Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
d41dee36 94#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
95/* use the per-pgdat data instead for discontigmem - mbligh */
96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
1da177e4
LT
103/*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
166f61b9 110void *high_memory;
1da177e4 111EXPORT_SYMBOL(high_memory);
1da177e4 112
32a93233
IM
113/*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119int randomize_va_space __read_mostly =
120#ifdef CONFIG_COMPAT_BRK
121 1;
122#else
123 2;
124#endif
a62eaf15 125
83d116c5
JH
126#ifndef arch_faults_on_old_pte
127static inline bool arch_faults_on_old_pte(void)
128{
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135}
136#endif
137
a62eaf15
AK
138static int __init disable_randmaps(char *s)
139{
140 randomize_va_space = 0;
9b41046c 141 return 1;
a62eaf15
AK
142}
143__setup("norandmaps", disable_randmaps);
144
62eede62 145unsigned long zero_pfn __read_mostly;
0b70068e
AB
146EXPORT_SYMBOL(zero_pfn);
147
166f61b9
TH
148unsigned long highest_memmap_pfn __read_mostly;
149
a13ea5b7
HD
150/*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153static int __init init_zero_pfn(void)
154{
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157}
158core_initcall(init_zero_pfn);
a62eaf15 159
e4dcad20 160void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 161{
e4dcad20 162 trace_rss_stat(mm, member, count);
b3d1411b 163}
d559db08 164
34e55232
KH
165#if defined(SPLIT_RSS_COUNTING)
166
ea48cf78 167void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
168{
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
34e55232
KH
175 }
176 }
05af2e10 177 current->rss_stat.events = 0;
34e55232
KH
178}
179
180static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181{
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188}
189#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192/* sync counter once per 64 page faults */
193#define TASK_RSS_EVENTS_THRESH (64)
194static void check_sync_rss_stat(struct task_struct *task)
195{
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 199 sync_mm_rss(task->mm);
34e55232 200}
9547d01b 201#else /* SPLIT_RSS_COUNTING */
34e55232
KH
202
203#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206static void check_sync_rss_stat(struct task_struct *task)
207{
208}
209
9547d01b
PZ
210#endif /* SPLIT_RSS_COUNTING */
211
1da177e4
LT
212/*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
9e1b32ca
BH
216static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
1da177e4 218{
2f569afd 219 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 220 pmd_clear(pmd);
9e1b32ca 221 pte_free_tlb(tlb, token, addr);
c4812909 222 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
223}
224
e0da382c
HD
225static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
1da177e4
LT
228{
229 pmd_t *pmd;
230 unsigned long next;
e0da382c 231 unsigned long start;
1da177e4 232
e0da382c 233 start = addr;
1da177e4 234 pmd = pmd_offset(pud, addr);
1da177e4
LT
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
9e1b32ca 239 free_pte_range(tlb, pmd, addr);
1da177e4
LT
240 } while (pmd++, addr = next, addr != end);
241
e0da382c
HD
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
1da177e4 249 }
e0da382c
HD
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
9e1b32ca 255 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 256 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
257}
258
c2febafc 259static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
1da177e4
LT
262{
263 pud_t *pud;
264 unsigned long next;
e0da382c 265 unsigned long start;
1da177e4 266
e0da382c 267 start = addr;
c2febafc 268 pud = pud_offset(p4d, addr);
1da177e4
LT
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
e0da382c 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
274 } while (pud++, addr = next, addr != end);
275
c2febafc
KS
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
b4e98d9a 290 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
291}
292
293static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296{
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
e0da382c
HD
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
1da177e4 317 }
e0da382c
HD
318 if (end - 1 > ceiling - 1)
319 return;
320
c2febafc 321 p4d = p4d_offset(pgd, start);
e0da382c 322 pgd_clear(pgd);
c2febafc 323 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
324}
325
326/*
e0da382c 327 * This function frees user-level page tables of a process.
