media: videobuf2: Move frame_vector into media subsystem
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
a62eaf15
AK
137static int __init disable_randmaps(char *s)
138{
139 randomize_va_space = 0;
9b41046c 140 return 1;
a62eaf15
AK
141}
142__setup("norandmaps", disable_randmaps);
143
62eede62 144unsigned long zero_pfn __read_mostly;
0b70068e
AB
145EXPORT_SYMBOL(zero_pfn);
146
166f61b9
TH
147unsigned long highest_memmap_pfn __read_mostly;
148
a13ea5b7
HD
149/*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
152static int __init init_zero_pfn(void)
153{
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156}
157core_initcall(init_zero_pfn);
a62eaf15 158
e4dcad20 159void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 160{
e4dcad20 161 trace_rss_stat(mm, member, count);
b3d1411b 162}
d559db08 163
34e55232
KH
164#if defined(SPLIT_RSS_COUNTING)
165
ea48cf78 166void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
167{
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
34e55232
KH
174 }
175 }
05af2e10 176 current->rss_stat.events = 0;
34e55232
KH
177}
178
179static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180{
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187}
188#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191/* sync counter once per 64 page faults */
192#define TASK_RSS_EVENTS_THRESH (64)
193static void check_sync_rss_stat(struct task_struct *task)
194{
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 198 sync_mm_rss(task->mm);
34e55232 199}
9547d01b 200#else /* SPLIT_RSS_COUNTING */
34e55232
KH
201
202#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205static void check_sync_rss_stat(struct task_struct *task)
206{
207}
208
9547d01b
PZ
209#endif /* SPLIT_RSS_COUNTING */
210
1da177e4
LT
211/*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
9e1b32ca
BH
215static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
1da177e4 217{
2f569afd 218 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 219 pmd_clear(pmd);
9e1b32ca 220 pte_free_tlb(tlb, token, addr);
c4812909 221 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
222}
223
e0da382c
HD
224static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
1da177e4
LT
227{
228 pmd_t *pmd;
229 unsigned long next;
e0da382c 230 unsigned long start;
1da177e4 231
e0da382c 232 start = addr;
1da177e4 233 pmd = pmd_offset(pud, addr);
1da177e4
LT
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
9e1b32ca 238 free_pte_range(tlb, pmd, addr);
1da177e4
LT
239 } while (pmd++, addr = next, addr != end);
240
e0da382c
HD
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
1da177e4 248 }
e0da382c
HD
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
9e1b32ca 254 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 255 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
256}
257
c2febafc 258static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
1da177e4
LT
261{
262 pud_t *pud;
263 unsigned long next;
e0da382c 264 unsigned long start;
1da177e4 265
e0da382c 266 start = addr;
c2febafc 267 pud = pud_offset(p4d, addr);
1da177e4
LT
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
e0da382c 272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
273 } while (pud++, addr = next, addr != end);
274
c2febafc
KS
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
b4e98d9a 289 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
290}
291
292static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295{
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
e0da382c
HD
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
1da177e4 316 }
e0da382c
HD
317 if (end - 1 > ceiling - 1)
318 return;
319
c2febafc 320 p4d = p4d_offset(pgd, start);
e0da382c 321 pgd_clear(pgd);
c2febafc 322 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
323}
324
325/*
e0da382c 326 * This function frees user-level page tables of a process.
1da177e4 327 */
42b77728 328void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
1da177e4
LT
331{
332 pgd_t *pgd;
333 unsigned long next;
e0da382c
HD
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
1da177e4 360
e0da382c
HD
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
07e32661
AK
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
ed6a7935 380 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 381 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
c2febafc 386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 387 } while (pgd++, addr = next, addr != end);
e0da382c
HD
388}
389
42b77728 390void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 391 unsigned long floor, unsigned long ceiling)
e0da382c
HD
392{
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
8f4f8c16 397 /*
25d9e2d1 398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
8f4f8c16 400 */
5beb4930 401 unlink_anon_vmas(vma);
8f4f8c16
HD
402 unlink_file_vma(vma);
403
9da61aef 404 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 406 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 412 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
413 vma = next;
414 next = vma->vm_next;
5beb4930 415 unlink_anon_vmas(vma);
8f4f8c16 416 unlink_file_vma(vma);
3bf5ee95
HD
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 419 floor, next ? next->vm_start : ceiling);
3bf5ee95 420 }
e0da382c
HD
421 vma = next;
422 }
1da177e4
LT
423}
424
4cf58924 425int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 426{
c4088ebd 427 spinlock_t *ptl;
4cf58924 428 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
429 if (!new)
430 return -ENOMEM;
431
362a61ad
NP
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
bb7cdd38 443 * smp_rmb() barriers in page table walking code.
362a61ad
NP
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
c4088ebd 447 ptl = pmd_lock(mm, pmd);
8ac1f832 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 449 mm_inc_nr_ptes(mm);
1da177e4 450 pmd_populate(mm, pmd, new);
2f569afd 451 new = NULL;
4b471e88 452 }
c4088ebd 453 spin_unlock(ptl);
2f569afd
MS
454 if (new)
455 pte_free(mm, new);
1bb3630e 456 return 0;
1da177e4
LT
457}
458
4cf58924 459int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 460{
4cf58924 461 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
462 if (!new)
463 return -ENOMEM;
464
362a61ad
NP
465 smp_wmb(); /* See comment in __pte_alloc */
466
1bb3630e 467 spin_lock(&init_mm.page_table_lock);
8ac1f832 468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 469 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 470 new = NULL;
4b471e88 471 }
1bb3630e 472 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
473 if (new)
474 pte_free_kernel(&init_mm, new);
1bb3630e 475 return 0;
1da177e4
LT
476}
477
d559db08
KH
478static inline void init_rss_vec(int *rss)
479{
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481}
482
483static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 484{
d559db08
KH
485 int i;
486
34e55232 487 if (current->mm == mm)
05af2e10 488 sync_mm_rss(mm);
d559db08
KH
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
ae859762
HD
492}
493
b5810039 494/*
6aab341e
LT
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
b5810039
NP
498 *
499 * The calling function must still handle the error.
500 */
3dc14741
HD
501static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
b5810039 503{
3dc14741 504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
d936cf9b
HD
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
1170532b
JP
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
d936cf9b
HD
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
3dc14741
HD
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
1170532b
JP
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 539 if (page)
f0b791a3 540 dump_page(page, "bad pte");
6aa9b8b2 541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
b5810039 548 dump_stack();
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
550}
551
ee498ed7 552/*
7e675137 553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 554 *
7e675137
NP
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 558 *
7e675137
NP
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 567 *
b379d790
JH
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
6aab341e
LT
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
7e675137
NP
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
b379d790 581 *
b379d790 582 *
7e675137 583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
ee498ed7 593 */
25b2995a
CH
594struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
ee498ed7 596{
22b31eec 597 unsigned long pfn = pte_pfn(pte);
7e675137 598
00b3a331 599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 600 if (likely(!pte_special(pte)))
22b31eec 601 goto check_pfn;
667a0a06
DV
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
df6ad698
JG
606 if (is_zero_pfn(pfn))
607 return NULL;
e1fb4a08
DJ
608 if (pte_devmap(pte))
609 return NULL;
610
df6ad698 611 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
612 return NULL;
613 }
614
00b3a331 615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 616
b379d790
JH
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
7e675137
NP
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
6aab341e
LT
630 }
631
b38af472
HD
632 if (is_zero_pfn(pfn))
633 return NULL;
00b3a331 634
22b31eec
HD
635check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
6aab341e
LT
640
641 /*
7e675137 642 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 643 * eg. VDSO mappings can cause them to exist.
6aab341e 644 */
b379d790 645out:
6aab341e 646 return pfn_to_page(pfn);
ee498ed7
HD
647}
648
28093f9f
GS
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652{
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
e1fb4a08
DJ
675 if (pmd_devmap(pmd))
676 return NULL;
3cde287b 677 if (is_huge_zero_pmd(pmd))
28093f9f
GS
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686out:
687 return pfn_to_page(pfn);
688}
689#endif
690
1da177e4
LT
691/*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
1da177e4
LT
695 */
696
df3a57d1
LT
697static unsigned long
698copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 700 unsigned long addr, int *rss)
1da177e4 701{
b5810039 702 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
703 pte_t pte = *src_pte;
704 struct page *page;
df3a57d1
LT
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
1da177e4 722
df3a57d1 723 rss[mm_counter(page)]++;
5042db43 724
df3a57d1
LT
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
5042db43 727 /*
df3a57d1
LT
728 * COW mappings require pages in both
729 * parent and child to be set to read.
5042db43 730 */
df3a57d1
LT
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
5042db43 741
df3a57d1
LT
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 769 }
1da177e4 770 }
df3a57d1
LT
771 set_pte_at(dst_mm, addr, dst_pte, pte);
772 return 0;
773}
774
70e806e4
PX
775/*
776 * Copy a present and normal page if necessary.
777 *
778 * NOTE! The usual case is that this doesn't need to do
779 * anything, and can just return a positive value. That
780 * will let the caller know that it can just increase
781 * the page refcount and re-use the pte the traditional
782 * way.
783 *
784 * But _if_ we need to copy it because it needs to be
785 * pinned in the parent (and the child should get its own
786 * copy rather than just a reference to the same page),
787 * we'll do that here and return zero to let the caller
788 * know we're done.
789 *
790 * And if we need a pre-allocated page but don't yet have
791 * one, return a negative error to let the preallocation
792 * code know so that it can do so outside the page table
793 * lock.
794 */
795static inline int
c78f4636
PX
796copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 struct page **prealloc, pte_t pte, struct page *page)
70e806e4 799{
c78f4636 800 struct mm_struct *src_mm = src_vma->vm_mm;
70e806e4
PX
801 struct page *new_page;
802
c78f4636 803 if (!is_cow_mapping(src_vma->vm_flags))
70e806e4
PX
804 return 1;
805
806 /*
70e806e4
PX
807 * What we want to do is to check whether this page may
808 * have been pinned by the parent process. If so,
809 * instead of wrprotect the pte on both sides, we copy
810 * the page immediately so that we'll always guarantee
811 * the pinned page won't be randomly replaced in the
812 * future.
813 *
f3c64eda
LT
814 * The page pinning checks are just "has this mm ever
815 * seen pinning", along with the (inexact) check of
816 * the page count. That might give false positives for
817 * for pinning, but it will work correctly.
70e806e4
PX
818 */
819 if (likely(!atomic_read(&src_mm->has_pinned)))
820 return 1;
821 if (likely(!page_maybe_dma_pinned(page)))
822 return 1;
823
70e806e4
PX
824 new_page = *prealloc;
825 if (!new_page)
826 return -EAGAIN;
827
828 /*
829 * We have a prealloc page, all good! Take it
830 * over and copy the page & arm it.
831 */
832 *prealloc = NULL;
c78f4636 833 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 834 __SetPageUptodate(new_page);
c78f4636
PX
835 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
837 rss[mm_counter(new_page)]++;
838
839 /* All done, just insert the new page copy in the child */
c78f4636
PX
840 pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
843 return 0;
844}
845
846/*
847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
848 * is required to copy this pte.
849 */
850static inline int
c78f4636
PX
851copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 struct page **prealloc)
df3a57d1 854{
c78f4636
PX
855 struct mm_struct *src_mm = src_vma->vm_mm;
856 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
857 pte_t pte = *src_pte;
858 struct page *page;
859
c78f4636 860 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
861 if (page) {
862 int retval;
863
c78f4636
PX
864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 addr, rss, prealloc, pte, page);
70e806e4
PX
866 if (retval <= 0)
867 return retval;
868
869 get_page(page);
870 page_dup_rmap(page, false);
871 rss[mm_counter(page)]++;
872 }
873
1da177e4
LT
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
1b2de5d0 878 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 879 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 880 pte = pte_wrprotect(pte);
1da177e4
LT
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
6aab341e 890
b569a176
PX
891 /*
892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 * does not have the VM_UFFD_WP, which means that the uffd
894 * fork event is not enabled.
895 */
896 if (!(vm_flags & VM_UFFD_WP))
897 pte = pte_clear_uffd_wp(pte);
898
c78f4636 899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
900 return 0;
901}
902
903static inline struct page *
904page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906{
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
6aab341e 916 }
70e806e4 917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 918
70e806e4 919 return new_page;
1da177e4
LT
920}
921
c78f4636
PX
922static int
923copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
1da177e4 926{
c78f4636
PX
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 929 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 930 pte_t *src_pte, *dst_pte;
c74df32c 931 spinlock_t *src_ptl, *dst_ptl;
70e806e4 932 int progress, ret = 0;
d559db08 933 int rss[NR_MM_COUNTERS];
570a335b 934 swp_entry_t entry = (swp_entry_t){0};
70e806e4 935 struct page *prealloc = NULL;
1da177e4
LT
936
937again:
70e806e4 938 progress = 0;
d559db08
KH
939 init_rss_vec(rss);
940
c74df32c 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
ece0e2b6 946 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 947 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
6606c3e0 951 arch_enter_lazy_mmu_mode();
1da177e4 952
1da177e4
LT
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
e040f218
HD
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
95c354fe 961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
962 break;
963 }
1da177e4
LT
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
79a1971c
LT
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
c78f4636 971 src_vma, addr, rss);
79a1971c
LT
972 if (entry.val)
973 break;
974 progress += 8;
975 continue;
976 }
70e806e4 977 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 addr, rss, &prealloc);
70e806e4
PX
980 /*
981 * If we need a pre-allocated page for this pte, drop the
982 * locks, allocate, and try again.
983 */
984 if (unlikely(ret == -EAGAIN))
985 break;
986 if (unlikely(prealloc)) {
987 /*
988 * pre-alloc page cannot be reused by next time so as
989 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 * will allocate page according to address). This
991 * could only happen if one pinned pte changed.
992 */
993 put_page(prealloc);
994 prealloc = NULL;
995 }
1da177e4
LT
996 progress += 8;
997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 998
6606c3e0 999 arch_leave_lazy_mmu_mode();
c74df32c 1000 spin_unlock(src_ptl);
ece0e2b6 1001 pte_unmap(orig_src_pte);
d559db08 1002 add_mm_rss_vec(dst_mm, rss);
c36987e2 1003 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1004 cond_resched();
570a335b
HD
1005
1006 if (entry.val) {
70e806e4
PX
1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011 entry.val = 0;
1012 } else if (ret) {
1013 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1015 if (!prealloc)
570a335b 1016 return -ENOMEM;
70e806e4
PX
1017 /* We've captured and resolved the error. Reset, try again. */
1018 ret = 0;
570a335b 1019 }
1da177e4
LT
1020 if (addr != end)
1021 goto again;
70e806e4
PX
1022out:
1023 if (unlikely(prealloc))
1024 put_page(prealloc);
1025 return ret;
1da177e4
LT
1026}
1027
c78f4636
PX
1028static inline int
1029copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 unsigned long end)
1da177e4 1032{
c78f4636
PX
1033 struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1035 pmd_t *src_pmd, *dst_pmd;
1036 unsigned long next;
1037
1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 if (!dst_pmd)
1040 return -ENOMEM;
1041 src_pmd = pmd_offset(src_pud, addr);
1042 do {
1043 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 || pmd_devmap(*src_pmd)) {
71e3aac0 1046 int err;
c78f4636 1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1048 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1049 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1050 if (err == -ENOMEM)
1051 return -ENOMEM;
1052 if (!err)
1053 continue;
1054 /* fall through */
1055 }
1da177e4
LT
1056 if (pmd_none_or_clear_bad(src_pmd))
1057 continue;
c78f4636
PX
1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 addr, next))
1da177e4
LT
1060 return -ENOMEM;
1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 return 0;
1063}
1064
c78f4636
PX
1065static inline int
1066copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 unsigned long end)
1da177e4 1069{
c78f4636
PX
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1072 pud_t *src_pud, *dst_pud;
1073 unsigned long next;
1074
c2febafc 1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1076 if (!dst_pud)
1077 return -ENOMEM;
c2febafc 1078 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1079 do {
1080 next = pud_addr_end(addr, end);
a00cc7d9
MW
1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 int err;
1083
c78f4636 1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1085 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1086 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1087 if (err == -ENOMEM)
1088 return -ENOMEM;
1089 if (!err)
1090 continue;
1091 /* fall through */
1092 }
1da177e4
LT
1093 if (pud_none_or_clear_bad(src_pud))
1094 continue;
c78f4636
PX
1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 addr, next))
1da177e4
LT
1097 return -ENOMEM;
1098 } while (dst_pud++, src_pud++, addr = next, addr != end);
1099 return 0;
1100}
1101
c78f4636
PX
1102static inline int
1103copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 unsigned long end)
c2febafc 1106{
c78f4636 1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1108 p4d_t *src_p4d, *dst_p4d;
1109 unsigned long next;
1110
1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 if (!dst_p4d)
1113 return -ENOMEM;
1114 src_p4d = p4d_offset(src_pgd, addr);
1115 do {
1116 next = p4d_addr_end(addr, end);
1117 if (p4d_none_or_clear_bad(src_p4d))
1118 continue;
c78f4636
PX
1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 addr, next))
c2febafc
KS
1121 return -ENOMEM;
1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 return 0;
1124}
1125
c78f4636
PX
1126int
1127copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1128{
1129 pgd_t *src_pgd, *dst_pgd;
1130 unsigned long next;
c78f4636
PX
1131 unsigned long addr = src_vma->vm_start;
1132 unsigned long end = src_vma->vm_end;
1133 struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1135 struct mmu_notifier_range range;
2ec74c3e 1136 bool is_cow;
cddb8a5c 1137 int ret;
1da177e4 1138
d992895b
NP
1139 /*
1140 * Don't copy ptes where a page fault will fill them correctly.
1141 * Fork becomes much lighter when there are big shared or private
1142 * readonly mappings. The tradeoff is that copy_page_range is more
1143 * efficient than faulting.
1144 */
c78f4636
PX
1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 !src_vma->anon_vma)
0661a336 1147 return 0;
d992895b 1148
c78f4636
PX
1149 if (is_vm_hugetlb_page(src_vma))
1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1151
c78f4636 1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1153 /*
1154 * We do not free on error cases below as remove_vma
1155 * gets called on error from higher level routine
1156 */
c78f4636 1157 ret = track_pfn_copy(src_vma);
2ab64037 1158 if (ret)
1159 return ret;
1160 }
1161
cddb8a5c
AA
1162 /*
1163 * We need to invalidate the secondary MMU mappings only when
1164 * there could be a permission downgrade on the ptes of the
1165 * parent mm. And a permission downgrade will only happen if
1166 * is_cow_mapping() returns true.
1167 */
c78f4636 1168 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1169
1170 if (is_cow) {
7269f999 1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1172 0, src_vma, src_mm, addr, end);
ac46d4f3 1173 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1174 /*
1175 * Disabling preemption is not needed for the write side, as
1176 * the read side doesn't spin, but goes to the mmap_lock.
