Merge tag 'printk-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/printk...
[linux-block.git] / mm / migrate.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
b20a3503 2/*
14e0f9bc 3 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
cde53535 13 * Christoph Lameter
b20a3503
CL
14 */
15
16#include <linux/migrate.h>
b95f1b31 17#include <linux/export.h>
b20a3503 18#include <linux/swap.h>
0697212a 19#include <linux/swapops.h>
b20a3503 20#include <linux/pagemap.h>
e23ca00b 21#include <linux/buffer_head.h>
b20a3503 22#include <linux/mm_inline.h>
b488893a 23#include <linux/nsproxy.h>
b20a3503 24#include <linux/pagevec.h>
e9995ef9 25#include <linux/ksm.h>
b20a3503
CL
26#include <linux/rmap.h>
27#include <linux/topology.h>
28#include <linux/cpu.h>
29#include <linux/cpuset.h>
04e62a29 30#include <linux/writeback.h>
742755a1
CL
31#include <linux/mempolicy.h>
32#include <linux/vmalloc.h>
86c3a764 33#include <linux/security.h>
42cb14b1 34#include <linux/backing-dev.h>
bda807d4 35#include <linux/compaction.h>
4f5ca265 36#include <linux/syscalls.h>
7addf443 37#include <linux/compat.h>
290408d4 38#include <linux/hugetlb.h>
8e6ac7fa 39#include <linux/hugetlb_cgroup.h>
5a0e3ad6 40#include <linux/gfp.h>
a520110e 41#include <linux/pagewalk.h>
df6ad698 42#include <linux/pfn_t.h>
a5430dda 43#include <linux/memremap.h>
8315ada7 44#include <linux/userfaultfd_k.h>
bf6bddf1 45#include <linux/balloon_compaction.h>
f714f4f2 46#include <linux/mmu_notifier.h>
33c3fc71 47#include <linux/page_idle.h>
d435edca 48#include <linux/page_owner.h>
6e84f315 49#include <linux/sched/mm.h>
197e7e52 50#include <linux/ptrace.h>
34290e2c 51#include <linux/oom.h>
b20a3503 52
0d1836c3
MN
53#include <asm/tlbflush.h>
54
7b2a2d4a
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/migrate.h>
57
b20a3503
CL
58#include "internal.h"
59
b20a3503 60/*
742755a1 61 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
b20a3503
CL
64 */
65int migrate_prep(void)
66{
b20a3503
CL
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76}
77
748446bb
MG
78/* Do the necessary work of migrate_prep but not if it involves other CPUs */
79int migrate_prep_local(void)
80{
81 lru_add_drain();
82
83 return 0;
84}
85
9e5bcd61 86int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
87{
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
8bb4e7a2 105 * so unconditionally grabbing the lock ruins page's owner side.
bda807d4
MK
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
9e5bcd61 137 return 0;
bda807d4
MK
138
139out_no_isolated:
140 unlock_page(page);
141out_putpage:
142 put_page(page);
143out:
9e5bcd61 144 return -EBUSY;
bda807d4
MK
145}
146
147/* It should be called on page which is PG_movable */
148void putback_movable_page(struct page *page)
149{
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159}
160
5733c7d1
RA
161/*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
59c82b70
JK
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
5733c7d1
RA
168 */
169void putback_movable_pages(struct list_head *l)
170{
171 struct page *page;
172 struct page *page2;
173
b20a3503 174 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
e24f0b8f 179 list_del(&page->lru);
bda807d4
MK
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
b1123ea6 185 if (unlikely(__PageMovable(page))) {
bda807d4
MK
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
e8db67eb 195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
9de4f22a 196 page_is_file_lru(page), -hpage_nr_pages(page));
fc280fe8 197 putback_lru_page(page);
bda807d4 198 }
b20a3503 199 }
b20a3503
CL
200}
201
0697212a
CL
202/*
203 * Restore a potential migration pte to a working pte entry
204 */
e4b82222 205static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 206 unsigned long addr, void *old)
0697212a 207{
3fe87967
KS
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
0697212a 216 swp_entry_t entry;
0697212a 217
3fe87967
KS
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
0697212a 225
616b8371
ZY
226#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233#endif
234
3fe87967
KS
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
0697212a 239
3fe87967
KS
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
f45ec5ff
PX
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
d3cb8bf6 248
df6ad698
JG
249 if (unlikely(is_zone_device_page(new))) {
250 if (is_device_private_page(new)) {
251 entry = make_device_private_entry(new, pte_write(pte));
252 pte = swp_entry_to_pte(entry);
f45ec5ff
PX
253 if (pte_swp_uffd_wp(*pvmw.pte))
254 pte = pte_mkuffd_wp(pte);
df6ad698 255 }
d2b2c6dd 256 }
a5430dda 257
3ef8fd7f 258#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
383321ab
AK
267 } else
268#endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 271
383321ab
AK
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
3fe87967
KS
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
e125fe40
KS
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
3fe87967
KS
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
51afb12b 286
e4b82222 287 return true;
0697212a
CL
288}
289
04e62a29
CL
290/*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
e388466d 294void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 295{
051ac83a
JK
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
e388466d
KS
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
04e62a29
CL
305}
306
0697212a
CL
307/*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
0697212a 311 */
e66f17ff 312void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 313 spinlock_t *ptl)
0697212a 314{
30dad309 315 pte_t pte;
0697212a
CL
316 swp_entry_t entry;
317 struct page *page;
318
30dad309 319 spin_lock(ptl);
0697212a
CL
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329
e286781d 330 /*
89eb946a 331 * Once page cache replacement of page migration started, page_count
9a1ea439
HD
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
e286781d
NP
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
0697212a 337 pte_unmap_unlock(ptep, ptl);
9a1ea439 338 put_and_wait_on_page_locked(page);
0697212a
CL
339 return;
340out:
341 pte_unmap_unlock(ptep, ptl);
342}
343
30dad309
NH
344void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
346{
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
350}
351
cb900f41
KS
352void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
30dad309 354{
cb900f41 355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
356 __migration_entry_wait(mm, pte, ptl);
357}
358
616b8371
ZY
359#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361{
362 spinlock_t *ptl;
363 struct page *page;
364
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
9a1ea439 372 put_and_wait_on_page_locked(page);
616b8371
ZY
373 return;
374unlock:
375 spin_unlock(ptl);
376}
377#endif
378
f900482d 379static int expected_page_refs(struct address_space *mapping, struct page *page)
0b3901b3
JK
380{
381 int expected_count = 1;
382
383 /*
384 * Device public or private pages have an extra refcount as they are
385 * ZONE_DEVICE pages.
386 */
387 expected_count += is_device_private_page(page);
f900482d 388 if (mapping)
0b3901b3
JK
389 expected_count += hpage_nr_pages(page) + page_has_private(page);
390
391 return expected_count;
392}
393
b20a3503 394/*
c3fcf8a5 395 * Replace the page in the mapping.
5b5c7120
CL
396 *
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
266cf658 400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 401 */
36bc08cc 402int migrate_page_move_mapping(struct address_space *mapping,
37109694 403 struct page *newpage, struct page *page, int extra_count)
b20a3503 404{
89eb946a 405 XA_STATE(xas, &mapping->i_pages, page_index(page));
42cb14b1
HD
406 struct zone *oldzone, *newzone;
407 int dirty;
f900482d 408 int expected_count = expected_page_refs(mapping, page) + extra_count;
8763cb45 409
6c5240ae 410 if (!mapping) {
0e8c7d0f 411 /* Anonymous page without mapping */
8e321fef 412 if (page_count(page) != expected_count)
6c5240ae 413 return -EAGAIN;
cf4b769a
HD
414
415 /* No turning back from here */
cf4b769a
HD
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
fa9949da 419 __SetPageSwapBacked(newpage);
cf4b769a 420
78bd5209 421 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
422 }
423
42cb14b1
HD
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
89eb946a 427 xas_lock_irq(&xas);
89eb946a
MW
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
e23ca00b 430 return -EAGAIN;
b20a3503
CL
431 }
432
fe896d18 433 if (!page_ref_freeze(page, expected_count)) {
89eb946a 434 xas_unlock_irq(&xas);
e286781d
NP
435 return -EAGAIN;
436 }
437
b20a3503 438 /*
cf4b769a
HD
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
b20a3503 441 */
cf4b769a
HD
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
e71769ae 444 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
6326fec1
NP
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
453 }
454
42cb14b1
HD
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
89eb946a 462 xas_store(&xas, newpage);
e71769ae
NH
463 if (PageTransHuge(page)) {
464 int i;
e71769ae 465
013567be 466 for (i = 1; i < HPAGE_PMD_NR; i++) {
89eb946a 467 xas_next(&xas);
4101196b 468 xas_store(&xas, newpage);
e71769ae 469 }
e71769ae 470 }
7cf9c2c7
NP
471
472 /*
937a94c9
JG
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
7cf9c2c7
NP
475 * We know this isn't the last reference.
476 */
e71769ae 477 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
7cf9c2c7 478
89eb946a 479 xas_unlock(&xas);
42cb14b1
HD
480 /* Leave irq disabled to prevent preemption while updating stats */
481
0e8c7d0f
CL
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
4b9d0fab 489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
490 * are mapped to swap space.
491 */
42cb14b1 492 if (newzone != oldzone) {
0d1c2072
JW
493 struct lruvec *old_lruvec, *new_lruvec;
494 struct mem_cgroup *memcg;
495
496 memcg = page_memcg(page);
497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
42cb14b1 502 if (PageSwapBacked(page) && !PageSwapCache(page)) {
0d1c2072
JW
503 __dec_lruvec_state(old_lruvec, NR_SHMEM);
504 __inc_lruvec_state(new_lruvec, NR_SHMEM);
42cb14b1
HD
505 }
506 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 511 }
4b02108a 512 }
42cb14b1 513 local_irq_enable();
b20a3503 514
78bd5209 515 return MIGRATEPAGE_SUCCESS;
b20a3503 516}
1118dce7 517EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 518
290408d4
NH
519/*
520 * The expected number of remaining references is the same as that
521 * of migrate_page_move_mapping().
522 */
523int migrate_huge_page_move_mapping(struct address_space *mapping,
524 struct page *newpage, struct page *page)
525{
89eb946a 526 XA_STATE(xas, &mapping->i_pages, page_index(page));
290408d4 527 int expected_count;
290408d4 528
89eb946a 529 xas_lock_irq(&xas);
290408d4 530 expected_count = 2 + page_has_private(page);
89eb946a
MW
531 if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 xas_unlock_irq(&xas);
290408d4
NH
533 return -EAGAIN;
534 }
535
fe896d18 536 if (!page_ref_freeze(page, expected_count)) {
89eb946a 537 xas_unlock_irq(&xas);
290408d4
NH
538 return -EAGAIN;
539 }
540
cf4b769a
HD
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
6a93ca8f 543
290408d4
NH
544 get_page(newpage);
545
89eb946a 546 xas_store(&xas, newpage);
290408d4 547
fe896d18 548 page_ref_unfreeze(page, expected_count - 1);
290408d4 549
89eb946a 550 xas_unlock_irq(&xas);
6a93ca8f 551
78bd5209 552 return MIGRATEPAGE_SUCCESS;
290408d4
NH
553}
554
30b0a105
DH
555/*
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
559 */
560static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
562{
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
566
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
570
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
574 }
575}
576
577static void copy_huge_page(struct page *dst, struct page *src)
578{
579 int i;
580 int nr_pages;
581
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
586
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
590 }
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
594 nr_pages = hpage_nr_pages(src);
595 }
596
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
600 }
601}
602
b20a3503
CL
603/*
604 * Copy the page to its new location
605 */
2916ecc0 606void migrate_page_states(struct page *newpage, struct page *page)
b20a3503 607{
7851a45c
RR
608 int cpupid;
609
b20a3503
CL
610 if (PageError(page))
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
894bc310 616 if (TestClearPageActive(page)) {
309381fe 617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 618 SetPageActive(newpage);
418b27ef
LS
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
1899ad18
JW
621 if (PageWorkingset(page))
622 SetPageWorkingset(newpage);
b20a3503
CL
623 if (PageChecked(page))
624 SetPageChecked(newpage);
625 if (PageMappedToDisk(page))
626 SetPageMappedToDisk(newpage);
627
42cb14b1
HD
628 /* Move dirty on pages not done by migrate_page_move_mapping() */
629 if (PageDirty(page))
630 SetPageDirty(newpage);
b20a3503 631
33c3fc71
VD
632 if (page_is_young(page))
633 set_page_young(newpage);
634 if (page_is_idle(page))
635 set_page_idle(newpage);
636
7851a45c
RR
637 /*
638 * Copy NUMA information to the new page, to prevent over-eager
639 * future migrations of this same page.
