
7b2a2d4a
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/migrate.h>
55
b20a3503
CL
56#include "internal.h"
57
b20a3503 58/*
742755a1 59 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
b20a3503
CL
62 */
63int migrate_prep(void)
64{
b20a3503
CL
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74}
75
748446bb
MG
76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
77int migrate_prep_local(void)
78{
79 lru_add_drain();
80
81 return 0;
82}
83
9e5bcd61 84int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
85{
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
9e5bcd61 135 return 0;
bda807d4
MK
136
137out_no_isolated:
138 unlock_page(page);
139out_putpage:
140 put_page(page);
141out:
9e5bcd61 142 return -EBUSY;
bda807d4
MK
143}
144
145/* It should be called on page which is PG_movable */
146void putback_movable_page(struct page *page)
147{
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157}
158
5733c7d1
RA
159/*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
59c82b70
JK
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
5733c7d1
RA
166 */
167void putback_movable_pages(struct list_head *l)
168{
169 struct page *page;
170 struct page *page2;
171
b20a3503 172 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
e24f0b8f 177 list_del(&page->lru);
bda807d4
MK
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
b1123ea6 183 if (unlikely(__PageMovable(page))) {
bda807d4
MK
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
e8db67eb
NH
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
fc280fe8 195 putback_lru_page(page);
bda807d4 196 }
b20a3503 197 }
b20a3503
CL
198}
199
0697212a
CL
200/*
201 * Restore a potential migration pte to a working pte entry
202 */
e4b82222 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 204 unsigned long addr, void *old)
0697212a 205{
3fe87967
KS
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
0697212a 214 swp_entry_t entry;
0697212a 215
3fe87967
KS
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
0697212a 223
616b8371
ZY
224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231#endif
232
3fe87967
KS
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
0697212a 237
3fe87967
KS
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 244
df6ad698
JG
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
a5430dda
JG
253 } else
254 flush_dcache_page(new);
255
3ef8fd7f 256#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
383321ab
AK
265 } else
266#endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 269
383321ab
AK
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
3fe87967
KS
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
e125fe40
KS
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
3fe87967
KS
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
51afb12b 284
e4b82222 285 return true;
0697212a
CL
286}
287
04e62a29
CL
288/*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
e388466d 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 293{
051ac83a
JK
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
e388466d
KS
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
04e62a29
CL
303}
304
0697212a
CL
305/*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
0697212a 309 */
e66f17ff 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 311 spinlock_t *ptl)
0697212a 312{
30dad309 313 pte_t pte;
0697212a
CL
314 swp_entry_t entry;
315 struct page *page;
316
30dad309 317 spin_lock(ptl);
0697212a
CL
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
e286781d 328 /*
89eb946a 329 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
330 * is zero; but we must not call put_and_wait_on_page_locked() without
331 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
332 */
333 if (!get_page_unless_zero(page))
334 goto out;
0697212a 335 pte_unmap_unlock(ptep, ptl);
9a1ea439 336 put_and_wait_on_page_locked(page);
0697212a
CL
337 return;
338out:
339 pte_unmap_unlock(ptep, ptl);
340}
341
30dad309
NH
342void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343 unsigned long address)
344{
345 spinlock_t *ptl = pte_lockptr(mm, pmd);
346 pte_t *ptep = pte_offset_map(pmd, address);
347 __migration_entry_wait(mm, ptep, ptl);
348}
349
cb900f41
KS
350void migration_entry_wait_huge(struct vm_area_struct *vma,
351 struct mm_struct *mm, pte_t *pte)
30dad309 352{
cb900f41 353 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
354 __migration_entry_wait(mm, pte, ptl);
355}
356
616b8371
ZY
357#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359{
360 spinlock_t *ptl;
361 struct page *page;
362
363 ptl = pmd_lock(mm, pmd);
364 if (!is_pmd_migration_entry(*pmd))
365 goto unlock;
366 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367 if (!get_page_unless_zero(page))
368 goto unlock;
369 spin_unlock(ptl);
9a1ea439 370 put_and_wait_on_page_locked(page);
616b8371
ZY
371 return;
372unlock:
373 spin_unlock(ptl);
374}
375#endif
376
0b3901b3
JK
377static int expected_page_refs(struct page *page)
378{
379 int expected_count = 1;
380
381 /*
382 * Device public or private pages have an extra refcount as they are
383 * ZONE_DEVICE pages.
384 */
385 expected_count += is_device_private_page(page);
386 expected_count += is_device_public_page(page);
387 if (page_mapping(page))
388 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390 return expected_count;
391}
392
b20a3503 393/*
c3fcf8a5 394 * Replace the page in the mapping.
5b5c7120
CL
395 *
396 * The number of remaining references must be:
397 * 1 for anonymous pages without a mapping
398 * 2 for pages with a mapping
266cf658 399 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 400 */
36bc08cc 401int migrate_page_move_mapping(struct address_space *mapping,
ab41ee68 402 struct page *newpage, struct page *page, enum migrate_mode mode,
8e321fef 403 int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
0b3901b3 408 int expected_count = expected_page_refs(page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
e71769ae 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a
MW
467 xas_next(&xas);
468 xas_store(&xas, newpage + i);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
e71769ae 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
11fb9989
MG
493 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
494 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 495 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
496 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
497 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
498 }
499 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 500 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 501 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 502 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 503 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 504 }
4b02108a 505 }
42cb14b1 506 local_irq_enable();
b20a3503 507
78bd5209 508 return MIGRATEPAGE_SUCCESS;
b20a3503 509}
1118dce7 510EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 511
290408d4
NH
512/*
513 * The expected number of remaining references is the same as that
514 * of migrate_page_move_mapping().
515 */
516int migrate_huge_page_move_mapping(struct address_space *mapping,
517 struct page *newpage, struct page *page)
518{
89eb946a 519 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 520 int expected_count;
290408d4 521
89eb946a 522 xas_lock_irq(&xas);
290408d4 523 expected_count = 2 + page_has_private(page);
89eb946a
MW
524 if (page_count(page) != expected_count || xas_load(&xas) != page) {
525 xas_unlock_irq(&xas);
290408d4
NH
526 return -EAGAIN;
527 }
528
fe896d18 529 if (!page_ref_freeze(page, expected_count)) {
89eb946a 530 xas_unlock_irq(&xas);
290408d4
NH
531 return -EAGAIN;
532 }
533
cf4b769a
HD
534 newpage->index = page->index;
535 newpage->mapping = page->mapping;
6a93ca8f 536
290408d4
NH
537 get_page(newpage);
538
89eb946a 539 xas_store(&xas, newpage);
290408d4 540
fe896d18 541 page_ref_unfreeze(page, expected_count - 1);
290408d4 542
89eb946a 543 xas_unlock_irq(&xas);
6a93ca8f 544
78bd5209 545 return MIGRATEPAGE_SUCCESS;
290408d4
NH
546}
547
30b0a105
DH
548/*
549 * Gigantic pages are so large that we do not guarantee that page++ pointer
550 * arithmetic will work across the entire page. We need something more
551 * specialized.
552 */
553static void __copy_gigantic_page(struct page *dst, struct page *src,
554 int nr_pages)
555{
556 int i;
557 struct page *dst_base = dst;
558 struct page *src_base = src;
559
560 for (i = 0; i < nr_pages; ) {
561 cond_resched();
562 copy_highpage(dst, src);
563
564 i++;
565 dst = mem_map_next(dst, dst_base, i);
566 src = mem_map_next(src, src_base, i);
567 }
568}
569
570static void copy_huge_page(struct page *dst, struct page *src)
571{
572 int i;
573 int nr_pages;
574
575 if (PageHuge(src)) {
576 /* hugetlbfs page */
577 struct hstate *h = page_hstate(src);
578 nr_pages = pages_per_huge_page(h);
579
580 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
581 __copy_gigantic_page(dst, src, nr_pages);
582 return;
583 }
584 } else {
585 /* thp page */
586 BUG_ON(!PageTransHuge(src));
587 nr_pages = hpage_nr_pages(src);
588 }
589
590 for (i = 0; i < nr_pages; i++) {
591 cond_resched();
592 copy_highpage(dst + i, src + i);
593 }
594}
595
b20a3503
CL
596/*
597 * Copy the page to its new location
598 */
2916ecc0 599void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 600{
7851a45c
RR
601 int cpupid;
602
b20a3503
CL
603 if (PageError(page))
604 SetPageError(newpage);
605 if (PageReferenced(page))
606 SetPageReferenced(newpage);
607 if (PageUptodate(page))
608 SetPageUptodate(newpage);
894bc310 609 if (TestClearPageActive(page)) {
309381fe 610 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 611 SetPageActive(newpage);
418b27ef
LS
612 } else if (TestClearPageUnevictable(page))
613 SetPageUnevictable(newpage);
1899ad18
JW
614 if (PageWorkingset(page))
615 SetPageWorkingset(newpage);
b20a3503
CL
616 if (PageChecked(page))
617 SetPageChecked(newpage);
618 if (PageMappedToDisk(page))
619 SetPageMappedToDisk(newpage);
620
42cb14b1
HD
621 /* Move dirty on pages not done by migrate_page_move_mapping() */
622 if (PageDirty(page))
623 SetPageDirty(newpage);
b20a3503 624
33c3fc71
VD
625 if (page_is_young(page))
626 set_page_young(newpage);
627 if (page_is_idle(page))
628 set_page_idle(newpage);
629
7851a45c
RR
630 /*
631 * Copy NUMA information to the new page, to prevent over-eager
632 * future migrations of this same page.
633 */
634 cpupid = page_cpupid_xchg_last(page, -1);
635 page_cpupid_xchg_last(newpage, cpupid);
636
e9995ef9 637 ksm_migrate_page(newpage, page);
c8d6553b
HD
638 /*
639 * Please do not reorder this without considering how mm/ksm.c's
640 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
641 */
b3b3a99c
NH
642 if (PageSwapCache(page))
643 ClearPageSwapCache(page);
b20a3503
CL
644 ClearPagePrivate(page);
645 set_page_private(page, 0);
b20a3503
CL
646
647 /*
648 * If any waiters have accumulated on the new page then
649 * wake them up.
650 */
651 if (PageWriteback(newpage))
652 end_page_writeback(newpage);
d435edca
VB
653
654 copy_page_owner(page, newpage);
74485cf2
JW
655
656 mem_cgroup_migrate(page, newpage);
b20a3503 657}
2916ecc0
JG
658EXPORT_SYMBOL(migrate_page_states);
659
660void migrate_page_copy(struct page *newpage, struct page *page)
661{
662 if (PageHuge(page) || PageTransHuge(page))
663 copy_huge_page(newpage, page);
664 else
665 copy_highpage(newpage, page);
666
667 migrate_page_states(newpage, page);
668}
1118dce7 669EXPORT_SYMBOL(migrate_page_copy);
b20a3503 670
1d8b85cc
CL
671/************************************************************
672 * Migration functions
673 ***********************************************************/
674
b20a3503 675/*
bda807d4 676 * Common logic to directly migrate a single LRU page suitable for
266cf658 677 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
678 *
679 * Pages are locked upon entry and exit.