1177 *
1178 * Use the raw variant of the seqcount_t write API to avoid
1179 * lockdep complaining about preemptibility.
1180 */
1181 mmap_assert_write_locked(src_mm);
1182 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1183 }
cddb8a5c
AA
1184
1185 ret = 0;
1da177e4
LT
1186 dst_pgd = pgd_offset(dst_mm, addr);
1187 src_pgd = pgd_offset(src_mm, addr);
1188 do {
1189 next = pgd_addr_end(addr, end);
1190 if (pgd_none_or_clear_bad(src_pgd))
1191 continue;
c78f4636
PX
1192 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1193 addr, next))) {
cddb8a5c
AA
1194 ret = -ENOMEM;
1195 break;
1196 }
1da177e4 1197 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1198
57efa1fe
JG
1199 if (is_cow) {
1200 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1201 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1202 }
cddb8a5c 1203 return ret;
1da177e4
LT
1204}
1205
51c6f666 1206static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1207 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1208 unsigned long addr, unsigned long end,
97a89413 1209 struct zap_details *details)
1da177e4 1210{
b5810039 1211 struct mm_struct *mm = tlb->mm;
d16dfc55 1212 int force_flush = 0;
d559db08 1213 int rss[NR_MM_COUNTERS];
97a89413 1214 spinlock_t *ptl;
5f1a1907 1215 pte_t *start_pte;
97a89413 1216 pte_t *pte;
8a5f14a2 1217 swp_entry_t entry;
d559db08 1218
ed6a7935 1219 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1220again:
e303297e 1221 init_rss_vec(rss);
5f1a1907
SR
1222 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1223 pte = start_pte;
3ea27719 1224 flush_tlb_batched_pending(mm);
6606c3e0 1225 arch_enter_lazy_mmu_mode();
1da177e4
LT
1226 do {
1227 pte_t ptent = *pte;
166f61b9 1228 if (pte_none(ptent))
1da177e4 1229 continue;
6f5e6b9e 1230
7b167b68
MK
1231 if (need_resched())
1232 break;
1233
1da177e4 1234 if (pte_present(ptent)) {
ee498ed7 1235 struct page *page;
51c6f666 1236
25b2995a 1237 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1238 if (unlikely(details) && page) {
1239 /*
1240 * unmap_shared_mapping_pages() wants to
1241 * invalidate cache without truncating:
1242 * unmap shared but keep private pages.
1243 */
1244 if (details->check_mapping &&
800d8c63 1245 details->check_mapping != page_rmapping(page))
1da177e4 1246 continue;
1da177e4 1247 }
b5810039 1248 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1249 tlb->fullmm);
1da177e4
LT
1250 tlb_remove_tlb_entry(tlb, pte, addr);
1251 if (unlikely(!page))
1252 continue;
eca56ff9
JM
1253
1254 if (!PageAnon(page)) {
1cf35d47
LT
1255 if (pte_dirty(ptent)) {
1256 force_flush = 1;
6237bcd9 1257 set_page_dirty(page);
1cf35d47 1258 }
4917e5d0 1259 if (pte_young(ptent) &&
64363aad 1260 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1261 mark_page_accessed(page);
6237bcd9 1262 }
eca56ff9 1263 rss[mm_counter(page)]--;
d281ee61 1264 page_remove_rmap(page, false);
3dc14741
HD
1265 if (unlikely(page_mapcount(page) < 0))
1266 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1267 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1268 force_flush = 1;
ce9ec37b 1269 addr += PAGE_SIZE;
d16dfc55 1270 break;
1cf35d47 1271 }
1da177e4
LT
1272 continue;
1273 }
5042db43
JG
1274
1275 entry = pte_to_swp_entry(ptent);
463b7a17 1276 if (is_device_private_entry(entry)) {
5042db43
JG
1277 struct page *page = device_private_entry_to_page(entry);
1278
1279 if (unlikely(details && details->check_mapping)) {
1280 /*
1281 * unmap_shared_mapping_pages() wants to
1282 * invalidate cache without truncating:
1283 * unmap shared but keep private pages.
1284 */
1285 if (details->check_mapping !=
1286 page_rmapping(page))
1287 continue;
1288 }
1289
1290 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1291 rss[mm_counter(page)]--;
1292 page_remove_rmap(page, false);
1293 put_page(page);
1294 continue;
1295 }
1296
3e8715fd
KS
1297 /* If details->check_mapping, we leave swap entries. */
1298 if (unlikely(details))
1da177e4 1299 continue;
b084d435 1300
8a5f14a2
KS
1301 if (!non_swap_entry(entry))
1302 rss[MM_SWAPENTS]--;
1303 else if (is_migration_entry(entry)) {
1304 struct page *page;
9f9f1acd 1305
8a5f14a2 1306 page = migration_entry_to_page(entry);
eca56ff9 1307 rss[mm_counter(page)]--;
b084d435 1308 }
8a5f14a2
KS
1309 if (unlikely(!free_swap_and_cache(entry)))
1310 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1311 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1312 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1313
d559db08 1314 add_mm_rss_vec(mm, rss);
6606c3e0 1315 arch_leave_lazy_mmu_mode();
51c6f666 1316
1cf35d47 1317 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1318 if (force_flush)
1cf35d47 1319 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1320 pte_unmap_unlock(start_pte, ptl);
1321
1322 /*
1323 * If we forced a TLB flush (either due to running out of
1324 * batch buffers or because we needed to flush dirty TLB
1325 * entries before releasing the ptl), free the batched
1326 * memory too. Restart if we didn't do everything.
1327 */
1328 if (force_flush) {
1329 force_flush = 0;
fa0aafb8 1330 tlb_flush_mmu(tlb);
7b167b68
MK
1331 }
1332
1333 if (addr != end) {
1334 cond_resched();
1335 goto again;
d16dfc55
PZ
1336 }
1337
51c6f666 1338 return addr;
1da177e4
LT
1339}
1340
51c6f666 1341static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1342 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1343 unsigned long addr, unsigned long end,
97a89413 1344 struct zap_details *details)
1da177e4
LT
1345{
1346 pmd_t *pmd;
1347 unsigned long next;
1348
1349 pmd = pmd_offset(pud, addr);
1350 do {
1351 next = pmd_addr_end(addr, end);
84c3fc4e 1352 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1353 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1354 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1355 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1356 goto next;
71e3aac0
AA
1357 /* fall through */
1358 }
1a5a9906
AA
1359 /*
1360 * Here there can be other concurrent MADV_DONTNEED or
1361 * trans huge page faults running, and if the pmd is
1362 * none or trans huge it can change under us. This is
c1e8d7c6 1363 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1364 * mode.
1365 */
1366 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1367 goto next;
97a89413 1368 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1369next:
97a89413
PZ
1370 cond_resched();
1371 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1372
1373 return addr;
1da177e4
LT
1374}
1375
51c6f666 1376static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1377 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1378 unsigned long addr, unsigned long end,
97a89413 1379 struct zap_details *details)
1da177e4
LT
1380{
1381 pud_t *pud;
1382 unsigned long next;
1383
c2febafc 1384 pud = pud_offset(p4d, addr);
1da177e4
LT
1385 do {
1386 next = pud_addr_end(addr, end);
a00cc7d9
MW
1387 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1388 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1389 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1390 split_huge_pud(vma, pud, addr);
1391 } else if (zap_huge_pud(tlb, vma, pud, addr))
1392 goto next;
1393 /* fall through */
1394 }
97a89413 1395 if (pud_none_or_clear_bad(pud))
1da177e4 1396 continue;
97a89413 1397 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1398next:
1399 cond_resched();
97a89413 1400 } while (pud++, addr = next, addr != end);
51c6f666
RH
1401
1402 return addr;
1da177e4
LT
1403}
1404
c2febafc
KS
1405static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1406 struct vm_area_struct *vma, pgd_t *pgd,
1407 unsigned long addr, unsigned long end,
1408 struct zap_details *details)
1409{
1410 p4d_t *p4d;
1411 unsigned long next;
1412
1413 p4d = p4d_offset(pgd, addr);
1414 do {
1415 next = p4d_addr_end(addr, end);
1416 if (p4d_none_or_clear_bad(p4d))
1417 continue;
1418 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1419 } while (p4d++, addr = next, addr != end);
1420
1421 return addr;
1422}
1423
aac45363 1424void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1425 struct vm_area_struct *vma,
1426 unsigned long addr, unsigned long end,
1427 struct zap_details *details)
1da177e4
LT
1428{
1429 pgd_t *pgd;
1430 unsigned long next;
1431
1da177e4
LT
1432 BUG_ON(addr >= end);
1433 tlb_start_vma(tlb, vma);
1434 pgd = pgd_offset(vma->vm_mm, addr);
1435 do {
1436 next = pgd_addr_end(addr, end);
97a89413 1437 if (pgd_none_or_clear_bad(pgd))
1da177e4 1438 continue;
c2febafc 1439 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1440 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1441 tlb_end_vma(tlb, vma);
1442}
51c6f666 1443
f5cc4eef
AV
1444
1445static void unmap_single_vma(struct mmu_gather *tlb,
1446 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1447 unsigned long end_addr,
f5cc4eef
AV
1448 struct zap_details *details)
1449{
1450 unsigned long start = max(vma->vm_start, start_addr);
1451 unsigned long end;
1452
1453 if (start >= vma->vm_end)
1454 return;
1455 end = min(vma->vm_end, end_addr);
1456 if (end <= vma->vm_start)
1457 return;
1458
cbc91f71
SD
1459 if (vma->vm_file)
1460 uprobe_munmap(vma, start, end);
1461
b3b9c293 1462 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1463 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1464
1465 if (start != end) {
1466 if (unlikely(is_vm_hugetlb_page(vma))) {
1467 /*
1468 * It is undesirable to test vma->vm_file as it
1469 * should be non-null for valid hugetlb area.
1470 * However, vm_file will be NULL in the error
7aa6b4ad 1471 * cleanup path of mmap_region. When
f5cc4eef 1472 * hugetlbfs ->mmap method fails,
7aa6b4ad 1473 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1474 * before calling this function to clean up.
1475 * Since no pte has actually been setup, it is
1476 * safe to do nothing in this case.
1477 */
24669e58 1478 if (vma->vm_file) {
83cde9e8 1479 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1480 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1481 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1482 }
f5cc4eef
AV
1483 } else
1484 unmap_page_range(tlb, vma, start, end, details);
1485 }
1da177e4
LT
1486}
1487
1da177e4
LT
1488/**
1489 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1490 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1491 * @vma: the starting vma
1492 * @start_addr: virtual address at which to start unmapping
1493 * @end_addr: virtual address at which to end unmapping
1da177e4 1494 *
508034a3 1495 * Unmap all pages in the vma list.
1da177e4 1496 *
1da177e4
LT
1497 * Only addresses between `start' and `end' will be unmapped.
1498 *
1499 * The VMA list must be sorted in ascending virtual address order.
1500 *
1501 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1502 * range after unmap_vmas() returns. So the only responsibility here is to
1503 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1504 * drops the lock and schedules.
1505 */
6e8bb019 1506void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1507 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1508 unsigned long end_addr)
1da177e4 1509{
ac46d4f3 1510 struct mmu_notifier_range range;
1da177e4 1511
6f4f13e8
JG
1512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1513 start_addr, end_addr);
ac46d4f3 1514 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1515 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1516 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1517 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1518}
1519
1520/**
1521 * zap_page_range - remove user pages in a given range
1522 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1523 * @start: starting address of pages to zap
1da177e4 1524 * @size: number of bytes to zap
f5cc4eef
AV
1525 *
1526 * Caller must protect the VMA list
1da177e4 1527 */
7e027b14 1528void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1529 unsigned long size)
1da177e4 1530{
ac46d4f3 1531 struct mmu_notifier_range range;
d16dfc55 1532 struct mmu_gather tlb;
1da177e4 1533
1da177e4 1534 lru_add_drain();
7269f999 1535 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1536 start, start + size);
ac46d4f3
JG
1537 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1538 update_hiwater_rss(vma->vm_mm);
1539 mmu_notifier_invalidate_range_start(&range);
1540 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1541 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1542 mmu_notifier_invalidate_range_end(&range);
1543 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1544}
1545
f5cc4eef
AV
1546/**
1547 * zap_page_range_single - remove user pages in a given range
1548 * @vma: vm_area_struct holding the applicable pages
1549 * @address: starting address of pages to zap
1550 * @size: number of bytes to zap
8a5f14a2 1551 * @details: details of shared cache invalidation
f5cc4eef
AV
1552 *
1553 * The range must fit into one VMA.
1da177e4 1554 */
f5cc4eef 1555static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1556 unsigned long size, struct zap_details *details)
1557{
ac46d4f3 1558 struct mmu_notifier_range range;
d16dfc55 1559 struct mmu_gather tlb;
1da177e4 1560
1da177e4 1561 lru_add_drain();
7269f999 1562 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1563 address, address + size);
ac46d4f3
JG
1564 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1565 update_hiwater_rss(vma->vm_mm);
1566 mmu_notifier_invalidate_range_start(&range);
1567 unmap_single_vma(&tlb, vma, address, range.end, details);
1568 mmu_notifier_invalidate_range_end(&range);
1569 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1570}
1571
c627f9cc
JS
1572/**
1573 * zap_vma_ptes - remove ptes mapping the vma
1574 * @vma: vm_area_struct holding ptes to be zapped
1575 * @address: starting address of pages to zap
1576 * @size: number of bytes to zap
1577 *
1578 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1579 *
1580 * The entire address range must be fully contained within the vma.
1581 *
c627f9cc 1582 */
27d036e3 1583void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1584 unsigned long size)
1585{
1586 if (address < vma->vm_start || address + size > vma->vm_end ||
1587 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1588 return;
1589
f5cc4eef 1590 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1591}
1592EXPORT_SYMBOL_GPL(zap_vma_ptes);
1593
8cd3984d 1594static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1595{
c2febafc
KS
1596 pgd_t *pgd;
1597 p4d_t *p4d;
1598 pud_t *pud;
1599 pmd_t *pmd;
1600
1601 pgd = pgd_offset(mm, addr);
1602 p4d = p4d_alloc(mm, pgd, addr);
1603 if (!p4d)
1604 return NULL;
1605 pud = pud_alloc(mm, p4d, addr);
1606 if (!pud)
1607 return NULL;
1608 pmd = pmd_alloc(mm, pud, addr);
1609 if (!pmd)
1610 return NULL;
1611
1612 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1613 return pmd;
1614}
1615
1616pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1617 spinlock_t **ptl)
1618{
1619 pmd_t *pmd = walk_to_pmd(mm, addr);
1620
1621 if (!pmd)
1622 return NULL;
c2febafc 1623 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1624}
1625
8efd6f5b
AR
1626static int validate_page_before_insert(struct page *page)
1627{
1628 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1629 return -EINVAL;
1630 flush_dcache_page(page);
1631 return 0;
1632}
1633
1634static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1635 unsigned long addr, struct page *page, pgprot_t prot)
1636{
1637 if (!pte_none(*pte))
1638 return -EBUSY;
1639 /* Ok, finally just insert the thing.. */
1640 get_page(page);
1641 inc_mm_counter_fast(mm, mm_counter_file(page));
1642 page_add_file_rmap(page, false);
1643 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1644 return 0;
1645}
1646
238f58d8
LT
1647/*
1648 * This is the old fallback for page remapping.
1649 *
1650 * For historical reasons, it only allows reserved pages. Only
1651 * old drivers should use this, and they needed to mark their
1652 * pages reserved for the old functions anyway.
1653 */
423bad60
NP
1654static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1655 struct page *page, pgprot_t prot)
238f58d8 1656{
423bad60 1657 struct mm_struct *mm = vma->vm_mm;
238f58d8 1658 int retval;
c9cfcddf 1659 pte_t *pte;
8a9f3ccd
BS
1660 spinlock_t *ptl;
1661
8efd6f5b
AR
1662 retval = validate_page_before_insert(page);
1663 if (retval)
5b4e655e 1664 goto out;
238f58d8 1665 retval = -ENOMEM;
c9cfcddf 1666 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1667 if (!pte)
5b4e655e 1668 goto out;
8efd6f5b 1669 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1670 pte_unmap_unlock(pte, ptl);
1671out:
1672 return retval;
1673}
1674
8cd3984d 1675#ifdef pte_index
7f70c2a6 1676static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1677 unsigned long addr, struct page *page, pgprot_t prot)
1678{
1679 int err;
1680
1681 if (!page_count(page))
1682 return -EINVAL;
1683 err = validate_page_before_insert(page);
7f70c2a6
AR
1684 if (err)
1685 return err;
1686 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1687}
1688
1689/* insert_pages() amortizes the cost of spinlock operations
1690 * when inserting pages in a loop. Arch *must* define pte_index.
1691 */
1692static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1693 struct page **pages, unsigned long *num, pgprot_t prot)
1694{
1695 pmd_t *pmd = NULL;
7f70c2a6
AR
1696 pte_t *start_pte, *pte;
1697 spinlock_t *pte_lock;
8cd3984d
AR
1698 struct mm_struct *const mm = vma->vm_mm;
1699 unsigned long curr_page_idx = 0;
1700 unsigned long remaining_pages_total = *num;
1701 unsigned long pages_to_write_in_pmd;
1702 int ret;
1703more:
1704 ret = -EFAULT;
1705 pmd = walk_to_pmd(mm, addr);
1706 if (!pmd)
1707 goto out;
1708
1709 pages_to_write_in_pmd = min_t(unsigned long,
1710 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1711
1712 /* Allocate the PTE if necessary; takes PMD lock once only. */
1713 ret = -ENOMEM;
1714 if (pte_alloc(mm, pmd))
1715 goto out;
8cd3984d
AR
1716
1717 while (pages_to_write_in_pmd) {
1718 int pte_idx = 0;
1719 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1720
7f70c2a6
AR
1721 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1722 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1723 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1724 addr, pages[curr_page_idx], prot);
1725 if (unlikely(err)) {
7f70c2a6 1726 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1727 ret = err;
1728 remaining_pages_total -= pte_idx;
1729 goto out;
1730 }
1731 addr += PAGE_SIZE;
1732 ++curr_page_idx;
1733 }
7f70c2a6 1734 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1735 pages_to_write_in_pmd -= batch_size;
1736 remaining_pages_total -= batch_size;
1737 }
1738 if (remaining_pages_total)
1739 goto more;
1740 ret = 0;
1741out:
1742 *num = remaining_pages_total;
1743 return ret;
1744}
1745#endif /* ifdef pte_index */
1746
1747/**
1748 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1749 * @vma: user vma to map to
1750 * @addr: target start user address of these pages
1751 * @pages: source kernel pages
1752 * @num: in: number of pages to map. out: number of pages that were *not*
1753 * mapped. (0 means all pages were successfully mapped).