640 */
641 cpupid = page_cpupid_xchg_last(page, -1);
642 page_cpupid_xchg_last(newpage, cpupid);
643
e9995ef9 644 ksm_migrate_page(newpage, page);
c8d6553b
HD
645 /*
646 * Please do not reorder this without considering how mm/ksm.c's
647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 */
b3b3a99c
NH
649 if (PageSwapCache(page))
650 ClearPageSwapCache(page);
b20a3503
CL
651 ClearPagePrivate(page);
652 set_page_private(page, 0);
b20a3503
CL
653
654 /*
655 * If any waiters have accumulated on the new page then
656 * wake them up.
657 */
658 if (PageWriteback(newpage))
659 end_page_writeback(newpage);
d435edca 660
6aeff241
YS
661 /*
662 * PG_readahead shares the same bit with PG_reclaim. The above
663 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 * bit after that.
665 */
666 if (PageReadahead(page))
667 SetPageReadahead(newpage);
668
d435edca 669 copy_page_owner(page, newpage);
74485cf2
JW
670
671 mem_cgroup_migrate(page, newpage);
b20a3503 672}
2916ecc0
JG
673EXPORT_SYMBOL(migrate_page_states);
674
675void migrate_page_copy(struct page *newpage, struct page *page)
676{
677 if (PageHuge(page) || PageTransHuge(page))
678 copy_huge_page(newpage, page);
679 else
680 copy_highpage(newpage, page);
681
682 migrate_page_states(newpage, page);
683}
1118dce7 684EXPORT_SYMBOL(migrate_page_copy);
b20a3503 685
1d8b85cc
CL
686/************************************************************
687 * Migration functions
688 ***********************************************************/
689
b20a3503 690/*
bda807d4 691 * Common logic to directly migrate a single LRU page suitable for
266cf658 692 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
693 *
694 * Pages are locked upon entry and exit.
695 */
2d1db3b1 696int migrate_page(struct address_space *mapping,
a6bc32b8
MG
697 struct page *newpage, struct page *page,
698 enum migrate_mode mode)
b20a3503
CL
699{
700 int rc;
701
702 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
703
37109694 704 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
b20a3503 705
78bd5209 706 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
707 return rc;
708
2916ecc0
JG
709 if (mode != MIGRATE_SYNC_NO_COPY)
710 migrate_page_copy(newpage, page);
711 else
712 migrate_page_states(newpage, page);
78bd5209 713 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
714}
715EXPORT_SYMBOL(migrate_page);
716
9361401e 717#ifdef CONFIG_BLOCK
84ade7c1
JK
718/* Returns true if all buffers are successfully locked */
719static bool buffer_migrate_lock_buffers(struct buffer_head *head,
720 enum migrate_mode mode)
721{
722 struct buffer_head *bh = head;
723
724 /* Simple case, sync compaction */
725 if (mode != MIGRATE_ASYNC) {
726 do {
84ade7c1
JK
727 lock_buffer(bh);
728 bh = bh->b_this_page;
729
730 } while (bh != head);
731
732 return true;
733 }
734
735 /* async case, we cannot block on lock_buffer so use trylock_buffer */
736 do {
84ade7c1
JK
737 if (!trylock_buffer(bh)) {
738 /*
739 * We failed to lock the buffer and cannot stall in
740 * async migration. Release the taken locks
741 */
742 struct buffer_head *failed_bh = bh;
84ade7c1
JK
743 bh = head;
744 while (bh != failed_bh) {
745 unlock_buffer(bh);
84ade7c1
JK
746 bh = bh->b_this_page;
747 }
748 return false;
749 }
750
751 bh = bh->b_this_page;
752 } while (bh != head);
753 return true;
754}
755
89cb0888
JK
756static int __buffer_migrate_page(struct address_space *mapping,
757 struct page *newpage, struct page *page, enum migrate_mode mode,
758 bool check_refs)
1d8b85cc 759{
1d8b85cc
CL
760 struct buffer_head *bh, *head;
761 int rc;
cc4f11e6 762 int expected_count;
1d8b85cc 763
1d8b85cc 764 if (!page_has_buffers(page))
a6bc32b8 765 return migrate_page(mapping, newpage, page, mode);
1d8b85cc 766
cc4f11e6 767 /* Check whether page does not have extra refs before we do more work */
f900482d 768 expected_count = expected_page_refs(mapping, page);
cc4f11e6
JK
769 if (page_count(page) != expected_count)
770 return -EAGAIN;
1d8b85cc 771
cc4f11e6
JK
772 head = page_buffers(page);
773 if (!buffer_migrate_lock_buffers(head, mode))
774 return -EAGAIN;
1d8b85cc 775
89cb0888
JK
776 if (check_refs) {
777 bool busy;
778 bool invalidated = false;
779
780recheck_buffers:
781 busy = false;
782 spin_lock(&mapping->private_lock);
783 bh = head;
784 do {
785 if (atomic_read(&bh->b_count)) {
786 busy = true;
787 break;
788 }
789 bh = bh->b_this_page;
790 } while (bh != head);
89cb0888
JK
791 if (busy) {
792 if (invalidated) {
793 rc = -EAGAIN;
794 goto unlock_buffers;
795 }
ebdf4de5 796 spin_unlock(&mapping->private_lock);
89cb0888
JK
797 invalidate_bh_lrus();
798 invalidated = true;
799 goto recheck_buffers;
800 }
801 }
802
37109694 803 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
78bd5209 804 if (rc != MIGRATEPAGE_SUCCESS)
cc4f11e6 805 goto unlock_buffers;
1d8b85cc 806
cd0f3715 807 attach_page_private(newpage, detach_page_private(page));
1d8b85cc
CL
808
809 bh = head;
810 do {
811 set_bh_page(bh, newpage, bh_offset(bh));
812 bh = bh->b_this_page;
813
814 } while (bh != head);
815
2916ecc0
JG
816 if (mode != MIGRATE_SYNC_NO_COPY)
817 migrate_page_copy(newpage, page);
818 else
819 migrate_page_states(newpage, page);
1d8b85cc 820
cc4f11e6
JK
821 rc = MIGRATEPAGE_SUCCESS;
822unlock_buffers:
ebdf4de5
JK
823 if (check_refs)
824 spin_unlock(&mapping->private_lock);
1d8b85cc
CL
825 bh = head;
826 do {
827 unlock_buffer(bh);
1d8b85cc
CL
828 bh = bh->b_this_page;
829
830 } while (bh != head);
831
cc4f11e6 832 return rc;
1d8b85cc 833}
89cb0888
JK
834
835/*
836 * Migration function for pages with buffers. This function can only be used
837 * if the underlying filesystem guarantees that no other references to "page"
838 * exist. For example attached buffer heads are accessed only under page lock.
839 */
840int buffer_migrate_page(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
842{
843 return __buffer_migrate_page(mapping, newpage, page, mode, false);
844}
1d8b85cc 845EXPORT_SYMBOL(buffer_migrate_page);
89cb0888
JK
846
847/*
848 * Same as above except that this variant is more careful and checks that there
849 * are also no buffer head references. This function is the right one for
850 * mappings where buffer heads are directly looked up and referenced (such as
851 * block device mappings).
852 */
853int buffer_migrate_page_norefs(struct address_space *mapping,
854 struct page *newpage, struct page *page, enum migrate_mode mode)
855{
856 return __buffer_migrate_page(mapping, newpage, page, mode, true);
857}
9361401e 858#endif
1d8b85cc 859
04e62a29
CL
860/*
861 * Writeback a page to clean the dirty state
862 */
863static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 864{
04e62a29
CL
865 struct writeback_control wbc = {
866 .sync_mode = WB_SYNC_NONE,
867 .nr_to_write = 1,
868 .range_start = 0,
869 .range_end = LLONG_MAX,
04e62a29
CL
870 .for_reclaim = 1
871 };
872 int rc;
873
874 if (!mapping->a_ops->writepage)
875 /* No write method for the address space */
876 return -EINVAL;
877
878 if (!clear_page_dirty_for_io(page))
879 /* Someone else already triggered a write */
880 return -EAGAIN;
881
8351a6e4 882 /*
04e62a29
CL
883 * A dirty page may imply that the underlying filesystem has
884 * the page on some queue. So the page must be clean for
885 * migration. Writeout may mean we loose the lock and the
886 * page state is no longer what we checked for earlier.
887 * At this point we know that the migration attempt cannot
888 * be successful.
8351a6e4 889 */
e388466d 890 remove_migration_ptes(page, page, false);
8351a6e4 891
04e62a29 892 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 893
04e62a29
CL
894 if (rc != AOP_WRITEPAGE_ACTIVATE)
895 /* unlocked. Relock */
896 lock_page(page);
897
bda8550d 898 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
899}
900
901/*
902 * Default handling if a filesystem does not provide a migration function.
903 */
904static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 905 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 906{
b969c4ab 907 if (PageDirty(page)) {
a6bc32b8 908 /* Only writeback pages in full synchronous migration */
2916ecc0
JG
909 switch (mode) {
910 case MIGRATE_SYNC:
911 case MIGRATE_SYNC_NO_COPY:
912 break;
913 default:
b969c4ab 914 return -EBUSY;
2916ecc0 915 }
04e62a29 916 return writeout(mapping, page);
b969c4ab 917 }
8351a6e4
CL
918
919 /*
920 * Buffers may be managed in a filesystem specific way.
921 * We must have no buffers or drop them.
922 */
266cf658 923 if (page_has_private(page) &&
8351a6e4 924 !try_to_release_page(page, GFP_KERNEL))
806031bb 925 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
8351a6e4 926
a6bc32b8 927 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
928}
929
e24f0b8f
CL
930/*
931 * Move a page to a newly allocated page
932 * The page is locked and all ptes have been successfully removed.
933 *
934 * The new page will have replaced the old page if this function
935 * is successful.
894bc310
LS
936 *
937 * Return value:
938 * < 0 - error code
78bd5209 939 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 940 */
3fe2011f 941static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 942 enum migrate_mode mode)
e24f0b8f
CL
943{
944 struct address_space *mapping;
bda807d4
MK
945 int rc = -EAGAIN;
946 bool is_lru = !__PageMovable(page);
e24f0b8f 947
7db7671f
HD
948 VM_BUG_ON_PAGE(!PageLocked(page), page);
949 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 950
e24f0b8f 951 mapping = page_mapping(page);
bda807d4
MK
952
953 if (likely(is_lru)) {
954 if (!mapping)
955 rc = migrate_page(mapping, newpage, page, mode);
956 else if (mapping->a_ops->migratepage)
957 /*
958 * Most pages have a mapping and most filesystems
959 * provide a migratepage callback. Anonymous pages
960 * are part of swap space which also has its own
961 * migratepage callback. This is the most common path
962 * for page migration.
963 */
964 rc = mapping->a_ops->migratepage(mapping, newpage,
965 page, mode);
966 else
967 rc = fallback_migrate_page(mapping, newpage,
968 page, mode);
969 } else {
e24f0b8f 970 /*
bda807d4
MK
971 * In case of non-lru page, it could be released after
972 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 973 */
bda807d4
MK
974 VM_BUG_ON_PAGE(!PageIsolated(page), page);
975 if (!PageMovable(page)) {
976 rc = MIGRATEPAGE_SUCCESS;
977 __ClearPageIsolated(page);
978 goto out;
979 }
980
981 rc = mapping->a_ops->migratepage(mapping, newpage,
982 page, mode);
983 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
984 !PageIsolated(page));
985 }
e24f0b8f 986
5c3f9a67
HD
987 /*
988 * When successful, old pagecache page->mapping must be cleared before
989 * page is freed; but stats require that PageAnon be left as PageAnon.