680 */
2d1db3b1 681int migrate_page(struct address_space *mapping,
a6bc32b8
MG
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
b20a3503
CL
684{
685 int rc;
686
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
688
ab41ee68 689 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
b20a3503 690
78bd5209 691 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
692 return rc;
693
2916ecc0
JG
694 if (mode != MIGRATE_SYNC_NO_COPY)
695 migrate_page_copy(newpage, page);
696 else
697 migrate_page_states(newpage, page);
78bd5209 698 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
699}
700EXPORT_SYMBOL(migrate_page);
701
9361401e 702#ifdef CONFIG_BLOCK
84ade7c1
JK
703/* Returns true if all buffers are successfully locked */
704static bool buffer_migrate_lock_buffers(struct buffer_head *head,
705 enum migrate_mode mode)
706{
707 struct buffer_head *bh = head;
708
709 /* Simple case, sync compaction */
710 if (mode != MIGRATE_ASYNC) {
711 do {
712 get_bh(bh);
713 lock_buffer(bh);
714 bh = bh->b_this_page;
715
716 } while (bh != head);
717
718 return true;
719 }
720
721 /* async case, we cannot block on lock_buffer so use trylock_buffer */
722 do {
723 get_bh(bh);
724 if (!trylock_buffer(bh)) {
725 /*
726 * We failed to lock the buffer and cannot stall in
727 * async migration. Release the taken locks
728 */
729 struct buffer_head *failed_bh = bh;
730 put_bh(failed_bh);
731 bh = head;
732 while (bh != failed_bh) {
733 unlock_buffer(bh);
734 put_bh(bh);
735 bh = bh->b_this_page;
736 }
737 return false;
738 }
739
740 bh = bh->b_this_page;
741 } while (bh != head);
742 return true;
743}
744
89cb0888
JK
745static int __buffer_migrate_page(struct address_space *mapping,
746 struct page *newpage, struct page *page, enum migrate_mode mode,
747 bool check_refs)
1d8b85cc 748{
1d8b85cc
CL
749 struct buffer_head *bh, *head;
750 int rc;
cc4f11e6 751 int expected_count;
1d8b85cc 752
1d8b85cc 753 if (!page_has_buffers(page))
a6bc32b8 754 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 755
cc4f11e6
JK
756 /* Check whether page does not have extra refs before we do more work */
757 expected_count = expected_page_refs(page);
758 if (page_count(page) != expected_count)
759 return -EAGAIN;
1d8b85cc 760
cc4f11e6
JK
761 head = page_buffers(page);
762 if (!buffer_migrate_lock_buffers(head, mode))
763 return -EAGAIN;
1d8b85cc 764
89cb0888
JK
765 if (check_refs) {
766 bool busy;
767 bool invalidated = false;
768
769recheck_buffers:
770 busy = false;
771 spin_lock(&mapping->private_lock);
772 bh = head;
773 do {
774 if (atomic_read(&bh->b_count)) {
775 busy = true;
776 break;
777 }
778 bh = bh->b_this_page;
779 } while (bh != head);
780 spin_unlock(&mapping->private_lock);
781 if (busy) {
782 if (invalidated) {
783 rc = -EAGAIN;
784 goto unlock_buffers;
785 }
786 invalidate_bh_lrus();
787 invalidated = true;
788 goto recheck_buffers;
789 }
790 }
791
ab41ee68 792 rc = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
78bd5209 793 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 794 goto unlock_buffers;
1d8b85cc
CL
795
796 ClearPagePrivate(page);
797 set_page_private(newpage, page_private(page));
798 set_page_private(page, 0);
799 put_page(page);
800 get_page(newpage);
801
802 bh = head;
803 do {
804 set_bh_page(bh, newpage, bh_offset(bh));
805 bh = bh->b_this_page;
806
807 } while (bh != head);
808
809 SetPagePrivate(newpage);
810
2916ecc0
JG
811 if (mode != MIGRATE_SYNC_NO_COPY)
812 migrate_page_copy(newpage, page);
813 else
814 migrate_page_states(newpage, page);
1d8b85cc 815
cc4f11e6
JK
816 rc = MIGRATEPAGE_SUCCESS;
817unlock_buffers:
1d8b85cc
CL
818 bh = head;
819 do {
820 unlock_buffer(bh);
2916ecc0 821 put_bh(bh);
1d8b85cc
CL
822 bh = bh->b_this_page;
823
824 } while (bh != head);
825
cc4f11e6 826 return rc;
1d8b85cc 827}
89cb0888
JK
828
829/*
830 * Migration function for pages with buffers. This function can only be used
831 * if the underlying filesystem guarantees that no other references to "page"
832 * exist. For example attached buffer heads are accessed only under page lock.
833 */
834int buffer_migrate_page(struct address_space *mapping,
835 struct page *newpage, struct page *page, enum migrate_mode mode)
836{
837 return __buffer_migrate_page(mapping, newpage, page, mode, false);
838}
1d8b85cc 839EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
840
841/*
842 * Same as above except that this variant is more careful and checks that there
843 * are also no buffer head references. This function is the right one for
844 * mappings where buffer heads are directly looked up and referenced (such as
845 * block device mappings).
846 */
847int buffer_migrate_page_norefs(struct address_space *mapping,
848 struct page *newpage, struct page *page, enum migrate_mode mode)
849{
850 return __buffer_migrate_page(mapping, newpage, page, mode, true);
851}
9361401e 852#endif
1d8b85cc 853
04e62a29
CL
854/*
855 * Writeback a page to clean the dirty state
856 */
857static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 858{
04e62a29
CL
859 struct writeback_control wbc = {
860 .sync_mode = WB_SYNC_NONE,
861 .nr_to_write = 1,
862 .range_start = 0,
863 .range_end = LLONG_MAX,
04e62a29
CL
864 .for_reclaim = 1
865 };
866 int rc;
867
868 if (!mapping->a_ops->writepage)
869 /* No write method for the address space */
870 return -EINVAL;
871
872 if (!clear_page_dirty_for_io(page))
873 /* Someone else already triggered a write */
874 return -EAGAIN;
875
8351a6e4 876 /*
04e62a29
CL
877 * A dirty page may imply that the underlying filesystem has
878 * the page on some queue. So the page must be clean for
879 * migration. Writeout may mean we loose the lock and the
880 * page state is no longer what we checked for earlier.
881 * At this point we know that the migration attempt cannot
882 * be successful.
8351a6e4 883 */
e388466d 884 remove_migration_ptes(page, page, false);
8351a6e4 885
04e62a29 886 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 887
04e62a29
CL
888 if (rc != AOP_WRITEPAGE_ACTIVATE)
889 /* unlocked. Relock */
890 lock_page(page);
891
bda8550d 892 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
893}
894
895/*
896 * Default handling if a filesystem does not provide a migration function.
897 */
898static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 899 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 900{
b969c4ab 901 if (PageDirty(page)) {
a6bc32b8 902 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
903 switch (mode) {
904 case MIGRATE_SYNC:
905 case MIGRATE_SYNC_NO_COPY:
906 break;
907 default:
b969c4ab 908 return -EBUSY;
2916ecc0 909 }
04e62a29 910 return writeout(mapping, page);
b969c4ab 911 }
8351a6e4
CL
912
913 /*
914 * Buffers may be managed in a filesystem specific way.
915 * We must have no buffers or drop them.
916 */
266cf658 917 if (page_has_private(page) &&
8351a6e4
CL
918 !try_to_release_page(page, GFP_KERNEL))
919 return -EAGAIN;
920
a6bc32b8 921 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
922}
923
e24f0b8f
CL
924/*
925 * Move a page to a newly allocated page
926 * The page is locked and all ptes have been successfully removed.
927 *
928 * The new page will have replaced the old page if this function
929 * is successful.
894bc310
LS
930 *
931 * Return value:
932 * < 0 - error code
78bd5209 933 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 934 */
3fe2011f 935static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 936 enum migrate_mode mode)
e24f0b8f
CL
937{
938 struct address_space *mapping;
bda807d4
MK
939 int rc = -EAGAIN;
940 bool is_lru = !__PageMovable(page);
e24f0b8f 941
7db7671f
HD
942 VM_BUG_ON_PAGE(!PageLocked(page), page);
943 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 944
e24f0b8f 945 mapping = page_mapping(page);
bda807d4
MK
946
947 if (likely(is_lru)) {
948 if (!mapping)
949 rc = migrate_page(mapping, newpage, page, mode);
950 else if (mapping->a_ops->migratepage)
951 /*
952 * Most pages have a mapping and most filesystems
953 * provide a migratepage callback. Anonymous pages
954 * are part of swap space which also has its own
955 * migratepage callback. This is the most common path
956 * for page migration.
957 */
958 rc = mapping->a_ops->migratepage(mapping, newpage,
959 page, mode);
960 else
961 rc = fallback_migrate_page(mapping, newpage,
962 page, mode);
963 } else {
e24f0b8f 964 /*
bda807d4
MK
965 * In case of non-lru page, it could be released after
966 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 967 */
bda807d4
MK
968 VM_BUG_ON_PAGE(!PageIsolated(page), page);
969 if (!PageMovable(page)) {
970 rc = MIGRATEPAGE_SUCCESS;
971 __ClearPageIsolated(page);
972 goto out;
973 }
974
975 rc = mapping->a_ops->migratepage(mapping, newpage,
976 page, mode);
977 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
978 !PageIsolated(page));
979 }
e24f0b8f 980
5c3f9a67
HD
981 /*
982 * When successful, old pagecache page->mapping must be cleared before
983 * page is freed; but stats require that PageAnon be left as PageAnon.
984 */
985 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
986 if (__PageMovable(page)) {
987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
988
989 /*
990 * We clear PG_movable under page_lock so any compactor
991 * cannot try to migrate this page.
992 */
993 __ClearPageIsolated(page);
994 }
995
996 /*
997 * Anonymous and movable page->mapping will be cleard by
998 * free_pages_prepare so don't reset it here for keeping
999 * the type to work PageAnon, for example.
1000 */
1001 if (!PageMappingFlags(page))
5c3f9a67 1002 page->mapping = NULL;
3fe2011f 1003 }
bda807d4 1004out:
e24f0b8f
CL
1005 return rc;
1006}
1007
0dabec93 1008static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1009 int force, enum migrate_mode mode)
e24f0b8f 1010{
0dabec93 1011 int rc = -EAGAIN;
2ebba6b7 1012 int page_was_mapped = 0;
3f6c8272 1013 struct anon_vma *anon_vma = NULL;
bda807d4 1014 bool is_lru = !__PageMovable(page);
95a402c3 1015
529ae9aa 1016 if (!trylock_page(page)) {
a6bc32b8 1017 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1018 goto out;
3e7d3449
MG
1019
1020 /*
1021 * It's not safe for direct compaction to call lock_page.