1754 *
1755 * Preferred over vm_insert_page() when inserting multiple pages.
1756 *
1757 * In case of error, we may have mapped a subset of the provided
1758 * pages. It is the caller's responsibility to account for this case.
1759 *
1760 * The same restrictions apply as in vm_insert_page().
1761 */
1762int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1763 struct page **pages, unsigned long *num)
1764{
1765#ifdef pte_index
1766 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1767
1768 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1769 return -EFAULT;
1770 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1771 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1772 BUG_ON(vma->vm_flags & VM_PFNMAP);
1773 vma->vm_flags |= VM_MIXEDMAP;
1774 }
1775 /* Defer page refcount checking till we're about to map that page. */
1776 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1777#else
1778 unsigned long idx = 0, pgcount = *num;
45779b03 1779 int err = -EINVAL;
8cd3984d
AR
1780
1781 for (; idx < pgcount; ++idx) {
1782 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1783 if (err)
1784 break;
1785 }
1786 *num = pgcount - idx;
1787 return err;
1788#endif /* ifdef pte_index */
1789}
1790EXPORT_SYMBOL(vm_insert_pages);
1791
bfa5bf6d
REB
1792/**
1793 * vm_insert_page - insert single page into user vma
1794 * @vma: user vma to map to
1795 * @addr: target user address of this page
1796 * @page: source kernel page
1797 *
a145dd41
LT
1798 * This allows drivers to insert individual pages they've allocated
1799 * into a user vma.
1800 *
1801 * The page has to be a nice clean _individual_ kernel allocation.
1802 * If you allocate a compound page, you need to have marked it as
1803 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1804 * (see split_page()).
a145dd41
LT
1805 *
1806 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1807 * took an arbitrary page protection parameter. This doesn't allow
1808 * that. Your vma protection will have to be set up correctly, which
1809 * means that if you want a shared writable mapping, you'd better
1810 * ask for a shared writable mapping!
1811 *
1812 * The page does not need to be reserved.
4b6e1e37
KK
1813 *
1814 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1815 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1816 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1817 * function from other places, for example from page-fault handler.
a862f68a
MR
1818 *
1819 * Return: %0 on success, negative error code otherwise.
a145dd41 1820 */
423bad60
NP
1821int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1822 struct page *page)
a145dd41
LT
1823{
1824 if (addr < vma->vm_start || addr >= vma->vm_end)
1825 return -EFAULT;
1826 if (!page_count(page))
1827 return -EINVAL;
4b6e1e37 1828 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1829 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1830 BUG_ON(vma->vm_flags & VM_PFNMAP);
1831 vma->vm_flags |= VM_MIXEDMAP;
1832 }
423bad60 1833 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1834}
e3c3374f 1835EXPORT_SYMBOL(vm_insert_page);
a145dd41 1836
a667d745
SJ
1837/*
1838 * __vm_map_pages - maps range of kernel pages into user vma
1839 * @vma: user vma to map to
1840 * @pages: pointer to array of source kernel pages
1841 * @num: number of pages in page array
1842 * @offset: user's requested vm_pgoff
1843 *
1844 * This allows drivers to map range of kernel pages into a user vma.
1845 *
1846 * Return: 0 on success and error code otherwise.
1847 */
1848static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1849 unsigned long num, unsigned long offset)
1850{
1851 unsigned long count = vma_pages(vma);
1852 unsigned long uaddr = vma->vm_start;
1853 int ret, i;
1854
1855 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1856 if (offset >= num)
a667d745
SJ
1857 return -ENXIO;
1858
1859 /* Fail if the user requested size exceeds available object size */
1860 if (count > num - offset)
1861 return -ENXIO;
1862
1863 for (i = 0; i < count; i++) {
1864 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1865 if (ret < 0)
1866 return ret;
1867 uaddr += PAGE_SIZE;
1868 }
1869
1870 return 0;
1871}
1872
1873/**
1874 * vm_map_pages - maps range of kernel pages starts with non zero offset
1875 * @vma: user vma to map to
1876 * @pages: pointer to array of source kernel pages
1877 * @num: number of pages in page array
1878 *
1879 * Maps an object consisting of @num pages, catering for the user's
1880 * requested vm_pgoff
1881 *
1882 * If we fail to insert any page into the vma, the function will return
1883 * immediately leaving any previously inserted pages present. Callers
1884 * from the mmap handler may immediately return the error as their caller
1885 * will destroy the vma, removing any successfully inserted pages. Other
1886 * callers should make their own arrangements for calling unmap_region().
1887 *
1888 * Context: Process context. Called by mmap handlers.
1889 * Return: 0 on success and error code otherwise.
1890 */
1891int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1892 unsigned long num)
1893{
1894 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1895}
1896EXPORT_SYMBOL(vm_map_pages);
1897
1898/**
1899 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1900 * @vma: user vma to map to
1901 * @pages: pointer to array of source kernel pages
1902 * @num: number of pages in page array
1903 *
1904 * Similar to vm_map_pages(), except that it explicitly sets the offset
1905 * to 0. This function is intended for the drivers that did not consider
1906 * vm_pgoff.
1907 *
1908 * Context: Process context. Called by mmap handlers.
1909 * Return: 0 on success and error code otherwise.
1910 */
1911int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1912 unsigned long num)
1913{
1914 return __vm_map_pages(vma, pages, num, 0);
1915}
1916EXPORT_SYMBOL(vm_map_pages_zero);
1917
9b5a8e00 1918static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1919 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1920{
1921 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1922 pte_t *pte, entry;
1923 spinlock_t *ptl;
1924
423bad60
NP
1925 pte = get_locked_pte(mm, addr, &ptl);
1926 if (!pte)
9b5a8e00 1927 return VM_FAULT_OOM;
b2770da6
RZ
1928 if (!pte_none(*pte)) {
1929 if (mkwrite) {
1930 /*
1931 * For read faults on private mappings the PFN passed
1932 * in may not match the PFN we have mapped if the
1933 * mapped PFN is a writeable COW page. In the mkwrite
1934 * case we are creating a writable PTE for a shared
f2c57d91
JK
1935 * mapping and we expect the PFNs to match. If they
1936 * don't match, we are likely racing with block
1937 * allocation and mapping invalidation so just skip the
1938 * update.
b2770da6 1939 */
f2c57d91
JK
1940 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1941 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1942 goto out_unlock;
f2c57d91 1943 }
cae85cb8
JK
1944 entry = pte_mkyoung(*pte);
1945 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1946 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1947 update_mmu_cache(vma, addr, pte);
1948 }
1949 goto out_unlock;
b2770da6 1950 }
423bad60
NP
1951
1952 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1953 if (pfn_t_devmap(pfn))
1954 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1955 else
1956 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1957
b2770da6
RZ
1958 if (mkwrite) {
1959 entry = pte_mkyoung(entry);
1960 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1961 }
1962
423bad60 1963 set_pte_at(mm, addr, pte, entry);
4b3073e1 1964 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1965
423bad60
NP
1966out_unlock:
1967 pte_unmap_unlock(pte, ptl);
9b5a8e00 1968 return VM_FAULT_NOPAGE;
423bad60
NP
1969}
1970
f5e6d1d5
MW
1971/**
1972 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1973 * @vma: user vma to map to
1974 * @addr: target user address of this page
1975 * @pfn: source kernel pfn
1976 * @pgprot: pgprot flags for the inserted page
1977 *
a1a0aea5 1978 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1979 * to override pgprot on a per-page basis.
1980 *
1981 * This only makes sense for IO mappings, and it makes no sense for
1982 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1983 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1984 * impractical.
1985 *
574c5b3d
TH
1986 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1987 * a value of @pgprot different from that of @vma->vm_page_prot.
1988 *
ae2b01f3 1989 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1990 * Return: vm_fault_t value.
1991 */
1992vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1993 unsigned long pfn, pgprot_t pgprot)
1994{
6d958546
MW
1995 /*
1996 * Technically, architectures with pte_special can avoid all these
1997 * restrictions (same for remap_pfn_range). However we would like
1998 * consistency in testing and feature parity among all, so we should
1999 * try to keep these invariants in place for everybody.
2000 */
2001 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2002 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2003 (VM_PFNMAP|VM_MIXEDMAP));
2004 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2005 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2006
2007 if (addr < vma->vm_start || addr >= vma->vm_end)
2008 return VM_FAULT_SIGBUS;
2009
2010 if (!pfn_modify_allowed(pfn, pgprot))
2011 return VM_FAULT_SIGBUS;
2012
2013 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2014
9b5a8e00 2015 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2016 false);
f5e6d1d5
MW
2017}
2018EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2019
ae2b01f3
MW
2020/**
2021 * vmf_insert_pfn - insert single pfn into user vma
2022 * @vma: user vma to map to
2023 * @addr: target user address of this page
2024 * @pfn: source kernel pfn
2025 *
2026 * Similar to vm_insert_page, this allows drivers to insert individual pages
2027 * they've allocated into a user vma. Same comments apply.
2028 *
2029 * This function should only be called from a vm_ops->fault handler, and
2030 * in that case the handler should return the result of this function.
2031 *
2032 * vma cannot be a COW mapping.
2033 *
2034 * As this is called only for pages that do not currently exist, we
2035 * do not need to flush old virtual caches or the TLB.
2036 *
2037 * Context: Process context. May allocate using %GFP_KERNEL.
2038 * Return: vm_fault_t value.
2039 */
2040vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2041 unsigned long pfn)
2042{
2043 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2044}
2045EXPORT_SYMBOL(vmf_insert_pfn);
2046
785a3fab
DW
2047static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2048{
2049 /* these checks mirror the abort conditions in vm_normal_page */
2050 if (vma->vm_flags & VM_MIXEDMAP)
2051 return true;
2052 if (pfn_t_devmap(pfn))
2053 return true;
2054 if (pfn_t_special(pfn))
2055 return true;
2056 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2057 return true;
2058 return false;
2059}
2060
79f3aa5b 2061static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2062 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2063 bool mkwrite)
423bad60 2064{
79f3aa5b 2065 int err;
87744ab3 2066
785a3fab 2067 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2068
423bad60 2069 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2070 return VM_FAULT_SIGBUS;
308a047c
BP
2071
2072 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2073
42e4089c 2074 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2075 return VM_FAULT_SIGBUS;
42e4089c 2076
423bad60
NP
2077 /*
2078 * If we don't have pte special, then we have to use the pfn_valid()
2079 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2080 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2081 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2082 * without pte special, it would there be refcounted as a normal page.
423bad60 2083 */
00b3a331
LD
2084 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2085 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2086 struct page *page;
2087
03fc2da6
DW
2088 /*
2089 * At this point we are committed to insert_page()
2090 * regardless of whether the caller specified flags that
2091 * result in pfn_t_has_page() == false.
2092 */
2093 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2094 err = insert_page(vma, addr, page, pgprot);
2095 } else {
9b5a8e00 2096 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2097 }
b2770da6 2098
5d747637
MW
2099 if (err == -ENOMEM)
2100 return VM_FAULT_OOM;
2101 if (err < 0 && err != -EBUSY)
2102 return VM_FAULT_SIGBUS;
2103
2104 return VM_FAULT_NOPAGE;
e0dc0d8f 2105}
79f3aa5b 2106
574c5b3d
TH
2107/**
2108 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2109 * @vma: user vma to map to
2110 * @addr: target user address of this page
2111 * @pfn: source kernel pfn
2112 * @pgprot: pgprot flags for the inserted page
2113 *
a1a0aea5 2114 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2115 * to override pgprot on a per-page basis.
2116 *
2117 * Typically this function should be used by drivers to set caching- and
2118 * encryption bits different than those of @vma->vm_page_prot, because
2119 * the caching- or encryption mode may not be known at mmap() time.
2120 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2121 * to set caching and encryption bits for those vmas (except for COW pages).
2122 * This is ensured by core vm only modifying these page table entries using
2123 * functions that don't touch caching- or encryption bits, using pte_modify()
2124 * if needed. (See for example mprotect()).
2125 * Also when new page-table entries are created, this is only done using the
2126 * fault() callback, and never using the value of vma->vm_page_prot,
2127 * except for page-table entries that point to anonymous pages as the result
2128 * of COW.
2129 *
2130 * Context: Process context. May allocate using %GFP_KERNEL.
2131 * Return: vm_fault_t value.
2132 */
2133vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2134 pfn_t pfn, pgprot_t pgprot)
2135{
2136 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2137}
5379e4dd 2138EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2139
79f3aa5b
MW
2140vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2141 pfn_t pfn)
2142{
574c5b3d 2143 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2144}
5d747637 2145EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2146
ab77dab4
SJ
2147/*
2148 * If the insertion of PTE failed because someone else already added a
2149 * different entry in the mean time, we treat that as success as we assume
2150 * the same entry was actually inserted.
2151 */
ab77dab4
SJ
2152vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2153 unsigned long addr, pfn_t pfn)
b2770da6 2154{
574c5b3d 2155 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2156}
ab77dab4 2157EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2158
1da177e4
LT
2159/*
2160 * maps a range of physical memory into the requested pages. the old
2161 * mappings are removed. any references to nonexistent pages results
2162 * in null mappings (currently treated as "copy-on-access")
2163 */
2164static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2165 unsigned long addr, unsigned long end,
2166 unsigned long pfn, pgprot_t prot)
2167{
2168 pte_t *pte;
c74df32c 2169 spinlock_t *ptl;
42e4089c 2170 int err = 0;
1da177e4 2171
c74df32c 2172 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2173 if (!pte)
2174 return -ENOMEM;
6606c3e0 2175 arch_enter_lazy_mmu_mode();
1da177e4
LT
2176 do {
2177 BUG_ON(!pte_none(*pte));
42e4089c
AK
2178 if (!pfn_modify_allowed(pfn, prot)) {
2179 err = -EACCES;
2180 break;
2181 }
7e675137 2182 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2183 pfn++;
2184 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2185 arch_leave_lazy_mmu_mode();
c74df32c 2186 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2187 return err;
1da177e4
LT
2188}
2189
2190static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2191 unsigned long addr, unsigned long end,
2192 unsigned long pfn, pgprot_t prot)
2193{
2194 pmd_t *pmd;
2195 unsigned long next;
42e4089c 2196 int err;
1da177e4
LT
2197
2198 pfn -= addr >> PAGE_SHIFT;
2199 pmd = pmd_alloc(mm, pud, addr);
2200 if (!pmd)
2201 return -ENOMEM;
f66055ab 2202 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2203 do {
2204 next = pmd_addr_end(addr, end);
42e4089c
AK
2205 err = remap_pte_range(mm, pmd, addr, next,
2206 pfn + (addr >> PAGE_SHIFT), prot);
2207 if (err)
2208 return err;
1da177e4
LT
2209 } while (pmd++, addr = next, addr != end);
2210 return 0;
2211}
2212
c2febafc 2213static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2214 unsigned long addr, unsigned long end,
2215 unsigned long pfn, pgprot_t prot)
2216{
2217 pud_t *pud;
2218 unsigned long next;
42e4089c 2219 int err;
1da177e4
LT
2220
2221 pfn -= addr >> PAGE_SHIFT;
c2febafc 2222 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2223 if (!pud)
2224 return -ENOMEM;
2225 do {
2226 next = pud_addr_end(addr, end);
42e4089c
AK
2227 err = remap_pmd_range(mm, pud, addr, next,
2228 pfn + (addr >> PAGE_SHIFT), prot);
2229 if (err)
2230 return err;
1da177e4
LT
2231 } while (pud++, addr = next, addr != end);
2232 return 0;
2233}
2234
c2febafc
KS
2235static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2236 unsigned long addr, unsigned long end,
2237 unsigned long pfn, pgprot_t prot)
2238{
2239 p4d_t *p4d;
2240 unsigned long next;
42e4089c 2241 int err;
c2febafc
KS
2242
2243 pfn -= addr >> PAGE_SHIFT;
2244 p4d = p4d_alloc(mm, pgd, addr);
2245 if (!p4d)
2246 return -ENOMEM;
2247 do {
2248 next = p4d_addr_end(addr, end);
42e4089c
AK
2249 err = remap_pud_range(mm, p4d, addr, next,
2250 pfn + (addr >> PAGE_SHIFT), prot);
2251 if (err)
2252 return err;
c2febafc
KS
2253 } while (p4d++, addr = next, addr != end);
2254 return 0;
2255}
2256
bfa5bf6d
REB
2257/**
2258 * remap_pfn_range - remap kernel memory to userspace
2259 * @vma: user vma to map to
0c4123e3 2260 * @addr: target page aligned user address to start at
86a76331 2261 * @pfn: page frame number of kernel physical memory address
552657b7 2262 * @size: size of mapping area
bfa5bf6d
REB
2263 * @prot: page protection flags for this mapping
2264 *
a862f68a
MR
2265 * Note: this is only safe if the mm semaphore is held when called.
2266 *
2267 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2268 */
1da177e4
LT
2269int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2270 unsigned long pfn, unsigned long size, pgprot_t prot)
2271{
2272 pgd_t *pgd;
2273 unsigned long next;
2d15cab8 2274 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2275 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2276 unsigned long remap_pfn = pfn;
1da177e4
LT
2277 int err;
2278
0c4123e3
AZ
2279 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2280 return -EINVAL;
2281
1da177e4
LT
2282 /*
2283 * Physically remapped pages are special. Tell the
2284 * rest of the world about it:
2285 * VM_IO tells people not to look at these pages
2286 * (accesses can have side effects).
6aab341e
LT
2287 * VM_PFNMAP tells the core MM that the base pages are just
2288 * raw PFN mappings, and do not have a "struct page" associated
2289 * with them.
314e51b9
KK
2290 * VM_DONTEXPAND
2291 * Disable vma merging and expanding with mremap().
2292 * VM_DONTDUMP
2293 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2294 *
2295 * There's a horrible special case to handle copy-on-write
2296 * behaviour that some programs depend on. We mark the "original"
2297 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2298 * See vm_normal_page() for details.
1da177e4 2299 */
b3b9c293
KK
2300 if (is_cow_mapping(vma->vm_flags)) {
2301 if (addr != vma->vm_start || end != vma->vm_end)
2302 return -EINVAL;
fb155c16 2303 vma->vm_pgoff = pfn;
b3b9c293
KK
2304 }
2305
d5957d2f 2306 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2307 if (err)
3c8bb73a 2308 return -EINVAL;
fb155c16 2309
314e51b9 2310 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2311
2312 BUG_ON(addr >= end);
2313 pfn -= addr >> PAGE_SHIFT;
2314 pgd = pgd_offset(mm, addr);
2315 flush_cache_range(vma, addr, end);
1da177e4
LT
2316 do {
2317 next = pgd_addr_end(addr, end);
c2febafc 2318 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2319 pfn + (addr >> PAGE_SHIFT), prot);
2320 if (err)
2321 break;
2322 } while (pgd++, addr = next, addr != end);
2ab64037 2323
2324 if (err)
d5957d2f 2325 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2326
1da177e4
LT
2327 return err;
2328}
2329EXPORT_SYMBOL(remap_pfn_range);
2330
b4cbb197
LT
2331/**
2332 * vm_iomap_memory - remap memory to userspace
2333 * @vma: user vma to map to
abd69b9e 2334 * @start: start of the physical memory to be mapped
b4cbb197
LT
2335 * @len: size of area
2336 *
2337 * This is a simplified io_remap_pfn_range() for common driver use. The
2338 * driver just needs to give us the physical memory range to be mapped,
2339 * we'll figure out the rest from the vma information.