990 */
991 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
992 if (__PageMovable(page)) {
993 VM_BUG_ON_PAGE(!PageIsolated(page), page);
994
995 /*
996 * We clear PG_movable under page_lock so any compactor
997 * cannot try to migrate this page.
998 */
999 __ClearPageIsolated(page);
1000 }
1001
1002 /*
c23a0c99 1003 * Anonymous and movable page->mapping will be cleared by
bda807d4
MK
1004 * free_pages_prepare so don't reset it here for keeping
1005 * the type to work PageAnon, for example.
1006 */
1007 if (!PageMappingFlags(page))
5c3f9a67 1008 page->mapping = NULL;
d2b2c6dd 1009
25b2995a 1010 if (likely(!is_zone_device_page(newpage)))
d2b2c6dd
LP
1011 flush_dcache_page(newpage);
1012
3fe2011f 1013 }
bda807d4 1014out:
e24f0b8f
CL
1015 return rc;
1016}
1017
0dabec93 1018static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 1019 int force, enum migrate_mode mode)
e24f0b8f 1020{
0dabec93 1021 int rc = -EAGAIN;
2ebba6b7 1022 int page_was_mapped = 0;
3f6c8272 1023 struct anon_vma *anon_vma = NULL;
bda807d4 1024 bool is_lru = !__PageMovable(page);
95a402c3 1025
529ae9aa 1026 if (!trylock_page(page)) {
a6bc32b8 1027 if (!force || mode == MIGRATE_ASYNC)
0dabec93 1028 goto out;
3e7d3449
MG
1029
1030 /*
1031 * It's not safe for direct compaction to call lock_page.
1032 * For example, during page readahead pages are added locked
1033 * to the LRU. Later, when the IO completes the pages are
1034 * marked uptodate and unlocked. However, the queueing
1035 * could be merging multiple pages for one bio (e.g.
d4388340 1036 * mpage_readahead). If an allocation happens for the
3e7d3449
MG
1037 * second or third page, the process can end up locking
1038 * the same page twice and deadlocking. Rather than
1039 * trying to be clever about what pages can be locked,
1040 * avoid the use of lock_page for direct compaction
1041 * altogether.
1042 */
1043 if (current->flags & PF_MEMALLOC)
0dabec93 1044 goto out;
3e7d3449 1045
e24f0b8f
CL
1046 lock_page(page);
1047 }
1048
1049 if (PageWriteback(page)) {
11bc82d6 1050 /*
fed5b64a 1051 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
1052 * necessary to wait for PageWriteback. In the async case,
1053 * the retry loop is too short and in the sync-light case,
1054 * the overhead of stalling is too much
11bc82d6 1055 */
2916ecc0
JG
1056 switch (mode) {
1057 case MIGRATE_SYNC:
1058 case MIGRATE_SYNC_NO_COPY:
1059 break;
1060 default:
11bc82d6 1061 rc = -EBUSY;
0a31bc97 1062 goto out_unlock;
11bc82d6
AA
1063 }
1064 if (!force)
0a31bc97 1065 goto out_unlock;
e24f0b8f
CL
1066 wait_on_page_writeback(page);
1067 }
03f15c86 1068
e24f0b8f 1069 /*
dc386d4d
KH
1070 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1071 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 1072 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 1073 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
1074 * File Caches may use write_page() or lock_page() in migration, then,
1075 * just care Anon page here.
03f15c86
HD
1076 *
1077 * Only page_get_anon_vma() understands the subtleties of
1078 * getting a hold on an anon_vma from outside one of its mms.
1079 * But if we cannot get anon_vma, then we won't need it anyway,
1080 * because that implies that the anon page is no longer mapped
1081 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 1082 */
03f15c86 1083 if (PageAnon(page) && !PageKsm(page))
746b18d4 1084 anon_vma = page_get_anon_vma(page);
62e1c553 1085
7db7671f
HD
1086 /*
1087 * Block others from accessing the new page when we get around to
1088 * establishing additional references. We are usually the only one
1089 * holding a reference to newpage at this point. We used to have a BUG
1090 * here if trylock_page(newpage) fails, but would like to allow for
1091 * cases where there might be a race with the previous use of newpage.
1092 * This is much like races on refcount of oldpage: just don't BUG().
1093 */
1094 if (unlikely(!trylock_page(newpage)))
1095 goto out_unlock;
1096
bda807d4
MK
1097 if (unlikely(!is_lru)) {
1098 rc = move_to_new_page(newpage, page, mode);
1099 goto out_unlock_both;
1100 }
1101
dc386d4d 1102 /*
62e1c553
SL
1103 * Corner case handling:
1104 * 1. When a new swap-cache page is read into, it is added to the LRU
1105 * and treated as swapcache but it has no rmap yet.
1106 * Calling try_to_unmap() against a page->mapping==NULL page will
1107 * trigger a BUG. So handle it here.
1108 * 2. An orphaned page (see truncate_complete_page) might have
1109 * fs-private metadata. The page can be picked up due to memory
1110 * offlining. Everywhere else except page reclaim, the page is
1111 * invisible to the vm, so the page can not be migrated. So try to
1112 * free the metadata, so the page can be freed.
e24f0b8f 1113 */
62e1c553 1114 if (!page->mapping) {
309381fe 1115 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1116 if (page_has_private(page)) {
62e1c553 1117 try_to_free_buffers(page);
7db7671f 1118 goto out_unlock_both;
62e1c553 1119 }
7db7671f
HD
1120 } else if (page_mapped(page)) {
1121 /* Establish migration ptes */
03f15c86
HD
1122 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1123 page);
2ebba6b7 1124 try_to_unmap(page,
da1b13cc 1125 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1126 page_was_mapped = 1;
1127 }
dc386d4d 1128
e6a1530d 1129 if (!page_mapped(page))
5c3f9a67 1130 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1131
5c3f9a67
HD
1132 if (page_was_mapped)
1133 remove_migration_ptes(page,
e388466d 1134 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1135
7db7671f
HD
1136out_unlock_both:
1137 unlock_page(newpage);
1138out_unlock:
3f6c8272 1139 /* Drop an anon_vma reference if we took one */
76545066 1140 if (anon_vma)
9e60109f 1141 put_anon_vma(anon_vma);
e24f0b8f 1142 unlock_page(page);
0dabec93 1143out:
c6c919eb
MK
1144 /*
1145 * If migration is successful, decrease refcount of the newpage
1146 * which will not free the page because new page owner increased
1147 * refcounter. As well, if it is LRU page, add the page to LRU
e0a352fa
DH
1148 * list in here. Use the old state of the isolated source page to
1149 * determine if we migrated a LRU page. newpage was already unlocked
1150 * and possibly modified by its owner - don't rely on the page
1151 * state.
c6c919eb
MK
1152 */
1153 if (rc == MIGRATEPAGE_SUCCESS) {
e0a352fa 1154 if (unlikely(!is_lru))
c6c919eb
MK
1155 put_page(newpage);
1156 else
1157 putback_lru_page(newpage);
1158 }
1159
0dabec93
MK
1160 return rc;
1161}
95a402c3 1162
0dabec93
MK
1163/*
1164 * Obtain the lock on page, remove all ptes and migrate the page
1165 * to the newly allocated page in newpage.
1166 */
6ec4476a 1167static int unmap_and_move(new_page_t get_new_page,
ef2a5153
GU
1168 free_page_t put_new_page,
1169 unsigned long private, struct page *page,
add05cec
NH
1170 int force, enum migrate_mode mode,
1171 enum migrate_reason reason)
0dabec93 1172{
2def7424 1173 int rc = MIGRATEPAGE_SUCCESS;
74d4a579 1174 struct page *newpage = NULL;
0dabec93 1175
94723aaf
MH
1176 if (!thp_migration_supported() && PageTransHuge(page))
1177 return -ENOMEM;
1178
0dabec93
MK
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
c6c919eb
MK
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
bda807d4
MK
1183 if (unlikely(__PageMovable(page))) {
1184 lock_page(page);
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1187 unlock_page(page);
1188 }
0dabec93
MK
1189 goto out;
1190 }
1191
74d4a579
YS
1192 newpage = get_new_page(page, private);
1193 if (!newpage)
1194 return -ENOMEM;
1195
9c620e2b 1196 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1197 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1198 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1199
0dabec93 1200out:
e24f0b8f 1201 if (rc != -EAGAIN) {
0dabec93
MK
1202 /*
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
c23a0c99 1205 * migrated will have kept its references and be restored.
0dabec93
MK
1206 */
1207 list_del(&page->lru);
6afcf8ef
ML
1208
1209 /*
1210 * Compaction can migrate also non-LRU pages which are
1211 * not accounted to NR_ISOLATED_*. They can be recognized
1212 * as __PageMovable
1213 */
1214 if (likely(!__PageMovable(page)))
e8db67eb 1215 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
9de4f22a 1216 page_is_file_lru(page), -hpage_nr_pages(page));
c6c919eb
MK
1217 }
1218
1219 /*
1220 * If migration is successful, releases reference grabbed during
1221 * isolation. Otherwise, restore the page to right list unless
1222 * we want to retry.
1223 */
1224 if (rc == MIGRATEPAGE_SUCCESS) {
1225 put_page(page);
1226 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1227 /*
c6c919eb
MK
1228 * Set PG_HWPoison on just freed page
1229 * intentionally. Although it's rather weird,
1230 * it's how HWPoison flag works at the moment.
d7e69488 1231 */
d4ae9916 1232 if (set_hwpoison_free_buddy_page(page))
da1b13cc 1233 num_poisoned_pages_inc();
c6c919eb
MK
1234 }
1235 } else {
bda807d4
MK
1236 if (rc != -EAGAIN) {
1237 if (likely(!__PageMovable(page))) {
1238 putback_lru_page(page);
1239 goto put_new;
1240 }
1241
1242 lock_page(page);
1243 if (PageMovable(page))
1244 putback_movable_page(page);
1245 else
1246 __ClearPageIsolated(page);
1247 unlock_page(page);
1248 put_page(page);
1249 }
1250put_new:
c6c919eb
MK
1251 if (put_new_page)
1252 put_new_page(newpage, private);
1253 else
1254 put_page(newpage);
e24f0b8f 1255 }
68711a74 1256
e24f0b8f
CL
1257 return rc;
1258}
1259
290408d4
NH
1260/*
1261 * Counterpart of unmap_and_move_page() for hugepage migration.
1262 *
1263 * This function doesn't wait the completion of hugepage I/O
1264 * because there is no race between I/O and migration for hugepage.
1265 * Note that currently hugepage I/O occurs only in direct I/O
1266 * where no lock is held and PG_writeback is irrelevant,
1267 * and writeback status of all subpages are counted in the reference
1268 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1269 * under direct I/O, the reference of the head page is 512 and a bit more.)
1270 * This means that when we try to migrate hugepage whose subpages are
1271 * doing direct I/O, some references remain after try_to_unmap() and
1272 * hugepage migration fails without data corruption.
1273 *
1274 * There is also no race when direct I/O is issued on the page under migration,
1275 * because then pte is replaced with migration swap entry and direct I/O code
1276 * will wait in the page fault for migration to complete.
1277 */
1278static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1279 free_page_t put_new_page, unsigned long private,
1280 struct page *hpage, int force,
7cd12b4a 1281 enum migrate_mode mode, int reason)
290408d4 1282{
2def7424 1283 int rc = -EAGAIN;
2ebba6b7 1284 int page_was_mapped = 0;
32665f2b 1285 struct page *new_hpage;
290408d4 1286 struct anon_vma *anon_vma = NULL;
c0d0381a 1287 struct address_space *mapping = NULL;
290408d4 1288
83467efb 1289 /*
7ed2c31d 1290 * Migratability of hugepages depends on architectures and their size.