1da177e4 328 */
42b77728 329void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
1da177e4
LT
332{
333 pgd_t *pgd;
334 unsigned long next;
e0da382c
HD
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
1da177e4 361
e0da382c
HD
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
07e32661
AK
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
ed6a7935 381 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 382 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
c2febafc 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 388 } while (pgd++, addr = next, addr != end);
e0da382c
HD
389}
390
42b77728 391void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 392 unsigned long floor, unsigned long ceiling)
e0da382c
HD
393{
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
8f4f8c16 398 /*
25d9e2d1 399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
8f4f8c16 401 */
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16
HD
403 unlink_file_vma(vma);
404
9da61aef 405 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 407 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 413 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
414 vma = next;
415 next = vma->vm_next;
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16 417 unlink_file_vma(vma);
3bf5ee95
HD
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 420 floor, next ? next->vm_start : ceiling);
3bf5ee95 421 }
e0da382c
HD
422 vma = next;
423 }
1da177e4
LT
424}
425
4cf58924 426int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 427{
c4088ebd 428 spinlock_t *ptl;
4cf58924 429 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
430 if (!new)
431 return -ENOMEM;
432
362a61ad
NP
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
bb7cdd38 444 * smp_rmb() barriers in page table walking code.
362a61ad
NP
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
c4088ebd 448 ptl = pmd_lock(mm, pmd);
8ac1f832 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 450 mm_inc_nr_ptes(mm);
1da177e4 451 pmd_populate(mm, pmd, new);
2f569afd 452 new = NULL;
4b471e88 453 }
c4088ebd 454 spin_unlock(ptl);
2f569afd
MS
455 if (new)
456 pte_free(mm, new);
1bb3630e 457 return 0;
1da177e4
LT
458}
459
4cf58924 460int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 461{
4cf58924 462 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
463 if (!new)
464 return -ENOMEM;
465
362a61ad
NP
466 smp_wmb(); /* See comment in __pte_alloc */
467
1bb3630e 468 spin_lock(&init_mm.page_table_lock);
8ac1f832 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 470 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 471 new = NULL;
4b471e88 472 }
1bb3630e 473 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
474 if (new)
475 pte_free_kernel(&init_mm, new);
1bb3630e 476 return 0;
1da177e4
LT
477}
478
d559db08
KH
479static inline void init_rss_vec(int *rss)
480{
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482}
483
484static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 485{
d559db08
KH
486 int i;
487
34e55232 488 if (current->mm == mm)
05af2e10 489 sync_mm_rss(mm);
d559db08
KH
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
ae859762
HD
493}
494
b5810039 495/*
6aab341e
LT
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
b5810039
NP
499 *
500 * The calling function must still handle the error.
501 */
3dc14741
HD
502static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
b5810039 504{
3dc14741 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
1170532b
JP
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
d936cf9b
HD
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
3dc14741
HD
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
1170532b
JP
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 540 if (page)
f0b791a3 541 dump_page(page, "bad pte");
6aa9b8b2 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
b5810039 549 dump_stack();
373d4d09 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
551}
552
ee498ed7 553/*
7e675137 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 555 *
7e675137
NP
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 559 *
7e675137
NP
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 568 *
b379d790
JH
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
6aab341e
LT
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
7e675137
NP
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
b379d790 582 *
b379d790 583 *
7e675137 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
ee498ed7 594 */
25b2995a
CH
595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
ee498ed7 597{
22b31eec 598 unsigned long pfn = pte_pfn(pte);
7e675137 599
00b3a331 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 601 if (likely(!pte_special(pte)))
22b31eec 602 goto check_pfn;
667a0a06
DV
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
df6ad698
JG
607 if (is_zero_pfn(pfn))
608 return NULL;
e1fb4a08
DJ
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
3cde287b 678 if (is_huge_zero_pmd(pmd))
28093f9f
GS
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
df3a57d1
LT
698static unsigned long
699copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
df3a57d1
LT
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
1da177e4 723
df3a57d1 724 rss[mm_counter(page)]++;
5042db43 725
df3a57d1
LT
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
5042db43 728 /*
df3a57d1
LT
729 * COW mappings require pages in both
730 * parent and child to be set to read.
5042db43 731 */
df3a57d1
LT
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
5042db43 742
df3a57d1
LT
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 770 }
1da177e4 771 }
df3a57d1
LT
772 set_pte_at(dst_mm, addr, dst_pte, pte);
773 return 0;
774}
775
70e806e4
PX
776/*
777 * Copy a present and normal page if necessary.