1022 * For example, during page readahead pages are added locked
1023 * to the LRU. Later, when the IO completes the pages are
1024 * marked uptodate and unlocked. However, the queueing
1025 * could be merging multiple pages for one bio (e.g.
1026 * mpage_readpages). If an allocation happens for the
1027 * second or third page, the process can end up locking
1028 * the same page twice and deadlocking. Rather than
1029 * trying to be clever about what pages can be locked,
1030 * avoid the use of lock_page for direct compaction
1031 * altogether.
1032 */
1033 if (current->flags & PF_MEMALLOC)
0dabec93 1034 goto out;
3e7d3449 1035
e24f0b8f
CL
1036 lock_page(page);
1037 }
1038
1039 if (PageWriteback(page)) {
11bc82d6 1040 /*
fed5b64a 1041 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1042 * necessary to wait for PageWriteback. In the async case,
1043 * the retry loop is too short and in the sync-light case,
1044 * the overhead of stalling is too much
11bc82d6 1045 */
2916ecc0
JG
1046 switch (mode) {
1047 case MIGRATE_SYNC:
1048 case MIGRATE_SYNC_NO_COPY:
1049 break;
1050 default:
11bc82d6 1051 rc = -EBUSY;
0a31bc97 1052 goto out_unlock;
11bc82d6
AA
1053 }
1054 if (!force)
0a31bc97 1055 goto out_unlock;
e24f0b8f
CL
1056 wait_on_page_writeback(page);
1057 }
03f15c86 1058
e24f0b8f 1059 /*
dc386d4d
KH
1060 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1061 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1062 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1063 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1064 * File Caches may use write_page() or lock_page() in migration, then,
1065 * just care Anon page here.
03f15c86
HD
1066 *
1067 * Only page_get_anon_vma() understands the subtleties of
1068 * getting a hold on an anon_vma from outside one of its mms.
1069 * But if we cannot get anon_vma, then we won't need it anyway,
1070 * because that implies that the anon page is no longer mapped
1071 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1072 */
03f15c86 1073 if (PageAnon(page) && !PageKsm(page))
746b18d4 1074 anon_vma = page_get_anon_vma(page);
62e1c553 1075
7db7671f
HD
1076 /*
1077 * Block others from accessing the new page when we get around to
1078 * establishing additional references. We are usually the only one
1079 * holding a reference to newpage at this point. We used to have a BUG
1080 * here if trylock_page(newpage) fails, but would like to allow for
1081 * cases where there might be a race with the previous use of newpage.
1082 * This is much like races on refcount of oldpage: just don't BUG().
1083 */
1084 if (unlikely(!trylock_page(newpage)))
1085 goto out_unlock;
1086
bda807d4
MK
1087 if (unlikely(!is_lru)) {
1088 rc = move_to_new_page(newpage, page, mode);
1089 goto out_unlock_both;
1090 }
1091
dc386d4d 1092 /*
62e1c553
SL
1093 * Corner case handling:
1094 * 1. When a new swap-cache page is read into, it is added to the LRU
1095 * and treated as swapcache but it has no rmap yet.
1096 * Calling try_to_unmap() against a page->mapping==NULL page will
1097 * trigger a BUG. So handle it here.
1098 * 2. An orphaned page (see truncate_complete_page) might have
1099 * fs-private metadata. The page can be picked up due to memory
1100 * offlining. Everywhere else except page reclaim, the page is
1101 * invisible to the vm, so the page can not be migrated. So try to
1102 * free the metadata, so the page can be freed.
e24f0b8f 1103 */
62e1c553 1104 if (!page->mapping) {
309381fe 1105 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1106 if (page_has_private(page)) {
62e1c553 1107 try_to_free_buffers(page);
7db7671f 1108 goto out_unlock_both;
62e1c553 1109 }
7db7671f
HD
1110 } else if (page_mapped(page)) {
1111 /* Establish migration ptes */
03f15c86
HD
1112 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1113 page);
2ebba6b7 1114 try_to_unmap(page,
da1b13cc 1115 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1116 page_was_mapped = 1;
1117 }
dc386d4d 1118
e6a1530d 1119 if (!page_mapped(page))
5c3f9a67 1120 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1121
5c3f9a67
HD
1122 if (page_was_mapped)
1123 remove_migration_ptes(page,
e388466d 1124 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1125
7db7671f
HD
1126out_unlock_both:
1127 unlock_page(newpage);
1128out_unlock:
3f6c8272 1129 /* Drop an anon_vma reference if we took one */
76545066 1130 if (anon_vma)
9e60109f 1131 put_anon_vma(anon_vma);
e24f0b8f 1132 unlock_page(page);
0dabec93 1133out:
c6c919eb
MK
1134 /*
1135 * If migration is successful, decrease refcount of the newpage
1136 * which will not free the page because new page owner increased
1137 * refcounter. As well, if it is LRU page, add the page to LRU
1138 * list in here.
1139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1141 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
0dabec93
MK
1147 return rc;
1148}
95a402c3 1149
ef2a5153
GU
1150/*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1153 */
815f0ddb
ND
1154#if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
ef2a5153
GU
1156#define ICE_noinline noinline
1157#else
1158#define ICE_noinline
1159#endif
1160
0dabec93
MK
1161/*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
ef2a5153
GU
1165static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
add05cec
NH
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
0dabec93 1170{
2def7424 1171 int rc = MIGRATEPAGE_SUCCESS;
2def7424 1172 struct page *newpage;
0dabec93 1173
94723aaf
MH
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1176
666feb21 1177 newpage = get_new_page(page, private);
0dabec93
MK
1178 if (!newpage)
1179 return -ENOMEM;
1180
1181 if (page_count(page) == 1) {
1182 /* page was freed from under us. So we are done. */
c6c919eb
MK
1183 ClearPageActive(page);
1184 ClearPageUnevictable(page);
bda807d4
MK
1185 if (unlikely(__PageMovable(page))) {
1186 lock_page(page);
1187 if (!PageMovable(page))
1188 __ClearPageIsolated(page);
1189 unlock_page(page);
1190 }
c6c919eb
MK
1191 if (put_new_page)
1192 put_new_page(newpage, private);
1193 else
1194 put_page(newpage);
0dabec93
MK
1195 goto out;
1196 }
1197
9c620e2b 1198 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1199 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1200 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1201
0dabec93 1202out:
e24f0b8f 1203 if (rc != -EAGAIN) {
0dabec93
MK
1204 /*
1205 * A page that has been migrated has all references
1206 * removed and will be freed. A page that has not been
1207 * migrated will have kepts its references and be
1208 * restored.
1209 */
1210 list_del(&page->lru);
6afcf8ef
ML
1211
1212 /*
1213 * Compaction can migrate also non-LRU pages which are
1214 * not accounted to NR_ISOLATED_*. They can be recognized
1215 * as __PageMovable
1216 */
1217 if (likely(!__PageMovable(page)))
e8db67eb
NH
1218 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1219 page_is_file_cache(page), -hpage_nr_pages(page));
c6c919eb
MK
1220 }
1221
1222 /*
1223 * If migration is successful, releases reference grabbed during
1224 * isolation. Otherwise, restore the page to right list unless
1225 * we want to retry.
1226 */
1227 if (rc == MIGRATEPAGE_SUCCESS) {
1228 put_page(page);
1229 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1230 /*
c6c919eb
MK
1231 * Set PG_HWPoison on just freed page
1232 * intentionally. Although it's rather weird,
1233 * it's how HWPoison flag works at the moment.
d7e69488 1234 */
d4ae9916 1235 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1236 num_poisoned_pages_inc();
c6c919eb
MK
1237 }
1238 } else {
bda807d4
MK
1239 if (rc != -EAGAIN) {
1240 if (likely(!__PageMovable(page))) {
1241 putback_lru_page(page);
1242 goto put_new;
1243 }
1244
1245 lock_page(page);
1246 if (PageMovable(page))
1247 putback_movable_page(page);
1248 else
1249 __ClearPageIsolated(page);
1250 unlock_page(page);
1251 put_page(page);
1252 }
1253put_new:
c6c919eb
MK
1254 if (put_new_page)
1255 put_new_page(newpage, private);
1256 else
1257 put_page(newpage);
e24f0b8f 1258 }
68711a74 1259
e24f0b8f
CL
1260 return rc;
1261}
1262
290408d4
NH
1263/*
1264 * Counterpart of unmap_and_move_page() for hugepage migration.
1265 *
1266 * This function doesn't wait the completion of hugepage I/O
1267 * because there is no race between I/O and migration for hugepage.
1268 * Note that currently hugepage I/O occurs only in direct I/O
1269 * where no lock is held and PG_writeback is irrelevant,
1270 * and writeback status of all subpages are counted in the reference
1271 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1272 * under direct I/O, the reference of the head page is 512 and a bit more.)
1273 * This means that when we try to migrate hugepage whose subpages are
1274 * doing direct I/O, some references remain after try_to_unmap() and
1275 * hugepage migration fails without data corruption.
1276 *
1277 * There is also no race when direct I/O is issued on the page under migration,
1278 * because then pte is replaced with migration swap entry and direct I/O code
1279 * will wait in the page fault for migration to complete.
1280 */
1281static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1282 free_page_t put_new_page, unsigned long private,
1283 struct page *hpage, int force,
7cd12b4a 1284 enum migrate_mode mode, int reason)
290408d4 1285{
2def7424 1286 int rc = -EAGAIN;
2ebba6b7 1287 int page_was_mapped = 0;
32665f2b 1288 struct page *new_hpage;
290408d4
NH
1289 struct anon_vma *anon_vma = NULL;
1290
83467efb
NH
1291 /*
1292 * Movability of hugepages depends on architectures and hugepage size.
1293 * This check is necessary because some callers of hugepage migration
1294 * like soft offline and memory hotremove don't walk through page
1295 * tables or check whether the hugepage is pmd-based or not before
1296 * kicking migration.