2340 *
2341 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2342 * whatever write-combining details or similar.
a862f68a
MR
2343 *
2344 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2345 */
2346int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2347{
2348 unsigned long vm_len, pfn, pages;
2349
2350 /* Check that the physical memory area passed in looks valid */
2351 if (start + len < start)
2352 return -EINVAL;
2353 /*
2354 * You *really* shouldn't map things that aren't page-aligned,
2355 * but we've historically allowed it because IO memory might
2356 * just have smaller alignment.
2357 */
2358 len += start & ~PAGE_MASK;
2359 pfn = start >> PAGE_SHIFT;
2360 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2361 if (pfn + pages < pfn)
2362 return -EINVAL;
2363
2364 /* We start the mapping 'vm_pgoff' pages into the area */
2365 if (vma->vm_pgoff > pages)
2366 return -EINVAL;
2367 pfn += vma->vm_pgoff;
2368 pages -= vma->vm_pgoff;
2369
2370 /* Can we fit all of the mapping? */
2371 vm_len = vma->vm_end - vma->vm_start;
2372 if (vm_len >> PAGE_SHIFT > pages)
2373 return -EINVAL;
2374
2375 /* Ok, let it rip */
2376 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2377}
2378EXPORT_SYMBOL(vm_iomap_memory);
2379
aee16b3c
JF
2380static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2381 unsigned long addr, unsigned long end,
e80d3909
JR
2382 pte_fn_t fn, void *data, bool create,
2383 pgtbl_mod_mask *mask)
aee16b3c
JF
2384{
2385 pte_t *pte;
be1db475 2386 int err = 0;
3f649ab7 2387 spinlock_t *ptl;
aee16b3c 2388
be1db475
DA
2389 if (create) {
2390 pte = (mm == &init_mm) ?
e80d3909 2391 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2392 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393 if (!pte)
2394 return -ENOMEM;
2395 } else {
2396 pte = (mm == &init_mm) ?
2397 pte_offset_kernel(pmd, addr) :
2398 pte_offset_map_lock(mm, pmd, addr, &ptl);
2399 }
aee16b3c
JF
2400
2401 BUG_ON(pmd_huge(*pmd));
2402
38e0edb1
JF
2403 arch_enter_lazy_mmu_mode();
2404
eeb4a05f
CH
2405 if (fn) {
2406 do {
2407 if (create || !pte_none(*pte)) {
2408 err = fn(pte++, addr, data);
2409 if (err)
2410 break;
2411 }
2412 } while (addr += PAGE_SIZE, addr != end);
2413 }
e80d3909 2414 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2415
38e0edb1
JF
2416 arch_leave_lazy_mmu_mode();
2417
aee16b3c
JF
2418 if (mm != &init_mm)
2419 pte_unmap_unlock(pte-1, ptl);
2420 return err;
2421}
2422
2423static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2424 unsigned long addr, unsigned long end,
e80d3909
JR
2425 pte_fn_t fn, void *data, bool create,
2426 pgtbl_mod_mask *mask)
aee16b3c
JF
2427{
2428 pmd_t *pmd;
2429 unsigned long next;
be1db475 2430 int err = 0;
aee16b3c 2431
ceb86879
AK
2432 BUG_ON(pud_huge(*pud));
2433
be1db475 2434 if (create) {
e80d3909 2435 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2436 if (!pmd)
2437 return -ENOMEM;
2438 } else {
2439 pmd = pmd_offset(pud, addr);
2440 }
aee16b3c
JF
2441 do {
2442 next = pmd_addr_end(addr, end);
be1db475
DA
2443 if (create || !pmd_none_or_clear_bad(pmd)) {
2444 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2445 create, mask);
be1db475
DA
2446 if (err)
2447 break;
2448 }
aee16b3c
JF
2449 } while (pmd++, addr = next, addr != end);
2450 return err;
2451}
2452
c2febafc 2453static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2454 unsigned long addr, unsigned long end,
e80d3909
JR
2455 pte_fn_t fn, void *data, bool create,
2456 pgtbl_mod_mask *mask)
aee16b3c
JF
2457{
2458 pud_t *pud;
2459 unsigned long next;
be1db475 2460 int err = 0;
aee16b3c 2461
be1db475 2462 if (create) {
e80d3909 2463 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2464 if (!pud)
2465 return -ENOMEM;
2466 } else {
2467 pud = pud_offset(p4d, addr);
2468 }
aee16b3c
JF
2469 do {
2470 next = pud_addr_end(addr, end);
be1db475
DA
2471 if (create || !pud_none_or_clear_bad(pud)) {
2472 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2473 create, mask);
be1db475
DA
2474 if (err)
2475 break;
2476 }
aee16b3c
JF
2477 } while (pud++, addr = next, addr != end);
2478 return err;
2479}
2480
c2febafc
KS
2481static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2482 unsigned long addr, unsigned long end,
e80d3909
JR
2483 pte_fn_t fn, void *data, bool create,
2484 pgtbl_mod_mask *mask)
c2febafc
KS
2485{
2486 p4d_t *p4d;
2487 unsigned long next;
be1db475 2488 int err = 0;
c2febafc 2489
be1db475 2490 if (create) {
e80d3909 2491 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2492 if (!p4d)
2493 return -ENOMEM;
2494 } else {
2495 p4d = p4d_offset(pgd, addr);
2496 }
c2febafc
KS
2497 do {
2498 next = p4d_addr_end(addr, end);
be1db475
DA
2499 if (create || !p4d_none_or_clear_bad(p4d)) {
2500 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2501 create, mask);
be1db475
DA
2502 if (err)
2503 break;
2504 }
c2febafc
KS
2505 } while (p4d++, addr = next, addr != end);
2506 return err;
2507}
2508
be1db475
DA
2509static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2510 unsigned long size, pte_fn_t fn,
2511 void *data, bool create)
aee16b3c
JF
2512{
2513 pgd_t *pgd;
e80d3909 2514 unsigned long start = addr, next;
57250a5b 2515 unsigned long end = addr + size;
e80d3909 2516 pgtbl_mod_mask mask = 0;
be1db475 2517 int err = 0;
aee16b3c 2518
9cb65bc3
MP
2519 if (WARN_ON(addr >= end))
2520 return -EINVAL;
2521
aee16b3c
JF
2522 pgd = pgd_offset(mm, addr);
2523 do {
2524 next = pgd_addr_end(addr, end);
be1db475
DA
2525 if (!create && pgd_none_or_clear_bad(pgd))
2526 continue;
e80d3909 2527 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2528 if (err)
2529 break;
2530 } while (pgd++, addr = next, addr != end);
57250a5b 2531
e80d3909
JR
2532 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2533 arch_sync_kernel_mappings(start, start + size);
2534
aee16b3c
JF
2535 return err;
2536}
be1db475
DA
2537
2538/*
2539 * Scan a region of virtual memory, filling in page tables as necessary
2540 * and calling a provided function on each leaf page table.
2541 */
2542int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2543 unsigned long size, pte_fn_t fn, void *data)
2544{
2545 return __apply_to_page_range(mm, addr, size, fn, data, true);
2546}
aee16b3c
JF
2547EXPORT_SYMBOL_GPL(apply_to_page_range);
2548
be1db475
DA
2549/*
2550 * Scan a region of virtual memory, calling a provided function on
2551 * each leaf page table where it exists.
2552 *
2553 * Unlike apply_to_page_range, this does _not_ fill in page tables
2554 * where they are absent.
2555 */
2556int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2557 unsigned long size, pte_fn_t fn, void *data)
2558{
2559 return __apply_to_page_range(mm, addr, size, fn, data, false);
2560}
2561EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2562
8f4e2101 2563/*
9b4bdd2f
KS
2564 * handle_pte_fault chooses page fault handler according to an entry which was
2565 * read non-atomically. Before making any commitment, on those architectures
2566 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2567 * parts, do_swap_page must check under lock before unmapping the pte and
2568 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2569 * and do_anonymous_page can safely check later on).
8f4e2101 2570 */
4c21e2f2 2571static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2572 pte_t *page_table, pte_t orig_pte)
2573{
2574 int same = 1;
923717cb 2575#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2576 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2577 spinlock_t *ptl = pte_lockptr(mm, pmd);
2578 spin_lock(ptl);
8f4e2101 2579 same = pte_same(*page_table, orig_pte);
4c21e2f2 2580 spin_unlock(ptl);
8f4e2101
HD
2581 }
2582#endif
2583 pte_unmap(page_table);
2584 return same;
2585}
2586
83d116c5
JH
2587static inline bool cow_user_page(struct page *dst, struct page *src,
2588 struct vm_fault *vmf)
6aab341e 2589{
83d116c5
JH
2590 bool ret;
2591 void *kaddr;
2592 void __user *uaddr;
c3e5ea6e 2593 bool locked = false;
83d116c5
JH
2594 struct vm_area_struct *vma = vmf->vma;
2595 struct mm_struct *mm = vma->vm_mm;
2596 unsigned long addr = vmf->address;
2597
83d116c5
JH
2598 if (likely(src)) {
2599 copy_user_highpage(dst, src, addr, vma);
2600 return true;
2601 }
2602
6aab341e
LT
2603 /*
2604 * If the source page was a PFN mapping, we don't have
2605 * a "struct page" for it. We do a best-effort copy by
2606 * just copying from the original user address. If that
2607 * fails, we just zero-fill it. Live with it.
2608 */
83d116c5
JH
2609 kaddr = kmap_atomic(dst);
2610 uaddr = (void __user *)(addr & PAGE_MASK);
2611
2612 /*
2613 * On architectures with software "accessed" bits, we would
2614 * take a double page fault, so mark it accessed here.
2615 */
c3e5ea6e 2616 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2617 pte_t entry;
5d2a2dbb 2618
83d116c5 2619 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2620 locked = true;
83d116c5
JH
2621 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2622 /*
2623 * Other thread has already handled the fault
7df67697 2624 * and update local tlb only
83d116c5 2625 */
7df67697 2626 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2627 ret = false;
2628 goto pte_unlock;
2629 }
2630
2631 entry = pte_mkyoung(vmf->orig_pte);
2632 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2633 update_mmu_cache(vma, addr, vmf->pte);
2634 }
2635
2636 /*
2637 * This really shouldn't fail, because the page is there
2638 * in the page tables. But it might just be unreadable,
2639 * in which case we just give up and fill the result with
2640 * zeroes.
2641 */
2642 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2643 if (locked)
2644 goto warn;
2645
2646 /* Re-validate under PTL if the page is still mapped */
2647 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2648 locked = true;
2649 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2650 /* The PTE changed under us, update local tlb */
2651 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2652 ret = false;
2653 goto pte_unlock;
2654 }
2655
5d2a2dbb 2656 /*
985ba004 2657 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2658 * Try to copy again under PTL.
5d2a2dbb 2659 */
c3e5ea6e
KS
2660 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2661 /*
2662 * Give a warn in case there can be some obscure
2663 * use-case
2664 */
2665warn:
2666 WARN_ON_ONCE(1);
2667 clear_page(kaddr);
2668 }
83d116c5
JH
2669 }
2670
2671 ret = true;
2672
2673pte_unlock:
c3e5ea6e 2674 if (locked)
83d116c5
JH
2675 pte_unmap_unlock(vmf->pte, vmf->ptl);
2676 kunmap_atomic(kaddr);
2677 flush_dcache_page(dst);
2678
2679 return ret;
6aab341e
LT
2680}
2681
c20cd45e
MH
2682static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2683{
2684 struct file *vm_file = vma->vm_file;
2685
2686 if (vm_file)
2687 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2688
2689 /*
2690 * Special mappings (e.g. VDSO) do not have any file so fake
2691 * a default GFP_KERNEL for them.
2692 */
2693 return GFP_KERNEL;
2694}
2695
fb09a464
KS
2696/*
2697 * Notify the address space that the page is about to become writable so that
2698 * it can prohibit this or wait for the page to get into an appropriate state.
2699 *
2700 * We do this without the lock held, so that it can sleep if it needs to.
2701 */
2b740303 2702static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2703{
2b740303 2704 vm_fault_t ret;
38b8cb7f
JK
2705 struct page *page = vmf->page;
2706 unsigned int old_flags = vmf->flags;
fb09a464 2707
38b8cb7f 2708 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2709
dc617f29
DW
2710 if (vmf->vma->vm_file &&
2711 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2712 return VM_FAULT_SIGBUS;
2713
11bac800 2714 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2715 /* Restore original flags so that caller is not surprised */
2716 vmf->flags = old_flags;
fb09a464
KS
2717 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2718 return ret;
2719 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2720 lock_page(page);
2721 if (!page->mapping) {
2722 unlock_page(page);
2723 return 0; /* retry */
2724 }
2725 ret |= VM_FAULT_LOCKED;
2726 } else
2727 VM_BUG_ON_PAGE(!PageLocked(page), page);
2728 return ret;
2729}
2730
97ba0c2b
JK
2731/*
2732 * Handle dirtying of a page in shared file mapping on a write fault.
2733 *
2734 * The function expects the page to be locked and unlocks it.
2735 */
89b15332 2736static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2737{
89b15332 2738 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2739 struct address_space *mapping;
89b15332 2740 struct page *page = vmf->page;
97ba0c2b
JK
2741 bool dirtied;
2742 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2743
2744 dirtied = set_page_dirty(page);
2745 VM_BUG_ON_PAGE(PageAnon(page), page);
2746 /*
2747 * Take a local copy of the address_space - page.mapping may be zeroed
2748 * by truncate after unlock_page(). The address_space itself remains
2749 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2750 * release semantics to prevent the compiler from undoing this copying.
2751 */
2752 mapping = page_rmapping(page);
2753 unlock_page(page);
2754
89b15332
JW
2755 if (!page_mkwrite)
2756 file_update_time(vma->vm_file);
2757
2758 /*
2759 * Throttle page dirtying rate down to writeback speed.
2760 *
2761 * mapping may be NULL here because some device drivers do not
2762 * set page.mapping but still dirty their pages
2763 *
c1e8d7c6 2764 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2765 * is pinning the mapping, as per above.
2766 */
97ba0c2b 2767 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2768 struct file *fpin;
2769
2770 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2771 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2772 if (fpin) {
2773 fput(fpin);
2774 return VM_FAULT_RETRY;
2775 }
97ba0c2b
JK
2776 }
2777
89b15332 2778 return 0;
97ba0c2b
JK
2779}
2780
4e047f89
SR
2781/*
2782 * Handle write page faults for pages that can be reused in the current vma
2783 *
2784 * This can happen either due to the mapping being with the VM_SHARED flag,
2785 * or due to us being the last reference standing to the page. In either
2786 * case, all we need to do here is to mark the page as writable and update
2787 * any related book-keeping.
2788 */
997dd98d 2789static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2790 __releases(vmf->ptl)
4e047f89 2791{
82b0f8c3 2792 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2793 struct page *page = vmf->page;
4e047f89
SR
2794 pte_t entry;
2795 /*
2796 * Clear the pages cpupid information as the existing
2797 * information potentially belongs to a now completely
2798 * unrelated process.
2799 */
2800 if (page)
2801 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2802
2994302b
JK
2803 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2804 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2805 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2806 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2807 update_mmu_cache(vma, vmf->address, vmf->pte);
2808 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2809 count_vm_event(PGREUSE);
4e047f89
SR
2810}
2811
2f38ab2c
SR
2812/*
2813 * Handle the case of a page which we actually need to copy to a new page.
2814 *
c1e8d7c6 2815 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2816 * without the ptl held.
2817 *
2818 * High level logic flow:
2819 *
2820 * - Allocate a page, copy the content of the old page to the new one.
2821 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2822 * - Take the PTL. If the pte changed, bail out and release the allocated page
2823 * - If the pte is still the way we remember it, update the page table and all
2824 * relevant references. This includes dropping the reference the page-table
2825 * held to the old page, as well as updating the rmap.
2826 * - In any case, unlock the PTL and drop the reference we took to the old page.
2827 */
2b740303 2828static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2829{
82b0f8c3 2830 struct vm_area_struct *vma = vmf->vma;
bae473a4 2831 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2832 struct page *old_page = vmf->page;
2f38ab2c 2833 struct page *new_page = NULL;
2f38ab2c
SR
2834 pte_t entry;
2835 int page_copied = 0;
ac46d4f3 2836 struct mmu_notifier_range range;
2f38ab2c
SR
2837
2838 if (unlikely(anon_vma_prepare(vma)))
2839 goto oom;
2840
2994302b 2841 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2842 new_page = alloc_zeroed_user_highpage_movable(vma,
2843 vmf->address);
2f38ab2c
SR
2844 if (!new_page)
2845 goto oom;
2846 } else {
bae473a4 2847 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2848 vmf->address);
2f38ab2c
SR
2849 if (!new_page)
2850 goto oom;
83d116c5
JH
2851
2852 if (!cow_user_page(new_page, old_page, vmf)) {
2853 /*
2854 * COW failed, if the fault was solved by other,
2855 * it's fine. If not, userspace would re-fault on
2856 * the same address and we will handle the fault
2857 * from the second attempt.
2858 */
2859 put_page(new_page);
2860 if (old_page)
2861 put_page(old_page);
2862 return 0;
2863 }
2f38ab2c 2864 }
2f38ab2c 2865
d9eb1ea2 2866 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2867 goto oom_free_new;
9d82c694 2868 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2869
eb3c24f3
MG
2870 __SetPageUptodate(new_page);
2871
7269f999 2872 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2873 vmf->address & PAGE_MASK,
ac46d4f3
JG
2874 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2875 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2876
2877 /*
2878 * Re-check the pte - we dropped the lock
2879 */
82b0f8c3 2880 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2881 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2882 if (old_page) {
2883 if (!PageAnon(old_page)) {
eca56ff9
JM
2884 dec_mm_counter_fast(mm,
2885 mm_counter_file(old_page));
2f38ab2c
SR
2886 inc_mm_counter_fast(mm, MM_ANONPAGES);
2887 }
2888 } else {
2889 inc_mm_counter_fast(mm, MM_ANONPAGES);
2890 }
2994302b 2891 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2892 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2893 entry = pte_sw_mkyoung(entry);
2f38ab2c 2894 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2895
2f38ab2c
SR
2896 /*
2897 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2898 * pte with the new entry, to keep TLBs on different CPUs in
2899 * sync. This code used to set the new PTE then flush TLBs, but
2900 * that left a window where the new PTE could be loaded into
2901 * some TLBs while the old PTE remains in others.
