mm: simplify and improve print_vma_addr() output
[linux-2.6-block.git] / mm / memory.c
CommitLineData
d61ea1cb 1
457c8996 2// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
36090def 45#include <linux/mm_inline.h>
6e84f315 46#include <linux/sched/mm.h>
f7ccbae4 47#include <linux/sched/coredump.h>
6a3827d7 48#include <linux/sched/numa_balancing.h>
29930025 49#include <linux/sched/task.h>
1da177e4
LT
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
5042db43 55#include <linux/memremap.h>
b073d7f8 56#include <linux/kmsan.h>
9a840895 57#include <linux/ksm.h>
1da177e4 58#include <linux/rmap.h>
b95f1b31 59#include <linux/export.h>
0ff92245 60#include <linux/delayacct.h>
1da177e4 61#include <linux/init.h>
01c8f1c4 62#include <linux/pfn_t.h>
edc79b2a 63#include <linux/writeback.h>
8a9f3ccd 64#include <linux/memcontrol.h>
cddb8a5c 65#include <linux/mmu_notifier.h>
3dc14741
HD
66#include <linux/swapops.h>
67#include <linux/elf.h>
5a0e3ad6 68#include <linux/gfp.h>
4daae3b4 69#include <linux/migrate.h>
2fbc57c5 70#include <linux/string.h>
467b171a 71#include <linux/memory-tiers.h>
1592eef0 72#include <linux/debugfs.h>
6b251fc9 73#include <linux/userfaultfd_k.h>
bc2466e4 74#include <linux/dax.h>
6b31d595 75#include <linux/oom.h>
98fa15f3 76#include <linux/numa.h>
bce617ed
PX
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
e80d3909 79#include <linux/vmalloc.h>
33024536 80#include <linux/sched/sysctl.h>
1da177e4 81
b3d1411b
JFG
82#include <trace/events/kmem.h>
83
6952b61d 84#include <asm/io.h>
33a709b2 85#include <asm/mmu_context.h>
1da177e4 86#include <asm/pgalloc.h>
7c0f6ba6 87#include <linux/uaccess.h>
1da177e4
LT
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
1da177e4 90
e80d3909 91#include "pgalloc-track.h"
42b77728 92#include "internal.h"
014bb1de 93#include "swap.h"
42b77728 94
af27d940 95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
97#endif
98
a9ee6cf5 99#ifndef CONFIG_NUMA
1da177e4 100unsigned long max_mapnr;
1da177e4 101EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
102
103struct page *mem_map;
1da177e4
LT
104EXPORT_SYMBOL(mem_map);
105#endif
106
5c041f5d 107static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
6ed31ba3 115static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
2bad466c 116{
6ed31ba3
KW
117 if (!userfaultfd_wp(vmf->vma))
118 return false;
2bad466c
PX
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return false;
121
122 return pte_marker_uffd_wp(vmf->orig_pte);
123}
5c041f5d 124
1da177e4
LT
125/*
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
e99fb98d 128 * of ZONE_NORMAL.
1da177e4 129 */
166f61b9 130void *high_memory;
1da177e4 131EXPORT_SYMBOL(high_memory);
1da177e4 132
32a93233
IM
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
a62eaf15 145
46bdb427
WD
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
a62eaf15
AK
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
9b41046c 161 return 1;
a62eaf15
AK
162}
163__setup("norandmaps", disable_randmaps);
164
62eede62 165unsigned long zero_pfn __read_mostly;
0b70068e
AB
166EXPORT_SYMBOL(zero_pfn);
167
166f61b9
TH
168unsigned long highest_memmap_pfn __read_mostly;
169
a13ea5b7
HD
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
e720e7d0 178early_initcall(init_zero_pfn);
a62eaf15 179
f1a79412 180void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 181{
f1a79412 182 trace_rss_stat(mm, member);
b3d1411b 183}
d559db08 184
1da177e4
LT
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
9e1b32ca
BH
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
1da177e4 191{
2f569afd 192 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 193 pmd_clear(pmd);
9e1b32ca 194 pte_free_tlb(tlb, token, addr);
c4812909 195 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
196}
197
e0da382c
HD
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
1da177e4
LT
201{
202 pmd_t *pmd;
203 unsigned long next;
e0da382c 204 unsigned long start;
1da177e4 205
e0da382c 206 start = addr;
1da177e4 207 pmd = pmd_offset(pud, addr);
1da177e4
LT
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
9e1b32ca 212 free_pte_range(tlb, pmd, addr);
1da177e4
LT
213 } while (pmd++, addr = next, addr != end);
214
e0da382c
HD
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
1da177e4 222 }
e0da382c
HD
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
9e1b32ca 228 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 229 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
230}
231
c2febafc 232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pud_t *pud;
237 unsigned long next;
e0da382c 238 unsigned long start;
1da177e4 239
e0da382c 240 start = addr;
c2febafc 241 pud = pud_offset(p4d, addr);
1da177e4
LT
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
e0da382c 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
247 } while (pud++, addr = next, addr != end);
248
c2febafc
KS
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
b4e98d9a 263 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
c2febafc 294 p4d = p4d_offset(pgd, start);
e0da382c 295 pgd_clear(pgd);
c2febafc 296 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
297}
298
299/*
e0da382c 300 * This function frees user-level page tables of a process.
1da177e4 301 */
42b77728 302void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
1da177e4
LT
305{
306 pgd_t *pgd;
307 unsigned long next;
e0da382c
HD
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
1da177e4 334
e0da382c
HD
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
07e32661
AK
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
ed6a7935 354 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 355 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
c2febafc 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 361 } while (pgd++, addr = next, addr != end);
e0da382c
HD
362}
363
fd892593 364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 365 struct vm_area_struct *vma, unsigned long floor,
98e51a22 366 unsigned long ceiling, bool mm_wr_locked)
e0da382c 367{
763ecb03 368 do {
e0da382c 369 unsigned long addr = vma->vm_start;
763ecb03
LH
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
fd892593 376 next = mas_find(mas, ceiling - 1);
d2406291
PZ
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
e0da382c 379
8f4f8c16 380 /*
25d9e2d1 381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
8f4f8c16 383 */
98e51a22
SB
384 if (mm_wr_locked)
385 vma_start_write(vma);
5beb4930 386 unlink_anon_vmas(vma);
8f4f8c16
HD
387 unlink_file_vma(vma);
388
9da61aef 389 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 391 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
392 } else {
393 /*
394 * Optimization: gather nearby vmas into one call down
395 */
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 397 && !is_vm_hugetlb_page(next)) {
3bf5ee95 398 vma = next;
fd892593 399 next = mas_find(mas, ceiling - 1);
d2406291
PZ
400 if (unlikely(xa_is_zero(next)))
401 next = NULL;
98e51a22
SB
402 if (mm_wr_locked)
403 vma_start_write(vma);
5beb4930 404 unlink_anon_vmas(vma);
8f4f8c16 405 unlink_file_vma(vma);
3bf5ee95
HD
406 }
407 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 408 floor, next ? next->vm_start : ceiling);
3bf5ee95 409 }
e0da382c 410 vma = next;
763ecb03 411 } while (vma);
1da177e4
LT
412}
413
03c4f204 414void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 415{
03c4f204 416 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 417
8ac1f832 418 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 419 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
420 /*
421 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 * visible before the pte is made visible to other CPUs by being
423 * put into page tables.
424 *
425 * The other side of the story is the pointer chasing in the page
426 * table walking code (when walking the page table without locking;
427 * ie. most of the time). Fortunately, these data accesses consist
428 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 * being the notable exception) will already guarantee loads are
430 * seen in-order. See the alpha page table accessors for the
431 * smp_rmb() barriers in page table walking code.
432 */
433 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
434 pmd_populate(mm, pmd, *pte);
435 *pte = NULL;
4b471e88 436 }
c4088ebd 437 spin_unlock(ptl);
03c4f204
QZ
438}
439
4cf58924 440int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 441{
4cf58924 442 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
443 if (!new)
444 return -ENOMEM;
445
03c4f204 446 pmd_install(mm, pmd, &new);
2f569afd
MS
447 if (new)
448 pte_free(mm, new);
1bb3630e 449 return 0;
1da177e4
LT
450}
451
4cf58924 452int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 453{
4cf58924 454 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
455 if (!new)
456 return -ENOMEM;
457
458 spin_lock(&init_mm.page_table_lock);
8ac1f832 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 460 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 461 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
1bb3630e 464 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
465 if (new)
466 pte_free_kernel(&init_mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
d559db08
KH
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 476{
d559db08
KH
477 int i;
478
479 for (i = 0; i < NR_MM_COUNTERS; i++)
480 if (rss[i])
481 add_mm_counter(mm, i, rss[i]);
ae859762
HD
482}
483
b5810039 484/*
6aab341e
LT
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
b5810039
NP
488 *
489 * The calling function must still handle the error.
490 */
3dc14741
HD
491static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
b5810039 493{
3dc14741 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
499 pgoff_t index;
d936cf9b
HD
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
503
504 /*
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
507 */
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
510 nr_unshown++;
511 return;
512 }
513 if (nr_unshown) {
1170532b
JP
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 nr_unshown);
d936cf9b
HD
516 nr_unshown = 0;
517 }
518 nr_shown = 0;
519 }
520 if (nr_shown++ == 0)
521 resume = jiffies + 60 * HZ;
3dc14741
HD
522
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
525
1170532b
JP
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 current->comm,
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 529 if (page)
f0b791a3 530 dump_page(page, "bad pte");
6aa9b8b2 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
534 vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 537 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 538 dump_stack();
373d4d09 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
540}
541
ee498ed7 542/*
7e675137 543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 544 *
7e675137
NP
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 548 *
7e675137
NP
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
552 * described below.
553 *
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 557 *
b379d790
JH
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
6aab341e
LT
562 *
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 *
7e675137
NP
565 * And for normal mappings this is false.
566 *
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
b379d790 571 *
b379d790 572 *
7e675137 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
574 *
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
582 *
ee498ed7 583 */
25b2995a
CH
584struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 pte_t pte)
ee498ed7 586{
22b31eec 587 unsigned long pfn = pte_pfn(pte);
7e675137 588
00b3a331 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 590 if (likely(!pte_special(pte)))
22b31eec 591 goto check_pfn;
667a0a06
DV
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 return NULL;
df6ad698
JG
596 if (is_zero_pfn(pfn))
597 return NULL;
e1fb4a08 598 if (pte_devmap(pte))
3218f871
AS
599 /*
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 */
e1fb4a08
DJ
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
318e9342
VMO
647struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte)
649{
650 struct page *page = vm_normal_page(vma, addr, pte);
651
652 if (page)
653 return page_folio(page);
654 return NULL;
655}
656
28093f9f
GS
657#ifdef CONFIG_TRANSPARENT_HUGEPAGE
658struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 pmd_t pmd)
660{
661 unsigned long pfn = pmd_pfn(pmd);
662
663 /*
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
667 */
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
670 if (!pfn_valid(pfn))
671 return NULL;
672 goto out;
673 } else {
674 unsigned long off;
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
677 return NULL;
678 if (!is_cow_mapping(vma->vm_flags))
679 return NULL;
680 }
681 }
682
e1fb4a08
DJ
683 if (pmd_devmap(pmd))
684 return NULL;
3cde287b 685 if (is_huge_zero_pmd(pmd))
28093f9f
GS
686 return NULL;
687 if (unlikely(pfn > highest_memmap_pfn))
688 return NULL;
689
690 /*
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
693 */
694out:
695 return pfn_to_page(pfn);
696}
65610453
KW
697
698struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 unsigned long addr, pmd_t pmd)
700{
701 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702
703 if (page)
704 return page_folio(page);
705 return NULL;
706}
28093f9f
GS
707#endif
708
b756a3b5
AP
709static void restore_exclusive_pte(struct vm_area_struct *vma,
710 struct page *page, unsigned long address,
711 pte_t *ptep)
712{
b832a354 713 struct folio *folio = page_folio(page);
c33c7948 714 pte_t orig_pte;
b756a3b5
AP
715 pte_t pte;
716 swp_entry_t entry;
717
c33c7948 718 orig_pte = ptep_get(ptep);
b756a3b5 719 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 720 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
721 pte = pte_mksoft_dirty(pte);
722
c33c7948
RR
723 entry = pte_to_swp_entry(orig_pte);
724 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
725 pte = pte_mkuffd_wp(pte);
726 else if (is_writable_device_exclusive_entry(entry))
727 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
728
b832a354
DH
729 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
730 PageAnonExclusive(page)), folio);
6c287605 731
b756a3b5
AP
732 /*
733 * No need to take a page reference as one was already
734 * created when the swap entry was made.
735 */
b832a354
DH
736 if (folio_test_anon(folio))
737 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
b756a3b5
AP
738 else
739 /*
740 * Currently device exclusive access only supports anonymous
741 * memory so the entry shouldn't point to a filebacked page.
742 */
4d8ff640 743 WARN_ON_ONCE(1);
b756a3b5 744
1eba86c0
PT
745 set_pte_at(vma->vm_mm, address, ptep, pte);
746
b756a3b5
AP
747 /*
748 * No need to invalidate - it was non-present before. However
749 * secondary CPUs may have mappings that need invalidating.
750 */
751 update_mmu_cache(vma, address, ptep);
752}
753
754/*
755 * Tries to restore an exclusive pte if the page lock can be acquired without
756 * sleeping.
757 */
758static int
759try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
760 unsigned long addr)
761{
c33c7948 762 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
763 struct page *page = pfn_swap_entry_to_page(entry);
764
765 if (trylock_page(page)) {
766 restore_exclusive_pte(vma, page, addr, src_pte);
767 unlock_page(page);
768 return 0;
769 }
770
771 return -EBUSY;
772}
773
1da177e4
LT
774/*
775 * copy one vm_area from one task to the other. Assumes the page tables
776 * already present in the new task to be cleared in the whole range
777 * covered by this vma.
1da177e4
LT
778 */
779
df3a57d1
LT
780static unsigned long
781copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
782 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
783 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 784{
8f34f1ea 785 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
786 pte_t orig_pte = ptep_get(src_pte);
787 pte_t pte = orig_pte;
08e7795e 788 struct folio *folio;
1da177e4 789 struct page *page;
c33c7948 790 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
791
792 if (likely(!non_swap_entry(entry))) {
793 if (swap_duplicate(entry) < 0)
9a5cc85c 794 return -EIO;
df3a57d1
LT
795
796 /* make sure dst_mm is on swapoff's mmlist. */
797 if (unlikely(list_empty(&dst_mm->mmlist))) {
798 spin_lock(&mmlist_lock);
799 if (list_empty(&dst_mm->mmlist))
800 list_add(&dst_mm->mmlist,
801 &src_mm->mmlist);
802 spin_unlock(&mmlist_lock);
803 }
1493a191 804 /* Mark the swap entry as shared. */
c33c7948
RR
805 if (pte_swp_exclusive(orig_pte)) {
806 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
807 set_pte_at(src_mm, addr, src_pte, pte);
808 }
df3a57d1
LT
809 rss[MM_SWAPENTS]++;
810 } else if (is_migration_entry(entry)) {
530c2a0d 811 folio = pfn_swap_entry_folio(entry);
1da177e4 812
a23f517b 813 rss[mm_counter(folio)]++;
5042db43 814
6c287605 815 if (!is_readable_migration_entry(entry) &&
df3a57d1 816 is_cow_mapping(vm_flags)) {
5042db43 817 /*
6c287605
DH
818 * COW mappings require pages in both parent and child
819 * to be set to read. A previously exclusive entry is
820 * now shared.
5042db43 821 */
4dd845b5
AP
822 entry = make_readable_migration_entry(
823 swp_offset(entry));
df3a57d1 824 pte = swp_entry_to_pte(entry);
c33c7948 825 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 826 pte = pte_swp_mksoft_dirty(pte);
c33c7948 827 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
828 pte = pte_swp_mkuffd_wp(pte);
829 set_pte_at(src_mm, addr, src_pte, pte);
830 }
831 } else if (is_device_private_entry(entry)) {
af5cdaf8 832 page = pfn_swap_entry_to_page(entry);
08e7795e 833 folio = page_folio(page);
5042db43 834
df3a57d1
LT
835 /*
836 * Update rss count even for unaddressable pages, as
837 * they should treated just like normal pages in this
838 * respect.
839 *
840 * We will likely want to have some new rss counters
841 * for unaddressable pages, at some point. But for now
842 * keep things as they are.
843 */
08e7795e 844 folio_get(folio);
a23f517b 845 rss[mm_counter(folio)]++;
fb3d824d 846 /* Cannot fail as these pages cannot get pinned. */
08e7795e 847 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
df3a57d1
LT
848
849 /*
850 * We do not preserve soft-dirty information, because so
851 * far, checkpoint/restore is the only feature that
852 * requires that. And checkpoint/restore does not work
853 * when a device driver is involved (you cannot easily
854 * save and restore device driver state).
855 */
4dd845b5 856 if (is_writable_device_private_entry(entry) &&
df3a57d1 857 is_cow_mapping(vm_flags)) {
4dd845b5
AP
858 entry = make_readable_device_private_entry(
859 swp_offset(entry));
df3a57d1 860 pte = swp_entry_to_pte(entry);
c33c7948 861 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
862 pte = pte_swp_mkuffd_wp(pte);
863 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 864 }
b756a3b5
AP
865 } else if (is_device_exclusive_entry(entry)) {
866 /*
867 * Make device exclusive entries present by restoring the
868 * original entry then copying as for a present pte. Device
869 * exclusive entries currently only support private writable
870 * (ie. COW) mappings.
871 */
872 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
873 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
874 return -EBUSY;
875 return -ENOENT;
c56d1b62 876 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
877 pte_marker marker = copy_pte_marker(entry, dst_vma);
878
879 if (marker)
880 set_pte_at(dst_mm, addr, dst_pte,
881 make_pte_marker(marker));
c56d1b62 882 return 0;
1da177e4 883 }
8f34f1ea
PX
884 if (!userfaultfd_wp(dst_vma))
885 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
886 set_pte_at(dst_mm, addr, dst_pte, pte);
887 return 0;
888}
889
70e806e4 890/*
b51ad4f8 891 * Copy a present and normal page.
70e806e4 892 *
b51ad4f8
DH
893 * NOTE! The usual case is that this isn't required;
894 * instead, the caller can just increase the page refcount
895 * and re-use the pte the traditional way.
70e806e4
PX
896 *
897 * And if we need a pre-allocated page but don't yet have
898 * one, return a negative error to let the preallocation
899 * code know so that it can do so outside the page table
900 * lock.
901 */
902static inline int
c78f4636
PX
903copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
904 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 905 struct folio **prealloc, struct page *page)
70e806e4 906{
edf50470 907 struct folio *new_folio;
b51ad4f8 908 pte_t pte;
70e806e4 909
edf50470
MWO
910 new_folio = *prealloc;
911 if (!new_folio)
70e806e4
PX
912 return -EAGAIN;
913
914 /*
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
917 */
918 *prealloc = NULL;
edf50470
MWO
919 copy_user_highpage(&new_folio->page, page, addr, src_vma);
920 __folio_mark_uptodate(new_folio);
921 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
922 folio_add_lru_vma(new_folio, dst_vma);
923 rss[MM_ANONPAGES]++;
70e806e4
PX
924
925 /* All done, just insert the new page copy in the child */
edf50470 926 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 928 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 929 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 930 pte = pte_mkuffd_wp(pte);
c78f4636 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
932 return 0;
933}
934
f8d93776 935static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
23ed1908 936 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
f8d93776 937 pte_t pte, unsigned long addr, int nr)
23ed1908
DH
938{
939 struct mm_struct *src_mm = src_vma->vm_mm;
940
941 /* If it's a COW mapping, write protect it both processes. */
942 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
f8d93776 943 wrprotect_ptes(src_mm, addr, src_pte, nr);
23ed1908
DH
944 pte = pte_wrprotect(pte);
945 }
946
947 /* If it's a shared mapping, mark it clean in the child. */
948 if (src_vma->vm_flags & VM_SHARED)
949 pte = pte_mkclean(pte);
950 pte = pte_mkold(pte);
951
952 if (!userfaultfd_wp(dst_vma))
953 pte = pte_clear_uffd_wp(pte);
954
f8d93776
DH
955 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
956}
957
70e806e4 958/*
f8d93776
DH
959 * Copy one present PTE, trying to batch-process subsequent PTEs that map
960 * consecutive pages of the same folio by copying them as well.
961 *
962 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
963 * Otherwise, returns the number of copied PTEs (at least 1).
70e806e4
PX
964 */
965static inline int
f8d93776 966copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
53723298 967 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
f8d93776 968 int max_nr, int *rss, struct folio **prealloc)
df3a57d1 969{
df3a57d1 970 struct page *page;
14ddee41 971 struct folio *folio;
d7c0e5f7 972 bool any_writable;
25365e10 973 fpb_t flags = 0;
f8d93776 974 int err, nr;
df3a57d1 975
c78f4636 976 page = vm_normal_page(src_vma, addr, pte);
23ed1908
DH
977 if (unlikely(!page))
978 goto copy_pte;
979
980 folio = page_folio(page);
f8d93776
DH
981
982 /*
983 * If we likely have to copy, just don't bother with batching. Make
984 * sure that the common "small folio" case is as fast as possible
985 * by keeping the batching logic separate.
986 */
987 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
25365e10
DH
988 if (src_vma->vm_flags & VM_SHARED)
989 flags |= FPB_IGNORE_DIRTY;
990 if (!vma_soft_dirty_enabled(src_vma))
991 flags |= FPB_IGNORE_SOFT_DIRTY;
992
d7c0e5f7 993 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
96ebdb03 994 &any_writable, NULL, NULL);
f8d93776
DH
995 folio_ref_add(folio, nr);
996 if (folio_test_anon(folio)) {
997 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
998 nr, src_vma))) {
999 folio_ref_sub(folio, nr);
1000 return -EAGAIN;
1001 }
1002 rss[MM_ANONPAGES] += nr;
1003 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1004 } else {
1005 folio_dup_file_rmap_ptes(folio, page, nr);
1006 rss[mm_counter_file(folio)] += nr;
1007 }
d7c0e5f7
DH
1008 if (any_writable)
1009 pte = pte_mkwrite(pte, src_vma);
f8d93776
DH
1010 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1011 addr, nr);
1012 return nr;
1013 }
1014
23ed1908
DH
1015 folio_get(folio);
1016 if (folio_test_anon(folio)) {
b51ad4f8
DH
1017 /*
1018 * If this page may have been pinned by the parent process,
1019 * copy the page immediately for the child so that we'll always
1020 * guarantee the pinned page won't be randomly replaced in the
1021 * future.
1022 */
08e7795e 1023 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
14ddee41
MWO
1024 /* Page may be pinned, we have to copy. */
1025 folio_put(folio);
f8d93776
DH
1026 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1027 addr, rss, prealloc, page);
1028 return err ? err : 1;
fb3d824d 1029 }
edf50470 1030 rss[MM_ANONPAGES]++;
23ed1908
DH
1031 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1032 } else {
d8ef5e31 1033 folio_dup_file_rmap_pte(folio, page);
6b27cc6c 1034 rss[mm_counter_file(folio)]++;
70e806e4
PX
1035 }
1036
23ed1908 1037copy_pte:
f8d93776
DH
1038 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1039 return 1;
70e806e4
PX
1040}
1041
294de6d8
KW
1042static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1043 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
70e806e4 1044{
edf50470 1045 struct folio *new_folio;
70e806e4 1046
294de6d8
KW
1047 if (need_zero)
1048 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1049 else
1050 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1051 addr, false);
1052
edf50470 1053 if (!new_folio)
70e806e4
PX
1054 return NULL;
1055
edf50470
MWO
1056 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1057 folio_put(new_folio);
70e806e4 1058 return NULL;
6aab341e 1059 }
e601ded4 1060 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 1061
edf50470 1062 return new_folio;
1da177e4
LT
1063}
1064
c78f4636
PX
1065static int
1066copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1068 unsigned long end)
1da177e4 1069{
c78f4636
PX
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1072 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1073 pte_t *src_pte, *dst_pte;
c33c7948 1074 pte_t ptent;
c74df32c 1075 spinlock_t *src_ptl, *dst_ptl;
f8d93776 1076 int progress, max_nr, ret = 0;
d559db08 1077 int rss[NR_MM_COUNTERS];
570a335b 1078 swp_entry_t entry = (swp_entry_t){0};
edf50470 1079 struct folio *prealloc = NULL;
f8d93776 1080 int nr;
1da177e4
LT
1081
1082again:
70e806e4 1083 progress = 0;
d559db08
KH
1084 init_rss_vec(rss);
1085
3db82b93
HD
1086 /*
1087 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1088 * error handling here, assume that exclusive mmap_lock on dst and src
1089 * protects anon from unexpected THP transitions; with shmem and file
1090 * protected by mmap_lock-less collapse skipping areas with anon_vma
1091 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1092 * can remove such assumptions later, but this is good enough for now.
1093 */
c74df32c 1094 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1095 if (!dst_pte) {
1096 ret = -ENOMEM;
1097 goto out;
1098 }
3db82b93
HD
1099 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1100 if (!src_pte) {
1101 pte_unmap_unlock(dst_pte, dst_ptl);
1102 /* ret == 0 */
1103 goto out;
1104 }
f20dc5f7 1105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1106 orig_src_pte = src_pte;
1107 orig_dst_pte = dst_pte;
6606c3e0 1108 arch_enter_lazy_mmu_mode();
1da177e4 1109
1da177e4 1110 do {
f8d93776
DH
1111 nr = 1;
1112
1da177e4
LT
1113 /*
1114 * We are holding two locks at this point - either of them
1115 * could generate latencies in another task on another CPU.