83467efb
NH
1291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1295 */
100873d7 1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1297 putback_active_hugepage(hpage);
83467efb 1298 return -ENOSYS;
32665f2b 1299 }
83467efb 1300
666feb21 1301 new_hpage = get_new_page(hpage, private);
290408d4
NH
1302 if (!new_hpage)
1303 return -ENOMEM;
1304
290408d4 1305 if (!trylock_page(hpage)) {
2916ecc0 1306 if (!force)
290408d4 1307 goto out;
2916ecc0
JG
1308 switch (mode) {
1309 case MIGRATE_SYNC:
1310 case MIGRATE_SYNC_NO_COPY:
1311 break;
1312 default:
1313 goto out;
1314 }
290408d4
NH
1315 lock_page(hpage);
1316 }
1317
cb6acd01
MK
1318 /*
1319 * Check for pages which are in the process of being freed. Without
1320 * page_mapping() set, hugetlbfs specific move page routine will not
1321 * be called and we could leak usage counts for subpools.
1322 */
1323 if (page_private(hpage) && !page_mapping(hpage)) {
1324 rc = -EBUSY;
1325 goto out_unlock;
1326 }
1327
746b18d4
PZ
1328 if (PageAnon(hpage))
1329 anon_vma = page_get_anon_vma(hpage);
290408d4 1330
7db7671f
HD
1331 if (unlikely(!trylock_page(new_hpage)))
1332 goto put_anon;
1333
2ebba6b7 1334 if (page_mapped(hpage)) {
c0d0381a
MK
1335 /*
1336 * try_to_unmap could potentially call huge_pmd_unshare.
1337 * Because of this, take semaphore in write mode here and
1338 * set TTU_RMAP_LOCKED to let lower levels know we have
1339 * taken the lock.
1340 */
1341 mapping = hugetlb_page_mapping_lock_write(hpage);
1342 if (unlikely(!mapping))
1343 goto unlock_put_anon;
1344
2ebba6b7 1345 try_to_unmap(hpage,
c0d0381a
MK
1346 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1347 TTU_RMAP_LOCKED);
2ebba6b7 1348 page_was_mapped = 1;
c0d0381a
MK
1349 /*
1350 * Leave mapping locked until after subsequent call to
1351 * remove_migration_ptes()
1352 */
2ebba6b7 1353 }
290408d4
NH
1354
1355 if (!page_mapped(hpage))
5c3f9a67 1356 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1357
c0d0381a 1358 if (page_was_mapped) {
5c3f9a67 1359 remove_migration_ptes(hpage,
c0d0381a
MK
1360 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1361 i_mmap_unlock_write(mapping);
1362 }
290408d4 1363
c0d0381a 1364unlock_put_anon:
7db7671f
HD
1365 unlock_page(new_hpage);
1366
1367put_anon:
fd4a4663 1368 if (anon_vma)
9e60109f 1369 put_anon_vma(anon_vma);
8e6ac7fa 1370
2def7424 1371 if (rc == MIGRATEPAGE_SUCCESS) {
ab5ac90a 1372 move_hugetlb_state(hpage, new_hpage, reason);
2def7424
HD
1373 put_new_page = NULL;
1374 }
8e6ac7fa 1375
cb6acd01 1376out_unlock:
290408d4 1377 unlock_page(hpage);
09761333 1378out:
b8ec1cee
NH
1379 if (rc != -EAGAIN)
1380 putback_active_hugepage(hpage);
68711a74
DR
1381
1382 /*
1383 * If migration was not successful and there's a freeing callback, use
1384 * it. Otherwise, put_page() will drop the reference grabbed during
1385 * isolation.
1386 */
2def7424 1387 if (put_new_page)
68711a74
DR
1388 put_new_page(new_hpage, private);
1389 else
3aaa76e1 1390 putback_active_hugepage(new_hpage);
68711a74 1391
290408d4
NH
1392 return rc;
1393}
1394
b20a3503 1395/*
c73e5c9c
SB
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
b20a3503 1398 *
c73e5c9c
SB
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
68711a74
DR
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
b20a3503 1408 *
c73e5c9c
SB
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1411 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1412 * or free list only if ret != 0.
b20a3503 1413 *
c73e5c9c 1414 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1415 */
9c620e2b 1416int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1417 free_page_t put_new_page, unsigned long private,
1418 enum migrate_mode mode, int reason)
b20a3503 1419{
e24f0b8f 1420 int retry = 1;
b20a3503 1421 int nr_failed = 0;
5647bc29 1422 int nr_succeeded = 0;
b20a3503
CL
1423 int pass = 0;
1424 struct page *page;
1425 struct page *page2;
1426 int swapwrite = current->flags & PF_SWAPWRITE;
1427 int rc;
1428
1429 if (!swapwrite)
1430 current->flags |= PF_SWAPWRITE;
1431
e24f0b8f
CL
1432 for(pass = 0; pass < 10 && retry; pass++) {
1433 retry = 0;
b20a3503 1434
e24f0b8f 1435 list_for_each_entry_safe(page, page2, from, lru) {
94723aaf 1436retry:
e24f0b8f 1437 cond_resched();
2d1db3b1 1438
31caf665
NH
1439 if (PageHuge(page))
1440 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1441 put_new_page, private, page,
7cd12b4a 1442 pass > 2, mode, reason);
31caf665 1443 else
68711a74 1444 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1445 private, page, pass > 2, mode,
1446 reason);
2d1db3b1 1447
e24f0b8f 1448 switch(rc) {
95a402c3 1449 case -ENOMEM:
94723aaf
MH
1450 /*
1451 * THP migration might be unsupported or the
1452 * allocation could've failed so we should
1453 * retry on the same page with the THP split
1454 * to base pages.
1455 *
1456 * Head page is retried immediately and tail
1457 * pages are added to the tail of the list so
1458 * we encounter them after the rest of the list
1459 * is processed.
1460 */
e6112fc3 1461 if (PageTransHuge(page) && !PageHuge(page)) {
94723aaf
MH
1462 lock_page(page);
1463 rc = split_huge_page_to_list(page, from);
1464 unlock_page(page);
1465 if (!rc) {
1466 list_safe_reset_next(page, page2, lru);
1467 goto retry;
1468 }
1469 }
dfef2ef4 1470 nr_failed++;
95a402c3 1471 goto out;
e24f0b8f 1472 case -EAGAIN:
2d1db3b1 1473 retry++;
e24f0b8f 1474 break;
78bd5209 1475 case MIGRATEPAGE_SUCCESS:
5647bc29 1476 nr_succeeded++;
e24f0b8f
CL
1477 break;
1478 default:
354a3363
NH
1479 /*
1480 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1481 * unlike -EAGAIN case, the failed page is
1482 * removed from migration page list and not
1483 * retried in the next outer loop.
1484 */
2d1db3b1 1485 nr_failed++;
e24f0b8f 1486 break;
2d1db3b1 1487 }
b20a3503
CL
1488 }
1489 }
f2f81fb2
VB
1490 nr_failed += retry;
1491 rc = nr_failed;
95a402c3 1492out:
5647bc29
MG
1493 if (nr_succeeded)
1494 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1495 if (nr_failed)
1496 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1497 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1498
b20a3503
CL
1499 if (!swapwrite)
1500 current->flags &= ~PF_SWAPWRITE;
1501
78bd5209 1502 return rc;
b20a3503 1503}
95a402c3 1504
742755a1 1505#ifdef CONFIG_NUMA
742755a1 1506
a49bd4d7 1507static int store_status(int __user *status, int start, int value, int nr)
742755a1 1508{
a49bd4d7
MH
1509 while (nr-- > 0) {
1510 if (put_user(value, status + start))
1511 return -EFAULT;
1512 start++;
1513 }
1514
1515 return 0;
1516}
1517
1518static int do_move_pages_to_node(struct mm_struct *mm,
1519 struct list_head *pagelist, int node)
1520{
1521 int err;
1522
a49bd4d7
MH
1523 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1524 MIGRATE_SYNC, MR_SYSCALL);
1525 if (err)
1526 putback_movable_pages(pagelist);
1527 return err;
742755a1
CL
1528}
1529
1530/*
a49bd4d7
MH
1531 * Resolves the given address to a struct page, isolates it from the LRU and
1532 * puts it to the given pagelist.
e0153fc2
YS
1533 * Returns:
1534 * errno - if the page cannot be found/isolated
1535 * 0 - when it doesn't have to be migrated because it is already on the
1536 * target node
1537 * 1 - when it has been queued
742755a1 1538 */
a49bd4d7
MH
1539static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1540 int node, struct list_head *pagelist, bool migrate_all)
742755a1 1541{
a49bd4d7
MH
1542 struct vm_area_struct *vma;
1543 struct page *page;
1544 unsigned int follflags;
742755a1 1545 int err;
742755a1 1546
d8ed45c5 1547 mmap_read_lock(mm);
a49bd4d7
MH
1548 err = -EFAULT;
1549 vma = find_vma(mm, addr);
1550 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1551 goto out;
742755a1 1552
a49bd4d7
MH
1553 /* FOLL_DUMP to ignore special (like zero) pages */
1554 follflags = FOLL_GET | FOLL_DUMP;
a49bd4d7 1555 page = follow_page(vma, addr, follflags);
89f5b7da 1556
a49bd4d7
MH
1557 err = PTR_ERR(page);
1558 if (IS_ERR(page))
1559 goto out;
89f5b7da 1560
a49bd4d7
MH
1561 err = -ENOENT;
1562 if (!page)
1563 goto out;
742755a1 1564
a49bd4d7
MH
1565 err = 0;
1566 if (page_to_nid(page) == node)
1567 goto out_putpage;
742755a1 1568
a49bd4d7
MH
1569 err = -EACCES;
1570 if (page_mapcount(page) > 1 && !migrate_all)
1571 goto out_putpage;
742755a1 1572
a49bd4d7
MH
1573 if (PageHuge(page)) {
1574 if (PageHead(page)) {
1575 isolate_huge_page(page, pagelist);
e0153fc2 1576 err = 1;
e632a938 1577 }
a49bd4d7
MH
1578 } else {
1579 struct page *head;
e632a938 1580
e8db67eb
NH
1581 head = compound_head(page);
1582 err = isolate_lru_page(head);
cf608ac1 1583 if (err)
a49bd4d7 1584 goto out_putpage;
742755a1 1585
e0153fc2 1586 err = 1;
a49bd4d7
MH
1587 list_add_tail(&head->lru, pagelist);
1588 mod_node_page_state(page_pgdat(head),
9de4f22a 1589 NR_ISOLATED_ANON + page_is_file_lru(head),
a49bd4d7
MH
1590 hpage_nr_pages(head));
1591 }
1592out_putpage:
1593 /*
1594 * Either remove the duplicate refcount from
1595 * isolate_lru_page() or drop the page ref if it was
1596 * not isolated.
1597 */
1598 put_page(page);
1599out:
d8ed45c5 1600 mmap_read_unlock(mm);
742755a1
CL
1601 return err;
1602}
1603
7ca8783a
WY
1604static int move_pages_and_store_status(struct mm_struct *mm, int node,
1605 struct list_head *pagelist, int __user *status,
1606 int start, int i, unsigned long nr_pages)
1607{
1608 int err;
1609
5d7ae891
WY
1610 if (list_empty(pagelist))
1611 return 0;
1612
7ca8783a
WY
1613 err = do_move_pages_to_node(mm, pagelist, node);
1614 if (err) {
1615 /*
1616 * Positive err means the number of failed
1617 * pages to migrate. Since we are going to
1618 * abort and return the number of non-migrated
1619 * pages, so need to incude the rest of the
1620 * nr_pages that have not been attempted as
1621 * well.
1622 */
1623 if (err > 0)
1624 err += nr_pages - i - 1;
1625 return err;
1626 }
1627 return store_status(status, start, node, i - start);
1628}
1629
5e9a0f02
BG
1630/*
1631 * Migrate an array of page address onto an array of nodes and fill
1632 * the corresponding array of status.