2f38ab2c 2902 */
82b0f8c3
JK
2903 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2904 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2905 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2906 /*
2907 * We call the notify macro here because, when using secondary
2908 * mmu page tables (such as kvm shadow page tables), we want the
2909 * new page to be mapped directly into the secondary page table.
2910 */
82b0f8c3
JK
2911 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2912 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2913 if (old_page) {
2914 /*
2915 * Only after switching the pte to the new page may
2916 * we remove the mapcount here. Otherwise another
2917 * process may come and find the rmap count decremented
2918 * before the pte is switched to the new page, and
2919 * "reuse" the old page writing into it while our pte
2920 * here still points into it and can be read by other
2921 * threads.
2922 *
2923 * The critical issue is to order this
2924 * page_remove_rmap with the ptp_clear_flush above.
2925 * Those stores are ordered by (if nothing else,)
2926 * the barrier present in the atomic_add_negative
2927 * in page_remove_rmap.
2928 *
2929 * Then the TLB flush in ptep_clear_flush ensures that
2930 * no process can access the old page before the
2931 * decremented mapcount is visible. And the old page
2932 * cannot be reused until after the decremented
2933 * mapcount is visible. So transitively, TLBs to
2934 * old page will be flushed before it can be reused.
2935 */
d281ee61 2936 page_remove_rmap(old_page, false);
2f38ab2c
SR
2937 }
2938
2939 /* Free the old page.. */
2940 new_page = old_page;
2941 page_copied = 1;
2942 } else {
7df67697 2943 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2944 }
2945
2946 if (new_page)
09cbfeaf 2947 put_page(new_page);
2f38ab2c 2948
82b0f8c3 2949 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2950 /*
2951 * No need to double call mmu_notifier->invalidate_range() callback as
2952 * the above ptep_clear_flush_notify() did already call it.
2953 */
ac46d4f3 2954 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2955 if (old_page) {
2956 /*
2957 * Don't let another task, with possibly unlocked vma,
2958 * keep the mlocked page.
2959 */
2960 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2961 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2962 if (PageMlocked(old_page))
2963 munlock_vma_page(old_page);
2f38ab2c
SR
2964 unlock_page(old_page);
2965 }
09cbfeaf 2966 put_page(old_page);
2f38ab2c
SR
2967 }
2968 return page_copied ? VM_FAULT_WRITE : 0;
2969oom_free_new:
09cbfeaf 2970 put_page(new_page);
2f38ab2c
SR
2971oom:
2972 if (old_page)
09cbfeaf 2973 put_page(old_page);
2f38ab2c
SR
2974 return VM_FAULT_OOM;
2975}
2976
66a6197c
JK
2977/**
2978 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2979 * writeable once the page is prepared
2980 *
2981 * @vmf: structure describing the fault
2982 *
2983 * This function handles all that is needed to finish a write page fault in a
2984 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2985 * It handles locking of PTE and modifying it.
66a6197c
JK
2986 *
2987 * The function expects the page to be locked or other protection against
2988 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2989 *
2990 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2991 * we acquired PTE lock.
66a6197c 2992 */
2b740303 2993vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2994{
2995 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2996 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2997 &vmf->ptl);
2998 /*
2999 * We might have raced with another page fault while we released the
3000 * pte_offset_map_lock.
3001 */
3002 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3003 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3004 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3005 return VM_FAULT_NOPAGE;
66a6197c
JK
3006 }
3007 wp_page_reuse(vmf);
a19e2553 3008 return 0;
66a6197c
JK
3009}
3010
dd906184
BH
3011/*
3012 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3013 * mapping
3014 */
2b740303 3015static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3016{
82b0f8c3 3017 struct vm_area_struct *vma = vmf->vma;
bae473a4 3018
dd906184 3019 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3020 vm_fault_t ret;
dd906184 3021
82b0f8c3 3022 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3023 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3024 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3025 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3026 return ret;
66a6197c 3027 return finish_mkwrite_fault(vmf);
dd906184 3028 }
997dd98d
JK
3029 wp_page_reuse(vmf);
3030 return VM_FAULT_WRITE;
dd906184
BH
3031}
3032
2b740303 3033static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3034 __releases(vmf->ptl)
93e478d4 3035{
82b0f8c3 3036 struct vm_area_struct *vma = vmf->vma;
89b15332 3037 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3038
a41b70d6 3039 get_page(vmf->page);
93e478d4 3040
93e478d4 3041 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3042 vm_fault_t tmp;
93e478d4 3043
82b0f8c3 3044 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3045 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3046 if (unlikely(!tmp || (tmp &
3047 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3048 put_page(vmf->page);
93e478d4
SR
3049 return tmp;
3050 }
66a6197c 3051 tmp = finish_mkwrite_fault(vmf);
a19e2553 3052 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3053 unlock_page(vmf->page);
a41b70d6 3054 put_page(vmf->page);
66a6197c 3055 return tmp;
93e478d4 3056 }
66a6197c
JK
3057 } else {
3058 wp_page_reuse(vmf);
997dd98d 3059 lock_page(vmf->page);
93e478d4 3060 }
89b15332 3061 ret |= fault_dirty_shared_page(vmf);
997dd98d 3062 put_page(vmf->page);
93e478d4 3063
89b15332 3064 return ret;
93e478d4
SR
3065}
3066
1da177e4
LT
3067/*
3068 * This routine handles present pages, when users try to write
3069 * to a shared page. It is done by copying the page to a new address
3070 * and decrementing the shared-page counter for the old page.
3071 *
1da177e4
LT
3072 * Note that this routine assumes that the protection checks have been
3073 * done by the caller (the low-level page fault routine in most cases).
3074 * Thus we can safely just mark it writable once we've done any necessary
3075 * COW.
3076 *
3077 * We also mark the page dirty at this point even though the page will
3078 * change only once the write actually happens. This avoids a few races,
3079 * and potentially makes it more efficient.
3080 *
c1e8d7c6 3081 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3082 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3083 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3084 */
2b740303 3085static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3086 __releases(vmf->ptl)
1da177e4 3087{
82b0f8c3 3088 struct vm_area_struct *vma = vmf->vma;
1da177e4 3089
292924b2 3090 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
3092 return handle_userfault(vmf, VM_UFFD_WP);
3093 }
3094
a41b70d6
JK
3095 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3096 if (!vmf->page) {
251b97f5 3097 /*
64e45507
PF
3098 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3099 * VM_PFNMAP VMA.
251b97f5
PZ
3100 *
3101 * We should not cow pages in a shared writeable mapping.
dd906184 3102 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3103 */
3104 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3105 (VM_WRITE|VM_SHARED))
2994302b 3106 return wp_pfn_shared(vmf);
2f38ab2c 3107
82b0f8c3 3108 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3109 return wp_page_copy(vmf);
251b97f5 3110 }
1da177e4 3111
d08b3851 3112 /*
ee6a6457
PZ
3113 * Take out anonymous pages first, anonymous shared vmas are
3114 * not dirty accountable.
d08b3851 3115 */
52d1e606 3116 if (PageAnon(vmf->page)) {
09854ba9
LT
3117 struct page *page = vmf->page;
3118
3119 /* PageKsm() doesn't necessarily raise the page refcount */
3120 if (PageKsm(page) || page_count(page) != 1)
3121 goto copy;
3122 if (!trylock_page(page))
3123 goto copy;
3124 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3125 unlock_page(page);
52d1e606 3126 goto copy;
b009c024 3127 }
09854ba9
LT
3128 /*
3129 * Ok, we've got the only map reference, and the only
3130 * page count reference, and the page is locked,
3131 * it's dark out, and we're wearing sunglasses. Hit it.
3132 */
09854ba9 3133 unlock_page(page);
be068f29 3134 wp_page_reuse(vmf);
09854ba9 3135 return VM_FAULT_WRITE;
ee6a6457 3136 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3137 (VM_WRITE|VM_SHARED))) {
a41b70d6 3138 return wp_page_shared(vmf);
1da177e4 3139 }
52d1e606 3140copy:
1da177e4
LT
3141 /*
3142 * Ok, we need to copy. Oh, well..
3143 */
a41b70d6 3144 get_page(vmf->page);
28766805 3145
82b0f8c3 3146 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3147 return wp_page_copy(vmf);
1da177e4
LT
3148}
3149
97a89413 3150static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3151 unsigned long start_addr, unsigned long end_addr,
3152 struct zap_details *details)
3153{
f5cc4eef 3154 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3155}
3156
f808c13f 3157static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3158 struct zap_details *details)
3159{
3160 struct vm_area_struct *vma;
1da177e4
LT
3161 pgoff_t vba, vea, zba, zea;
3162
6b2dbba8 3163 vma_interval_tree_foreach(vma, root,
1da177e4 3164 details->first_index, details->last_index) {
1da177e4
LT
3165
3166 vba = vma->vm_pgoff;
d6e93217 3167 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3168 zba = details->first_index;
3169 if (zba < vba)
3170 zba = vba;
3171 zea = details->last_index;
3172 if (zea > vea)
3173 zea = vea;
3174
97a89413 3175 unmap_mapping_range_vma(vma,
1da177e4
LT
3176 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3177 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3178 details);
1da177e4
LT
3179 }
3180}
3181
977fbdcd
MW
3182/**
3183 * unmap_mapping_pages() - Unmap pages from processes.
3184 * @mapping: The address space containing pages to be unmapped.
3185 * @start: Index of first page to be unmapped.
3186 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3187 * @even_cows: Whether to unmap even private COWed pages.
3188 *
3189 * Unmap the pages in this address space from any userspace process which
3190 * has them mmaped. Generally, you want to remove COWed pages as well when
3191 * a file is being truncated, but not when invalidating pages from the page
3192 * cache.
3193 */
3194void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3195 pgoff_t nr, bool even_cows)
3196{
3197 struct zap_details details = { };
3198
3199 details.check_mapping = even_cows ? NULL : mapping;
3200 details.first_index = start;
3201 details.last_index = start + nr - 1;
3202 if (details.last_index < details.first_index)
3203 details.last_index = ULONG_MAX;
3204
3205 i_mmap_lock_write(mapping);
3206 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3207 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3208 i_mmap_unlock_write(mapping);
3209}
3210
1da177e4 3211/**
8a5f14a2 3212 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3213 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3214 * file.
3215 *
3d41088f 3216 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3217 * @holebegin: byte in first page to unmap, relative to the start of
3218 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3219 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3220 * must keep the partial page. In contrast, we must get rid of
3221 * partial pages.
3222 * @holelen: size of prospective hole in bytes. This will be rounded
3223 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3224 * end of the file.
3225 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3226 * but 0 when invalidating pagecache, don't throw away private data.
3227 */
3228void unmap_mapping_range(struct address_space *mapping,
3229 loff_t const holebegin, loff_t const holelen, int even_cows)
3230{
1da177e4
LT
3231 pgoff_t hba = holebegin >> PAGE_SHIFT;
3232 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3233
3234 /* Check for overflow. */
3235 if (sizeof(holelen) > sizeof(hlen)) {
3236 long long holeend =
3237 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3238 if (holeend & ~(long long)ULONG_MAX)
3239 hlen = ULONG_MAX - hba + 1;
3240 }
3241
977fbdcd 3242 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3243}
3244EXPORT_SYMBOL(unmap_mapping_range);
3245
1da177e4 3246/*
c1e8d7c6 3247 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3248 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3249 * We return with pte unmapped and unlocked.
3250 *
c1e8d7c6 3251 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3252 * as does filemap_fault().
1da177e4 3253 */
2b740303 3254vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3255{
82b0f8c3 3256 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3257 struct page *page = NULL, *swapcache;
65500d23 3258 swp_entry_t entry;
1da177e4 3259 pte_t pte;
d065bd81 3260 int locked;
ad8c2ee8 3261 int exclusive = 0;
2b740303 3262 vm_fault_t ret = 0;
aae466b0 3263 void *shadow = NULL;
1da177e4 3264
eaf649eb 3265 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3266 goto out;
65500d23 3267
2994302b 3268 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3269 if (unlikely(non_swap_entry(entry))) {
3270 if (is_migration_entry(entry)) {
82b0f8c3
JK
3271 migration_entry_wait(vma->vm_mm, vmf->pmd,
3272 vmf->address);
5042db43 3273 } else if (is_device_private_entry(entry)) {
897e6365
CH
3274 vmf->page = device_private_entry_to_page(entry);
3275 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3276 } else if (is_hwpoison_entry(entry)) {
3277 ret = VM_FAULT_HWPOISON;
3278 } else {
2994302b 3279 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3280 ret = VM_FAULT_SIGBUS;
d1737fdb 3281 }
0697212a
CL
3282 goto out;
3283 }
0bcac06f
MK
3284
3285
0ff92245 3286 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3287 page = lookup_swap_cache(entry, vma, vmf->address);
3288 swapcache = page;
f8020772 3289
1da177e4 3290 if (!page) {
0bcac06f
MK
3291 struct swap_info_struct *si = swp_swap_info(entry);
3292
a449bf58
QC
3293 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3294 __swap_count(entry) == 1) {
0bcac06f 3295 /* skip swapcache */
e9e9b7ec
MK
3296 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3297 vmf->address);
0bcac06f 3298 if (page) {
4c6355b2
JW
3299 int err;
3300
0bcac06f
MK
3301 __SetPageLocked(page);
3302 __SetPageSwapBacked(page);
3303 set_page_private(page, entry.val);
4c6355b2
JW
3304
3305 /* Tell memcg to use swap ownership records */
3306 SetPageSwapCache(page);
3307 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3308 GFP_KERNEL);
4c6355b2 3309 ClearPageSwapCache(page);
545b1b07
MH
3310 if (err) {
3311 ret = VM_FAULT_OOM;
4c6355b2 3312 goto out_page;
545b1b07 3313 }
4c6355b2 3314
aae466b0
JK
3315 shadow = get_shadow_from_swap_cache(entry);
3316 if (shadow)
3317 workingset_refault(page, shadow);
0076f029 3318
6058eaec 3319 lru_cache_add(page);
0bcac06f
MK
3320 swap_readpage(page, true);
3321 }
aa8d22a1 3322 } else {
e9e9b7ec
MK
3323 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3324 vmf);
aa8d22a1 3325 swapcache = page;
0bcac06f
MK
3326 }
3327
1da177e4
LT
3328 if (!page) {
3329 /*
8f4e2101
HD
3330 * Back out if somebody else faulted in this pte
3331 * while we released the pte lock.
1da177e4 3332 */
82b0f8c3
JK
3333 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3334 vmf->address, &vmf->ptl);
2994302b 3335 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3336 ret = VM_FAULT_OOM;
0ff92245 3337 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3338 goto unlock;
1da177e4
LT
3339 }
3340
3341 /* Had to read the page from swap area: Major fault */
3342 ret = VM_FAULT_MAJOR;
f8891e5e 3343 count_vm_event(PGMAJFAULT);
2262185c 3344 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3345 } else if (PageHWPoison(page)) {
71f72525
WF
3346 /*
3347 * hwpoisoned dirty swapcache pages are kept for killing
3348 * owner processes (which may be unknown at hwpoison time)
3349 */
d1737fdb
AK
3350 ret = VM_FAULT_HWPOISON;
3351 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3352 goto out_release;
1da177e4
LT
3353 }
3354
82b0f8c3 3355 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3356
073e587e 3357 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3358 if (!locked) {
3359 ret |= VM_FAULT_RETRY;
3360 goto out_release;
3361 }
073e587e 3362
4969c119 3363 /*
31c4a3d3
HD
3364 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3365 * release the swapcache from under us. The page pin, and pte_same
3366 * test below, are not enough to exclude that. Even if it is still
3367 * swapcache, we need to check that the page's swap has not changed.
4969c119 3368 */
0bcac06f
MK
3369 if (unlikely((!PageSwapCache(page) ||
3370 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3371 goto out_page;
3372
82b0f8c3 3373 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3374 if (unlikely(!page)) {
3375 ret = VM_FAULT_OOM;
3376 page = swapcache;
cbf86cfe 3377 goto out_page;
5ad64688
HD
3378 }
3379
9d82c694 3380 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3381
1da177e4 3382 /*
8f4e2101 3383 * Back out if somebody else already faulted in this pte.
1da177e4 3384 */
82b0f8c3
JK
3385 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3386 &vmf->ptl);
2994302b 3387 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3388 goto out_nomap;
b8107480
KK
3389
3390 if (unlikely(!PageUptodate(page))) {
3391 ret = VM_FAULT_SIGBUS;
3392 goto out_nomap;
1da177e4
LT
3393 }
3394
8c7c6e34
KH
3395 /*
3396 * The page isn't present yet, go ahead with the fault.
3397 *
3398 * Be careful about the sequence of operations here.
3399 * To get its accounting right, reuse_swap_page() must be called
3400 * while the page is counted on swap but not yet in mapcount i.e.
3401 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3402 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3403 */
1da177e4 3404
bae473a4
KS
3405 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3406 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3407 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3408 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3409 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3410 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3411 ret |= VM_FAULT_WRITE;
d281ee61 3412 exclusive = RMAP_EXCLUSIVE;
1da177e4 3413 }
1da177e4 3414 flush_icache_page(vma, page);
2994302b 3415 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3416 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3417 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3418 pte = pte_mkuffd_wp(pte);
3419 pte = pte_wrprotect(pte);
3420 }
82b0f8c3 3421 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3422 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3423 vmf->orig_pte = pte;
0bcac06f
MK
3424
3425 /* ksm created a completely new copy */
3426 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3427 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3428 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3429 } else {
3430 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3431 }
1da177e4 3432
c475a8ab 3433 swap_free(entry);
5ccc5aba
VD
3434 if (mem_cgroup_swap_full(page) ||
3435 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3436 try_to_free_swap(page);
c475a8ab 3437 unlock_page(page);
0bcac06f 3438 if (page != swapcache && swapcache) {
4969c119
AA
3439 /*
3440 * Hold the lock to avoid the swap entry to be reused
3441 * until we take the PT lock for the pte_same() check
3442 * (to avoid false positives from pte_same). For
3443 * further safety release the lock after the swap_free
3444 * so that the swap count won't change under a
3445 * parallel locked swapcache.
