mm: always compile in pte markers
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d
PX
106static vm_fault_t do_fault(struct vm_fault *vmf);
107
1da177e4
LT
108/*
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113 * and ZONE_HIGHMEM.
114 */
166f61b9 115void *high_memory;
1da177e4 116EXPORT_SYMBOL(high_memory);
1da177e4 117
32a93233
IM
118/*
119 * Randomize the address space (stacks, mmaps, brk, etc.).
120 *
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
123 */
124int randomize_va_space __read_mostly =
125#ifdef CONFIG_COMPAT_BRK
126 1;
127#else
128 2;
129#endif
a62eaf15 130
46bdb427
WD
131#ifndef arch_wants_old_prefaulted_pte
132static inline bool arch_wants_old_prefaulted_pte(void)
133{
134 /*
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
138 */
139 return false;
140}
141#endif
142
a62eaf15
AK
143static int __init disable_randmaps(char *s)
144{
145 randomize_va_space = 0;
9b41046c 146 return 1;
a62eaf15
AK
147}
148__setup("norandmaps", disable_randmaps);
149
62eede62 150unsigned long zero_pfn __read_mostly;
0b70068e
AB
151EXPORT_SYMBOL(zero_pfn);
152
166f61b9
TH
153unsigned long highest_memmap_pfn __read_mostly;
154
a13ea5b7
HD
155/*
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157 */
158static int __init init_zero_pfn(void)
159{
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 return 0;
162}
e720e7d0 163early_initcall(init_zero_pfn);
a62eaf15 164
f1a79412 165void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 166{
f1a79412 167 trace_rss_stat(mm, member);
b3d1411b 168}
d559db08 169
1da177e4
LT
170/*
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
173 */
9e1b32ca
BH
174static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 unsigned long addr)
1da177e4 176{
2f569afd 177 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 178 pmd_clear(pmd);
9e1b32ca 179 pte_free_tlb(tlb, token, addr);
c4812909 180 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
181}
182
e0da382c
HD
183static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
1da177e4
LT
186{
187 pmd_t *pmd;
188 unsigned long next;
e0da382c 189 unsigned long start;
1da177e4 190
e0da382c 191 start = addr;
1da177e4 192 pmd = pmd_offset(pud, addr);
1da177e4
LT
193 do {
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
196 continue;
9e1b32ca 197 free_pte_range(tlb, pmd, addr);
1da177e4
LT
198 } while (pmd++, addr = next, addr != end);
199
e0da382c
HD
200 start &= PUD_MASK;
201 if (start < floor)
202 return;
203 if (ceiling) {
204 ceiling &= PUD_MASK;
205 if (!ceiling)
206 return;
1da177e4 207 }
e0da382c
HD
208 if (end - 1 > ceiling - 1)
209 return;
210
211 pmd = pmd_offset(pud, start);
212 pud_clear(pud);
9e1b32ca 213 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 214 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
215}
216
c2febafc 217static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pud_t *pud;
222 unsigned long next;
e0da382c 223 unsigned long start;
1da177e4 224
e0da382c 225 start = addr;
c2febafc 226 pud = pud_offset(p4d, addr);
1da177e4
LT
227 do {
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
230 continue;
e0da382c 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
232 } while (pud++, addr = next, addr != end);
233
c2febafc
KS
234 start &= P4D_MASK;
235 if (start < floor)
236 return;
237 if (ceiling) {
238 ceiling &= P4D_MASK;
239 if (!ceiling)
240 return;
241 }
242 if (end - 1 > ceiling - 1)
243 return;
244
245 pud = pud_offset(p4d, start);
246 p4d_clear(p4d);
247 pud_free_tlb(tlb, pud, start);
b4e98d9a 248 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
249}
250
251static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
254{
255 p4d_t *p4d;
256 unsigned long next;
257 unsigned long start;
258
259 start = addr;
260 p4d = p4d_offset(pgd, addr);
261 do {
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
264 continue;
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
267
e0da382c
HD
268 start &= PGDIR_MASK;
269 if (start < floor)
270 return;
271 if (ceiling) {
272 ceiling &= PGDIR_MASK;
273 if (!ceiling)
274 return;
1da177e4 275 }
e0da382c
HD
276 if (end - 1 > ceiling - 1)
277 return;
278
c2febafc 279 p4d = p4d_offset(pgd, start);
e0da382c 280 pgd_clear(pgd);
c2febafc 281 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
282}
283
284/*
e0da382c 285 * This function frees user-level page tables of a process.
1da177e4 286 */
42b77728 287void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
1da177e4
LT
290{
291 pgd_t *pgd;
292 unsigned long next;
e0da382c
HD
293
294 /*
295 * The next few lines have given us lots of grief...
296 *
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
300 *
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
308 *
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
313 *
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
318 */
1da177e4 319
e0da382c
HD
320 addr &= PMD_MASK;
321 if (addr < floor) {
322 addr += PMD_SIZE;
323 if (!addr)
324 return;
325 }
326 if (ceiling) {
327 ceiling &= PMD_MASK;
328 if (!ceiling)
329 return;
330 }
331 if (end - 1 > ceiling - 1)
332 end -= PMD_SIZE;
333 if (addr > end - 1)
334 return;
07e32661
AK
335 /*
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
338 */
ed6a7935 339 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 340 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
341 do {
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
344 continue;
c2febafc 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 346 } while (pgd++, addr = next, addr != end);
e0da382c
HD
347}
348
763ecb03
LH
349void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
e0da382c 352{
763ecb03
LH
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355 do {
e0da382c 356 unsigned long addr = vma->vm_start;
763ecb03
LH
357 struct vm_area_struct *next;
358
359 /*
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
362 */
363 next = mas_find(&mas, ceiling - 1);
e0da382c 364
8f4f8c16 365 /*
25d9e2d1 366 * Hide vma from rmap and truncate_pagecache before freeing
367 * pgtables
8f4f8c16 368 */
5beb4930 369 unlink_anon_vmas(vma);
8f4f8c16
HD
370 unlink_file_vma(vma);
371
9da61aef 372 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 374 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
375 } else {
376 /*
377 * Optimization: gather nearby vmas into one call down
378 */
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 380 && !is_vm_hugetlb_page(next)) {
3bf5ee95 381 vma = next;
763ecb03 382 next = mas_find(&mas, ceiling - 1);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16 384 unlink_file_vma(vma);
3bf5ee95
HD
385 }
386 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 387 floor, next ? next->vm_start : ceiling);
3bf5ee95 388 }
e0da382c 389 vma = next;
763ecb03 390 } while (vma);
1da177e4
LT
391}
392
03c4f204 393void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 394{
03c4f204 395 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 396
8ac1f832 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 398 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
399 /*
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
403 *
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
411 */
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
413 pmd_populate(mm, pmd, *pte);
414 *pte = NULL;
4b471e88 415 }
c4088ebd 416 spin_unlock(ptl);
03c4f204
QZ
417}
418
4cf58924 419int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 420{
4cf58924 421 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
422 if (!new)
423 return -ENOMEM;
424
03c4f204 425 pmd_install(mm, pmd, &new);
2f569afd
MS
426 if (new)
427 pte_free(mm, new);
1bb3630e 428 return 0;
1da177e4
LT
429}
430
4cf58924 431int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 432{
4cf58924 433 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
434 if (!new)
435 return -ENOMEM;
436
437 spin_lock(&init_mm.page_table_lock);
8ac1f832 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 439 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 440 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 441 new = NULL;
4b471e88 442 }
1bb3630e 443 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
444 if (new)
445 pte_free_kernel(&init_mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
d559db08
KH
449static inline void init_rss_vec(int *rss)
450{
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452}
453
454static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 455{
d559db08
KH
456 int i;
457
34e55232 458 if (current->mm == mm)
05af2e10 459 sync_mm_rss(mm);
d559db08
KH
460 for (i = 0; i < NR_MM_COUNTERS; i++)
461 if (rss[i])
462 add_mm_counter(mm, i, rss[i]);
ae859762
HD
463}
464
b5810039 465/*
6aab341e
LT
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
b5810039
NP
469 *
470 * The calling function must still handle the error.
471 */
3dc14741
HD
472static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
b5810039 474{
3dc14741 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
480 pgoff_t index;
d936cf9b
HD
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
484
485 /*
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
488 */
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
491 nr_unshown++;
492 return;
493 }
494 if (nr_unshown) {
1170532b
JP
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 nr_unshown);
d936cf9b
HD
497 nr_unshown = 0;
498 }
499 nr_shown = 0;
500 }
501 if (nr_shown++ == 0)
502 resume = jiffies + 60 * HZ;
3dc14741
HD
503
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
506
1170532b
JP
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
508 current->comm,
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 510 if (page)
f0b791a3 511 dump_page(page, "bad pte");
6aa9b8b2 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
515 vma->vm_file,
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 518 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 519 dump_stack();
373d4d09 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
521}
522
ee498ed7 523/*
7e675137 524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 525 *
7e675137
NP
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 529 *
7e675137
NP
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
533 * described below.
534 *
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 538 *
b379d790
JH
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
6aab341e
LT
543 *
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545 *
7e675137
NP
546 * And for normal mappings this is false.
547 *
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
b379d790 552 *
b379d790 553 *
7e675137 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
555 *
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
563 *
ee498ed7 564 */
25b2995a
CH
565struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 pte_t pte)
ee498ed7 567{
22b31eec 568 unsigned long pfn = pte_pfn(pte);
7e675137 569
00b3a331 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 571 if (likely(!pte_special(pte)))
22b31eec 572 goto check_pfn;
667a0a06
DV
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 return NULL;
df6ad698
JG
577 if (is_zero_pfn(pfn))
578 return NULL;
e1fb4a08 579 if (pte_devmap(pte))
3218f871
AS
580 /*
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 */
e1fb4a08
DJ
588 return NULL;
589
df6ad698 590 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
591 return NULL;
592 }
593
00b3a331 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 595
b379d790
JH
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
598 if (!pfn_valid(pfn))
599 return NULL;
600 goto out;
601 } else {
7e675137
NP
602 unsigned long off;
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
604 if (pfn == vma->vm_pgoff + off)
605 return NULL;
606 if (!is_cow_mapping(vma->vm_flags))
607 return NULL;
608 }
6aab341e
LT
609 }
610
b38af472
HD
611 if (is_zero_pfn(pfn))
612 return NULL;
00b3a331 613
22b31eec
HD
614check_pfn:
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
617 return NULL;
618 }
6aab341e
LT
619
620 /*
7e675137 621 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 622 * eg. VDSO mappings can cause them to exist.
6aab341e 623 */
b379d790 624out:
6aab341e 625 return pfn_to_page(pfn);
ee498ed7
HD
626}
627
28093f9f
GS
628#ifdef CONFIG_TRANSPARENT_HUGEPAGE
629struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630 pmd_t pmd)
631{
632 unsigned long pfn = pmd_pfn(pmd);
633
634 /*
635 * There is no pmd_special() but there may be special pmds, e.g.
636 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 637 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
638 */
639 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640 if (vma->vm_flags & VM_MIXEDMAP) {
641 if (!pfn_valid(pfn))
642 return NULL;
643 goto out;
644 } else {
645 unsigned long off;
646 off = (addr - vma->vm_start) >> PAGE_SHIFT;
647 if (pfn == vma->vm_pgoff + off)
648 return NULL;
649 if (!is_cow_mapping(vma->vm_flags))
650 return NULL;
651 }
652 }
653
e1fb4a08
DJ
654 if (pmd_devmap(pmd))
655 return NULL;
3cde287b 656 if (is_huge_zero_pmd(pmd))
28093f9f
GS
657 return NULL;
658 if (unlikely(pfn > highest_memmap_pfn))
659 return NULL;
660
661 /*
662 * NOTE! We still have PageReserved() pages in the page tables.
663 * eg. VDSO mappings can cause them to exist.
664 */
665out:
666 return pfn_to_page(pfn);
667}
668#endif
669
b756a3b5
AP
670static void restore_exclusive_pte(struct vm_area_struct *vma,
671 struct page *page, unsigned long address,
672 pte_t *ptep)
673{
674 pte_t pte;
675 swp_entry_t entry;
676
677 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678 if (pte_swp_soft_dirty(*ptep))
679 pte = pte_mksoft_dirty(pte);
680
681 entry = pte_to_swp_entry(*ptep);
682 if (pte_swp_uffd_wp(*ptep))
683 pte = pte_mkuffd_wp(pte);
684 else if (is_writable_device_exclusive_entry(entry))
685 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686
6c287605
DH
687 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688
b756a3b5
AP
689 /*
690 * No need to take a page reference as one was already
691 * created when the swap entry was made.
692 */
693 if (PageAnon(page))
f1e2db12 694 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
695 else
696 /*
697 * Currently device exclusive access only supports anonymous
698 * memory so the entry shouldn't point to a filebacked page.
699 */
4d8ff640 700 WARN_ON_ONCE(1);
b756a3b5 701
1eba86c0
PT
702 set_pte_at(vma->vm_mm, address, ptep, pte);
703
b756a3b5
AP
704 /*
705 * No need to invalidate - it was non-present before. However
706 * secondary CPUs may have mappings that need invalidating.
707 */
708 update_mmu_cache(vma, address, ptep);
709}
710
711/*
712 * Tries to restore an exclusive pte if the page lock can be acquired without
713 * sleeping.
714 */
715static int
716try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717 unsigned long addr)
718{
719 swp_entry_t entry = pte_to_swp_entry(*src_pte);
720 struct page *page = pfn_swap_entry_to_page(entry);
721
722 if (trylock_page(page)) {
723 restore_exclusive_pte(vma, page, addr, src_pte);
724 unlock_page(page);
725 return 0;
726 }
727
728 return -EBUSY;
729}
730
1da177e4
LT
731/*
732 * copy one vm_area from one task to the other. Assumes the page tables
733 * already present in the new task to be cleared in the whole range
734 * covered by this vma.
1da177e4
LT
735 */
736
df3a57d1
LT
737static unsigned long
738copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
739 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 741{
8f34f1ea 742 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
743 pte_t pte = *src_pte;
744 struct page *page;
df3a57d1
LT
745 swp_entry_t entry = pte_to_swp_entry(pte);
746
747 if (likely(!non_swap_entry(entry))) {
748 if (swap_duplicate(entry) < 0)
9a5cc85c 749 return -EIO;
df3a57d1
LT
750
751 /* make sure dst_mm is on swapoff's mmlist. */
752 if (unlikely(list_empty(&dst_mm->mmlist))) {
753 spin_lock(&mmlist_lock);
754 if (list_empty(&dst_mm->mmlist))
755 list_add(&dst_mm->mmlist,
756 &src_mm->mmlist);
757 spin_unlock(&mmlist_lock);
758 }
1493a191
DH
759 /* Mark the swap entry as shared. */
760 if (pte_swp_exclusive(*src_pte)) {
761 pte = pte_swp_clear_exclusive(*src_pte);
762 set_pte_at(src_mm, addr, src_pte, pte);
763 }
df3a57d1
LT
764 rss[MM_SWAPENTS]++;
765 } else if (is_migration_entry(entry)) {
af5cdaf8 766 page = pfn_swap_entry_to_page(entry);
1da177e4 767
df3a57d1 768 rss[mm_counter(page)]++;
5042db43 769
6c287605 770 if (!is_readable_migration_entry(entry) &&
df3a57d1 771 is_cow_mapping(vm_flags)) {
5042db43 772 /*
6c287605
DH
773 * COW mappings require pages in both parent and child
774 * to be set to read. A previously exclusive entry is
775 * now shared.
5042db43 776 */
4dd845b5
AP
777 entry = make_readable_migration_entry(
778 swp_offset(entry));
df3a57d1
LT
779 pte = swp_entry_to_pte(entry);
780 if (pte_swp_soft_dirty(*src_pte))
781 pte = pte_swp_mksoft_dirty(pte);
782 if (pte_swp_uffd_wp(*src_pte))
783 pte = pte_swp_mkuffd_wp(pte);
784 set_pte_at(src_mm, addr, src_pte, pte);
785 }
786 } else if (is_device_private_entry(entry)) {
af5cdaf8 787 page = pfn_swap_entry_to_page(entry);
5042db43 788
df3a57d1
LT
789 /*
790 * Update rss count even for unaddressable pages, as
791 * they should treated just like normal pages in this
792 * respect.
793 *
794 * We will likely want to have some new rss counters
795 * for unaddressable pages, at some point. But for now
796 * keep things as they are.
797 */
798 get_page(page);
799 rss[mm_counter(page)]++;
fb3d824d
DH
800 /* Cannot fail as these pages cannot get pinned. */
801 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
802
803 /*
804 * We do not preserve soft-dirty information, because so
805 * far, checkpoint/restore is the only feature that
806 * requires that. And checkpoint/restore does not work
807 * when a device driver is involved (you cannot easily
808 * save and restore device driver state).
809 */
4dd845b5 810 if (is_writable_device_private_entry(entry) &&
df3a57d1 811 is_cow_mapping(vm_flags)) {
4dd845b5
AP
812 entry = make_readable_device_private_entry(
813 swp_offset(entry));
df3a57d1
LT
814 pte = swp_entry_to_pte(entry);
815 if (pte_swp_uffd_wp(*src_pte))
816 pte = pte_swp_mkuffd_wp(pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 818 }
b756a3b5
AP
819 } else if (is_device_exclusive_entry(entry)) {
820 /*
821 * Make device exclusive entries present by restoring the
822 * original entry then copying as for a present pte. Device
823 * exclusive entries currently only support private writable
824 * (ie. COW) mappings.
825 */
826 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828 return -EBUSY;
829 return -ENOENT;
c56d1b62
PX
830 } else if (is_pte_marker_entry(entry)) {
831 /*
832 * We're copying the pgtable should only because dst_vma has
833 * uffd-wp enabled, do sanity check.
834 */
835 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836 set_pte_at(dst_mm, addr, dst_pte, pte);
837 return 0;
1da177e4 838 }
8f34f1ea
PX
839 if (!userfaultfd_wp(dst_vma))
840 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
841 set_pte_at(dst_mm, addr, dst_pte, pte);
842 return 0;
843}
844
70e806e4 845/*
b51ad4f8 846 * Copy a present and normal page.
70e806e4 847 *
b51ad4f8
DH
848 * NOTE! The usual case is that this isn't required;
849 * instead, the caller can just increase the page refcount
850 * and re-use the pte the traditional way.
70e806e4
PX
851 *
852 * And if we need a pre-allocated page but don't yet have
853 * one, return a negative error to let the preallocation
854 * code know so that it can do so outside the page table
855 * lock.
856 */
857static inline int
c78f4636
PX
858copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 860 struct page **prealloc, struct page *page)
70e806e4
PX
861{
862 struct page *new_page;
b51ad4f8 863 pte_t pte;
70e806e4 864
70e806e4
PX
865 new_page = *prealloc;
866 if (!new_page)
867 return -EAGAIN;
868
869 /*
870 * We have a prealloc page, all good! Take it
871 * over and copy the page & arm it.
872 */
873 *prealloc = NULL;
c78f4636 874 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 875 __SetPageUptodate(new_page);
40f2bbf7 876 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 877 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
878 rss[mm_counter(new_page)]++;
879
880 /* All done, just insert the new page copy in the child */
c78f4636
PX
881 pte = mk_pte(new_page, dst_vma->vm_page_prot);
882 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
883 if (userfaultfd_pte_wp(dst_vma, *src_pte))
884 /* Uffd-wp needs to be delivered to dest pte as well */
885 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 886 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
887 return 0;
888}
889
890/*
891 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
892 * is required to copy this pte.
893 */
894static inline int
c78f4636
PX
895copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 struct page **prealloc)
df3a57d1 898{
c78f4636
PX
899 struct mm_struct *src_mm = src_vma->vm_mm;
900 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
901 pte_t pte = *src_pte;
902 struct page *page;
903
c78f4636 904 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 905 if (page && PageAnon(page)) {
b51ad4f8
DH
906 /*
907 * If this page may have been pinned by the parent process,
908 * copy the page immediately for the child so that we'll always
909 * guarantee the pinned page won't be randomly replaced in the
910 * future.
911 */
70e806e4 912 get_page(page);
fb3d824d
DH
913 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914 /* Page maybe pinned, we have to copy. */
915 put_page(page);
916 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917 addr, rss, prealloc, page);
918 }
919 rss[mm_counter(page)]++;
b51ad4f8 920 } else if (page) {
70e806e4 921 get_page(page);
fb3d824d 922 page_dup_file_rmap(page, false);
70e806e4
PX
923 rss[mm_counter(page)]++;
924 }
925
1da177e4
LT
926 /*
927 * If it's a COW mapping, write protect it both
928 * in the parent and the child
929 */
1b2de5d0 930 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 931 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 932 pte = pte_wrprotect(pte);
1da177e4 933 }
6c287605 934 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
935
936 /*
937 * If it's a shared mapping, mark it clean in
938 * the child
939 */
940 if (vm_flags & VM_SHARED)
941 pte = pte_mkclean(pte);
942 pte = pte_mkold(pte);
6aab341e 943
8f34f1ea 944 if (!userfaultfd_wp(dst_vma))
b569a176
PX
945 pte = pte_clear_uffd_wp(pte);
946
c78f4636 947 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
948 return 0;
949}
950
951static inline struct page *
952page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
953 unsigned long addr)
954{
955 struct page *new_page;
956
957 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
958 if (!new_page)
959 return NULL;
960
8f425e4e 961 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
962 put_page(new_page);
963 return NULL;
6aab341e 964 }
70e806e4 965 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 966
70e806e4 967 return new_page;
1da177e4
LT
968}
969
c78f4636
PX
970static int
971copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973 unsigned long end)
1da177e4 974{
c78f4636
PX
975 struct mm_struct *dst_mm = dst_vma->vm_mm;
976 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 977 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 978 pte_t *src_pte, *dst_pte;
c74df32c 979 spinlock_t *src_ptl, *dst_ptl;
70e806e4 980 int progress, ret = 0;
d559db08 981 int rss[NR_MM_COUNTERS];
570a335b 982 swp_entry_t entry = (swp_entry_t){0};
70e806e4 983 struct page *prealloc = NULL;
1da177e4
LT
984
985again:
70e806e4 986 progress = 0;
d559db08
KH
987 init_rss_vec(rss);
988
c74df32c 989 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
990 if (!dst_pte) {
991 ret = -ENOMEM;
992 goto out;
993 }
ece0e2b6 994 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 995 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 996 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
997 orig_src_pte = src_pte;
998 orig_dst_pte = dst_pte;
6606c3e0 999 arch_enter_lazy_mmu_mode();
1da177e4 1000
1da177e4
LT
1001 do {
1002 /*
1003 * We are holding two locks at this point - either of them
1004 * could generate latencies in another task on another CPU.