1297 */
100873d7 1298 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1299 putback_active_hugepage(hpage);
83467efb 1300 return -ENOSYS;
32665f2b 1301 }
83467efb 1302
666feb21 1303 new_hpage = get_new_page(hpage, private);
290408d4
NH
1304 if (!new_hpage)
1305 return -ENOMEM;
1306
290408d4 1307 if (!trylock_page(hpage)) {
2916ecc0 1308 if (!force)
290408d4 1309 goto out;
2916ecc0
JG
1310 switch (mode) {
1311 case MIGRATE_SYNC:
1312 case MIGRATE_SYNC_NO_COPY:
1313 break;
1314 default:
1315 goto out;
1316 }
290408d4
NH
1317 lock_page(hpage);
1318 }
1319
746b18d4
PZ
1320 if (PageAnon(hpage))
1321 anon_vma = page_get_anon_vma(hpage);
290408d4 1322
7db7671f
HD
1323 if (unlikely(!trylock_page(new_hpage)))
1324 goto put_anon;
1325
2ebba6b7
HD
1326 if (page_mapped(hpage)) {
1327 try_to_unmap(hpage,
ddeaab32 1328 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1329 page_was_mapped = 1;
1330 }
290408d4
NH
1331
1332 if (!page_mapped(hpage))
5c3f9a67 1333 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1334
5c3f9a67
HD
1335 if (page_was_mapped)
1336 remove_migration_ptes(hpage,
e388466d 1337 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1338
7db7671f
HD
1339 unlock_page(new_hpage);
1340
1341put_anon:
fd4a4663 1342 if (anon_vma)
9e60109f 1343 put_anon_vma(anon_vma);
8e6ac7fa 1344
2def7424 1345 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1346 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1347 put_new_page = NULL;
1348 }
8e6ac7fa 1349
290408d4 1350 unlock_page(hpage);
09761333 1351out:
b8ec1cee
NH
1352 if (rc != -EAGAIN)
1353 putback_active_hugepage(hpage);
68711a74
DR
1354
1355 /*
1356 * If migration was not successful and there's a freeing callback, use
1357 * it. Otherwise, put_page() will drop the reference grabbed during
1358 * isolation.
1359 */
2def7424 1360 if (put_new_page)
68711a74
DR
1361 put_new_page(new_hpage, private);
1362 else
3aaa76e1 1363 putback_active_hugepage(new_hpage);
68711a74 1364
290408d4
NH
1365 return rc;
1366}
1367
b20a3503 1368/*
c73e5c9c
SB
1369 * migrate_pages - migrate the pages specified in a list, to the free pages
1370 * supplied as the target for the page migration
b20a3503 1371 *
c73e5c9c
SB
1372 * @from: The list of pages to be migrated.
1373 * @get_new_page: The function used to allocate free pages to be used
1374 * as the target of the page migration.
68711a74
DR
1375 * @put_new_page: The function used to free target pages if migration
1376 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1377 * @private: Private data to be passed on to get_new_page()
1378 * @mode: The migration mode that specifies the constraints for
1379 * page migration, if any.
1380 * @reason: The reason for page migration.
b20a3503 1381 *
c73e5c9c
SB
1382 * The function returns after 10 attempts or if no pages are movable any more
1383 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1384 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1385 * or free list only if ret != 0.
b20a3503 1386 *
c73e5c9c 1387 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1388 */
9c620e2b 1389int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1390 free_page_t put_new_page, unsigned long private,
1391 enum migrate_mode mode, int reason)
b20a3503 1392{
e24f0b8f 1393 int retry = 1;
b20a3503 1394 int nr_failed = 0;
5647bc29 1395 int nr_succeeded = 0;
b20a3503
CL
1396 int pass = 0;
1397 struct page *page;
1398 struct page *page2;
1399 int swapwrite = current->flags & PF_SWAPWRITE;
1400 int rc;
1401
1402 if (!swapwrite)
1403 current->flags |= PF_SWAPWRITE;
1404
e24f0b8f
CL
1405 for(pass = 0; pass < 10 && retry; pass++) {
1406 retry = 0;
b20a3503 1407
e24f0b8f 1408 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1409retry:
e24f0b8f 1410 cond_resched();
2d1db3b1 1411
31caf665
NH
1412 if (PageHuge(page))
1413 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1414 put_new_page, private, page,
7cd12b4a 1415 pass > 2, mode, reason);
31caf665 1416 else
68711a74 1417 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1418 private, page, pass > 2, mode,
1419 reason);
2d1db3b1 1420
e24f0b8f 1421 switch(rc) {
95a402c3 1422 case -ENOMEM:
94723aaf
MH
1423 /*
1424 * THP migration might be unsupported or the
1425 * allocation could've failed so we should
1426 * retry on the same page with the THP split
1427 * to base pages.
1428 *
1429 * Head page is retried immediately and tail
1430 * pages are added to the tail of the list so
1431 * we encounter them after the rest of the list
1432 * is processed.
1433 */
e6112fc3 1434 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1435 lock_page(page);
1436 rc = split_huge_page_to_list(page, from);
1437 unlock_page(page);
1438 if (!rc) {
1439 list_safe_reset_next(page, page2, lru);
1440 goto retry;
1441 }
1442 }
dfef2ef4 1443 nr_failed++;
95a402c3 1444 goto out;
e24f0b8f 1445 case -EAGAIN:
2d1db3b1 1446 retry++;
e24f0b8f 1447 break;
78bd5209 1448 case MIGRATEPAGE_SUCCESS:
5647bc29 1449 nr_succeeded++;
e24f0b8f
CL
1450 break;
1451 default:
354a3363
NH
1452 /*
1453 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1454 * unlike -EAGAIN case, the failed page is
1455 * removed from migration page list and not
1456 * retried in the next outer loop.
1457 */
2d1db3b1 1458 nr_failed++;
e24f0b8f 1459 break;
2d1db3b1 1460 }
b20a3503
CL
1461 }
1462 }
f2f81fb2
VB
1463 nr_failed += retry;
1464 rc = nr_failed;
95a402c3 1465out:
5647bc29
MG
1466 if (nr_succeeded)
1467 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1468 if (nr_failed)
1469 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1470 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1471
b20a3503
CL
1472 if (!swapwrite)
1473 current->flags &= ~PF_SWAPWRITE;
1474
78bd5209 1475 return rc;
b20a3503 1476}
95a402c3 1477
742755a1 1478#ifdef CONFIG_NUMA
742755a1 1479
a49bd4d7 1480static int store_status(int __user *status, int start, int value, int nr)
742755a1 1481{
a49bd4d7
MH
1482 while (nr-- > 0) {
1483 if (put_user(value, status + start))
1484 return -EFAULT;
1485 start++;
1486 }
1487
1488 return 0;
1489}
1490
1491static int do_move_pages_to_node(struct mm_struct *mm,
1492 struct list_head *pagelist, int node)
1493{
1494 int err;
1495
1496 if (list_empty(pagelist))
1497 return 0;
1498
1499 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1500 MIGRATE_SYNC, MR_SYSCALL);
1501 if (err)
1502 putback_movable_pages(pagelist);
1503 return err;
742755a1
CL
1504}
1505
1506/*
a49bd4d7
MH
1507 * Resolves the given address to a struct page, isolates it from the LRU and
1508 * puts it to the given pagelist.
1509 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1510 * queued or the page doesn't need to be migrated because it is already on
1511 * the target node
742755a1 1512 */
a49bd4d7
MH
1513static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1514 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1515{
a49bd4d7
MH
1516 struct vm_area_struct *vma;
1517 struct page *page;
1518 unsigned int follflags;
742755a1 1519 int err;
742755a1
CL
1520
1521 down_read(&mm->mmap_sem);
a49bd4d7
MH
1522 err = -EFAULT;
1523 vma = find_vma(mm, addr);
1524 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1525 goto out;
742755a1 1526
a49bd4d7
MH
1527 /* FOLL_DUMP to ignore special (like zero) pages */
1528 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1529 page = follow_page(vma, addr, follflags);
89f5b7da 1530
a49bd4d7
MH
1531 err = PTR_ERR(page);
1532 if (IS_ERR(page))
1533 goto out;
89f5b7da 1534
a49bd4d7
MH
1535 err = -ENOENT;
1536 if (!page)
1537 goto out;
742755a1 1538
a49bd4d7
MH
1539 err = 0;
1540 if (page_to_nid(page) == node)
1541 goto out_putpage;
742755a1 1542
a49bd4d7
MH
1543 err = -EACCES;
1544 if (page_mapcount(page) > 1 && !migrate_all)
1545 goto out_putpage;
742755a1 1546
a49bd4d7
MH
1547 if (PageHuge(page)) {
1548 if (PageHead(page)) {
1549 isolate_huge_page(page, pagelist);
1550 err = 0;
e632a938 1551 }
a49bd4d7
MH
1552 } else {
1553 struct page *head;
e632a938 1554
e8db67eb
NH
1555 head = compound_head(page);
1556 err = isolate_lru_page(head);
cf608ac1 1557 if (err)
a49bd4d7 1558 goto out_putpage;
742755a1 1559
a49bd4d7
MH
1560 err = 0;
1561 list_add_tail(&head->lru, pagelist);
1562 mod_node_page_state(page_pgdat(head),
1563 NR_ISOLATED_ANON + page_is_file_cache(head),
1564 hpage_nr_pages(head));
1565 }
1566out_putpage:
1567 /*
1568 * Either remove the duplicate refcount from
1569 * isolate_lru_page() or drop the page ref if it was
1570 * not isolated.
1571 */
1572 put_page(page);
1573out:
742755a1
CL
1574 up_read(&mm->mmap_sem);
1575 return err;
1576}
1577
5e9a0f02
BG
1578/*
1579 * Migrate an array of page address onto an array of nodes and fill
1580 * the corresponding array of status.
1581 */
3268c63e 1582static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1583 unsigned long nr_pages,
1584 const void __user * __user *pages,
1585 const int __user *nodes,
1586 int __user *status, int flags)
1587{
a49bd4d7
MH
1588 int current_node = NUMA_NO_NODE;
1589 LIST_HEAD(pagelist);
1590 int start, i;
1591 int err = 0, err1;
35282a2d
BG
1592
1593 migrate_prep();
1594
a49bd4d7
MH
1595 for (i = start = 0; i < nr_pages; i++) {
1596 const void __user *p;
1597 unsigned long addr;
1598 int node;
3140a227 1599
a49bd4d7
MH
1600 err = -EFAULT;
1601 if (get_user(p, pages + i))
1602 goto out_flush;
1603 if (get_user(node, nodes + i))
1604 goto out_flush;
1605 addr = (unsigned long)p;
1606
1607 err = -ENODEV;
1608 if (node < 0 || node >= MAX_NUMNODES)
1609 goto out_flush;
1610 if (!node_state(node, N_MEMORY))
1611 goto out_flush;
5e9a0f02 1612
a49bd4d7
MH
1613 err = -EACCES;
1614 if (!node_isset(node, task_nodes))
1615 goto out_flush;
1616
1617 if (current_node == NUMA_NO_NODE) {
1618 current_node = node;
1619 start = i;
1620 } else if (node != current_node) {
1621 err = do_move_pages_to_node(mm, &pagelist, current_node);
1622 if (err)
1623 goto out;
1624 err = store_status(status, start, current_node, i - start);
1625 if (err)
1626 goto out;
1627 start = i;
1628 current_node = node;
3140a227
BG
1629 }
1630
a49bd4d7
MH
1631 /*
1632 * Errors in the page lookup or isolation are not fatal and we simply
1633 * report them via status
1634 */
1635 err = add_page_for_migration(mm, addr, current_node,
1636 &pagelist, flags & MPOL_MF_MOVE_ALL);
1637 if (!err)
1638 continue;
3140a227 1639
a49bd4d7
MH
1640 err = store_status(status, i, err, 1);
1641 if (err)
1642 goto out_flush;
5e9a0f02 1643
a49bd4d7
MH
1644 err = do_move_pages_to_node(mm, &pagelist, current_node);
1645 if (err)
1646 goto out;
1647 if (i > start) {
1648 err = store_status(status, start, current_node, i - start);
1649 if (err)
1650 goto out;
1651 }
1652 current_node = NUMA_NO_NODE;
3140a227 1653 }
a49bd4d7 1654out_flush:
8f175cf5
MH
1655 if (list_empty(&pagelist))
1656 return err;
1657
a49bd4d7
MH
1658 /* Make sure we do not overwrite the existing error */
1659 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1660 if (!err1)
1661 err1 = store_status(status, start, current_node, i - start);
1662 if (!err)
1663 err = err1;
5e9a0f02
BG
1664out:
1665 return err;
1666}
1667
742755a1 1668/*
2f007e74 1669 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1670 */
80bba129
BG
1671static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1672 const void __user **pages, int *status)
742755a1 1673{
2f007e74 1674 unsigned long i;
2f007e74 1675
742755a1
CL
1676 down_read(&mm->mmap_sem);
1677
2f007e74 1678 for (i = 0; i < nr_pages; i++) {
80bba129 1679 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1680 struct vm_area_struct *vma;
1681 struct page *page;
c095adbc 1682 int err = -EFAULT;
2f007e74
BG
1683
1684 vma = find_vma(mm, addr);
70384dc6 1685 if (!vma || addr < vma->vm_start)
742755a1
CL
1686 goto set_status;
1687
d899844e
KS
1688 /* FOLL_DUMP to ignore special (like zero) pages */
1689 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1690
1691 err = PTR_ERR(page);
1692 if (IS_ERR(page))
1693 goto set_status;
1694
d899844e 1695 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1696set_status:
80bba129
BG
1697 *status = err;
1698
1699 pages++;
1700 status++;
1701 }
1702
1703 up_read(&mm->mmap_sem);
1704}
1705
1706/*
1707 * Determine the nodes of a user array of pages and store it in
1708 * a user array of status.