1116 */
e040f218
HD
1117 if (progress >= 32) {
1118 progress = 0;
1119 if (need_resched() ||
95c354fe 1120 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1121 break;
1122 }
c33c7948
RR
1123 ptent = ptep_get(src_pte);
1124 if (pte_none(ptent)) {
1da177e4
LT
1125 progress++;
1126 continue;
1127 }
c33c7948 1128 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1129 ret = copy_nonpresent_pte(dst_mm, src_mm,
1130 dst_pte, src_pte,
1131 dst_vma, src_vma,
1132 addr, rss);
1133 if (ret == -EIO) {
c33c7948 1134 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1135 break;
b756a3b5
AP
1136 } else if (ret == -EBUSY) {
1137 break;
1138 } else if (!ret) {
1139 progress += 8;
1140 continue;
9a5cc85c 1141 }
53723298
DH
1142 ptent = ptep_get(src_pte);
1143 VM_WARN_ON_ONCE(!pte_present(ptent));
b756a3b5
AP
1144
1145 /*
1146 * Device exclusive entry restored, continue by copying
1147 * the now present pte.
1148 */
1149 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1150 }
f8d93776
DH
1151 /* copy_present_ptes() will clear `*prealloc' if consumed */
1152 max_nr = (end - addr) / PAGE_SIZE;
1153 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1154 ptent, addr, max_nr, rss, &prealloc);
70e806e4
PX
1155 /*
1156 * If we need a pre-allocated page for this pte, drop the
1157 * locks, allocate, and try again.
1158 */
1159 if (unlikely(ret == -EAGAIN))
1160 break;
1161 if (unlikely(prealloc)) {
1162 /*
1163 * pre-alloc page cannot be reused by next time so as
1164 * to strictly follow mempolicy (e.g., alloc_page_vma()
1165 * will allocate page according to address). This
1166 * could only happen if one pinned pte changed.
1167 */
edf50470 1168 folio_put(prealloc);
70e806e4
PX
1169 prealloc = NULL;
1170 }
f8d93776
DH
1171 nr = ret;
1172 progress += 8 * nr;
1173 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1174 addr != end);
1da177e4 1175
6606c3e0 1176 arch_leave_lazy_mmu_mode();
3db82b93 1177 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1178 add_mm_rss_vec(dst_mm, rss);
c36987e2 1179 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1180 cond_resched();
570a335b 1181
9a5cc85c
AP
1182 if (ret == -EIO) {
1183 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1184 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1185 ret = -ENOMEM;
1186 goto out;
1187 }
1188 entry.val = 0;
b756a3b5
AP
1189 } else if (ret == -EBUSY) {
1190 goto out;
9a5cc85c 1191 } else if (ret == -EAGAIN) {
294de6d8 1192 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
70e806e4 1193 if (!prealloc)
570a335b 1194 return -ENOMEM;
f8d93776 1195 } else if (ret < 0) {
9a5cc85c 1196 VM_WARN_ON_ONCE(1);
570a335b 1197 }
9a5cc85c
AP
1198
1199 /* We've captured and resolved the error. Reset, try again. */
1200 ret = 0;
1201
1da177e4
LT
1202 if (addr != end)
1203 goto again;
70e806e4
PX
1204out:
1205 if (unlikely(prealloc))
edf50470 1206 folio_put(prealloc);
70e806e4 1207 return ret;
1da177e4
LT
1208}
1209
c78f4636
PX
1210static inline int
1211copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1212 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1213 unsigned long end)
1da177e4 1214{
c78f4636
PX
1215 struct mm_struct *dst_mm = dst_vma->vm_mm;
1216 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1217 pmd_t *src_pmd, *dst_pmd;
1218 unsigned long next;
1219
1220 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1221 if (!dst_pmd)
1222 return -ENOMEM;
1223 src_pmd = pmd_offset(src_pud, addr);
1224 do {
1225 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1226 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1227 || pmd_devmap(*src_pmd)) {
71e3aac0 1228 int err;
c78f4636 1229 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1230 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1231 addr, dst_vma, src_vma);
71e3aac0
AA
1232 if (err == -ENOMEM)
1233 return -ENOMEM;
1234 if (!err)
1235 continue;
1236 /* fall through */
1237 }
1da177e4
LT
1238 if (pmd_none_or_clear_bad(src_pmd))
1239 continue;
c78f4636
PX
1240 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1241 addr, next))
1da177e4
LT
1242 return -ENOMEM;
1243 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1244 return 0;
1245}
1246
c78f4636
PX
1247static inline int
1248copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1249 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1250 unsigned long end)
1da177e4 1251{
c78f4636
PX
1252 struct mm_struct *dst_mm = dst_vma->vm_mm;
1253 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1254 pud_t *src_pud, *dst_pud;
1255 unsigned long next;
1256
c2febafc 1257 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1258 if (!dst_pud)
1259 return -ENOMEM;
c2febafc 1260 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1261 do {
1262 next = pud_addr_end(addr, end);
a00cc7d9
MW
1263 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1264 int err;
1265
c78f4636 1266 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1267 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1268 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1269 if (err == -ENOMEM)
1270 return -ENOMEM;
1271 if (!err)
1272 continue;
1273 /* fall through */
1274 }
1da177e4
LT
1275 if (pud_none_or_clear_bad(src_pud))
1276 continue;
c78f4636
PX
1277 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1278 addr, next))
1da177e4
LT
1279 return -ENOMEM;
1280 } while (dst_pud++, src_pud++, addr = next, addr != end);
1281 return 0;
1282}
1283
c78f4636
PX
1284static inline int
1285copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1286 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1287 unsigned long end)
c2febafc 1288{
c78f4636 1289 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1290 p4d_t *src_p4d, *dst_p4d;
1291 unsigned long next;
1292
1293 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1294 if (!dst_p4d)
1295 return -ENOMEM;
1296 src_p4d = p4d_offset(src_pgd, addr);
1297 do {
1298 next = p4d_addr_end(addr, end);
1299 if (p4d_none_or_clear_bad(src_p4d))
1300 continue;
c78f4636
PX
1301 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1302 addr, next))
c2febafc
KS
1303 return -ENOMEM;
1304 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1305 return 0;
1306}
1307
c56d1b62
PX
1308/*
1309 * Return true if the vma needs to copy the pgtable during this fork(). Return
1310 * false when we can speed up fork() by allowing lazy page faults later until
1311 * when the child accesses the memory range.
1312 */
bc70fbf2 1313static bool
c56d1b62
PX
1314vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1315{
1316 /*
1317 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1318 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1319 * contains uffd-wp protection information, that's something we can't
1320 * retrieve from page cache, and skip copying will lose those info.
1321 */
1322 if (userfaultfd_wp(dst_vma))
1323 return true;
1324
bcd51a3c 1325 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1326 return true;
1327
1328 if (src_vma->anon_vma)
1329 return true;
1330
1331 /*
1332 * Don't copy ptes where a page fault will fill them correctly. Fork
1333 * becomes much lighter when there are big shared or private readonly
1334 * mappings. The tradeoff is that copy_page_range is more efficient
1335 * than faulting.
1336 */
1337 return false;
1338}
1339
c78f4636
PX
1340int
1341copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1342{
1343 pgd_t *src_pgd, *dst_pgd;
1344 unsigned long next;
c78f4636
PX
1345 unsigned long addr = src_vma->vm_start;
1346 unsigned long end = src_vma->vm_end;
1347 struct mm_struct *dst_mm = dst_vma->vm_mm;
1348 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1349 struct mmu_notifier_range range;
2ec74c3e 1350 bool is_cow;
cddb8a5c 1351 int ret;
1da177e4 1352
c56d1b62 1353 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1354 return 0;
d992895b 1355
c78f4636 1356 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1357 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1358
c78f4636 1359 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1360 /*
1361 * We do not free on error cases below as remove_vma
1362 * gets called on error from higher level routine
1363 */
c78f4636 1364 ret = track_pfn_copy(src_vma);
2ab64037 1365 if (ret)
1366 return ret;
1367 }
1368
cddb8a5c
AA
1369 /*
1370 * We need to invalidate the secondary MMU mappings only when
1371 * there could be a permission downgrade on the ptes of the
1372 * parent mm. And a permission downgrade will only happen if
1373 * is_cow_mapping() returns true.
1374 */
c78f4636 1375 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1376
1377 if (is_cow) {
7269f999 1378 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1379 0, src_mm, addr, end);
ac46d4f3 1380 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1381 /*
1382 * Disabling preemption is not needed for the write side, as
1383 * the read side doesn't spin, but goes to the mmap_lock.
1384 *
1385 * Use the raw variant of the seqcount_t write API to avoid
1386 * lockdep complaining about preemptibility.
1387 */
e727bfd5 1388 vma_assert_write_locked(src_vma);
57efa1fe 1389 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1390 }
cddb8a5c
AA
1391
1392 ret = 0;
1da177e4
LT
1393 dst_pgd = pgd_offset(dst_mm, addr);
1394 src_pgd = pgd_offset(src_mm, addr);
1395 do {
1396 next = pgd_addr_end(addr, end);
1397 if (pgd_none_or_clear_bad(src_pgd))
1398 continue;
c78f4636
PX
1399 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1400 addr, next))) {
d155df53 1401 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1402 ret = -ENOMEM;
1403 break;
1404 }
1da177e4 1405 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1406
57efa1fe
JG
1407 if (is_cow) {
1408 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1409 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1410 }
cddb8a5c 1411 return ret;
1da177e4
LT
1412}
1413
5abfd71d
PX
1414/* Whether we should zap all COWed (private) pages too */
1415static inline bool should_zap_cows(struct zap_details *details)
1416{
1417 /* By default, zap all pages */
1418 if (!details)
1419 return true;
1420
1421 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1422 return details->even_cows;
5abfd71d
PX
1423}
1424
eabafaaa
KW
1425/* Decides whether we should zap this folio with the folio pointer specified */
1426static inline bool should_zap_folio(struct zap_details *details,
1427 struct folio *folio)
3506659e 1428{
eabafaaa 1429 /* If we can make a decision without *folio.. */
5abfd71d 1430 if (should_zap_cows(details))
254ab940 1431 return true;
5abfd71d 1432
eabafaaa
KW
1433 /* Otherwise we should only zap non-anon folios */
1434 return !folio_test_anon(folio);
3506659e
MWO
1435}
1436
999dad82
PX
1437static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1438{
1439 if (!details)
1440 return false;
1441
1442 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1443}
1444
1445/*
1446 * This function makes sure that we'll replace the none pte with an uffd-wp
1447 * swap special pte marker when necessary. Must be with the pgtable lock held.
1448 */
1449static inline void
1450zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
10ebac4f 1451 unsigned long addr, pte_t *pte, int nr,
999dad82
PX
1452 struct zap_details *details, pte_t pteval)
1453{
2bad466c
PX
1454 /* Zap on anonymous always means dropping everything */
1455 if (vma_is_anonymous(vma))
1456 return;
1457
999dad82
PX
1458 if (zap_drop_file_uffd_wp(details))
1459 return;
1460
10ebac4f
DH
1461 for (;;) {
1462 /* the PFN in the PTE is irrelevant. */
1463 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1464 if (--nr == 0)
1465 break;
1466 pte++;
1467 addr += PAGE_SIZE;
1468 }
999dad82
PX
1469}
1470
10ebac4f 1471static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
2b42a7e5 1472 struct vm_area_struct *vma, struct folio *folio,
10ebac4f
DH
1473 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1474 unsigned long addr, struct zap_details *details, int *rss,
1475 bool *force_flush, bool *force_break)
789753e1
DH
1476{
1477 struct mm_struct *mm = tlb->mm;
789753e1 1478 bool delay_rmap = false;
789753e1
DH
1479
1480 if (!folio_test_anon(folio)) {
10ebac4f 1481 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
789753e1
DH
1482 if (pte_dirty(ptent)) {
1483 folio_mark_dirty(folio);
1484 if (tlb_delay_rmap(tlb)) {
1485 delay_rmap = true;
1486 *force_flush = true;
1487 }
1488 }
1489 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1490 folio_mark_accessed(folio);
10ebac4f 1491 rss[mm_counter(folio)] -= nr;
d11838ed
DH
1492 } else {
1493 /* We don't need up-to-date accessed/dirty bits. */
10ebac4f
DH
1494 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1495 rss[MM_ANONPAGES] -= nr;
789753e1 1496 }
10ebac4f 1497 /* Checking a single PTE in a batch is sufficient. */
d11838ed 1498 arch_check_zapped_pte(vma, ptent);
10ebac4f 1499 tlb_remove_tlb_entries(tlb, pte, nr, addr);
d11838ed 1500 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
10ebac4f
DH
1501 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1502 ptent);
d11838ed 1503
789753e1 1504 if (!delay_rmap) {
10ebac4f
DH
1505 folio_remove_rmap_ptes(folio, page, nr, vma);
1506
3aeea4fc 1507 if (unlikely(folio_mapcount(folio) < 0))
789753e1
DH
1508 print_bad_pte(vma, addr, ptent, page);
1509 }
ba42b524
YJN
1510
1511 if (want_init_mlocked_on_free() && folio_test_mlocked(folio) &&
1512 !delay_rmap && folio_test_anon(folio)) {
1513 kernel_init_pages(page, folio_nr_pages(folio));
1514 }
1515
10ebac4f 1516 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
789753e1
DH
1517 *force_flush = true;
1518 *force_break = true;
1519 }
1520}
1521
10ebac4f
DH
1522/*
1523 * Zap or skip at least one present PTE, trying to batch-process subsequent
1524 * PTEs that map consecutive pages of the same folio.
1525 *
1526 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1527 */
1528static inline int zap_present_ptes(struct mmu_gather *tlb,
2b42a7e5 1529 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
10ebac4f
DH
1530 unsigned int max_nr, unsigned long addr,
1531 struct zap_details *details, int *rss, bool *force_flush,
1532 bool *force_break)
2b42a7e5 1533{
10ebac4f 1534 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
2b42a7e5
DH
1535 struct mm_struct *mm = tlb->mm;
1536 struct folio *folio;
1537 struct page *page;
10ebac4f 1538 int nr;
2b42a7e5
DH
1539
1540 page = vm_normal_page(vma, addr, ptent);
1541 if (!page) {
1542 /* We don't need up-to-date accessed/dirty bits. */
1543 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1544 arch_check_zapped_pte(vma, ptent);
1545 tlb_remove_tlb_entry(tlb, pte, addr);
f8572367
PX
1546 if (userfaultfd_pte_wp(vma, ptent))
1547 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1548 details, ptent);
2b42a7e5 1549 ksm_might_unmap_zero_page(mm, ptent);
10ebac4f 1550 return 1;
2b42a7e5
DH
1551 }
1552
1553 folio = page_folio(page);
1554 if (unlikely(!should_zap_folio(details, folio)))
10ebac4f
DH
1555 return 1;
1556
1557 /*
1558 * Make sure that the common "small folio" case is as fast as possible
1559 * by keeping the batching logic separate.
1560 */
1561 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1562 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
96ebdb03 1563 NULL, NULL, NULL);
10ebac4f
DH
1564
1565 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1566 addr, details, rss, force_flush,
1567 force_break);
1568 return nr;
1569 }
1570 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1571 details, rss, force_flush, force_break);
1572 return 1;
2b42a7e5
DH
1573}
1574
51c6f666 1575static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1576 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1577 unsigned long addr, unsigned long end,
97a89413 1578 struct zap_details *details)
1da177e4 1579{
789753e1 1580 bool force_flush = false, force_break = false;
b5810039 1581 struct mm_struct *mm = tlb->mm;
d559db08 1582 int rss[NR_MM_COUNTERS];
97a89413 1583 spinlock_t *ptl;
5f1a1907 1584 pte_t *start_pte;
97a89413 1585 pte_t *pte;
8a5f14a2 1586 swp_entry_t entry;
10ebac4f 1587 int nr;
d559db08 1588
ed6a7935 1589 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1590 init_rss_vec(rss);
3db82b93
HD
1591 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1592 if (!pte)
1593 return addr;
1594
3ea27719 1595 flush_tlb_batched_pending(mm);
6606c3e0 1596 arch_enter_lazy_mmu_mode();
1da177e4 1597 do {
c33c7948 1598 pte_t ptent = ptep_get(pte);
789753e1 1599 struct folio *folio;
8018db85 1600 struct page *page;
10ebac4f 1601 int max_nr;
8018db85 1602
10ebac4f 1603 nr = 1;
166f61b9 1604 if (pte_none(ptent))
1da177e4 1605 continue;
6f5e6b9e 1606
7b167b68
MK
1607 if (need_resched())
1608 break;
1609
1da177e4 1610 if (pte_present(ptent)) {
10ebac4f
DH
1611 max_nr = (end - addr) / PAGE_SIZE;
1612 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1613 addr, details, rss, &force_flush,
1614 &force_break);
789753e1 1615 if (unlikely(force_break)) {
10ebac4f 1616 addr += nr * PAGE_SIZE;
d16dfc55 1617 break;
1cf35d47 1618 }
1da177e4
LT
1619 continue;
1620 }
5042db43
JG
1621
1622 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1623 if (is_device_private_entry(entry) ||
1624 is_device_exclusive_entry(entry)) {
8018db85 1625 page = pfn_swap_entry_to_page(entry);
c4626503 1626 folio = page_folio(page);
eabafaaa 1627 if (unlikely(!should_zap_folio(details, folio)))
91b61ef3 1628 continue;
999dad82
PX
1629 /*
1630 * Both device private/exclusive mappings should only
1631 * work with anonymous page so far, so we don't need to
1632 * consider uffd-wp bit when zap. For more information,
1633 * see zap_install_uffd_wp_if_needed().
1634 */
1635 WARN_ON_ONCE(!vma_is_anonymous(vma));
a23f517b 1636 rss[mm_counter(folio)]--;
b756a3b5 1637 if (is_device_private_entry(entry))
c4626503
DH
1638 folio_remove_rmap_pte(folio, page, vma);
1639 folio_put(folio);
8018db85 1640 } else if (!non_swap_entry(entry)) {
a62fb92a
RR
1641 max_nr = (end - addr) / PAGE_SIZE;
1642 nr = swap_pte_batch(pte, max_nr, ptent);
1643 /* Genuine swap entries, hence a private anon pages */
5abfd71d
PX
1644 if (!should_zap_cows(details))
1645 continue;
a62fb92a
RR
1646 rss[MM_SWAPENTS] -= nr;
1647 free_swap_and_cache_nr(entry, nr);
5abfd71d 1648 } else if (is_migration_entry(entry)) {
eabafaaa
KW
1649 folio = pfn_swap_entry_folio(entry);
1650 if (!should_zap_folio(details, folio))
5abfd71d 1651 continue;
a23f517b 1652 rss[mm_counter(folio)]--;
999dad82 1653 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1654 /*
1655 * For anon: always drop the marker; for file: only
1656 * drop the marker if explicitly requested.
1657 */
1658 if (!vma_is_anonymous(vma) &&
1659 !zap_drop_file_uffd_wp(details))
999dad82 1660 continue;
9f186f9e 1661 } else if (is_hwpoison_entry(entry) ||
af19487f 1662 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1663 if (!should_zap_cows(details))
1664 continue;
1665 } else {
1666 /* We should have covered all the swap entry types */
727d16f1 1667 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
5abfd71d 1668 WARN_ON_ONCE(1);
b084d435 1669 }
a62fb92a
RR
1670 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1671 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
10ebac4f 1672 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
ae859762 1673
d559db08 1674 add_mm_rss_vec(mm, rss);
6606c3e0 1675 arch_leave_lazy_mmu_mode();
51c6f666 1676
1cf35d47 1677 /* Do the actual TLB flush before dropping ptl */
5df397de 1678 if (force_flush) {
1cf35d47 1679 tlb_flush_mmu_tlbonly(tlb);
f036c818 1680 tlb_flush_rmaps(tlb, vma);
5df397de 1681 }
1cf35d47
LT
1682 pte_unmap_unlock(start_pte, ptl);
1683
1684 /*
1685 * If we forced a TLB flush (either due to running out of
1686 * batch buffers or because we needed to flush dirty TLB
1687 * entries before releasing the ptl), free the batched
3db82b93 1688 * memory too. Come back again if we didn't do everything.
1cf35d47 1689 */
3db82b93 1690 if (force_flush)
fa0aafb8 1691 tlb_flush_mmu(tlb);
d16dfc55 1692
51c6f666 1693 return addr;
1da177e4
LT
1694}
1695
51c6f666 1696static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1697 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1698 unsigned long addr, unsigned long end,
97a89413 1699 struct zap_details *details)
1da177e4
LT
1700{
1701 pmd_t *pmd;
1702 unsigned long next;
1703
1704 pmd = pmd_offset(pud, addr);
1705 do {
1706 next = pmd_addr_end(addr, end);
84c3fc4e 1707 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1708 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1709 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1710 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1711 addr = next;
1712 continue;
1713 }
71e3aac0 1714 /* fall through */
3506659e
MWO
1715 } else if (details && details->single_folio &&
1716 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1717 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1718 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1719 /*
1720 * Take and drop THP pmd lock so that we cannot return
1721 * prematurely, while zap_huge_pmd() has cleared *pmd,
1722 * but not yet decremented compound_mapcount().
1723 */
1724 spin_unlock(ptl);
71e3aac0 1725 }
3db82b93
HD
1726 if (pmd_none(*pmd)) {
1727 addr = next;
1728 continue;
1729 }
1730 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1731 if (addr != next)
1732 pmd--;
1733 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1734
1735 return addr;
1da177e4
LT
1736}
1737
51c6f666 1738static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1739 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1740 unsigned long addr, unsigned long end,
97a89413 1741 struct zap_details *details)
1da177e4
LT
1742{
1743 pud_t *pud;
1744 unsigned long next;
1745
c2febafc 1746 pud = pud_offset(p4d, addr);
1da177e4
LT
1747 do {
1748 next = pud_addr_end(addr, end);
a00cc7d9
MW
1749 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1750 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1751 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1752 split_huge_pud(vma, pud, addr);
1753 } else if (zap_huge_pud(tlb, vma, pud, addr))
1754 goto next;
1755 /* fall through */
1756 }
97a89413 1757 if (pud_none_or_clear_bad(pud))
1da177e4 1758 continue;
97a89413 1759 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1760next:
1761 cond_resched();
97a89413 1762 } while (pud++, addr = next, addr != end);
51c6f666
RH
1763
1764 return addr;
1da177e4
LT
1765}
1766
c2febafc
KS
1767static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1768 struct vm_area_struct *vma, pgd_t *pgd,
1769 unsigned long addr, unsigned long end,
1770 struct zap_details *details)
1771{
1772 p4d_t *p4d;
1773 unsigned long next;
1774
1775 p4d = p4d_offset(pgd, addr);
1776 do {
1777 next = p4d_addr_end(addr, end);
1778 if (p4d_none_or_clear_bad(p4d))
1779 continue;
1780 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1781 } while (p4d++, addr = next, addr != end);
1782
1783 return addr;
1784}
1785
aac45363 1786void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1787 struct vm_area_struct *vma,
1788 unsigned long addr, unsigned long end,
1789 struct zap_details *details)
1da177e4
LT
1790{
1791 pgd_t *pgd;
1792 unsigned long next;
1793
1da177e4
LT
1794 BUG_ON(addr >= end);
1795 tlb_start_vma(tlb, vma);
1796 pgd = pgd_offset(vma->vm_mm, addr);
1797 do {
1798 next = pgd_addr_end(addr, end);
97a89413 1799 if (pgd_none_or_clear_bad(pgd))
1da177e4 1800 continue;
c2febafc 1801 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1802 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1803 tlb_end_vma(tlb, vma);
1804}
51c6f666 1805
f5cc4eef
AV
1806
1807static void unmap_single_vma(struct mmu_gather *tlb,
1808 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1809 unsigned long end_addr,
68f48381 1810 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1811{
1812 unsigned long start = max(vma->vm_start, start_addr);
1813 unsigned long end;
1814
1815 if (start >= vma->vm_end)
1816 return;
1817 end = min(vma->vm_end, end_addr);
1818 if (end <= vma->vm_start)
1819 return;
1820
cbc91f71
SD
1821 if (vma->vm_file)
1822 uprobe_munmap(vma, start, end);
1823
b3b9c293 1824 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1825 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1826
1827 if (start != end) {
1828 if (unlikely(is_vm_hugetlb_page(vma))) {
1829 /*
1830 * It is undesirable to test vma->vm_file as it
1831 * should be non-null for valid hugetlb area.
1832 * However, vm_file will be NULL in the error
7aa6b4ad 1833 * cleanup path of mmap_region. When
f5cc4eef 1834 * hugetlbfs ->mmap method fails,
7aa6b4ad 1835 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1836 * before calling this function to clean up.
1837 * Since no pte has actually been setup, it is
1838 * safe to do nothing in this case.
1839 */
24669e58 1840 if (vma->vm_file) {
05e90bd0
PX
1841 zap_flags_t zap_flags = details ?
1842 details->zap_flags : 0;
2820b0f0 1843 __unmap_hugepage_range(tlb, vma, start, end,
05e90bd0 1844 NULL, zap_flags);
24669e58 1845 }
f5cc4eef
AV
1846 } else
1847 unmap_page_range(tlb, vma, start, end, details);
1848 }
1da177e4
LT
1849}
1850
1da177e4
LT
1851/**
1852 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1853 * @tlb: address of the caller's struct mmu_gather
6e412203 1854 * @mas: the maple state
1da177e4
LT
1855 * @vma: the starting vma
1856 * @start_addr: virtual address at which to start unmapping
1857 * @end_addr: virtual address at which to end unmapping
6e412203 1858 * @tree_end: The maximum index to check
809ef83c 1859 * @mm_wr_locked: lock flag
1da177e4 1860 *
508034a3 1861 * Unmap all pages in the vma list.
1da177e4 1862 *
1da177e4
LT
1863 * Only addresses between `start' and `end' will be unmapped.
1864 *
1865 * The VMA list must be sorted in ascending virtual address order.
1866 *
1867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1868 * range after unmap_vmas() returns. So the only responsibility here is to
1869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1870 * drops the lock and schedules.