1005 */
e040f218
HD
1006 if (progress >= 32) {
1007 progress = 0;
1008 if (need_resched() ||
95c354fe 1009 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1010 break;
1011 }
1da177e4
LT
1012 if (pte_none(*src_pte)) {
1013 progress++;
1014 continue;
1015 }
79a1971c 1016 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1017 ret = copy_nonpresent_pte(dst_mm, src_mm,
1018 dst_pte, src_pte,
1019 dst_vma, src_vma,
1020 addr, rss);
1021 if (ret == -EIO) {
1022 entry = pte_to_swp_entry(*src_pte);
79a1971c 1023 break;
b756a3b5
AP
1024 } else if (ret == -EBUSY) {
1025 break;
1026 } else if (!ret) {
1027 progress += 8;
1028 continue;
9a5cc85c 1029 }
b756a3b5
AP
1030
1031 /*
1032 * Device exclusive entry restored, continue by copying
1033 * the now present pte.
1034 */
1035 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1036 }
70e806e4 1037 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1038 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, &prealloc);
70e806e4
PX
1040 /*
1041 * If we need a pre-allocated page for this pte, drop the
1042 * locks, allocate, and try again.
1043 */
1044 if (unlikely(ret == -EAGAIN))
1045 break;
1046 if (unlikely(prealloc)) {
1047 /*
1048 * pre-alloc page cannot be reused by next time so as
1049 * to strictly follow mempolicy (e.g., alloc_page_vma()
1050 * will allocate page according to address). This
1051 * could only happen if one pinned pte changed.
1052 */
1053 put_page(prealloc);
1054 prealloc = NULL;
1055 }
1da177e4
LT
1056 progress += 8;
1057 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1058
6606c3e0 1059 arch_leave_lazy_mmu_mode();
c74df32c 1060 spin_unlock(src_ptl);
ece0e2b6 1061 pte_unmap(orig_src_pte);
d559db08 1062 add_mm_rss_vec(dst_mm, rss);
c36987e2 1063 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1064 cond_resched();
570a335b 1065
9a5cc85c
AP
1066 if (ret == -EIO) {
1067 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1068 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069 ret = -ENOMEM;
1070 goto out;
1071 }
1072 entry.val = 0;
b756a3b5
AP
1073 } else if (ret == -EBUSY) {
1074 goto out;
9a5cc85c 1075 } else if (ret == -EAGAIN) {
c78f4636 1076 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1077 if (!prealloc)
570a335b 1078 return -ENOMEM;
9a5cc85c
AP
1079 } else if (ret) {
1080 VM_WARN_ON_ONCE(1);
570a335b 1081 }
9a5cc85c
AP
1082
1083 /* We've captured and resolved the error. Reset, try again. */
1084 ret = 0;
1085
1da177e4
LT
1086 if (addr != end)
1087 goto again;
70e806e4
PX
1088out:
1089 if (unlikely(prealloc))
1090 put_page(prealloc);
1091 return ret;
1da177e4
LT
1092}
1093
c78f4636
PX
1094static inline int
1095copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1097 unsigned long end)
1da177e4 1098{
c78f4636
PX
1099 struct mm_struct *dst_mm = dst_vma->vm_mm;
1100 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1101 pmd_t *src_pmd, *dst_pmd;
1102 unsigned long next;
1103
1104 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1105 if (!dst_pmd)
1106 return -ENOMEM;
1107 src_pmd = pmd_offset(src_pud, addr);
1108 do {
1109 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1110 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111 || pmd_devmap(*src_pmd)) {
71e3aac0 1112 int err;
c78f4636 1113 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1114 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115 addr, dst_vma, src_vma);
71e3aac0
AA
1116 if (err == -ENOMEM)
1117 return -ENOMEM;
1118 if (!err)
1119 continue;
1120 /* fall through */
1121 }
1da177e4
LT
1122 if (pmd_none_or_clear_bad(src_pmd))
1123 continue;
c78f4636
PX
1124 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1125 addr, next))
1da177e4
LT
1126 return -ENOMEM;
1127 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128 return 0;
1129}
1130
c78f4636
PX
1131static inline int
1132copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1134 unsigned long end)
1da177e4 1135{
c78f4636
PX
1136 struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1138 pud_t *src_pud, *dst_pud;
1139 unsigned long next;
1140
c2febafc 1141 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1142 if (!dst_pud)
1143 return -ENOMEM;
c2febafc 1144 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1145 do {
1146 next = pud_addr_end(addr, end);
a00cc7d9
MW
1147 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1148 int err;
1149
c78f4636 1150 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1151 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1152 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1153 if (err == -ENOMEM)
1154 return -ENOMEM;
1155 if (!err)
1156 continue;
1157 /* fall through */
1158 }
1da177e4
LT
1159 if (pud_none_or_clear_bad(src_pud))
1160 continue;
c78f4636
PX
1161 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1162 addr, next))
1da177e4
LT
1163 return -ENOMEM;
1164 } while (dst_pud++, src_pud++, addr = next, addr != end);
1165 return 0;
1166}
1167
c78f4636
PX
1168static inline int
1169copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1171 unsigned long end)
c2febafc 1172{
c78f4636 1173 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1174 p4d_t *src_p4d, *dst_p4d;
1175 unsigned long next;
1176
1177 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1178 if (!dst_p4d)
1179 return -ENOMEM;
1180 src_p4d = p4d_offset(src_pgd, addr);
1181 do {
1182 next = p4d_addr_end(addr, end);
1183 if (p4d_none_or_clear_bad(src_p4d))
1184 continue;
c78f4636
PX
1185 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1186 addr, next))
c2febafc
KS
1187 return -ENOMEM;
1188 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189 return 0;
1190}
1191
c56d1b62
PX
1192/*
1193 * Return true if the vma needs to copy the pgtable during this fork(). Return
1194 * false when we can speed up fork() by allowing lazy page faults later until
1195 * when the child accesses the memory range.
1196 */
bc70fbf2 1197static bool
c56d1b62
PX
1198vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1199{
1200 /*
1201 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203 * contains uffd-wp protection information, that's something we can't
1204 * retrieve from page cache, and skip copying will lose those info.
1205 */
1206 if (userfaultfd_wp(dst_vma))
1207 return true;
1208
bcd51a3c 1209 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1210 return true;
1211
1212 if (src_vma->anon_vma)
1213 return true;
1214
1215 /*
1216 * Don't copy ptes where a page fault will fill them correctly. Fork
1217 * becomes much lighter when there are big shared or private readonly
1218 * mappings. The tradeoff is that copy_page_range is more efficient
1219 * than faulting.
1220 */
1221 return false;
1222}
1223
c78f4636
PX
1224int
1225copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1226{
1227 pgd_t *src_pgd, *dst_pgd;
1228 unsigned long next;
c78f4636
PX
1229 unsigned long addr = src_vma->vm_start;
1230 unsigned long end = src_vma->vm_end;
1231 struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1233 struct mmu_notifier_range range;
2ec74c3e 1234 bool is_cow;
cddb8a5c 1235 int ret;
1da177e4 1236
c56d1b62 1237 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1238 return 0;
d992895b 1239
c78f4636 1240 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1241 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1242
c78f4636 1243 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1244 /*
1245 * We do not free on error cases below as remove_vma
1246 * gets called on error from higher level routine
1247 */
c78f4636 1248 ret = track_pfn_copy(src_vma);
2ab64037 1249 if (ret)
1250 return ret;
1251 }
1252
cddb8a5c
AA
1253 /*
1254 * We need to invalidate the secondary MMU mappings only when
1255 * there could be a permission downgrade on the ptes of the
1256 * parent mm. And a permission downgrade will only happen if
1257 * is_cow_mapping() returns true.
1258 */
c78f4636 1259 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1260
1261 if (is_cow) {
7269f999 1262 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1263 0, src_vma, src_mm, addr, end);
ac46d4f3 1264 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1265 /*
1266 * Disabling preemption is not needed for the write side, as
1267 * the read side doesn't spin, but goes to the mmap_lock.
1268 *
1269 * Use the raw variant of the seqcount_t write API to avoid
1270 * lockdep complaining about preemptibility.
1271 */
1272 mmap_assert_write_locked(src_mm);
1273 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1274 }
cddb8a5c
AA
1275
1276 ret = 0;
1da177e4
LT
1277 dst_pgd = pgd_offset(dst_mm, addr);
1278 src_pgd = pgd_offset(src_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(src_pgd))
1282 continue;
c78f4636
PX
1283 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284 addr, next))) {
cddb8a5c
AA
1285 ret = -ENOMEM;
1286 break;
1287 }
1da177e4 1288 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1289
57efa1fe
JG
1290 if (is_cow) {
1291 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1292 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1293 }
cddb8a5c 1294 return ret;
1da177e4
LT
1295}
1296
5abfd71d
PX
1297/* Whether we should zap all COWed (private) pages too */
1298static inline bool should_zap_cows(struct zap_details *details)
1299{
1300 /* By default, zap all pages */
1301 if (!details)
1302 return true;
1303
1304 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1305 return details->even_cows;
5abfd71d
PX
1306}
1307
2e148f1e 1308/* Decides whether we should zap this page with the page pointer specified */
254ab940 1309static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1310{
5abfd71d
PX
1311 /* If we can make a decision without *page.. */
1312 if (should_zap_cows(details))
254ab940 1313 return true;
5abfd71d
PX
1314
1315 /* E.g. the caller passes NULL for the case of a zero page */
1316 if (!page)
254ab940 1317 return true;
3506659e 1318
2e148f1e
PX
1319 /* Otherwise we should only zap non-anon pages */
1320 return !PageAnon(page);
3506659e
MWO
1321}
1322
999dad82
PX
1323static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324{
1325 if (!details)
1326 return false;
1327
1328 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1329}
1330
1331/*
1332 * This function makes sure that we'll replace the none pte with an uffd-wp
1333 * swap special pte marker when necessary. Must be with the pgtable lock held.
1334 */
1335static inline void
1336zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337 unsigned long addr, pte_t *pte,
1338 struct zap_details *details, pte_t pteval)
1339{
1340 if (zap_drop_file_uffd_wp(details))
1341 return;
1342
1343 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1344}
1345
51c6f666 1346static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1347 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1348 unsigned long addr, unsigned long end,
97a89413 1349 struct zap_details *details)
1da177e4 1350{
b5810039 1351 struct mm_struct *mm = tlb->mm;
d16dfc55 1352 int force_flush = 0;
d559db08 1353 int rss[NR_MM_COUNTERS];
97a89413 1354 spinlock_t *ptl;
5f1a1907 1355 pte_t *start_pte;
97a89413 1356 pte_t *pte;
8a5f14a2 1357 swp_entry_t entry;
d559db08 1358
ed6a7935 1359 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1360again:
e303297e 1361 init_rss_vec(rss);
5f1a1907
SR
1362 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1363 pte = start_pte;
3ea27719 1364 flush_tlb_batched_pending(mm);
6606c3e0 1365 arch_enter_lazy_mmu_mode();
1da177e4
LT
1366 do {
1367 pte_t ptent = *pte;
8018db85
PX
1368 struct page *page;
1369
166f61b9 1370 if (pte_none(ptent))
1da177e4 1371 continue;
6f5e6b9e 1372
7b167b68
MK
1373 if (need_resched())
1374 break;
1375
1da177e4 1376 if (pte_present(ptent)) {
25b2995a 1377 page = vm_normal_page(vma, addr, ptent);
254ab940 1378 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1379 continue;
b5810039 1380 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1381 tlb->fullmm);
1da177e4 1382 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1383 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1384 ptent);
1da177e4
LT
1385 if (unlikely(!page))
1386 continue;
eca56ff9
JM
1387
1388 if (!PageAnon(page)) {
1cf35d47
LT
1389 if (pte_dirty(ptent)) {
1390 force_flush = 1;
6237bcd9 1391 set_page_dirty(page);
1cf35d47 1392 }
4917e5d0 1393 if (pte_young(ptent) &&
64363aad 1394 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1395 mark_page_accessed(page);
6237bcd9 1396 }
eca56ff9 1397 rss[mm_counter(page)]--;
cea86fe2 1398 page_remove_rmap(page, vma, false);
3dc14741
HD
1399 if (unlikely(page_mapcount(page) < 0))
1400 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1401 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1402 force_flush = 1;
ce9ec37b 1403 addr += PAGE_SIZE;
d16dfc55 1404 break;
1cf35d47 1405 }
1da177e4
LT
1406 continue;
1407 }
5042db43
JG
1408
1409 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1410 if (is_device_private_entry(entry) ||
1411 is_device_exclusive_entry(entry)) {
8018db85 1412 page = pfn_swap_entry_to_page(entry);
254ab940 1413 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1414 continue;
999dad82
PX
1415 /*
1416 * Both device private/exclusive mappings should only
1417 * work with anonymous page so far, so we don't need to
1418 * consider uffd-wp bit when zap. For more information,
1419 * see zap_install_uffd_wp_if_needed().
1420 */
1421 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1422 rss[mm_counter(page)]--;
b756a3b5 1423 if (is_device_private_entry(entry))
cea86fe2 1424 page_remove_rmap(page, vma, false);
5042db43 1425 put_page(page);
8018db85 1426 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1427 /* Genuine swap entry, hence a private anon page */
1428 if (!should_zap_cows(details))
1429 continue;
8a5f14a2 1430 rss[MM_SWAPENTS]--;
8018db85
PX
1431 if (unlikely(!free_swap_and_cache(entry)))
1432 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1433 } else if (is_migration_entry(entry)) {
af5cdaf8 1434 page = pfn_swap_entry_to_page(entry);
254ab940 1435 if (!should_zap_page(details, page))
5abfd71d 1436 continue;
eca56ff9 1437 rss[mm_counter(page)]--;
999dad82
PX
1438 } else if (pte_marker_entry_uffd_wp(entry)) {
1439 /* Only drop the uffd-wp marker if explicitly requested */
1440 if (!zap_drop_file_uffd_wp(details))
1441 continue;
9f186f9e
ML
1442 } else if (is_hwpoison_entry(entry) ||
1443 is_swapin_error_entry(entry)) {
5abfd71d
PX
1444 if (!should_zap_cows(details))
1445 continue;
1446 } else {
1447 /* We should have covered all the swap entry types */
1448 WARN_ON_ONCE(1);
b084d435 1449 }
9888a1ca 1450 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1451 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1452 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1453
d559db08 1454 add_mm_rss_vec(mm, rss);
6606c3e0 1455 arch_leave_lazy_mmu_mode();
51c6f666 1456
1cf35d47 1457 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1458 if (force_flush)
1cf35d47 1459 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1460 pte_unmap_unlock(start_pte, ptl);
1461
1462 /*
1463 * If we forced a TLB flush (either due to running out of
1464 * batch buffers or because we needed to flush dirty TLB
1465 * entries before releasing the ptl), free the batched
1466 * memory too. Restart if we didn't do everything.
1467 */
1468 if (force_flush) {
1469 force_flush = 0;
fa0aafb8 1470 tlb_flush_mmu(tlb);
7b167b68
MK
1471 }
1472
1473 if (addr != end) {
1474 cond_resched();
1475 goto again;
d16dfc55
PZ
1476 }
1477
51c6f666 1478 return addr;
1da177e4
LT
1479}
1480
51c6f666 1481static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1482 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1483 unsigned long addr, unsigned long end,
97a89413 1484 struct zap_details *details)
1da177e4
LT
1485{
1486 pmd_t *pmd;
1487 unsigned long next;
1488
1489 pmd = pmd_offset(pud, addr);
1490 do {
1491 next = pmd_addr_end(addr, end);
84c3fc4e 1492 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1493 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1494 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1495 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1496 goto next;
71e3aac0 1497 /* fall through */
3506659e
MWO
1498 } else if (details && details->single_folio &&
1499 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1500 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1501 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1502 /*
1503 * Take and drop THP pmd lock so that we cannot return
1504 * prematurely, while zap_huge_pmd() has cleared *pmd,
1505 * but not yet decremented compound_mapcount().
1506 */
1507 spin_unlock(ptl);
71e3aac0 1508 }
22061a1f 1509
1a5a9906
AA
1510 /*
1511 * Here there can be other concurrent MADV_DONTNEED or
1512 * trans huge page faults running, and if the pmd is
1513 * none or trans huge it can change under us. This is
c1e8d7c6 1514 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1515 * mode.
1516 */
1517 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1518 goto next;
97a89413 1519 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1520next:
97a89413
PZ
1521 cond_resched();
1522 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1523
1524 return addr;
1da177e4
LT
1525}
1526
51c6f666 1527static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1528 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1529 unsigned long addr, unsigned long end,
97a89413 1530 struct zap_details *details)
1da177e4
LT
1531{
1532 pud_t *pud;
1533 unsigned long next;
1534
c2febafc 1535 pud = pud_offset(p4d, addr);
1da177e4
LT
1536 do {
1537 next = pud_addr_end(addr, end);
a00cc7d9
MW
1538 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1539 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1540 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1541 split_huge_pud(vma, pud, addr);
1542 } else if (zap_huge_pud(tlb, vma, pud, addr))
1543 goto next;
1544 /* fall through */
1545 }
97a89413 1546 if (pud_none_or_clear_bad(pud))
1da177e4 1547 continue;
97a89413 1548 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1549next:
1550 cond_resched();
97a89413 1551 } while (pud++, addr = next, addr != end);
51c6f666
RH
1552
1553 return addr;
1da177e4
LT
1554}
1555
c2febafc
KS
1556static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1557 struct vm_area_struct *vma, pgd_t *pgd,
1558 unsigned long addr, unsigned long end,
1559 struct zap_details *details)
1560{
1561 p4d_t *p4d;
1562 unsigned long next;
1563
1564 p4d = p4d_offset(pgd, addr);
1565 do {
1566 next = p4d_addr_end(addr, end);
1567 if (p4d_none_or_clear_bad(p4d))
1568 continue;
1569 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1570 } while (p4d++, addr = next, addr != end);
1571
1572 return addr;
1573}
1574
aac45363 1575void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1576 struct vm_area_struct *vma,
1577 unsigned long addr, unsigned long end,
1578 struct zap_details *details)
1da177e4
LT
1579{
1580 pgd_t *pgd;
1581 unsigned long next;
1582
1da177e4
LT
1583 BUG_ON(addr >= end);
1584 tlb_start_vma(tlb, vma);
1585 pgd = pgd_offset(vma->vm_mm, addr);
1586 do {
1587 next = pgd_addr_end(addr, end);
97a89413 1588 if (pgd_none_or_clear_bad(pgd))
1da177e4 1589 continue;
c2febafc 1590 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1591 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1592 tlb_end_vma(tlb, vma);
1593}
51c6f666 1594
f5cc4eef
AV
1595
1596static void unmap_single_vma(struct mmu_gather *tlb,
1597 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1598 unsigned long end_addr,
f5cc4eef
AV
1599 struct zap_details *details)
1600{
1601 unsigned long start = max(vma->vm_start, start_addr);
1602 unsigned long end;
1603
1604 if (start >= vma->vm_end)
1605 return;
1606 end = min(vma->vm_end, end_addr);
1607 if (end <= vma->vm_start)
1608 return;
1609
cbc91f71
SD
1610 if (vma->vm_file)
1611 uprobe_munmap(vma, start, end);
1612
b3b9c293 1613 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1614 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1615
1616 if (start != end) {
1617 if (unlikely(is_vm_hugetlb_page(vma))) {
1618 /*
1619 * It is undesirable to test vma->vm_file as it
1620 * should be non-null for valid hugetlb area.
1621 * However, vm_file will be NULL in the error
7aa6b4ad 1622 * cleanup path of mmap_region. When
f5cc4eef 1623 * hugetlbfs ->mmap method fails,
7aa6b4ad 1624 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1625 * before calling this function to clean up.
1626 * Since no pte has actually been setup, it is
1627 * safe to do nothing in this case.
1628 */
24669e58 1629 if (vma->vm_file) {
05e90bd0
PX
1630 zap_flags_t zap_flags = details ?
1631 details->zap_flags : 0;
05e90bd0
PX
1632 __unmap_hugepage_range_final(tlb, vma, start, end,
1633 NULL, zap_flags);
24669e58 1634 }
f5cc4eef
AV
1635 } else
1636 unmap_page_range(tlb, vma, start, end, details);
1637 }
1da177e4
LT
1638}
1639
1da177e4
LT
1640/**
1641 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1642 * @tlb: address of the caller's struct mmu_gather
763ecb03 1643 * @mt: the maple tree
1da177e4
LT
1644 * @vma: the starting vma
1645 * @start_addr: virtual address at which to start unmapping
1646 * @end_addr: virtual address at which to end unmapping
1da177e4 1647 *
508034a3 1648 * Unmap all pages in the vma list.
1da177e4 1649 *
1da177e4
LT
1650 * Only addresses between `start' and `end' will be unmapped.
1651 *
1652 * The VMA list must be sorted in ascending virtual address order.
1653 *
1654 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1655 * range after unmap_vmas() returns. So the only responsibility here is to
1656 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1657 * drops the lock and schedules.
1658 */
763ecb03 1659void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1660 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1661 unsigned long end_addr)
1da177e4 1662{
ac46d4f3 1663 struct mmu_notifier_range range;
999dad82 1664 struct zap_details details = {
04ada095 1665 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1666 /* Careful - we need to zap private pages too! */
1667 .even_cows = true,
1668 };
763ecb03 1669 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1670
6f4f13e8
JG
1671 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1672 start_addr, end_addr);
ac46d4f3 1673 mmu_notifier_invalidate_range_start(&range);
763ecb03 1674 do {
999dad82 1675 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
763ecb03 1676 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1677 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1678}
1679
1680/**
1681 * zap_page_range - remove user pages in a given range
1682 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1683 * @start: starting address of pages to zap
1da177e4 1684 * @size: number of bytes to zap
f5cc4eef
AV
1685 *
1686 * Caller must protect the VMA list
1da177e4 1687 */
7e027b14 1688void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1689 unsigned long size)
1da177e4 1690{
763ecb03
LH
1691 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1692 unsigned long end = start + size;
ac46d4f3 1693 struct mmu_notifier_range range;
d16dfc55 1694 struct mmu_gather tlb;
763ecb03 1695 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1696
1da177e4 1697 lru_add_drain();
7269f999 1698 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1699 start, start + size);
a72afd87 1700 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1701 update_hiwater_rss(vma->vm_mm);
1702 mmu_notifier_invalidate_range_start(&range);
763ecb03 1703 do {
ac46d4f3 1704 unmap_single_vma(&tlb, vma, start, range.end, NULL);
763ecb03 1705 } while ((vma = mas_find(&mas, end - 1)) != NULL);
ac46d4f3 1706 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1707 tlb_finish_mmu(&tlb);
1da177e4
LT
1708}
1709
f5cc4eef
AV
1710/**
1711 * zap_page_range_single - remove user pages in a given range
1712 * @vma: vm_area_struct holding the applicable pages
1713 * @address: starting address of pages to zap
1714 * @size: number of bytes to zap
8a5f14a2 1715 * @details: details of shared cache invalidation
f5cc4eef
AV
1716 *
1717 * The range must fit into one VMA.