3446 */
3447 unlock_page(swapcache);
09cbfeaf 3448 put_page(swapcache);
4969c119 3449 }
c475a8ab 3450
82b0f8c3 3451 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3452 ret |= do_wp_page(vmf);
61469f1d
HD
3453 if (ret & VM_FAULT_ERROR)
3454 ret &= VM_FAULT_ERROR;
1da177e4
LT
3455 goto out;
3456 }
3457
3458 /* No need to invalidate - it was non-present before */
82b0f8c3 3459 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3460unlock:
82b0f8c3 3461 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3462out:
3463 return ret;
b8107480 3464out_nomap:
82b0f8c3 3465 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3466out_page:
b8107480 3467 unlock_page(page);
4779cb31 3468out_release:
09cbfeaf 3469 put_page(page);
0bcac06f 3470 if (page != swapcache && swapcache) {
4969c119 3471 unlock_page(swapcache);
09cbfeaf 3472 put_page(swapcache);
4969c119 3473 }
65500d23 3474 return ret;
1da177e4
LT
3475}
3476
3477/*
c1e8d7c6 3478 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3479 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3480 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3481 */
2b740303 3482static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3483{
82b0f8c3 3484 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3485 struct page *page;
2b740303 3486 vm_fault_t ret = 0;
1da177e4 3487 pte_t entry;
1da177e4 3488
6b7339f4
KS
3489 /* File mapping without ->vm_ops ? */
3490 if (vma->vm_flags & VM_SHARED)
3491 return VM_FAULT_SIGBUS;
3492
7267ec00
KS
3493 /*
3494 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3495 * pte_offset_map() on pmds where a huge pmd might be created
3496 * from a different thread.
3497 *
3e4e28c5 3498 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3499 * parallel threads are excluded by other means.
3500 *
3e4e28c5 3501 * Here we only have mmap_read_lock(mm).
7267ec00 3502 */
4cf58924 3503 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3504 return VM_FAULT_OOM;
3505
3506 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3507 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3508 return 0;
3509
11ac5524 3510 /* Use the zero-page for reads */
82b0f8c3 3511 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3512 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3513 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3514 vma->vm_page_prot));
82b0f8c3
JK
3515 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3516 vmf->address, &vmf->ptl);
7df67697
BM
3517 if (!pte_none(*vmf->pte)) {
3518 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3519 goto unlock;
7df67697 3520 }
6b31d595
MH
3521 ret = check_stable_address_space(vma->vm_mm);
3522 if (ret)
3523 goto unlock;
6b251fc9
AA
3524 /* Deliver the page fault to userland, check inside PT lock */
3525 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3526 pte_unmap_unlock(vmf->pte, vmf->ptl);
3527 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3528 }
a13ea5b7
HD
3529 goto setpte;
3530 }
3531
557ed1fa 3532 /* Allocate our own private page. */
557ed1fa
NP
3533 if (unlikely(anon_vma_prepare(vma)))
3534 goto oom;
82b0f8c3 3535 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3536 if (!page)
3537 goto oom;
eb3c24f3 3538
d9eb1ea2 3539 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3540 goto oom_free_page;
9d82c694 3541 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3542
52f37629
MK
3543 /*
3544 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3545 * preceding stores to the page contents become visible before
52f37629
MK
3546 * the set_pte_at() write.
3547 */
0ed361de 3548 __SetPageUptodate(page);
8f4e2101 3549
557ed1fa 3550 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3551 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3552 if (vma->vm_flags & VM_WRITE)
3553 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3554
82b0f8c3
JK
3555 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3556 &vmf->ptl);
7df67697
BM
3557 if (!pte_none(*vmf->pte)) {
3558 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3559 goto release;
7df67697 3560 }
9ba69294 3561
6b31d595
MH
3562 ret = check_stable_address_space(vma->vm_mm);
3563 if (ret)
3564 goto release;
3565
6b251fc9
AA
3566 /* Deliver the page fault to userland, check inside PT lock */
3567 if (userfaultfd_missing(vma)) {
82b0f8c3 3568 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3569 put_page(page);
82b0f8c3 3570 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3571 }
3572
bae473a4 3573 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3574 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3575 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3576setpte:
82b0f8c3 3577 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3578
3579 /* No need to invalidate - it was non-present before */
82b0f8c3 3580 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3581unlock:
82b0f8c3 3582 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3583 return ret;
8f4e2101 3584release:
09cbfeaf 3585 put_page(page);
8f4e2101 3586 goto unlock;
8a9f3ccd 3587oom_free_page:
09cbfeaf 3588 put_page(page);
65500d23 3589oom:
1da177e4
LT
3590 return VM_FAULT_OOM;
3591}
3592
9a95f3cf 3593/*
c1e8d7c6 3594 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3595 * released depending on flags and vma->vm_ops->fault() return value.
3596 * See filemap_fault() and __lock_page_retry().
3597 */
2b740303 3598static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3599{
82b0f8c3 3600 struct vm_area_struct *vma = vmf->vma;
2b740303 3601 vm_fault_t ret;
7eae74af 3602
63f3655f
MH
3603 /*
3604 * Preallocate pte before we take page_lock because this might lead to
3605 * deadlocks for memcg reclaim which waits for pages under writeback:
3606 * lock_page(A)
3607 * SetPageWriteback(A)
3608 * unlock_page(A)
3609 * lock_page(B)
3610 * lock_page(B)
d383807a 3611 * pte_alloc_one
63f3655f
MH
3612 * shrink_page_list
3613 * wait_on_page_writeback(A)
3614 * SetPageWriteback(B)
3615 * unlock_page(B)
3616 * # flush A, B to clear the writeback
3617 */
3618 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3619 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3620 if (!vmf->prealloc_pte)
3621 return VM_FAULT_OOM;
3622 smp_wmb(); /* See comment in __pte_alloc() */
3623 }
3624
11bac800 3625 ret = vma->vm_ops->fault(vmf);
3917048d 3626 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3627 VM_FAULT_DONE_COW)))
bc2466e4 3628 return ret;
7eae74af 3629
667240e0 3630 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3631 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3632 unlock_page(vmf->page);
3633 put_page(vmf->page);
936ca80d 3634 vmf->page = NULL;
7eae74af
KS
3635 return VM_FAULT_HWPOISON;
3636 }
3637
3638 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3639 lock_page(vmf->page);
7eae74af 3640 else
667240e0 3641 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3642
7eae74af
KS
3643 return ret;
3644}
3645
d0f0931d
RZ
3646/*
3647 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3648 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3649 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3650 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3651 */
3652static int pmd_devmap_trans_unstable(pmd_t *pmd)
3653{
3654 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3655}
3656
2b740303 3657static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3658{
82b0f8c3 3659 struct vm_area_struct *vma = vmf->vma;
7267ec00 3660
82b0f8c3 3661 if (!pmd_none(*vmf->pmd))
7267ec00 3662 goto map_pte;
82b0f8c3
JK
3663 if (vmf->prealloc_pte) {
3664 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3665 if (unlikely(!pmd_none(*vmf->pmd))) {
3666 spin_unlock(vmf->ptl);
7267ec00
KS
3667 goto map_pte;
3668 }
3669
c4812909 3670 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3671 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3672 spin_unlock(vmf->ptl);
7f2b6ce8 3673 vmf->prealloc_pte = NULL;
4cf58924 3674 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3675 return VM_FAULT_OOM;
3676 }
3677map_pte:
3678 /*
3679 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3680 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3681 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3682 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3683 * running immediately after a huge pmd fault in a different thread of
3684 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3685 * All we have to ensure is that it is a regular pmd that we can walk
3686 * with pte_offset_map() and we can do that through an atomic read in
3687 * C, which is what pmd_trans_unstable() provides.
7267ec00 3688 */
d0f0931d 3689 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3690 return VM_FAULT_NOPAGE;
3691
d0f0931d
RZ
3692 /*
3693 * At this point we know that our vmf->pmd points to a page of ptes
3694 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3695 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3696 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3697 * be valid and we will re-check to make sure the vmf->pte isn't
3698 * pte_none() under vmf->ptl protection when we return to
3699 * alloc_set_pte().
3700 */
82b0f8c3
JK
3701 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3702 &vmf->ptl);
7267ec00
KS
3703 return 0;
3704}
3705
396bcc52 3706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3707static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3708{
82b0f8c3 3709 struct vm_area_struct *vma = vmf->vma;
953c66c2 3710
82b0f8c3 3711 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3712 /*
3713 * We are going to consume the prealloc table,
3714 * count that as nr_ptes.
3715 */
c4812909 3716 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3717 vmf->prealloc_pte = NULL;
953c66c2
AK
3718}
3719
2b740303 3720static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3721{
82b0f8c3
JK
3722 struct vm_area_struct *vma = vmf->vma;
3723 bool write = vmf->flags & FAULT_FLAG_WRITE;
3724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3725 pmd_t entry;
2b740303 3726 int i;
d01ac3c3 3727 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3728
3729 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3730 return ret;
10102459 3731
10102459 3732 page = compound_head(page);
d01ac3c3
MWO
3733 if (compound_order(page) != HPAGE_PMD_ORDER)
3734 return ret;
10102459 3735
953c66c2
AK
3736 /*
3737 * Archs like ppc64 need additonal space to store information
3738 * related to pte entry. Use the preallocated table for that.
3739 */
82b0f8c3 3740 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3741 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3742 if (!vmf->prealloc_pte)
953c66c2
AK
3743 return VM_FAULT_OOM;
3744 smp_wmb(); /* See comment in __pte_alloc() */
3745 }
3746
82b0f8c3
JK
3747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3748 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3749 goto out;
3750
3751 for (i = 0; i < HPAGE_PMD_NR; i++)
3752 flush_icache_page(vma, page + i);
3753
3754 entry = mk_huge_pmd(page, vma->vm_page_prot);
3755 if (write)
f55e1014 3756 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3757
fadae295 3758 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3759 page_add_file_rmap(page, true);
953c66c2
AK
3760 /*
3761 * deposit and withdraw with pmd lock held
3762 */
3763 if (arch_needs_pgtable_deposit())
82b0f8c3 3764 deposit_prealloc_pte(vmf);
10102459 3765
82b0f8c3 3766 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3767
82b0f8c3 3768 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3769
3770 /* fault is handled */
3771 ret = 0;
95ecedcd 3772 count_vm_event(THP_FILE_MAPPED);
10102459 3773out:
82b0f8c3 3774 spin_unlock(vmf->ptl);
10102459
KS
3775 return ret;
3776}
3777#else
2b740303 3778static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3779{
3780 BUILD_BUG();
3781 return 0;
3782}
3783#endif
3784
8c6e50b0 3785/**
7267ec00 3786 * alloc_set_pte - setup new PTE entry for given page and add reverse page
f1dc1685 3787 * mapping. If needed, the function allocates page table or use pre-allocated.
8c6e50b0 3788 *
82b0f8c3 3789 * @vmf: fault environment
8c6e50b0 3790 * @page: page to map
8c6e50b0 3791 *
82b0f8c3
JK
3792 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3793 * return.
8c6e50b0
KS
3794 *
3795 * Target users are page handler itself and implementations of
3796 * vm_ops->map_pages.
a862f68a
MR
3797 *
3798 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3799 */
9d82c694 3800vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3801{
82b0f8c3
JK
3802 struct vm_area_struct *vma = vmf->vma;
3803 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3804 pte_t entry;
2b740303 3805 vm_fault_t ret;
10102459 3806
396bcc52 3807 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3808 ret = do_set_pmd(vmf, page);
10102459 3809 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3810 return ret;
10102459 3811 }
3bb97794 3812
82b0f8c3
JK
3813 if (!vmf->pte) {
3814 ret = pte_alloc_one_map(vmf);
7267ec00 3815 if (ret)
b0b9b3df 3816 return ret;
7267ec00
KS
3817 }
3818
3819 /* Re-check under ptl */
7df67697
BM
3820 if (unlikely(!pte_none(*vmf->pte))) {
3821 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3822 return VM_FAULT_NOPAGE;
7df67697 3823 }
7267ec00 3824
3bb97794
KS
3825 flush_icache_page(vma, page);
3826 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3827 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3828 if (write)
3829 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3830 /* copy-on-write page */
3831 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3832 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3833 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3834 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3835 } else {
eca56ff9 3836 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3837 page_add_file_rmap(page, false);
3bb97794 3838 }
82b0f8c3 3839 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3840
3841 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3842 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3843
b0b9b3df 3844 return 0;
3bb97794
KS
3845}
3846
9118c0cb
JK
3847
3848/**
3849 * finish_fault - finish page fault once we have prepared the page to fault
3850 *
3851 * @vmf: structure describing the fault
3852 *
3853 * This function handles all that is needed to finish a page fault once the
3854 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3855 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3856 * addition.
9118c0cb
JK
3857 *
3858 * The function expects the page to be locked and on success it consumes a
3859 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3860 *
3861 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3862 */
2b740303 3863vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3864{
3865 struct page *page;
2b740303 3866 vm_fault_t ret = 0;
9118c0cb
JK
3867
3868 /* Did we COW the page? */
3869 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3870 !(vmf->vma->vm_flags & VM_SHARED))
3871 page = vmf->cow_page;
3872 else
3873 page = vmf->page;
6b31d595
MH
3874
3875 /*
3876 * check even for read faults because we might have lost our CoWed
3877 * page
3878 */
3879 if (!(vmf->vma->vm_flags & VM_SHARED))
3880 ret = check_stable_address_space(vmf->vma->vm_mm);
3881 if (!ret)
9d82c694 3882 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3883 if (vmf->pte)
3884 pte_unmap_unlock(vmf->pte, vmf->ptl);
3885 return ret;
3886}
3887
3a91053a
KS
3888static unsigned long fault_around_bytes __read_mostly =
3889 rounddown_pow_of_two(65536);
a9b0f861 3890
a9b0f861
KS
3891#ifdef CONFIG_DEBUG_FS
3892static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3893{
a9b0f861 3894 *val = fault_around_bytes;
1592eef0
KS
3895 return 0;
3896}
3897
b4903d6e 3898/*
da391d64
WK
3899 * fault_around_bytes must be rounded down to the nearest page order as it's
3900 * what do_fault_around() expects to see.
b4903d6e 3901 */
a9b0f861 3902static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3903{
a9b0f861 3904 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3905 return -EINVAL;
b4903d6e
AR
3906 if (val > PAGE_SIZE)
3907 fault_around_bytes = rounddown_pow_of_two(val);
3908 else
3909 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3910 return 0;
3911}
0a1345f8 3912DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3913 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3914
3915static int __init fault_around_debugfs(void)
3916{
d9f7979c
GKH
3917 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3918 &fault_around_bytes_fops);
1592eef0
KS
3919 return 0;
3920}
3921late_initcall(fault_around_debugfs);
1592eef0 3922#endif
8c6e50b0 3923
1fdb412b
KS
3924/*
3925 * do_fault_around() tries to map few pages around the fault address. The hope
3926 * is that the pages will be needed soon and this will lower the number of
3927 * faults to handle.
3928 *
3929 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3930 * not ready to be mapped: not up-to-date, locked, etc.
3931 *
3932 * This function is called with the page table lock taken. In the split ptlock
3933 * case the page table lock only protects only those entries which belong to
3934 * the page table corresponding to the fault address.
3935 *
3936 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3937 * only once.
3938 *
da391d64
WK
3939 * fault_around_bytes defines how many bytes we'll try to map.
3940 * do_fault_around() expects it to be set to a power of two less than or equal
3941 * to PTRS_PER_PTE.
1fdb412b 3942 *
da391d64
WK
3943 * The virtual address of the area that we map is naturally aligned to
3944 * fault_around_bytes rounded down to the machine page size
3945 * (and therefore to page order). This way it's easier to guarantee
3946 * that we don't cross page table boundaries.
1fdb412b 3947 */
2b740303 3948static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3949{
82b0f8c3 3950 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3951 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3952 pgoff_t end_pgoff;
2b740303
SJ
3953 int off;
3954 vm_fault_t ret = 0;
8c6e50b0 3955
4db0c3c2 3956 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3957 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3958
82b0f8c3
JK
3959 vmf->address = max(address & mask, vmf->vma->vm_start);
3960 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3961 start_pgoff -= off;
8c6e50b0
KS
3962
3963 /*
da391d64
WK
3964 * end_pgoff is either the end of the page table, the end of
3965 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3966 */
bae473a4 3967 end_pgoff = start_pgoff -
82b0f8c3 3968 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3969 PTRS_PER_PTE - 1;
82b0f8c3 3970 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3971 start_pgoff + nr_pages - 1);
8c6e50b0 3972
82b0f8c3 3973 if (pmd_none(*vmf->pmd)) {
4cf58924 3974 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3975 if (!vmf->prealloc_pte)
c5f88bd2 3976 goto out;
7267ec00 3977 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3978 }
3979
82b0f8c3 3980 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3981
7267ec00 3982 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3983 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3984 ret = VM_FAULT_NOPAGE;
3985 goto out;
3986 }
3987
3988 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3989 if (!vmf->pte)
7267ec00
KS
3990 goto out;
3991
3992 /* check if the page fault is solved */
82b0f8c3
JK
3993 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3994 if (!pte_none(*vmf->pte))
7267ec00 3995 ret = VM_FAULT_NOPAGE;
82b0f8c3 3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3997out:
82b0f8c3
JK
3998 vmf->address = address;
3999 vmf->pte = NULL;
7267ec00 4000 return ret;
8c6e50b0
KS
4001}
4002
2b740303 4003static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4004{
82b0f8c3 4005 struct vm_area_struct *vma = vmf->vma;
2b740303 4006 vm_fault_t ret = 0;
8c6e50b0
KS
4007
4008 /*
4009 * Let's call ->map_pages() first and use ->fault() as fallback
4010 * if page by the offset is not ready to be mapped (cold cache or
4011 * something).