778 *
779 * NOTE! The usual case is that this doesn't need to do
780 * anything, and can just return a positive value. That
781 * will let the caller know that it can just increase
782 * the page refcount and re-use the pte the traditional
783 * way.
784 *
785 * But _if_ we need to copy it because it needs to be
786 * pinned in the parent (and the child should get its own
787 * copy rather than just a reference to the same page),
788 * we'll do that here and return zero to let the caller
789 * know we're done.
790 *
791 * And if we need a pre-allocated page but don't yet have
792 * one, return a negative error to let the preallocation
793 * code know so that it can do so outside the page table
794 * lock.
795 */
796static inline int
797copy_present_page(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798 pte_t *dst_pte, pte_t *src_pte,
799 struct vm_area_struct *vma, struct vm_area_struct *new,
800 unsigned long addr, int *rss, struct page **prealloc,
801 pte_t pte, struct page *page)
802{
803 struct page *new_page;
804
805 if (!is_cow_mapping(vma->vm_flags))
806 return 1;
807
808 /*
809 * The trick starts.
810 *
811 * What we want to do is to check whether this page may
812 * have been pinned by the parent process. If so,
813 * instead of wrprotect the pte on both sides, we copy
814 * the page immediately so that we'll always guarantee
815 * the pinned page won't be randomly replaced in the
816 * future.
817 *
818 * To achieve this, we do the following:
819 *
820 * 1. Write-protect the pte if it's writable. This is
821 * to protect concurrent write fast-gup with
822 * FOLL_PIN, so that we'll fail the fast-gup with
823 * the write bit removed.
824 *
825 * 2. Check page_maybe_dma_pinned() to see whether this
826 * page may have been pinned.
827 *
828 * The order of these steps is important to serialize
829 * against the fast-gup code (gup_pte_range()) on the
830 * pte check and try_grab_compound_head(), so that
831 * we'll make sure either we'll capture that fast-gup
832 * so we'll copy the pinned page here, or we'll fail
833 * that fast-gup.
834 *
835 * NOTE! Even if we don't end up copying the page,
836 * we won't undo this wrprotect(), because the normal
837 * reference copy will need it anyway.
838 */
839 if (pte_write(pte))
840 ptep_set_wrprotect(src_mm, addr, src_pte);
841
842 /*
843 * These are the "normally we can just copy by reference"
844 * checks.
845 */
846 if (likely(!atomic_read(&src_mm->has_pinned)))
847 return 1;
848 if (likely(!page_maybe_dma_pinned(page)))
849 return 1;
850
851 /*
852 * Uhhuh. It looks like the page might be a pinned page,
853 * and we actually need to copy it. Now we can set the
854 * source pte back to being writable.
855 */
856 if (pte_write(pte))
857 set_pte_at(src_mm, addr, src_pte, pte);
858
859 new_page = *prealloc;
860 if (!new_page)
861 return -EAGAIN;
862
863 /*
864 * We have a prealloc page, all good! Take it
865 * over and copy the page & arm it.
866 */
867 *prealloc = NULL;
868 copy_user_highpage(new_page, page, addr, vma);
869 __SetPageUptodate(new_page);
870 page_add_new_anon_rmap(new_page, new, addr, false);
871 lru_cache_add_inactive_or_unevictable(new_page, new);
872 rss[mm_counter(new_page)]++;
873
874 /* All done, just insert the new page copy in the child */
875 pte = mk_pte(new_page, new->vm_page_prot);
876 pte = maybe_mkwrite(pte_mkdirty(pte), new);
877 set_pte_at(dst_mm, addr, dst_pte, pte);
878 return 0;
879}
880
881/*
882 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
883 * is required to copy this pte.