1871 */
fd892593 1872void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1873 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1874 unsigned long end_addr, unsigned long tree_end,
1875 bool mm_wr_locked)
1da177e4 1876{
ac46d4f3 1877 struct mmu_notifier_range range;
999dad82 1878 struct zap_details details = {
04ada095 1879 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1880 /* Careful - we need to zap private pages too! */
1881 .even_cows = true,
1882 };
1da177e4 1883
7d4a8be0 1884 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1885 start_addr, end_addr);
ac46d4f3 1886 mmu_notifier_invalidate_range_start(&range);
763ecb03 1887 do {
2820b0f0
RR
1888 unsigned long start = start_addr;
1889 unsigned long end = end_addr;
1890 hugetlb_zap_begin(vma, &start, &end);
1891 unmap_single_vma(tlb, vma, start, end, &details,
68f48381 1892 mm_wr_locked);
2820b0f0 1893 hugetlb_zap_end(vma, &details);
d2406291
PZ
1894 vma = mas_find(mas, tree_end - 1);
1895 } while (vma && likely(!xa_is_zero(vma)));
ac46d4f3 1896 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1897}
1898
f5cc4eef
AV
1899/**
1900 * zap_page_range_single - remove user pages in a given range
1901 * @vma: vm_area_struct holding the applicable pages
1902 * @address: starting address of pages to zap
1903 * @size: number of bytes to zap
8a5f14a2 1904 * @details: details of shared cache invalidation
f5cc4eef
AV
1905 *
1906 * The range must fit into one VMA.
1da177e4 1907 */
21b85b09 1908void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1909 unsigned long size, struct zap_details *details)
1910{
21b85b09 1911 const unsigned long end = address + size;
ac46d4f3 1912 struct mmu_notifier_range range;
d16dfc55 1913 struct mmu_gather tlb;
1da177e4 1914
1da177e4 1915 lru_add_drain();
7d4a8be0 1916 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09 1917 address, end);
2820b0f0 1918 hugetlb_zap_begin(vma, &range.start, &range.end);
a72afd87 1919 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1920 update_hiwater_rss(vma->vm_mm);
1921 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1922 /*
1923 * unmap 'address-end' not 'range.start-range.end' as range
1924 * could have been expanded for hugetlb pmd sharing.
1925 */
68f48381 1926 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1927 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1928 tlb_finish_mmu(&tlb);
2820b0f0 1929 hugetlb_zap_end(vma, details);
1da177e4
LT
1930}
1931
c627f9cc
JS
1932/**
1933 * zap_vma_ptes - remove ptes mapping the vma
1934 * @vma: vm_area_struct holding ptes to be zapped
1935 * @address: starting address of pages to zap
1936 * @size: number of bytes to zap
1937 *
1938 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1939 *
1940 * The entire address range must be fully contained within the vma.
1941 *
c627f9cc 1942 */
27d036e3 1943void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1944 unsigned long size)
1945{
88a35912 1946 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1947 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1948 return;
1949
f5cc4eef 1950 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1951}
1952EXPORT_SYMBOL_GPL(zap_vma_ptes);
1953
8cd3984d 1954static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1955{
c2febafc
KS
1956 pgd_t *pgd;
1957 p4d_t *p4d;
1958 pud_t *pud;
1959 pmd_t *pmd;
1960
1961 pgd = pgd_offset(mm, addr);
1962 p4d = p4d_alloc(mm, pgd, addr);
1963 if (!p4d)
1964 return NULL;
1965 pud = pud_alloc(mm, p4d, addr);
1966 if (!pud)
1967 return NULL;
1968 pmd = pmd_alloc(mm, pud, addr);
1969 if (!pmd)
1970 return NULL;
1971
1972 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1973 return pmd;
1974}
1975
1976pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1977 spinlock_t **ptl)
1978{
1979 pmd_t *pmd = walk_to_pmd(mm, addr);
1980
1981 if (!pmd)
1982 return NULL;
c2febafc 1983 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1984}
1985
8efd6f5b
AR
1986static int validate_page_before_insert(struct page *page)
1987{
f8b6187d
KW
1988 struct folio *folio = page_folio(page);
1989
1990 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1991 page_has_type(page))
8efd6f5b 1992 return -EINVAL;
f8b6187d 1993 flush_dcache_folio(folio);
8efd6f5b
AR
1994 return 0;
1995}
1996
cea86fe2 1997static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1998 unsigned long addr, struct page *page, pgprot_t prot)
1999{
ef37b2ea
DH
2000 struct folio *folio = page_folio(page);
2001
c33c7948 2002 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
2003 return -EBUSY;
2004 /* Ok, finally just insert the thing.. */
ef37b2ea 2005 folio_get(folio);
6b27cc6c 2006 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
ef37b2ea 2007 folio_add_file_rmap_pte(folio, page, vma);
cea86fe2 2008 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
2009 return 0;
2010}
2011
238f58d8
LT
2012/*
2013 * This is the old fallback for page remapping.
2014 *
2015 * For historical reasons, it only allows reserved pages. Only
2016 * old drivers should use this, and they needed to mark their
2017 * pages reserved for the old functions anyway.
2018 */
423bad60
NP
2019static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2020 struct page *page, pgprot_t prot)
238f58d8
LT
2021{
2022 int retval;
c9cfcddf 2023 pte_t *pte;
8a9f3ccd
BS
2024 spinlock_t *ptl;
2025
8efd6f5b
AR
2026 retval = validate_page_before_insert(page);
2027 if (retval)
5b4e655e 2028 goto out;
238f58d8 2029 retval = -ENOMEM;
cea86fe2 2030 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 2031 if (!pte)
5b4e655e 2032 goto out;
cea86fe2 2033 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
2034 pte_unmap_unlock(pte, ptl);
2035out:
2036 return retval;
2037}
2038
cea86fe2 2039static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
2040 unsigned long addr, struct page *page, pgprot_t prot)
2041{
2042 int err;
2043
2044 if (!page_count(page))
2045 return -EINVAL;
2046 err = validate_page_before_insert(page);
7f70c2a6
AR
2047 if (err)
2048 return err;
cea86fe2 2049 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
2050}
2051
2052/* insert_pages() amortizes the cost of spinlock operations
bb7dbaaf 2053 * when inserting pages in a loop.
8cd3984d
AR
2054 */
2055static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2056 struct page **pages, unsigned long *num, pgprot_t prot)
2057{
2058 pmd_t *pmd = NULL;
7f70c2a6
AR
2059 pte_t *start_pte, *pte;
2060 spinlock_t *pte_lock;
8cd3984d
AR
2061 struct mm_struct *const mm = vma->vm_mm;
2062 unsigned long curr_page_idx = 0;
2063 unsigned long remaining_pages_total = *num;
2064 unsigned long pages_to_write_in_pmd;
2065 int ret;
2066more:
2067 ret = -EFAULT;
2068 pmd = walk_to_pmd(mm, addr);
2069 if (!pmd)
2070 goto out;
2071
2072 pages_to_write_in_pmd = min_t(unsigned long,
2073 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2074
2075 /* Allocate the PTE if necessary; takes PMD lock once only. */
2076 ret = -ENOMEM;
2077 if (pte_alloc(mm, pmd))
2078 goto out;
8cd3984d
AR
2079
2080 while (pages_to_write_in_pmd) {
2081 int pte_idx = 0;
2082 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2083
7f70c2a6 2084 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
2085 if (!start_pte) {
2086 ret = -EFAULT;
2087 goto out;
2088 }
7f70c2a6 2089 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 2090 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
2091 addr, pages[curr_page_idx], prot);
2092 if (unlikely(err)) {
7f70c2a6 2093 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
2094 ret = err;
2095 remaining_pages_total -= pte_idx;
2096 goto out;
2097 }
2098 addr += PAGE_SIZE;
2099 ++curr_page_idx;
2100 }
7f70c2a6 2101 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
2102 pages_to_write_in_pmd -= batch_size;
2103 remaining_pages_total -= batch_size;
2104 }
2105 if (remaining_pages_total)
2106 goto more;
2107 ret = 0;
2108out:
2109 *num = remaining_pages_total;
2110 return ret;
2111}
8cd3984d
AR
2112
2113/**
2114 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2115 * @vma: user vma to map to
2116 * @addr: target start user address of these pages
2117 * @pages: source kernel pages
2118 * @num: in: number of pages to map. out: number of pages that were *not*
2119 * mapped. (0 means all pages were successfully mapped).
2120 *
2121 * Preferred over vm_insert_page() when inserting multiple pages.
2122 *
2123 * In case of error, we may have mapped a subset of the provided
2124 * pages. It is the caller's responsibility to account for this case.
2125 *
2126 * The same restrictions apply as in vm_insert_page().
2127 */
2128int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2129 struct page **pages, unsigned long *num)
2130{
8cd3984d
AR
2131 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2132
2133 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2134 return -EFAULT;
2135 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2136 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 2137 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2138 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
2139 }
2140 /* Defer page refcount checking till we're about to map that page. */
2141 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
8cd3984d
AR
2142}
2143EXPORT_SYMBOL(vm_insert_pages);
2144
bfa5bf6d
REB
2145/**
2146 * vm_insert_page - insert single page into user vma
2147 * @vma: user vma to map to
2148 * @addr: target user address of this page
2149 * @page: source kernel page
2150 *
a145dd41
LT
2151 * This allows drivers to insert individual pages they've allocated
2152 * into a user vma.
2153 *
2154 * The page has to be a nice clean _individual_ kernel allocation.
2155 * If you allocate a compound page, you need to have marked it as
2156 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2157 * (see split_page()).
a145dd41
LT
2158 *
2159 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2160 * took an arbitrary page protection parameter. This doesn't allow
2161 * that. Your vma protection will have to be set up correctly, which
2162 * means that if you want a shared writable mapping, you'd better
2163 * ask for a shared writable mapping!
2164 *
2165 * The page does not need to be reserved.
4b6e1e37
KK
2166 *
2167 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2168 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2169 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2170 * function from other places, for example from page-fault handler.
a862f68a
MR
2171 *
2172 * Return: %0 on success, negative error code otherwise.
a145dd41 2173 */
423bad60
NP
2174int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2175 struct page *page)
a145dd41
LT
2176{
2177 if (addr < vma->vm_start || addr >= vma->vm_end)
2178 return -EFAULT;
2179 if (!page_count(page))
2180 return -EINVAL;
4b6e1e37 2181 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2182 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2183 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2184 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2185 }
423bad60 2186 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2187}
e3c3374f 2188EXPORT_SYMBOL(vm_insert_page);
a145dd41 2189
a667d745
SJ
2190/*
2191 * __vm_map_pages - maps range of kernel pages into user vma
2192 * @vma: user vma to map to
2193 * @pages: pointer to array of source kernel pages
2194 * @num: number of pages in page array
2195 * @offset: user's requested vm_pgoff
2196 *
2197 * This allows drivers to map range of kernel pages into a user vma.
2198 *
2199 * Return: 0 on success and error code otherwise.
2200 */
2201static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2202 unsigned long num, unsigned long offset)
2203{
2204 unsigned long count = vma_pages(vma);
2205 unsigned long uaddr = vma->vm_start;
2206 int ret, i;
2207
2208 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2209 if (offset >= num)
a667d745
SJ
2210 return -ENXIO;
2211
2212 /* Fail if the user requested size exceeds available object size */
2213 if (count > num - offset)
2214 return -ENXIO;
2215
2216 for (i = 0; i < count; i++) {
2217 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2218 if (ret < 0)
2219 return ret;
2220 uaddr += PAGE_SIZE;
2221 }
2222
2223 return 0;
2224}
2225
2226/**
2227 * vm_map_pages - maps range of kernel pages starts with non zero offset
2228 * @vma: user vma to map to
2229 * @pages: pointer to array of source kernel pages
2230 * @num: number of pages in page array
2231 *
2232 * Maps an object consisting of @num pages, catering for the user's
2233 * requested vm_pgoff
2234 *
2235 * If we fail to insert any page into the vma, the function will return
2236 * immediately leaving any previously inserted pages present. Callers
2237 * from the mmap handler may immediately return the error as their caller
2238 * will destroy the vma, removing any successfully inserted pages. Other
2239 * callers should make their own arrangements for calling unmap_region().
2240 *
2241 * Context: Process context. Called by mmap handlers.
2242 * Return: 0 on success and error code otherwise.
2243 */
2244int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2245 unsigned long num)
2246{
2247 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2248}
2249EXPORT_SYMBOL(vm_map_pages);
2250
2251/**
2252 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2253 * @vma: user vma to map to
2254 * @pages: pointer to array of source kernel pages
2255 * @num: number of pages in page array
2256 *
2257 * Similar to vm_map_pages(), except that it explicitly sets the offset
2258 * to 0. This function is intended for the drivers that did not consider
2259 * vm_pgoff.
2260 *
2261 * Context: Process context. Called by mmap handlers.
2262 * Return: 0 on success and error code otherwise.
2263 */
2264int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2265 unsigned long num)
2266{
2267 return __vm_map_pages(vma, pages, num, 0);
2268}
2269EXPORT_SYMBOL(vm_map_pages_zero);
2270
9b5a8e00 2271static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2272 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2273{
2274 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2275 pte_t *pte, entry;
2276 spinlock_t *ptl;
2277
423bad60
NP
2278 pte = get_locked_pte(mm, addr, &ptl);
2279 if (!pte)
9b5a8e00 2280 return VM_FAULT_OOM;
c33c7948
RR
2281 entry = ptep_get(pte);
2282 if (!pte_none(entry)) {
b2770da6
RZ
2283 if (mkwrite) {
2284 /*
2285 * For read faults on private mappings the PFN passed
2286 * in may not match the PFN we have mapped if the
2287 * mapped PFN is a writeable COW page. In the mkwrite
2288 * case we are creating a writable PTE for a shared
f2c57d91
JK
2289 * mapping and we expect the PFNs to match. If they
2290 * don't match, we are likely racing with block
2291 * allocation and mapping invalidation so just skip the
2292 * update.
b2770da6 2293 */
c33c7948
RR
2294 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2295 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2296 goto out_unlock;
f2c57d91 2297 }
c33c7948 2298 entry = pte_mkyoung(entry);
cae85cb8
JK
2299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2300 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2301 update_mmu_cache(vma, addr, pte);
2302 }
2303 goto out_unlock;
b2770da6 2304 }
423bad60
NP
2305
2306 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2307 if (pfn_t_devmap(pfn))
2308 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2309 else
2310 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2311
b2770da6
RZ
2312 if (mkwrite) {
2313 entry = pte_mkyoung(entry);
2314 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2315 }
2316
423bad60 2317 set_pte_at(mm, addr, pte, entry);
4b3073e1 2318 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2319
423bad60
NP
2320out_unlock:
2321 pte_unmap_unlock(pte, ptl);
9b5a8e00 2322 return VM_FAULT_NOPAGE;
423bad60
NP
2323}
2324
f5e6d1d5
MW
2325/**
2326 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2327 * @vma: user vma to map to
2328 * @addr: target user address of this page
2329 * @pfn: source kernel pfn
2330 * @pgprot: pgprot flags for the inserted page
2331 *
a1a0aea5 2332 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2333 * to override pgprot on a per-page basis.
2334 *
2335 * This only makes sense for IO mappings, and it makes no sense for
2336 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2337 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2338 * impractical.
2339 *
28d8b812
LS
2340 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2341 * caching- and encryption bits different than those of @vma->vm_page_prot,
2342 * because the caching- or encryption mode may not be known at mmap() time.
2343 *
2344 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2345 * to set caching and encryption bits for those vmas (except for COW pages).
2346 * This is ensured by core vm only modifying these page table entries using
2347 * functions that don't touch caching- or encryption bits, using pte_modify()
2348 * if needed. (See for example mprotect()).
2349 *
2350 * Also when new page-table entries are created, this is only done using the
2351 * fault() callback, and never using the value of vma->vm_page_prot,
2352 * except for page-table entries that point to anonymous pages as the result
2353 * of COW.
574c5b3d 2354 *
ae2b01f3 2355 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2356 * Return: vm_fault_t value.
2357 */
2358vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2359 unsigned long pfn, pgprot_t pgprot)
2360{
6d958546
MW
2361 /*
2362 * Technically, architectures with pte_special can avoid all these
2363 * restrictions (same for remap_pfn_range). However we would like
2364 * consistency in testing and feature parity among all, so we should
2365 * try to keep these invariants in place for everybody.
2366 */
2367 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2368 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2369 (VM_PFNMAP|VM_MIXEDMAP));
2370 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2371 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2372
2373 if (addr < vma->vm_start || addr >= vma->vm_end)
2374 return VM_FAULT_SIGBUS;
2375
2376 if (!pfn_modify_allowed(pfn, pgprot))
2377 return VM_FAULT_SIGBUS;
2378
2379 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2380
9b5a8e00 2381 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2382 false);
f5e6d1d5
MW
2383}
2384EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2385
ae2b01f3
MW
2386/**
2387 * vmf_insert_pfn - insert single pfn into user vma
2388 * @vma: user vma to map to
2389 * @addr: target user address of this page
2390 * @pfn: source kernel pfn
2391 *
2392 * Similar to vm_insert_page, this allows drivers to insert individual pages
2393 * they've allocated into a user vma. Same comments apply.
2394 *
2395 * This function should only be called from a vm_ops->fault handler, and
2396 * in that case the handler should return the result of this function.
2397 *
2398 * vma cannot be a COW mapping.
2399 *
2400 * As this is called only for pages that do not currently exist, we
2401 * do not need to flush old virtual caches or the TLB.
2402 *
2403 * Context: Process context. May allocate using %GFP_KERNEL.
2404 * Return: vm_fault_t value.
2405 */
2406vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2407 unsigned long pfn)
2408{
2409 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2410}
2411EXPORT_SYMBOL(vmf_insert_pfn);
2412
785a3fab
DW
2413static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2414{
2415 /* these checks mirror the abort conditions in vm_normal_page */
2416 if (vma->vm_flags & VM_MIXEDMAP)
2417 return true;
2418 if (pfn_t_devmap(pfn))
2419 return true;
2420 if (pfn_t_special(pfn))
2421 return true;
2422 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2423 return true;
2424 return false;
2425}
2426
79f3aa5b 2427static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2428 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2429{
28d8b812 2430 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2431 int err;
87744ab3 2432
785a3fab 2433 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2434
423bad60 2435 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2436 return VM_FAULT_SIGBUS;
308a047c
BP
2437
2438 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2439
42e4089c 2440 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2441 return VM_FAULT_SIGBUS;
42e4089c 2442
423bad60
NP
2443 /*
2444 * If we don't have pte special, then we have to use the pfn_valid()
2445 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2446 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2447 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2448 * without pte special, it would there be refcounted as a normal page.
423bad60 2449 */
00b3a331
LD
2450 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2451 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2452 struct page *page;
2453
03fc2da6
DW
2454 /*
2455 * At this point we are committed to insert_page()
2456 * regardless of whether the caller specified flags that
2457 * result in pfn_t_has_page() == false.
2458 */
2459 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2460 err = insert_page(vma, addr, page, pgprot);
2461 } else {
9b5a8e00 2462 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2463 }
b2770da6 2464
5d747637
MW
2465 if (err == -ENOMEM)
2466 return VM_FAULT_OOM;
2467 if (err < 0 && err != -EBUSY)
2468 return VM_FAULT_SIGBUS;
2469
2470 return VM_FAULT_NOPAGE;
e0dc0d8f 2471}
79f3aa5b
MW
2472
2473vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2474 pfn_t pfn)
2475{
28d8b812 2476 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2477}
5d747637 2478EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2479
ab77dab4
SJ
2480/*
2481 * If the insertion of PTE failed because someone else already added a
2482 * different entry in the mean time, we treat that as success as we assume
2483 * the same entry was actually inserted.
2484 */
ab77dab4
SJ
2485vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2486 unsigned long addr, pfn_t pfn)
b2770da6 2487{
28d8b812 2488 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2489}
ab77dab4 2490EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2491
1da177e4
LT
2492/*
2493 * maps a range of physical memory into the requested pages. the old
2494 * mappings are removed. any references to nonexistent pages results
2495 * in null mappings (currently treated as "copy-on-access")
2496 */
2497static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2498 unsigned long addr, unsigned long end,
2499 unsigned long pfn, pgprot_t prot)
2500{
90a3e375 2501 pte_t *pte, *mapped_pte;
c74df32c 2502 spinlock_t *ptl;
42e4089c 2503 int err = 0;
1da177e4 2504
90a3e375 2505 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2506 if (!pte)
2507 return -ENOMEM;
6606c3e0 2508 arch_enter_lazy_mmu_mode();
1da177e4 2509 do {
c33c7948 2510 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2511 if (!pfn_modify_allowed(pfn, prot)) {
2512 err = -EACCES;
2513 break;
2514 }
7e675137 2515 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2516 pfn++;
2517 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2518 arch_leave_lazy_mmu_mode();
90a3e375 2519 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2520 return err;
1da177e4
LT
2521}
2522
2523static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2524 unsigned long addr, unsigned long end,
2525 unsigned long pfn, pgprot_t prot)
2526{
2527 pmd_t *pmd;
2528 unsigned long next;
42e4089c 2529 int err;
1da177e4
LT
2530
2531 pfn -= addr >> PAGE_SHIFT;
2532 pmd = pmd_alloc(mm, pud, addr);
2533 if (!pmd)
2534 return -ENOMEM;
f66055ab 2535 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2536 do {
2537 next = pmd_addr_end(addr, end);
42e4089c
AK
2538 err = remap_pte_range(mm, pmd, addr, next,
2539 pfn + (addr >> PAGE_SHIFT), prot);
2540 if (err)
2541 return err;
1da177e4
LT
2542 } while (pmd++, addr = next, addr != end);
2543 return 0;
2544}
2545
c2febafc 2546static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2547 unsigned long addr, unsigned long end,
2548 unsigned long pfn, pgprot_t prot)
2549{
2550 pud_t *pud;
2551 unsigned long next;
42e4089c 2552 int err;
1da177e4
LT
2553
2554 pfn -= addr >> PAGE_SHIFT;
c2febafc 2555 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2556 if (!pud)
2557 return -ENOMEM;
2558 do {
2559 next = pud_addr_end(addr, end);
42e4089c
AK
2560 err = remap_pmd_range(mm, pud, addr, next,
2561 pfn + (addr >> PAGE_SHIFT), prot);
2562 if (err)
2563 return err;
1da177e4
LT
2564 } while (pud++, addr = next, addr != end);
2565 return 0;
2566}
2567
c2febafc
KS
2568static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2569 unsigned long addr, unsigned long end,
2570 unsigned long pfn, pgprot_t prot)
2571{
2572 p4d_t *p4d;
2573 unsigned long next;
42e4089c 2574 int err;
c2febafc
KS
2575
2576 pfn -= addr >> PAGE_SHIFT;
2577 p4d = p4d_alloc(mm, pgd, addr);
2578 if (!p4d)
2579 return -ENOMEM;
2580 do {
2581 next = p4d_addr_end(addr, end);
42e4089c
AK
2582 err = remap_pud_range(mm, p4d, addr, next,
2583 pfn + (addr >> PAGE_SHIFT), prot);
2584 if (err)
2585 return err;
c2febafc
KS
2586 } while (p4d++, addr = next, addr != end);
2587 return 0;
2588}
2589
74ffa5a3
CH
2590/*
2591 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2592 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2593 */
74ffa5a3
CH
2594int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2595 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2596{
2597 pgd_t *pgd;
2598 unsigned long next;
2d15cab8 2599 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2600 struct mm_struct *mm = vma->vm_mm;
2601 int err;
2602
0c4123e3
AZ
2603 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2604 return -EINVAL;
2605
1da177e4
LT
2606 /*
2607 * Physically remapped pages are special. Tell the
2608 * rest of the world about it:
2609 * VM_IO tells people not to look at these pages
2610 * (accesses can have side effects).
6aab341e
LT
2611 * VM_PFNMAP tells the core MM that the base pages are just
2612 * raw PFN mappings, and do not have a "struct page" associated
2613 * with them.
314e51b9
KK
2614 * VM_DONTEXPAND
2615 * Disable vma merging and expanding with mremap().
2616 * VM_DONTDUMP
2617 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2618 *
2619 * There's a horrible special case to handle copy-on-write
2620 * behaviour that some programs depend on. We mark the "original"
2621 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2622 * See vm_normal_page() for details.
1da177e4 2623 */
b3b9c293
KK
2624 if (is_cow_mapping(vma->vm_flags)) {
2625 if (addr != vma->vm_start || end != vma->vm_end)
2626 return -EINVAL;
fb155c16 2627 vma->vm_pgoff = pfn;
b3b9c293
KK
2628 }
2629
1c71222e 2630 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2631
2632 BUG_ON(addr >= end);
2633 pfn -= addr >> PAGE_SHIFT;
2634 pgd = pgd_offset(mm, addr);
2635 flush_cache_range(vma, addr, end);
1da177e4
LT
2636 do {
2637 next = pgd_addr_end(addr, end);
c2febafc 2638 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2639 pfn + (addr >> PAGE_SHIFT), prot);
2640 if (err)
74ffa5a3 2641 return err;
1da177e4 2642 } while (pgd++, addr = next, addr != end);
2ab64037 2643
74ffa5a3
CH
2644 return 0;
2645}
2646
2647/**
2648 * remap_pfn_range - remap kernel memory to userspace
2649 * @vma: user vma to map to
2650 * @addr: target page aligned user address to start at
2651 * @pfn: page frame number of kernel physical memory address
2652 * @size: size of mapping area
2653 * @prot: page protection flags for this mapping
2654 *
2655 * Note: this is only safe if the mm semaphore is held when called.
2656 *
2657 * Return: %0 on success, negative error code otherwise.
2658 */
2659int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2660 unsigned long pfn, unsigned long size, pgprot_t prot)
2661{
2662 int err;
2663
2664 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2665 if (err)
74ffa5a3 2666 return -EINVAL;
2ab64037 2667
74ffa5a3
CH
2668 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2669 if (err)
68f48381 2670 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2671 return err;
2672}
2673EXPORT_SYMBOL(remap_pfn_range);
2674
b4cbb197
LT
2675/**
2676 * vm_iomap_memory - remap memory to userspace
2677 * @vma: user vma to map to
abd69b9e 2678 * @start: start of the physical memory to be mapped
b4cbb197
LT
2679 * @len: size of area
2680 *
2681 * This is a simplified io_remap_pfn_range() for common driver use. The
2682 * driver just needs to give us the physical memory range to be mapped,
2683 * we'll figure out the rest from the vma information.