1709 */
1710static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1711 const void __user * __user *pages,
1712 int __user *status)
1713{
1714#define DO_PAGES_STAT_CHUNK_NR 16
1715 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1716 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1717
87b8d1ad
PA
1718 while (nr_pages) {
1719 unsigned long chunk_nr;
80bba129 1720
87b8d1ad
PA
1721 chunk_nr = nr_pages;
1722 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1723 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1724
1725 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1726 break;
80bba129
BG
1727
1728 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1729
87b8d1ad
PA
1730 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1731 break;
742755a1 1732
87b8d1ad
PA
1733 pages += chunk_nr;
1734 status += chunk_nr;
1735 nr_pages -= chunk_nr;
1736 }
1737 return nr_pages ? -EFAULT : 0;
742755a1
CL
1738}
1739
1740/*
1741 * Move a list of pages in the address space of the currently executing
1742 * process.
1743 */
7addf443
DB
1744static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1745 const void __user * __user *pages,
1746 const int __user *nodes,
1747 int __user *status, int flags)
742755a1 1748{
742755a1 1749 struct task_struct *task;
742755a1 1750 struct mm_struct *mm;
5e9a0f02 1751 int err;
3268c63e 1752 nodemask_t task_nodes;
742755a1
CL
1753
1754 /* Check flags */
1755 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1756 return -EINVAL;
1757
1758 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1759 return -EPERM;
1760
1761 /* Find the mm_struct */
a879bf58 1762 rcu_read_lock();
228ebcbe 1763 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1764 if (!task) {
a879bf58 1765 rcu_read_unlock();
742755a1
CL
1766 return -ESRCH;
1767 }
3268c63e 1768 get_task_struct(task);
742755a1
CL
1769
1770 /*
1771 * Check if this process has the right to modify the specified
197e7e52 1772 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1773 */
197e7e52 1774 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1775 rcu_read_unlock();
742755a1 1776 err = -EPERM;
5e9a0f02 1777 goto out;
742755a1 1778 }
c69e8d9c 1779 rcu_read_unlock();
742755a1 1780
86c3a764
DQ
1781 err = security_task_movememory(task);
1782 if (err)
5e9a0f02 1783 goto out;
86c3a764 1784
3268c63e
CL
1785 task_nodes = cpuset_mems_allowed(task);
1786 mm = get_task_mm(task);
1787 put_task_struct(task);
1788
6e8b09ea
SL
1789 if (!mm)
1790 return -EINVAL;
1791
1792 if (nodes)
1793 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1794 nodes, status, flags);
1795 else
1796 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1797
742755a1
CL
1798 mmput(mm);
1799 return err;
3268c63e
CL
1800
1801out:
1802 put_task_struct(task);
1803 return err;
742755a1 1804}
742755a1 1805
7addf443
DB
1806SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1807 const void __user * __user *, pages,
1808 const int __user *, nodes,
1809 int __user *, status, int, flags)
1810{
1811 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1812}
1813
1814#ifdef CONFIG_COMPAT
1815COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1816 compat_uptr_t __user *, pages32,
1817 const int __user *, nodes,
1818 int __user *, status,
1819 int, flags)
1820{
1821 const void __user * __user *pages;
1822 int i;
1823
1824 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1825 for (i = 0; i < nr_pages; i++) {
1826 compat_uptr_t p;
1827
1828 if (get_user(p, pages32 + i) ||
1829 put_user(compat_ptr(p), pages + i))
1830 return -EFAULT;
1831 }
1832 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1833}
1834#endif /* CONFIG_COMPAT */
1835
7039e1db
PZ
1836#ifdef CONFIG_NUMA_BALANCING
1837/*
1838 * Returns true if this is a safe migration target node for misplaced NUMA
1839 * pages. Currently it only checks the watermarks which crude
1840 */
1841static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1842 unsigned long nr_migrate_pages)
7039e1db
PZ
1843{
1844 int z;
599d0c95 1845
7039e1db
PZ
1846 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1847 struct zone *zone = pgdat->node_zones + z;
1848
1849 if (!populated_zone(zone))
1850 continue;
1851
7039e1db
PZ
1852 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1853 if (!zone_watermark_ok(zone, 0,
1854 high_wmark_pages(zone) +
1855 nr_migrate_pages,
1856 0, 0))
1857 continue;
1858 return true;
1859 }
1860 return false;
1861}
1862
1863static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1864 unsigned long data)
7039e1db
PZ
1865{
1866 int nid = (int) data;
1867 struct page *newpage;
1868
96db800f 1869 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1870 (GFP_HIGHUSER_MOVABLE |
1871 __GFP_THISNODE | __GFP_NOMEMALLOC |
1872 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1873 ~__GFP_RECLAIM, 0);
bac0382c 1874
7039e1db
PZ
1875 return newpage;
1876}
1877
1c30e017 1878static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1879{
340ef390 1880 int page_lru;
a8f60772 1881
309381fe 1882 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1883
7039e1db 1884 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1885 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1886 return 0;
7039e1db 1887
340ef390
HD
1888 if (isolate_lru_page(page))
1889 return 0;
7039e1db 1890
340ef390
HD
1891 /*
1892 * migrate_misplaced_transhuge_page() skips page migration's usual
1893 * check on page_count(), so we must do it here, now that the page
1894 * has been isolated: a GUP pin, or any other pin, prevents migration.
1895 * The expected page count is 3: 1 for page's mapcount and 1 for the
1896 * caller's pin and 1 for the reference taken by isolate_lru_page().
1897 */
1898 if (PageTransHuge(page) && page_count(page) != 3) {
1899 putback_lru_page(page);
1900 return 0;
7039e1db
PZ
1901 }
1902
340ef390 1903 page_lru = page_is_file_cache(page);
599d0c95 1904 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1905 hpage_nr_pages(page));
1906
149c33e1 1907 /*
340ef390
HD
1908 * Isolating the page has taken another reference, so the
1909 * caller's reference can be safely dropped without the page
1910 * disappearing underneath us during migration.
149c33e1
MG
1911 */
1912 put_page(page);
340ef390 1913 return 1;
b32967ff
MG
1914}
1915
de466bd6
MG
1916bool pmd_trans_migrating(pmd_t pmd)
1917{
1918 struct page *page = pmd_page(pmd);
1919 return PageLocked(page);
1920}
1921
b32967ff
MG
1922/*
1923 * Attempt to migrate a misplaced page to the specified destination
1924 * node. Caller is expected to have an elevated reference count on
1925 * the page that will be dropped by this function before returning.
1926 */
1bc115d8
MG
1927int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1928 int node)
b32967ff
MG
1929{
1930 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1931 int isolated;
b32967ff
MG
1932 int nr_remaining;
1933 LIST_HEAD(migratepages);
1934
1935 /*
1bc115d8
MG
1936 * Don't migrate file pages that are mapped in multiple processes
1937 * with execute permissions as they are probably shared libraries.
b32967ff 1938 */
1bc115d8
MG
1939 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1940 (vma->vm_flags & VM_EXEC))
b32967ff 1941 goto out;
b32967ff 1942
09a913a7
MG
1943 /*
1944 * Also do not migrate dirty pages as not all filesystems can move
1945 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1946 */
1947 if (page_is_file_cache(page) && PageDirty(page))
1948 goto out;
1949
b32967ff
MG
1950 isolated = numamigrate_isolate_page(pgdat, page);
1951 if (!isolated)
1952 goto out;
1953
1954 list_add(&page->lru, &migratepages);
9c620e2b 1955 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1956 NULL, node, MIGRATE_ASYNC,
1957 MR_NUMA_MISPLACED);
b32967ff 1958 if (nr_remaining) {
59c82b70
JK
1959 if (!list_empty(&migratepages)) {
1960 list_del(&page->lru);
599d0c95 1961 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1962 page_is_file_cache(page));
1963 putback_lru_page(page);
1964 }
b32967ff
MG
1965 isolated = 0;
1966 } else
1967 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1968 BUG_ON(!list_empty(&migratepages));
7039e1db 1969 return isolated;
340ef390
HD
1970
1971out:
1972 put_page(page);
1973 return 0;
7039e1db 1974}
220018d3 1975#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1976
220018d3 1977#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1978/*
1979 * Migrates a THP to a given target node. page must be locked and is unlocked
1980 * before returning.