4012 */
9b4bdd2f 4013 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 4014 ret = do_fault_around(vmf);
7267ec00
KS
4015 if (ret)
4016 return ret;
8c6e50b0 4017 }
e655fb29 4018
936ca80d 4019 ret = __do_fault(vmf);
e655fb29
KS
4020 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4021 return ret;
4022
9118c0cb 4023 ret |= finish_fault(vmf);
936ca80d 4024 unlock_page(vmf->page);
7267ec00 4025 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4026 put_page(vmf->page);
e655fb29
KS
4027 return ret;
4028}
4029
2b740303 4030static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4031{
82b0f8c3 4032 struct vm_area_struct *vma = vmf->vma;
2b740303 4033 vm_fault_t ret;
ec47c3b9
KS
4034
4035 if (unlikely(anon_vma_prepare(vma)))
4036 return VM_FAULT_OOM;
4037
936ca80d
JK
4038 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4039 if (!vmf->cow_page)
ec47c3b9
KS
4040 return VM_FAULT_OOM;
4041
d9eb1ea2 4042 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4043 put_page(vmf->cow_page);
ec47c3b9
KS
4044 return VM_FAULT_OOM;
4045 }
9d82c694 4046 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4047
936ca80d 4048 ret = __do_fault(vmf);
ec47c3b9
KS
4049 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4050 goto uncharge_out;
3917048d
JK
4051 if (ret & VM_FAULT_DONE_COW)
4052 return ret;
ec47c3b9 4053
b1aa812b 4054 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4055 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4056
9118c0cb 4057 ret |= finish_fault(vmf);
b1aa812b
JK
4058 unlock_page(vmf->page);
4059 put_page(vmf->page);
7267ec00
KS
4060 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4061 goto uncharge_out;
ec47c3b9
KS
4062 return ret;
4063uncharge_out:
936ca80d 4064 put_page(vmf->cow_page);
ec47c3b9
KS
4065 return ret;
4066}
4067
2b740303 4068static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4069{
82b0f8c3 4070 struct vm_area_struct *vma = vmf->vma;
2b740303 4071 vm_fault_t ret, tmp;
1d65f86d 4072
936ca80d 4073 ret = __do_fault(vmf);
7eae74af 4074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4075 return ret;
1da177e4
LT
4076
4077 /*
f0c6d4d2
KS
4078 * Check if the backing address space wants to know that the page is
4079 * about to become writable
1da177e4 4080 */
fb09a464 4081 if (vma->vm_ops->page_mkwrite) {
936ca80d 4082 unlock_page(vmf->page);
38b8cb7f 4083 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4084 if (unlikely(!tmp ||
4085 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4086 put_page(vmf->page);
fb09a464 4087 return tmp;
4294621f 4088 }
fb09a464
KS
4089 }
4090
9118c0cb 4091 ret |= finish_fault(vmf);
7267ec00
KS
4092 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4093 VM_FAULT_RETRY))) {
936ca80d
JK
4094 unlock_page(vmf->page);
4095 put_page(vmf->page);
f0c6d4d2 4096 return ret;
1da177e4 4097 }
b827e496 4098
89b15332 4099 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4100 return ret;
54cb8821 4101}
d00806b1 4102
9a95f3cf 4103/*
c1e8d7c6 4104 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4105 * but allow concurrent faults).
c1e8d7c6 4106 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4107 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4108 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4109 * by other thread calling munmap()).
9a95f3cf 4110 */
2b740303 4111static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4112{
82b0f8c3 4113 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4114 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4115 vm_fault_t ret;
54cb8821 4116
ff09d7ec
AK
4117 /*
4118 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4119 */
4120 if (!vma->vm_ops->fault) {
4121 /*
4122 * If we find a migration pmd entry or a none pmd entry, which
4123 * should never happen, return SIGBUS
4124 */
4125 if (unlikely(!pmd_present(*vmf->pmd)))
4126 ret = VM_FAULT_SIGBUS;
4127 else {
4128 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4129 vmf->pmd,
4130 vmf->address,
4131 &vmf->ptl);
4132 /*
4133 * Make sure this is not a temporary clearing of pte
4134 * by holding ptl and checking again. A R/M/W update
4135 * of pte involves: take ptl, clearing the pte so that
4136 * we don't have concurrent modification by hardware
4137 * followed by an update.
4138 */
4139 if (unlikely(pte_none(*vmf->pte)))
4140 ret = VM_FAULT_SIGBUS;
4141 else
4142 ret = VM_FAULT_NOPAGE;
4143
4144 pte_unmap_unlock(vmf->pte, vmf->ptl);
4145 }
4146 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4147 ret = do_read_fault(vmf);
4148 else if (!(vma->vm_flags & VM_SHARED))
4149 ret = do_cow_fault(vmf);
4150 else
4151 ret = do_shared_fault(vmf);
4152
4153 /* preallocated pagetable is unused: free it */
4154 if (vmf->prealloc_pte) {
fc8efd2d 4155 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4156 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4157 }
4158 return ret;
54cb8821
NP
4159}
4160
b19a9939 4161static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4162 unsigned long addr, int page_nid,
4163 int *flags)
9532fec1
MG
4164{
4165 get_page(page);
4166
4167 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4168 if (page_nid == numa_node_id()) {
9532fec1 4169 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4170 *flags |= TNF_FAULT_LOCAL;
4171 }
9532fec1
MG
4172
4173 return mpol_misplaced(page, vma, addr);
4174}
4175
2b740303 4176static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4177{
82b0f8c3 4178 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4179 struct page *page = NULL;
98fa15f3 4180 int page_nid = NUMA_NO_NODE;
90572890 4181 int last_cpupid;
cbee9f88 4182 int target_nid;
b8593bfd 4183 bool migrated = false;
04a86453 4184 pte_t pte, old_pte;
288bc549 4185 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4186 int flags = 0;
d10e63f2
MG
4187
4188 /*
166f61b9
TH
4189 * The "pte" at this point cannot be used safely without
4190 * validation through pte_unmap_same(). It's of NUMA type but
4191 * the pfn may be screwed if the read is non atomic.
166f61b9 4192 */
82b0f8c3
JK
4193 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4194 spin_lock(vmf->ptl);
cee216a6 4195 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4196 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4197 goto out;
4198 }
4199
cee216a6
AK
4200 /*
4201 * Make it present again, Depending on how arch implementes non
4202 * accessible ptes, some can allow access by kernel mode.
4203 */
04a86453
AK
4204 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4205 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4206 pte = pte_mkyoung(pte);
b191f9b1
MG
4207 if (was_writable)
4208 pte = pte_mkwrite(pte);
04a86453 4209 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4210 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4211
82b0f8c3 4212 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4213 if (!page) {
82b0f8c3 4214 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4215 return 0;
4216 }
4217
e81c4802
KS
4218 /* TODO: handle PTE-mapped THP */
4219 if (PageCompound(page)) {
82b0f8c3 4220 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4221 return 0;
4222 }
4223
6688cc05 4224 /*
bea66fbd
MG
4225 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4226 * much anyway since they can be in shared cache state. This misses
4227 * the case where a mapping is writable but the process never writes
4228 * to it but pte_write gets cleared during protection updates and
4229 * pte_dirty has unpredictable behaviour between PTE scan updates,
4230 * background writeback, dirty balancing and application behaviour.
6688cc05 4231 */
d59dc7bc 4232 if (!pte_write(pte))
6688cc05
PZ
4233 flags |= TNF_NO_GROUP;
4234
dabe1d99
RR
4235 /*
4236 * Flag if the page is shared between multiple address spaces. This
4237 * is later used when determining whether to group tasks together
4238 */
4239 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4240 flags |= TNF_SHARED;
4241
90572890 4242 last_cpupid = page_cpupid_last(page);
8191acbd 4243 page_nid = page_to_nid(page);
82b0f8c3 4244 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4245 &flags);
82b0f8c3 4246 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4247 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4248 put_page(page);
4249 goto out;
4250 }
4251
4252 /* Migrate to the requested node */
1bc115d8 4253 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4254 if (migrated) {
8191acbd 4255 page_nid = target_nid;
6688cc05 4256 flags |= TNF_MIGRATED;
074c2381
MG
4257 } else
4258 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4259
4260out:
98fa15f3 4261 if (page_nid != NUMA_NO_NODE)
6688cc05 4262 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4263 return 0;
4264}
4265
2b740303 4266static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4267{
f4200391 4268 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4269 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4270 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4271 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4272 return VM_FAULT_FALLBACK;
4273}
4274
183f24aa 4275/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4276static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4277{
529b930b 4278 if (vma_is_anonymous(vmf->vma)) {
292924b2 4279 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4280 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4281 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4282 }
327e9fd4
THV
4283 if (vmf->vma->vm_ops->huge_fault) {
4284 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4285
4286 if (!(ret & VM_FAULT_FALLBACK))
4287 return ret;
4288 }
af9e4d5f 4289
327e9fd4 4290 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4291 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4292
b96375f7
MW
4293 return VM_FAULT_FALLBACK;
4294}
4295
2b740303 4296static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4297{
327e9fd4
THV
4298#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4299 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4300 /* No support for anonymous transparent PUD pages yet */
4301 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4302 goto split;
4303 if (vmf->vma->vm_ops->huge_fault) {
4304 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4305
4306 if (!(ret & VM_FAULT_FALLBACK))
4307 return ret;
4308 }
4309split:
4310 /* COW or write-notify not handled on PUD level: split pud.*/
4311 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4312#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4313 return VM_FAULT_FALLBACK;
4314}
4315
2b740303 4316static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4317{
4318#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4319 /* No support for anonymous transparent PUD pages yet */
4320 if (vma_is_anonymous(vmf->vma))
4321 return VM_FAULT_FALLBACK;
4322 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4323 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4324#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4325 return VM_FAULT_FALLBACK;
4326}
4327
1da177e4
LT
4328/*
4329 * These routines also need to handle stuff like marking pages dirty
4330 * and/or accessed for architectures that don't do it in hardware (most
4331 * RISC architectures). The early dirtying is also good on the i386.
4332 *
4333 * There is also a hook called "update_mmu_cache()" that architectures
4334 * with external mmu caches can use to update those (ie the Sparc or
4335 * PowerPC hashed page tables that act as extended TLBs).
4336 *
c1e8d7c6 4337 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4338 * concurrent faults).
9a95f3cf 4339 *
c1e8d7c6 4340 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4341 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4342 */
2b740303 4343static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4344{
4345 pte_t entry;
4346
82b0f8c3 4347 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4348 /*
4349 * Leave __pte_alloc() until later: because vm_ops->fault may
4350 * want to allocate huge page, and if we expose page table
4351 * for an instant, it will be difficult to retract from
4352 * concurrent faults and from rmap lookups.
4353 */
82b0f8c3 4354 vmf->pte = NULL;
7267ec00
KS
4355 } else {
4356 /* See comment in pte_alloc_one_map() */
d0f0931d 4357 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4358 return 0;
4359 /*
4360 * A regular pmd is established and it can't morph into a huge
4361 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4362 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4363 * So now it's safe to run pte_offset_map().
4364 */
82b0f8c3 4365 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4366 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4367
4368 /*
4369 * some architectures can have larger ptes than wordsize,
4370 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4371 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4372 * accesses. The code below just needs a consistent view
4373 * for the ifs and we later double check anyway with the
7267ec00
KS
4374 * ptl lock held. So here a barrier will do.
4375 */
4376 barrier();
2994302b 4377 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4378 pte_unmap(vmf->pte);
4379 vmf->pte = NULL;
65500d23 4380 }
1da177e4
LT
4381 }
4382
82b0f8c3
JK
4383 if (!vmf->pte) {
4384 if (vma_is_anonymous(vmf->vma))
4385 return do_anonymous_page(vmf);
7267ec00 4386 else
82b0f8c3 4387 return do_fault(vmf);
7267ec00
KS
4388 }
4389
2994302b
JK
4390 if (!pte_present(vmf->orig_pte))
4391 return do_swap_page(vmf);
7267ec00 4392
2994302b
JK
4393 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4394 return do_numa_page(vmf);
d10e63f2 4395
82b0f8c3
JK
4396 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4397 spin_lock(vmf->ptl);
2994302b 4398 entry = vmf->orig_pte;
7df67697
BM
4399 if (unlikely(!pte_same(*vmf->pte, entry))) {
4400 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4401 goto unlock;
7df67697 4402 }
82b0f8c3 4403 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4404 if (!pte_write(entry))
2994302b 4405 return do_wp_page(vmf);
1da177e4
LT
4406 entry = pte_mkdirty(entry);
4407 }
4408 entry = pte_mkyoung(entry);
82b0f8c3
JK
4409 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4410 vmf->flags & FAULT_FLAG_WRITE)) {
4411 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4412 } else {
b7333b58
YS
4413 /* Skip spurious TLB flush for retried page fault */
4414 if (vmf->flags & FAULT_FLAG_TRIED)
4415 goto unlock;
1a44e149
AA
4416 /*
4417 * This is needed only for protection faults but the arch code
4418 * is not yet telling us if this is a protection fault or not.
4419 * This still avoids useless tlb flushes for .text page faults
4420 * with threads.
4421 */
82b0f8c3
JK
4422 if (vmf->flags & FAULT_FLAG_WRITE)
4423 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4424 }
8f4e2101 4425unlock:
82b0f8c3 4426 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4427 return 0;
1da177e4
LT
4428}
4429
4430/*
4431 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4432 *
c1e8d7c6 4433 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4434 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4435 */
2b740303
SJ
4436static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4437 unsigned long address, unsigned int flags)
1da177e4 4438{
82b0f8c3 4439 struct vm_fault vmf = {
bae473a4 4440 .vma = vma,
1a29d85e 4441 .address = address & PAGE_MASK,
bae473a4 4442 .flags = flags,
0721ec8b 4443 .pgoff = linear_page_index(vma, address),
667240e0 4444 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4445 };
fde26bed 4446 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4447 struct mm_struct *mm = vma->vm_mm;
1da177e4 4448 pgd_t *pgd;
c2febafc 4449 p4d_t *p4d;
2b740303 4450 vm_fault_t ret;
1da177e4 4451
1da177e4 4452 pgd = pgd_offset(mm, address);
c2febafc
KS
4453 p4d = p4d_alloc(mm, pgd, address);
4454 if (!p4d)
4455 return VM_FAULT_OOM;
a00cc7d9 4456
c2febafc 4457 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4458 if (!vmf.pud)
c74df32c 4459 return VM_FAULT_OOM;
625110b5 4460retry_pud:
7635d9cb 4461 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4462 ret = create_huge_pud(&vmf);
4463 if (!(ret & VM_FAULT_FALLBACK))
4464 return ret;
4465 } else {
4466 pud_t orig_pud = *vmf.pud;
4467
4468 barrier();
4469 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4470
a00cc7d9
MW
4471 /* NUMA case for anonymous PUDs would go here */
4472
f6f37321 4473 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4474 ret = wp_huge_pud(&vmf, orig_pud);
4475 if (!(ret & VM_FAULT_FALLBACK))
4476 return ret;
4477 } else {
4478 huge_pud_set_accessed(&vmf, orig_pud);
4479 return 0;
4480 }
4481 }
4482 }
4483
4484 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4485 if (!vmf.pmd)
c74df32c 4486 return VM_FAULT_OOM;
625110b5
TH
4487
4488 /* Huge pud page fault raced with pmd_alloc? */
4489 if (pud_trans_unstable(vmf.pud))
4490 goto retry_pud;
4491
7635d9cb 4492 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4493 ret = create_huge_pmd(&vmf);
c0292554
KS
4494 if (!(ret & VM_FAULT_FALLBACK))
4495 return ret;
71e3aac0 4496 } else {
82b0f8c3 4497 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4498
71e3aac0 4499 barrier();
84c3fc4e
ZY
4500 if (unlikely(is_swap_pmd(orig_pmd))) {
4501 VM_BUG_ON(thp_migration_supported() &&
4502 !is_pmd_migration_entry(orig_pmd));
4503 if (is_pmd_migration_entry(orig_pmd))
4504 pmd_migration_entry_wait(mm, vmf.pmd);
4505 return 0;
4506 }
5c7fb56e 4507 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4508 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4509 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4510
f6f37321 4511 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4512 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4513 if (!(ret & VM_FAULT_FALLBACK))
4514 return ret;
a1dd450b 4515 } else {
82b0f8c3 4516 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4517 return 0;
1f1d06c3 4518 }
71e3aac0
AA
4519 }
4520 }
4521
82b0f8c3 4522 return handle_pte_fault(&vmf);
1da177e4
LT
4523}
4524
bce617ed
PX
4525/**
4526 * mm_account_fault - Do page fault accountings
4527 *
4528 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4529 * of perf event counters, but we'll still do the per-task accounting to
4530 * the task who triggered this page fault.
4531 * @address: the faulted address.
4532 * @flags: the fault flags.
4533 * @ret: the fault retcode.
4534 *
4535 * This will take care of most of the page fault accountings. Meanwhile, it
4536 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4537 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4538 * still be in per-arch page fault handlers at the entry of page fault.
4539 */
4540static inline void mm_account_fault(struct pt_regs *regs,
4541 unsigned long address, unsigned int flags,
4542 vm_fault_t ret)
4543{
4544 bool major;
4545
4546 /*
4547 * We don't do accounting for some specific faults:
4548 *
4549 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4550 * includes arch_vma_access_permitted() failing before reaching here.
4551 * So this is not a "this many hardware page faults" counter. We
4552 * should use the hw profiling for that.
4553 *
4554 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4555 * once they're completed.
4556 */
4557 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4558 return;
4559
4560 /*
4561 * We define the fault as a major fault when the final successful fault
4562 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4563 * handle it immediately previously).
4564 */
4565 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4566
a2beb5f1
PX
4567 if (major)
4568 current->maj_flt++;
4569 else
4570 current->min_flt++;
4571
bce617ed 4572 /*
a2beb5f1
PX
4573 * If the fault is done for GUP, regs will be NULL. We only do the
4574 * accounting for the per thread fault counters who triggered the
4575 * fault, and we skip the perf event updates.
bce617ed
PX
4576 */
4577 if (!regs)
4578 return;
4579
a2beb5f1 4580 if (major)
bce617ed 4581 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4582 else
bce617ed 4583 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4584}
4585
9a95f3cf
PC
4586/*
4587 * By the time we get here, we already hold the mm semaphore
4588 *
c1e8d7c6 4589 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4590 * return value. See filemap_fault() and __lock_page_or_retry().
4591 */
2b740303 4592vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4593 unsigned int flags, struct pt_regs *regs)
519e5247 4594{
2b740303 4595 vm_fault_t ret;
519e5247
JW
4596
4597 __set_current_state(TASK_RUNNING);
4598
4599 count_vm_event(PGFAULT);
2262185c 4600 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4601
4602 /* do counter updates before entering really critical section. */
4603 check_sync_rss_stat(current);
4604
de0c799b
LD
4605 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4606 flags & FAULT_FLAG_INSTRUCTION,
4607 flags & FAULT_FLAG_REMOTE))
4608 return VM_FAULT_SIGSEGV;
4609
519e5247
JW
4610 /*
4611 * Enable the memcg OOM handling for faults triggered in user
4612 * space. Kernel faults are handled more gracefully.
4613 */
4614 if (flags & FAULT_FLAG_USER)
29ef680a 4615 mem_cgroup_enter_user_fault();
519e5247 4616
bae473a4
KS
4617 if (unlikely(is_vm_hugetlb_page(vma)))
4618 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4619 else
4620 ret = __handle_mm_fault(vma, address, flags);
519e5247 4621
49426420 4622 if (flags & FAULT_FLAG_USER) {
29ef680a 4623 mem_cgroup_exit_user_fault();
166f61b9
TH
4624 /*
4625 * The task may have entered a memcg OOM situation but
4626 * if the allocation error was handled gracefully (no
4627 * VM_FAULT_OOM), there is no need to kill anything.
4628 * Just clean up the OOM state peacefully.