2684 *
2685 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2686 * whatever write-combining details or similar.
a862f68a
MR
2687 *
2688 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2689 */
2690int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2691{
2692 unsigned long vm_len, pfn, pages;
2693
2694 /* Check that the physical memory area passed in looks valid */
2695 if (start + len < start)
2696 return -EINVAL;
2697 /*
2698 * You *really* shouldn't map things that aren't page-aligned,
2699 * but we've historically allowed it because IO memory might
2700 * just have smaller alignment.
2701 */
2702 len += start & ~PAGE_MASK;
2703 pfn = start >> PAGE_SHIFT;
2704 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2705 if (pfn + pages < pfn)
2706 return -EINVAL;
2707
2708 /* We start the mapping 'vm_pgoff' pages into the area */
2709 if (vma->vm_pgoff > pages)
2710 return -EINVAL;
2711 pfn += vma->vm_pgoff;
2712 pages -= vma->vm_pgoff;
2713
2714 /* Can we fit all of the mapping? */
2715 vm_len = vma->vm_end - vma->vm_start;
2716 if (vm_len >> PAGE_SHIFT > pages)
2717 return -EINVAL;
2718
2719 /* Ok, let it rip */
2720 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2721}
2722EXPORT_SYMBOL(vm_iomap_memory);
2723
aee16b3c
JF
2724static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2725 unsigned long addr, unsigned long end,
e80d3909
JR
2726 pte_fn_t fn, void *data, bool create,
2727 pgtbl_mod_mask *mask)
aee16b3c 2728{
8abb50c7 2729 pte_t *pte, *mapped_pte;
be1db475 2730 int err = 0;
3f649ab7 2731 spinlock_t *ptl;
aee16b3c 2732
be1db475 2733 if (create) {
8abb50c7 2734 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2735 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2736 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2737 if (!pte)
2738 return -ENOMEM;
2739 } else {
8abb50c7 2740 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2741 pte_offset_kernel(pmd, addr) :
2742 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2743 if (!pte)
2744 return -EINVAL;
be1db475 2745 }
aee16b3c 2746
38e0edb1
JF
2747 arch_enter_lazy_mmu_mode();
2748
eeb4a05f
CH
2749 if (fn) {
2750 do {
c33c7948 2751 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2752 err = fn(pte++, addr, data);
2753 if (err)
2754 break;
2755 }
2756 } while (addr += PAGE_SIZE, addr != end);
2757 }
e80d3909 2758 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2759
38e0edb1
JF
2760 arch_leave_lazy_mmu_mode();
2761
aee16b3c 2762 if (mm != &init_mm)
8abb50c7 2763 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2764 return err;
2765}
2766
2767static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2768 unsigned long addr, unsigned long end,
e80d3909
JR
2769 pte_fn_t fn, void *data, bool create,
2770 pgtbl_mod_mask *mask)
aee16b3c
JF
2771{
2772 pmd_t *pmd;
2773 unsigned long next;
be1db475 2774 int err = 0;
aee16b3c 2775
1965e933 2776 BUG_ON(pud_leaf(*pud));
ceb86879 2777
be1db475 2778 if (create) {
e80d3909 2779 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2780 if (!pmd)
2781 return -ENOMEM;
2782 } else {
2783 pmd = pmd_offset(pud, addr);
2784 }
aee16b3c
JF
2785 do {
2786 next = pmd_addr_end(addr, end);
0c95cba4
NP
2787 if (pmd_none(*pmd) && !create)
2788 continue;
2789 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2790 return -EINVAL;
2791 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2792 if (!create)
2793 continue;
2794 pmd_clear_bad(pmd);
be1db475 2795 }
0c95cba4
NP
2796 err = apply_to_pte_range(mm, pmd, addr, next,
2797 fn, data, create, mask);
2798 if (err)
2799 break;
aee16b3c 2800 } while (pmd++, addr = next, addr != end);
0c95cba4 2801
aee16b3c
JF
2802 return err;
2803}
2804
c2febafc 2805static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2806 unsigned long addr, unsigned long end,
e80d3909
JR
2807 pte_fn_t fn, void *data, bool create,
2808 pgtbl_mod_mask *mask)
aee16b3c
JF
2809{
2810 pud_t *pud;
2811 unsigned long next;
be1db475 2812 int err = 0;
aee16b3c 2813
be1db475 2814 if (create) {
e80d3909 2815 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2816 if (!pud)
2817 return -ENOMEM;
2818 } else {
2819 pud = pud_offset(p4d, addr);
2820 }
aee16b3c
JF
2821 do {
2822 next = pud_addr_end(addr, end);
0c95cba4
NP
2823 if (pud_none(*pud) && !create)
2824 continue;
2825 if (WARN_ON_ONCE(pud_leaf(*pud)))
2826 return -EINVAL;
2827 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2828 if (!create)
2829 continue;
2830 pud_clear_bad(pud);
be1db475 2831 }
0c95cba4
NP
2832 err = apply_to_pmd_range(mm, pud, addr, next,
2833 fn, data, create, mask);
2834 if (err)
2835 break;
aee16b3c 2836 } while (pud++, addr = next, addr != end);
0c95cba4 2837
aee16b3c
JF
2838 return err;
2839}
2840
c2febafc
KS
2841static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2842 unsigned long addr, unsigned long end,
e80d3909
JR
2843 pte_fn_t fn, void *data, bool create,
2844 pgtbl_mod_mask *mask)
c2febafc
KS
2845{
2846 p4d_t *p4d;
2847 unsigned long next;
be1db475 2848 int err = 0;
c2febafc 2849
be1db475 2850 if (create) {
e80d3909 2851 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2852 if (!p4d)
2853 return -ENOMEM;
2854 } else {
2855 p4d = p4d_offset(pgd, addr);
2856 }
c2febafc
KS
2857 do {
2858 next = p4d_addr_end(addr, end);
0c95cba4
NP
2859 if (p4d_none(*p4d) && !create)
2860 continue;
2861 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2862 return -EINVAL;
2863 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2864 if (!create)
2865 continue;
2866 p4d_clear_bad(p4d);
be1db475 2867 }
0c95cba4
NP
2868 err = apply_to_pud_range(mm, p4d, addr, next,
2869 fn, data, create, mask);
2870 if (err)
2871 break;
c2febafc 2872 } while (p4d++, addr = next, addr != end);
0c95cba4 2873
c2febafc
KS
2874 return err;
2875}
2876
be1db475
DA
2877static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2878 unsigned long size, pte_fn_t fn,
2879 void *data, bool create)
aee16b3c
JF
2880{
2881 pgd_t *pgd;
e80d3909 2882 unsigned long start = addr, next;
57250a5b 2883 unsigned long end = addr + size;
e80d3909 2884 pgtbl_mod_mask mask = 0;
be1db475 2885 int err = 0;
aee16b3c 2886
9cb65bc3
MP
2887 if (WARN_ON(addr >= end))
2888 return -EINVAL;
2889
aee16b3c
JF
2890 pgd = pgd_offset(mm, addr);
2891 do {
2892 next = pgd_addr_end(addr, end);
0c95cba4 2893 if (pgd_none(*pgd) && !create)
be1db475 2894 continue;
0c95cba4
NP
2895 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2896 return -EINVAL;
2897 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2898 if (!create)
2899 continue;
2900 pgd_clear_bad(pgd);
2901 }
2902 err = apply_to_p4d_range(mm, pgd, addr, next,
2903 fn, data, create, &mask);
aee16b3c
JF
2904 if (err)
2905 break;
2906 } while (pgd++, addr = next, addr != end);
57250a5b 2907
e80d3909
JR
2908 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2909 arch_sync_kernel_mappings(start, start + size);
2910
aee16b3c
JF
2911 return err;
2912}
be1db475
DA
2913
2914/*
2915 * Scan a region of virtual memory, filling in page tables as necessary
2916 * and calling a provided function on each leaf page table.
2917 */
2918int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2919 unsigned long size, pte_fn_t fn, void *data)
2920{
2921 return __apply_to_page_range(mm, addr, size, fn, data, true);
2922}
aee16b3c
JF
2923EXPORT_SYMBOL_GPL(apply_to_page_range);
2924
be1db475
DA
2925/*
2926 * Scan a region of virtual memory, calling a provided function on
2927 * each leaf page table where it exists.
2928 *
2929 * Unlike apply_to_page_range, this does _not_ fill in page tables
2930 * where they are absent.
2931 */
2932int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2933 unsigned long size, pte_fn_t fn, void *data)
2934{
2935 return __apply_to_page_range(mm, addr, size, fn, data, false);
2936}
2937EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2938
8f4e2101 2939/*
9b4bdd2f
KS
2940 * handle_pte_fault chooses page fault handler according to an entry which was
2941 * read non-atomically. Before making any commitment, on those architectures
2942 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2943 * parts, do_swap_page must check under lock before unmapping the pte and
2944 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2945 * and do_anonymous_page can safely check later on).
8f4e2101 2946 */
2ca99358 2947static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2948{
2949 int same = 1;
923717cb 2950#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2951 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2952 spin_lock(vmf->ptl);
c33c7948 2953 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2954 spin_unlock(vmf->ptl);
8f4e2101
HD
2955 }
2956#endif
2ca99358
PX
2957 pte_unmap(vmf->pte);
2958 vmf->pte = NULL;
8f4e2101
HD
2959 return same;
2960}
2961
a873dfe1
TL
2962/*
2963 * Return:
2964 * 0: copied succeeded
2965 * -EHWPOISON: copy failed due to hwpoison in source page
2966 * -EAGAIN: copied failed (some other reason)
2967 */
2968static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2969 struct vm_fault *vmf)
6aab341e 2970{
a873dfe1 2971 int ret;
83d116c5
JH
2972 void *kaddr;
2973 void __user *uaddr;
83d116c5
JH
2974 struct vm_area_struct *vma = vmf->vma;
2975 struct mm_struct *mm = vma->vm_mm;
2976 unsigned long addr = vmf->address;
2977
83d116c5 2978 if (likely(src)) {
d302c239
TL
2979 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2980 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2981 return -EHWPOISON;
d302c239 2982 }
a873dfe1 2983 return 0;
83d116c5
JH
2984 }
2985
6aab341e
LT
2986 /*
2987 * If the source page was a PFN mapping, we don't have
2988 * a "struct page" for it. We do a best-effort copy by
2989 * just copying from the original user address. If that
2990 * fails, we just zero-fill it. Live with it.
2991 */
24d2613a
FDF
2992 kaddr = kmap_local_page(dst);
2993 pagefault_disable();
83d116c5
JH
2994 uaddr = (void __user *)(addr & PAGE_MASK);
2995
2996 /*
2997 * On architectures with software "accessed" bits, we would
2998 * take a double page fault, so mark it accessed here.
2999 */
3db82b93 3000 vmf->pte = NULL;
e1fd09e3 3001 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 3002 pte_t entry;
5d2a2dbb 3003
83d116c5 3004 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 3005 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
3006 /*
3007 * Other thread has already handled the fault
7df67697 3008 * and update local tlb only
83d116c5 3009 */
a92cbb82
HD
3010 if (vmf->pte)
3011 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 3012 ret = -EAGAIN;
83d116c5
JH
3013 goto pte_unlock;
3014 }
3015
3016 entry = pte_mkyoung(vmf->orig_pte);
3017 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
5003a2bd 3018 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
83d116c5
JH
3019 }
3020
3021 /*
3022 * This really shouldn't fail, because the page is there
3023 * in the page tables. But it might just be unreadable,
3024 * in which case we just give up and fill the result with
3025 * zeroes.
3026 */
3027 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 3028 if (vmf->pte)
c3e5ea6e
KS
3029 goto warn;
3030
3031 /* Re-validate under PTL if the page is still mapped */
3032 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 3033 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 3034 /* The PTE changed under us, update local tlb */
a92cbb82
HD
3035 if (vmf->pte)
3036 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 3037 ret = -EAGAIN;
c3e5ea6e
KS
3038 goto pte_unlock;
3039 }
3040
5d2a2dbb 3041 /*
985ba004 3042 * The same page can be mapped back since last copy attempt.
c3e5ea6e 3043 * Try to copy again under PTL.
5d2a2dbb 3044 */
c3e5ea6e
KS
3045 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3046 /*
3047 * Give a warn in case there can be some obscure
3048 * use-case
3049 */
3050warn:
3051 WARN_ON_ONCE(1);
3052 clear_page(kaddr);
3053 }
83d116c5
JH
3054 }
3055
a873dfe1 3056 ret = 0;
83d116c5
JH
3057
3058pte_unlock:
3db82b93 3059 if (vmf->pte)
83d116c5 3060 pte_unmap_unlock(vmf->pte, vmf->ptl);
24d2613a
FDF
3061 pagefault_enable();
3062 kunmap_local(kaddr);
83d116c5
JH
3063 flush_dcache_page(dst);
3064
3065 return ret;
6aab341e
LT
3066}
3067
c20cd45e
MH
3068static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3069{
3070 struct file *vm_file = vma->vm_file;
3071
3072 if (vm_file)
3073 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3074
3075 /*
3076 * Special mappings (e.g. VDSO) do not have any file so fake
3077 * a default GFP_KERNEL for them.
3078 */
3079 return GFP_KERNEL;
3080}
3081
fb09a464
KS
3082/*
3083 * Notify the address space that the page is about to become writable so that
3084 * it can prohibit this or wait for the page to get into an appropriate state.
3085 *
3086 * We do this without the lock held, so that it can sleep if it needs to.
3087 */
86aa6998 3088static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 3089{
2b740303 3090 vm_fault_t ret;
38b8cb7f 3091 unsigned int old_flags = vmf->flags;
fb09a464 3092
38b8cb7f 3093 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 3094
dc617f29
DW
3095 if (vmf->vma->vm_file &&
3096 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3097 return VM_FAULT_SIGBUS;
3098
11bac800 3099 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
3100 /* Restore original flags so that caller is not surprised */
3101 vmf->flags = old_flags;
fb09a464
KS
3102 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3103 return ret;
3104 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
3105 folio_lock(folio);
3106 if (!folio->mapping) {
3107 folio_unlock(folio);
fb09a464
KS
3108 return 0; /* retry */
3109 }
3110 ret |= VM_FAULT_LOCKED;
3111 } else
3d243659 3112 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
3113 return ret;
3114}
3115
97ba0c2b
JK
3116/*
3117 * Handle dirtying of a page in shared file mapping on a write fault.
3118 *
3119 * The function expects the page to be locked and unlocks it.
3120 */
89b15332 3121static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 3122{
89b15332 3123 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 3124 struct address_space *mapping;
15b4919a 3125 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
3126 bool dirtied;
3127 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3128
15b4919a
Z
3129 dirtied = folio_mark_dirty(folio);
3130 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 3131 /*
15b4919a
Z
3132 * Take a local copy of the address_space - folio.mapping may be zeroed
3133 * by truncate after folio_unlock(). The address_space itself remains
3134 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
3135 * release semantics to prevent the compiler from undoing this copying.
3136 */
15b4919a
Z
3137 mapping = folio_raw_mapping(folio);
3138 folio_unlock(folio);
97ba0c2b 3139
89b15332
JW
3140 if (!page_mkwrite)
3141 file_update_time(vma->vm_file);
3142
3143 /*
3144 * Throttle page dirtying rate down to writeback speed.
3145 *
3146 * mapping may be NULL here because some device drivers do not
3147 * set page.mapping but still dirty their pages
3148 *
c1e8d7c6 3149 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3150 * is pinning the mapping, as per above.
3151 */
97ba0c2b 3152 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3153 struct file *fpin;
3154
3155 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3156 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3157 if (fpin) {
3158 fput(fpin);
d9272525 3159 return VM_FAULT_COMPLETED;
89b15332 3160 }
97ba0c2b
JK
3161 }
3162
89b15332 3163 return 0;
97ba0c2b
JK
3164}
3165
4e047f89
SR
3166/*
3167 * Handle write page faults for pages that can be reused in the current vma
3168 *
3169 * This can happen either due to the mapping being with the VM_SHARED flag,
3170 * or due to us being the last reference standing to the page. In either
3171 * case, all we need to do here is to mark the page as writable and update
3172 * any related book-keeping.
3173 */
a86bc96b 3174static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3175 __releases(vmf->ptl)
4e047f89 3176{
82b0f8c3 3177 struct vm_area_struct *vma = vmf->vma;
4e047f89 3178 pte_t entry;
6c287605 3179
c89357e2 3180 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605 3181
c2c3b514
KW
3182 if (folio) {
3183 VM_BUG_ON(folio_test_anon(folio) &&
3184 !PageAnonExclusive(vmf->page));
3185 /*
3186 * Clear the folio's cpupid information as the existing
3187 * information potentially belongs to a now completely
3188 * unrelated process.
3189 */
3190 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3191 }
4e047f89 3192
2994302b
JK
3193 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3194 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3195 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3 3196 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
5003a2bd 3197 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
82b0f8c3 3198 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3199 count_vm_event(PGREUSE);
4e047f89
SR
3200}
3201
4ed43798
MWO
3202/*
3203 * We could add a bitflag somewhere, but for now, we know that all
3204 * vm_ops that have a ->map_pages have been audited and don't need
3205 * the mmap_lock to be held.
3206 */
3207static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3208{
3209 struct vm_area_struct *vma = vmf->vma;
3210
3211 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3212 return 0;
3213 vma_end_read(vma);
3214 return VM_FAULT_RETRY;
3215}
3216
a373baed
MWO
3217/**
3218 * vmf_anon_prepare - Prepare to handle an anonymous fault.
3219 * @vmf: The vm_fault descriptor passed from the fault handler.
3220 *
3221 * When preparing to insert an anonymous page into a VMA from a
3222 * fault handler, call this function rather than anon_vma_prepare().
3223 * If this vma does not already have an associated anon_vma and we are
3224 * only protected by the per-VMA lock, the caller must retry with the
3225 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3226 * determine if this VMA can share its anon_vma, and that's not safe to
3227 * do with only the per-VMA lock held for this VMA.
3228 *
3229 * Return: 0 if fault handling can proceed. Any other value should be
3230 * returned to the caller.
3231 */
997f0ecb 3232vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
164b06f2
MWO
3233{
3234 struct vm_area_struct *vma = vmf->vma;
737019cf 3235 vm_fault_t ret = 0;
164b06f2
MWO
3236
3237 if (likely(vma->anon_vma))
3238 return 0;
3239 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
737019cf
MWO
3240 if (!mmap_read_trylock(vma->vm_mm)) {
3241 vma_end_read(vma);
3242 return VM_FAULT_RETRY;
3243 }
164b06f2
MWO
3244 }
3245 if (__anon_vma_prepare(vma))
737019cf
MWO
3246 ret = VM_FAULT_OOM;
3247 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3248 mmap_read_unlock(vma->vm_mm);
3249 return ret;
164b06f2
MWO
3250}
3251
2f38ab2c 3252/*
c89357e2
DH
3253 * Handle the case of a page which we actually need to copy to a new page,
3254 * either due to COW or unsharing.
2f38ab2c 3255 *
c1e8d7c6 3256 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3257 * without the ptl held.
3258 *
3259 * High level logic flow:
3260 *
3261 * - Allocate a page, copy the content of the old page to the new one.
3262 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3263 * - Take the PTL. If the pte changed, bail out and release the allocated page
3264 * - If the pte is still the way we remember it, update the page table and all
3265 * relevant references. This includes dropping the reference the page-table
3266 * held to the old page, as well as updating the rmap.
3267 * - In any case, unlock the PTL and drop the reference we took to the old page.
3268 */
2b740303 3269static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3270{
c89357e2 3271 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3272 struct vm_area_struct *vma = vmf->vma;
bae473a4 3273 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3274 struct folio *old_folio = NULL;
3275 struct folio *new_folio = NULL;
2f38ab2c
SR
3276 pte_t entry;
3277 int page_copied = 0;
ac46d4f3 3278 struct mmu_notifier_range range;
164b06f2 3279 vm_fault_t ret;
cf503cc6 3280 bool pfn_is_zero;
2f38ab2c 3281
662ce1dc
YY
3282 delayacct_wpcopy_start();
3283
28d41a48
MWO
3284 if (vmf->page)
3285 old_folio = page_folio(vmf->page);
164b06f2
MWO
3286 ret = vmf_anon_prepare(vmf);
3287 if (unlikely(ret))
3288 goto out;
2f38ab2c 3289
cf503cc6
KW
3290 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3291 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3292 if (!new_folio)
3293 goto oom;
3294
3295 if (!pfn_is_zero) {
164b06f2 3296 int err;
83d116c5 3297
164b06f2
MWO
3298 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3299 if (err) {
83d116c5
JH
3300 /*
3301 * COW failed, if the fault was solved by other,
3302 * it's fine. If not, userspace would re-fault on
3303 * the same address and we will handle the fault
3304 * from the second attempt.
a873dfe1 3305 * The -EHWPOISON case will not be retried.
83d116c5 3306 */
28d41a48
MWO
3307 folio_put(new_folio);
3308 if (old_folio)
3309 folio_put(old_folio);
662ce1dc
YY
3310
3311 delayacct_wpcopy_end();
164b06f2 3312 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3313 }
28d41a48 3314 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3315 }
2f38ab2c 3316
28d41a48 3317 __folio_mark_uptodate(new_folio);
eb3c24f3 3318
7d4a8be0 3319 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3320 vmf->address & PAGE_MASK,
ac46d4f3
JG
3321 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3322 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3323
3324 /*
3325 * Re-check the pte - we dropped the lock
3326 */
82b0f8c3 3327 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3328 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3329 if (old_folio) {
3330 if (!folio_test_anon(old_folio)) {
6b27cc6c 3331 dec_mm_counter(mm, mm_counter_file(old_folio));
f1a79412 3332 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3333 }
3334 } else {
6080d19f 3335 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3336 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3337 }
2994302b 3338 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3339 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3340 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3341 if (unlikely(unshare)) {
3342 if (pte_soft_dirty(vmf->orig_pte))
3343 entry = pte_mksoft_dirty(entry);
3344 if (pte_uffd_wp(vmf->orig_pte))
3345 entry = pte_mkuffd_wp(entry);
3346 } else {
3347 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3348 }
111fe718 3349
2f38ab2c
SR
3350 /*
3351 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3352 * pte with the new entry, to keep TLBs on different CPUs in
3353 * sync. This code used to set the new PTE then flush TLBs, but
3354 * that left a window where the new PTE could be loaded into
3355 * some TLBs while the old PTE remains in others.
2f38ab2c 3356 */
ec8832d0 3357 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3358 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3359 folio_add_lru_vma(new_folio, vma);
c89357e2 3360 BUG_ON(unshare && pte_write(entry));
f7842747 3361 set_pte_at(mm, vmf->address, vmf->pte, entry);
5003a2bd 3362 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
28d41a48 3363 if (old_folio) {
2f38ab2c
SR
3364 /*
3365 * Only after switching the pte to the new page may
3366 * we remove the mapcount here. Otherwise another
3367 * process may come and find the rmap count decremented
3368 * before the pte is switched to the new page, and
3369 * "reuse" the old page writing into it while our pte
3370 * here still points into it and can be read by other
3371 * threads.
3372 *
3373 * The critical issue is to order this
c4626503
DH
3374 * folio_remove_rmap_pte() with the ptp_clear_flush
3375 * above. Those stores are ordered by (if nothing else,)
2f38ab2c 3376 * the barrier present in the atomic_add_negative
c4626503 3377 * in folio_remove_rmap_pte();
2f38ab2c
SR
3378 *
3379 * Then the TLB flush in ptep_clear_flush ensures that
3380 * no process can access the old page before the
3381 * decremented mapcount is visible. And the old page
3382 * cannot be reused until after the decremented
3383 * mapcount is visible. So transitively, TLBs to
3384 * old page will be flushed before it can be reused.
3385 */
c4626503 3386 folio_remove_rmap_pte(old_folio, vmf->page, vma);
2f38ab2c
SR
3387 }
3388
3389 /* Free the old page.. */
28d41a48 3390 new_folio = old_folio;
2f38ab2c 3391 page_copied = 1;
3db82b93
HD
3392 pte_unmap_unlock(vmf->pte, vmf->ptl);
3393 } else if (vmf->pte) {
7df67697 3394 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3395 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3396 }
3397
ec8832d0 3398 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3399
3400 if (new_folio)
3401 folio_put(new_folio);
28d41a48 3402 if (old_folio) {
f4c4a3f4 3403 if (page_copied)
63b77499 3404 free_swap_cache(old_folio);
28d41a48 3405 folio_put(old_folio);
2f38ab2c 3406 }
662ce1dc
YY
3407
3408 delayacct_wpcopy_end();
cb8d8633 3409 return 0;
2f38ab2c 3410oom:
164b06f2
MWO
3411 ret = VM_FAULT_OOM;
3412out:
28d41a48
MWO
3413 if (old_folio)
3414 folio_put(old_folio);
662ce1dc
YY
3415
3416 delayacct_wpcopy_end();
164b06f2 3417 return ret;
2f38ab2c
SR
3418}
3419
66a6197c
JK
3420/**
3421 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3422 * writeable once the page is prepared
3423 *
3424 * @vmf: structure describing the fault
a86bc96b 3425 * @folio: the folio of vmf->page
66a6197c
JK
3426 *
3427 * This function handles all that is needed to finish a write page fault in a
3428 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3429 * It handles locking of PTE and modifying it.
66a6197c
JK
3430 *
3431 * The function expects the page to be locked or other protection against
3432 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3433 *
2797e79f 3434 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3435 * we acquired PTE lock.
66a6197c 3436 */
a86bc96b 3437static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
66a6197c
JK
3438{
3439 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3440 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3441 &vmf->ptl);
3db82b93
HD
3442 if (!vmf->pte)
3443 return VM_FAULT_NOPAGE;
66a6197c
JK
3444 /*
3445 * We might have raced with another page fault while we released the
3446 * pte_offset_map_lock.