1981 */
b32967ff
MG
1982int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1983 struct vm_area_struct *vma,
1984 pmd_t *pmd, pmd_t entry,
1985 unsigned long address,
1986 struct page *page, int node)
1987{
c4088ebd 1988 spinlock_t *ptl;
b32967ff
MG
1989 pg_data_t *pgdat = NODE_DATA(node);
1990 int isolated = 0;
1991 struct page *new_page = NULL;
b32967ff 1992 int page_lru = page_is_file_cache(page);
7066f0f9 1993 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 1994
b32967ff 1995 new_page = alloc_pages_node(node,
25160354 1996 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1997 HPAGE_PMD_ORDER);
340ef390
HD
1998 if (!new_page)
1999 goto out_fail;
9a982250 2000 prep_transhuge_page(new_page);
340ef390 2001
b32967ff 2002 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2003 if (!isolated) {
b32967ff 2004 put_page(new_page);
340ef390 2005 goto out_fail;
b32967ff 2006 }
b0943d61 2007
b32967ff 2008 /* Prepare a page as a migration target */
48c935ad 2009 __SetPageLocked(new_page);
d44d363f
SL
2010 if (PageSwapBacked(page))
2011 __SetPageSwapBacked(new_page);
b32967ff
MG
2012
2013 /* anon mapping, we can simply copy page->mapping to the new page: */
2014 new_page->mapping = page->mapping;
2015 new_page->index = page->index;
7eef5f97
AA
2016 /* flush the cache before copying using the kernel virtual address */
2017 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2018 migrate_page_copy(new_page, page);
2019 WARN_ON(PageLRU(new_page));
2020
2021 /* Recheck the target PMD */
c4088ebd 2022 ptl = pmd_lock(mm, pmd);
f4e177d1 2023 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2024 spin_unlock(ptl);
b32967ff
MG
2025
2026 /* Reverse changes made by migrate_page_copy() */
2027 if (TestClearPageActive(new_page))
2028 SetPageActive(page);
2029 if (TestClearPageUnevictable(new_page))
2030 SetPageUnevictable(page);
b32967ff
MG
2031
2032 unlock_page(new_page);
2033 put_page(new_page); /* Free it */
2034
a54a407f
MG
2035 /* Retake the callers reference and putback on LRU */
2036 get_page(page);
b32967ff 2037 putback_lru_page(page);
599d0c95 2038 mod_node_page_state(page_pgdat(page),
a54a407f 2039 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2040
2041 goto out_unlock;
b32967ff
MG
2042 }
2043
10102459 2044 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2045 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2046
2b4847e7 2047 /*
d7c33934
AA
2048 * Overwrite the old entry under pagetable lock and establish
2049 * the new PTE. Any parallel GUP will either observe the old
2050 * page blocking on the page lock, block on the page table
2051 * lock or observe the new page. The SetPageUptodate on the
2052 * new page and page_add_new_anon_rmap guarantee the copy is
2053 * visible before the pagetable update.
2b4847e7 2054 */
7066f0f9 2055 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2056 /*
2057 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2058 * has already been flushed globally. So no TLB can be currently
2059 * caching this non present pmd mapping. There's no need to clear the
2060 * pmd before doing set_pmd_at(), nor to flush the TLB after
2061 * set_pmd_at(). Clearing the pmd here would introduce a race
2062 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2063 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2064 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2065 * pmd.
2066 */
7066f0f9 2067 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2068 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2069
f4e177d1 2070 page_ref_unfreeze(page, 2);
51afb12b 2071 mlock_migrate_page(new_page, page);
d281ee61 2072 page_remove_rmap(page, true);
7cd12b4a 2073 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2074
c4088ebd 2075 spin_unlock(ptl);
b32967ff 2076
11de9927
MG
2077 /* Take an "isolate" reference and put new page on the LRU. */
2078 get_page(new_page);
2079 putback_lru_page(new_page);
2080
b32967ff
MG
2081 unlock_page(new_page);
2082 unlock_page(page);
2083 put_page(page); /* Drop the rmap reference */
2084 put_page(page); /* Drop the LRU isolation reference */
2085
2086 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2087 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2088
599d0c95 2089 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2090 NR_ISOLATED_ANON + page_lru,
2091 -HPAGE_PMD_NR);
2092 return isolated;
2093
340ef390
HD
2094out_fail:
2095 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2096 ptl = pmd_lock(mm, pmd);
2097 if (pmd_same(*pmd, entry)) {
4d942466 2098 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2099 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2100 update_mmu_cache_pmd(vma, address, &entry);
2101 }
2102 spin_unlock(ptl);
a54a407f 2103
eb4489f6 2104out_unlock:
340ef390 2105 unlock_page(page);
b32967ff 2106 put_page(page);
b32967ff
MG
2107 return 0;
2108}
7039e1db
PZ
2109#endif /* CONFIG_NUMA_BALANCING */
2110
2111#endif /* CONFIG_NUMA */
8763cb45 2112
6b368cd4 2113#if defined(CONFIG_MIGRATE_VMA_HELPER)
8763cb45
JG
2114struct migrate_vma {
2115 struct vm_area_struct *vma;
2116 unsigned long *dst;
2117 unsigned long *src;
2118 unsigned long cpages;
2119 unsigned long npages;
2120 unsigned long start;
2121 unsigned long end;
2122};
2123
2124static int migrate_vma_collect_hole(unsigned long start,
2125 unsigned long end,
2126 struct mm_walk *walk)
2127{
2128 struct migrate_vma *migrate = walk->private;
2129 unsigned long addr;
2130
8315ada7 2131 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
e20d103b 2132 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2133 migrate->dst[migrate->npages] = 0;
e20d103b 2134 migrate->npages++;
8315ada7
JG
2135 migrate->cpages++;
2136 }
2137
2138 return 0;
2139}
2140
2141static int migrate_vma_collect_skip(unsigned long start,
2142 unsigned long end,
2143 struct mm_walk *walk)
2144{
2145 struct migrate_vma *migrate = walk->private;
2146 unsigned long addr;
2147
8763cb45
JG
2148 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2149 migrate->dst[migrate->npages] = 0;
2150 migrate->src[migrate->npages++] = 0;
2151 }
2152
2153 return 0;
2154}
2155
2156static int migrate_vma_collect_pmd(pmd_t *pmdp,
2157 unsigned long start,
2158 unsigned long end,
2159 struct mm_walk *walk)
2160{
2161 struct migrate_vma *migrate = walk->private;
2162 struct vm_area_struct *vma = walk->vma;
2163 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2164 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2165 spinlock_t *ptl;
2166 pte_t *ptep;
2167
2168again:
2169 if (pmd_none(*pmdp))
2170 return migrate_vma_collect_hole(start, end, walk);
2171
2172 if (pmd_trans_huge(*pmdp)) {
2173 struct page *page;
2174
2175 ptl = pmd_lock(mm, pmdp);
2176 if (unlikely(!pmd_trans_huge(*pmdp))) {
2177 spin_unlock(ptl);
2178 goto again;
2179 }
2180
2181 page = pmd_page(*pmdp);
2182 if (is_huge_zero_page(page)) {
2183 spin_unlock(ptl);
2184 split_huge_pmd(vma, pmdp, addr);
2185 if (pmd_trans_unstable(pmdp))
8315ada7 2186 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2187 walk);
2188 } else {
2189 int ret;
2190
2191 get_page(page);
2192 spin_unlock(ptl);
2193 if (unlikely(!trylock_page(page)))
8315ada7 2194 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2195 walk);
2196 ret = split_huge_page(page);
2197 unlock_page(page);
2198 put_page(page);
8315ada7
JG
2199 if (ret)
2200 return migrate_vma_collect_skip(start, end,
2201 walk);
2202 if (pmd_none(*pmdp))
8763cb45
JG
2203 return migrate_vma_collect_hole(start, end,
2204 walk);
2205 }
2206 }
2207
2208 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2209 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2210
2211 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2212 arch_enter_lazy_mmu_mode();
2213
8763cb45
JG
2214 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2215 unsigned long mpfn, pfn;
2216 struct page *page;
8c3328f1 2217 swp_entry_t entry;
8763cb45
JG
2218 pte_t pte;
2219
2220 pte = *ptep;
2221 pfn = pte_pfn(pte);
2222
a5430dda 2223 if (pte_none(pte)) {
8315ada7
JG
2224 mpfn = MIGRATE_PFN_MIGRATE;
2225 migrate->cpages++;
2226 pfn = 0;
8763cb45
JG
2227 goto next;
2228 }
2229
a5430dda
JG
2230 if (!pte_present(pte)) {
2231 mpfn = pfn = 0;
2232
2233 /*
2234 * Only care about unaddressable device page special
2235 * page table entry. Other special swap entries are not
2236 * migratable, and we ignore regular swapped page.
2237 */
2238 entry = pte_to_swp_entry(pte);
2239 if (!is_device_private_entry(entry))
2240 goto next;
2241
2242 page = device_private_entry_to_page(entry);
2243 mpfn = migrate_pfn(page_to_pfn(page))|
2244 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2245 if (is_write_device_private_entry(entry))
2246 mpfn |= MIGRATE_PFN_WRITE;
2247 } else {
8315ada7
JG
2248 if (is_zero_pfn(pfn)) {
2249 mpfn = MIGRATE_PFN_MIGRATE;
2250 migrate->cpages++;
2251 pfn = 0;
2252 goto next;
2253 }
df6ad698 2254 page = _vm_normal_page(migrate->vma, addr, pte, true);
a5430dda
JG
2255 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2256 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2257 }
2258
8763cb45 2259 /* FIXME support THP */
8763cb45
JG
2260 if (!page || !page->mapping || PageTransCompound(page)) {
2261 mpfn = pfn = 0;
2262 goto next;
2263 }
a5430dda 2264 pfn = page_to_pfn(page);
8763cb45
JG
2265
2266 /*
2267 * By getting a reference on the page we pin it and that blocks
2268 * any kind of migration. Side effect is that it "freezes" the
2269 * pte.
2270 *
2271 * We drop this reference after isolating the page from the lru
2272 * for non device page (device page are not on the lru and thus
2273 * can't be dropped from it).
2274 */
2275 get_page(page);
2276 migrate->cpages++;
8763cb45 2277
8c3328f1
JG
2278 /*
2279 * Optimize for the common case where page is only mapped once
2280 * in one process. If we can lock the page, then we can safely
2281 * set up a special migration page table entry now.
2282 */
2283 if (trylock_page(page)) {
2284 pte_t swp_pte;
2285
2286 mpfn |= MIGRATE_PFN_LOCKED;
2287 ptep_get_and_clear(mm, addr, ptep);
2288
2289 /* Setup special migration page table entry */
07707125
RC
2290 entry = make_migration_entry(page, mpfn &
2291 MIGRATE_PFN_WRITE);
8c3328f1
JG
2292 swp_pte = swp_entry_to_pte(entry);
2293 if (pte_soft_dirty(pte))
2294 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2295 set_pte_at(mm, addr, ptep, swp_pte);
2296
2297 /*
2298 * This is like regular unmap: we remove the rmap and
2299 * drop page refcount. Page won't be freed, as we took
2300 * a reference just above.