1da177e4 1718 */
21b85b09 1719void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1720 unsigned long size, struct zap_details *details)
1721{
21b85b09 1722 const unsigned long end = address + size;
ac46d4f3 1723 struct mmu_notifier_range range;
d16dfc55 1724 struct mmu_gather tlb;
1da177e4 1725
1da177e4 1726 lru_add_drain();
7269f999 1727 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
21b85b09
MK
1728 address, end);
1729 if (is_vm_hugetlb_page(vma))
1730 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1731 &range.end);
a72afd87 1732 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1733 update_hiwater_rss(vma->vm_mm);
1734 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1735 /*
1736 * unmap 'address-end' not 'range.start-range.end' as range
1737 * could have been expanded for hugetlb pmd sharing.
1738 */
1739 unmap_single_vma(&tlb, vma, address, end, details);
ac46d4f3 1740 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1741 tlb_finish_mmu(&tlb);
1da177e4
LT
1742}
1743
c627f9cc
JS
1744/**
1745 * zap_vma_ptes - remove ptes mapping the vma
1746 * @vma: vm_area_struct holding ptes to be zapped
1747 * @address: starting address of pages to zap
1748 * @size: number of bytes to zap
1749 *
1750 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1751 *
1752 * The entire address range must be fully contained within the vma.
1753 *
c627f9cc 1754 */
27d036e3 1755void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1756 unsigned long size)
1757{
88a35912 1758 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1759 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1760 return;
1761
f5cc4eef 1762 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1763}
1764EXPORT_SYMBOL_GPL(zap_vma_ptes);
1765
8cd3984d 1766static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1767{
c2febafc
KS
1768 pgd_t *pgd;
1769 p4d_t *p4d;
1770 pud_t *pud;
1771 pmd_t *pmd;
1772
1773 pgd = pgd_offset(mm, addr);
1774 p4d = p4d_alloc(mm, pgd, addr);
1775 if (!p4d)
1776 return NULL;
1777 pud = pud_alloc(mm, p4d, addr);
1778 if (!pud)
1779 return NULL;
1780 pmd = pmd_alloc(mm, pud, addr);
1781 if (!pmd)
1782 return NULL;
1783
1784 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1785 return pmd;
1786}
1787
1788pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1789 spinlock_t **ptl)
1790{
1791 pmd_t *pmd = walk_to_pmd(mm, addr);
1792
1793 if (!pmd)
1794 return NULL;
c2febafc 1795 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1796}
1797
8efd6f5b
AR
1798static int validate_page_before_insert(struct page *page)
1799{
1800 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1801 return -EINVAL;
1802 flush_dcache_page(page);
1803 return 0;
1804}
1805
cea86fe2 1806static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1807 unsigned long addr, struct page *page, pgprot_t prot)
1808{
1809 if (!pte_none(*pte))
1810 return -EBUSY;
1811 /* Ok, finally just insert the thing.. */
1812 get_page(page);
f1a79412 1813 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1814 page_add_file_rmap(page, vma, false);
1815 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1816 return 0;
1817}
1818
238f58d8
LT
1819/*
1820 * This is the old fallback for page remapping.
1821 *
1822 * For historical reasons, it only allows reserved pages. Only
1823 * old drivers should use this, and they needed to mark their
1824 * pages reserved for the old functions anyway.
1825 */
423bad60
NP
1826static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1827 struct page *page, pgprot_t prot)
238f58d8
LT
1828{
1829 int retval;
c9cfcddf 1830 pte_t *pte;
8a9f3ccd
BS
1831 spinlock_t *ptl;
1832
8efd6f5b
AR
1833 retval = validate_page_before_insert(page);
1834 if (retval)
5b4e655e 1835 goto out;
238f58d8 1836 retval = -ENOMEM;
cea86fe2 1837 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1838 if (!pte)
5b4e655e 1839 goto out;
cea86fe2 1840 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1841 pte_unmap_unlock(pte, ptl);
1842out:
1843 return retval;
1844}
1845
8cd3984d 1846#ifdef pte_index
cea86fe2 1847static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1848 unsigned long addr, struct page *page, pgprot_t prot)
1849{
1850 int err;
1851
1852 if (!page_count(page))
1853 return -EINVAL;
1854 err = validate_page_before_insert(page);
7f70c2a6
AR
1855 if (err)
1856 return err;
cea86fe2 1857 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1858}
1859
1860/* insert_pages() amortizes the cost of spinlock operations
1861 * when inserting pages in a loop. Arch *must* define pte_index.
1862 */
1863static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1864 struct page **pages, unsigned long *num, pgprot_t prot)
1865{
1866 pmd_t *pmd = NULL;
7f70c2a6
AR
1867 pte_t *start_pte, *pte;
1868 spinlock_t *pte_lock;
8cd3984d
AR
1869 struct mm_struct *const mm = vma->vm_mm;
1870 unsigned long curr_page_idx = 0;
1871 unsigned long remaining_pages_total = *num;
1872 unsigned long pages_to_write_in_pmd;
1873 int ret;
1874more:
1875 ret = -EFAULT;
1876 pmd = walk_to_pmd(mm, addr);
1877 if (!pmd)
1878 goto out;
1879
1880 pages_to_write_in_pmd = min_t(unsigned long,
1881 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1882
1883 /* Allocate the PTE if necessary; takes PMD lock once only. */
1884 ret = -ENOMEM;
1885 if (pte_alloc(mm, pmd))
1886 goto out;
8cd3984d
AR
1887
1888 while (pages_to_write_in_pmd) {
1889 int pte_idx = 0;
1890 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1891
7f70c2a6
AR
1892 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1893 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1894 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1895 addr, pages[curr_page_idx], prot);
1896 if (unlikely(err)) {
7f70c2a6 1897 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1898 ret = err;
1899 remaining_pages_total -= pte_idx;
1900 goto out;
1901 }
1902 addr += PAGE_SIZE;
1903 ++curr_page_idx;
1904 }
7f70c2a6 1905 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1906 pages_to_write_in_pmd -= batch_size;
1907 remaining_pages_total -= batch_size;
1908 }
1909 if (remaining_pages_total)
1910 goto more;
1911 ret = 0;
1912out:
1913 *num = remaining_pages_total;
1914 return ret;
1915}
1916#endif /* ifdef pte_index */
1917
1918/**
1919 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1920 * @vma: user vma to map to
1921 * @addr: target start user address of these pages
1922 * @pages: source kernel pages
1923 * @num: in: number of pages to map. out: number of pages that were *not*
1924 * mapped. (0 means all pages were successfully mapped).
1925 *
1926 * Preferred over vm_insert_page() when inserting multiple pages.
1927 *
1928 * In case of error, we may have mapped a subset of the provided
1929 * pages. It is the caller's responsibility to account for this case.
1930 *
1931 * The same restrictions apply as in vm_insert_page().
1932 */
1933int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1934 struct page **pages, unsigned long *num)
1935{
1936#ifdef pte_index
1937 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1938
1939 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1940 return -EFAULT;
1941 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1942 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1943 BUG_ON(vma->vm_flags & VM_PFNMAP);
1944 vma->vm_flags |= VM_MIXEDMAP;
1945 }
1946 /* Defer page refcount checking till we're about to map that page. */
1947 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1948#else
1949 unsigned long idx = 0, pgcount = *num;
45779b03 1950 int err = -EINVAL;
8cd3984d
AR
1951
1952 for (; idx < pgcount; ++idx) {
1953 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1954 if (err)
1955 break;
1956 }
1957 *num = pgcount - idx;
1958 return err;
1959#endif /* ifdef pte_index */
1960}
1961EXPORT_SYMBOL(vm_insert_pages);
1962
bfa5bf6d
REB
1963/**
1964 * vm_insert_page - insert single page into user vma
1965 * @vma: user vma to map to
1966 * @addr: target user address of this page
1967 * @page: source kernel page
1968 *
a145dd41
LT
1969 * This allows drivers to insert individual pages they've allocated
1970 * into a user vma.
1971 *
1972 * The page has to be a nice clean _individual_ kernel allocation.
1973 * If you allocate a compound page, you need to have marked it as
1974 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1975 * (see split_page()).
a145dd41
LT
1976 *
1977 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1978 * took an arbitrary page protection parameter. This doesn't allow
1979 * that. Your vma protection will have to be set up correctly, which
1980 * means that if you want a shared writable mapping, you'd better
1981 * ask for a shared writable mapping!
1982 *
1983 * The page does not need to be reserved.
4b6e1e37
KK
1984 *
1985 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1986 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1987 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1988 * function from other places, for example from page-fault handler.
a862f68a
MR
1989 *
1990 * Return: %0 on success, negative error code otherwise.
a145dd41 1991 */
423bad60
NP
1992int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1993 struct page *page)
a145dd41
LT
1994{
1995 if (addr < vma->vm_start || addr >= vma->vm_end)
1996 return -EFAULT;
1997 if (!page_count(page))
1998 return -EINVAL;
4b6e1e37 1999 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2000 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2001 BUG_ON(vma->vm_flags & VM_PFNMAP);
2002 vma->vm_flags |= VM_MIXEDMAP;
2003 }
423bad60 2004 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2005}
e3c3374f 2006EXPORT_SYMBOL(vm_insert_page);
a145dd41 2007
a667d745
SJ
2008/*
2009 * __vm_map_pages - maps range of kernel pages into user vma
2010 * @vma: user vma to map to
2011 * @pages: pointer to array of source kernel pages
2012 * @num: number of pages in page array
2013 * @offset: user's requested vm_pgoff
2014 *
2015 * This allows drivers to map range of kernel pages into a user vma.
2016 *
2017 * Return: 0 on success and error code otherwise.
2018 */
2019static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 unsigned long num, unsigned long offset)
2021{
2022 unsigned long count = vma_pages(vma);
2023 unsigned long uaddr = vma->vm_start;
2024 int ret, i;
2025
2026 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2027 if (offset >= num)
a667d745
SJ
2028 return -ENXIO;
2029
2030 /* Fail if the user requested size exceeds available object size */
2031 if (count > num - offset)
2032 return -ENXIO;
2033
2034 for (i = 0; i < count; i++) {
2035 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2036 if (ret < 0)
2037 return ret;
2038 uaddr += PAGE_SIZE;
2039 }
2040
2041 return 0;
2042}
2043
2044/**
2045 * vm_map_pages - maps range of kernel pages starts with non zero offset
2046 * @vma: user vma to map to
2047 * @pages: pointer to array of source kernel pages
2048 * @num: number of pages in page array
2049 *
2050 * Maps an object consisting of @num pages, catering for the user's
2051 * requested vm_pgoff
2052 *
2053 * If we fail to insert any page into the vma, the function will return
2054 * immediately leaving any previously inserted pages present. Callers
2055 * from the mmap handler may immediately return the error as their caller
2056 * will destroy the vma, removing any successfully inserted pages. Other
2057 * callers should make their own arrangements for calling unmap_region().
2058 *
2059 * Context: Process context. Called by mmap handlers.
2060 * Return: 0 on success and error code otherwise.
2061 */
2062int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063 unsigned long num)
2064{
2065 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2066}
2067EXPORT_SYMBOL(vm_map_pages);
2068
2069/**
2070 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2071 * @vma: user vma to map to
2072 * @pages: pointer to array of source kernel pages
2073 * @num: number of pages in page array
2074 *
2075 * Similar to vm_map_pages(), except that it explicitly sets the offset
2076 * to 0. This function is intended for the drivers that did not consider
2077 * vm_pgoff.
2078 *
2079 * Context: Process context. Called by mmap handlers.
2080 * Return: 0 on success and error code otherwise.
2081 */
2082int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2083 unsigned long num)
2084{
2085 return __vm_map_pages(vma, pages, num, 0);
2086}
2087EXPORT_SYMBOL(vm_map_pages_zero);
2088
9b5a8e00 2089static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2090 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2091{
2092 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2093 pte_t *pte, entry;
2094 spinlock_t *ptl;
2095
423bad60
NP
2096 pte = get_locked_pte(mm, addr, &ptl);
2097 if (!pte)
9b5a8e00 2098 return VM_FAULT_OOM;
b2770da6
RZ
2099 if (!pte_none(*pte)) {
2100 if (mkwrite) {
2101 /*
2102 * For read faults on private mappings the PFN passed
2103 * in may not match the PFN we have mapped if the
2104 * mapped PFN is a writeable COW page. In the mkwrite
2105 * case we are creating a writable PTE for a shared
f2c57d91
JK
2106 * mapping and we expect the PFNs to match. If they
2107 * don't match, we are likely racing with block
2108 * allocation and mapping invalidation so just skip the
2109 * update.
b2770da6 2110 */
f2c57d91
JK
2111 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2112 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2113 goto out_unlock;
f2c57d91 2114 }
cae85cb8
JK
2115 entry = pte_mkyoung(*pte);
2116 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2118 update_mmu_cache(vma, addr, pte);
2119 }
2120 goto out_unlock;
b2770da6 2121 }
423bad60
NP
2122
2123 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2124 if (pfn_t_devmap(pfn))
2125 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2126 else
2127 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2128
b2770da6
RZ
2129 if (mkwrite) {
2130 entry = pte_mkyoung(entry);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 }
2133
423bad60 2134 set_pte_at(mm, addr, pte, entry);
4b3073e1 2135 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2136
423bad60
NP
2137out_unlock:
2138 pte_unmap_unlock(pte, ptl);
9b5a8e00 2139 return VM_FAULT_NOPAGE;
423bad60
NP
2140}
2141
f5e6d1d5
MW
2142/**
2143 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2144 * @vma: user vma to map to
2145 * @addr: target user address of this page
2146 * @pfn: source kernel pfn
2147 * @pgprot: pgprot flags for the inserted page
2148 *
a1a0aea5 2149 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2150 * to override pgprot on a per-page basis.
2151 *
2152 * This only makes sense for IO mappings, and it makes no sense for
2153 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2154 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2155 * impractical.
2156 *
574c5b3d
TH
2157 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2158 * a value of @pgprot different from that of @vma->vm_page_prot.
2159 *
ae2b01f3 2160 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2161 * Return: vm_fault_t value.
2162 */
2163vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2164 unsigned long pfn, pgprot_t pgprot)
2165{
6d958546
MW
2166 /*
2167 * Technically, architectures with pte_special can avoid all these
2168 * restrictions (same for remap_pfn_range). However we would like
2169 * consistency in testing and feature parity among all, so we should
2170 * try to keep these invariants in place for everybody.
2171 */
2172 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2173 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2174 (VM_PFNMAP|VM_MIXEDMAP));
2175 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2176 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2177
2178 if (addr < vma->vm_start || addr >= vma->vm_end)
2179 return VM_FAULT_SIGBUS;
2180
2181 if (!pfn_modify_allowed(pfn, pgprot))
2182 return VM_FAULT_SIGBUS;
2183
2184 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2185
9b5a8e00 2186 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2187 false);
f5e6d1d5
MW
2188}
2189EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2190
ae2b01f3
MW
2191/**
2192 * vmf_insert_pfn - insert single pfn into user vma
2193 * @vma: user vma to map to
2194 * @addr: target user address of this page
2195 * @pfn: source kernel pfn
2196 *
2197 * Similar to vm_insert_page, this allows drivers to insert individual pages
2198 * they've allocated into a user vma. Same comments apply.
2199 *
2200 * This function should only be called from a vm_ops->fault handler, and
2201 * in that case the handler should return the result of this function.
2202 *
2203 * vma cannot be a COW mapping.
2204 *
2205 * As this is called only for pages that do not currently exist, we
2206 * do not need to flush old virtual caches or the TLB.
2207 *
2208 * Context: Process context. May allocate using %GFP_KERNEL.
2209 * Return: vm_fault_t value.
2210 */
2211vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2212 unsigned long pfn)
2213{
2214 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2215}
2216EXPORT_SYMBOL(vmf_insert_pfn);
2217
785a3fab
DW
2218static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2219{
2220 /* these checks mirror the abort conditions in vm_normal_page */
2221 if (vma->vm_flags & VM_MIXEDMAP)
2222 return true;
2223 if (pfn_t_devmap(pfn))
2224 return true;
2225 if (pfn_t_special(pfn))
2226 return true;
2227 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2228 return true;
2229 return false;
2230}
2231
79f3aa5b 2232static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2233 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2234 bool mkwrite)
423bad60 2235{
79f3aa5b 2236 int err;
87744ab3 2237
785a3fab 2238 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2239
423bad60 2240 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2241 return VM_FAULT_SIGBUS;
308a047c
BP
2242
2243 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2244
42e4089c 2245 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2246 return VM_FAULT_SIGBUS;
42e4089c 2247
423bad60
NP
2248 /*
2249 * If we don't have pte special, then we have to use the pfn_valid()
2250 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2251 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2252 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2253 * without pte special, it would there be refcounted as a normal page.
423bad60 2254 */
00b3a331
LD
2255 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2256 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2257 struct page *page;
2258
03fc2da6
DW
2259 /*
2260 * At this point we are committed to insert_page()
2261 * regardless of whether the caller specified flags that
2262 * result in pfn_t_has_page() == false.
2263 */
2264 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2265 err = insert_page(vma, addr, page, pgprot);
2266 } else {
9b5a8e00 2267 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2268 }
b2770da6 2269
5d747637
MW
2270 if (err == -ENOMEM)
2271 return VM_FAULT_OOM;
2272 if (err < 0 && err != -EBUSY)
2273 return VM_FAULT_SIGBUS;
2274
2275 return VM_FAULT_NOPAGE;
e0dc0d8f 2276}
79f3aa5b 2277
574c5b3d
TH
2278/**
2279 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2280 * @vma: user vma to map to
2281 * @addr: target user address of this page
2282 * @pfn: source kernel pfn
2283 * @pgprot: pgprot flags for the inserted page
2284 *
a1a0aea5 2285 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2286 * to override pgprot on a per-page basis.
2287 *
2288 * Typically this function should be used by drivers to set caching- and
2289 * encryption bits different than those of @vma->vm_page_prot, because
2290 * the caching- or encryption mode may not be known at mmap() time.
2291 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2292 * to set caching and encryption bits for those vmas (except for COW pages).
2293 * This is ensured by core vm only modifying these page table entries using
2294 * functions that don't touch caching- or encryption bits, using pte_modify()
2295 * if needed. (See for example mprotect()).
2296 * Also when new page-table entries are created, this is only done using the
2297 * fault() callback, and never using the value of vma->vm_page_prot,
2298 * except for page-table entries that point to anonymous pages as the result
2299 * of COW.
2300 *
2301 * Context: Process context. May allocate using %GFP_KERNEL.
2302 * Return: vm_fault_t value.
2303 */
2304vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2305 pfn_t pfn, pgprot_t pgprot)
2306{
2307 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2308}
5379e4dd 2309EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2310
79f3aa5b
MW
2311vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2312 pfn_t pfn)
2313{
574c5b3d 2314 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2315}
5d747637 2316EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2317
ab77dab4
SJ
2318/*
2319 * If the insertion of PTE failed because someone else already added a
2320 * different entry in the mean time, we treat that as success as we assume
2321 * the same entry was actually inserted.
2322 */
ab77dab4
SJ
2323vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2324 unsigned long addr, pfn_t pfn)
b2770da6 2325{
574c5b3d 2326 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2327}
ab77dab4 2328EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2329
1da177e4
LT
2330/*
2331 * maps a range of physical memory into the requested pages. the old
2332 * mappings are removed. any references to nonexistent pages results
2333 * in null mappings (currently treated as "copy-on-access")
2334 */
2335static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2338{
90a3e375 2339 pte_t *pte, *mapped_pte;
c74df32c 2340 spinlock_t *ptl;
42e4089c 2341 int err = 0;
1da177e4 2342
90a3e375 2343 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2344 if (!pte)
2345 return -ENOMEM;
6606c3e0 2346 arch_enter_lazy_mmu_mode();
1da177e4
LT
2347 do {
2348 BUG_ON(!pte_none(*pte));
42e4089c
AK
2349 if (!pfn_modify_allowed(pfn, prot)) {
2350 err = -EACCES;
2351 break;
2352 }
7e675137 2353 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2354 pfn++;
2355 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2356 arch_leave_lazy_mmu_mode();
90a3e375 2357 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2358 return err;
1da177e4
LT
2359}
2360
2361static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2362 unsigned long addr, unsigned long end,
2363 unsigned long pfn, pgprot_t prot)
2364{
2365 pmd_t *pmd;
2366 unsigned long next;
42e4089c 2367 int err;
1da177e4
LT
2368
2369 pfn -= addr >> PAGE_SHIFT;
2370 pmd = pmd_alloc(mm, pud, addr);
2371 if (!pmd)
2372 return -ENOMEM;
f66055ab 2373 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2374 do {
2375 next = pmd_addr_end(addr, end);
42e4089c
AK
2376 err = remap_pte_range(mm, pmd, addr, next,
2377 pfn + (addr >> PAGE_SHIFT), prot);
2378 if (err)
2379 return err;
1da177e4
LT
2380 } while (pmd++, addr = next, addr != end);
2381 return 0;
2382}
2383
c2febafc 2384static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2385 unsigned long addr, unsigned long end,
2386 unsigned long pfn, pgprot_t prot)
2387{
2388 pud_t *pud;
2389 unsigned long next;
42e4089c 2390 int err;
1da177e4
LT
2391
2392 pfn -= addr >> PAGE_SHIFT;
c2febafc 2393 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2394 if (!pud)
2395 return -ENOMEM;
2396 do {
2397 next = pud_addr_end(addr, end);
42e4089c
AK
2398 err = remap_pmd_range(mm, pud, addr, next,
2399 pfn + (addr >> PAGE_SHIFT), prot);
2400 if (err)
2401 return err;
1da177e4
LT
2402 } while (pud++, addr = next, addr != end);
2403 return 0;
2404}
2405
c2febafc
KS
2406static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2407 unsigned long addr, unsigned long end,
2408 unsigned long pfn, pgprot_t prot)
2409{
2410 p4d_t *p4d;
2411 unsigned long next;
42e4089c 2412 int err;
c2febafc
KS
2413
2414 pfn -= addr >> PAGE_SHIFT;
2415 p4d = p4d_alloc(mm, pgd, addr);
2416 if (!p4d)
2417 return -ENOMEM;
2418 do {
2419 next = p4d_addr_end(addr, end);
42e4089c
AK
2420 err = remap_pud_range(mm, p4d, addr, next,
2421 pfn + (addr >> PAGE_SHIFT), prot);
2422 if (err)
2423 return err;
c2febafc
KS
2424 } while (p4d++, addr = next, addr != end);
2425 return 0;
2426}
2427
74ffa5a3
CH
2428/*
2429 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2430 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2431 */
74ffa5a3
CH
2432int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2433 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2434{
2435 pgd_t *pgd;
2436 unsigned long next;
2d15cab8 2437 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2438 struct mm_struct *mm = vma->vm_mm;
2439 int err;
2440
0c4123e3
AZ
2441 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2442 return -EINVAL;
2443
1da177e4
LT
2444 /*
2445 * Physically remapped pages are special. Tell the
2446 * rest of the world about it:
2447 * VM_IO tells people not to look at these pages
2448 * (accesses can have side effects).