3447 */
c33c7948 3448 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3449 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3450 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3451 return VM_FAULT_NOPAGE;
66a6197c 3452 }
a86bc96b 3453 wp_page_reuse(vmf, folio);
a19e2553 3454 return 0;
66a6197c
JK
3455}
3456
dd906184
BH
3457/*
3458 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3459 * mapping
3460 */
2b740303 3461static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3462{
82b0f8c3 3463 struct vm_area_struct *vma = vmf->vma;
bae473a4 3464
dd906184 3465 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3466 vm_fault_t ret;
dd906184 3467
82b0f8c3 3468 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3469 ret = vmf_can_call_fault(vmf);
3470 if (ret)
3471 return ret;
063e60d8 3472
fe82221f 3473 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3474 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3475 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3476 return ret;
a86bc96b 3477 return finish_mkwrite_fault(vmf, NULL);
dd906184 3478 }
a86bc96b 3479 wp_page_reuse(vmf, NULL);
cb8d8633 3480 return 0;
dd906184
BH
3481}
3482
5a97858b 3483static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3484 __releases(vmf->ptl)
93e478d4 3485{
82b0f8c3 3486 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3487 vm_fault_t ret = 0;
93e478d4 3488
5a97858b 3489 folio_get(folio);
93e478d4 3490
93e478d4 3491 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3492 vm_fault_t tmp;
93e478d4 3493
82b0f8c3 3494 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3495 tmp = vmf_can_call_fault(vmf);
3496 if (tmp) {
063e60d8 3497 folio_put(folio);
4a68fef1 3498 return tmp;
063e60d8
MWO
3499 }
3500
86aa6998 3501 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3502 if (unlikely(!tmp || (tmp &
3503 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3504 folio_put(folio);
93e478d4
SR
3505 return tmp;
3506 }
a86bc96b 3507 tmp = finish_mkwrite_fault(vmf, folio);
a19e2553 3508 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3509 folio_unlock(folio);
3510 folio_put(folio);
66a6197c 3511 return tmp;
93e478d4 3512 }
66a6197c 3513 } else {
a86bc96b 3514 wp_page_reuse(vmf, folio);
5a97858b 3515 folio_lock(folio);
93e478d4 3516 }
89b15332 3517 ret |= fault_dirty_shared_page(vmf);
5a97858b 3518 folio_put(folio);
93e478d4 3519
89b15332 3520 return ret;
93e478d4
SR
3521}
3522
dec078cc
DH
3523static bool wp_can_reuse_anon_folio(struct folio *folio,
3524 struct vm_area_struct *vma)
3525{
cd197c3a
BS
3526 /*
3527 * We could currently only reuse a subpage of a large folio if no
3528 * other subpages of the large folios are still mapped. However,
3529 * let's just consistently not reuse subpages even if we could
3530 * reuse in that scenario, and give back a large folio a bit
3531 * sooner.
3532 */
3533 if (folio_test_large(folio))
3534 return false;
3535
dec078cc
DH
3536 /*
3537 * We have to verify under folio lock: these early checks are
3538 * just an optimization to avoid locking the folio and freeing
3539 * the swapcache if there is little hope that we can reuse.
3540 *
3541 * KSM doesn't necessarily raise the folio refcount.
3542 */
3543 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3544 return false;
3545 if (!folio_test_lru(folio))
3546 /*
3547 * We cannot easily detect+handle references from
3548 * remote LRU caches or references to LRU folios.
3549 */
3550 lru_add_drain();
3551 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3552 return false;
3553 if (!folio_trylock(folio))
3554 return false;
3555 if (folio_test_swapcache(folio))
3556 folio_free_swap(folio);
3557 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3558 folio_unlock(folio);
3559 return false;
3560 }
3561 /*
3562 * Ok, we've got the only folio reference from our mapping
3563 * and the folio is locked, it's dark out, and we're wearing
3564 * sunglasses. Hit it.
3565 */
3566 folio_move_anon_rmap(folio, vma);
3567 folio_unlock(folio);
3568 return true;
3569}
3570
1da177e4 3571/*
c89357e2
DH
3572 * This routine handles present pages, when
3573 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3574 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3575 * (FAULT_FLAG_UNSHARE)
3576 *
3577 * It is done by copying the page to a new address and decrementing the
3578 * shared-page counter for the old page.
1da177e4 3579 *
1da177e4
LT
3580 * Note that this routine assumes that the protection checks have been
3581 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3582 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3583 * done any necessary COW.
1da177e4 3584 *
c89357e2
DH
3585 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3586 * though the page will change only once the write actually happens. This
3587 * avoids a few races, and potentially makes it more efficient.
1da177e4 3588 *
c1e8d7c6 3589 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3590 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3591 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3592 */
2b740303 3593static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3594 __releases(vmf->ptl)
1da177e4 3595{
c89357e2 3596 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3597 struct vm_area_struct *vma = vmf->vma;
b9086fde 3598 struct folio *folio = NULL;
d61ea1cb 3599 pte_t pte;
1da177e4 3600
c89357e2 3601 if (likely(!unshare)) {
c33c7948 3602 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
d61ea1cb
PX
3603 if (!userfaultfd_wp_async(vma)) {
3604 pte_unmap_unlock(vmf->pte, vmf->ptl);
3605 return handle_userfault(vmf, VM_UFFD_WP);
3606 }
3607
3608 /*
3609 * Nothing needed (cache flush, TLB invalidations,
3610 * etc.) because we're only removing the uffd-wp bit,
3611 * which is completely invisible to the user.
3612 */
3613 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3614
3615 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3616 /*
3617 * Update this to be prepared for following up CoW
3618 * handling
3619 */
3620 vmf->orig_pte = pte;
c89357e2
DH
3621 }
3622
3623 /*
3624 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3625 * is flushed in this case before copying.
3626 */
3627 if (unlikely(userfaultfd_wp(vmf->vma) &&
3628 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3629 flush_tlb_page(vmf->vma, vmf->address);
3630 }
6ce64428 3631
a41b70d6 3632 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3633
5a97858b
SK
3634 if (vmf->page)
3635 folio = page_folio(vmf->page);
3636
b9086fde
DH
3637 /*
3638 * Shared mapping: we are guaranteed to have VM_WRITE and
3639 * FAULT_FLAG_WRITE set at this point.
3640 */
3641 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3642 /*
64e45507
PF
3643 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3644 * VM_PFNMAP VMA.
251b97f5
PZ
3645 *
3646 * We should not cow pages in a shared writeable mapping.
dd906184 3647 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3648 */
b9086fde 3649 if (!vmf->page)
2994302b 3650 return wp_pfn_shared(vmf);
5a97858b 3651 return wp_page_shared(vmf, folio);
251b97f5 3652 }
1da177e4 3653
d08b3851 3654 /*
b9086fde
DH
3655 * Private mapping: create an exclusive anonymous page copy if reuse
3656 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
dec078cc
DH
3657 *
3658 * If we encounter a page that is marked exclusive, we must reuse
3659 * the page without further checks.
d08b3851 3660 */
dec078cc
DH
3661 if (folio && folio_test_anon(folio) &&
3662 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3663 if (!PageAnonExclusive(vmf->page))
3664 SetPageAnonExclusive(vmf->page);
c89357e2
DH
3665 if (unlikely(unshare)) {
3666 pte_unmap_unlock(vmf->pte, vmf->ptl);
3667 return 0;
3668 }
a86bc96b 3669 wp_page_reuse(vmf, folio);
cb8d8633 3670 return 0;
1da177e4 3671 }
1da177e4
LT
3672 /*
3673 * Ok, we need to copy. Oh, well..
3674 */
b9086fde
DH
3675 if (folio)
3676 folio_get(folio);
28766805 3677
82b0f8c3 3678 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3679#ifdef CONFIG_KSM
b9086fde 3680 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3681 count_vm_event(COW_KSM);
3682#endif
a41b70d6 3683 return wp_page_copy(vmf);
1da177e4
LT
3684}
3685
97a89413 3686static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3687 unsigned long start_addr, unsigned long end_addr,
3688 struct zap_details *details)
3689{
f5cc4eef 3690 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3691}
3692
f808c13f 3693static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3694 pgoff_t first_index,
3695 pgoff_t last_index,
1da177e4
LT
3696 struct zap_details *details)
3697{
3698 struct vm_area_struct *vma;
1da177e4
LT
3699 pgoff_t vba, vea, zba, zea;
3700
232a6a1c 3701 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3702 vba = vma->vm_pgoff;
d6e93217 3703 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3704 zba = max(first_index, vba);
3705 zea = min(last_index, vea);
1da177e4 3706
97a89413 3707 unmap_mapping_range_vma(vma,
1da177e4
LT
3708 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3709 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3710 details);
1da177e4
LT
3711 }
3712}
3713
22061a1f 3714/**
3506659e
MWO
3715 * unmap_mapping_folio() - Unmap single folio from processes.
3716 * @folio: The locked folio to be unmapped.
22061a1f 3717 *
3506659e 3718 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3719 * Typically, for efficiency, the range of nearby pages has already been
3720 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3721 * truncation or invalidation holds the lock on a folio, it may find that
3722 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3723 * to unmap it finally.
3724 */
3506659e 3725void unmap_mapping_folio(struct folio *folio)
22061a1f 3726{
3506659e 3727 struct address_space *mapping = folio->mapping;
22061a1f 3728 struct zap_details details = { };
232a6a1c
PX
3729 pgoff_t first_index;
3730 pgoff_t last_index;
22061a1f 3731
3506659e 3732 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3733
3506659e 3734 first_index = folio->index;
87b11f86 3735 last_index = folio_next_index(folio) - 1;
232a6a1c 3736
2e148f1e 3737 details.even_cows = false;
3506659e 3738 details.single_folio = folio;
999dad82 3739 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3740
2c865995 3741 i_mmap_lock_read(mapping);
22061a1f 3742 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3743 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3744 last_index, &details);
2c865995 3745 i_mmap_unlock_read(mapping);
22061a1f
HD
3746}
3747
977fbdcd
MW
3748/**
3749 * unmap_mapping_pages() - Unmap pages from processes.
3750 * @mapping: The address space containing pages to be unmapped.
3751 * @start: Index of first page to be unmapped.
3752 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3753 * @even_cows: Whether to unmap even private COWed pages.
3754 *
3755 * Unmap the pages in this address space from any userspace process which
3756 * has them mmaped. Generally, you want to remove COWed pages as well when
3757 * a file is being truncated, but not when invalidating pages from the page
3758 * cache.
3759 */
3760void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3761 pgoff_t nr, bool even_cows)
3762{
3763 struct zap_details details = { };
232a6a1c
PX
3764 pgoff_t first_index = start;
3765 pgoff_t last_index = start + nr - 1;
977fbdcd 3766
2e148f1e 3767 details.even_cows = even_cows;
232a6a1c
PX
3768 if (last_index < first_index)
3769 last_index = ULONG_MAX;
977fbdcd 3770
2c865995 3771 i_mmap_lock_read(mapping);
977fbdcd 3772 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3773 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3774 last_index, &details);
2c865995 3775 i_mmap_unlock_read(mapping);
977fbdcd 3776}
6e0e99d5 3777EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3778
1da177e4 3779/**
8a5f14a2 3780 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3781 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3782 * file.
3783 *
3d41088f 3784 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3785 * @holebegin: byte in first page to unmap, relative to the start of
3786 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3787 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3788 * must keep the partial page. In contrast, we must get rid of
3789 * partial pages.
3790 * @holelen: size of prospective hole in bytes. This will be rounded
3791 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3792 * end of the file.
3793 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3794 * but 0 when invalidating pagecache, don't throw away private data.
3795 */
3796void unmap_mapping_range(struct address_space *mapping,
3797 loff_t const holebegin, loff_t const holelen, int even_cows)
3798{
9eab0421
JX
3799 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3800 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1da177e4
LT
3801
3802 /* Check for overflow. */
3803 if (sizeof(holelen) > sizeof(hlen)) {
3804 long long holeend =
3805 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3806 if (holeend & ~(long long)ULONG_MAX)
3807 hlen = ULONG_MAX - hba + 1;
3808 }
3809
977fbdcd 3810 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3811}
3812EXPORT_SYMBOL(unmap_mapping_range);
3813
b756a3b5
AP
3814/*
3815 * Restore a potential device exclusive pte to a working pte entry
3816 */
3817static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3818{
19672a9e 3819 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3820 struct vm_area_struct *vma = vmf->vma;
3821 struct mmu_notifier_range range;
fdc724d6 3822 vm_fault_t ret;
b756a3b5 3823
7c7b9629
AP
3824 /*
3825 * We need a reference to lock the folio because we don't hold
3826 * the PTL so a racing thread can remove the device-exclusive
3827 * entry and unmap it. If the folio is free the entry must
3828 * have been removed already. If it happens to have already
3829 * been re-allocated after being freed all we do is lock and
3830 * unlock it.
3831 */
3832 if (!folio_try_get(folio))
3833 return 0;
3834
fdc724d6
SB
3835 ret = folio_lock_or_retry(folio, vmf);
3836 if (ret) {
7c7b9629 3837 folio_put(folio);
fdc724d6 3838 return ret;
7c7b9629 3839 }
7d4a8be0 3840 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3841 vma->vm_mm, vmf->address & PAGE_MASK,
3842 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3843 mmu_notifier_invalidate_range_start(&range);
3844
3845 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3846 &vmf->ptl);
c33c7948 3847 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3848 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3849
3db82b93
HD
3850 if (vmf->pte)
3851 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3852 folio_unlock(folio);
7c7b9629 3853 folio_put(folio);
b756a3b5
AP
3854
3855 mmu_notifier_invalidate_range_end(&range);
3856 return 0;
3857}
3858
a160e537 3859static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3860 struct vm_area_struct *vma,
3861 unsigned int fault_flags)
3862{
a160e537 3863 if (!folio_test_swapcache(folio))
c145e0b4 3864 return false;
9202d527 3865 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3866 folio_test_mlocked(folio))
c145e0b4
DH
3867 return true;
3868 /*
3869 * If we want to map a page that's in the swapcache writable, we
3870 * have to detect via the refcount if we're really the exclusive
3871 * user. Try freeing the swapcache to get rid of the swapcache
3872 * reference only in case it's likely that we'll be the exlusive user.
3873 */
a160e537
MWO
3874 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3875 folio_ref_count(folio) == 2;
c145e0b4
DH
3876}
3877
9c28a205
PX
3878static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3879{
3880 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3881 vmf->address, &vmf->ptl);
3db82b93
HD
3882 if (!vmf->pte)
3883 return 0;
9c28a205
PX
3884 /*
3885 * Be careful so that we will only recover a special uffd-wp pte into a
3886 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3887 *
3888 * This should also cover the case where e.g. the pte changed
af19487f 3889 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3890 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3891 */
c33c7948 3892 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3893 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3894 pte_unmap_unlock(vmf->pte, vmf->ptl);
3895 return 0;
3896}
3897
2bad466c
PX
3898static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3899{
3900 if (vma_is_anonymous(vmf->vma))
3901 return do_anonymous_page(vmf);
3902 else
3903 return do_fault(vmf);
3904}
3905
9c28a205
PX
3906/*
3907 * This is actually a page-missing access, but with uffd-wp special pte
3908 * installed. It means this pte was wr-protected before being unmapped.
3909 */
3910static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3911{
3912 /*
3913 * Just in case there're leftover special ptes even after the region
7a079ba2 3914 * got unregistered - we can simply clear them.
9c28a205 3915 */
2bad466c 3916 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3917 return pte_marker_clear(vmf);
3918
2bad466c 3919 return do_pte_missing(vmf);
9c28a205
PX
3920}
3921
5c041f5d
PX
3922static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3923{
3924 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3925 unsigned long marker = pte_marker_get(entry);
3926
3927 /*
ca92ea3d
PX
3928 * PTE markers should never be empty. If anything weird happened,
3929 * the best thing to do is to kill the process along with its mm.
5c041f5d 3930 */
ca92ea3d 3931 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3932 return VM_FAULT_SIGBUS;
3933
15520a3f 3934 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3935 if (marker & PTE_MARKER_POISONED)
3936 return VM_FAULT_HWPOISON;
15520a3f 3937
9c28a205
PX
3938 if (pte_marker_entry_uffd_wp(entry))
3939 return pte_marker_handle_uffd_wp(vmf);
3940
3941 /* This is an unknown pte marker */
3942 return VM_FAULT_SIGBUS;
5c041f5d
PX
3943}
3944
1da177e4 3945/*
c1e8d7c6 3946 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3947 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3948 * We return with pte unmapped and unlocked.
3949 *
c1e8d7c6 3950 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3951 * as does filemap_fault().
1da177e4 3952 */
2b740303 3953vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3954{
82b0f8c3 3955 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3956 struct folio *swapcache, *folio = NULL;
3957 struct page *page;
2799e775 3958 struct swap_info_struct *si = NULL;
14f9135d 3959 rmap_t rmap_flags = RMAP_NONE;
13ddaf26 3960 bool need_clear_cache = false;
1493a191 3961 bool exclusive = false;
65500d23 3962 swp_entry_t entry;
1da177e4 3963 pte_t pte;
2b740303 3964 vm_fault_t ret = 0;
aae466b0 3965 void *shadow = NULL;
1da177e4 3966
2ca99358 3967 if (!pte_unmap_same(vmf))
8f4e2101 3968 goto out;
65500d23 3969
2994302b 3970 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3971 if (unlikely(non_swap_entry(entry))) {
3972 if (is_migration_entry(entry)) {
82b0f8c3
JK
3973 migration_entry_wait(vma->vm_mm, vmf->pmd,
3974 vmf->address);
b756a3b5
AP
3975 } else if (is_device_exclusive_entry(entry)) {
3976 vmf->page = pfn_swap_entry_to_page(entry);
3977 ret = remove_device_exclusive_entry(vmf);
5042db43 3978 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3979 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3980 /*
3981 * migrate_to_ram is not yet ready to operate
3982 * under VMA lock.
3983 */
3984 vma_end_read(vma);
3985 ret = VM_FAULT_RETRY;
3986 goto out;
3987 }
3988
af5cdaf8 3989 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3990 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3991 vmf->address, &vmf->ptl);
3db82b93 3992 if (unlikely(!vmf->pte ||
c33c7948
RR
3993 !pte_same(ptep_get(vmf->pte),
3994 vmf->orig_pte)))
3b65f437 3995 goto unlock;
16ce101d
AP
3996
3997 /*
3998 * Get a page reference while we know the page can't be
3999 * freed.
4000 */
4001 get_page(vmf->page);
4002 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 4003 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 4004 put_page(vmf->page);
d1737fdb
AK
4005 } else if (is_hwpoison_entry(entry)) {
4006 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
4007 } else if (is_pte_marker_entry(entry)) {
4008 ret = handle_pte_marker(vmf);
d1737fdb 4009 } else {
2994302b 4010 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 4011 ret = VM_FAULT_SIGBUS;
d1737fdb 4012 }
0697212a
CL
4013 goto out;
4014 }
0bcac06f 4015
2799e775
ML
4016 /* Prevent swapoff from happening to us. */
4017 si = get_swap_device(entry);
4018 if (unlikely(!si))
4019 goto out;
0bcac06f 4020
5a423081
MWO
4021 folio = swap_cache_get_folio(entry, vma, vmf->address);
4022 if (folio)
4023 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 4024 swapcache = folio;
f8020772 4025
d4f9565a 4026 if (!folio) {
a449bf58
QC
4027 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4028 __swap_count(entry) == 1) {
13ddaf26
KS
4029 /*
4030 * Prevent parallel swapin from proceeding with
4031 * the cache flag. Otherwise, another thread may
4032 * finish swapin first, free the entry, and swapout
4033 * reusing the same entry. It's undetectable as
4034 * pte_same() returns true due to entry reuse.
4035 */
4036 if (swapcache_prepare(entry)) {
4037 /* Relax a bit to prevent rapid repeated page faults */
4038 schedule_timeout_uninterruptible(1);
4039 goto out;
4040 }
4041 need_clear_cache = true;
4042
0bcac06f 4043 /* skip swapcache */
63ad4add
MWO
4044 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
4045 vma, vmf->address, false);
4046 page = &folio->page;
4047 if (folio) {
4048 __folio_set_locked(folio);
4049 __folio_set_swapbacked(folio);
4c6355b2 4050
65995918 4051 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
4052 vma->vm_mm, GFP_KERNEL,
4053 entry)) {
545b1b07 4054 ret = VM_FAULT_OOM;
4c6355b2 4055 goto out_page;
545b1b07 4056 }
0add0c77 4057 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 4058
aae466b0
JK
4059 shadow = get_shadow_from_swap_cache(entry);
4060 if (shadow)
63ad4add 4061 workingset_refault(folio, shadow);
0076f029 4062
63ad4add 4063 folio_add_lru(folio);
0add0c77 4064
c9bdf768 4065 /* To provide entry to swap_read_folio() */
3d2c9087 4066 folio->swap = entry;
c9bdf768 4067 swap_read_folio(folio, true, NULL);
63ad4add 4068 folio->private = NULL;
0bcac06f 4069 }
aa8d22a1 4070 } else {
e9e9b7ec
MK
4071 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4072 vmf);
63ad4add
MWO
4073 if (page)
4074 folio = page_folio(page);
d4f9565a 4075 swapcache = folio;
0bcac06f
MK
4076 }
4077
d4f9565a 4078 if (!folio) {
1da177e4 4079 /*
8f4e2101
HD
4080 * Back out if somebody else faulted in this pte
4081 * while we released the pte lock.
1da177e4 4082 */
82b0f8c3
JK
4083 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4084 vmf->address, &vmf->ptl);
c33c7948
RR
4085 if (likely(vmf->pte &&
4086 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 4087 ret = VM_FAULT_OOM;
65500d23 4088 goto unlock;
1da177e4
LT
4089 }
4090
4091 /* Had to read the page from swap area: Major fault */
4092 ret = VM_FAULT_MAJOR;
f8891e5e 4093 count_vm_event(PGMAJFAULT);
2262185c 4094 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 4095 } else if (PageHWPoison(page)) {
71f72525
WF
4096 /*
4097 * hwpoisoned dirty swapcache pages are kept for killing
4098 * owner processes (which may be unknown at hwpoison time)
4099 */
d1737fdb 4100 ret = VM_FAULT_HWPOISON;
4779cb31 4101 goto out_release;
1da177e4
LT
4102 }
4103
fdc724d6
SB
4104 ret |= folio_lock_or_retry(folio, vmf);
4105 if (ret & VM_FAULT_RETRY)
d065bd81 4106 goto out_release;
073e587e 4107
84d60fdd
DH
4108 if (swapcache) {
4109 /*
3b344157 4110 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
4111 * swapcache from under us. The page pin, and pte_same test
4112 * below, are not enough to exclude that. Even if it is still
4113 * swapcache, we need to check that the page's swap has not
4114 * changed.
4115 */
63ad4add 4116 if (unlikely(!folio_test_swapcache(folio) ||
cfeed8ff 4117 page_swap_entry(page).val != entry.val))
84d60fdd
DH
4118 goto out_page;
4119
4120 /*
4121 * KSM sometimes has to copy on read faults, for example, if
4122 * page->index of !PageKSM() pages would be nonlinear inside the
4123 * anon VMA -- PageKSM() is lost on actual swapout.
4124 */
96db66d9
MWO
4125 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4126 if (unlikely(!folio)) {
84d60fdd 4127 ret = VM_FAULT_OOM;
96db66d9 4128 folio = swapcache;
84d60fdd 4129 goto out_page;
96db66d9 4130 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
6b970599 4131 ret = VM_FAULT_HWPOISON;
96db66d9 4132 folio = swapcache;
6b970599 4133 goto out_page;
84d60fdd 4134 }
96db66d9
MWO
4135 if (folio != swapcache)
4136 page = folio_page(folio, 0);
c145e0b4
DH
4137
4138 /*
4139 * If we want to map a page that's in the swapcache writable, we
4140 * have to detect via the refcount if we're really the exclusive
4141 * owner. Try removing the extra reference from the local LRU
1fec6890 4142 * caches if required.
c145e0b4 4143 */
d4f9565a 4144 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 4145 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 4146 lru_add_drain();
5ad64688
HD
4147 }
4148
4231f842 4149 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 4150
1da177e4 4151 /*
8f4e2101 4152 * Back out if somebody else already faulted in this pte.
1da177e4 4153 */
82b0f8c3
JK
4154 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4155 &vmf->ptl);
c33c7948 4156 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 4157 goto out_nomap;
b8107480 4158
63ad4add 4159 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
4160 ret = VM_FAULT_SIGBUS;
4161 goto out_nomap;
1da177e4
LT
4162 }
4163
78fbe906
DH
4164 /*
4165 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4166 * must never point at an anonymous page in the swapcache that is
4167 * PG_anon_exclusive. Sanity check that this holds and especially, that
4168 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4169 * check after taking the PT lock and making sure that nobody
4170 * concurrently faulted in this page and set PG_anon_exclusive.
4171 */
63ad4add
MWO
4172 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4173 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 4174
1493a191
DH
4175 /*
4176 * Check under PT lock (to protect against concurrent fork() sharing
4177 * the swap entry concurrently) for certainly exclusive pages.
4178 */
63ad4add 4179 if (!folio_test_ksm(folio)) {
1493a191 4180 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 4181 if (folio != swapcache) {
1493a191
DH
4182 /*
4183 * We have a fresh page that is not exposed to the
4184 * swapcache -> certainly exclusive.
4185 */
4186 exclusive = true;
63ad4add 4187 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 4188 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
4189 /*
4190 * This is tricky: not all swap backends support
4191 * concurrent page modifications while under writeback.
4192 *
4193 * So if we stumble over such a page in the swapcache
4194 * we must not set the page exclusive, otherwise we can
4195 * map it writable without further checks and modify it
4196 * while still under writeback.
4197 *
4198 * For these problematic swap backends, simply drop the
4199 * exclusive marker: this is perfectly fine as we start
4200 * writeback only if we fully unmapped the page and
4201 * there are no unexpected references on the page after
4202 * unmapping succeeded. After fully unmapped, no
4203 * further GUP references (FOLL_GET and FOLL_PIN) can
4204 * appear, so dropping the exclusive marker and mapping
4205 * it only R/O is fine.
4206 */
4207 exclusive = false;
4208 }
4209 }
4210
6dca4ac6
PC
4211 /*
4212 * Some architectures may have to restore extra metadata to the page
4213 * when reading from swap. This metadata may be indexed by swap entry
4214 * so this must be called before swap_free().