1633 */
3268c63e 1634static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1635 unsigned long nr_pages,
1636 const void __user * __user *pages,
1637 const int __user *nodes,
1638 int __user *status, int flags)
1639{
a49bd4d7
MH
1640 int current_node = NUMA_NO_NODE;
1641 LIST_HEAD(pagelist);
1642 int start, i;
1643 int err = 0, err1;
35282a2d
BG
1644
1645 migrate_prep();
1646
a49bd4d7
MH
1647 for (i = start = 0; i < nr_pages; i++) {
1648 const void __user *p;
1649 unsigned long addr;
1650 int node;
3140a227 1651
a49bd4d7
MH
1652 err = -EFAULT;
1653 if (get_user(p, pages + i))
1654 goto out_flush;
1655 if (get_user(node, nodes + i))
1656 goto out_flush;
057d3389 1657 addr = (unsigned long)untagged_addr(p);
a49bd4d7
MH
1658
1659 err = -ENODEV;
1660 if (node < 0 || node >= MAX_NUMNODES)
1661 goto out_flush;
1662 if (!node_state(node, N_MEMORY))
1663 goto out_flush;
5e9a0f02 1664
a49bd4d7
MH
1665 err = -EACCES;
1666 if (!node_isset(node, task_nodes))
1667 goto out_flush;
1668
1669 if (current_node == NUMA_NO_NODE) {
1670 current_node = node;
1671 start = i;
1672 } else if (node != current_node) {
7ca8783a
WY
1673 err = move_pages_and_store_status(mm, current_node,
1674 &pagelist, status, start, i, nr_pages);
a49bd4d7
MH
1675 if (err)
1676 goto out;
1677 start = i;
1678 current_node = node;
3140a227
BG
1679 }
1680
a49bd4d7
MH
1681 /*
1682 * Errors in the page lookup or isolation are not fatal and we simply
1683 * report them via status
1684 */
1685 err = add_page_for_migration(mm, addr, current_node,
1686 &pagelist, flags & MPOL_MF_MOVE_ALL);
e0153fc2 1687
d08221a0 1688 if (err > 0) {
e0153fc2
YS
1689 /* The page is successfully queued for migration */
1690 continue;
1691 }
3140a227 1692
d08221a0
WY
1693 /*
1694 * If the page is already on the target node (!err), store the
1695 * node, otherwise, store the err.
1696 */
1697 err = store_status(status, i, err ? : current_node, 1);
a49bd4d7
MH
1698 if (err)
1699 goto out_flush;
5e9a0f02 1700
7ca8783a
WY
1701 err = move_pages_and_store_status(mm, current_node, &pagelist,
1702 status, start, i, nr_pages);
4afdacec
WY
1703 if (err)
1704 goto out;
a49bd4d7 1705 current_node = NUMA_NO_NODE;
3140a227 1706 }
a49bd4d7
MH
1707out_flush:
1708 /* Make sure we do not overwrite the existing error */
7ca8783a
WY
1709 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1710 status, start, i, nr_pages);
dfe9aa23 1711 if (err >= 0)
a49bd4d7 1712 err = err1;
5e9a0f02
BG
1713out:
1714 return err;
1715}
1716
742755a1 1717/*
2f007e74 1718 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1719 */
80bba129
BG
1720static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1721 const void __user **pages, int *status)
742755a1 1722{
2f007e74 1723 unsigned long i;
2f007e74 1724
d8ed45c5 1725 mmap_read_lock(mm);
742755a1 1726
2f007e74 1727 for (i = 0; i < nr_pages; i++) {
80bba129 1728 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1729 struct vm_area_struct *vma;
1730 struct page *page;
c095adbc 1731 int err = -EFAULT;
2f007e74
BG
1732
1733 vma = find_vma(mm, addr);
70384dc6 1734 if (!vma || addr < vma->vm_start)
742755a1
CL
1735 goto set_status;
1736
d899844e
KS
1737 /* FOLL_DUMP to ignore special (like zero) pages */
1738 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1739
1740 err = PTR_ERR(page);
1741 if (IS_ERR(page))
1742 goto set_status;
1743
d899844e 1744 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1745set_status:
80bba129
BG
1746 *status = err;
1747
1748 pages++;
1749 status++;
1750 }
1751
d8ed45c5 1752 mmap_read_unlock(mm);
80bba129
BG
1753}
1754
1755/*
1756 * Determine the nodes of a user array of pages and store it in
1757 * a user array of status.
1758 */
1759static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1760 const void __user * __user *pages,
1761 int __user *status)
1762{
1763#define DO_PAGES_STAT_CHUNK_NR 16
1764 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1765 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1766
87b8d1ad
PA
1767 while (nr_pages) {
1768 unsigned long chunk_nr;
80bba129 1769
87b8d1ad
PA
1770 chunk_nr = nr_pages;
1771 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1772 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1773
1774 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1775 break;
80bba129
BG
1776
1777 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1778
87b8d1ad
PA
1779 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1780 break;
742755a1 1781
87b8d1ad
PA
1782 pages += chunk_nr;
1783 status += chunk_nr;
1784 nr_pages -= chunk_nr;
1785 }
1786 return nr_pages ? -EFAULT : 0;
742755a1
CL
1787}
1788
1789/*
1790 * Move a list of pages in the address space of the currently executing
1791 * process.
1792 */
7addf443
DB
1793static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1794 const void __user * __user *pages,
1795 const int __user *nodes,
1796 int __user *status, int flags)
742755a1 1797{
742755a1 1798 struct task_struct *task;
742755a1 1799 struct mm_struct *mm;
5e9a0f02 1800 int err;
3268c63e 1801 nodemask_t task_nodes;
742755a1
CL
1802
1803 /* Check flags */
1804 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1805 return -EINVAL;
1806
1807 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1808 return -EPERM;
1809
1810 /* Find the mm_struct */
a879bf58 1811 rcu_read_lock();
228ebcbe 1812 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1813 if (!task) {
a879bf58 1814 rcu_read_unlock();
742755a1
CL
1815 return -ESRCH;
1816 }
3268c63e 1817 get_task_struct(task);
742755a1
CL
1818
1819 /*
1820 * Check if this process has the right to modify the specified
197e7e52 1821 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1822 */
197e7e52 1823 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1824 rcu_read_unlock();
742755a1 1825 err = -EPERM;
5e9a0f02 1826 goto out;
742755a1 1827 }
c69e8d9c 1828 rcu_read_unlock();
742755a1 1829
86c3a764
DQ
1830 err = security_task_movememory(task);
1831 if (err)
5e9a0f02 1832 goto out;
86c3a764 1833
3268c63e
CL
1834 task_nodes = cpuset_mems_allowed(task);
1835 mm = get_task_mm(task);
1836 put_task_struct(task);
1837
6e8b09ea
SL
1838 if (!mm)
1839 return -EINVAL;
1840
1841 if (nodes)
1842 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1843 nodes, status, flags);
1844 else
1845 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1846
742755a1
CL
1847 mmput(mm);
1848 return err;
3268c63e
CL
1849
1850out:
1851 put_task_struct(task);
1852 return err;
742755a1 1853}
742755a1 1854
7addf443
DB
1855SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1856 const void __user * __user *, pages,
1857 const int __user *, nodes,
1858 int __user *, status, int, flags)
1859{
1860 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1861}
1862
1863#ifdef CONFIG_COMPAT
1864COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1865 compat_uptr_t __user *, pages32,
1866 const int __user *, nodes,
1867 int __user *, status,
1868 int, flags)
1869{
1870 const void __user * __user *pages;
1871 int i;
1872
1873 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1874 for (i = 0; i < nr_pages; i++) {
1875 compat_uptr_t p;
1876
1877 if (get_user(p, pages32 + i) ||
1878 put_user(compat_ptr(p), pages + i))
1879 return -EFAULT;
1880 }
1881 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1882}
1883#endif /* CONFIG_COMPAT */
1884
7039e1db
PZ
1885#ifdef CONFIG_NUMA_BALANCING
1886/*
1887 * Returns true if this is a safe migration target node for misplaced NUMA
1888 * pages. Currently it only checks the watermarks which crude
1889 */
1890static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1891 unsigned long nr_migrate_pages)
7039e1db
PZ
1892{
1893 int z;
599d0c95 1894
7039e1db
PZ
1895 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1896 struct zone *zone = pgdat->node_zones + z;
1897
1898 if (!populated_zone(zone))
1899 continue;
1900
7039e1db
PZ
1901 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1902 if (!zone_watermark_ok(zone, 0,
1903 high_wmark_pages(zone) +
1904 nr_migrate_pages,
bfe9d006 1905 ZONE_MOVABLE, 0))
7039e1db
PZ
1906 continue;
1907 return true;
1908 }
1909 return false;
1910}
1911
1912static struct page *alloc_misplaced_dst_page(struct page *page,
666feb21 1913 unsigned long data)
7039e1db
PZ
1914{
1915 int nid = (int) data;
1916 struct page *newpage;
1917
96db800f 1918 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1919 (GFP_HIGHUSER_MOVABLE |
1920 __GFP_THISNODE | __GFP_NOMEMALLOC |
1921 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1922 ~__GFP_RECLAIM, 0);
bac0382c 1923
7039e1db
PZ
1924 return newpage;
1925}
1926
1c30e017 1927static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1928{
340ef390 1929 int page_lru;
a8f60772 1930
309381fe 1931 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1932
7039e1db 1933 /* Avoid migrating to a node that is nearly full */
d8c6546b 1934 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
340ef390 1935 return 0;
7039e1db 1936
340ef390
HD
1937 if (isolate_lru_page(page))
1938 return 0;
7039e1db 1939
340ef390
HD
1940 /*
1941 * migrate_misplaced_transhuge_page() skips page migration's usual
1942 * check on page_count(), so we must do it here, now that the page
1943 * has been isolated: a GUP pin, or any other pin, prevents migration.
1944 * The expected page count is 3: 1 for page's mapcount and 1 for the
1945 * caller's pin and 1 for the reference taken by isolate_lru_page().
1946 */
1947 if (PageTransHuge(page) && page_count(page) != 3) {
1948 putback_lru_page(page);
1949 return 0;
7039e1db
PZ
1950 }
1951
9de4f22a 1952 page_lru = page_is_file_lru(page);
599d0c95 1953 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1954 hpage_nr_pages(page));
1955
149c33e1 1956 /*
340ef390
HD
1957 * Isolating the page has taken another reference, so the
1958 * caller's reference can be safely dropped without the page
1959 * disappearing underneath us during migration.
149c33e1
MG
1960 */
1961 put_page(page);
340ef390 1962 return 1;
b32967ff
MG
1963}
1964
de466bd6
MG
1965bool pmd_trans_migrating(pmd_t pmd)
1966{
1967 struct page *page = pmd_page(pmd);
1968 return PageLocked(page);
1969}
1970
b32967ff
MG
1971/*
1972 * Attempt to migrate a misplaced page to the specified destination
1973 * node. Caller is expected to have an elevated reference count on
1974 * the page that will be dropped by this function before returning.