6aab341e
LT
2449 * VM_PFNMAP tells the core MM that the base pages are just
2450 * raw PFN mappings, and do not have a "struct page" associated
2451 * with them.
314e51b9
KK
2452 * VM_DONTEXPAND
2453 * Disable vma merging and expanding with mremap().
2454 * VM_DONTDUMP
2455 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2456 *
2457 * There's a horrible special case to handle copy-on-write
2458 * behaviour that some programs depend on. We mark the "original"
2459 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2460 * See vm_normal_page() for details.
1da177e4 2461 */
b3b9c293
KK
2462 if (is_cow_mapping(vma->vm_flags)) {
2463 if (addr != vma->vm_start || end != vma->vm_end)
2464 return -EINVAL;
fb155c16 2465 vma->vm_pgoff = pfn;
b3b9c293
KK
2466 }
2467
314e51b9 2468 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2469
2470 BUG_ON(addr >= end);
2471 pfn -= addr >> PAGE_SHIFT;
2472 pgd = pgd_offset(mm, addr);
2473 flush_cache_range(vma, addr, end);
1da177e4
LT
2474 do {
2475 next = pgd_addr_end(addr, end);
c2febafc 2476 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2477 pfn + (addr >> PAGE_SHIFT), prot);
2478 if (err)
74ffa5a3 2479 return err;
1da177e4 2480 } while (pgd++, addr = next, addr != end);
2ab64037 2481
74ffa5a3
CH
2482 return 0;
2483}
2484
2485/**
2486 * remap_pfn_range - remap kernel memory to userspace
2487 * @vma: user vma to map to
2488 * @addr: target page aligned user address to start at
2489 * @pfn: page frame number of kernel physical memory address
2490 * @size: size of mapping area
2491 * @prot: page protection flags for this mapping
2492 *
2493 * Note: this is only safe if the mm semaphore is held when called.
2494 *
2495 * Return: %0 on success, negative error code otherwise.
2496 */
2497int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2498 unsigned long pfn, unsigned long size, pgprot_t prot)
2499{
2500 int err;
2501
2502 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2503 if (err)
74ffa5a3 2504 return -EINVAL;
2ab64037 2505
74ffa5a3
CH
2506 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2507 if (err)
2508 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2509 return err;
2510}
2511EXPORT_SYMBOL(remap_pfn_range);
2512
b4cbb197
LT
2513/**
2514 * vm_iomap_memory - remap memory to userspace
2515 * @vma: user vma to map to
abd69b9e 2516 * @start: start of the physical memory to be mapped
b4cbb197
LT
2517 * @len: size of area
2518 *
2519 * This is a simplified io_remap_pfn_range() for common driver use. The
2520 * driver just needs to give us the physical memory range to be mapped,
2521 * we'll figure out the rest from the vma information.
2522 *
2523 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2524 * whatever write-combining details or similar.
a862f68a
MR
2525 *
2526 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2527 */
2528int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2529{
2530 unsigned long vm_len, pfn, pages;
2531
2532 /* Check that the physical memory area passed in looks valid */
2533 if (start + len < start)
2534 return -EINVAL;
2535 /*
2536 * You *really* shouldn't map things that aren't page-aligned,
2537 * but we've historically allowed it because IO memory might
2538 * just have smaller alignment.
2539 */
2540 len += start & ~PAGE_MASK;
2541 pfn = start >> PAGE_SHIFT;
2542 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2543 if (pfn + pages < pfn)
2544 return -EINVAL;
2545
2546 /* We start the mapping 'vm_pgoff' pages into the area */
2547 if (vma->vm_pgoff > pages)
2548 return -EINVAL;
2549 pfn += vma->vm_pgoff;
2550 pages -= vma->vm_pgoff;
2551
2552 /* Can we fit all of the mapping? */
2553 vm_len = vma->vm_end - vma->vm_start;
2554 if (vm_len >> PAGE_SHIFT > pages)
2555 return -EINVAL;
2556
2557 /* Ok, let it rip */
2558 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2559}
2560EXPORT_SYMBOL(vm_iomap_memory);
2561
aee16b3c
JF
2562static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2563 unsigned long addr, unsigned long end,
e80d3909
JR
2564 pte_fn_t fn, void *data, bool create,
2565 pgtbl_mod_mask *mask)
aee16b3c 2566{
8abb50c7 2567 pte_t *pte, *mapped_pte;
be1db475 2568 int err = 0;
3f649ab7 2569 spinlock_t *ptl;
aee16b3c 2570
be1db475 2571 if (create) {
8abb50c7 2572 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2573 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2574 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2575 if (!pte)
2576 return -ENOMEM;
2577 } else {
8abb50c7 2578 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2579 pte_offset_kernel(pmd, addr) :
2580 pte_offset_map_lock(mm, pmd, addr, &ptl);
2581 }
aee16b3c
JF
2582
2583 BUG_ON(pmd_huge(*pmd));
2584
38e0edb1
JF
2585 arch_enter_lazy_mmu_mode();
2586
eeb4a05f
CH
2587 if (fn) {
2588 do {
2589 if (create || !pte_none(*pte)) {
2590 err = fn(pte++, addr, data);
2591 if (err)
2592 break;
2593 }
2594 } while (addr += PAGE_SIZE, addr != end);
2595 }
e80d3909 2596 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2597
38e0edb1
JF
2598 arch_leave_lazy_mmu_mode();
2599
aee16b3c 2600 if (mm != &init_mm)
8abb50c7 2601 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2602 return err;
2603}
2604
2605static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2606 unsigned long addr, unsigned long end,
e80d3909
JR
2607 pte_fn_t fn, void *data, bool create,
2608 pgtbl_mod_mask *mask)
aee16b3c
JF
2609{
2610 pmd_t *pmd;
2611 unsigned long next;
be1db475 2612 int err = 0;
aee16b3c 2613
ceb86879
AK
2614 BUG_ON(pud_huge(*pud));
2615
be1db475 2616 if (create) {
e80d3909 2617 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2618 if (!pmd)
2619 return -ENOMEM;
2620 } else {
2621 pmd = pmd_offset(pud, addr);
2622 }
aee16b3c
JF
2623 do {
2624 next = pmd_addr_end(addr, end);
0c95cba4
NP
2625 if (pmd_none(*pmd) && !create)
2626 continue;
2627 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2628 return -EINVAL;
2629 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2630 if (!create)
2631 continue;
2632 pmd_clear_bad(pmd);
be1db475 2633 }
0c95cba4
NP
2634 err = apply_to_pte_range(mm, pmd, addr, next,
2635 fn, data, create, mask);
2636 if (err)
2637 break;
aee16b3c 2638 } while (pmd++, addr = next, addr != end);
0c95cba4 2639
aee16b3c
JF
2640 return err;
2641}
2642
c2febafc 2643static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2644 unsigned long addr, unsigned long end,
e80d3909
JR
2645 pte_fn_t fn, void *data, bool create,
2646 pgtbl_mod_mask *mask)
aee16b3c
JF
2647{
2648 pud_t *pud;
2649 unsigned long next;
be1db475 2650 int err = 0;
aee16b3c 2651
be1db475 2652 if (create) {
e80d3909 2653 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2654 if (!pud)
2655 return -ENOMEM;
2656 } else {
2657 pud = pud_offset(p4d, addr);
2658 }
aee16b3c
JF
2659 do {
2660 next = pud_addr_end(addr, end);
0c95cba4
NP
2661 if (pud_none(*pud) && !create)
2662 continue;
2663 if (WARN_ON_ONCE(pud_leaf(*pud)))
2664 return -EINVAL;
2665 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2666 if (!create)
2667 continue;
2668 pud_clear_bad(pud);
be1db475 2669 }
0c95cba4
NP
2670 err = apply_to_pmd_range(mm, pud, addr, next,
2671 fn, data, create, mask);
2672 if (err)
2673 break;
aee16b3c 2674 } while (pud++, addr = next, addr != end);
0c95cba4 2675
aee16b3c
JF
2676 return err;
2677}
2678
c2febafc
KS
2679static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2680 unsigned long addr, unsigned long end,
e80d3909
JR
2681 pte_fn_t fn, void *data, bool create,
2682 pgtbl_mod_mask *mask)
c2febafc
KS
2683{
2684 p4d_t *p4d;
2685 unsigned long next;
be1db475 2686 int err = 0;
c2febafc 2687
be1db475 2688 if (create) {
e80d3909 2689 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2690 if (!p4d)
2691 return -ENOMEM;
2692 } else {
2693 p4d = p4d_offset(pgd, addr);
2694 }
c2febafc
KS
2695 do {
2696 next = p4d_addr_end(addr, end);
0c95cba4
NP
2697 if (p4d_none(*p4d) && !create)
2698 continue;
2699 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2700 return -EINVAL;
2701 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2702 if (!create)
2703 continue;
2704 p4d_clear_bad(p4d);
be1db475 2705 }
0c95cba4
NP
2706 err = apply_to_pud_range(mm, p4d, addr, next,
2707 fn, data, create, mask);
2708 if (err)
2709 break;
c2febafc 2710 } while (p4d++, addr = next, addr != end);
0c95cba4 2711
c2febafc
KS
2712 return err;
2713}
2714
be1db475
DA
2715static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2716 unsigned long size, pte_fn_t fn,
2717 void *data, bool create)
aee16b3c
JF
2718{
2719 pgd_t *pgd;
e80d3909 2720 unsigned long start = addr, next;
57250a5b 2721 unsigned long end = addr + size;
e80d3909 2722 pgtbl_mod_mask mask = 0;
be1db475 2723 int err = 0;
aee16b3c 2724
9cb65bc3
MP
2725 if (WARN_ON(addr >= end))
2726 return -EINVAL;
2727
aee16b3c
JF
2728 pgd = pgd_offset(mm, addr);
2729 do {
2730 next = pgd_addr_end(addr, end);
0c95cba4 2731 if (pgd_none(*pgd) && !create)
be1db475 2732 continue;
0c95cba4
NP
2733 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2734 return -EINVAL;
2735 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2736 if (!create)
2737 continue;
2738 pgd_clear_bad(pgd);
2739 }
2740 err = apply_to_p4d_range(mm, pgd, addr, next,
2741 fn, data, create, &mask);
aee16b3c
JF
2742 if (err)
2743 break;
2744 } while (pgd++, addr = next, addr != end);
57250a5b 2745
e80d3909
JR
2746 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2747 arch_sync_kernel_mappings(start, start + size);
2748
aee16b3c
JF
2749 return err;
2750}
be1db475
DA
2751
2752/*
2753 * Scan a region of virtual memory, filling in page tables as necessary
2754 * and calling a provided function on each leaf page table.
2755 */
2756int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2757 unsigned long size, pte_fn_t fn, void *data)
2758{
2759 return __apply_to_page_range(mm, addr, size, fn, data, true);
2760}
aee16b3c
JF
2761EXPORT_SYMBOL_GPL(apply_to_page_range);
2762
be1db475
DA
2763/*
2764 * Scan a region of virtual memory, calling a provided function on
2765 * each leaf page table where it exists.
2766 *
2767 * Unlike apply_to_page_range, this does _not_ fill in page tables
2768 * where they are absent.
2769 */
2770int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2771 unsigned long size, pte_fn_t fn, void *data)
2772{
2773 return __apply_to_page_range(mm, addr, size, fn, data, false);
2774}
2775EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2776
8f4e2101 2777/*
9b4bdd2f
KS
2778 * handle_pte_fault chooses page fault handler according to an entry which was
2779 * read non-atomically. Before making any commitment, on those architectures
2780 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2781 * parts, do_swap_page must check under lock before unmapping the pte and
2782 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2783 * and do_anonymous_page can safely check later on).
8f4e2101 2784 */
2ca99358 2785static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2786{
2787 int same = 1;
923717cb 2788#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2789 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2790 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2791 spin_lock(ptl);
2ca99358 2792 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2793 spin_unlock(ptl);
8f4e2101
HD
2794 }
2795#endif
2ca99358
PX
2796 pte_unmap(vmf->pte);
2797 vmf->pte = NULL;
8f4e2101
HD
2798 return same;
2799}
2800
a873dfe1
TL
2801/*
2802 * Return:
2803 * 0: copied succeeded
2804 * -EHWPOISON: copy failed due to hwpoison in source page
2805 * -EAGAIN: copied failed (some other reason)
2806 */
2807static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2808 struct vm_fault *vmf)
6aab341e 2809{
a873dfe1 2810 int ret;
83d116c5
JH
2811 void *kaddr;
2812 void __user *uaddr;
c3e5ea6e 2813 bool locked = false;
83d116c5
JH
2814 struct vm_area_struct *vma = vmf->vma;
2815 struct mm_struct *mm = vma->vm_mm;
2816 unsigned long addr = vmf->address;
2817
83d116c5 2818 if (likely(src)) {
d302c239
TL
2819 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2820 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2821 return -EHWPOISON;
d302c239 2822 }
a873dfe1 2823 return 0;
83d116c5
JH
2824 }
2825
6aab341e
LT
2826 /*
2827 * If the source page was a PFN mapping, we don't have
2828 * a "struct page" for it. We do a best-effort copy by
2829 * just copying from the original user address. If that
2830 * fails, we just zero-fill it. Live with it.
2831 */
83d116c5
JH
2832 kaddr = kmap_atomic(dst);
2833 uaddr = (void __user *)(addr & PAGE_MASK);
2834
2835 /*
2836 * On architectures with software "accessed" bits, we would
2837 * take a double page fault, so mark it accessed here.
2838 */
e1fd09e3 2839 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2840 pte_t entry;
5d2a2dbb 2841
83d116c5 2842 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2843 locked = true;
83d116c5
JH
2844 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2845 /*
2846 * Other thread has already handled the fault
7df67697 2847 * and update local tlb only
83d116c5 2848 */
7df67697 2849 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2850 ret = -EAGAIN;
83d116c5
JH
2851 goto pte_unlock;
2852 }
2853
2854 entry = pte_mkyoung(vmf->orig_pte);
2855 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2856 update_mmu_cache(vma, addr, vmf->pte);
2857 }
2858
2859 /*
2860 * This really shouldn't fail, because the page is there
2861 * in the page tables. But it might just be unreadable,
2862 * in which case we just give up and fill the result with
2863 * zeroes.
2864 */
2865 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2866 if (locked)
2867 goto warn;
2868
2869 /* Re-validate under PTL if the page is still mapped */
2870 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2871 locked = true;
2872 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2873 /* The PTE changed under us, update local tlb */
2874 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2875 ret = -EAGAIN;
c3e5ea6e
KS
2876 goto pte_unlock;
2877 }
2878
5d2a2dbb 2879 /*
985ba004 2880 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2881 * Try to copy again under PTL.
5d2a2dbb 2882 */
c3e5ea6e
KS
2883 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2884 /*
2885 * Give a warn in case there can be some obscure
2886 * use-case
2887 */
2888warn:
2889 WARN_ON_ONCE(1);
2890 clear_page(kaddr);
2891 }
83d116c5
JH
2892 }
2893
a873dfe1 2894 ret = 0;
83d116c5
JH
2895
2896pte_unlock:
c3e5ea6e 2897 if (locked)
83d116c5
JH
2898 pte_unmap_unlock(vmf->pte, vmf->ptl);
2899 kunmap_atomic(kaddr);
2900 flush_dcache_page(dst);
2901
2902 return ret;
6aab341e
LT
2903}
2904
c20cd45e
MH
2905static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2906{
2907 struct file *vm_file = vma->vm_file;
2908
2909 if (vm_file)
2910 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2911
2912 /*
2913 * Special mappings (e.g. VDSO) do not have any file so fake
2914 * a default GFP_KERNEL for them.
2915 */
2916 return GFP_KERNEL;
2917}
2918
fb09a464
KS
2919/*
2920 * Notify the address space that the page is about to become writable so that
2921 * it can prohibit this or wait for the page to get into an appropriate state.
2922 *
2923 * We do this without the lock held, so that it can sleep if it needs to.
2924 */
2b740303 2925static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2926{
2b740303 2927 vm_fault_t ret;
38b8cb7f
JK
2928 struct page *page = vmf->page;
2929 unsigned int old_flags = vmf->flags;
fb09a464 2930
38b8cb7f 2931 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2932
dc617f29
DW
2933 if (vmf->vma->vm_file &&
2934 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2935 return VM_FAULT_SIGBUS;
2936
11bac800 2937 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2938 /* Restore original flags so that caller is not surprised */
2939 vmf->flags = old_flags;
fb09a464
KS
2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2941 return ret;
2942 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2943 lock_page(page);
2944 if (!page->mapping) {
2945 unlock_page(page);
2946 return 0; /* retry */
2947 }
2948 ret |= VM_FAULT_LOCKED;
2949 } else
2950 VM_BUG_ON_PAGE(!PageLocked(page), page);
2951 return ret;
2952}
2953
97ba0c2b
JK
2954/*
2955 * Handle dirtying of a page in shared file mapping on a write fault.
2956 *
2957 * The function expects the page to be locked and unlocks it.
2958 */
89b15332 2959static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2960{
89b15332 2961 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2962 struct address_space *mapping;
89b15332 2963 struct page *page = vmf->page;
97ba0c2b
JK
2964 bool dirtied;
2965 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2966
2967 dirtied = set_page_dirty(page);
2968 VM_BUG_ON_PAGE(PageAnon(page), page);
2969 /*
2970 * Take a local copy of the address_space - page.mapping may be zeroed
2971 * by truncate after unlock_page(). The address_space itself remains
2972 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2973 * release semantics to prevent the compiler from undoing this copying.
2974 */
2975 mapping = page_rmapping(page);
2976 unlock_page(page);
2977
89b15332
JW
2978 if (!page_mkwrite)
2979 file_update_time(vma->vm_file);
2980
2981 /*
2982 * Throttle page dirtying rate down to writeback speed.
2983 *
2984 * mapping may be NULL here because some device drivers do not
2985 * set page.mapping but still dirty their pages
2986 *
c1e8d7c6 2987 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2988 * is pinning the mapping, as per above.
2989 */
97ba0c2b 2990 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2991 struct file *fpin;
2992
2993 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2994 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2995 if (fpin) {
2996 fput(fpin);
d9272525 2997 return VM_FAULT_COMPLETED;
89b15332 2998 }
97ba0c2b
JK
2999 }
3000
89b15332 3001 return 0;
97ba0c2b
JK
3002}
3003
4e047f89
SR
3004/*
3005 * Handle write page faults for pages that can be reused in the current vma
3006 *
3007 * This can happen either due to the mapping being with the VM_SHARED flag,
3008 * or due to us being the last reference standing to the page. In either
3009 * case, all we need to do here is to mark the page as writable and update
3010 * any related book-keeping.
3011 */
997dd98d 3012static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3013 __releases(vmf->ptl)
4e047f89 3014{
82b0f8c3 3015 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3016 struct page *page = vmf->page;
4e047f89 3017 pte_t entry;
6c287605 3018
c89357e2 3019 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3020 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3021
4e047f89
SR
3022 /*
3023 * Clear the pages cpupid information as the existing
3024 * information potentially belongs to a now completely
3025 * unrelated process.
3026 */
3027 if (page)
3028 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3029
2994302b
JK
3030 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3031 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3032 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3033 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3034 update_mmu_cache(vma, vmf->address, vmf->pte);
3035 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3036 count_vm_event(PGREUSE);
4e047f89
SR
3037}
3038
2f38ab2c 3039/*
c89357e2
DH
3040 * Handle the case of a page which we actually need to copy to a new page,
3041 * either due to COW or unsharing.
2f38ab2c 3042 *
c1e8d7c6 3043 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3044 * without the ptl held.
3045 *
3046 * High level logic flow:
3047 *
3048 * - Allocate a page, copy the content of the old page to the new one.
3049 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3050 * - Take the PTL. If the pte changed, bail out and release the allocated page
3051 * - If the pte is still the way we remember it, update the page table and all
3052 * relevant references. This includes dropping the reference the page-table
3053 * held to the old page, as well as updating the rmap.
3054 * - In any case, unlock the PTL and drop the reference we took to the old page.
3055 */
2b740303 3056static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3057{
c89357e2 3058 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3059 struct vm_area_struct *vma = vmf->vma;
bae473a4 3060 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3061 struct page *old_page = vmf->page;
2f38ab2c 3062 struct page *new_page = NULL;
2f38ab2c
SR
3063 pte_t entry;
3064 int page_copied = 0;
ac46d4f3 3065 struct mmu_notifier_range range;
a873dfe1 3066 int ret;
2f38ab2c 3067
662ce1dc
YY
3068 delayacct_wpcopy_start();
3069
2f38ab2c
SR
3070 if (unlikely(anon_vma_prepare(vma)))
3071 goto oom;
3072
2994302b 3073 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3074 new_page = alloc_zeroed_user_highpage_movable(vma,
3075 vmf->address);
2f38ab2c
SR
3076 if (!new_page)
3077 goto oom;
3078 } else {
bae473a4 3079 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3080 vmf->address);
2f38ab2c
SR
3081 if (!new_page)
3082 goto oom;
83d116c5 3083
a873dfe1
TL
3084 ret = __wp_page_copy_user(new_page, old_page, vmf);
3085 if (ret) {
83d116c5
JH
3086 /*
3087 * COW failed, if the fault was solved by other,
3088 * it's fine. If not, userspace would re-fault on
3089 * the same address and we will handle the fault
3090 * from the second attempt.
a873dfe1 3091 * The -EHWPOISON case will not be retried.