4215 */
f238b8c3 4216 arch_swap_restore(folio_swap(entry, folio), folio);
6dca4ac6 4217
8c7c6e34 4218 /*
c145e0b4
DH
4219 * Remove the swap entry and conditionally try to free up the swapcache.
4220 * We're already holding a reference on the page but haven't mapped it
4221 * yet.
8c7c6e34 4222 */
c145e0b4 4223 swap_free(entry);
a160e537
MWO
4224 if (should_try_to_free_swap(folio, vma, vmf->flags))
4225 folio_free_swap(folio);
1da177e4 4226
f1a79412
SB
4227 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4228 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 4229 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
4230
4231 /*
1493a191
DH
4232 * Same logic as in do_wp_page(); however, optimize for pages that are
4233 * certainly not shared either because we just allocated them without
4234 * exposing them to the swapcache or because the swap entry indicates
4235 * exclusivity.
c145e0b4 4236 */
63ad4add
MWO
4237 if (!folio_test_ksm(folio) &&
4238 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
4239 if (vmf->flags & FAULT_FLAG_WRITE) {
4240 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4241 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4242 }
14f9135d 4243 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4244 }
1da177e4 4245 flush_icache_page(vma, page);
2994302b 4246 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4247 pte = pte_mksoft_dirty(pte);
f1eb1bac 4248 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4249 pte = pte_mkuffd_wp(pte);
2994302b 4250 vmf->orig_pte = pte;
0bcac06f
MK
4251
4252 /* ksm created a completely new copy */
d4f9565a 4253 if (unlikely(folio != swapcache && swapcache)) {
2853b66b 4254 folio_add_new_anon_rmap(folio, vma, vmf->address);
63ad4add 4255 folio_add_lru_vma(folio, vma);
0bcac06f 4256 } else {
b832a354
DH
4257 folio_add_anon_rmap_pte(folio, page, vma, vmf->address,
4258 rmap_flags);
00501b53 4259 }
1da177e4 4260
63ad4add
MWO
4261 VM_BUG_ON(!folio_test_anon(folio) ||
4262 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4263 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4264 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4265
63ad4add 4266 folio_unlock(folio);
d4f9565a 4267 if (folio != swapcache && swapcache) {
4969c119
AA
4268 /*
4269 * Hold the lock to avoid the swap entry to be reused
4270 * until we take the PT lock for the pte_same() check
4271 * (to avoid false positives from pte_same). For
4272 * further safety release the lock after the swap_free
4273 * so that the swap count won't change under a
4274 * parallel locked swapcache.
4275 */
d4f9565a
MWO
4276 folio_unlock(swapcache);
4277 folio_put(swapcache);
4969c119 4278 }
c475a8ab 4279
82b0f8c3 4280 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4281 ret |= do_wp_page(vmf);
61469f1d
HD
4282 if (ret & VM_FAULT_ERROR)
4283 ret &= VM_FAULT_ERROR;
1da177e4
LT
4284 goto out;
4285 }
4286
4287 /* No need to invalidate - it was non-present before */
5003a2bd 4288 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4289unlock:
3db82b93
HD
4290 if (vmf->pte)
4291 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4292out:
13ddaf26
KS
4293 /* Clear the swap cache pin for direct swapin after PTL unlock */
4294 if (need_clear_cache)
4295 swapcache_clear(si, entry);
2799e775
ML
4296 if (si)
4297 put_swap_device(si);
1da177e4 4298 return ret;
b8107480 4299out_nomap:
3db82b93
HD
4300 if (vmf->pte)
4301 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4302out_page:
63ad4add 4303 folio_unlock(folio);
4779cb31 4304out_release:
63ad4add 4305 folio_put(folio);
d4f9565a
MWO
4306 if (folio != swapcache && swapcache) {
4307 folio_unlock(swapcache);
4308 folio_put(swapcache);
4969c119 4309 }
13ddaf26
KS
4310 if (need_clear_cache)
4311 swapcache_clear(si, entry);
2799e775
ML
4312 if (si)
4313 put_swap_device(si);
65500d23 4314 return ret;
1da177e4
LT
4315}
4316
19eaf449
RR
4317static bool pte_range_none(pte_t *pte, int nr_pages)
4318{
4319 int i;
4320
4321 for (i = 0; i < nr_pages; i++) {
4322 if (!pte_none(ptep_get_lockless(pte + i)))
4323 return false;
4324 }
4325
4326 return true;
4327}
4328
4329static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4330{
19eaf449 4331 struct vm_area_struct *vma = vmf->vma;
085ff35e 4332#ifdef CONFIG_TRANSPARENT_HUGEPAGE
19eaf449
RR
4333 unsigned long orders;
4334 struct folio *folio;
4335 unsigned long addr;
4336 pte_t *pte;
4337 gfp_t gfp;
4338 int order;
4339
4340 /*
4341 * If uffd is active for the vma we need per-page fault fidelity to
4342 * maintain the uffd semantics.
4343 */
4344 if (unlikely(userfaultfd_armed(vma)))
4345 goto fallback;
4346
4347 /*
4348 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4349 * for this vma. Then filter out the orders that can't be allocated over
4350 * the faulting address and still be fully contained in the vma.
4351 */
e0ffb29b
MW
4352 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4353 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
19eaf449
RR
4354 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4355
4356 if (!orders)
4357 goto fallback;
4358
4359 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4360 if (!pte)
4361 return ERR_PTR(-EAGAIN);
4362
4363 /*
4364 * Find the highest order where the aligned range is completely
4365 * pte_none(). Note that all remaining orders will be completely
4366 * pte_none().
4367 */
4368 order = highest_order(orders);
4369 while (orders) {
4370 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4371 if (pte_range_none(pte + pte_index(addr), 1 << order))
4372 break;
4373 order = next_order(&orders, order);
4374 }
4375
4376 pte_unmap(pte);
4377
68dbcf48
BS
4378 if (!orders)
4379 goto fallback;
4380
19eaf449
RR
4381 /* Try allocating the highest of the remaining orders. */
4382 gfp = vma_thp_gfp_mask(vma);
4383 while (orders) {
4384 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4385 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4386 if (folio) {
085ff35e 4387 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
ec33687c 4388 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
085ff35e
KW
4389 folio_put(folio);
4390 goto next;
4391 }
4392 folio_throttle_swaprate(folio, gfp);
19eaf449
RR
4393 clear_huge_page(&folio->page, vmf->address, 1 << order);
4394 return folio;
4395 }
085ff35e 4396next:
ec33687c 4397 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
19eaf449
RR
4398 order = next_order(&orders, order);
4399 }
4400
4401fallback:
4402#endif
085ff35e 4403 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
19eaf449
RR
4404}
4405
1da177e4 4406/*
c1e8d7c6 4407 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4408 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4409 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4410 */
2b740303 4411static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4412{
82b0f8c3 4413 struct vm_area_struct *vma = vmf->vma;
19eaf449 4414 unsigned long addr = vmf->address;
6bc56a4d 4415 struct folio *folio;
2b740303 4416 vm_fault_t ret = 0;
19eaf449 4417 int nr_pages = 1;
1da177e4 4418 pte_t entry;
19eaf449 4419 int i;
1da177e4 4420
6b7339f4
KS
4421 /* File mapping without ->vm_ops ? */
4422 if (vma->vm_flags & VM_SHARED)
4423 return VM_FAULT_SIGBUS;
4424
7267ec00 4425 /*
3db82b93
HD
4426 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4427 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4428 */
4cf58924 4429 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4430 return VM_FAULT_OOM;
4431
11ac5524 4432 /* Use the zero-page for reads */
82b0f8c3 4433 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4434 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4435 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4436 vma->vm_page_prot));
82b0f8c3
JK
4437 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4438 vmf->address, &vmf->ptl);
3db82b93
HD
4439 if (!vmf->pte)
4440 goto unlock;
2bad466c 4441 if (vmf_pte_changed(vmf)) {
7df67697 4442 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4443 goto unlock;
7df67697 4444 }
6b31d595
MH
4445 ret = check_stable_address_space(vma->vm_mm);
4446 if (ret)
4447 goto unlock;
6b251fc9
AA
4448 /* Deliver the page fault to userland, check inside PT lock */
4449 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4450 pte_unmap_unlock(vmf->pte, vmf->ptl);
4451 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4452 }
a13ea5b7
HD
4453 goto setpte;
4454 }
4455
557ed1fa 4456 /* Allocate our own private page. */
a373baed
MWO
4457 ret = vmf_anon_prepare(vmf);
4458 if (ret)
4459 return ret;
19eaf449
RR
4460 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4461 folio = alloc_anon_folio(vmf);
4462 if (IS_ERR(folio))
4463 return 0;
6bc56a4d 4464 if (!folio)
557ed1fa 4465 goto oom;
eb3c24f3 4466
19eaf449
RR
4467 nr_pages = folio_nr_pages(folio);
4468 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4469
52f37629 4470 /*
cb3184de 4471 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4472 * preceding stores to the page contents become visible before
52f37629
MK
4473 * the set_pte_at() write.
4474 */
cb3184de 4475 __folio_mark_uptodate(folio);
8f4e2101 4476
cb3184de 4477 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4478 entry = pte_sw_mkyoung(entry);
1ac0cb5d 4479 if (vma->vm_flags & VM_WRITE)
161e393c 4480 entry = pte_mkwrite(pte_mkdirty(entry), vma);
1da177e4 4481
19eaf449 4482 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3db82b93
HD
4483 if (!vmf->pte)
4484 goto release;
19eaf449
RR
4485 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4486 update_mmu_tlb(vma, addr, vmf->pte);
4487 goto release;
4488 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4489 for (i = 0; i < nr_pages; i++)
4490 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i);
557ed1fa 4491 goto release;
7df67697 4492 }
9ba69294 4493
6b31d595
MH
4494 ret = check_stable_address_space(vma->vm_mm);
4495 if (ret)
4496 goto release;
4497
6b251fc9
AA
4498 /* Deliver the page fault to userland, check inside PT lock */
4499 if (userfaultfd_missing(vma)) {
82b0f8c3 4500 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4501 folio_put(folio);
82b0f8c3 4502 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4503 }
4504
19eaf449
RR
4505 folio_ref_add(folio, nr_pages - 1);
4506 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
ec33687c
BS
4507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4508 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4509#endif
19eaf449 4510 folio_add_new_anon_rmap(folio, vma, addr);
cb3184de 4511 folio_add_lru_vma(folio, vma);
a13ea5b7 4512setpte:
6ed31ba3 4513 if (vmf_orig_pte_uffd_wp(vmf))
2bad466c 4514 entry = pte_mkuffd_wp(entry);
19eaf449 4515 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
1da177e4
LT
4516
4517 /* No need to invalidate - it was non-present before */
19eaf449 4518 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
65500d23 4519unlock:
3db82b93
HD
4520 if (vmf->pte)
4521 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4522 return ret;
8f4e2101 4523release:
cb3184de 4524 folio_put(folio);
8f4e2101 4525 goto unlock;
65500d23 4526oom:
1da177e4
LT
4527 return VM_FAULT_OOM;
4528}
4529
9a95f3cf 4530/*
c1e8d7c6 4531 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4532 * released depending on flags and vma->vm_ops->fault() return value.
4533 * See filemap_fault() and __lock_page_retry().
4534 */
2b740303 4535static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4536{
82b0f8c3 4537 struct vm_area_struct *vma = vmf->vma;
01d1e0e6 4538 struct folio *folio;
2b740303 4539 vm_fault_t ret;
7eae74af 4540
63f3655f
MH
4541 /*
4542 * Preallocate pte before we take page_lock because this might lead to
4543 * deadlocks for memcg reclaim which waits for pages under writeback:
4544 * lock_page(A)
4545 * SetPageWriteback(A)
4546 * unlock_page(A)
4547 * lock_page(B)
4548 * lock_page(B)
d383807a 4549 * pte_alloc_one
63f3655f
MH
4550 * shrink_page_list
4551 * wait_on_page_writeback(A)
4552 * SetPageWriteback(B)
4553 * unlock_page(B)
4554 * # flush A, B to clear the writeback
4555 */
4556 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4557 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4558 if (!vmf->prealloc_pte)
4559 return VM_FAULT_OOM;
63f3655f
MH
4560 }
4561
11bac800 4562 ret = vma->vm_ops->fault(vmf);
3917048d 4563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4564 VM_FAULT_DONE_COW)))
bc2466e4 4565 return ret;
7eae74af 4566
01d1e0e6 4567 folio = page_folio(vmf->page);
667240e0 4568 if (unlikely(PageHWPoison(vmf->page))) {
e53ac737
RR
4569 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4570 if (ret & VM_FAULT_LOCKED) {
01d1e0e6
MWO
4571 if (page_mapped(vmf->page))
4572 unmap_mapping_folio(folio);
4573 /* Retry if a clean folio was removed from the cache. */
4574 if (mapping_evict_folio(folio->mapping, folio))
3149c79f 4575 poisonret = VM_FAULT_NOPAGE;
01d1e0e6 4576 folio_unlock(folio);
e53ac737 4577 }
01d1e0e6 4578 folio_put(folio);
936ca80d 4579 vmf->page = NULL;
e53ac737 4580 return poisonret;
7eae74af
KS
4581 }
4582
4583 if (unlikely(!(ret & VM_FAULT_LOCKED)))
01d1e0e6 4584 folio_lock(folio);
7eae74af 4585 else
01d1e0e6 4586 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
7eae74af 4587
7eae74af
KS
4588 return ret;
4589}
4590
396bcc52 4591#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4592static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4593{
82b0f8c3 4594 struct vm_area_struct *vma = vmf->vma;
953c66c2 4595
82b0f8c3 4596 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4597 /*
4598 * We are going to consume the prealloc table,
4599 * count that as nr_ptes.
4600 */
c4812909 4601 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4602 vmf->prealloc_pte = NULL;
953c66c2
AK
4603}
4604
f9ce0be7 4605vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4606{
ef37b2ea 4607 struct folio *folio = page_folio(page);
82b0f8c3
JK
4608 struct vm_area_struct *vma = vmf->vma;
4609 bool write = vmf->flags & FAULT_FLAG_WRITE;
4610 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4611 pmd_t entry;
d01ac3c3 4612 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459 4613
3485b883 4614 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
d01ac3c3 4615 return ret;
10102459 4616
ef37b2ea 4617 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER)
d01ac3c3 4618 return ret;
10102459 4619
eac96c3e
YS
4620 /*
4621 * Just backoff if any subpage of a THP is corrupted otherwise
4622 * the corrupted page may mapped by PMD silently to escape the
4623 * check. This kind of THP just can be PTE mapped. Access to
4624 * the corrupted subpage should trigger SIGBUS as expected.
4625 */
ef37b2ea 4626 if (unlikely(folio_test_has_hwpoisoned(folio)))
eac96c3e
YS
4627 return ret;
4628
953c66c2 4629 /*
f0953a1b 4630 * Archs like ppc64 need additional space to store information
953c66c2
AK
4631 * related to pte entry. Use the preallocated table for that.
4632 */
82b0f8c3 4633 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4634 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4635 if (!vmf->prealloc_pte)
953c66c2 4636 return VM_FAULT_OOM;
953c66c2
AK
4637 }
4638
82b0f8c3
JK
4639 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4640 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4641 goto out;
4642
9f1f5b60 4643 flush_icache_pages(vma, page, HPAGE_PMD_NR);
10102459
KS
4644
4645 entry = mk_huge_pmd(page, vma->vm_page_prot);
4646 if (write)
f55e1014 4647 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4648
6b27cc6c 4649 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
ef37b2ea 4650 folio_add_file_rmap_pmd(folio, page, vma);
cea86fe2 4651
953c66c2
AK
4652 /*
4653 * deposit and withdraw with pmd lock held
4654 */
4655 if (arch_needs_pgtable_deposit())
82b0f8c3 4656 deposit_prealloc_pte(vmf);
10102459 4657
82b0f8c3 4658 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4659
82b0f8c3 4660 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4661
4662 /* fault is handled */
4663 ret = 0;
95ecedcd 4664 count_vm_event(THP_FILE_MAPPED);
10102459 4665out:
82b0f8c3 4666 spin_unlock(vmf->ptl);
10102459
KS
4667 return ret;
4668}
4669#else
f9ce0be7 4670vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4671{
f9ce0be7 4672 return VM_FAULT_FALLBACK;
10102459
KS
4673}
4674#endif
4675
3bd786f7
YF
4676/**
4677 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4678 * @vmf: Fault decription.
4679 * @folio: The folio that contains @page.
4680 * @page: The first page to create a PTE for.
4681 * @nr: The number of PTEs to create.
4682 * @addr: The first address to create a PTE for.
4683 */
4684void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4685 struct page *page, unsigned int nr, unsigned long addr)
3bb97794 4686{
82b0f8c3
JK
4687 struct vm_area_struct *vma = vmf->vma;
4688 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bd786f7 4689 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
3bb97794 4690 pte_t entry;
7267ec00 4691
3bd786f7 4692 flush_icache_pages(vma, page, nr);
3bb97794 4693 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4694
4695 if (prefault && arch_wants_old_prefaulted_pte())
4696 entry = pte_mkold(entry);
50c25ee9
TB
4697 else
4698 entry = pte_sw_mkyoung(entry);
46bdb427 4699
3bb97794
KS
4700 if (write)
4701 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
6ed31ba3 4702 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
f1eb1bac 4703 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4704 /* copy-on-write page */
4705 if (write && !(vma->vm_flags & VM_SHARED)) {
3bd786f7
YF
4706 VM_BUG_ON_FOLIO(nr != 1, folio);
4707 folio_add_new_anon_rmap(folio, vma, addr);
4708 folio_add_lru_vma(folio, vma);
3bb97794 4709 } else {
68f03208 4710 folio_add_file_rmap_ptes(folio, page, nr, vma);
3bb97794 4711 }
3bd786f7
YF
4712 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4713
4714 /* no need to invalidate: a not-present page won't be cached */
4715 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
3bb97794
KS
4716}
4717
f46f2ade
PX
4718static bool vmf_pte_changed(struct vm_fault *vmf)
4719{
4720 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4721 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4722
c33c7948 4723 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4724}
4725
9118c0cb
JK
4726/**
4727 * finish_fault - finish page fault once we have prepared the page to fault
4728 *
4729 * @vmf: structure describing the fault
4730 *
4731 * This function handles all that is needed to finish a page fault once the
4732 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4733 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4734 * addition.
9118c0cb
JK
4735 *
4736 * The function expects the page to be locked and on success it consumes a
4737 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4738 *
4739 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4740 */
2b740303 4741vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4742{
f9ce0be7 4743 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4744 struct page *page;
f9ce0be7 4745 vm_fault_t ret;
1f2d8b44
KW
4746 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
4747 !(vma->vm_flags & VM_SHARED);
9118c0cb
JK
4748
4749 /* Did we COW the page? */
1f2d8b44 4750 if (is_cow)
9118c0cb
JK
4751 page = vmf->cow_page;
4752 else
4753 page = vmf->page;
6b31d595
MH
4754
4755 /*
4756 * check even for read faults because we might have lost our CoWed
4757 * page
4758 */
f9ce0be7
KS
4759 if (!(vma->vm_flags & VM_SHARED)) {
4760 ret = check_stable_address_space(vma->vm_mm);
4761 if (ret)
4762 return ret;
4763 }
4764
4765 if (pmd_none(*vmf->pmd)) {
4766 if (PageTransCompound(page)) {
4767 ret = do_set_pmd(vmf, page);
4768 if (ret != VM_FAULT_FALLBACK)
4769 return ret;
4770 }
4771
03c4f204
QZ
4772 if (vmf->prealloc_pte)
4773 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4774 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4775 return VM_FAULT_OOM;
4776 }
4777
f9ce0be7
KS
4778 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4779 vmf->address, &vmf->ptl);
3db82b93
HD
4780 if (!vmf->pte)
4781 return VM_FAULT_NOPAGE;
70427f6e 4782
f9ce0be7 4783 /* Re-check under ptl */
70427f6e 4784 if (likely(!vmf_pte_changed(vmf))) {
3bd786f7 4785 struct folio *folio = page_folio(page);
1f2d8b44 4786 int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
70427f6e 4787
3bd786f7 4788 set_pte_range(vmf, folio, page, 1, vmf->address);
1f2d8b44 4789 add_mm_counter(vma->vm_mm, type, 1);
70427f6e
SA
4790 ret = 0;
4791 } else {
4792 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4793 ret = VM_FAULT_NOPAGE;
70427f6e 4794 }
f9ce0be7 4795
f9ce0be7 4796 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4797 return ret;
4798}
4799
53d36a56
LS
4800static unsigned long fault_around_pages __read_mostly =
4801 65536 >> PAGE_SHIFT;
a9b0f861 4802
a9b0f861
KS
4803#ifdef CONFIG_DEBUG_FS
4804static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4805{
53d36a56 4806 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4807 return 0;
4808}
4809
b4903d6e 4810/*
da391d64
WK
4811 * fault_around_bytes must be rounded down to the nearest page order as it's
4812 * what do_fault_around() expects to see.
b4903d6e 4813 */
a9b0f861 4814static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4815{
a9b0f861 4816 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4817 return -EINVAL;
53d36a56
LS
4818
4819 /*
4820 * The minimum value is 1 page, however this results in no fault-around
4821 * at all. See should_fault_around().
4822 */
5aa598a7
KW
4823 val = max(val, PAGE_SIZE);
4824 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
53d36a56 4825
1592eef0
KS
4826 return 0;
4827}
0a1345f8 4828DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4829 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4830
4831static int __init fault_around_debugfs(void)
4832{
d9f7979c
GKH
4833 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4834 &fault_around_bytes_fops);
1592eef0
KS
4835 return 0;
4836}
4837late_initcall(fault_around_debugfs);
1592eef0 4838#endif
8c6e50b0 4839
1fdb412b
KS
4840/*
4841 * do_fault_around() tries to map few pages around the fault address. The hope
4842 * is that the pages will be needed soon and this will lower the number of
4843 * faults to handle.
4844 *
4845 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4846 * not ready to be mapped: not up-to-date, locked, etc.
4847 *
9042599e
LS
4848 * This function doesn't cross VMA or page table boundaries, in order to call
4849 * map_pages() and acquire a PTE lock only once.
1fdb412b 4850 *
53d36a56 4851 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4852 * do_fault_around() expects it to be set to a power of two less than or equal
4853 * to PTRS_PER_PTE.
1fdb412b 4854 *
da391d64 4855 * The virtual address of the area that we map is naturally aligned to
53d36a56 4856 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4857 * (and therefore to page order). This way it's easier to guarantee
4858 * that we don't cross page table boundaries.
1fdb412b 4859 */
2b740303 4860static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4861{
53d36a56 4862 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4863 pgoff_t pte_off = pte_index(vmf->address);
4864 /* The page offset of vmf->address within the VMA. */
4865 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4866 pgoff_t from_pte, to_pte;
58ef47ef 4867 vm_fault_t ret;
8c6e50b0 4868
9042599e
LS
4869 /* The PTE offset of the start address, clamped to the VMA. */
4870 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4871 pte_off - min(pte_off, vma_off));
aecd6f44 4872
9042599e
LS
4873 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4874 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4875 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4876
82b0f8c3 4877 if (pmd_none(*vmf->pmd)) {
4cf58924 4878 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4879 if (!vmf->prealloc_pte)
f9ce0be7 4880 return VM_FAULT_OOM;
8c6e50b0
KS
4881 }
4882
58ef47ef
MWO
4883 rcu_read_lock();
4884 ret = vmf->vma->vm_ops->map_pages(vmf,
4885 vmf->pgoff + from_pte - pte_off,
4886 vmf->pgoff + to_pte - pte_off);
4887 rcu_read_unlock();
4888
4889 return ret;
8c6e50b0
KS
4890}
4891
9c28a205
PX
4892/* Return true if we should do read fault-around, false otherwise */
4893static inline bool should_fault_around(struct vm_fault *vmf)
4894{
4895 /* No ->map_pages? No way to fault around... */
4896 if (!vmf->vma->vm_ops->map_pages)
4897 return false;
4898
4899 if (uffd_disable_fault_around(vmf->vma))
4900 return false;
4901
53d36a56
LS
4902 /* A single page implies no faulting 'around' at all. */
4903 return fault_around_pages > 1;
9c28a205
PX
4904}
4905
2b740303 4906static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4907{
2b740303 4908 vm_fault_t ret = 0;
22d1e68f 4909 struct folio *folio;
8c6e50b0
KS
4910
4911 /*
4912 * Let's call ->map_pages() first and use ->fault() as fallback
4913 * if page by the offset is not ready to be mapped (cold cache or
4914 * something).