1975 */
1bc115d8
MG
1976int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1977 int node)
b32967ff
MG
1978{
1979 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1980 int isolated;
b32967ff
MG
1981 int nr_remaining;
1982 LIST_HEAD(migratepages);
1983
1984 /*
1bc115d8
MG
1985 * Don't migrate file pages that are mapped in multiple processes
1986 * with execute permissions as they are probably shared libraries.
b32967ff 1987 */
9de4f22a 1988 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
1bc115d8 1989 (vma->vm_flags & VM_EXEC))
b32967ff 1990 goto out;
b32967ff 1991
09a913a7
MG
1992 /*
1993 * Also do not migrate dirty pages as not all filesystems can move
1994 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1995 */
9de4f22a 1996 if (page_is_file_lru(page) && PageDirty(page))
09a913a7
MG
1997 goto out;
1998
b32967ff
MG
1999 isolated = numamigrate_isolate_page(pgdat, page);
2000 if (!isolated)
2001 goto out;
2002
2003 list_add(&page->lru, &migratepages);
9c620e2b 2004 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
2005 NULL, node, MIGRATE_ASYNC,
2006 MR_NUMA_MISPLACED);
b32967ff 2007 if (nr_remaining) {
59c82b70
JK
2008 if (!list_empty(&migratepages)) {
2009 list_del(&page->lru);
599d0c95 2010 dec_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 2011 page_is_file_lru(page));
59c82b70
JK
2012 putback_lru_page(page);
2013 }
b32967ff
MG
2014 isolated = 0;
2015 } else
2016 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 2017 BUG_ON(!list_empty(&migratepages));
7039e1db 2018 return isolated;
340ef390
HD
2019
2020out:
2021 put_page(page);
2022 return 0;
7039e1db 2023}
220018d3 2024#endif /* CONFIG_NUMA_BALANCING */
b32967ff 2025
220018d3 2026#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
2027/*
2028 * Migrates a THP to a given target node. page must be locked and is unlocked
2029 * before returning.
2030 */
b32967ff
MG
2031int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2032 struct vm_area_struct *vma,
2033 pmd_t *pmd, pmd_t entry,
2034 unsigned long address,
2035 struct page *page, int node)
2036{
c4088ebd 2037 spinlock_t *ptl;
b32967ff
MG
2038 pg_data_t *pgdat = NODE_DATA(node);
2039 int isolated = 0;
2040 struct page *new_page = NULL;
9de4f22a 2041 int page_lru = page_is_file_lru(page);
7066f0f9 2042 unsigned long start = address & HPAGE_PMD_MASK;
b32967ff 2043
b32967ff 2044 new_page = alloc_pages_node(node,
25160354 2045 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 2046 HPAGE_PMD_ORDER);
340ef390
HD
2047 if (!new_page)
2048 goto out_fail;
9a982250 2049 prep_transhuge_page(new_page);
340ef390 2050
b32967ff 2051 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 2052 if (!isolated) {
b32967ff 2053 put_page(new_page);
340ef390 2054 goto out_fail;
b32967ff 2055 }
b0943d61 2056
b32967ff 2057 /* Prepare a page as a migration target */
48c935ad 2058 __SetPageLocked(new_page);
d44d363f
SL
2059 if (PageSwapBacked(page))
2060 __SetPageSwapBacked(new_page);
b32967ff
MG
2061
2062 /* anon mapping, we can simply copy page->mapping to the new page: */
2063 new_page->mapping = page->mapping;
2064 new_page->index = page->index;
7eef5f97
AA
2065 /* flush the cache before copying using the kernel virtual address */
2066 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
b32967ff
MG
2067 migrate_page_copy(new_page, page);
2068 WARN_ON(PageLRU(new_page));
2069
2070 /* Recheck the target PMD */
c4088ebd 2071 ptl = pmd_lock(mm, pmd);
f4e177d1 2072 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 2073 spin_unlock(ptl);
b32967ff
MG
2074
2075 /* Reverse changes made by migrate_page_copy() */
2076 if (TestClearPageActive(new_page))
2077 SetPageActive(page);
2078 if (TestClearPageUnevictable(new_page))
2079 SetPageUnevictable(page);
b32967ff
MG
2080
2081 unlock_page(new_page);
2082 put_page(new_page); /* Free it */
2083
a54a407f
MG
2084 /* Retake the callers reference and putback on LRU */
2085 get_page(page);
b32967ff 2086 putback_lru_page(page);
599d0c95 2087 mod_node_page_state(page_pgdat(page),
a54a407f 2088 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
2089
2090 goto out_unlock;
b32967ff
MG
2091 }
2092
10102459 2093 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 2094 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 2095
2b4847e7 2096 /*
d7c33934
AA
2097 * Overwrite the old entry under pagetable lock and establish
2098 * the new PTE. Any parallel GUP will either observe the old
2099 * page blocking on the page lock, block on the page table
2100 * lock or observe the new page. The SetPageUptodate on the
2101 * new page and page_add_new_anon_rmap guarantee the copy is
2102 * visible before the pagetable update.
2b4847e7 2103 */
7066f0f9 2104 page_add_anon_rmap(new_page, vma, start, true);
d7c33934
AA
2105 /*
2106 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2107 * has already been flushed globally. So no TLB can be currently
2108 * caching this non present pmd mapping. There's no need to clear the
2109 * pmd before doing set_pmd_at(), nor to flush the TLB after
2110 * set_pmd_at(). Clearing the pmd here would introduce a race
2111 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
c1e8d7c6 2112 * mmap_lock for reading. If the pmd is set to NULL at any given time,
d7c33934
AA
2113 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2114 * pmd.
2115 */
7066f0f9 2116 set_pmd_at(mm, start, pmd, entry);
ce4a9cc5 2117 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 2118
f4e177d1 2119 page_ref_unfreeze(page, 2);
51afb12b 2120 mlock_migrate_page(new_page, page);
d281ee61 2121 page_remove_rmap(page, true);
7cd12b4a 2122 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 2123
c4088ebd 2124 spin_unlock(ptl);
b32967ff 2125
11de9927
MG
2126 /* Take an "isolate" reference and put new page on the LRU. */
2127 get_page(new_page);
2128 putback_lru_page(new_page);
2129
b32967ff
MG
2130 unlock_page(new_page);
2131 unlock_page(page);
2132 put_page(page); /* Drop the rmap reference */
2133 put_page(page); /* Drop the LRU isolation reference */
2134
2135 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2136 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2137
599d0c95 2138 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2139 NR_ISOLATED_ANON + page_lru,
2140 -HPAGE_PMD_NR);
2141 return isolated;
2142
340ef390
HD
2143out_fail:
2144 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2b4847e7
MG
2145 ptl = pmd_lock(mm, pmd);
2146 if (pmd_same(*pmd, entry)) {
4d942466 2147 entry = pmd_modify(entry, vma->vm_page_prot);
7066f0f9 2148 set_pmd_at(mm, start, pmd, entry);
2b4847e7
MG
2149 update_mmu_cache_pmd(vma, address, &entry);
2150 }
2151 spin_unlock(ptl);
a54a407f 2152
eb4489f6 2153out_unlock:
340ef390 2154 unlock_page(page);
b32967ff 2155 put_page(page);
b32967ff
MG
2156 return 0;
2157}
7039e1db
PZ
2158#endif /* CONFIG_NUMA_BALANCING */
2159
2160#endif /* CONFIG_NUMA */
8763cb45 2161
9b2ed9cb 2162#ifdef CONFIG_DEVICE_PRIVATE
8763cb45
JG
2163static int migrate_vma_collect_hole(unsigned long start,
2164 unsigned long end,
b7a16c7a 2165 __always_unused int depth,
8763cb45
JG
2166 struct mm_walk *walk)
2167{
2168 struct migrate_vma *migrate = walk->private;
2169 unsigned long addr;
2170
872ea707 2171 for (addr = start; addr < end; addr += PAGE_SIZE) {
e20d103b 2172 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
8315ada7 2173 migrate->dst[migrate->npages] = 0;
e20d103b 2174 migrate->npages++;
8315ada7
JG
2175 migrate->cpages++;
2176 }
2177
2178 return 0;
2179}
2180
2181static int migrate_vma_collect_skip(unsigned long start,
2182 unsigned long end,
2183 struct mm_walk *walk)
2184{
2185 struct migrate_vma *migrate = walk->private;
2186 unsigned long addr;
2187
872ea707 2188 for (addr = start; addr < end; addr += PAGE_SIZE) {
8763cb45
JG
2189 migrate->dst[migrate->npages] = 0;
2190 migrate->src[migrate->npages++] = 0;
2191 }
2192
2193 return 0;
2194}
2195
2196static int migrate_vma_collect_pmd(pmd_t *pmdp,
2197 unsigned long start,
2198 unsigned long end,
2199 struct mm_walk *walk)
2200{
2201 struct migrate_vma *migrate = walk->private;
2202 struct vm_area_struct *vma = walk->vma;
2203 struct mm_struct *mm = vma->vm_mm;
8c3328f1 2204 unsigned long addr = start, unmapped = 0;
8763cb45
JG
2205 spinlock_t *ptl;
2206 pte_t *ptep;
2207
2208again:
2209 if (pmd_none(*pmdp))
b7a16c7a 2210 return migrate_vma_collect_hole(start, end, -1, walk);
8763cb45
JG
2211
2212 if (pmd_trans_huge(*pmdp)) {
2213 struct page *page;
2214
2215 ptl = pmd_lock(mm, pmdp);
2216 if (unlikely(!pmd_trans_huge(*pmdp))) {
2217 spin_unlock(ptl);
2218 goto again;
2219 }
2220
2221 page = pmd_page(*pmdp);
2222 if (is_huge_zero_page(page)) {
2223 spin_unlock(ptl);
2224 split_huge_pmd(vma, pmdp, addr);
2225 if (pmd_trans_unstable(pmdp))
8315ada7 2226 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2227 walk);
2228 } else {
2229 int ret;
2230
2231 get_page(page);
2232 spin_unlock(ptl);
2233 if (unlikely(!trylock_page(page)))
8315ada7 2234 return migrate_vma_collect_skip(start, end,
8763cb45
JG
2235 walk);
2236 ret = split_huge_page(page);
2237 unlock_page(page);
2238 put_page(page);
8315ada7
JG
2239 if (ret)
2240 return migrate_vma_collect_skip(start, end,
2241 walk);
2242 if (pmd_none(*pmdp))
b7a16c7a 2243 return migrate_vma_collect_hole(start, end, -1,
8763cb45
JG
2244 walk);
2245 }
2246 }
2247
2248 if (unlikely(pmd_bad(*pmdp)))
8315ada7 2249 return migrate_vma_collect_skip(start, end, walk);
8763cb45
JG
2250
2251 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
8c3328f1
JG
2252 arch_enter_lazy_mmu_mode();
2253
8763cb45 2254 for (; addr < end; addr += PAGE_SIZE, ptep++) {
800bb1c8 2255 unsigned long mpfn = 0, pfn;
8763cb45 2256 struct page *page;
8c3328f1 2257 swp_entry_t entry;
8763cb45
JG
2258 pte_t pte;
2259
2260 pte = *ptep;
8763cb45 2261
a5430dda 2262 if (pte_none(pte)) {
8315ada7
JG
2263 mpfn = MIGRATE_PFN_MIGRATE;
2264 migrate->cpages++;
8763cb45
JG
2265 goto next;
2266 }
2267
a5430dda 2268 if (!pte_present(pte)) {
a5430dda
JG
2269 /*
2270 * Only care about unaddressable device page special
2271 * page table entry. Other special swap entries are not
2272 * migratable, and we ignore regular swapped page.
2273 */
2274 entry = pte_to_swp_entry(pte);
2275 if (!is_device_private_entry(entry))
2276 goto next;
2277
2278 page = device_private_entry_to_page(entry);
800bb1c8
CH
2279 if (page->pgmap->owner != migrate->src_owner)
2280 goto next;
2281
06d462be
CH
2282 mpfn = migrate_pfn(page_to_pfn(page)) |
2283 MIGRATE_PFN_MIGRATE;
a5430dda
JG
2284 if (is_write_device_private_entry(entry))
2285 mpfn |= MIGRATE_PFN_WRITE;
2286 } else {
800bb1c8
CH
2287 if (migrate->src_owner)
2288 goto next;
276f756d 2289 pfn = pte_pfn(pte);
8315ada7
JG
2290 if (is_zero_pfn(pfn)) {
2291 mpfn = MIGRATE_PFN_MIGRATE;
2292 migrate->cpages++;
8315ada7
JG
2293 goto next;
2294 }
25b2995a 2295 page = vm_normal_page(migrate->vma, addr, pte);
a5430dda
JG
2296 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2297 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2298 }
2299
8763cb45 2300 /* FIXME support THP */
8763cb45 2301 if (!page || !page->mapping || PageTransCompound(page)) {
276f756d 2302 mpfn = 0;
8763cb45
JG
2303 goto next;
2304 }
2305
2306 /*
2307 * By getting a reference on the page we pin it and that blocks
2308 * any kind of migration. Side effect is that it "freezes" the
2309 * pte.