2301 */
2302 page_remove_rmap(page, false);
2303 put_page(page);
a5430dda
JG
2304
2305 if (pte_present(pte))
2306 unmapped++;
8c3328f1
JG
2307 }
2308
8763cb45 2309next:
a5430dda 2310 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2311 migrate->src[migrate->npages++] = mpfn;
2312 }
8c3328f1 2313 arch_leave_lazy_mmu_mode();
8763cb45
JG
2314 pte_unmap_unlock(ptep - 1, ptl);
2315
8c3328f1
JG
2316 /* Only flush the TLB if we actually modified any entries */
2317 if (unmapped)
2318 flush_tlb_range(walk->vma, start, end);
2319
8763cb45
JG
2320 return 0;
2321}
2322
2323/*
2324 * migrate_vma_collect() - collect pages over a range of virtual addresses
2325 * @migrate: migrate struct containing all migration information
2326 *
2327 * This will walk the CPU page table. For each virtual address backed by a
2328 * valid page, it updates the src array and takes a reference on the page, in
2329 * order to pin the page until we lock it and unmap it.
2330 */
2331static void migrate_vma_collect(struct migrate_vma *migrate)
2332{
ac46d4f3 2333 struct mmu_notifier_range range;
8763cb45
JG
2334 struct mm_walk mm_walk;
2335
2336 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2337 mm_walk.pte_entry = NULL;
2338 mm_walk.pte_hole = migrate_vma_collect_hole;
2339 mm_walk.hugetlb_entry = NULL;
2340 mm_walk.test_walk = NULL;
2341 mm_walk.vma = migrate->vma;
2342 mm_walk.mm = migrate->vma->vm_mm;
2343 mm_walk.private = migrate;
2344
ac46d4f3
JG
2345 mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2346 migrate->end);
2347 mmu_notifier_invalidate_range_start(&range);
8763cb45 2348 walk_page_range(migrate->start, migrate->end, &mm_walk);
ac46d4f3 2349 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2350
2351 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2352}
2353
2354/*
2355 * migrate_vma_check_page() - check if page is pinned or not
2356 * @page: struct page to check
2357 *
2358 * Pinned pages cannot be migrated. This is the same test as in
2359 * migrate_page_move_mapping(), except that here we allow migration of a
2360 * ZONE_DEVICE page.
2361 */
2362static bool migrate_vma_check_page(struct page *page)
2363{
2364 /*
2365 * One extra ref because caller holds an extra reference, either from
2366 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2367 * a device page.
2368 */
2369 int extra = 1;
2370
2371 /*
2372 * FIXME support THP (transparent huge page), it is bit more complex to
2373 * check them than regular pages, because they can be mapped with a pmd
2374 * or with a pte (split pte mapping).
2375 */
2376 if (PageCompound(page))
2377 return false;
2378
a5430dda
JG
2379 /* Page from ZONE_DEVICE have one extra reference */
2380 if (is_zone_device_page(page)) {
2381 /*
2382 * Private page can never be pin as they have no valid pte and
2383 * GUP will fail for those. Yet if there is a pending migration
2384 * a thread might try to wait on the pte migration entry and
2385 * will bump the page reference count. Sadly there is no way to
2386 * differentiate a regular pin from migration wait. Hence to
2387 * avoid 2 racing thread trying to migrate back to CPU to enter
2388 * infinite loop (one stoping migration because the other is
2389 * waiting on pte migration entry). We always return true here.
2390 *
2391 * FIXME proper solution is to rework migration_entry_wait() so
2392 * it does not need to take a reference on page.
2393 */
2394 if (is_device_private_page(page))
2395 return true;
2396
df6ad698
JG
2397 /*
2398 * Only allow device public page to be migrated and account for
2399 * the extra reference count imply by ZONE_DEVICE pages.
2400 */
2401 if (!is_device_public_page(page))
2402 return false;
2403 extra++;
a5430dda
JG
2404 }
2405
df6ad698
JG
2406 /* For file back page */
2407 if (page_mapping(page))
2408 extra += 1 + page_has_private(page);
2409
8763cb45
JG
2410 if ((page_count(page) - extra) > page_mapcount(page))
2411 return false;
2412
2413 return true;
2414}
2415
2416/*
2417 * migrate_vma_prepare() - lock pages and isolate them from the lru
2418 * @migrate: migrate struct containing all migration information
2419 *
2420 * This locks pages that have been collected by migrate_vma_collect(). Once each
2421 * page is locked it is isolated from the lru (for non-device pages). Finally,
2422 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2423 * migrated by concurrent kernel threads.
2424 */
2425static void migrate_vma_prepare(struct migrate_vma *migrate)
2426{
2427 const unsigned long npages = migrate->npages;
8c3328f1
JG
2428 const unsigned long start = migrate->start;
2429 unsigned long addr, i, restore = 0;
8763cb45 2430 bool allow_drain = true;
8763cb45
JG
2431
2432 lru_add_drain();
2433
2434 for (i = 0; (i < npages) && migrate->cpages; i++) {
2435 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2436 bool remap = true;
8763cb45
JG
2437
2438 if (!page)
2439 continue;
2440
8c3328f1
JG
2441 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2442 /*
2443 * Because we are migrating several pages there can be
2444 * a deadlock between 2 concurrent migration where each
2445 * are waiting on each other page lock.
2446 *
2447 * Make migrate_vma() a best effort thing and backoff
2448 * for any page we can not lock right away.
2449 */
2450 if (!trylock_page(page)) {
2451 migrate->src[i] = 0;
2452 migrate->cpages--;
2453 put_page(page);
2454 continue;
2455 }
2456 remap = false;
2457 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2458 }
8763cb45 2459
a5430dda
JG
2460 /* ZONE_DEVICE pages are not on LRU */
2461 if (!is_zone_device_page(page)) {
2462 if (!PageLRU(page) && allow_drain) {
2463 /* Drain CPU's pagevec */
2464 lru_add_drain_all();
2465 allow_drain = false;
2466 }
8763cb45 2467
a5430dda
JG
2468 if (isolate_lru_page(page)) {
2469 if (remap) {
2470 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2471 migrate->cpages--;
2472 restore++;
2473 } else {
2474 migrate->src[i] = 0;
2475 unlock_page(page);
2476 migrate->cpages--;
2477 put_page(page);
2478 }
2479 continue;
8c3328f1 2480 }
a5430dda
JG
2481
2482 /* Drop the reference we took in collect */
2483 put_page(page);
8763cb45
JG
2484 }
2485
2486 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2487 if (remap) {
2488 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2489 migrate->cpages--;
2490 restore++;
8763cb45 2491
a5430dda
JG
2492 if (!is_zone_device_page(page)) {
2493 get_page(page);
2494 putback_lru_page(page);
2495 }
8c3328f1
JG
2496 } else {
2497 migrate->src[i] = 0;
2498 unlock_page(page);
2499 migrate->cpages--;
2500
a5430dda
JG
2501 if (!is_zone_device_page(page))
2502 putback_lru_page(page);
2503 else
2504 put_page(page);
8c3328f1 2505 }
8763cb45
JG
2506 }
2507 }
8c3328f1
JG
2508
2509 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2510 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2511
2512 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2513 continue;
2514
2515 remove_migration_pte(page, migrate->vma, addr, page);
2516
2517 migrate->src[i] = 0;
2518 unlock_page(page);
2519 put_page(page);
2520 restore--;
2521 }
8763cb45
JG
2522}
2523
2524/*
2525 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2526 * @migrate: migrate struct containing all migration information
2527 *
2528 * Replace page mapping (CPU page table pte) with a special migration pte entry
2529 * and check again if it has been pinned. Pinned pages are restored because we
2530 * cannot migrate them.
2531 *
2532 * This is the last step before we call the device driver callback to allocate
2533 * destination memory and copy contents of original page over to new page.
2534 */
2535static void migrate_vma_unmap(struct migrate_vma *migrate)
2536{
2537 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2538 const unsigned long npages = migrate->npages;
2539 const unsigned long start = migrate->start;
2540 unsigned long addr, i, restore = 0;
2541
2542 for (i = 0; i < npages; i++) {
2543 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2544
2545 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2546 continue;
2547
8c3328f1
JG
2548 if (page_mapped(page)) {
2549 try_to_unmap(page, flags);
2550 if (page_mapped(page))
2551 goto restore;
8763cb45 2552 }
8c3328f1
JG
2553
2554 if (migrate_vma_check_page(page))
2555 continue;
2556
2557restore:
2558 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2559 migrate->cpages--;
2560 restore++;
8763cb45
JG
2561 }
2562
2563 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2564 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567 continue;
2568
2569 remove_migration_ptes(page, page, false);
2570
2571 migrate->src[i] = 0;
2572 unlock_page(page);
2573 restore--;
2574
a5430dda
JG
2575 if (is_zone_device_page(page))
2576 put_page(page);
2577 else
2578 putback_lru_page(page);
8763cb45
JG
2579 }
2580}
2581
8315ada7
JG
2582static void migrate_vma_insert_page(struct migrate_vma *migrate,
2583 unsigned long addr,
2584 struct page *page,
2585 unsigned long *src,
2586 unsigned long *dst)
2587{
2588 struct vm_area_struct *vma = migrate->vma;
2589 struct mm_struct *mm = vma->vm_mm;
2590 struct mem_cgroup *memcg;
2591 bool flush = false;
2592 spinlock_t *ptl;
2593 pte_t entry;
2594 pgd_t *pgdp;
2595 p4d_t *p4dp;
2596 pud_t *pudp;
2597 pmd_t *pmdp;
2598 pte_t *ptep;
2599
2600 /* Only allow populating anonymous memory */
2601 if (!vma_is_anonymous(vma))
2602 goto abort;
2603
2604 pgdp = pgd_offset(mm, addr);
2605 p4dp = p4d_alloc(mm, pgdp, addr);
2606 if (!p4dp)
2607 goto abort;
2608 pudp = pud_alloc(mm, p4dp, addr);
2609 if (!pudp)
2610 goto abort;
2611 pmdp = pmd_alloc(mm, pudp, addr);
2612 if (!pmdp)
2613 goto abort;
2614
2615 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2616 goto abort;
2617
2618 /*
2619 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2620 * pte_offset_map() on pmds where a huge pmd might be created
2621 * from a different thread.
2622 *
2623 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2624 * parallel threads are excluded by other means.
2625 *
2626 * Here we only have down_read(mmap_sem).
2627 */
4cf58924 2628 if (pte_alloc(mm, pmdp))
8315ada7
JG
2629 goto abort;
2630
2631 /* See the comment in pte_alloc_one_map() */
2632 if (unlikely(pmd_trans_unstable(pmdp)))
2633 goto abort;
2634
2635 if (unlikely(anon_vma_prepare(vma)))
2636 goto abort;
2637 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2638 goto abort;
2639
2640 /*
2641 * The memory barrier inside __SetPageUptodate makes sure that
2642 * preceding stores to the page contents become visible before
2643 * the set_pte_at() write.