83d116c5
JH
3092 */
3093 put_page(new_page);
3094 if (old_page)
3095 put_page(old_page);
662ce1dc
YY
3096
3097 delayacct_wpcopy_end();
a873dfe1 3098 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3099 }
b073d7f8 3100 kmsan_copy_page_meta(new_page, old_page);
2f38ab2c 3101 }
2f38ab2c 3102
8f425e4e 3103 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3104 goto oom_free_new;
9d82c694 3105 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3106
eb3c24f3
MG
3107 __SetPageUptodate(new_page);
3108
7269f999 3109 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3110 vmf->address & PAGE_MASK,
ac46d4f3
JG
3111 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3112 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3113
3114 /*
3115 * Re-check the pte - we dropped the lock
3116 */
82b0f8c3 3117 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3118 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3119 if (old_page) {
3120 if (!PageAnon(old_page)) {
f1a79412
SB
3121 dec_mm_counter(mm, mm_counter_file(old_page));
3122 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3123 }
3124 } else {
f1a79412 3125 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3126 }
2994302b 3127 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3128 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3129 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3130 if (unlikely(unshare)) {
3131 if (pte_soft_dirty(vmf->orig_pte))
3132 entry = pte_mksoft_dirty(entry);
3133 if (pte_uffd_wp(vmf->orig_pte))
3134 entry = pte_mkuffd_wp(entry);
3135 } else {
3136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3137 }
111fe718 3138
2f38ab2c
SR
3139 /*
3140 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3141 * pte with the new entry, to keep TLBs on different CPUs in
3142 * sync. This code used to set the new PTE then flush TLBs, but
3143 * that left a window where the new PTE could be loaded into
3144 * some TLBs while the old PTE remains in others.
2f38ab2c 3145 */
82b0f8c3 3146 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3147 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3148 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3149 /*
3150 * We call the notify macro here because, when using secondary
3151 * mmu page tables (such as kvm shadow page tables), we want the
3152 * new page to be mapped directly into the secondary page table.
3153 */
c89357e2 3154 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3155 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3156 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3157 if (old_page) {
3158 /*
3159 * Only after switching the pte to the new page may
3160 * we remove the mapcount here. Otherwise another
3161 * process may come and find the rmap count decremented
3162 * before the pte is switched to the new page, and
3163 * "reuse" the old page writing into it while our pte
3164 * here still points into it and can be read by other
3165 * threads.
3166 *
3167 * The critical issue is to order this
3168 * page_remove_rmap with the ptp_clear_flush above.
3169 * Those stores are ordered by (if nothing else,)
3170 * the barrier present in the atomic_add_negative
3171 * in page_remove_rmap.
3172 *
3173 * Then the TLB flush in ptep_clear_flush ensures that
3174 * no process can access the old page before the
3175 * decremented mapcount is visible. And the old page
3176 * cannot be reused until after the decremented
3177 * mapcount is visible. So transitively, TLBs to
3178 * old page will be flushed before it can be reused.
3179 */
cea86fe2 3180 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3181 }
3182
3183 /* Free the old page.. */
3184 new_page = old_page;
3185 page_copied = 1;
3186 } else {
7df67697 3187 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3188 }
3189
3190 if (new_page)
09cbfeaf 3191 put_page(new_page);
2f38ab2c 3192
82b0f8c3 3193 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3194 /*
3195 * No need to double call mmu_notifier->invalidate_range() callback as
3196 * the above ptep_clear_flush_notify() did already call it.
3197 */
ac46d4f3 3198 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3199 if (old_page) {
f4c4a3f4
HY
3200 if (page_copied)
3201 free_swap_cache(old_page);
09cbfeaf 3202 put_page(old_page);
2f38ab2c 3203 }
662ce1dc
YY
3204
3205 delayacct_wpcopy_end();
c89357e2 3206 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3207oom_free_new:
09cbfeaf 3208 put_page(new_page);
2f38ab2c
SR
3209oom:
3210 if (old_page)
09cbfeaf 3211 put_page(old_page);
662ce1dc
YY
3212
3213 delayacct_wpcopy_end();
2f38ab2c
SR
3214 return VM_FAULT_OOM;
3215}
3216
66a6197c
JK
3217/**
3218 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3219 * writeable once the page is prepared
3220 *
3221 * @vmf: structure describing the fault
3222 *
3223 * This function handles all that is needed to finish a write page fault in a
3224 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3225 * It handles locking of PTE and modifying it.
66a6197c
JK
3226 *
3227 * The function expects the page to be locked or other protection against
3228 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3229 *
2797e79f 3230 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3231 * we acquired PTE lock.
66a6197c 3232 */
2b740303 3233vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3234{
3235 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3236 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3237 &vmf->ptl);
3238 /*
3239 * We might have raced with another page fault while we released the
3240 * pte_offset_map_lock.
3241 */
3242 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3243 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3244 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3245 return VM_FAULT_NOPAGE;
66a6197c
JK
3246 }
3247 wp_page_reuse(vmf);
a19e2553 3248 return 0;
66a6197c
JK
3249}
3250
dd906184
BH
3251/*
3252 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3253 * mapping
3254 */
2b740303 3255static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3256{
82b0f8c3 3257 struct vm_area_struct *vma = vmf->vma;
bae473a4 3258
dd906184 3259 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3260 vm_fault_t ret;
dd906184 3261
82b0f8c3 3262 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3263 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3264 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3265 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3266 return ret;
66a6197c 3267 return finish_mkwrite_fault(vmf);
dd906184 3268 }
997dd98d
JK
3269 wp_page_reuse(vmf);
3270 return VM_FAULT_WRITE;
dd906184
BH
3271}
3272
2b740303 3273static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3274 __releases(vmf->ptl)
93e478d4 3275{
82b0f8c3 3276 struct vm_area_struct *vma = vmf->vma;
89b15332 3277 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3278
a41b70d6 3279 get_page(vmf->page);
93e478d4 3280
93e478d4 3281 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3282 vm_fault_t tmp;
93e478d4 3283
82b0f8c3 3284 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3285 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3286 if (unlikely(!tmp || (tmp &
3287 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3288 put_page(vmf->page);
93e478d4
SR
3289 return tmp;
3290 }
66a6197c 3291 tmp = finish_mkwrite_fault(vmf);
a19e2553 3292 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3293 unlock_page(vmf->page);
a41b70d6 3294 put_page(vmf->page);
66a6197c 3295 return tmp;
93e478d4 3296 }
66a6197c
JK
3297 } else {
3298 wp_page_reuse(vmf);
997dd98d 3299 lock_page(vmf->page);
93e478d4 3300 }
89b15332 3301 ret |= fault_dirty_shared_page(vmf);
997dd98d 3302 put_page(vmf->page);
93e478d4 3303
89b15332 3304 return ret;
93e478d4
SR
3305}
3306
1da177e4 3307/*
c89357e2
DH
3308 * This routine handles present pages, when
3309 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3310 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3311 * (FAULT_FLAG_UNSHARE)
3312 *
3313 * It is done by copying the page to a new address and decrementing the
3314 * shared-page counter for the old page.
1da177e4 3315 *
1da177e4
LT
3316 * Note that this routine assumes that the protection checks have been
3317 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3318 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3319 * done any necessary COW.
1da177e4 3320 *
c89357e2
DH
3321 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3322 * though the page will change only once the write actually happens. This
3323 * avoids a few races, and potentially makes it more efficient.
1da177e4 3324 *
c1e8d7c6 3325 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3326 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3327 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3328 */
2b740303 3329static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3330 __releases(vmf->ptl)
1da177e4 3331{
c89357e2 3332 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3333 struct vm_area_struct *vma = vmf->vma;
e4a2ed94 3334 struct folio *folio;
1da177e4 3335
c89357e2
DH
3336 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3337 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3338
c89357e2
DH
3339 if (likely(!unshare)) {
3340 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3341 pte_unmap_unlock(vmf->pte, vmf->ptl);
3342 return handle_userfault(vmf, VM_UFFD_WP);
3343 }
3344
3345 /*
3346 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3347 * is flushed in this case before copying.
3348 */
3349 if (unlikely(userfaultfd_wp(vmf->vma) &&
3350 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3351 flush_tlb_page(vmf->vma, vmf->address);
3352 }
6ce64428 3353
a41b70d6
JK
3354 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3355 if (!vmf->page) {
c89357e2
DH
3356 if (unlikely(unshare)) {
3357 /* No anonymous page -> nothing to do. */
3358 pte_unmap_unlock(vmf->pte, vmf->ptl);
3359 return 0;
3360 }
3361
251b97f5 3362 /*
64e45507
PF
3363 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3364 * VM_PFNMAP VMA.
251b97f5
PZ
3365 *
3366 * We should not cow pages in a shared writeable mapping.
dd906184 3367 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3368 */
3369 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3370 (VM_WRITE|VM_SHARED))
2994302b 3371 return wp_pfn_shared(vmf);
2f38ab2c 3372
82b0f8c3 3373 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3374 return wp_page_copy(vmf);
251b97f5 3375 }
1da177e4 3376
d08b3851 3377 /*
ee6a6457
PZ
3378 * Take out anonymous pages first, anonymous shared vmas are
3379 * not dirty accountable.
d08b3851 3380 */
e4a2ed94
MWO
3381 folio = page_folio(vmf->page);
3382 if (folio_test_anon(folio)) {
6c287605
DH
3383 /*
3384 * If the page is exclusive to this process we must reuse the
3385 * page without further checks.
3386 */
e4a2ed94 3387 if (PageAnonExclusive(vmf->page))
6c287605
DH
3388 goto reuse;
3389
53a05ad9 3390 /*
e4a2ed94
MWO
3391 * We have to verify under folio lock: these early checks are
3392 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3393 * the swapcache if there is little hope that we can reuse.
3394 *
e4a2ed94 3395 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3396 */
e4a2ed94 3397 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3398 goto copy;
e4a2ed94 3399 if (!folio_test_lru(folio))
d4c47097
DH
3400 /*
3401 * Note: We cannot easily detect+handle references from
e4a2ed94 3402 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3403 */
3404 lru_add_drain();
e4a2ed94 3405 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3406 goto copy;
e4a2ed94 3407 if (!folio_trylock(folio))
09854ba9 3408 goto copy;
e4a2ed94
MWO
3409 if (folio_test_swapcache(folio))
3410 folio_free_swap(folio);
3411 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3412 folio_unlock(folio);
52d1e606 3413 goto copy;
b009c024 3414 }
09854ba9 3415 /*
e4a2ed94
MWO
3416 * Ok, we've got the only folio reference from our mapping
3417 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3418 * sunglasses. Hit it.
09854ba9 3419 */
e4a2ed94
MWO
3420 page_move_anon_rmap(vmf->page, vma);
3421 folio_unlock(folio);
6c287605 3422reuse:
c89357e2
DH
3423 if (unlikely(unshare)) {
3424 pte_unmap_unlock(vmf->pte, vmf->ptl);
3425 return 0;
3426 }
be068f29 3427 wp_page_reuse(vmf);
09854ba9 3428 return VM_FAULT_WRITE;
c89357e2
DH
3429 } else if (unshare) {
3430 /* No anonymous page -> nothing to do. */
3431 pte_unmap_unlock(vmf->pte, vmf->ptl);
3432 return 0;
ee6a6457 3433 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3434 (VM_WRITE|VM_SHARED))) {
a41b70d6 3435 return wp_page_shared(vmf);
1da177e4 3436 }
52d1e606 3437copy:
1da177e4
LT
3438 /*
3439 * Ok, we need to copy. Oh, well..
3440 */
a41b70d6 3441 get_page(vmf->page);
28766805 3442
82b0f8c3 3443 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3444#ifdef CONFIG_KSM
3445 if (PageKsm(vmf->page))
3446 count_vm_event(COW_KSM);
3447#endif
a41b70d6 3448 return wp_page_copy(vmf);
1da177e4
LT
3449}
3450
97a89413 3451static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3452 unsigned long start_addr, unsigned long end_addr,
3453 struct zap_details *details)
3454{
f5cc4eef 3455 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3456}
3457
f808c13f 3458static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3459 pgoff_t first_index,
3460 pgoff_t last_index,
1da177e4
LT
3461 struct zap_details *details)
3462{
3463 struct vm_area_struct *vma;
1da177e4
LT
3464 pgoff_t vba, vea, zba, zea;
3465
232a6a1c 3466 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3467 vba = vma->vm_pgoff;
d6e93217 3468 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3469 zba = max(first_index, vba);
3470 zea = min(last_index, vea);
1da177e4 3471
97a89413 3472 unmap_mapping_range_vma(vma,
1da177e4
LT
3473 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3474 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3475 details);
1da177e4
LT
3476 }
3477}
3478
22061a1f 3479/**
3506659e
MWO
3480 * unmap_mapping_folio() - Unmap single folio from processes.
3481 * @folio: The locked folio to be unmapped.
22061a1f 3482 *
3506659e 3483 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3484 * Typically, for efficiency, the range of nearby pages has already been
3485 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3486 * truncation or invalidation holds the lock on a folio, it may find that
3487 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3488 * to unmap it finally.
3489 */
3506659e 3490void unmap_mapping_folio(struct folio *folio)
22061a1f 3491{
3506659e 3492 struct address_space *mapping = folio->mapping;
22061a1f 3493 struct zap_details details = { };
232a6a1c
PX
3494 pgoff_t first_index;
3495 pgoff_t last_index;
22061a1f 3496
3506659e 3497 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3498
3506659e
MWO
3499 first_index = folio->index;
3500 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3501
2e148f1e 3502 details.even_cows = false;
3506659e 3503 details.single_folio = folio;
999dad82 3504 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3505
2c865995 3506 i_mmap_lock_read(mapping);
22061a1f 3507 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3508 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3509 last_index, &details);
2c865995 3510 i_mmap_unlock_read(mapping);
22061a1f
HD
3511}
3512
977fbdcd
MW
3513/**
3514 * unmap_mapping_pages() - Unmap pages from processes.
3515 * @mapping: The address space containing pages to be unmapped.
3516 * @start: Index of first page to be unmapped.
3517 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3518 * @even_cows: Whether to unmap even private COWed pages.
3519 *
3520 * Unmap the pages in this address space from any userspace process which
3521 * has them mmaped. Generally, you want to remove COWed pages as well when
3522 * a file is being truncated, but not when invalidating pages from the page
3523 * cache.
3524 */
3525void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3526 pgoff_t nr, bool even_cows)
3527{
3528 struct zap_details details = { };
232a6a1c
PX
3529 pgoff_t first_index = start;
3530 pgoff_t last_index = start + nr - 1;
977fbdcd 3531
2e148f1e 3532 details.even_cows = even_cows;
232a6a1c
PX
3533 if (last_index < first_index)
3534 last_index = ULONG_MAX;
977fbdcd 3535
2c865995 3536 i_mmap_lock_read(mapping);
977fbdcd 3537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3538 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3539 last_index, &details);
2c865995 3540 i_mmap_unlock_read(mapping);
977fbdcd 3541}
6e0e99d5 3542EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3543
1da177e4 3544/**
8a5f14a2 3545 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3546 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3547 * file.
3548 *
3d41088f 3549 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3550 * @holebegin: byte in first page to unmap, relative to the start of
3551 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3552 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3553 * must keep the partial page. In contrast, we must get rid of
3554 * partial pages.
3555 * @holelen: size of prospective hole in bytes. This will be rounded
3556 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3557 * end of the file.
3558 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3559 * but 0 when invalidating pagecache, don't throw away private data.
3560 */
3561void unmap_mapping_range(struct address_space *mapping,
3562 loff_t const holebegin, loff_t const holelen, int even_cows)
3563{
1da177e4
LT
3564 pgoff_t hba = holebegin >> PAGE_SHIFT;
3565 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566
3567 /* Check for overflow. */
3568 if (sizeof(holelen) > sizeof(hlen)) {
3569 long long holeend =
3570 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3571 if (holeend & ~(long long)ULONG_MAX)
3572 hlen = ULONG_MAX - hba + 1;
3573 }
3574
977fbdcd 3575 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3576}
3577EXPORT_SYMBOL(unmap_mapping_range);
3578
b756a3b5
AP
3579/*
3580 * Restore a potential device exclusive pte to a working pte entry
3581 */
3582static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3583{
19672a9e 3584 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3585 struct vm_area_struct *vma = vmf->vma;
3586 struct mmu_notifier_range range;
3587
19672a9e 3588 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
b756a3b5
AP
3589 return VM_FAULT_RETRY;
3590 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3591 vma->vm_mm, vmf->address & PAGE_MASK,
3592 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3593 mmu_notifier_invalidate_range_start(&range);
3594
3595 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3596 &vmf->ptl);
3597 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3598 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3599
3600 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3601 folio_unlock(folio);
b756a3b5
AP
3602
3603 mmu_notifier_invalidate_range_end(&range);
3604 return 0;
3605}
3606
a160e537 3607static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3608 struct vm_area_struct *vma,
3609 unsigned int fault_flags)
3610{
a160e537 3611 if (!folio_test_swapcache(folio))
c145e0b4 3612 return false;
9202d527 3613 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3614 folio_test_mlocked(folio))
c145e0b4
DH
3615 return true;
3616 /*
3617 * If we want to map a page that's in the swapcache writable, we
3618 * have to detect via the refcount if we're really the exclusive
3619 * user. Try freeing the swapcache to get rid of the swapcache
3620 * reference only in case it's likely that we'll be the exlusive user.
3621 */
a160e537
MWO
3622 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3623 folio_ref_count(folio) == 2;
c145e0b4
DH
3624}
3625
9c28a205
PX
3626static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3627{
3628 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3629 vmf->address, &vmf->ptl);
3630 /*
3631 * Be careful so that we will only recover a special uffd-wp pte into a
3632 * none pte. Otherwise it means the pte could have changed, so retry.
3633 */
3634 if (is_pte_marker(*vmf->pte))
3635 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3636 pte_unmap_unlock(vmf->pte, vmf->ptl);
3637 return 0;
3638}
3639
3640/*
3641 * This is actually a page-missing access, but with uffd-wp special pte
3642 * installed. It means this pte was wr-protected before being unmapped.
3643 */
3644static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3645{
3646 /*
3647 * Just in case there're leftover special ptes even after the region
3648 * got unregistered - we can simply clear them. We can also do that
3649 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3650 * ranges, but it should be more efficient to be done lazily here.
3651 */
3652 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3653 return pte_marker_clear(vmf);
3654
3655 /* do_fault() can handle pte markers too like none pte */
3656 return do_fault(vmf);
3657}
3658
5c041f5d
PX
3659static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3660{
3661 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3662 unsigned long marker = pte_marker_get(entry);
3663
3664 /*
ca92ea3d
PX
3665 * PTE markers should never be empty. If anything weird happened,
3666 * the best thing to do is to kill the process along with its mm.
5c041f5d 3667 */
ca92ea3d 3668 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3669 return VM_FAULT_SIGBUS;
3670
9c28a205
PX
3671 if (pte_marker_entry_uffd_wp(entry))
3672 return pte_marker_handle_uffd_wp(vmf);
3673
3674 /* This is an unknown pte marker */
3675 return VM_FAULT_SIGBUS;
5c041f5d
PX
3676}
3677
1da177e4 3678/*
c1e8d7c6 3679 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3680 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3681 * We return with pte unmapped and unlocked.
3682 *
c1e8d7c6 3683 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3684 * as does filemap_fault().
1da177e4 3685 */
2b740303 3686vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3687{
82b0f8c3 3688 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3689 struct folio *swapcache, *folio = NULL;
3690 struct page *page;
2799e775 3691 struct swap_info_struct *si = NULL;
14f9135d 3692 rmap_t rmap_flags = RMAP_NONE;
1493a191 3693 bool exclusive = false;
65500d23 3694 swp_entry_t entry;
1da177e4 3695 pte_t pte;
d065bd81 3696 int locked;
2b740303 3697 vm_fault_t ret = 0;
aae466b0 3698 void *shadow = NULL;
1da177e4 3699
2ca99358 3700 if (!pte_unmap_same(vmf))
8f4e2101 3701 goto out;
65500d23 3702
2994302b 3703 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3704 if (unlikely(non_swap_entry(entry))) {
3705 if (is_migration_entry(entry)) {
82b0f8c3
JK
3706 migration_entry_wait(vma->vm_mm, vmf->pmd,
3707 vmf->address);
b756a3b5
AP
3708 } else if (is_device_exclusive_entry(entry)) {
3709 vmf->page = pfn_swap_entry_to_page(entry);
3710 ret = remove_device_exclusive_entry(vmf);
5042db43 3711 } else if (is_device_private_entry(entry)) {
af5cdaf8 3712 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3713 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3714 vmf->address, &vmf->ptl);
3715 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3716 spin_unlock(vmf->ptl);
3717 goto out;
3718 }
3719
3720 /*
3721 * Get a page reference while we know the page can't be
3722 * freed.