4915 */
9c28a205
PX
4916 if (should_fault_around(vmf)) {
4917 ret = do_fault_around(vmf);
4918 if (ret)
4919 return ret;
8c6e50b0 4920 }
e655fb29 4921
12214eba
MWO
4922 ret = vmf_can_call_fault(vmf);
4923 if (ret)
4924 return ret;
f5617ffe 4925
936ca80d 4926 ret = __do_fault(vmf);
e655fb29
KS
4927 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4928 return ret;
4929
9118c0cb 4930 ret |= finish_fault(vmf);
22d1e68f
SK
4931 folio = page_folio(vmf->page);
4932 folio_unlock(folio);
7267ec00 4933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4934 folio_put(folio);
e655fb29
KS
4935 return ret;
4936}
4937
2b740303 4938static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4939{
82b0f8c3 4940 struct vm_area_struct *vma = vmf->vma;
e4621e70 4941 struct folio *folio;
2b740303 4942 vm_fault_t ret;
ec47c3b9 4943
4de8c93a
MWO
4944 ret = vmf_can_call_fault(vmf);
4945 if (!ret)
4946 ret = vmf_anon_prepare(vmf);
4947 if (ret)
4948 return ret;
ec47c3b9 4949
e4621e70
KW
4950 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4951 if (!folio)
ec47c3b9
KS
4952 return VM_FAULT_OOM;
4953
e4621e70 4954 vmf->cow_page = &folio->page;
ec47c3b9 4955
936ca80d 4956 ret = __do_fault(vmf);
ec47c3b9
KS
4957 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4958 goto uncharge_out;
3917048d
JK
4959 if (ret & VM_FAULT_DONE_COW)
4960 return ret;
ec47c3b9 4961
b1aa812b 4962 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
e4621e70 4963 __folio_mark_uptodate(folio);
ec47c3b9 4964
9118c0cb 4965 ret |= finish_fault(vmf);
b1aa812b
JK
4966 unlock_page(vmf->page);
4967 put_page(vmf->page);
7267ec00
KS
4968 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4969 goto uncharge_out;
ec47c3b9
KS
4970 return ret;
4971uncharge_out:
e4621e70 4972 folio_put(folio);
ec47c3b9
KS
4973 return ret;
4974}
4975
2b740303 4976static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4977{
82b0f8c3 4978 struct vm_area_struct *vma = vmf->vma;
2b740303 4979 vm_fault_t ret, tmp;
6f609b7e 4980 struct folio *folio;
1d65f86d 4981
4ed43798
MWO
4982 ret = vmf_can_call_fault(vmf);
4983 if (ret)
4984 return ret;
1d65f86d 4985
936ca80d 4986 ret = __do_fault(vmf);
7eae74af 4987 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4988 return ret;
1da177e4 4989
6f609b7e
SK
4990 folio = page_folio(vmf->page);
4991
1da177e4 4992 /*
f0c6d4d2
KS
4993 * Check if the backing address space wants to know that the page is
4994 * about to become writable
1da177e4 4995 */
fb09a464 4996 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4997 folio_unlock(folio);
86aa6998 4998 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4999 if (unlikely(!tmp ||
5000 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 5001 folio_put(folio);
fb09a464 5002 return tmp;
4294621f 5003 }
fb09a464
KS
5004 }
5005
9118c0cb 5006 ret |= finish_fault(vmf);
7267ec00
KS
5007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5008 VM_FAULT_RETRY))) {
6f609b7e
SK
5009 folio_unlock(folio);
5010 folio_put(folio);
f0c6d4d2 5011 return ret;
1da177e4 5012 }
b827e496 5013
89b15332 5014 ret |= fault_dirty_shared_page(vmf);
1d65f86d 5015 return ret;
54cb8821 5016}
d00806b1 5017
9a95f3cf 5018/*
c1e8d7c6 5019 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 5020 * but allow concurrent faults).
c1e8d7c6 5021 * The mmap_lock may have been released depending on flags and our
9138e47e 5022 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 5023 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 5024 * by other thread calling munmap()).
9a95f3cf 5025 */
2b740303 5026static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 5027{
82b0f8c3 5028 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 5029 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 5030 vm_fault_t ret;
54cb8821 5031
ff09d7ec
AK
5032 /*
5033 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5034 */
5035 if (!vma->vm_ops->fault) {
3db82b93
HD
5036 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5037 vmf->address, &vmf->ptl);
5038 if (unlikely(!vmf->pte))
ff09d7ec
AK
5039 ret = VM_FAULT_SIGBUS;
5040 else {
ff09d7ec
AK
5041 /*
5042 * Make sure this is not a temporary clearing of pte
5043 * by holding ptl and checking again. A R/M/W update
5044 * of pte involves: take ptl, clearing the pte so that
5045 * we don't have concurrent modification by hardware
5046 * followed by an update.
5047 */
c33c7948 5048 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
5049 ret = VM_FAULT_SIGBUS;
5050 else
5051 ret = VM_FAULT_NOPAGE;
5052
5053 pte_unmap_unlock(vmf->pte, vmf->ptl);
5054 }
5055 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
5056 ret = do_read_fault(vmf);
5057 else if (!(vma->vm_flags & VM_SHARED))
5058 ret = do_cow_fault(vmf);
5059 else
5060 ret = do_shared_fault(vmf);
5061
5062 /* preallocated pagetable is unused: free it */
5063 if (vmf->prealloc_pte) {
fc8efd2d 5064 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 5065 vmf->prealloc_pte = NULL;
b0b9b3df
HD
5066 }
5067 return ret;
54cb8821
NP
5068}
5069
f8fd525b 5070int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf,
f4c0d836 5071 unsigned long addr, int page_nid, int *flags)
9532fec1 5072{
f8fd525b
DT
5073 struct vm_area_struct *vma = vmf->vma;
5074
cda6d936 5075 folio_get(folio);
9532fec1 5076
fc137c0d
R
5077 /* Record the current PID acceesing VMA */
5078 vma_set_access_pid_bit(vma);
5079
9532fec1 5080 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 5081 if (page_nid == numa_node_id()) {
9532fec1 5082 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
5083 *flags |= TNF_FAULT_LOCAL;
5084 }
9532fec1 5085
f8fd525b 5086 return mpol_misplaced(folio, vmf, addr);
9532fec1
MG
5087}
5088
6b0ed7b3 5089static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
d2136d74 5090 unsigned long fault_addr, pte_t *fault_pte,
6b0ed7b3
BW
5091 bool writable)
5092{
5093 pte_t pte, old_pte;
5094
d2136d74 5095 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
6b0ed7b3
BW
5096 pte = pte_modify(old_pte, vma->vm_page_prot);
5097 pte = pte_mkyoung(pte);
5098 if (writable)
5099 pte = pte_mkwrite(pte, vma);
d2136d74
BW
5100 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5101 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5102}
5103
5104static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5105 struct folio *folio, pte_t fault_pte,
5106 bool ignore_writable, bool pte_write_upgrade)
5107{
5108 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5109 unsigned long start = max(vmf->address - nr * PAGE_SIZE, vma->vm_start);
5110 unsigned long end = min(vmf->address + (folio_nr_pages(folio) - nr) * PAGE_SIZE, vma->vm_end);
5111 pte_t *start_ptep = vmf->pte - (vmf->address - start) / PAGE_SIZE;
5112 unsigned long addr;
5113
5114 /* Restore all PTEs' mapping of the large folio */
5115 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5116 pte_t ptent = ptep_get(start_ptep);
5117 bool writable = false;
5118
5119 if (!pte_present(ptent) || !pte_protnone(ptent))
5120 continue;
5121
5122 if (pfn_folio(pte_pfn(ptent)) != folio)
5123 continue;
5124
5125 if (!ignore_writable) {
5126 ptent = pte_modify(ptent, vma->vm_page_prot);
5127 writable = pte_write(ptent);
5128 if (!writable && pte_write_upgrade &&
5129 can_change_pte_writable(vma, addr, ptent))
5130 writable = true;
5131 }
5132
5133 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5134 }
9532fec1
MG
5135}
5136
2b740303 5137static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 5138{
82b0f8c3 5139 struct vm_area_struct *vma = vmf->vma;
6695cf68
KW
5140 struct folio *folio = NULL;
5141 int nid = NUMA_NO_NODE;
d2136d74
BW
5142 bool writable = false, ignore_writable = false;
5143 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
90572890 5144 int last_cpupid;
cbee9f88 5145 int target_nid;
04a86453 5146 pte_t pte, old_pte;
d2136d74 5147 int flags = 0, nr_pages;
d10e63f2
MG
5148
5149 /*
6c1b748e
JH
5150 * The pte cannot be used safely until we verify, while holding the page
5151 * table lock, that its contents have not changed during fault handling.
166f61b9 5152 */
82b0f8c3 5153 spin_lock(vmf->ptl);
6c1b748e
JH
5154 /* Read the live PTE from the page tables: */
5155 old_pte = ptep_get(vmf->pte);
5156
5157 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
82b0f8c3 5158 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
5159 goto out;
5160 }
5161
04a86453 5162 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 5163
6a56ccbc
DH
5164 /*
5165 * Detect now whether the PTE could be writable; this information
5166 * is only valid while holding the PT lock.
5167 */
5168 writable = pte_write(pte);
d2136d74 5169 if (!writable && pte_write_upgrade &&
6a56ccbc
DH
5170 can_change_pte_writable(vma, vmf->address, pte))
5171 writable = true;
5172
6695cf68
KW
5173 folio = vm_normal_folio(vma, vmf->address, pte);
5174 if (!folio || folio_is_zone_device(folio))
b99a342d 5175 goto out_map;
d10e63f2 5176
6688cc05 5177 /*
bea66fbd
MG
5178 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5179 * much anyway since they can be in shared cache state. This misses
5180 * the case where a mapping is writable but the process never writes
5181 * to it but pte_write gets cleared during protection updates and
5182 * pte_dirty has unpredictable behaviour between PTE scan updates,
5183 * background writeback, dirty balancing and application behaviour.
6688cc05 5184 */
6a56ccbc 5185 if (!writable)
6688cc05
PZ
5186 flags |= TNF_NO_GROUP;
5187
dabe1d99 5188 /*
6695cf68 5189 * Flag if the folio is shared between multiple address spaces. This
dabe1d99
RR
5190 * is later used when determining whether to group tasks together
5191 */
ebb34f78 5192 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
dabe1d99
RR
5193 flags |= TNF_SHARED;
5194
6695cf68 5195 nid = folio_nid(folio);
d2136d74 5196 nr_pages = folio_nr_pages(folio);
33024536
HY
5197 /*
5198 * For memory tiering mode, cpupid of slow memory page is used
5199 * to record page access time. So use default value.
5200 */
5201 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
6695cf68 5202 !node_is_toptier(nid))
33024536
HY
5203 last_cpupid = (-1 & LAST_CPUPID_MASK);
5204 else
67b33e3f 5205 last_cpupid = folio_last_cpupid(folio);
f8fd525b 5206 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags);
98fa15f3 5207 if (target_nid == NUMA_NO_NODE) {
6695cf68 5208 folio_put(folio);
b99a342d 5209 goto out_map;
4daae3b4 5210 }
b99a342d 5211 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 5212 writable = false;
d2136d74 5213 ignore_writable = true;
4daae3b4
MG
5214
5215 /* Migrate to the requested node */
6695cf68
KW
5216 if (migrate_misplaced_folio(folio, vma, target_nid)) {
5217 nid = target_nid;
6688cc05 5218 flags |= TNF_MIGRATED;
b99a342d 5219 } else {
074c2381 5220 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
5221 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5222 vmf->address, &vmf->ptl);
5223 if (unlikely(!vmf->pte))
5224 goto out;
c33c7948 5225 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
5226 pte_unmap_unlock(vmf->pte, vmf->ptl);
5227 goto out;
5228 }
5229 goto out_map;
5230 }
4daae3b4
MG
5231
5232out:
6695cf68 5233 if (nid != NUMA_NO_NODE)
d2136d74 5234 task_numa_fault(last_cpupid, nid, nr_pages, flags);
d10e63f2 5235 return 0;
b99a342d
HY
5236out_map:
5237 /*
5238 * Make it present again, depending on how arch implements
5239 * non-accessible ptes, some can allow access by kernel mode.
5240 */
d2136d74
BW
5241 if (folio && folio_test_large(folio))
5242 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5243 pte_write_upgrade);
5244 else
5245 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5246 writable);
b99a342d
HY
5247 pte_unmap_unlock(vmf->pte, vmf->ptl);
5248 goto out;
d10e63f2
MG
5249}
5250
2b740303 5251static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 5252{
8f5fd0e1
MWO
5253 struct vm_area_struct *vma = vmf->vma;
5254 if (vma_is_anonymous(vma))
82b0f8c3 5255 return do_huge_pmd_anonymous_page(vmf);
40d49a3c 5256 if (vma->vm_ops->huge_fault)
1d024e7a 5257 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
b96375f7
MW
5258 return VM_FAULT_FALLBACK;
5259}
5260
183f24aa 5261/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 5262static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 5263{
8f5fd0e1 5264 struct vm_area_struct *vma = vmf->vma;
c89357e2 5265 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 5266 vm_fault_t ret;
c89357e2 5267
8f5fd0e1 5268 if (vma_is_anonymous(vma)) {
c89357e2 5269 if (likely(!unshare) &&
d61ea1cb
PX
5270 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5271 if (userfaultfd_wp_async(vmf->vma))
5272 goto split;
529b930b 5273 return handle_userfault(vmf, VM_UFFD_WP);
d61ea1cb 5274 }
5db4f15c 5275 return do_huge_pmd_wp_page(vmf);
529b930b 5276 }
327e9fd4 5277
8f5fd0e1
MWO
5278 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5279 if (vma->vm_ops->huge_fault) {
1d024e7a 5280 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
aea06577
DH
5281 if (!(ret & VM_FAULT_FALLBACK))
5282 return ret;
5283 }
327e9fd4 5284 }
af9e4d5f 5285
d61ea1cb 5286split:
327e9fd4 5287 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 5288 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 5289
b96375f7
MW
5290 return VM_FAULT_FALLBACK;
5291}
5292
2b740303 5293static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 5294{
14c99d65
GJ
5295#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5296 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 5297 struct vm_area_struct *vma = vmf->vma;
14c99d65 5298 /* No support for anonymous transparent PUD pages yet */
c4fd825e 5299 if (vma_is_anonymous(vma))
14c99d65 5300 return VM_FAULT_FALLBACK;
40d49a3c 5301 if (vma->vm_ops->huge_fault)
1d024e7a 5302 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
14c99d65
GJ
5303#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5304 return VM_FAULT_FALLBACK;
5305}
5306
5307static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5308{
327e9fd4
THV
5309#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5310 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 5311 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
5312 vm_fault_t ret;
5313
a00cc7d9 5314 /* No support for anonymous transparent PUD pages yet */
c4fd825e 5315 if (vma_is_anonymous(vma))
327e9fd4 5316 goto split;
c4fd825e
MWO
5317 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5318 if (vma->vm_ops->huge_fault) {
1d024e7a 5319 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
aea06577
DH
5320 if (!(ret & VM_FAULT_FALLBACK))
5321 return ret;
5322 }
327e9fd4
THV
5323 }
5324split:
5325 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 5326 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 5327#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
5328 return VM_FAULT_FALLBACK;
5329}
5330
1da177e4
LT
5331/*
5332 * These routines also need to handle stuff like marking pages dirty
5333 * and/or accessed for architectures that don't do it in hardware (most
5334 * RISC architectures). The early dirtying is also good on the i386.
5335 *
5336 * There is also a hook called "update_mmu_cache()" that architectures
5337 * with external mmu caches can use to update those (ie the Sparc or
5338 * PowerPC hashed page tables that act as extended TLBs).
5339 *
c1e8d7c6 5340 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 5341 * concurrent faults).
9a95f3cf 5342 *
c1e8d7c6 5343 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 5344 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 5345 */
2b740303 5346static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
5347{
5348 pte_t entry;
5349
82b0f8c3 5350 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
5351 /*
5352 * Leave __pte_alloc() until later: because vm_ops->fault may
5353 * want to allocate huge page, and if we expose page table
5354 * for an instant, it will be difficult to retract from
5355 * concurrent faults and from rmap lookups.
5356 */
82b0f8c3 5357 vmf->pte = NULL;
f46f2ade 5358 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5359 } else {
7267ec00
KS
5360 /*
5361 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
5362 * pmd by anon khugepaged, since that takes mmap_lock in write
5363 * mode; but shmem or file collapse to THP could still morph
5364 * it into a huge pmd: just retry later if so.
7267ec00 5365 */
c7ad0880
HD
5366 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5367 vmf->address, &vmf->ptl);
5368 if (unlikely(!vmf->pte))
5369 return 0;
26e1a0c3 5370 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 5371 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5372
2994302b 5373 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
5374 pte_unmap(vmf->pte);
5375 vmf->pte = NULL;
65500d23 5376 }
1da177e4
LT
5377 }
5378
2bad466c
PX
5379 if (!vmf->pte)
5380 return do_pte_missing(vmf);
7267ec00 5381
2994302b
JK
5382 if (!pte_present(vmf->orig_pte))
5383 return do_swap_page(vmf);
7267ec00 5384
2994302b
JK
5385 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5386 return do_numa_page(vmf);
d10e63f2 5387
82b0f8c3 5388 spin_lock(vmf->ptl);
2994302b 5389 entry = vmf->orig_pte;
c33c7948 5390 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5391 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5392 goto unlock;
7df67697 5393 }
c89357e2 5394 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5395 if (!pte_write(entry))
2994302b 5396 return do_wp_page(vmf);
c89357e2
DH
5397 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5398 entry = pte_mkdirty(entry);
1da177e4
LT
5399 }
5400 entry = pte_mkyoung(entry);
82b0f8c3
JK
5401 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5402 vmf->flags & FAULT_FLAG_WRITE)) {
5003a2bd
MWO
5403 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5404 vmf->pte, 1);
1a44e149 5405 } else {
b7333b58
YS
5406 /* Skip spurious TLB flush for retried page fault */
5407 if (vmf->flags & FAULT_FLAG_TRIED)
5408 goto unlock;
1a44e149
AA
5409 /*
5410 * This is needed only for protection faults but the arch code
5411 * is not yet telling us if this is a protection fault or not.
5412 * This still avoids useless tlb flushes for .text page faults
5413 * with threads.
5414 */
82b0f8c3 5415 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5416 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5417 vmf->pte);
1a44e149 5418 }
8f4e2101 5419unlock:
82b0f8c3 5420 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5421 return 0;
1da177e4
LT
5422}
5423
5424/*
4ec31152
MWO
5425 * On entry, we hold either the VMA lock or the mmap_lock
5426 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5427 * the result, the mmap_lock is not held on exit. See filemap_fault()
5428 * and __folio_lock_or_retry().
1da177e4 5429 */
2b740303
SJ
5430static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5431 unsigned long address, unsigned int flags)
1da177e4 5432{
82b0f8c3 5433 struct vm_fault vmf = {
bae473a4 5434 .vma = vma,
1a29d85e 5435 .address = address & PAGE_MASK,
824ddc60 5436 .real_address = address,
bae473a4 5437 .flags = flags,
0721ec8b 5438 .pgoff = linear_page_index(vma, address),
667240e0 5439 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5440 };
dcddffd4 5441 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5442 unsigned long vm_flags = vma->vm_flags;
1da177e4 5443 pgd_t *pgd;
c2febafc 5444 p4d_t *p4d;
2b740303 5445 vm_fault_t ret;
1da177e4 5446
1da177e4 5447 pgd = pgd_offset(mm, address);
c2febafc
KS
5448 p4d = p4d_alloc(mm, pgd, address);
5449 if (!p4d)
5450 return VM_FAULT_OOM;
a00cc7d9 5451
c2febafc 5452 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5453 if (!vmf.pud)
c74df32c 5454 return VM_FAULT_OOM;
625110b5 5455retry_pud:
7da4e2cb 5456 if (pud_none(*vmf.pud) &&
e0ffb29b
MW
5457 thp_vma_allowable_order(vma, vm_flags,
5458 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
a00cc7d9
MW
5459 ret = create_huge_pud(&vmf);
5460 if (!(ret & VM_FAULT_FALLBACK))
5461 return ret;
5462 } else {
5463 pud_t orig_pud = *vmf.pud;
5464
5465 barrier();
5466 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5467
c89357e2
DH
5468 /*
5469 * TODO once we support anonymous PUDs: NUMA case and
5470 * FAULT_FLAG_UNSHARE handling.
5471 */
5472 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5473 ret = wp_huge_pud(&vmf, orig_pud);
5474 if (!(ret & VM_FAULT_FALLBACK))
5475 return ret;
5476 } else {
5477 huge_pud_set_accessed(&vmf, orig_pud);
5478 return 0;
5479 }
5480 }
5481 }
5482
5483 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5484 if (!vmf.pmd)
c74df32c 5485 return VM_FAULT_OOM;
625110b5
TH
5486
5487 /* Huge pud page fault raced with pmd_alloc? */
5488 if (pud_trans_unstable(vmf.pud))
5489 goto retry_pud;
5490
7da4e2cb 5491 if (pmd_none(*vmf.pmd) &&
e0ffb29b
MW
5492 thp_vma_allowable_order(vma, vm_flags,
5493 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
a2d58167 5494 ret = create_huge_pmd(&vmf);
c0292554
KS
5495 if (!(ret & VM_FAULT_FALLBACK))
5496 return ret;
71e3aac0 5497 } else {
26e1a0c3 5498 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5499
5db4f15c 5500 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5501 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5502 !is_pmd_migration_entry(vmf.orig_pmd));
5503 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5504 pmd_migration_entry_wait(mm, vmf.pmd);
5505 return 0;
5506 }
5db4f15c
YS
5507 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5508 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5509 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5510
c89357e2
DH
5511 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5512 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5513 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5514 if (!(ret & VM_FAULT_FALLBACK))
5515 return ret;
a1dd450b 5516 } else {
5db4f15c 5517 huge_pmd_set_accessed(&vmf);
9845cbbd 5518 return 0;
1f1d06c3 5519 }
71e3aac0
AA
5520 }
5521 }
5522
82b0f8c3 5523 return handle_pte_fault(&vmf);
1da177e4
LT
5524}
5525
bce617ed 5526/**
f0953a1b 5527 * mm_account_fault - Do page fault accounting
809ef83c 5528 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5529 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5530 * of perf event counters, but we'll still do the per-task accounting to
5531 * the task who triggered this page fault.
5532 * @address: the faulted address.
5533 * @flags: the fault flags.
5534 * @ret: the fault retcode.
5535 *
f0953a1b 5536 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5537 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5538 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5539 * still be in per-arch page fault handlers at the entry of page fault.
5540 */
53156443 5541static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5542 unsigned long address, unsigned int flags,
5543 vm_fault_t ret)
5544{
5545 bool major;
5546
53156443
SB
5547 /* Incomplete faults will be accounted upon completion. */
5548 if (ret & VM_FAULT_RETRY)
5549 return;
5550
bce617ed 5551 /*
53156443
SB
5552 * To preserve the behavior of older kernels, PGFAULT counters record
5553 * both successful and failed faults, as opposed to perf counters,
5554 * which ignore failed cases.
bce617ed 5555 */
53156443
SB
5556 count_vm_event(PGFAULT);
5557 count_memcg_event_mm(mm, PGFAULT);
5558
5559 /*
5560 * Do not account for unsuccessful faults (e.g. when the address wasn't
5561 * valid). That includes arch_vma_access_permitted() failing before
5562 * reaching here. So this is not a "this many hardware page faults"
5563 * counter. We should use the hw profiling for that.
5564 */
5565 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5566 return;
5567
5568 /*
5569 * We define the fault as a major fault when the final successful fault
5570 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5571 * handle it immediately previously).
5572 */
5573 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5574
a2beb5f1
PX
5575 if (major)
5576 current->maj_flt++;
5577 else
5578 current->min_flt++;
5579
bce617ed 5580 /*
a2beb5f1
PX
5581 * If the fault is done for GUP, regs will be NULL. We only do the
5582 * accounting for the per thread fault counters who triggered the
5583 * fault, and we skip the perf event updates.
bce617ed
PX
5584 */
5585 if (!regs)
5586 return;
5587
a2beb5f1 5588 if (major)
bce617ed 5589 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5590 else
bce617ed 5591 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5592}
5593
ec1c86b2
YZ
5594#ifdef CONFIG_LRU_GEN
5595static void lru_gen_enter_fault(struct vm_area_struct *vma)
5596{
8788f678
YZ
5597 /* the LRU algorithm only applies to accesses with recency */
5598 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5599}
5600
5601static void lru_gen_exit_fault(void)
5602{
5603 current->in_lru_fault = false;
5604}
5605#else
5606static void lru_gen_enter_fault(struct vm_area_struct *vma)
5607{
5608}
5609
5610static void lru_gen_exit_fault(void)
5611{
5612}
5613#endif /* CONFIG_LRU_GEN */
5614
cdc5021c
DH
5615static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5616 unsigned int *flags)
5617{
5618 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5619 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5620 return VM_FAULT_SIGSEGV;
5621 /*
5622 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5623 * just treat it like an ordinary read-fault otherwise.
5624 */
5625 if (!is_cow_mapping(vma->vm_flags))
5626 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5627 } else if (*flags & FAULT_FLAG_WRITE) {
5628 /* Write faults on read-only mappings are impossible ... */
5629 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5630 return VM_FAULT_SIGSEGV;
5631 /* ... and FOLL_FORCE only applies to COW mappings. */
5632 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5633 !is_cow_mapping(vma->vm_flags)))
5634 return VM_FAULT_SIGSEGV;
cdc5021c 5635 }
4089eef0
SB
5636#ifdef CONFIG_PER_VMA_LOCK
5637 /*
5638 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5639 * the assumption that lock is dropped on VM_FAULT_RETRY.
5640 */
5641 if (WARN_ON_ONCE((*flags &
5642 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5643 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5644 return VM_FAULT_SIGSEGV;
5645#endif
5646
cdc5021c
DH
5647 return 0;
5648}
5649
9a95f3cf
PC
5650/*
5651 * By the time we get here, we already hold the mm semaphore
5652 *
c1e8d7c6 5653 * The mmap_lock may have been released depending on flags and our
9138e47e 5654 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5655 */
2b740303 5656vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5657 unsigned int flags, struct pt_regs *regs)
519e5247 5658{
53156443
SB
5659 /* If the fault handler drops the mmap_lock, vma may be freed */
5660 struct mm_struct *mm = vma->vm_mm;
2b740303 5661 vm_fault_t ret;
519e5247
JW
5662
5663 __set_current_state(TASK_RUNNING);
5664
cdc5021c
DH
5665 ret = sanitize_fault_flags(vma, &flags);
5666 if (ret)
53156443 5667 goto out;
cdc5021c 5668
de0c799b
LD
5669 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5670 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5671 flags & FAULT_FLAG_REMOTE)) {
5672 ret = VM_FAULT_SIGSEGV;
5673 goto out;
5674 }
de0c799b 5675
519e5247
JW
5676 /*
5677 * Enable the memcg OOM handling for faults triggered in user
5678 * space. Kernel faults are handled more gracefully.