2310 *
2311 * We drop this reference after isolating the page from the lru
2312 * for non device page (device page are not on the lru and thus
2313 * can't be dropped from it).
2314 */
2315 get_page(page);
2316 migrate->cpages++;
8763cb45 2317
8c3328f1
JG
2318 /*
2319 * Optimize for the common case where page is only mapped once
2320 * in one process. If we can lock the page, then we can safely
2321 * set up a special migration page table entry now.
2322 */
2323 if (trylock_page(page)) {
2324 pte_t swp_pte;
2325
2326 mpfn |= MIGRATE_PFN_LOCKED;
2327 ptep_get_and_clear(mm, addr, ptep);
2328
2329 /* Setup special migration page table entry */
07707125
RC
2330 entry = make_migration_entry(page, mpfn &
2331 MIGRATE_PFN_WRITE);
8c3328f1
JG
2332 swp_pte = swp_entry_to_pte(entry);
2333 if (pte_soft_dirty(pte))
2334 swp_pte = pte_swp_mksoft_dirty(swp_pte);
f45ec5ff
PX
2335 if (pte_uffd_wp(pte))
2336 swp_pte = pte_swp_mkuffd_wp(swp_pte);
8c3328f1
JG
2337 set_pte_at(mm, addr, ptep, swp_pte);
2338
2339 /*
2340 * This is like regular unmap: we remove the rmap and
2341 * drop page refcount. Page won't be freed, as we took
2342 * a reference just above.
2343 */
2344 page_remove_rmap(page, false);
2345 put_page(page);
a5430dda
JG
2346
2347 if (pte_present(pte))
2348 unmapped++;
8c3328f1
JG
2349 }
2350
8763cb45 2351next:
a5430dda 2352 migrate->dst[migrate->npages] = 0;
8763cb45
JG
2353 migrate->src[migrate->npages++] = mpfn;
2354 }
8c3328f1 2355 arch_leave_lazy_mmu_mode();
8763cb45
JG
2356 pte_unmap_unlock(ptep - 1, ptl);
2357
8c3328f1
JG
2358 /* Only flush the TLB if we actually modified any entries */
2359 if (unmapped)
2360 flush_tlb_range(walk->vma, start, end);
2361
8763cb45
JG
2362 return 0;
2363}
2364
7b86ac33
CH
2365static const struct mm_walk_ops migrate_vma_walk_ops = {
2366 .pmd_entry = migrate_vma_collect_pmd,
2367 .pte_hole = migrate_vma_collect_hole,
2368};
2369
8763cb45
JG
2370/*
2371 * migrate_vma_collect() - collect pages over a range of virtual addresses
2372 * @migrate: migrate struct containing all migration information
2373 *
2374 * This will walk the CPU page table. For each virtual address backed by a
2375 * valid page, it updates the src array and takes a reference on the page, in
2376 * order to pin the page until we lock it and unmap it.
2377 */
2378static void migrate_vma_collect(struct migrate_vma *migrate)
2379{
ac46d4f3 2380 struct mmu_notifier_range range;
8763cb45 2381
7b86ac33
CH
2382 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2383 migrate->vma->vm_mm, migrate->start, migrate->end);
ac46d4f3 2384 mmu_notifier_invalidate_range_start(&range);
8763cb45 2385
7b86ac33
CH
2386 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2387 &migrate_vma_walk_ops, migrate);
2388
2389 mmu_notifier_invalidate_range_end(&range);
8763cb45
JG
2390 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2391}
2392
2393/*
2394 * migrate_vma_check_page() - check if page is pinned or not
2395 * @page: struct page to check
2396 *
2397 * Pinned pages cannot be migrated. This is the same test as in
2398 * migrate_page_move_mapping(), except that here we allow migration of a
2399 * ZONE_DEVICE page.
2400 */
2401static bool migrate_vma_check_page(struct page *page)
2402{
2403 /*
2404 * One extra ref because caller holds an extra reference, either from
2405 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2406 * a device page.
2407 */
2408 int extra = 1;
2409
2410 /*
2411 * FIXME support THP (transparent huge page), it is bit more complex to
2412 * check them than regular pages, because they can be mapped with a pmd
2413 * or with a pte (split pte mapping).
2414 */
2415 if (PageCompound(page))
2416 return false;
2417
a5430dda
JG
2418 /* Page from ZONE_DEVICE have one extra reference */
2419 if (is_zone_device_page(page)) {
2420 /*
2421 * Private page can never be pin as they have no valid pte and
2422 * GUP will fail for those. Yet if there is a pending migration
2423 * a thread might try to wait on the pte migration entry and
2424 * will bump the page reference count. Sadly there is no way to
2425 * differentiate a regular pin from migration wait. Hence to
2426 * avoid 2 racing thread trying to migrate back to CPU to enter
2427 * infinite loop (one stoping migration because the other is
2428 * waiting on pte migration entry). We always return true here.
2429 *
2430 * FIXME proper solution is to rework migration_entry_wait() so
2431 * it does not need to take a reference on page.
2432 */
25b2995a 2433 return is_device_private_page(page);
a5430dda
JG
2434 }
2435
df6ad698
JG
2436 /* For file back page */
2437 if (page_mapping(page))
2438 extra += 1 + page_has_private(page);
2439
8763cb45
JG
2440 if ((page_count(page) - extra) > page_mapcount(page))
2441 return false;
2442
2443 return true;
2444}
2445
2446/*
2447 * migrate_vma_prepare() - lock pages and isolate them from the lru
2448 * @migrate: migrate struct containing all migration information
2449 *
2450 * This locks pages that have been collected by migrate_vma_collect(). Once each
2451 * page is locked it is isolated from the lru (for non-device pages). Finally,
2452 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2453 * migrated by concurrent kernel threads.
2454 */
2455static void migrate_vma_prepare(struct migrate_vma *migrate)
2456{
2457 const unsigned long npages = migrate->npages;
8c3328f1
JG
2458 const unsigned long start = migrate->start;
2459 unsigned long addr, i, restore = 0;
8763cb45 2460 bool allow_drain = true;
8763cb45
JG
2461
2462 lru_add_drain();
2463
2464 for (i = 0; (i < npages) && migrate->cpages; i++) {
2465 struct page *page = migrate_pfn_to_page(migrate->src[i]);
8c3328f1 2466 bool remap = true;
8763cb45
JG
2467
2468 if (!page)
2469 continue;
2470
8c3328f1
JG
2471 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2472 /*
2473 * Because we are migrating several pages there can be
2474 * a deadlock between 2 concurrent migration where each
2475 * are waiting on each other page lock.
2476 *
2477 * Make migrate_vma() a best effort thing and backoff
2478 * for any page we can not lock right away.
2479 */
2480 if (!trylock_page(page)) {
2481 migrate->src[i] = 0;
2482 migrate->cpages--;
2483 put_page(page);
2484 continue;
2485 }
2486 remap = false;
2487 migrate->src[i] |= MIGRATE_PFN_LOCKED;
8763cb45 2488 }
8763cb45 2489
a5430dda
JG
2490 /* ZONE_DEVICE pages are not on LRU */
2491 if (!is_zone_device_page(page)) {
2492 if (!PageLRU(page) && allow_drain) {
2493 /* Drain CPU's pagevec */
2494 lru_add_drain_all();
2495 allow_drain = false;
2496 }
8763cb45 2497
a5430dda
JG
2498 if (isolate_lru_page(page)) {
2499 if (remap) {
2500 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2501 migrate->cpages--;
2502 restore++;
2503 } else {
2504 migrate->src[i] = 0;
2505 unlock_page(page);
2506 migrate->cpages--;
2507 put_page(page);
2508 }
2509 continue;
8c3328f1 2510 }
a5430dda
JG
2511
2512 /* Drop the reference we took in collect */
2513 put_page(page);
8763cb45
JG
2514 }
2515
2516 if (!migrate_vma_check_page(page)) {
8c3328f1
JG
2517 if (remap) {
2518 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2519 migrate->cpages--;
2520 restore++;
8763cb45 2521
a5430dda
JG
2522 if (!is_zone_device_page(page)) {
2523 get_page(page);
2524 putback_lru_page(page);
2525 }
8c3328f1
JG
2526 } else {
2527 migrate->src[i] = 0;
2528 unlock_page(page);
2529 migrate->cpages--;
2530
a5430dda
JG
2531 if (!is_zone_device_page(page))
2532 putback_lru_page(page);
2533 else
2534 put_page(page);
8c3328f1 2535 }
8763cb45
JG
2536 }
2537 }
8c3328f1
JG
2538
2539 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2540 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2541
2542 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2543 continue;
2544
2545 remove_migration_pte(page, migrate->vma, addr, page);
2546
2547 migrate->src[i] = 0;
2548 unlock_page(page);
2549 put_page(page);
2550 restore--;
2551 }
8763cb45
JG
2552}
2553
2554/*
2555 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2556 * @migrate: migrate struct containing all migration information
2557 *
2558 * Replace page mapping (CPU page table pte) with a special migration pte entry
2559 * and check again if it has been pinned. Pinned pages are restored because we
2560 * cannot migrate them.
2561 *
2562 * This is the last step before we call the device driver callback to allocate
2563 * destination memory and copy contents of original page over to new page.
2564 */
2565static void migrate_vma_unmap(struct migrate_vma *migrate)
2566{
2567 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2568 const unsigned long npages = migrate->npages;
2569 const unsigned long start = migrate->start;
2570 unsigned long addr, i, restore = 0;
2571
2572 for (i = 0; i < npages; i++) {
2573 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2574
2575 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2576 continue;
2577
8c3328f1
JG
2578 if (page_mapped(page)) {
2579 try_to_unmap(page, flags);
2580 if (page_mapped(page))
2581 goto restore;
8763cb45 2582 }
8c3328f1
JG
2583
2584 if (migrate_vma_check_page(page))
2585 continue;
2586
2587restore:
2588 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2589 migrate->cpages--;
2590 restore++;
8763cb45
JG
2591 }
2592
2593 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2594 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2595
2596 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2597 continue;
2598
2599 remove_migration_ptes(page, page, false);
2600
2601 migrate->src[i] = 0;
2602 unlock_page(page);
2603 restore--;
2604
a5430dda
JG
2605 if (is_zone_device_page(page))
2606 put_page(page);
2607 else
2608 putback_lru_page(page);
8763cb45
JG
2609 }
2610}
2611
a7d1f22b
CH
2612/**
2613 * migrate_vma_setup() - prepare to migrate a range of memory
2614 * @args: contains the vma, start, and and pfns arrays for the migration
2615 *
2616 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2617 * without an error.
2618 *
2619 * Prepare to migrate a range of memory virtual address range by collecting all
2620 * the pages backing each virtual address in the range, saving them inside the
2621 * src array. Then lock those pages and unmap them. Once the pages are locked
2622 * and unmapped, check whether each page is pinned or not. Pages that aren't
2623 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2624 * corresponding src array entry. Then restores any pages that are pinned, by
2625 * remapping and unlocking those pages.
2626 *
2627 * The caller should then allocate destination memory and copy source memory to
2628 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2629 * flag set). Once these are allocated and copied, the caller must update each
2630 * corresponding entry in the dst array with the pfn value of the destination
2631 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2632 * (destination pages must have their struct pages locked, via lock_page()).
2633 *
2634 * Note that the caller does not have to migrate all the pages that are marked
2635 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2636 * device memory to system memory. If the caller cannot migrate a device page
2637 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2638 * consequences for the userspace process, so it must be avoided if at all
2639 * possible.
2640 *
2641 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2642 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2643 * allowing the caller to allocate device memory for those unback virtual
2644 * address. For this the caller simply has to allocate device memory and
2645 * properly set the destination entry like for regular migration. Note that
2646 * this can still fails and thus inside the device driver must check if the
2647 * migration was successful for those entries after calling migrate_vma_pages()
2648 * just like for regular migration.