3723 */
3724 get_page(vmf->page);
3725 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3726 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3727 put_page(vmf->page);
d1737fdb
AK
3728 } else if (is_hwpoison_entry(entry)) {
3729 ret = VM_FAULT_HWPOISON;
9f186f9e
ML
3730 } else if (is_swapin_error_entry(entry)) {
3731 ret = VM_FAULT_SIGBUS;
5c041f5d
PX
3732 } else if (is_pte_marker_entry(entry)) {
3733 ret = handle_pte_marker(vmf);
d1737fdb 3734 } else {
2994302b 3735 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3736 ret = VM_FAULT_SIGBUS;
d1737fdb 3737 }
0697212a
CL
3738 goto out;
3739 }
0bcac06f 3740
2799e775
ML
3741 /* Prevent swapoff from happening to us. */
3742 si = get_swap_device(entry);
3743 if (unlikely(!si))
3744 goto out;
0bcac06f 3745
5a423081
MWO
3746 folio = swap_cache_get_folio(entry, vma, vmf->address);
3747 if (folio)
3748 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3749 swapcache = folio;
f8020772 3750
d4f9565a 3751 if (!folio) {
a449bf58
QC
3752 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3753 __swap_count(entry) == 1) {
0bcac06f 3754 /* skip swapcache */
63ad4add
MWO
3755 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3756 vma, vmf->address, false);
3757 page = &folio->page;
3758 if (folio) {
3759 __folio_set_locked(folio);
3760 __folio_set_swapbacked(folio);
4c6355b2 3761
65995918 3762 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3763 vma->vm_mm, GFP_KERNEL,
3764 entry)) {
545b1b07 3765 ret = VM_FAULT_OOM;
4c6355b2 3766 goto out_page;
545b1b07 3767 }
0add0c77 3768 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3769
aae466b0
JK
3770 shadow = get_shadow_from_swap_cache(entry);
3771 if (shadow)
63ad4add 3772 workingset_refault(folio, shadow);
0076f029 3773
63ad4add 3774 folio_add_lru(folio);
0add0c77
SB
3775
3776 /* To provide entry to swap_readpage() */
63ad4add 3777 folio_set_swap_entry(folio, entry);
5169b844 3778 swap_readpage(page, true, NULL);
63ad4add 3779 folio->private = NULL;
0bcac06f 3780 }
aa8d22a1 3781 } else {
e9e9b7ec
MK
3782 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3783 vmf);
63ad4add
MWO
3784 if (page)
3785 folio = page_folio(page);
d4f9565a 3786 swapcache = folio;
0bcac06f
MK
3787 }
3788
d4f9565a 3789 if (!folio) {
1da177e4 3790 /*
8f4e2101
HD
3791 * Back out if somebody else faulted in this pte
3792 * while we released the pte lock.
1da177e4 3793 */
82b0f8c3
JK
3794 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3795 vmf->address, &vmf->ptl);
2994302b 3796 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3797 ret = VM_FAULT_OOM;
65500d23 3798 goto unlock;
1da177e4
LT
3799 }
3800
3801 /* Had to read the page from swap area: Major fault */
3802 ret = VM_FAULT_MAJOR;
f8891e5e 3803 count_vm_event(PGMAJFAULT);
2262185c 3804 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3805 } else if (PageHWPoison(page)) {
71f72525
WF
3806 /*
3807 * hwpoisoned dirty swapcache pages are kept for killing
3808 * owner processes (which may be unknown at hwpoison time)
3809 */
d1737fdb 3810 ret = VM_FAULT_HWPOISON;
4779cb31 3811 goto out_release;
1da177e4
LT
3812 }
3813
19672a9e 3814 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3815
d065bd81
ML
3816 if (!locked) {
3817 ret |= VM_FAULT_RETRY;
3818 goto out_release;
3819 }
073e587e 3820
84d60fdd
DH
3821 if (swapcache) {
3822 /*
3b344157 3823 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3824 * swapcache from under us. The page pin, and pte_same test
3825 * below, are not enough to exclude that. Even if it is still
3826 * swapcache, we need to check that the page's swap has not
3827 * changed.
3828 */
63ad4add 3829 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3830 page_private(page) != entry.val))
3831 goto out_page;
3832
3833 /*
3834 * KSM sometimes has to copy on read faults, for example, if
3835 * page->index of !PageKSM() pages would be nonlinear inside the
3836 * anon VMA -- PageKSM() is lost on actual swapout.
3837 */
3838 page = ksm_might_need_to_copy(page, vma, vmf->address);
3839 if (unlikely(!page)) {
3840 ret = VM_FAULT_OOM;
84d60fdd
DH
3841 goto out_page;
3842 }
63ad4add 3843 folio = page_folio(page);
c145e0b4
DH
3844
3845 /*
3846 * If we want to map a page that's in the swapcache writable, we
3847 * have to detect via the refcount if we're really the exclusive
3848 * owner. Try removing the extra reference from the local LRU
3849 * pagevecs if required.
3850 */
d4f9565a 3851 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3852 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3853 lru_add_drain();
5ad64688
HD
3854 }
3855
9d82c694 3856 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3857
1da177e4 3858 /*
8f4e2101 3859 * Back out if somebody else already faulted in this pte.
1da177e4 3860 */
82b0f8c3
JK
3861 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3862 &vmf->ptl);
2994302b 3863 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3864 goto out_nomap;
b8107480 3865
63ad4add 3866 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3867 ret = VM_FAULT_SIGBUS;
3868 goto out_nomap;
1da177e4
LT
3869 }
3870
78fbe906
DH
3871 /*
3872 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3873 * must never point at an anonymous page in the swapcache that is
3874 * PG_anon_exclusive. Sanity check that this holds and especially, that
3875 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3876 * check after taking the PT lock and making sure that nobody
3877 * concurrently faulted in this page and set PG_anon_exclusive.
3878 */
63ad4add
MWO
3879 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3880 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3881
1493a191
DH
3882 /*
3883 * Check under PT lock (to protect against concurrent fork() sharing
3884 * the swap entry concurrently) for certainly exclusive pages.
3885 */
63ad4add 3886 if (!folio_test_ksm(folio)) {
1493a191
DH
3887 /*
3888 * Note that pte_swp_exclusive() == false for architectures
3889 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3890 */
3891 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3892 if (folio != swapcache) {
1493a191
DH
3893 /*
3894 * We have a fresh page that is not exposed to the
3895 * swapcache -> certainly exclusive.
3896 */
3897 exclusive = true;
63ad4add 3898 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3899 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3900 /*
3901 * This is tricky: not all swap backends support
3902 * concurrent page modifications while under writeback.
3903 *
3904 * So if we stumble over such a page in the swapcache
3905 * we must not set the page exclusive, otherwise we can
3906 * map it writable without further checks and modify it
3907 * while still under writeback.
3908 *
3909 * For these problematic swap backends, simply drop the
3910 * exclusive marker: this is perfectly fine as we start
3911 * writeback only if we fully unmapped the page and
3912 * there are no unexpected references on the page after
3913 * unmapping succeeded. After fully unmapped, no
3914 * further GUP references (FOLL_GET and FOLL_PIN) can
3915 * appear, so dropping the exclusive marker and mapping
3916 * it only R/O is fine.
3917 */
3918 exclusive = false;
3919 }
3920 }
3921
8c7c6e34 3922 /*
c145e0b4
DH
3923 * Remove the swap entry and conditionally try to free up the swapcache.
3924 * We're already holding a reference on the page but haven't mapped it
3925 * yet.
8c7c6e34 3926 */
c145e0b4 3927 swap_free(entry);
a160e537
MWO
3928 if (should_try_to_free_swap(folio, vma, vmf->flags))
3929 folio_free_swap(folio);
1da177e4 3930
f1a79412
SB
3931 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3932 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3933 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3934
3935 /*
1493a191
DH
3936 * Same logic as in do_wp_page(); however, optimize for pages that are
3937 * certainly not shared either because we just allocated them without
3938 * exposing them to the swapcache or because the swap entry indicates
3939 * exclusivity.
c145e0b4 3940 */
63ad4add
MWO
3941 if (!folio_test_ksm(folio) &&
3942 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3943 if (vmf->flags & FAULT_FLAG_WRITE) {
3944 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3945 vmf->flags &= ~FAULT_FLAG_WRITE;
3946 ret |= VM_FAULT_WRITE;
3947 }
14f9135d 3948 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3949 }
1da177e4 3950 flush_icache_page(vma, page);
2994302b 3951 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3952 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3953 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3954 pte = pte_mkuffd_wp(pte);
3955 pte = pte_wrprotect(pte);
3956 }
2994302b 3957 vmf->orig_pte = pte;
0bcac06f
MK
3958
3959 /* ksm created a completely new copy */
d4f9565a 3960 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 3961 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 3962 folio_add_lru_vma(folio, vma);
0bcac06f 3963 } else {
f1e2db12 3964 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3965 }
1da177e4 3966
63ad4add
MWO
3967 VM_BUG_ON(!folio_test_anon(folio) ||
3968 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3969 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971
63ad4add 3972 folio_unlock(folio);
d4f9565a 3973 if (folio != swapcache && swapcache) {
4969c119
AA
3974 /*
3975 * Hold the lock to avoid the swap entry to be reused
3976 * until we take the PT lock for the pte_same() check
3977 * (to avoid false positives from pte_same). For
3978 * further safety release the lock after the swap_free
3979 * so that the swap count won't change under a
3980 * parallel locked swapcache.
3981 */
d4f9565a
MWO
3982 folio_unlock(swapcache);
3983 folio_put(swapcache);
4969c119 3984 }
c475a8ab 3985
82b0f8c3 3986 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3987 ret |= do_wp_page(vmf);
61469f1d
HD
3988 if (ret & VM_FAULT_ERROR)
3989 ret &= VM_FAULT_ERROR;
1da177e4
LT
3990 goto out;
3991 }
3992
3993 /* No need to invalidate - it was non-present before */
82b0f8c3 3994 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3995unlock:
82b0f8c3 3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3997out:
2799e775
ML
3998 if (si)
3999 put_swap_device(si);
1da177e4 4000 return ret;
b8107480 4001out_nomap:
82b0f8c3 4002 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4003out_page:
63ad4add 4004 folio_unlock(folio);
4779cb31 4005out_release:
63ad4add 4006 folio_put(folio);
d4f9565a
MWO
4007 if (folio != swapcache && swapcache) {
4008 folio_unlock(swapcache);
4009 folio_put(swapcache);
4969c119 4010 }
2799e775
ML
4011 if (si)
4012 put_swap_device(si);
65500d23 4013 return ret;
1da177e4
LT
4014}
4015
4016/*
c1e8d7c6 4017 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4018 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4019 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4020 */
2b740303 4021static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4022{
82b0f8c3 4023 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4024 struct page *page;
2b740303 4025 vm_fault_t ret = 0;
1da177e4 4026 pte_t entry;
1da177e4 4027
6b7339f4
KS
4028 /* File mapping without ->vm_ops ? */
4029 if (vma->vm_flags & VM_SHARED)
4030 return VM_FAULT_SIGBUS;
4031
7267ec00
KS
4032 /*
4033 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4034 * pte_offset_map() on pmds where a huge pmd might be created
4035 * from a different thread.
4036 *
3e4e28c5 4037 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4038 * parallel threads are excluded by other means.
4039 *
3e4e28c5 4040 * Here we only have mmap_read_lock(mm).
7267ec00 4041 */
4cf58924 4042 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4043 return VM_FAULT_OOM;
4044
f9ce0be7 4045 /* See comment in handle_pte_fault() */
82b0f8c3 4046 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4047 return 0;
4048
11ac5524 4049 /* Use the zero-page for reads */
82b0f8c3 4050 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4051 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4052 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4053 vma->vm_page_prot));
82b0f8c3
JK
4054 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055 vmf->address, &vmf->ptl);
7df67697
BM
4056 if (!pte_none(*vmf->pte)) {
4057 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4058 goto unlock;
7df67697 4059 }
6b31d595
MH
4060 ret = check_stable_address_space(vma->vm_mm);
4061 if (ret)
4062 goto unlock;
6b251fc9
AA
4063 /* Deliver the page fault to userland, check inside PT lock */
4064 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4065 pte_unmap_unlock(vmf->pte, vmf->ptl);
4066 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4067 }
a13ea5b7
HD
4068 goto setpte;
4069 }
4070
557ed1fa 4071 /* Allocate our own private page. */
557ed1fa
NP
4072 if (unlikely(anon_vma_prepare(vma)))
4073 goto oom;
82b0f8c3 4074 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4075 if (!page)
4076 goto oom;
eb3c24f3 4077
8f425e4e 4078 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4079 goto oom_free_page;
9d82c694 4080 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4081
52f37629
MK
4082 /*
4083 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4084 * preceding stores to the page contents become visible before
52f37629
MK
4085 * the set_pte_at() write.
4086 */
0ed361de 4087 __SetPageUptodate(page);
8f4e2101 4088
557ed1fa 4089 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4090 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4091 if (vma->vm_flags & VM_WRITE)
4092 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4093
82b0f8c3
JK
4094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095 &vmf->ptl);
7df67697 4096 if (!pte_none(*vmf->pte)) {
bce8cb3c 4097 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4098 goto release;
7df67697 4099 }
9ba69294 4100
6b31d595
MH
4101 ret = check_stable_address_space(vma->vm_mm);
4102 if (ret)
4103 goto release;
4104
6b251fc9
AA
4105 /* Deliver the page fault to userland, check inside PT lock */
4106 if (userfaultfd_missing(vma)) {
82b0f8c3 4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4108 put_page(page);
82b0f8c3 4109 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4110 }
4111
f1a79412 4112 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4113 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4114 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4115setpte:
82b0f8c3 4116 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4117
4118 /* No need to invalidate - it was non-present before */
82b0f8c3 4119 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4120unlock:
82b0f8c3 4121 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4122 return ret;
8f4e2101 4123release:
09cbfeaf 4124 put_page(page);
8f4e2101 4125 goto unlock;
8a9f3ccd 4126oom_free_page:
09cbfeaf 4127 put_page(page);
65500d23 4128oom:
1da177e4
LT
4129 return VM_FAULT_OOM;
4130}
4131
9a95f3cf 4132/*
c1e8d7c6 4133 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4134 * released depending on flags and vma->vm_ops->fault() return value.
4135 * See filemap_fault() and __lock_page_retry().
4136 */
2b740303 4137static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4138{
82b0f8c3 4139 struct vm_area_struct *vma = vmf->vma;
2b740303 4140 vm_fault_t ret;
7eae74af 4141
63f3655f
MH
4142 /*
4143 * Preallocate pte before we take page_lock because this might lead to
4144 * deadlocks for memcg reclaim which waits for pages under writeback:
4145 * lock_page(A)
4146 * SetPageWriteback(A)
4147 * unlock_page(A)
4148 * lock_page(B)
4149 * lock_page(B)
d383807a 4150 * pte_alloc_one
63f3655f
MH
4151 * shrink_page_list
4152 * wait_on_page_writeback(A)
4153 * SetPageWriteback(B)
4154 * unlock_page(B)
4155 * # flush A, B to clear the writeback
4156 */
4157 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4158 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4159 if (!vmf->prealloc_pte)
4160 return VM_FAULT_OOM;
63f3655f
MH
4161 }
4162
11bac800 4163 ret = vma->vm_ops->fault(vmf);
3917048d 4164 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4165 VM_FAULT_DONE_COW)))
bc2466e4 4166 return ret;
7eae74af 4167
667240e0 4168 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4169 struct page *page = vmf->page;
e53ac737
RR
4170 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4172 if (page_mapped(page))
4173 unmap_mapping_pages(page_mapping(page),
4174 page->index, 1, false);
e53ac737 4175 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4176 if (invalidate_inode_page(page))
4177 poisonret = VM_FAULT_NOPAGE;
4178 unlock_page(page);
e53ac737 4179 }
3149c79f 4180 put_page(page);
936ca80d 4181 vmf->page = NULL;
e53ac737 4182 return poisonret;
7eae74af
KS
4183 }
4184
4185 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4186 lock_page(vmf->page);
7eae74af 4187 else
667240e0 4188 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4189
7eae74af
KS
4190 return ret;
4191}
4192
396bcc52 4193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4194static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4195{
82b0f8c3 4196 struct vm_area_struct *vma = vmf->vma;
953c66c2 4197
82b0f8c3 4198 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4199 /*
4200 * We are going to consume the prealloc table,
4201 * count that as nr_ptes.
4202 */
c4812909 4203 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4204 vmf->prealloc_pte = NULL;
953c66c2
AK
4205}
4206
f9ce0be7 4207vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4208{
82b0f8c3
JK
4209 struct vm_area_struct *vma = vmf->vma;
4210 bool write = vmf->flags & FAULT_FLAG_WRITE;
4211 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4212 pmd_t entry;
2b740303 4213 int i;
d01ac3c3 4214 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4215
4216 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4217 return ret;
10102459 4218
10102459 4219 page = compound_head(page);
d01ac3c3
MWO
4220 if (compound_order(page) != HPAGE_PMD_ORDER)
4221 return ret;
10102459 4222
eac96c3e
YS
4223 /*
4224 * Just backoff if any subpage of a THP is corrupted otherwise
4225 * the corrupted page may mapped by PMD silently to escape the
4226 * check. This kind of THP just can be PTE mapped. Access to
4227 * the corrupted subpage should trigger SIGBUS as expected.
4228 */
4229 if (unlikely(PageHasHWPoisoned(page)))
4230 return ret;
4231
953c66c2 4232 /*
f0953a1b 4233 * Archs like ppc64 need additional space to store information
953c66c2
AK
4234 * related to pte entry. Use the preallocated table for that.
4235 */
82b0f8c3 4236 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4237 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4238 if (!vmf->prealloc_pte)
953c66c2 4239 return VM_FAULT_OOM;
953c66c2
AK
4240 }
4241
82b0f8c3
JK
4242 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4244 goto out;
4245
4246 for (i = 0; i < HPAGE_PMD_NR; i++)
4247 flush_icache_page(vma, page + i);
4248
4249 entry = mk_huge_pmd(page, vma->vm_page_prot);
4250 if (write)
f55e1014 4251 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4252
fadae295 4253 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4254 page_add_file_rmap(page, vma, true);
4255
953c66c2
AK
4256 /*
4257 * deposit and withdraw with pmd lock held
4258 */
4259 if (arch_needs_pgtable_deposit())
82b0f8c3 4260 deposit_prealloc_pte(vmf);
10102459 4261
82b0f8c3 4262 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4263
82b0f8c3 4264 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4265
4266 /* fault is handled */
4267 ret = 0;
95ecedcd 4268 count_vm_event(THP_FILE_MAPPED);
10102459 4269out:
82b0f8c3 4270 spin_unlock(vmf->ptl);
10102459
KS
4271 return ret;
4272}
4273#else
f9ce0be7 4274vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4275{
f9ce0be7 4276 return VM_FAULT_FALLBACK;
10102459
KS
4277}
4278#endif
4279
9d3af4b4 4280void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4281{
82b0f8c3 4282 struct vm_area_struct *vma = vmf->vma;
9c28a205 4283 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4284 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4285 bool prefault = vmf->address != addr;
3bb97794 4286 pte_t entry;
7267ec00 4287
3bb97794
KS
4288 flush_icache_page(vma, page);
4289 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4290
4291 if (prefault && arch_wants_old_prefaulted_pte())
4292 entry = pte_mkold(entry);
50c25ee9
TB
4293 else
4294 entry = pte_sw_mkyoung(entry);
46bdb427 4295
3bb97794
KS
4296 if (write)
4297 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4298 if (unlikely(uffd_wp))
4299 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4300 /* copy-on-write page */
4301 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4302 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4303 page_add_new_anon_rmap(page, vma, addr);
b518154e 4304 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4305 } else {
f1a79412 4306 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4307 page_add_file_rmap(page, vma, false);
3bb97794 4308 }
9d3af4b4 4309 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4310}
4311
f46f2ade
PX
4312static bool vmf_pte_changed(struct vm_fault *vmf)
4313{
4314 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315 return !pte_same(*vmf->pte, vmf->orig_pte);
4316
4317 return !pte_none(*vmf->pte);
4318}
4319
9118c0cb
JK
4320/**
4321 * finish_fault - finish page fault once we have prepared the page to fault
4322 *
4323 * @vmf: structure describing the fault
4324 *
4325 * This function handles all that is needed to finish a page fault once the
4326 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4328 * addition.
9118c0cb
JK
4329 *
4330 * The function expects the page to be locked and on success it consumes a
4331 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4332 *
4333 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4334 */
2b740303 4335vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4336{
f9ce0be7 4337 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4338 struct page *page;
f9ce0be7 4339 vm_fault_t ret;
9118c0cb
JK
4340
4341 /* Did we COW the page? */
f9ce0be7 4342 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4343 page = vmf->cow_page;
4344 else
4345 page = vmf->page;
6b31d595
MH
4346
4347 /*
4348 * check even for read faults because we might have lost our CoWed
4349 * page
4350 */
f9ce0be7
KS
4351 if (!(vma->vm_flags & VM_SHARED)) {
4352 ret = check_stable_address_space(vma->vm_mm);
4353 if (ret)
4354 return ret;
4355 }
4356
4357 if (pmd_none(*vmf->pmd)) {
4358 if (PageTransCompound(page)) {
4359 ret = do_set_pmd(vmf, page);
4360 if (ret != VM_FAULT_FALLBACK)
4361 return ret;
4362 }
4363
03c4f204
QZ
4364 if (vmf->prealloc_pte)
4365 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4367 return VM_FAULT_OOM;
4368 }
4369
3fe2895c
JB
4370 /*
4371 * See comment in handle_pte_fault() for how this scenario happens, we
4372 * need to return NOPAGE so that we drop this page.
4373 */
f9ce0be7 4374 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4375 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4376
4377 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378 vmf->address, &vmf->ptl);
70427f6e 4379
f9ce0be7 4380 /* Re-check under ptl */
70427f6e 4381 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4382 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4383
4384 /* no need to invalidate: a not-present page won't be cached */
4385 update_mmu_cache(vma, vmf->address, vmf->pte);
4386
4387 ret = 0;
4388 } else {
4389 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4390 ret = VM_FAULT_NOPAGE;
70427f6e 4391 }
f9ce0be7 4392
f9ce0be7 4393 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4394 return ret;
4395}
4396
3a91053a
KS
4397static unsigned long fault_around_bytes __read_mostly =
4398 rounddown_pow_of_two(65536);
a9b0f861 4399
a9b0f861
KS
4400#ifdef CONFIG_DEBUG_FS
4401static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4402{
a9b0f861 4403 *val = fault_around_bytes;
1592eef0
KS
4404 return 0;
4405}
4406
b4903d6e 4407/*
da391d64
WK
4408 * fault_around_bytes must be rounded down to the nearest page order as it's
4409 * what do_fault_around() expects to see.
b4903d6e 4410 */
a9b0f861 4411static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4412{
a9b0f861 4413 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4414 return -EINVAL;
b4903d6e
AR
4415 if (val > PAGE_SIZE)
4416 fault_around_bytes = rounddown_pow_of_two(val);
4417 else
4418 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4419 return 0;
4420}
0a1345f8 4421DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4422 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4423
4424static int __init fault_around_debugfs(void)
4425{
d9f7979c
GKH
4426 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427 &fault_around_bytes_fops);
1592eef0
KS
4428 return 0;
4429}
4430late_initcall(fault_around_debugfs);
1592eef0 4431#endif
8c6e50b0 4432
1fdb412b
KS
4433/*
4434 * do_fault_around() tries to map few pages around the fault address. The hope
4435 * is that the pages will be needed soon and this will lower the number of
4436 * faults to handle.