5679 */
5680 if (flags & FAULT_FLAG_USER)
29ef680a 5681 mem_cgroup_enter_user_fault();
519e5247 5682
ec1c86b2
YZ
5683 lru_gen_enter_fault(vma);
5684
bae473a4
KS
5685 if (unlikely(is_vm_hugetlb_page(vma)))
5686 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5687 else
5688 ret = __handle_mm_fault(vma, address, flags);
519e5247 5689
ec1c86b2
YZ
5690 lru_gen_exit_fault();
5691
49426420 5692 if (flags & FAULT_FLAG_USER) {
29ef680a 5693 mem_cgroup_exit_user_fault();
166f61b9
TH
5694 /*
5695 * The task may have entered a memcg OOM situation but
5696 * if the allocation error was handled gracefully (no
5697 * VM_FAULT_OOM), there is no need to kill anything.
5698 * Just clean up the OOM state peacefully.
5699 */
5700 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5701 mem_cgroup_oom_synchronize(false);
49426420 5702 }
53156443
SB
5703out:
5704 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5705
519e5247
JW
5706 return ret;
5707}
e1d6d01a 5708EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5709
c2508ec5
LT
5710#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5711#include <linux/extable.h>
5712
5713static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5714{
4542057e 5715 if (likely(mmap_read_trylock(mm)))
c2508ec5 5716 return true;
c2508ec5
LT
5717
5718 if (regs && !user_mode(regs)) {
8fa50708 5719 unsigned long ip = exception_ip(regs);
c2508ec5
LT
5720 if (!search_exception_tables(ip))
5721 return false;
5722 }
5723
eda00472 5724 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5725}
5726
5727static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5728{
5729 /*
5730 * We don't have this operation yet.
5731 *
5732 * It should be easy enough to do: it's basically a
5733 * atomic_long_try_cmpxchg_acquire()
5734 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5735 * it also needs the proper lockdep magic etc.
5736 */
5737 return false;
5738}
5739
5740static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5741{
5742 mmap_read_unlock(mm);
5743 if (regs && !user_mode(regs)) {
8fa50708 5744 unsigned long ip = exception_ip(regs);
c2508ec5
LT
5745 if (!search_exception_tables(ip))
5746 return false;
5747 }
eda00472 5748 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5749}
5750
5751/*
5752 * Helper for page fault handling.
5753 *
5754 * This is kind of equivalend to "mmap_read_lock()" followed
5755 * by "find_extend_vma()", except it's a lot more careful about
5756 * the locking (and will drop the lock on failure).
5757 *
5758 * For example, if we have a kernel bug that causes a page
5759 * fault, we don't want to just use mmap_read_lock() to get
5760 * the mm lock, because that would deadlock if the bug were
5761 * to happen while we're holding the mm lock for writing.
5762 *
5763 * So this checks the exception tables on kernel faults in
5764 * order to only do this all for instructions that are actually
5765 * expected to fault.
5766 *
5767 * We can also actually take the mm lock for writing if we
5768 * need to extend the vma, which helps the VM layer a lot.
5769 */
5770struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5771 unsigned long addr, struct pt_regs *regs)
5772{
5773 struct vm_area_struct *vma;
5774
5775 if (!get_mmap_lock_carefully(mm, regs))
5776 return NULL;
5777
5778 vma = find_vma(mm, addr);
5779 if (likely(vma && (vma->vm_start <= addr)))
5780 return vma;
5781
5782 /*
5783 * Well, dang. We might still be successful, but only
5784 * if we can extend a vma to do so.
5785 */
5786 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5787 mmap_read_unlock(mm);
5788 return NULL;
5789 }
5790
5791 /*
5792 * We can try to upgrade the mmap lock atomically,
5793 * in which case we can continue to use the vma
5794 * we already looked up.
5795 *
5796 * Otherwise we'll have to drop the mmap lock and
5797 * re-take it, and also look up the vma again,
5798 * re-checking it.
5799 */
5800 if (!mmap_upgrade_trylock(mm)) {
5801 if (!upgrade_mmap_lock_carefully(mm, regs))
5802 return NULL;
5803
5804 vma = find_vma(mm, addr);
5805 if (!vma)
5806 goto fail;
5807 if (vma->vm_start <= addr)
5808 goto success;
5809 if (!(vma->vm_flags & VM_GROWSDOWN))
5810 goto fail;
5811 }
5812
8d7071af 5813 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5814 goto fail;
5815
5816success:
5817 mmap_write_downgrade(mm);
5818 return vma;
5819
5820fail:
5821 mmap_write_unlock(mm);
5822 return NULL;
5823}
5824#endif
5825
50ee3253
SB
5826#ifdef CONFIG_PER_VMA_LOCK
5827/*
5828 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5829 * stable and not isolated. If the VMA is not found or is being modified the
5830 * function returns NULL.
5831 */
5832struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5833 unsigned long address)
5834{
5835 MA_STATE(mas, &mm->mm_mt, address, address);
5836 struct vm_area_struct *vma;
5837
5838 rcu_read_lock();
5839retry:
5840 vma = mas_walk(&mas);
5841 if (!vma)
5842 goto inval;
5843
50ee3253
SB
5844 if (!vma_start_read(vma))
5845 goto inval;
5846
5847 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5848 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5849 goto inval_end_read;
50ee3253
SB
5850
5851 /* Check if the VMA got isolated after we found it */
5852 if (vma->detached) {
5853 vma_end_read(vma);
52f23865 5854 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5855 /* The area was replaced with another one */
5856 goto retry;
5857 }
5858
5859 rcu_read_unlock();
5860 return vma;
657b5146
JH
5861
5862inval_end_read:
5863 vma_end_read(vma);
50ee3253
SB
5864inval:
5865 rcu_read_unlock();
52f23865 5866 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5867 return NULL;
5868}
5869#endif /* CONFIG_PER_VMA_LOCK */
5870
90eceff1
KS
5871#ifndef __PAGETABLE_P4D_FOLDED
5872/*
5873 * Allocate p4d page table.
5874 * We've already handled the fast-path in-line.
5875 */
5876int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5877{
5878 p4d_t *new = p4d_alloc_one(mm, address);
5879 if (!new)
5880 return -ENOMEM;
5881
90eceff1 5882 spin_lock(&mm->page_table_lock);
ed33b5a6 5883 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5884 p4d_free(mm, new);
ed33b5a6
QZ
5885 } else {
5886 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5887 pgd_populate(mm, pgd, new);
ed33b5a6 5888 }
90eceff1
KS
5889 spin_unlock(&mm->page_table_lock);
5890 return 0;
5891}
5892#endif /* __PAGETABLE_P4D_FOLDED */
5893
1da177e4
LT
5894#ifndef __PAGETABLE_PUD_FOLDED
5895/*
5896 * Allocate page upper directory.
872fec16 5897 * We've already handled the fast-path in-line.
1da177e4 5898 */
c2febafc 5899int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5900{
c74df32c
HD
5901 pud_t *new = pud_alloc_one(mm, address);
5902 if (!new)
1bb3630e 5903 return -ENOMEM;
1da177e4 5904
872fec16 5905 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5906 if (!p4d_present(*p4d)) {
5907 mm_inc_nr_puds(mm);
ed33b5a6 5908 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5909 p4d_populate(mm, p4d, new);
b4e98d9a 5910 } else /* Another has populated it */
5e541973 5911 pud_free(mm, new);
c74df32c 5912 spin_unlock(&mm->page_table_lock);
1bb3630e 5913 return 0;
1da177e4
LT
5914}
5915#endif /* __PAGETABLE_PUD_FOLDED */
5916
5917#ifndef __PAGETABLE_PMD_FOLDED
5918/*
5919 * Allocate page middle directory.
872fec16 5920 * We've already handled the fast-path in-line.
1da177e4 5921 */
1bb3630e 5922int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5923{
a00cc7d9 5924 spinlock_t *ptl;
c74df32c
HD
5925 pmd_t *new = pmd_alloc_one(mm, address);
5926 if (!new)
1bb3630e 5927 return -ENOMEM;
1da177e4 5928
a00cc7d9 5929 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5930 if (!pud_present(*pud)) {
5931 mm_inc_nr_pmds(mm);
ed33b5a6 5932 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5933 pud_populate(mm, pud, new);
ed33b5a6 5934 } else { /* Another has populated it */
5e541973 5935 pmd_free(mm, new);
ed33b5a6 5936 }
a00cc7d9 5937 spin_unlock(ptl);
1bb3630e 5938 return 0;
e0f39591 5939}
1da177e4
LT
5940#endif /* __PAGETABLE_PMD_FOLDED */
5941
0e5e64c0
MS
5942/**
5943 * follow_pte - look up PTE at a user virtual address
29ae7d96 5944 * @vma: the memory mapping
0e5e64c0
MS
5945 * @address: user virtual address
5946 * @ptepp: location to store found PTE
5947 * @ptlp: location to store the lock for the PTE
5948 *
5949 * On a successful return, the pointer to the PTE is stored in @ptepp;
5950 * the corresponding lock is taken and its location is stored in @ptlp.
c5541ba3
DH
5951 *
5952 * The contents of the PTE are only stable until @ptlp is released using
5953 * pte_unmap_unlock(). This function will fail if the PTE is non-present.
5954 * Present PTEs may include PTEs that map refcounted pages, such as
5955 * anonymous folios in COW mappings.
5956 *
5957 * Callers must be careful when relying on PTE content after
5958 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page,
5959 * callers must protect against invalidation with MMU notifiers; otherwise
5960 * access to the PFN at a later point in time can trigger use-after-free.
0e5e64c0
MS
5961 *
5962 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5963 * should be taken for read.
5964 *
c5541ba3 5965 * This function must not be used to modify PTE content.
0e5e64c0
MS
5966 *
5967 * Return: zero on success, -ve otherwise.
5968 */
29ae7d96 5969int follow_pte(struct vm_area_struct *vma, unsigned long address,
0e5e64c0 5970 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49 5971{
29ae7d96 5972 struct mm_struct *mm = vma->vm_mm;
f8ad0f49 5973 pgd_t *pgd;
c2febafc 5974 p4d_t *p4d;
f8ad0f49
JW
5975 pud_t *pud;
5976 pmd_t *pmd;
5977 pte_t *ptep;
5978
c5541ba3
DH
5979 mmap_assert_locked(mm);
5980 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5981 goto out;
5982
29ae7d96
DH
5983 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5984 goto out;
5985
f8ad0f49
JW
5986 pgd = pgd_offset(mm, address);
5987 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5988 goto out;
5989
c2febafc
KS
5990 p4d = p4d_offset(pgd, address);
5991 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5992 goto out;
5993
5994 pud = pud_offset(p4d, address);
f8ad0f49
JW
5995 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5996 goto out;
5997
5998 pmd = pmd_offset(pud, address);
f66055ab 5999 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 6000
f8ad0f49 6001 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
6002 if (!ptep)
6003 goto out;
c33c7948 6004 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
6005 goto unlock;
6006 *ptepp = ptep;
6007 return 0;
6008unlock:
6009 pte_unmap_unlock(ptep, *ptlp);
6010out:
6011 return -EINVAL;
6012}
9fd6dad1
PB
6013EXPORT_SYMBOL_GPL(follow_pte);
6014
28b2ee20 6015#ifdef CONFIG_HAVE_IOREMAP_PROT
96667f8a
DV
6016/**
6017 * generic_access_phys - generic implementation for iomem mmap access
6018 * @vma: the vma to access
f0953a1b 6019 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
6020 * @buf: buffer to read/write
6021 * @len: length of transfer
6022 * @write: set to FOLL_WRITE when writing, otherwise reading
6023 *
6024 * This is a generic implementation for &vm_operations_struct.access for an
6025 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6026 * not page based.
6027 */
28b2ee20
RR
6028int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6029 void *buf, int len, int write)
6030{
6031 resource_size_t phys_addr;
6032 unsigned long prot = 0;
2bc7273b 6033 void __iomem *maddr;
96667f8a
DV
6034 pte_t *ptep, pte;
6035 spinlock_t *ptl;
6036 int offset = offset_in_page(addr);
6037 int ret = -EINVAL;
6038
96667f8a 6039retry:
29ae7d96 6040 if (follow_pte(vma, addr, &ptep, &ptl))
96667f8a 6041 return -EINVAL;
c33c7948 6042 pte = ptep_get(ptep);
96667f8a 6043 pte_unmap_unlock(ptep, ptl);
28b2ee20 6044
96667f8a
DV
6045 prot = pgprot_val(pte_pgprot(pte));
6046 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
6047
6048 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
6049 return -EINVAL;
6050
9cb12d7b 6051 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 6052 if (!maddr)
6053 return -ENOMEM;
6054
29ae7d96 6055 if (follow_pte(vma, addr, &ptep, &ptl))
96667f8a
DV
6056 goto out_unmap;
6057
c33c7948 6058 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
DV
6059 pte_unmap_unlock(ptep, ptl);
6060 iounmap(maddr);
6061
6062 goto retry;
6063 }
6064
28b2ee20
RR
6065 if (write)
6066 memcpy_toio(maddr + offset, buf, len);
6067 else
6068 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
6069 ret = len;
6070 pte_unmap_unlock(ptep, ptl);
6071out_unmap:
28b2ee20
RR
6072 iounmap(maddr);
6073
96667f8a 6074 return ret;
28b2ee20 6075}
5a73633e 6076EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
6077#endif
6078
0ec76a11 6079/*
d3f5ffca 6080 * Access another process' address space as given in mm.
0ec76a11 6081 */
c43cfa42
LS
6082static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6083 void *buf, int len, unsigned int gup_flags)
0ec76a11 6084{
0ec76a11 6085 void *old_buf = buf;
442486ec 6086 int write = gup_flags & FOLL_WRITE;
0ec76a11 6087
d8ed45c5 6088 if (mmap_read_lock_killable(mm))
1e426fe2
KK
6089 return 0;
6090
22883973
KS
6091 /* Untag the address before looking up the VMA */
6092 addr = untagged_addr_remote(mm, addr);
6093
eee9c708
LT
6094 /* Avoid triggering the temporary warning in __get_user_pages */
6095 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6096 return 0;
6097
183ff22b 6098 /* ignore errors, just check how much was successfully transferred */
0ec76a11 6099 while (len) {
ca5e8632 6100 int bytes, offset;
0ec76a11 6101 void *maddr;
ca5e8632
LS
6102 struct vm_area_struct *vma = NULL;
6103 struct page *page = get_user_page_vma_remote(mm, addr,
6104 gup_flags, &vma);
0ec76a11 6105
6a1960b8 6106 if (IS_ERR(page)) {
9471f1f2
LT
6107 /* We might need to expand the stack to access it */
6108 vma = vma_lookup(mm, addr);
6109 if (!vma) {
6110 vma = expand_stack(mm, addr);
6111
6112 /* mmap_lock was dropped on failure */
6113 if (!vma)
6114 return buf - old_buf;
6115
6116 /* Try again if stack expansion worked */
6117 continue;
6118 }
6119
28b2ee20
RR
6120 /*
6121 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6122 * we can access using slightly different code.
6123 */
9471f1f2
LT
6124 bytes = 0;
6125#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 6126 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
6127 bytes = vma->vm_ops->access(vma, addr, buf,
6128 len, write);
dbffcd03 6129#endif
9471f1f2
LT
6130 if (bytes <= 0)
6131 break;
0ec76a11 6132 } else {
28b2ee20
RR
6133 bytes = len;
6134 offset = addr & (PAGE_SIZE-1);
6135 if (bytes > PAGE_SIZE-offset)
6136 bytes = PAGE_SIZE-offset;
6137
f7ef5fe7 6138 maddr = kmap_local_page(page);
28b2ee20
RR
6139 if (write) {
6140 copy_to_user_page(vma, page, addr,
6141 maddr + offset, buf, bytes);
6142 set_page_dirty_lock(page);
6143 } else {
6144 copy_from_user_page(vma, page, addr,
6145 buf, maddr + offset, bytes);
6146 }
f7ef5fe7 6147 unmap_and_put_page(page, maddr);
0ec76a11 6148 }
0ec76a11
DH
6149 len -= bytes;
6150 buf += bytes;
6151 addr += bytes;
6152 }
d8ed45c5 6153 mmap_read_unlock(mm);
0ec76a11
DH
6154
6155 return buf - old_buf;
6156}
03252919 6157
5ddd36b9 6158/**
ae91dbfc 6159 * access_remote_vm - access another process' address space
5ddd36b9
SW
6160 * @mm: the mm_struct of the target address space
6161 * @addr: start address to access
6162 * @buf: source or destination buffer
6163 * @len: number of bytes to transfer
6347e8d5 6164 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
6165 *
6166 * The caller must hold a reference on @mm.
a862f68a
MR
6167 *
6168 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
6169 */
6170int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 6171 void *buf, int len, unsigned int gup_flags)
5ddd36b9 6172{
d3f5ffca 6173 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
6174}
6175
206cb636
SW
6176/*
6177 * Access another process' address space.
6178 * Source/target buffer must be kernel space,
6179 * Do not walk the page table directly, use get_user_pages
6180 */
6181int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 6182 void *buf, int len, unsigned int gup_flags)
206cb636
SW
6183{
6184 struct mm_struct *mm;
6185 int ret;
6186
6187 mm = get_task_mm(tsk);
6188 if (!mm)
6189 return 0;
6190
d3f5ffca 6191 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 6192
206cb636
SW
6193 mmput(mm);
6194
6195 return ret;
6196}
fcd35857 6197EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 6198
03252919
AK
6199/*
6200 * Print the name of a VMA.
6201 */
6202void print_vma_addr(char *prefix, unsigned long ip)
6203{
6204 struct mm_struct *mm = current->mm;
6205 struct vm_area_struct *vma;
6206
e8bff74a 6207 /*
0a7f682d 6208 * we might be running from an atomic context so we cannot sleep
e8bff74a 6209 */
d8ed45c5 6210 if (!mmap_read_trylock(mm))
e8bff74a
IM
6211 return;
6212
de7e71ef 6213 vma = vma_lookup(mm, ip);
03252919
AK
6214 if (vma && vma->vm_file) {
6215 struct file *f = vma->vm_file;
de7e71ef
LT
6216 ip -= vma->vm_start;
6217 ip += vma->vm_pgoff << PAGE_SHIFT;
6218 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6219 vma->vm_start,
6220 vma->vm_end - vma->vm_start);
03252919 6221 }
d8ed45c5 6222 mmap_read_unlock(mm);
03252919 6223}
3ee1afa3 6224
662bbcb2 6225#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 6226void __might_fault(const char *file, int line)
3ee1afa3 6227{
9ec23531 6228 if (pagefault_disabled())
662bbcb2 6229 return;
42a38756 6230 __might_sleep(file, line);
9ec23531 6231#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 6232 if (current->mm)
da1c55f1 6233 might_lock_read(&current->mm->mmap_lock);
9ec23531 6234#endif
3ee1afa3 6235}
9ec23531 6236EXPORT_SYMBOL(__might_fault);
3ee1afa3 6237#endif
47ad8475
AA
6238
6239#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
6240/*
6241 * Process all subpages of the specified huge page with the specified
6242 * operation. The target subpage will be processed last to keep its
6243 * cache lines hot.
6244 */
1cb9dc4b 6245static inline int process_huge_page(
c6ddfb6c 6246 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 6247 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 6248 void *arg)
47ad8475 6249{
1cb9dc4b 6250 int i, n, base, l, ret;
c79b57e4
HY
6251 unsigned long addr = addr_hint &
6252 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 6253
c6ddfb6c 6254 /* Process target subpage last to keep its cache lines hot */
47ad8475 6255 might_sleep();
c79b57e4
HY
6256 n = (addr_hint - addr) / PAGE_SIZE;
6257 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 6258 /* If target subpage in first half of huge page */
c79b57e4
HY
6259 base = 0;
6260 l = n;
c6ddfb6c 6261 /* Process subpages at the end of huge page */
c79b57e4
HY
6262 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
6263 cond_resched();
1cb9dc4b
LS
6264 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6265 if (ret)
6266 return ret;
c79b57e4
HY
6267 }
6268 } else {
c6ddfb6c 6269 /* If target subpage in second half of huge page */
c79b57e4
HY
6270 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
6271 l = pages_per_huge_page - n;
c6ddfb6c 6272 /* Process subpages at the begin of huge page */
c79b57e4
HY
6273 for (i = 0; i < base; i++) {
6274 cond_resched();
1cb9dc4b
LS
6275 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6276 if (ret)
6277 return ret;
c79b57e4
HY
6278 }
6279 }
6280 /*
c6ddfb6c
HY
6281 * Process remaining subpages in left-right-left-right pattern
6282 * towards the target subpage
c79b57e4
HY
6283 */
6284 for (i = 0; i < l; i++) {
6285 int left_idx = base + i;
6286 int right_idx = base + 2 * l - 1 - i;
6287
6288 cond_resched();
1cb9dc4b
LS
6289 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6290 if (ret)
6291 return ret;
47ad8475 6292 cond_resched();
1cb9dc4b
LS
6293 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6294 if (ret)
6295 return ret;
47ad8475 6296 }
1cb9dc4b 6297 return 0;
47ad8475
AA
6298}
6299
c6ddfb6c
HY
6300static void clear_gigantic_page(struct page *page,
6301 unsigned long addr,
6302 unsigned int pages_per_huge_page)
6303{
6304 int i;
14455eab 6305 struct page *p;
c6ddfb6c
HY
6306
6307 might_sleep();
14455eab
CL
6308 for (i = 0; i < pages_per_huge_page; i++) {
6309 p = nth_page(page, i);
c6ddfb6c
HY
6310 cond_resched();
6311 clear_user_highpage(p, addr + i * PAGE_SIZE);
6312 }
6313}
6314
1cb9dc4b 6315static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
6316{
6317 struct page *page = arg;
6318
21fff064 6319 clear_user_highpage(nth_page(page, idx), addr);
1cb9dc4b 6320 return 0;
c6ddfb6c
HY
6321}
6322
6323void clear_huge_page(struct page *page,
6324 unsigned long addr_hint, unsigned int pages_per_huge_page)
6325{
6326 unsigned long addr = addr_hint &
6327 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6328
6329 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6330 clear_gigantic_page(page, addr, pages_per_huge_page);
6331 return;
6332 }
6333
6334 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6335}
6336
1cb9dc4b 6337static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6338 unsigned long addr,
6339 struct vm_area_struct *vma,
6340 unsigned int pages_per_huge_page)
47ad8475
AA
6341{
6342 int i;
c0e8150e
Z
6343 struct page *dst_page;
6344 struct page *src_page;
47ad8475 6345
14455eab 6346 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6347 dst_page = folio_page(dst, i);
6348 src_page = folio_page(src, i);
14455eab 6349
47ad8475 6350 cond_resched();
1cb9dc4b
LS
6351 if (copy_mc_user_highpage(dst_page, src_page,
6352 addr + i*PAGE_SIZE, vma)) {
6353 memory_failure_queue(page_to_pfn(src_page), 0);
6354 return -EHWPOISON;
6355 }
47ad8475 6356 }
1cb9dc4b 6357 return 0;
47ad8475
AA
6358}
6359
c9f4cd71
HY
6360struct copy_subpage_arg {
6361 struct page *dst;
6362 struct page *src;
6363 struct vm_area_struct *vma;
6364};
6365
1cb9dc4b 6366static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6367{
6368 struct copy_subpage_arg *copy_arg = arg;
21fff064
KW
6369 struct page *dst = nth_page(copy_arg->dst, idx);
6370 struct page *src = nth_page(copy_arg->src, idx);
c9f4cd71 6371
21fff064
KW
6372 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) {
6373 memory_failure_queue(page_to_pfn(src), 0);
1cb9dc4b
LS
6374 return -EHWPOISON;
6375 }
6376 return 0;
c9f4cd71
HY
6377}
6378
1cb9dc4b
LS
6379int copy_user_large_folio(struct folio *dst, struct folio *src,
6380 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6381{
c0e8150e 6382 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6383 unsigned long addr = addr_hint &
6384 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6385 struct copy_subpage_arg arg = {
c0e8150e
Z
6386 .dst = &dst->page,
6387 .src = &src->page,
c9f4cd71
HY
6388 .vma = vma,
6389 };
47ad8475 6390
1cb9dc4b
LS
6391 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6392 return copy_user_gigantic_page(dst, src, addr, vma,
6393 pages_per_huge_page);
47ad8475 6394
1cb9dc4b 6395 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6396}
fa4d75c1 6397
e87340ca
Z
6398long copy_folio_from_user(struct folio *dst_folio,
6399 const void __user *usr_src,
6400 bool allow_pagefault)
fa4d75c1 6401{
e87340ca 6402 void *kaddr;
fa4d75c1 6403 unsigned long i, rc = 0;
e87340ca
Z
6404 unsigned int nr_pages = folio_nr_pages(dst_folio);
6405 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6406 struct page *subpage;
fa4d75c1 6407
e87340ca
Z
6408 for (i = 0; i < nr_pages; i++) {
6409 subpage = folio_page(dst_folio, i);
6410 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6411 if (!allow_pagefault)
6412 pagefault_disable();
e87340ca 6413 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6414 if (!allow_pagefault)
6415 pagefault_enable();
e87340ca 6416 kunmap_local(kaddr);
fa4d75c1
MK
6417
6418 ret_val -= (PAGE_SIZE - rc);
6419 if (rc)
6420 break;
6421
e763243c
MS
6422 flush_dcache_page(subpage);
6423
fa4d75c1
MK
6424 cond_resched();
6425 }
6426 return ret_val;
6427}
47ad8475 6428#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6429
40b64acd 6430#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6431
6432static struct kmem_cache *page_ptl_cachep;
6433
6434void __init ptlock_cache_init(void)
6435{
6436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6437 SLAB_PANIC, NULL);
6438}
6439
f5ecca06 6440bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6441{
6442 spinlock_t *ptl;
6443
b35f1819 6444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6445 if (!ptl)
6446 return false;
f5ecca06 6447 ptdesc->ptl = ptl;
49076ec2
KS
6448 return true;
6449}
6450
6ed1b8a0 6451void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6452{
6ed1b8a0 6453 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6454}
6455#endif
239e9a90
PX
6456
6457void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6458{
6459 if (is_vm_hugetlb_page(vma))
6460 hugetlb_vma_lock_read(vma);
6461}
6462
6463void vma_pgtable_walk_end(struct vm_area_struct *vma)
6464{
6465 if (is_vm_hugetlb_page(vma))
6466 hugetlb_vma_unlock_read(vma);
6467}