4629 */
4630 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4631 mem_cgroup_oom_synchronize(false);
49426420 4632 }
3812c8c8 4633
bce617ed
PX
4634 mm_account_fault(regs, address, flags, ret);
4635
519e5247
JW
4636 return ret;
4637}
e1d6d01a 4638EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4639
90eceff1
KS
4640#ifndef __PAGETABLE_P4D_FOLDED
4641/*
4642 * Allocate p4d page table.
4643 * We've already handled the fast-path in-line.
4644 */
4645int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4646{
4647 p4d_t *new = p4d_alloc_one(mm, address);
4648 if (!new)
4649 return -ENOMEM;
4650
4651 smp_wmb(); /* See comment in __pte_alloc */
4652
4653 spin_lock(&mm->page_table_lock);
4654 if (pgd_present(*pgd)) /* Another has populated it */
4655 p4d_free(mm, new);
4656 else
4657 pgd_populate(mm, pgd, new);
4658 spin_unlock(&mm->page_table_lock);
4659 return 0;
4660}
4661#endif /* __PAGETABLE_P4D_FOLDED */
4662
1da177e4
LT
4663#ifndef __PAGETABLE_PUD_FOLDED
4664/*
4665 * Allocate page upper directory.
872fec16 4666 * We've already handled the fast-path in-line.
1da177e4 4667 */
c2febafc 4668int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4669{
c74df32c
HD
4670 pud_t *new = pud_alloc_one(mm, address);
4671 if (!new)
1bb3630e 4672 return -ENOMEM;
1da177e4 4673
362a61ad
NP
4674 smp_wmb(); /* See comment in __pte_alloc */
4675
872fec16 4676 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4677 if (!p4d_present(*p4d)) {
4678 mm_inc_nr_puds(mm);
c2febafc 4679 p4d_populate(mm, p4d, new);
b4e98d9a 4680 } else /* Another has populated it */
5e541973 4681 pud_free(mm, new);
c74df32c 4682 spin_unlock(&mm->page_table_lock);
1bb3630e 4683 return 0;
1da177e4
LT
4684}
4685#endif /* __PAGETABLE_PUD_FOLDED */
4686
4687#ifndef __PAGETABLE_PMD_FOLDED
4688/*
4689 * Allocate page middle directory.
872fec16 4690 * We've already handled the fast-path in-line.
1da177e4 4691 */
1bb3630e 4692int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4693{
a00cc7d9 4694 spinlock_t *ptl;
c74df32c
HD
4695 pmd_t *new = pmd_alloc_one(mm, address);
4696 if (!new)
1bb3630e 4697 return -ENOMEM;
1da177e4 4698
362a61ad
NP
4699 smp_wmb(); /* See comment in __pte_alloc */
4700
a00cc7d9 4701 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4702 if (!pud_present(*pud)) {
4703 mm_inc_nr_pmds(mm);
1bb3630e 4704 pud_populate(mm, pud, new);
dc6c9a35 4705 } else /* Another has populated it */
5e541973 4706 pmd_free(mm, new);
a00cc7d9 4707 spin_unlock(ptl);
1bb3630e 4708 return 0;
e0f39591 4709}
1da177e4
LT
4710#endif /* __PAGETABLE_PMD_FOLDED */
4711
ff5c19ed
CH
4712int follow_pte(struct mm_struct *mm, unsigned long address,
4713 struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
4714 spinlock_t **ptlp)
f8ad0f49
JW
4715{
4716 pgd_t *pgd;
c2febafc 4717 p4d_t *p4d;
f8ad0f49
JW
4718 pud_t *pud;
4719 pmd_t *pmd;
4720 pte_t *ptep;
4721
4722 pgd = pgd_offset(mm, address);
4723 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4724 goto out;
4725
c2febafc
KS
4726 p4d = p4d_offset(pgd, address);
4727 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4728 goto out;
4729
4730 pud = pud_offset(p4d, address);
f8ad0f49
JW
4731 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4732 goto out;
4733
4734 pmd = pmd_offset(pud, address);
f66055ab 4735 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4736
09796395
RZ
4737 if (pmd_huge(*pmd)) {
4738 if (!pmdpp)
4739 goto out;
4740
ac46d4f3 4741 if (range) {
7269f999 4742 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4743 NULL, mm, address & PMD_MASK,
4744 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4745 mmu_notifier_invalidate_range_start(range);
a4d1a885 4746 }
09796395
RZ
4747 *ptlp = pmd_lock(mm, pmd);
4748 if (pmd_huge(*pmd)) {
4749 *pmdpp = pmd;
4750 return 0;
4751 }
4752 spin_unlock(*ptlp);
ac46d4f3
JG
4753 if (range)
4754 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4755 }
4756
4757 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4758 goto out;
4759
ac46d4f3 4760 if (range) {
7269f999 4761 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4762 address & PAGE_MASK,
4763 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4764 mmu_notifier_invalidate_range_start(range);
a4d1a885 4765 }
f8ad0f49 4766 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4767 if (!pte_present(*ptep))
4768 goto unlock;
4769 *ptepp = ptep;
4770 return 0;
4771unlock:
4772 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4773 if (range)
4774 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4775out:
4776 return -EINVAL;
4777}
4778
3b6748e2
JW
4779/**
4780 * follow_pfn - look up PFN at a user virtual address
4781 * @vma: memory mapping
4782 * @address: user virtual address
4783 * @pfn: location to store found PFN
4784 *
4785 * Only IO mappings and raw PFN mappings are allowed.
4786 *
a862f68a 4787 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4788 */
4789int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4790 unsigned long *pfn)
4791{
4792 int ret = -EINVAL;
4793 spinlock_t *ptl;
4794 pte_t *ptep;
4795
4796 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4797 return ret;
4798
ff5c19ed 4799 ret = follow_pte(vma->vm_mm, address, NULL, &ptep, NULL, &ptl);
3b6748e2
JW
4800 if (ret)
4801 return ret;
4802 *pfn = pte_pfn(*ptep);
4803 pte_unmap_unlock(ptep, ptl);
4804 return 0;
4805}
4806EXPORT_SYMBOL(follow_pfn);
4807
28b2ee20 4808#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4809int follow_phys(struct vm_area_struct *vma,
4810 unsigned long address, unsigned int flags,
4811 unsigned long *prot, resource_size_t *phys)
28b2ee20 4812{
03668a4d 4813 int ret = -EINVAL;
28b2ee20
RR
4814 pte_t *ptep, pte;
4815 spinlock_t *ptl;
28b2ee20 4816
d87fe660 4817 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4818 goto out;
28b2ee20 4819
ff5c19ed 4820 if (follow_pte(vma->vm_mm, address, NULL, &ptep, NULL, &ptl))
d87fe660 4821 goto out;
28b2ee20 4822 pte = *ptep;
03668a4d 4823
f6f37321 4824 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4825 goto unlock;
28b2ee20
RR
4826
4827 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4828 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4829
03668a4d 4830 ret = 0;
28b2ee20
RR
4831unlock:
4832 pte_unmap_unlock(ptep, ptl);
4833out:
d87fe660 4834 return ret;
28b2ee20
RR
4835}
4836
4837int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4838 void *buf, int len, int write)
4839{
4840 resource_size_t phys_addr;
4841 unsigned long prot = 0;
2bc7273b 4842 void __iomem *maddr;
28b2ee20
RR
4843 int offset = addr & (PAGE_SIZE-1);
4844
d87fe660 4845 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4846 return -EINVAL;
4847
9cb12d7b 4848 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4849 if (!maddr)
4850 return -ENOMEM;
4851
28b2ee20
RR
4852 if (write)
4853 memcpy_toio(maddr + offset, buf, len);
4854 else
4855 memcpy_fromio(buf, maddr + offset, len);
4856 iounmap(maddr);
4857
4858 return len;
4859}
5a73633e 4860EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4861#endif
4862
0ec76a11 4863/*
d3f5ffca 4864 * Access another process' address space as given in mm.
0ec76a11 4865 */
d3f5ffca
JH
4866int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4867 int len, unsigned int gup_flags)
0ec76a11 4868{
0ec76a11 4869 struct vm_area_struct *vma;
0ec76a11 4870 void *old_buf = buf;
442486ec 4871 int write = gup_flags & FOLL_WRITE;
0ec76a11 4872
d8ed45c5 4873 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4874 return 0;
4875
183ff22b 4876 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4877 while (len) {
4878 int bytes, ret, offset;
4879 void *maddr;
28b2ee20 4880 struct page *page = NULL;
0ec76a11 4881
64019a2e 4882 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4883 gup_flags, &page, &vma, NULL);
28b2ee20 4884 if (ret <= 0) {
dbffcd03
RR
4885#ifndef CONFIG_HAVE_IOREMAP_PROT
4886 break;
4887#else
28b2ee20
RR
4888 /*
4889 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4890 * we can access using slightly different code.
4891 */
28b2ee20 4892 vma = find_vma(mm, addr);
fe936dfc 4893 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4894 break;
4895 if (vma->vm_ops && vma->vm_ops->access)
4896 ret = vma->vm_ops->access(vma, addr, buf,
4897 len, write);
4898 if (ret <= 0)
28b2ee20
RR
4899 break;
4900 bytes = ret;
dbffcd03 4901#endif
0ec76a11 4902 } else {
28b2ee20
RR
4903 bytes = len;
4904 offset = addr & (PAGE_SIZE-1);
4905 if (bytes > PAGE_SIZE-offset)
4906 bytes = PAGE_SIZE-offset;
4907
4908 maddr = kmap(page);
4909 if (write) {
4910 copy_to_user_page(vma, page, addr,
4911 maddr + offset, buf, bytes);
4912 set_page_dirty_lock(page);
4913 } else {
4914 copy_from_user_page(vma, page, addr,
4915 buf, maddr + offset, bytes);
4916 }
4917 kunmap(page);
09cbfeaf 4918 put_page(page);
0ec76a11 4919 }
0ec76a11
DH
4920 len -= bytes;
4921 buf += bytes;
4922 addr += bytes;
4923 }
d8ed45c5 4924 mmap_read_unlock(mm);
0ec76a11
DH
4925
4926 return buf - old_buf;
4927}
03252919 4928
5ddd36b9 4929/**
ae91dbfc 4930 * access_remote_vm - access another process' address space
5ddd36b9
SW
4931 * @mm: the mm_struct of the target address space
4932 * @addr: start address to access
4933 * @buf: source or destination buffer
4934 * @len: number of bytes to transfer
6347e8d5 4935 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4936 *
4937 * The caller must hold a reference on @mm.
a862f68a
MR
4938 *
4939 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4940 */
4941int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4942 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4943{
d3f5ffca 4944 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4945}
4946
206cb636
SW
4947/*
4948 * Access another process' address space.
4949 * Source/target buffer must be kernel space,
4950 * Do not walk the page table directly, use get_user_pages
4951 */
4952int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4953 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4954{
4955 struct mm_struct *mm;
4956 int ret;
4957
4958 mm = get_task_mm(tsk);
4959 if (!mm)
4960 return 0;
4961
d3f5ffca 4962 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 4963
206cb636
SW
4964 mmput(mm);
4965
4966 return ret;
4967}
fcd35857 4968EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4969
03252919
AK
4970/*
4971 * Print the name of a VMA.
4972 */
4973void print_vma_addr(char *prefix, unsigned long ip)
4974{
4975 struct mm_struct *mm = current->mm;
4976 struct vm_area_struct *vma;
4977
e8bff74a 4978 /*
0a7f682d 4979 * we might be running from an atomic context so we cannot sleep
e8bff74a 4980 */
d8ed45c5 4981 if (!mmap_read_trylock(mm))
e8bff74a
IM
4982 return;
4983
03252919
AK
4984 vma = find_vma(mm, ip);
4985 if (vma && vma->vm_file) {
4986 struct file *f = vma->vm_file;
0a7f682d 4987 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4988 if (buf) {
2fbc57c5 4989 char *p;
03252919 4990
9bf39ab2 4991 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4992 if (IS_ERR(p))
4993 p = "?";
2fbc57c5 4994 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4995 vma->vm_start,
4996 vma->vm_end - vma->vm_start);
4997 free_page((unsigned long)buf);
4998 }
4999 }
d8ed45c5 5000 mmap_read_unlock(mm);
03252919 5001}
3ee1afa3 5002
662bbcb2 5003#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5004void __might_fault(const char *file, int line)
3ee1afa3 5005{
95156f00
PZ
5006 /*
5007 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5008 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5009 * get paged out, therefore we'll never actually fault, and the
5010 * below annotations will generate false positives.
5011 */
db68ce10 5012 if (uaccess_kernel())
95156f00 5013 return;
9ec23531 5014 if (pagefault_disabled())
662bbcb2 5015 return;
9ec23531
DH
5016 __might_sleep(file, line, 0);
5017#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5018 if (current->mm)
da1c55f1 5019 might_lock_read(&current->mm->mmap_lock);
9ec23531 5020#endif
3ee1afa3 5021}
9ec23531 5022EXPORT_SYMBOL(__might_fault);
3ee1afa3 5023#endif
47ad8475
AA
5024
5025#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5026/*
5027 * Process all subpages of the specified huge page with the specified
5028 * operation. The target subpage will be processed last to keep its
5029 * cache lines hot.
5030 */
5031static inline void process_huge_page(
5032 unsigned long addr_hint, unsigned int pages_per_huge_page,
5033 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5034 void *arg)
47ad8475 5035{
c79b57e4
HY
5036 int i, n, base, l;
5037 unsigned long addr = addr_hint &
5038 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5039
c6ddfb6c 5040 /* Process target subpage last to keep its cache lines hot */
47ad8475 5041 might_sleep();
c79b57e4
HY
5042 n = (addr_hint - addr) / PAGE_SIZE;
5043 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5044 /* If target subpage in first half of huge page */
c79b57e4
HY
5045 base = 0;
5046 l = n;
c6ddfb6c 5047 /* Process subpages at the end of huge page */
c79b57e4
HY
5048 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5049 cond_resched();
c6ddfb6c 5050 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5051 }
5052 } else {
c6ddfb6c 5053 /* If target subpage in second half of huge page */
c79b57e4
HY
5054 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5055 l = pages_per_huge_page - n;
c6ddfb6c 5056 /* Process subpages at the begin of huge page */
c79b57e4
HY
5057 for (i = 0; i < base; i++) {
5058 cond_resched();
c6ddfb6c 5059 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5060 }
5061 }
5062 /*
c6ddfb6c
HY
5063 * Process remaining subpages in left-right-left-right pattern
5064 * towards the target subpage
c79b57e4
HY
5065 */
5066 for (i = 0; i < l; i++) {
5067 int left_idx = base + i;
5068 int right_idx = base + 2 * l - 1 - i;
5069
5070 cond_resched();
c6ddfb6c 5071 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5072 cond_resched();
c6ddfb6c 5073 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5074 }
5075}
5076
c6ddfb6c
HY
5077static void clear_gigantic_page(struct page *page,
5078 unsigned long addr,
5079 unsigned int pages_per_huge_page)
5080{
5081 int i;
5082 struct page *p = page;
5083
5084 might_sleep();
5085 for (i = 0; i < pages_per_huge_page;
5086 i++, p = mem_map_next(p, page, i)) {
5087 cond_resched();
5088 clear_user_highpage(p, addr + i * PAGE_SIZE);
5089 }
5090}
5091
5092static void clear_subpage(unsigned long addr, int idx, void *arg)
5093{
5094 struct page *page = arg;
5095
5096 clear_user_highpage(page + idx, addr);
5097}
5098
5099void clear_huge_page(struct page *page,
5100 unsigned long addr_hint, unsigned int pages_per_huge_page)
5101{
5102 unsigned long addr = addr_hint &
5103 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5104
5105 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5106 clear_gigantic_page(page, addr, pages_per_huge_page);
5107 return;
5108 }
5109
5110 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5111}
5112
47ad8475
AA
5113static void copy_user_gigantic_page(struct page *dst, struct page *src,
5114 unsigned long addr,
5115 struct vm_area_struct *vma,
5116 unsigned int pages_per_huge_page)
5117{
5118 int i;
5119 struct page *dst_base = dst;
5120 struct page *src_base = src;
5121
5122 for (i = 0; i < pages_per_huge_page; ) {
5123 cond_resched();
5124 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5125
5126 i++;
5127 dst = mem_map_next(dst, dst_base, i);
5128 src = mem_map_next(src, src_base, i);
5129 }
5130}
5131
c9f4cd71
HY
5132struct copy_subpage_arg {
5133 struct page *dst;
5134 struct page *src;
5135 struct vm_area_struct *vma;
5136};
5137
5138static void copy_subpage(unsigned long addr, int idx, void *arg)
5139{
5140 struct copy_subpage_arg *copy_arg = arg;
5141
5142 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5143 addr, copy_arg->vma);
5144}
5145
47ad8475 5146void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5147 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5148 unsigned int pages_per_huge_page)
5149{
c9f4cd71
HY
5150 unsigned long addr = addr_hint &
5151 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5152 struct copy_subpage_arg arg = {
5153 .dst = dst,
5154 .src = src,
5155 .vma = vma,
5156 };
47ad8475
AA
5157
5158 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5159 copy_user_gigantic_page(dst, src, addr, vma,
5160 pages_per_huge_page);
5161 return;
5162 }
5163
c9f4cd71 5164 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5165}
fa4d75c1
MK
5166
5167long copy_huge_page_from_user(struct page *dst_page,
5168 const void __user *usr_src,
810a56b9
MK
5169 unsigned int pages_per_huge_page,
5170 bool allow_pagefault)
fa4d75c1
MK
5171{
5172 void *src = (void *)usr_src;
5173 void *page_kaddr;
5174 unsigned long i, rc = 0;
5175 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5176
5177 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5178 if (allow_pagefault)
5179 page_kaddr = kmap(dst_page + i);
5180 else
5181 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5182 rc = copy_from_user(page_kaddr,
5183 (const void __user *)(src + i * PAGE_SIZE),
5184 PAGE_SIZE);
810a56b9
MK
5185 if (allow_pagefault)
5186 kunmap(dst_page + i);
5187 else
5188 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5189
5190 ret_val -= (PAGE_SIZE - rc);
5191 if (rc)
5192 break;
5193
5194 cond_resched();
5195 }
5196 return ret_val;
5197}
47ad8475 5198#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5199
40b64acd 5200#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5201
5202static struct kmem_cache *page_ptl_cachep;
5203
5204void __init ptlock_cache_init(void)
5205{
5206 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5207 SLAB_PANIC, NULL);
5208}
5209
539edb58 5210bool ptlock_alloc(struct page *page)
49076ec2
KS
5211{
5212 spinlock_t *ptl;
5213
b35f1819 5214 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5215 if (!ptl)
5216 return false;
539edb58 5217 page->ptl = ptl;
49076ec2
KS
5218 return true;
5219}
5220
539edb58 5221void ptlock_free(struct page *page)
49076ec2 5222{
b35f1819 5223 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5224}
5225#endif