2644 */
2645 __SetPageUptodate(page);
2646
df6ad698
JG
2647 if (is_zone_device_page(page)) {
2648 if (is_device_private_page(page)) {
2649 swp_entry_t swp_entry;
2650
2651 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2652 entry = swp_entry_to_pte(swp_entry);
2653 } else if (is_device_public_page(page)) {
2654 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2655 if (vma->vm_flags & VM_WRITE)
2656 entry = pte_mkwrite(pte_mkdirty(entry));
2657 entry = pte_mkdevmap(entry);
2658 }
8315ada7
JG
2659 } else {
2660 entry = mk_pte(page, vma->vm_page_prot);
2661 if (vma->vm_flags & VM_WRITE)
2662 entry = pte_mkwrite(pte_mkdirty(entry));
2663 }
2664
2665 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2666
2667 if (pte_present(*ptep)) {
2668 unsigned long pfn = pte_pfn(*ptep);
2669
2670 if (!is_zero_pfn(pfn)) {
2671 pte_unmap_unlock(ptep, ptl);
2672 mem_cgroup_cancel_charge(page, memcg, false);
2673 goto abort;
2674 }
2675 flush = true;
2676 } else if (!pte_none(*ptep)) {
2677 pte_unmap_unlock(ptep, ptl);
2678 mem_cgroup_cancel_charge(page, memcg, false);
2679 goto abort;
2680 }
2681
2682 /*
2683 * Check for usefaultfd but do not deliver the fault. Instead,
2684 * just back off.
2685 */
2686 if (userfaultfd_missing(vma)) {
2687 pte_unmap_unlock(ptep, ptl);
2688 mem_cgroup_cancel_charge(page, memcg, false);
2689 goto abort;
2690 }
2691
2692 inc_mm_counter(mm, MM_ANONPAGES);
2693 page_add_new_anon_rmap(page, vma, addr, false);
2694 mem_cgroup_commit_charge(page, memcg, false, false);
2695 if (!is_zone_device_page(page))
2696 lru_cache_add_active_or_unevictable(page, vma);
2697 get_page(page);
2698
2699 if (flush) {
2700 flush_cache_page(vma, addr, pte_pfn(*ptep));
2701 ptep_clear_flush_notify(vma, addr, ptep);
2702 set_pte_at_notify(mm, addr, ptep, entry);
2703 update_mmu_cache(vma, addr, ptep);
2704 } else {
2705 /* No need to invalidate - it was non-present before */
2706 set_pte_at(mm, addr, ptep, entry);
2707 update_mmu_cache(vma, addr, ptep);
2708 }
2709
2710 pte_unmap_unlock(ptep, ptl);
2711 *src = MIGRATE_PFN_MIGRATE;
2712 return;
2713
2714abort:
2715 *src &= ~MIGRATE_PFN_MIGRATE;
2716}
2717
8763cb45
JG
2718/*
2719 * migrate_vma_pages() - migrate meta-data from src page to dst page
2720 * @migrate: migrate struct containing all migration information
2721 *
2722 * This migrates struct page meta-data from source struct page to destination
2723 * struct page. This effectively finishes the migration from source page to the
2724 * destination page.
2725 */
2726static void migrate_vma_pages(struct migrate_vma *migrate)
2727{
2728 const unsigned long npages = migrate->npages;
2729 const unsigned long start = migrate->start;
ac46d4f3
JG
2730 struct mmu_notifier_range range;
2731 unsigned long addr, i;
8315ada7 2732 bool notified = false;
8763cb45
JG
2733
2734 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2735 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2736 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2737 struct address_space *mapping;
2738 int r;
2739
8315ada7
JG
2740 if (!newpage) {
2741 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2742 continue;
8315ada7
JG
2743 }
2744
2745 if (!page) {
2746 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2747 continue;
2748 }
2749 if (!notified) {
8315ada7 2750 notified = true;
ac46d4f3
JG
2751
2752 mmu_notifier_range_init(&range,
2753 migrate->vma->vm_mm,
2754 addr, migrate->end);
2755 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2756 }
2757 migrate_vma_insert_page(migrate, addr, newpage,
2758 &migrate->src[i],
2759 &migrate->dst[i]);
8763cb45 2760 continue;
8315ada7 2761 }
8763cb45
JG
2762
2763 mapping = page_mapping(page);
2764
a5430dda
JG
2765 if (is_zone_device_page(newpage)) {
2766 if (is_device_private_page(newpage)) {
2767 /*
2768 * For now only support private anonymous when
2769 * migrating to un-addressable device memory.
2770 */
2771 if (mapping) {
2772 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2773 continue;
2774 }
df6ad698 2775 } else if (!is_device_public_page(newpage)) {
a5430dda
JG
2776 /*
2777 * Other types of ZONE_DEVICE page are not
2778 * supported.
2779 */
2780 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2781 continue;
2782 }
2783 }
2784
8763cb45
JG
2785 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2786 if (r != MIGRATEPAGE_SUCCESS)
2787 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2788 }
8315ada7 2789
4645b9fe
JG
2790 /*
2791 * No need to double call mmu_notifier->invalidate_range() callback as
2792 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2793 * did already call it.
2794 */
8315ada7 2795 if (notified)
ac46d4f3 2796 mmu_notifier_invalidate_range_only_end(&range);
8763cb45
JG
2797}
2798
2799/*
2800 * migrate_vma_finalize() - restore CPU page table entry
2801 * @migrate: migrate struct containing all migration information
2802 *
2803 * This replaces the special migration pte entry with either a mapping to the
2804 * new page if migration was successful for that page, or to the original page
2805 * otherwise.
2806 *
2807 * This also unlocks the pages and puts them back on the lru, or drops the extra
2808 * refcount, for device pages.
2809 */
2810static void migrate_vma_finalize(struct migrate_vma *migrate)
2811{
2812 const unsigned long npages = migrate->npages;
2813 unsigned long i;
2814
2815 for (i = 0; i < npages; i++) {
2816 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2817 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2818
8315ada7
JG
2819 if (!page) {
2820 if (newpage) {
2821 unlock_page(newpage);
2822 put_page(newpage);
2823 }
8763cb45 2824 continue;
8315ada7
JG
2825 }
2826
8763cb45
JG
2827 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2828 if (newpage) {
2829 unlock_page(newpage);
2830 put_page(newpage);
2831 }
2832 newpage = page;
2833 }
2834
2835 remove_migration_ptes(page, newpage, false);
2836 unlock_page(page);
2837 migrate->cpages--;
2838
a5430dda
JG
2839 if (is_zone_device_page(page))
2840 put_page(page);
2841 else
2842 putback_lru_page(page);
8763cb45
JG
2843
2844 if (newpage != page) {
2845 unlock_page(newpage);
a5430dda
JG
2846 if (is_zone_device_page(newpage))
2847 put_page(newpage);
2848 else
2849 putback_lru_page(newpage);
8763cb45
JG
2850 }
2851 }
2852}
2853
2854/*
2855 * migrate_vma() - migrate a range of memory inside vma
2856 *
2857 * @ops: migration callback for allocating destination memory and copying
2858 * @vma: virtual memory area containing the range to be migrated
2859 * @start: start address of the range to migrate (inclusive)
2860 * @end: end address of the range to migrate (exclusive)
2861 * @src: array of hmm_pfn_t containing source pfns
2862 * @dst: array of hmm_pfn_t containing destination pfns
2863 * @private: pointer passed back to each of the callback
2864 * Returns: 0 on success, error code otherwise
2865 *
2866 * This function tries to migrate a range of memory virtual address range, using
2867 * callbacks to allocate and copy memory from source to destination. First it
2868 * collects all the pages backing each virtual address in the range, saving this
2869 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2870 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2871 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2872 * in the corresponding src array entry. It then restores any pages that are
2873 * pinned, by remapping and unlocking those pages.
2874 *
2875 * At this point it calls the alloc_and_copy() callback. For documentation on
2876 * what is expected from that callback, see struct migrate_vma_ops comments in
2877 * include/linux/migrate.h
2878 *
2879 * After the alloc_and_copy() callback, this function goes over each entry in
2880 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2881 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2882 * then the function tries to migrate struct page information from the source
2883 * struct page to the destination struct page. If it fails to migrate the struct
2884 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2885 * array.
2886 *
2887 * At this point all successfully migrated pages have an entry in the src
2888 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2889 * array entry with MIGRATE_PFN_VALID flag set.
2890 *
2891 * It then calls the finalize_and_map() callback. See comments for "struct
2892 * migrate_vma_ops", in include/linux/migrate.h for details about
2893 * finalize_and_map() behavior.
2894 *
2895 * After the finalize_and_map() callback, for successfully migrated pages, this
2896 * function updates the CPU page table to point to new pages, otherwise it
2897 * restores the CPU page table to point to the original source pages.
2898 *
2899 * Function returns 0 after the above steps, even if no pages were migrated
2900 * (The function only returns an error if any of the arguments are invalid.)
2901 *
2902 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2903 * unsigned long entries.
2904 */
2905int migrate_vma(const struct migrate_vma_ops *ops,
2906 struct vm_area_struct *vma,
2907 unsigned long start,
2908 unsigned long end,
2909 unsigned long *src,
2910 unsigned long *dst,
2911 void *private)
2912{
2913 struct migrate_vma migrate;
2914
2915 /* Sanity check the arguments */
2916 start &= PAGE_MASK;
2917 end &= PAGE_MASK;
e1fb4a08
DJ
2918 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2919 vma_is_dax(vma))
8763cb45
JG
2920 return -EINVAL;
2921 if (start < vma->vm_start || start >= vma->vm_end)
2922 return -EINVAL;
2923 if (end <= vma->vm_start || end > vma->vm_end)
2924 return -EINVAL;
2925 if (!ops || !src || !dst || start >= end)
2926 return -EINVAL;
2927
2928 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2929 migrate.src = src;
2930 migrate.dst = dst;
2931 migrate.start = start;
2932 migrate.npages = 0;
2933 migrate.cpages = 0;
2934 migrate.end = end;
2935 migrate.vma = vma;
2936
2937 /* Collect, and try to unmap source pages */
2938 migrate_vma_collect(&migrate);
2939 if (!migrate.cpages)
2940 return 0;
2941
2942 /* Lock and isolate page */
2943 migrate_vma_prepare(&migrate);
2944 if (!migrate.cpages)
2945 return 0;
2946
2947 /* Unmap pages */
2948 migrate_vma_unmap(&migrate);
2949 if (!migrate.cpages)
2950 return 0;
2951
2952 /*
2953 * At this point pages are locked and unmapped, and thus they have
2954 * stable content and can safely be copied to destination memory that
2955 * is allocated by the callback.
2956 *
2957 * Note that migration can fail in migrate_vma_struct_page() for each
2958 * individual page.
2959 */
2960 ops->alloc_and_copy(vma, src, dst, start, end, private);
2961
2962 /* This does the real migration of struct page */
2963 migrate_vma_pages(&migrate);
2964
2965 ops->finalize_and_map(vma, src, dst, start, end, private);
2966
2967 /* Unlock and remap pages */
2968 migrate_vma_finalize(&migrate);
2969
2970 return 0;
2971}
2972EXPORT_SYMBOL(migrate_vma);
6b368cd4 2973#endif /* defined(MIGRATE_VMA_HELPER) */