2649 *
2650 * After that, the callers must call migrate_vma_pages() to go over each entry
2651 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2652 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2653 * then migrate_vma_pages() to migrate struct page information from the source
2654 * struct page to the destination struct page. If it fails to migrate the
2655 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2656 * src array.
2657 *
2658 * At this point all successfully migrated pages have an entry in the src
2659 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2660 * array entry with MIGRATE_PFN_VALID flag set.
2661 *
2662 * Once migrate_vma_pages() returns the caller may inspect which pages were
2663 * successfully migrated, and which were not. Successfully migrated pages will
2664 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2665 *
2666 * It is safe to update device page table after migrate_vma_pages() because
c1e8d7c6 2667 * both destination and source page are still locked, and the mmap_lock is held
a7d1f22b
CH
2668 * in read mode (hence no one can unmap the range being migrated).
2669 *
2670 * Once the caller is done cleaning up things and updating its page table (if it
2671 * chose to do so, this is not an obligation) it finally calls
2672 * migrate_vma_finalize() to update the CPU page table to point to new pages
2673 * for successfully migrated pages or otherwise restore the CPU page table to
2674 * point to the original source pages.
2675 */
2676int migrate_vma_setup(struct migrate_vma *args)
2677{
2678 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2679
2680 args->start &= PAGE_MASK;
2681 args->end &= PAGE_MASK;
2682 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2683 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2684 return -EINVAL;
2685 if (nr_pages <= 0)
2686 return -EINVAL;
2687 if (args->start < args->vma->vm_start ||
2688 args->start >= args->vma->vm_end)
2689 return -EINVAL;
2690 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2691 return -EINVAL;
2692 if (!args->src || !args->dst)
2693 return -EINVAL;
2694
2695 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2696 args->cpages = 0;
2697 args->npages = 0;
2698
2699 migrate_vma_collect(args);
2700
2701 if (args->cpages)
2702 migrate_vma_prepare(args);
2703 if (args->cpages)
2704 migrate_vma_unmap(args);
2705
2706 /*
2707 * At this point pages are locked and unmapped, and thus they have
2708 * stable content and can safely be copied to destination memory that
2709 * is allocated by the drivers.
2710 */
2711 return 0;
2712
2713}
2714EXPORT_SYMBOL(migrate_vma_setup);
2715
34290e2c
RC
2716/*
2717 * This code closely matches the code in:
2718 * __handle_mm_fault()
2719 * handle_pte_fault()
2720 * do_anonymous_page()
2721 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2722 * private page.
2723 */
8315ada7
JG
2724static void migrate_vma_insert_page(struct migrate_vma *migrate,
2725 unsigned long addr,
2726 struct page *page,
2727 unsigned long *src,
2728 unsigned long *dst)
2729{
2730 struct vm_area_struct *vma = migrate->vma;
2731 struct mm_struct *mm = vma->vm_mm;
8315ada7
JG
2732 bool flush = false;
2733 spinlock_t *ptl;
2734 pte_t entry;
2735 pgd_t *pgdp;
2736 p4d_t *p4dp;
2737 pud_t *pudp;
2738 pmd_t *pmdp;
2739 pte_t *ptep;
2740
2741 /* Only allow populating anonymous memory */
2742 if (!vma_is_anonymous(vma))
2743 goto abort;
2744
2745 pgdp = pgd_offset(mm, addr);
2746 p4dp = p4d_alloc(mm, pgdp, addr);
2747 if (!p4dp)
2748 goto abort;
2749 pudp = pud_alloc(mm, p4dp, addr);
2750 if (!pudp)
2751 goto abort;
2752 pmdp = pmd_alloc(mm, pudp, addr);
2753 if (!pmdp)
2754 goto abort;
2755
2756 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2757 goto abort;
2758
2759 /*
2760 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2761 * pte_offset_map() on pmds where a huge pmd might be created
2762 * from a different thread.
2763 *
3e4e28c5 2764 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
8315ada7
JG
2765 * parallel threads are excluded by other means.
2766 *
3e4e28c5 2767 * Here we only have mmap_read_lock(mm).
8315ada7 2768 */
4cf58924 2769 if (pte_alloc(mm, pmdp))
8315ada7
JG
2770 goto abort;
2771
2772 /* See the comment in pte_alloc_one_map() */
2773 if (unlikely(pmd_trans_unstable(pmdp)))
2774 goto abort;
2775
2776 if (unlikely(anon_vma_prepare(vma)))
2777 goto abort;
d9eb1ea2 2778 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
8315ada7
JG
2779 goto abort;
2780
2781 /*
2782 * The memory barrier inside __SetPageUptodate makes sure that
2783 * preceding stores to the page contents become visible before
2784 * the set_pte_at() write.
2785 */
2786 __SetPageUptodate(page);
2787
df6ad698
JG
2788 if (is_zone_device_page(page)) {
2789 if (is_device_private_page(page)) {
2790 swp_entry_t swp_entry;
2791
2792 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2793 entry = swp_entry_to_pte(swp_entry);
df6ad698 2794 }
8315ada7
JG
2795 } else {
2796 entry = mk_pte(page, vma->vm_page_prot);
2797 if (vma->vm_flags & VM_WRITE)
2798 entry = pte_mkwrite(pte_mkdirty(entry));
2799 }
2800
2801 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2802
34290e2c
RC
2803 if (check_stable_address_space(mm))
2804 goto unlock_abort;
2805
8315ada7
JG
2806 if (pte_present(*ptep)) {
2807 unsigned long pfn = pte_pfn(*ptep);
2808
c23a0c99
RC
2809 if (!is_zero_pfn(pfn))
2810 goto unlock_abort;
8315ada7 2811 flush = true;
c23a0c99
RC
2812 } else if (!pte_none(*ptep))
2813 goto unlock_abort;
8315ada7
JG
2814
2815 /*
c23a0c99 2816 * Check for userfaultfd but do not deliver the fault. Instead,
8315ada7
JG
2817 * just back off.
2818 */
c23a0c99
RC
2819 if (userfaultfd_missing(vma))
2820 goto unlock_abort;
8315ada7
JG
2821
2822 inc_mm_counter(mm, MM_ANONPAGES);
be5d0a74 2823 page_add_new_anon_rmap(page, vma, addr, false);
8315ada7
JG
2824 if (!is_zone_device_page(page))
2825 lru_cache_add_active_or_unevictable(page, vma);
2826 get_page(page);
2827
2828 if (flush) {
2829 flush_cache_page(vma, addr, pte_pfn(*ptep));
2830 ptep_clear_flush_notify(vma, addr, ptep);
2831 set_pte_at_notify(mm, addr, ptep, entry);
2832 update_mmu_cache(vma, addr, ptep);
2833 } else {
2834 /* No need to invalidate - it was non-present before */
2835 set_pte_at(mm, addr, ptep, entry);
2836 update_mmu_cache(vma, addr, ptep);
2837 }
2838
2839 pte_unmap_unlock(ptep, ptl);
2840 *src = MIGRATE_PFN_MIGRATE;
2841 return;
2842
c23a0c99
RC
2843unlock_abort:
2844 pte_unmap_unlock(ptep, ptl);
8315ada7
JG
2845abort:
2846 *src &= ~MIGRATE_PFN_MIGRATE;
2847}
2848
a7d1f22b 2849/**
8763cb45
JG
2850 * migrate_vma_pages() - migrate meta-data from src page to dst page
2851 * @migrate: migrate struct containing all migration information
2852 *
2853 * This migrates struct page meta-data from source struct page to destination
2854 * struct page. This effectively finishes the migration from source page to the
2855 * destination page.
2856 */
a7d1f22b 2857void migrate_vma_pages(struct migrate_vma *migrate)
8763cb45
JG
2858{
2859 const unsigned long npages = migrate->npages;
2860 const unsigned long start = migrate->start;
ac46d4f3
JG
2861 struct mmu_notifier_range range;
2862 unsigned long addr, i;
8315ada7 2863 bool notified = false;
8763cb45
JG
2864
2865 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2866 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2867 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2868 struct address_space *mapping;
2869 int r;
2870
8315ada7
JG
2871 if (!newpage) {
2872 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
8763cb45 2873 continue;
8315ada7
JG
2874 }
2875
2876 if (!page) {
c23a0c99 2877 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
8315ada7 2878 continue;
8315ada7 2879 if (!notified) {
8315ada7 2880 notified = true;
ac46d4f3
JG
2881
2882 mmu_notifier_range_init(&range,
7269f999 2883 MMU_NOTIFY_CLEAR, 0,
6f4f13e8 2884 NULL,
ac46d4f3
JG
2885 migrate->vma->vm_mm,
2886 addr, migrate->end);
2887 mmu_notifier_invalidate_range_start(&range);
8315ada7
JG
2888 }
2889 migrate_vma_insert_page(migrate, addr, newpage,
2890 &migrate->src[i],
2891 &migrate->dst[i]);
8763cb45 2892 continue;
8315ada7 2893 }
8763cb45
JG
2894
2895 mapping = page_mapping(page);
2896
a5430dda
JG
2897 if (is_zone_device_page(newpage)) {
2898 if (is_device_private_page(newpage)) {
2899 /*
2900 * For now only support private anonymous when
2901 * migrating to un-addressable device memory.
2902 */
2903 if (mapping) {
2904 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2905 continue;
2906 }
25b2995a 2907 } else {
a5430dda
JG
2908 /*
2909 * Other types of ZONE_DEVICE page are not
2910 * supported.
2911 */
2912 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2913 continue;
2914 }
2915 }
2916
8763cb45
JG
2917 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2918 if (r != MIGRATEPAGE_SUCCESS)
2919 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2920 }
8315ada7 2921
4645b9fe
JG
2922 /*
2923 * No need to double call mmu_notifier->invalidate_range() callback as
2924 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2925 * did already call it.
2926 */
8315ada7 2927 if (notified)
ac46d4f3 2928 mmu_notifier_invalidate_range_only_end(&range);
8763cb45 2929}
a7d1f22b 2930EXPORT_SYMBOL(migrate_vma_pages);
8763cb45 2931
a7d1f22b 2932/**
8763cb45
JG
2933 * migrate_vma_finalize() - restore CPU page table entry
2934 * @migrate: migrate struct containing all migration information
2935 *
2936 * This replaces the special migration pte entry with either a mapping to the
2937 * new page if migration was successful for that page, or to the original page
2938 * otherwise.
2939 *
2940 * This also unlocks the pages and puts them back on the lru, or drops the extra
2941 * refcount, for device pages.
2942 */
a7d1f22b 2943void migrate_vma_finalize(struct migrate_vma *migrate)
8763cb45
JG
2944{
2945 const unsigned long npages = migrate->npages;
2946 unsigned long i;
2947
2948 for (i = 0; i < npages; i++) {
2949 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2950 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2951
8315ada7
JG
2952 if (!page) {
2953 if (newpage) {
2954 unlock_page(newpage);
2955 put_page(newpage);
2956 }
8763cb45 2957 continue;
8315ada7
JG
2958 }
2959
8763cb45
JG
2960 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2961 if (newpage) {
2962 unlock_page(newpage);
2963 put_page(newpage);
2964 }
2965 newpage = page;
2966 }
2967
2968 remove_migration_ptes(page, newpage, false);
2969 unlock_page(page);
2970 migrate->cpages--;
2971
a5430dda
JG
2972 if (is_zone_device_page(page))
2973 put_page(page);
2974 else
2975 putback_lru_page(page);
8763cb45
JG
2976
2977 if (newpage != page) {
2978 unlock_page(newpage);
a5430dda
JG
2979 if (is_zone_device_page(newpage))
2980 put_page(newpage);
2981 else
2982 putback_lru_page(newpage);
8763cb45
JG
2983 }
2984 }
2985}
a7d1f22b 2986EXPORT_SYMBOL(migrate_vma_finalize);
9b2ed9cb 2987#endif /* CONFIG_DEVICE_PRIVATE */