4437 *
4438 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439 * not ready to be mapped: not up-to-date, locked, etc.
4440 *
1fdb412b
KS
4441 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442 * only once.
4443 *
da391d64
WK
4444 * fault_around_bytes defines how many bytes we'll try to map.
4445 * do_fault_around() expects it to be set to a power of two less than or equal
4446 * to PTRS_PER_PTE.
1fdb412b 4447 *
da391d64
WK
4448 * The virtual address of the area that we map is naturally aligned to
4449 * fault_around_bytes rounded down to the machine page size
4450 * (and therefore to page order). This way it's easier to guarantee
4451 * that we don't cross page table boundaries.
1fdb412b 4452 */
2b740303 4453static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4454{
82b0f8c3 4455 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4456 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4457 pgoff_t end_pgoff;
2b740303 4458 int off;
8c6e50b0 4459
4db0c3c2 4460 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4461 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462
f9ce0be7
KS
4463 address = max(address & mask, vmf->vma->vm_start);
4464 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4465 start_pgoff -= off;
8c6e50b0
KS
4466
4467 /*
da391d64
WK
4468 * end_pgoff is either the end of the page table, the end of
4469 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4470 */
bae473a4 4471 end_pgoff = start_pgoff -
f9ce0be7 4472 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4473 PTRS_PER_PTE - 1;
82b0f8c3 4474 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4475 start_pgoff + nr_pages - 1);
8c6e50b0 4476
82b0f8c3 4477 if (pmd_none(*vmf->pmd)) {
4cf58924 4478 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4479 if (!vmf->prealloc_pte)
f9ce0be7 4480 return VM_FAULT_OOM;
8c6e50b0
KS
4481 }
4482
f9ce0be7 4483 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4484}
4485
9c28a205
PX
4486/* Return true if we should do read fault-around, false otherwise */
4487static inline bool should_fault_around(struct vm_fault *vmf)
4488{
4489 /* No ->map_pages? No way to fault around... */
4490 if (!vmf->vma->vm_ops->map_pages)
4491 return false;
4492
4493 if (uffd_disable_fault_around(vmf->vma))
4494 return false;
4495
4496 return fault_around_bytes >> PAGE_SHIFT > 1;
4497}
4498
2b740303 4499static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4500{
2b740303 4501 vm_fault_t ret = 0;
8c6e50b0
KS
4502
4503 /*
4504 * Let's call ->map_pages() first and use ->fault() as fallback
4505 * if page by the offset is not ready to be mapped (cold cache or
4506 * something).
4507 */
9c28a205
PX
4508 if (should_fault_around(vmf)) {
4509 ret = do_fault_around(vmf);
4510 if (ret)
4511 return ret;
8c6e50b0 4512 }
e655fb29 4513
936ca80d 4514 ret = __do_fault(vmf);
e655fb29
KS
4515 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 return ret;
4517
9118c0cb 4518 ret |= finish_fault(vmf);
936ca80d 4519 unlock_page(vmf->page);
7267ec00 4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4521 put_page(vmf->page);
e655fb29
KS
4522 return ret;
4523}
4524
2b740303 4525static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4526{
82b0f8c3 4527 struct vm_area_struct *vma = vmf->vma;
2b740303 4528 vm_fault_t ret;
ec47c3b9
KS
4529
4530 if (unlikely(anon_vma_prepare(vma)))
4531 return VM_FAULT_OOM;
4532
936ca80d
JK
4533 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534 if (!vmf->cow_page)
ec47c3b9
KS
4535 return VM_FAULT_OOM;
4536
8f425e4e
MWO
4537 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538 GFP_KERNEL)) {
936ca80d 4539 put_page(vmf->cow_page);
ec47c3b9
KS
4540 return VM_FAULT_OOM;
4541 }
9d82c694 4542 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4543
936ca80d 4544 ret = __do_fault(vmf);
ec47c3b9
KS
4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 goto uncharge_out;
3917048d
JK
4547 if (ret & VM_FAULT_DONE_COW)
4548 return ret;
ec47c3b9 4549
b1aa812b 4550 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4551 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4552
9118c0cb 4553 ret |= finish_fault(vmf);
b1aa812b
JK
4554 unlock_page(vmf->page);
4555 put_page(vmf->page);
7267ec00
KS
4556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 goto uncharge_out;
ec47c3b9
KS
4558 return ret;
4559uncharge_out:
936ca80d 4560 put_page(vmf->cow_page);
ec47c3b9
KS
4561 return ret;
4562}
4563
2b740303 4564static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4565{
82b0f8c3 4566 struct vm_area_struct *vma = vmf->vma;
2b740303 4567 vm_fault_t ret, tmp;
1d65f86d 4568
936ca80d 4569 ret = __do_fault(vmf);
7eae74af 4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4571 return ret;
1da177e4
LT
4572
4573 /*
f0c6d4d2
KS
4574 * Check if the backing address space wants to know that the page is
4575 * about to become writable
1da177e4 4576 */
fb09a464 4577 if (vma->vm_ops->page_mkwrite) {
936ca80d 4578 unlock_page(vmf->page);
38b8cb7f 4579 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4580 if (unlikely(!tmp ||
4581 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4582 put_page(vmf->page);
fb09a464 4583 return tmp;
4294621f 4584 }
fb09a464
KS
4585 }
4586
9118c0cb 4587 ret |= finish_fault(vmf);
7267ec00
KS
4588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589 VM_FAULT_RETRY))) {
936ca80d
JK
4590 unlock_page(vmf->page);
4591 put_page(vmf->page);
f0c6d4d2 4592 return ret;
1da177e4 4593 }
b827e496 4594
89b15332 4595 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4596 return ret;
54cb8821 4597}
d00806b1 4598
9a95f3cf 4599/*
c1e8d7c6 4600 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4601 * but allow concurrent faults).
c1e8d7c6 4602 * The mmap_lock may have been released depending on flags and our
9138e47e 4603 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4604 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4605 * by other thread calling munmap()).
9a95f3cf 4606 */
2b740303 4607static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4608{
82b0f8c3 4609 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4610 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4611 vm_fault_t ret;
54cb8821 4612
ff09d7ec
AK
4613 /*
4614 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615 */
4616 if (!vma->vm_ops->fault) {
4617 /*
4618 * If we find a migration pmd entry or a none pmd entry, which
4619 * should never happen, return SIGBUS
4620 */
4621 if (unlikely(!pmd_present(*vmf->pmd)))
4622 ret = VM_FAULT_SIGBUS;
4623 else {
4624 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625 vmf->pmd,
4626 vmf->address,
4627 &vmf->ptl);
4628 /*
4629 * Make sure this is not a temporary clearing of pte
4630 * by holding ptl and checking again. A R/M/W update
4631 * of pte involves: take ptl, clearing the pte so that
4632 * we don't have concurrent modification by hardware
4633 * followed by an update.
4634 */
4635 if (unlikely(pte_none(*vmf->pte)))
4636 ret = VM_FAULT_SIGBUS;
4637 else
4638 ret = VM_FAULT_NOPAGE;
4639
4640 pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 }
4642 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4643 ret = do_read_fault(vmf);
4644 else if (!(vma->vm_flags & VM_SHARED))
4645 ret = do_cow_fault(vmf);
4646 else
4647 ret = do_shared_fault(vmf);
4648
4649 /* preallocated pagetable is unused: free it */
4650 if (vmf->prealloc_pte) {
fc8efd2d 4651 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4652 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4653 }
4654 return ret;
54cb8821
NP
4655}
4656
f4c0d836
YS
4657int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4659{
4660 get_page(page);
4661
4662 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4663 if (page_nid == numa_node_id()) {
9532fec1 4664 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4665 *flags |= TNF_FAULT_LOCAL;
4666 }
9532fec1
MG
4667
4668 return mpol_misplaced(page, vma, addr);
4669}
4670
2b740303 4671static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4672{
82b0f8c3 4673 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4674 struct page *page = NULL;
98fa15f3 4675 int page_nid = NUMA_NO_NODE;
90572890 4676 int last_cpupid;
cbee9f88 4677 int target_nid;
04a86453 4678 pte_t pte, old_pte;
288bc549 4679 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4680 int flags = 0;
d10e63f2
MG
4681
4682 /*
166f61b9
TH
4683 * The "pte" at this point cannot be used safely without
4684 * validation through pte_unmap_same(). It's of NUMA type but
4685 * the pfn may be screwed if the read is non atomic.
166f61b9 4686 */
82b0f8c3
JK
4687 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688 spin_lock(vmf->ptl);
cee216a6 4689 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4690 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4691 goto out;
4692 }
4693
b99a342d
HY
4694 /* Get the normal PTE */
4695 old_pte = ptep_get(vmf->pte);
04a86453 4696 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4697
82b0f8c3 4698 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4699 if (!page || is_zone_device_page(page))
b99a342d 4700 goto out_map;
d10e63f2 4701
e81c4802 4702 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4703 if (PageCompound(page))
4704 goto out_map;
e81c4802 4705
6688cc05 4706 /*
bea66fbd
MG
4707 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4708 * much anyway since they can be in shared cache state. This misses
4709 * the case where a mapping is writable but the process never writes
4710 * to it but pte_write gets cleared during protection updates and
4711 * pte_dirty has unpredictable behaviour between PTE scan updates,
4712 * background writeback, dirty balancing and application behaviour.
6688cc05 4713 */
b99a342d 4714 if (!was_writable)
6688cc05
PZ
4715 flags |= TNF_NO_GROUP;
4716
dabe1d99
RR
4717 /*
4718 * Flag if the page is shared between multiple address spaces. This
4719 * is later used when determining whether to group tasks together
4720 */
4721 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4722 flags |= TNF_SHARED;
4723
8191acbd 4724 page_nid = page_to_nid(page);
33024536
HY
4725 /*
4726 * For memory tiering mode, cpupid of slow memory page is used
4727 * to record page access time. So use default value.
4728 */
4729 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4730 !node_is_toptier(page_nid))
4731 last_cpupid = (-1 & LAST_CPUPID_MASK);
4732 else
4733 last_cpupid = page_cpupid_last(page);
82b0f8c3 4734 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4735 &flags);
98fa15f3 4736 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4737 put_page(page);
b99a342d 4738 goto out_map;
4daae3b4 4739 }
b99a342d 4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4741
4742 /* Migrate to the requested node */
bf90ac19 4743 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4744 page_nid = target_nid;
6688cc05 4745 flags |= TNF_MIGRATED;
b99a342d 4746 } else {
074c2381 4747 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4748 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4749 spin_lock(vmf->ptl);
4750 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4751 pte_unmap_unlock(vmf->pte, vmf->ptl);
4752 goto out;
4753 }
4754 goto out_map;
4755 }
4daae3b4
MG
4756
4757out:
98fa15f3 4758 if (page_nid != NUMA_NO_NODE)
6688cc05 4759 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4760 return 0;
b99a342d
HY
4761out_map:
4762 /*
4763 * Make it present again, depending on how arch implements
4764 * non-accessible ptes, some can allow access by kernel mode.
4765 */
4766 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4767 pte = pte_modify(old_pte, vma->vm_page_prot);
4768 pte = pte_mkyoung(pte);
4769 if (was_writable)
4770 pte = pte_mkwrite(pte);
4771 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4772 update_mmu_cache(vma, vmf->address, vmf->pte);
4773 pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 goto out;
d10e63f2
MG
4775}
4776
2b740303 4777static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4778{
f4200391 4779 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4780 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4781 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4782 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4783 return VM_FAULT_FALLBACK;
4784}
4785
183f24aa 4786/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4787static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4788{
c89357e2
DH
4789 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4790
529b930b 4791 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4792 if (likely(!unshare) &&
4793 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4794 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4795 return do_huge_pmd_wp_page(vmf);
529b930b 4796 }
327e9fd4
THV
4797 if (vmf->vma->vm_ops->huge_fault) {
4798 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4799
4800 if (!(ret & VM_FAULT_FALLBACK))
4801 return ret;
4802 }
af9e4d5f 4803
327e9fd4 4804 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4805 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4806
b96375f7
MW
4807 return VM_FAULT_FALLBACK;
4808}
4809
2b740303 4810static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4811{
14c99d65
GJ
4812#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4813 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4814 /* No support for anonymous transparent PUD pages yet */
4815 if (vma_is_anonymous(vmf->vma))
4816 return VM_FAULT_FALLBACK;
4817 if (vmf->vma->vm_ops->huge_fault)
4818 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4819#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4820 return VM_FAULT_FALLBACK;
4821}
4822
4823static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4824{
327e9fd4
THV
4825#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4826 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4827 /* No support for anonymous transparent PUD pages yet */
4828 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4829 goto split;
4830 if (vmf->vma->vm_ops->huge_fault) {
4831 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832
4833 if (!(ret & VM_FAULT_FALLBACK))
4834 return ret;
4835 }
4836split:
4837 /* COW or write-notify not handled on PUD level: split pud.*/
4838 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4839#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4840 return VM_FAULT_FALLBACK;
4841}
4842
1da177e4
LT
4843/*
4844 * These routines also need to handle stuff like marking pages dirty
4845 * and/or accessed for architectures that don't do it in hardware (most
4846 * RISC architectures). The early dirtying is also good on the i386.
4847 *
4848 * There is also a hook called "update_mmu_cache()" that architectures
4849 * with external mmu caches can use to update those (ie the Sparc or
4850 * PowerPC hashed page tables that act as extended TLBs).
4851 *
c1e8d7c6 4852 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4853 * concurrent faults).
9a95f3cf 4854 *
c1e8d7c6 4855 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4856 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4857 */
2b740303 4858static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4859{
4860 pte_t entry;
4861
82b0f8c3 4862 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4863 /*
4864 * Leave __pte_alloc() until later: because vm_ops->fault may
4865 * want to allocate huge page, and if we expose page table
4866 * for an instant, it will be difficult to retract from
4867 * concurrent faults and from rmap lookups.
4868 */
82b0f8c3 4869 vmf->pte = NULL;
f46f2ade 4870 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4871 } else {
f9ce0be7
KS
4872 /*
4873 * If a huge pmd materialized under us just retry later. Use
4874 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4875 * of pmd_trans_huge() to ensure the pmd didn't become
4876 * pmd_trans_huge under us and then back to pmd_none, as a
4877 * result of MADV_DONTNEED running immediately after a huge pmd
4878 * fault in a different thread of this mm, in turn leading to a
4879 * misleading pmd_trans_huge() retval. All we have to ensure is
4880 * that it is a regular pmd that we can walk with
4881 * pte_offset_map() and we can do that through an atomic read
4882 * in C, which is what pmd_trans_unstable() provides.
4883 */
d0f0931d 4884 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4885 return 0;
4886 /*
4887 * A regular pmd is established and it can't morph into a huge
4888 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4889 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4890 * So now it's safe to run pte_offset_map().
4891 */
82b0f8c3 4892 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4893 vmf->orig_pte = *vmf->pte;
f46f2ade 4894 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4895
4896 /*
4897 * some architectures can have larger ptes than wordsize,
4898 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4899 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4900 * accesses. The code below just needs a consistent view
4901 * for the ifs and we later double check anyway with the
7267ec00
KS
4902 * ptl lock held. So here a barrier will do.
4903 */
4904 barrier();
2994302b 4905 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4906 pte_unmap(vmf->pte);
4907 vmf->pte = NULL;
65500d23 4908 }
1da177e4
LT
4909 }
4910
82b0f8c3
JK
4911 if (!vmf->pte) {
4912 if (vma_is_anonymous(vmf->vma))
4913 return do_anonymous_page(vmf);
7267ec00 4914 else
82b0f8c3 4915 return do_fault(vmf);
7267ec00
KS
4916 }
4917
2994302b
JK
4918 if (!pte_present(vmf->orig_pte))
4919 return do_swap_page(vmf);
7267ec00 4920
2994302b
JK
4921 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4922 return do_numa_page(vmf);
d10e63f2 4923
82b0f8c3
JK
4924 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4925 spin_lock(vmf->ptl);
2994302b 4926 entry = vmf->orig_pte;
7df67697
BM
4927 if (unlikely(!pte_same(*vmf->pte, entry))) {
4928 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4929 goto unlock;
7df67697 4930 }
c89357e2 4931 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4932 if (!pte_write(entry))
2994302b 4933 return do_wp_page(vmf);
c89357e2
DH
4934 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4935 entry = pte_mkdirty(entry);
1da177e4
LT
4936 }
4937 entry = pte_mkyoung(entry);
82b0f8c3
JK
4938 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4939 vmf->flags & FAULT_FLAG_WRITE)) {
4940 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4941 } else {
b7333b58
YS
4942 /* Skip spurious TLB flush for retried page fault */
4943 if (vmf->flags & FAULT_FLAG_TRIED)
4944 goto unlock;
1a44e149
AA
4945 /*
4946 * This is needed only for protection faults but the arch code
4947 * is not yet telling us if this is a protection fault or not.
4948 * This still avoids useless tlb flushes for .text page faults
4949 * with threads.
4950 */
82b0f8c3
JK
4951 if (vmf->flags & FAULT_FLAG_WRITE)
4952 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4953 }
8f4e2101 4954unlock:
82b0f8c3 4955 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4956 return 0;
1da177e4
LT
4957}
4958
4959/*
4960 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4961 *
c1e8d7c6 4962 * The mmap_lock may have been released depending on flags and our
9138e47e 4963 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4964 */
2b740303
SJ
4965static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4966 unsigned long address, unsigned int flags)
1da177e4 4967{
82b0f8c3 4968 struct vm_fault vmf = {
bae473a4 4969 .vma = vma,
1a29d85e 4970 .address = address & PAGE_MASK,
824ddc60 4971 .real_address = address,
bae473a4 4972 .flags = flags,
0721ec8b 4973 .pgoff = linear_page_index(vma, address),
667240e0 4974 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4975 };
dcddffd4 4976 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4977 unsigned long vm_flags = vma->vm_flags;
1da177e4 4978 pgd_t *pgd;
c2febafc 4979 p4d_t *p4d;
2b740303 4980 vm_fault_t ret;
1da177e4 4981
1da177e4 4982 pgd = pgd_offset(mm, address);
c2febafc
KS
4983 p4d = p4d_alloc(mm, pgd, address);
4984 if (!p4d)
4985 return VM_FAULT_OOM;
a00cc7d9 4986
c2febafc 4987 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4988 if (!vmf.pud)
c74df32c 4989 return VM_FAULT_OOM;
625110b5 4990retry_pud:
7da4e2cb 4991 if (pud_none(*vmf.pud) &&
a7f4e6e4 4992 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
4993 ret = create_huge_pud(&vmf);
4994 if (!(ret & VM_FAULT_FALLBACK))
4995 return ret;
4996 } else {
4997 pud_t orig_pud = *vmf.pud;
4998
4999 barrier();
5000 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5001
c89357e2
DH
5002 /*
5003 * TODO once we support anonymous PUDs: NUMA case and
5004 * FAULT_FLAG_UNSHARE handling.
5005 */
5006 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5007 ret = wp_huge_pud(&vmf, orig_pud);
5008 if (!(ret & VM_FAULT_FALLBACK))
5009 return ret;
5010 } else {
5011 huge_pud_set_accessed(&vmf, orig_pud);
5012 return 0;
5013 }
5014 }
5015 }
5016
5017 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5018 if (!vmf.pmd)
c74df32c 5019 return VM_FAULT_OOM;
625110b5
TH
5020
5021 /* Huge pud page fault raced with pmd_alloc? */
5022 if (pud_trans_unstable(vmf.pud))
5023 goto retry_pud;
5024
7da4e2cb 5025 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5026 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5027 ret = create_huge_pmd(&vmf);
c0292554
KS
5028 if (!(ret & VM_FAULT_FALLBACK))
5029 return ret;
71e3aac0 5030 } else {
5db4f15c 5031 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5032
71e3aac0 5033 barrier();
5db4f15c 5034 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5035 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5036 !is_pmd_migration_entry(vmf.orig_pmd));
5037 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5038 pmd_migration_entry_wait(mm, vmf.pmd);
5039 return 0;
5040 }
5db4f15c
YS
5041 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5042 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5043 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5044
c89357e2
DH
5045 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5046 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5047 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5048 if (!(ret & VM_FAULT_FALLBACK))
5049 return ret;
a1dd450b 5050 } else {
5db4f15c 5051 huge_pmd_set_accessed(&vmf);
9845cbbd 5052 return 0;
1f1d06c3 5053 }
71e3aac0
AA
5054 }
5055 }
5056
82b0f8c3 5057 return handle_pte_fault(&vmf);
1da177e4
LT
5058}
5059
bce617ed 5060/**
f0953a1b 5061 * mm_account_fault - Do page fault accounting
bce617ed
PX
5062 *
5063 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5064 * of perf event counters, but we'll still do the per-task accounting to
5065 * the task who triggered this page fault.
5066 * @address: the faulted address.
5067 * @flags: the fault flags.
5068 * @ret: the fault retcode.
5069 *
f0953a1b 5070 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5071 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5072 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5073 * still be in per-arch page fault handlers at the entry of page fault.
5074 */
5075static inline void mm_account_fault(struct pt_regs *regs,
5076 unsigned long address, unsigned int flags,
5077 vm_fault_t ret)
5078{
5079 bool major;
5080
5081 /*
5082 * We don't do accounting for some specific faults:
5083 *
5084 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5085 * includes arch_vma_access_permitted() failing before reaching here.
5086 * So this is not a "this many hardware page faults" counter. We
5087 * should use the hw profiling for that.
5088 *
5089 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5090 * once they're completed.
5091 */
5092 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5093 return;
5094
5095 /*
5096 * We define the fault as a major fault when the final successful fault
5097 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5098 * handle it immediately previously).
5099 */
5100 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5101
a2beb5f1
PX
5102 if (major)
5103 current->maj_flt++;
5104 else
5105 current->min_flt++;
5106
bce617ed 5107 /*
a2beb5f1
PX
5108 * If the fault is done for GUP, regs will be NULL. We only do the
5109 * accounting for the per thread fault counters who triggered the
5110 * fault, and we skip the perf event updates.
bce617ed
PX
5111 */
5112 if (!regs)
5113 return;
5114
a2beb5f1 5115 if (major)
bce617ed 5116 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5117 else
bce617ed 5118 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5119}
5120
ec1c86b2
YZ
5121#ifdef CONFIG_LRU_GEN
5122static void lru_gen_enter_fault(struct vm_area_struct *vma)
5123{
5124 /* the LRU algorithm doesn't apply to sequential or random reads */
5125 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5126}
5127
5128static void lru_gen_exit_fault(void)
5129{
5130 current->in_lru_fault = false;
5131}
5132#else
5133static void lru_gen_enter_fault(struct vm_area_struct *vma)
5134{
5135}
5136
5137static void lru_gen_exit_fault(void)
5138{
5139}
5140#endif /* CONFIG_LRU_GEN */
5141
9a95f3cf
PC
5142/*
5143 * By the time we get here, we already hold the mm semaphore
5144 *
c1e8d7c6 5145 * The mmap_lock may have been released depending on flags and our
9138e47e 5146 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5147 */
2b740303 5148vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5149 unsigned int flags, struct pt_regs *regs)
519e5247 5150{
2b740303 5151 vm_fault_t ret;
519e5247
JW
5152
5153 __set_current_state(TASK_RUNNING);
5154
5155 count_vm_event(PGFAULT);
2262185c 5156 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247 5157
de0c799b
LD
5158 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5159 flags & FAULT_FLAG_INSTRUCTION,
5160 flags & FAULT_FLAG_REMOTE))
5161 return VM_FAULT_SIGSEGV;
5162
519e5247
JW
5163 /*
5164 * Enable the memcg OOM handling for faults triggered in user
5165 * space. Kernel faults are handled more gracefully.
5166 */
5167 if (flags & FAULT_FLAG_USER)
29ef680a 5168 mem_cgroup_enter_user_fault();
519e5247 5169
ec1c86b2
YZ
5170 lru_gen_enter_fault(vma);
5171
bae473a4
KS
5172 if (unlikely(is_vm_hugetlb_page(vma)))
5173 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5174 else
5175 ret = __handle_mm_fault(vma, address, flags);
519e5247 5176
ec1c86b2
YZ
5177 lru_gen_exit_fault();
5178
49426420 5179 if (flags & FAULT_FLAG_USER) {
29ef680a 5180 mem_cgroup_exit_user_fault();
166f61b9
TH
5181 /*
5182 * The task may have entered a memcg OOM situation but
5183 * if the allocation error was handled gracefully (no
5184 * VM_FAULT_OOM), there is no need to kill anything.
5185 * Just clean up the OOM state peacefully.
5186 */
5187 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5188 mem_cgroup_oom_synchronize(false);
49426420 5189 }
3812c8c8 5190
bce617ed
PX
5191 mm_account_fault(regs, address, flags, ret);
5192
519e5247
JW
5193 return ret;
5194}
e1d6d01a 5195EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5196
90eceff1
KS
5197#ifndef __PAGETABLE_P4D_FOLDED
5198/*
5199 * Allocate p4d page table.
5200 * We've already handled the fast-path in-line.
5201 */
5202int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5203{
5204 p4d_t *new = p4d_alloc_one(mm, address);
5205 if (!new)
5206 return -ENOMEM;
5207
90eceff1 5208 spin_lock(&mm->page_table_lock);
ed33b5a6 5209 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5210 p4d_free(mm, new);
ed33b5a6
QZ
5211 } else {
5212 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5213 pgd_populate(mm, pgd, new);
ed33b5a6 5214 }
90eceff1
KS
5215 spin_unlock(&mm->page_table_lock);
5216 return 0;
5217}
5218#endif /* __PAGETABLE_P4D_FOLDED */
5219
1da177e4
LT
5220#ifndef __PAGETABLE_PUD_FOLDED
5221/*
5222 * Allocate page upper directory.
872fec16 5223 * We've already handled the fast-path in-line.
1da177e4 5224 */
c2febafc 5225int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5226{
c74df32c
HD
5227 pud_t *new = pud_alloc_one(mm, address);
5228 if (!new)
1bb3630e 5229 return -ENOMEM;
1da177e4 5230
872fec16 5231 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5232 if (!p4d_present(*p4d)) {
5233 mm_inc_nr_puds(mm);
ed33b5a6 5234 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5235 p4d_populate(mm, p4d, new);
b4e98d9a 5236 } else /* Another has populated it */
5e541973 5237 pud_free(mm, new);
c74df32c 5238 spin_unlock(&mm->page_table_lock);
1bb3630e 5239 return 0;
1da177e4
LT
5240}
5241#endif /* __PAGETABLE_PUD_FOLDED */
5242
5243#ifndef __PAGETABLE_PMD_FOLDED
5244/*
5245 * Allocate page middle directory.
872fec16 5246 * We've already handled the fast-path in-line.
1da177e4 5247 */
1bb3630e 5248int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5249{
a00cc7d9 5250 spinlock_t *ptl;
c74df32c
HD
5251 pmd_t *new = pmd_alloc_one(mm, address);
5252 if (!new)
1bb3630e 5253 return -ENOMEM;
1da177e4 5254
a00cc7d9 5255 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5256 if (!pud_present(*pud)) {
5257 mm_inc_nr_pmds(mm);
ed33b5a6 5258 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5259 pud_populate(mm, pud, new);
ed33b5a6 5260 } else { /* Another has populated it */
5e541973 5261 pmd_free(mm, new);
ed33b5a6 5262 }
a00cc7d9 5263 spin_unlock(ptl);
1bb3630e 5264 return 0;
e0f39591 5265}
1da177e4
LT
5266#endif /* __PAGETABLE_PMD_FOLDED */
5267
0e5e64c0
MS
5268/**
5269 * follow_pte - look up PTE at a user virtual address
5270 * @mm: the mm_struct of the target address space
5271 * @address: user virtual address
5272 * @ptepp: location to store found PTE
5273 * @ptlp: location to store the lock for the PTE
5274 *
5275 * On a successful return, the pointer to the PTE is stored in @ptepp;
5276 * the corresponding lock is taken and its location is stored in @ptlp.
5277 * The contents of the PTE are only stable until @ptlp is released;
5278 * any further use, if any, must be protected against invalidation
5279 * with MMU notifiers.
5280 *
5281 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5282 * should be taken for read.
5283 *
5284 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5285 * it is not a good general-purpose API.
5286 *
5287 * Return: zero on success, -ve otherwise.
5288 */
5289int follow_pte(struct mm_struct *mm, unsigned long address,
5290 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5291{
5292 pgd_t *pgd;
c2febafc 5293 p4d_t *p4d;
f8ad0f49
JW
5294 pud_t *pud;
5295 pmd_t *pmd;
5296 pte_t *ptep;
5297
5298 pgd = pgd_offset(mm, address);
5299 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5300 goto out;
5301
c2febafc
KS
5302 p4d = p4d_offset(pgd, address);
5303 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5304 goto out;
5305
5306 pud = pud_offset(p4d, address);
f8ad0f49
JW
5307 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5308 goto out;
5309
5310 pmd = pmd_offset(pud, address);
f66055ab 5311 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5312
09796395 5313 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5314 goto out;
5315
5316 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5317 if (!pte_present(*ptep))
5318 goto unlock;
5319 *ptepp = ptep;
5320 return 0;
5321unlock:
5322 pte_unmap_unlock(ptep, *ptlp);
5323out:
5324 return -EINVAL;
5325}
9fd6dad1
PB
5326EXPORT_SYMBOL_GPL(follow_pte);
5327
3b6748e2
JW
5328/**
5329 * follow_pfn - look up PFN at a user virtual address
5330 * @vma: memory mapping
5331 * @address: user virtual address
5332 * @pfn: location to store found PFN
5333 *
5334 * Only IO mappings and raw PFN mappings are allowed.
5335 *
9fd6dad1
PB
5336 * This function does not allow the caller to read the permissions
5337 * of the PTE. Do not use it.
5338 *
a862f68a 5339 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5340 */
5341int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5342 unsigned long *pfn)
5343{
5344 int ret = -EINVAL;
5345 spinlock_t *ptl;
5346 pte_t *ptep;
5347
5348 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5349 return ret;
5350
9fd6dad1 5351 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5352 if (ret)
5353 return ret;
5354 *pfn = pte_pfn(*ptep);
5355 pte_unmap_unlock(ptep, ptl);
5356 return 0;
5357}
5358EXPORT_SYMBOL(follow_pfn);
5359
28b2ee20 5360#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5361int follow_phys(struct vm_area_struct *vma,
5362 unsigned long address, unsigned int flags,
5363 unsigned long *prot, resource_size_t *phys)
28b2ee20 5364{
03668a4d 5365 int ret = -EINVAL;
28b2ee20
RR
5366 pte_t *ptep, pte;
5367 spinlock_t *ptl;
28b2ee20 5368
d87fe660 5369 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5370 goto out;
28b2ee20 5371
9fd6dad1 5372 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5373 goto out;
28b2ee20 5374 pte = *ptep;
03668a4d 5375
f6f37321 5376 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5377 goto unlock;
28b2ee20
RR
5378
5379 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5380 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5381
03668a4d 5382 ret = 0;
28b2ee20
RR
5383unlock:
5384 pte_unmap_unlock(ptep, ptl);
5385out:
d87fe660 5386 return ret;
28b2ee20
RR
5387}
5388
96667f8a
DV
5389/**
5390 * generic_access_phys - generic implementation for iomem mmap access
5391 * @vma: the vma to access
f0953a1b 5392 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5393 * @buf: buffer to read/write
5394 * @len: length of transfer
5395 * @write: set to FOLL_WRITE when writing, otherwise reading
5396 *
5397 * This is a generic implementation for &vm_operations_struct.access for an
5398 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5399 * not page based.
5400 */
28b2ee20
RR
5401int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5402 void *buf, int len, int write)
5403{
5404 resource_size_t phys_addr;
5405 unsigned long prot = 0;
2bc7273b 5406 void __iomem *maddr;
96667f8a
DV
5407 pte_t *ptep, pte;
5408 spinlock_t *ptl;
5409 int offset = offset_in_page(addr);
5410 int ret = -EINVAL;
5411
5412 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5413 return -EINVAL;
5414
5415retry:
e913a8cd 5416 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5417 return -EINVAL;
5418 pte = *ptep;
5419 pte_unmap_unlock(ptep, ptl);
28b2ee20 5420
96667f8a
DV
5421 prot = pgprot_val(pte_pgprot(pte));
5422 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5423
5424 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5425 return -EINVAL;
5426
9cb12d7b 5427 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5428 if (!maddr)
5429 return -ENOMEM;
5430
e913a8cd 5431 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5432 goto out_unmap;
5433
5434 if (!pte_same(pte, *ptep)) {
5435 pte_unmap_unlock(ptep, ptl);
5436 iounmap(maddr);
5437
5438 goto retry;
5439 }
5440
28b2ee20
RR
5441 if (write)
5442 memcpy_toio(maddr + offset, buf, len);
5443 else
5444 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5445 ret = len;
5446 pte_unmap_unlock(ptep, ptl);
5447out_unmap:
28b2ee20
RR
5448 iounmap(maddr);
5449
96667f8a 5450 return ret;
28b2ee20 5451}
5a73633e 5452EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5453#endif
5454
0ec76a11 5455/*
d3f5ffca 5456 * Access another process' address space as given in mm.
0ec76a11 5457 */
d3f5ffca
JH
5458int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5459 int len, unsigned int gup_flags)
0ec76a11 5460{
0ec76a11 5461 struct vm_area_struct *vma;
0ec76a11 5462 void *old_buf = buf;
442486ec 5463 int write = gup_flags & FOLL_WRITE;
0ec76a11 5464
d8ed45c5 5465 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5466 return 0;
5467
183ff22b 5468 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5469 while (len) {
5470 int bytes, ret, offset;
5471 void *maddr;
28b2ee20 5472 struct page *page = NULL;
0ec76a11 5473
64019a2e 5474 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5475 gup_flags, &page, &vma, NULL);
28b2ee20 5476 if (ret <= 0) {
dbffcd03
RR
5477#ifndef CONFIG_HAVE_IOREMAP_PROT
5478 break;
5479#else
28b2ee20
RR
5480 /*
5481 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5482 * we can access using slightly different code.
5483 */
3e418f98
LH
5484 vma = vma_lookup(mm, addr);
5485 if (!vma)
28b2ee20
RR
5486 break;
5487 if (vma->vm_ops && vma->vm_ops->access)
5488 ret = vma->vm_ops->access(vma, addr, buf,
5489 len, write);
5490 if (ret <= 0)
28b2ee20
RR
5491 break;
5492 bytes = ret;
dbffcd03 5493#endif
0ec76a11 5494 } else {
28b2ee20
RR
5495 bytes = len;
5496 offset = addr & (PAGE_SIZE-1);
5497 if (bytes > PAGE_SIZE-offset)
5498 bytes = PAGE_SIZE-offset;
5499
5500 maddr = kmap(page);
5501 if (write) {
5502 copy_to_user_page(vma, page, addr,
5503 maddr + offset, buf, bytes);
5504 set_page_dirty_lock(page);
5505 } else {
5506 copy_from_user_page(vma, page, addr,
5507 buf, maddr + offset, bytes);
5508 }
5509 kunmap(page);
09cbfeaf 5510 put_page(page);
0ec76a11 5511 }
0ec76a11
DH
5512 len -= bytes;
5513 buf += bytes;
5514 addr += bytes;
5515 }
d8ed45c5 5516 mmap_read_unlock(mm);
0ec76a11
DH
5517
5518 return buf - old_buf;
5519}
03252919 5520
5ddd36b9 5521/**
ae91dbfc 5522 * access_remote_vm - access another process' address space
5ddd36b9
SW
5523 * @mm: the mm_struct of the target address space
5524 * @addr: start address to access
5525 * @buf: source or destination buffer
5526 * @len: number of bytes to transfer
6347e8d5 5527 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5528 *
5529 * The caller must hold a reference on @mm.
a862f68a
MR
5530 *
5531 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5532 */
5533int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5534 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5535{
d3f5ffca 5536 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5537}
5538
206cb636
SW
5539/*
5540 * Access another process' address space.
5541 * Source/target buffer must be kernel space,
5542 * Do not walk the page table directly, use get_user_pages
5543 */
5544int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5545 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5546{
5547 struct mm_struct *mm;
5548 int ret;
5549
5550 mm = get_task_mm(tsk);
5551 if (!mm)
5552 return 0;
5553
d3f5ffca 5554 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5555
206cb636
SW
5556 mmput(mm);
5557
5558 return ret;
5559}
fcd35857 5560EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5561
03252919
AK
5562/*
5563 * Print the name of a VMA.
5564 */
5565void print_vma_addr(char *prefix, unsigned long ip)
5566{
5567 struct mm_struct *mm = current->mm;
5568 struct vm_area_struct *vma;
5569
e8bff74a 5570 /*
0a7f682d 5571 * we might be running from an atomic context so we cannot sleep
e8bff74a 5572 */
d8ed45c5 5573 if (!mmap_read_trylock(mm))
e8bff74a
IM
5574 return;
5575
03252919
AK
5576 vma = find_vma(mm, ip);
5577 if (vma && vma->vm_file) {
5578 struct file *f = vma->vm_file;
0a7f682d 5579 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5580 if (buf) {
2fbc57c5 5581 char *p;
03252919 5582
9bf39ab2 5583 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5584 if (IS_ERR(p))
5585 p = "?";
2fbc57c5 5586 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5587 vma->vm_start,
5588 vma->vm_end - vma->vm_start);
5589 free_page((unsigned long)buf);
5590 }
5591 }
d8ed45c5 5592 mmap_read_unlock(mm);
03252919 5593}
3ee1afa3 5594
662bbcb2 5595#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5596void __might_fault(const char *file, int line)
3ee1afa3 5597{
9ec23531 5598 if (pagefault_disabled())
662bbcb2 5599 return;
42a38756 5600 __might_sleep(file, line);
9ec23531 5601#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5602 if (current->mm)
da1c55f1 5603 might_lock_read(&current->mm->mmap_lock);
9ec23531 5604#endif
3ee1afa3 5605}
9ec23531 5606EXPORT_SYMBOL(__might_fault);
3ee1afa3 5607#endif
47ad8475
AA
5608
5609#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5610/*
5611 * Process all subpages of the specified huge page with the specified
5612 * operation. The target subpage will be processed last to keep its
5613 * cache lines hot.
5614 */
5615static inline void process_huge_page(
5616 unsigned long addr_hint, unsigned int pages_per_huge_page,
5617 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5618 void *arg)
47ad8475 5619{
c79b57e4
HY
5620 int i, n, base, l;
5621 unsigned long addr = addr_hint &
5622 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5623
c6ddfb6c 5624 /* Process target subpage last to keep its cache lines hot */
47ad8475 5625 might_sleep();
c79b57e4
HY
5626 n = (addr_hint - addr) / PAGE_SIZE;
5627 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5628 /* If target subpage in first half of huge page */
c79b57e4
HY
5629 base = 0;
5630 l = n;
c6ddfb6c 5631 /* Process subpages at the end of huge page */
c79b57e4
HY
5632 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5633 cond_resched();
c6ddfb6c 5634 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5635 }
5636 } else {
c6ddfb6c 5637 /* If target subpage in second half of huge page */
c79b57e4
HY
5638 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5639 l = pages_per_huge_page - n;
c6ddfb6c 5640 /* Process subpages at the begin of huge page */
c79b57e4
HY
5641 for (i = 0; i < base; i++) {
5642 cond_resched();
c6ddfb6c 5643 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5644 }
5645 }
5646 /*
c6ddfb6c
HY
5647 * Process remaining subpages in left-right-left-right pattern
5648 * towards the target subpage
c79b57e4
HY
5649 */
5650 for (i = 0; i < l; i++) {
5651 int left_idx = base + i;
5652 int right_idx = base + 2 * l - 1 - i;
5653
5654 cond_resched();
c6ddfb6c 5655 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5656 cond_resched();
c6ddfb6c 5657 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5658 }
5659}
5660
c6ddfb6c
HY
5661static void clear_gigantic_page(struct page *page,
5662 unsigned long addr,
5663 unsigned int pages_per_huge_page)
5664{
5665 int i;
14455eab 5666 struct page *p;
c6ddfb6c
HY
5667
5668 might_sleep();
14455eab
CL
5669 for (i = 0; i < pages_per_huge_page; i++) {
5670 p = nth_page(page, i);
c6ddfb6c
HY
5671 cond_resched();
5672 clear_user_highpage(p, addr + i * PAGE_SIZE);
5673 }
5674}
5675
5676static void clear_subpage(unsigned long addr, int idx, void *arg)
5677{
5678 struct page *page = arg;
5679
5680 clear_user_highpage(page + idx, addr);
5681}
5682
5683void clear_huge_page(struct page *page,
5684 unsigned long addr_hint, unsigned int pages_per_huge_page)
5685{
5686 unsigned long addr = addr_hint &
5687 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5688
5689 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5690 clear_gigantic_page(page, addr, pages_per_huge_page);
5691 return;
5692 }
5693
5694 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5695}
5696
47ad8475
AA
5697static void copy_user_gigantic_page(struct page *dst, struct page *src,
5698 unsigned long addr,
5699 struct vm_area_struct *vma,
5700 unsigned int pages_per_huge_page)
5701{
5702 int i;
5703 struct page *dst_base = dst;
5704 struct page *src_base = src;
5705
14455eab
CL
5706 for (i = 0; i < pages_per_huge_page; i++) {
5707 dst = nth_page(dst_base, i);
5708 src = nth_page(src_base, i);
5709
47ad8475
AA
5710 cond_resched();
5711 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5712 }
5713}
5714
c9f4cd71
HY
5715struct copy_subpage_arg {
5716 struct page *dst;
5717 struct page *src;
5718 struct vm_area_struct *vma;
5719};
5720
5721static void copy_subpage(unsigned long addr, int idx, void *arg)
5722{
5723 struct copy_subpage_arg *copy_arg = arg;
5724
5725 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5726 addr, copy_arg->vma);
5727}
5728
47ad8475 5729void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5730 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5731 unsigned int pages_per_huge_page)
5732{
c9f4cd71
HY
5733 unsigned long addr = addr_hint &
5734 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5735 struct copy_subpage_arg arg = {
5736 .dst = dst,
5737 .src = src,
5738 .vma = vma,
5739 };
47ad8475
AA
5740
5741 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5742 copy_user_gigantic_page(dst, src, addr, vma,
5743 pages_per_huge_page);
5744 return;
5745 }
5746
c9f4cd71 5747 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5748}
fa4d75c1
MK
5749
5750long copy_huge_page_from_user(struct page *dst_page,
5751 const void __user *usr_src,
810a56b9
MK
5752 unsigned int pages_per_huge_page,
5753 bool allow_pagefault)
fa4d75c1 5754{
fa4d75c1
MK
5755 void *page_kaddr;
5756 unsigned long i, rc = 0;
5757 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
14455eab 5758 struct page *subpage;
fa4d75c1 5759
14455eab
CL
5760 for (i = 0; i < pages_per_huge_page; i++) {
5761 subpage = nth_page(dst_page, i);
810a56b9 5762 if (allow_pagefault)
3272cfc2 5763 page_kaddr = kmap(subpage);
810a56b9 5764 else
3272cfc2 5765 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5766 rc = copy_from_user(page_kaddr,
b063e374 5767 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5768 if (allow_pagefault)
3272cfc2 5769 kunmap(subpage);
810a56b9
MK
5770 else
5771 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5772
5773 ret_val -= (PAGE_SIZE - rc);
5774 if (rc)
5775 break;
5776
e763243c
MS
5777 flush_dcache_page(subpage);
5778
fa4d75c1
MK
5779 cond_resched();
5780 }
5781 return ret_val;
5782}
47ad8475 5783#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5784
40b64acd 5785#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5786
5787static struct kmem_cache *page_ptl_cachep;
5788
5789void __init ptlock_cache_init(void)
5790{
5791 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5792 SLAB_PANIC, NULL);
5793}
5794
539edb58 5795bool ptlock_alloc(struct page *page)
49076ec2
KS
5796{
5797 spinlock_t *ptl;
5798
b35f1819 5799 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5800 if (!ptl)
5801 return false;
539edb58 5802 page->ptl = ptl;
49076ec2
KS
5803 return true;
5804}
5805
539edb58 5806void ptlock_free(struct page *page)
49076ec2 5807{
b35f1819 5808 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5809}
5810#endif