884 */
885static inline int
79a1971c 886copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
df3a57d1 887 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
70e806e4
PX
888 struct vm_area_struct *new,
889 unsigned long addr, int *rss, struct page **prealloc)
df3a57d1
LT
890{
891 unsigned long vm_flags = vma->vm_flags;
892 pte_t pte = *src_pte;
893 struct page *page;
894
70e806e4
PX
895 page = vm_normal_page(vma, addr, pte);
896 if (page) {
897 int retval;
898
899 retval = copy_present_page(dst_mm, src_mm,
900 dst_pte, src_pte,
901 vma, new,
902 addr, rss, prealloc,
903 pte, page);
904 if (retval <= 0)
905 return retval;
906
907 get_page(page);
908 page_dup_rmap(page, false);
909 rss[mm_counter(page)]++;
910 }
911
1da177e4
LT
912 /*
913 * If it's a COW mapping, write protect it both
914 * in the parent and the child
915 */
1b2de5d0 916 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 917 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 918 pte = pte_wrprotect(pte);
1da177e4
LT
919 }
920
921 /*
922 * If it's a shared mapping, mark it clean in
923 * the child
924 */
925 if (vm_flags & VM_SHARED)
926 pte = pte_mkclean(pte);
927 pte = pte_mkold(pte);
6aab341e 928
b569a176
PX
929 /*
930 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
931 * does not have the VM_UFFD_WP, which means that the uffd
932 * fork event is not enabled.
933 */
934 if (!(vm_flags & VM_UFFD_WP))
935 pte = pte_clear_uffd_wp(pte);
936
70e806e4
PX
937 set_pte_at(dst_mm, addr, dst_pte, pte);
938 return 0;
939}
940
941static inline struct page *
942page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
943 unsigned long addr)
944{
945 struct page *new_page;
946
947 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
948 if (!new_page)
949 return NULL;
950
951 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
952 put_page(new_page);
953 return NULL;
6aab341e 954 }
70e806e4 955 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 956
70e806e4 957 return new_page;
1da177e4
LT
958}
959
21bda264 960static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0 961 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
7a4830c3 962 struct vm_area_struct *new,
71e3aac0 963 unsigned long addr, unsigned long end)
1da177e4 964{
c36987e2 965 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 966 pte_t *src_pte, *dst_pte;
c74df32c 967 spinlock_t *src_ptl, *dst_ptl;
70e806e4 968 int progress, ret = 0;
d559db08 969 int rss[NR_MM_COUNTERS];
570a335b 970 swp_entry_t entry = (swp_entry_t){0};
70e806e4 971 struct page *prealloc = NULL;
1da177e4
LT
972
973again:
70e806e4 974 progress = 0;
d559db08
KH
975 init_rss_vec(rss);
976
c74df32c 977 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
978 if (!dst_pte) {
979 ret = -ENOMEM;
980 goto out;
981 }
ece0e2b6 982 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 983 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 984 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
985 orig_src_pte = src_pte;
986 orig_dst_pte = dst_pte;
6606c3e0 987 arch_enter_lazy_mmu_mode();
1da177e4 988
1da177e4
LT
989 do {
990 /*
991 * We are holding two locks at this point - either of them
992 * could generate latencies in another task on another CPU.
993 */
e040f218
HD
994 if (progress >= 32) {
995 progress = 0;
996 if (need_resched() ||
95c354fe 997 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
998 break;
999 }
1da177e4
LT
1000 if (pte_none(*src_pte)) {
1001 progress++;
1002 continue;
1003 }
79a1971c
LT
1004 if (unlikely(!pte_present(*src_pte))) {
1005 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
1006 dst_pte, src_pte,
570a335b 1007 vma, addr, rss);
79a1971c
LT
1008 if (entry.val)
1009 break;
1010 progress += 8;
1011 continue;
1012 }
70e806e4
PX
1013 /* copy_present_pte() will clear `*prealloc' if consumed */
1014 ret = copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
1015 vma, new, addr, rss, &prealloc);
1016 /*
1017 * If we need a pre-allocated page for this pte, drop the
1018 * locks, allocate, and try again.
1019 */
1020 if (unlikely(ret == -EAGAIN))
1021 break;
1022 if (unlikely(prealloc)) {
1023 /*
1024 * pre-alloc page cannot be reused by next time so as
1025 * to strictly follow mempolicy (e.g., alloc_page_vma()
1026 * will allocate page according to address). This
1027 * could only happen if one pinned pte changed.
1028 */
1029 put_page(prealloc);
1030 prealloc = NULL;
1031 }
1da177e4
LT
1032 progress += 8;
1033 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1034
6606c3e0 1035 arch_leave_lazy_mmu_mode();
c74df32c 1036 spin_unlock(src_ptl);
ece0e2b6 1037 pte_unmap(orig_src_pte);
d559db08 1038 add_mm_rss_vec(dst_mm, rss);
c36987e2 1039 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1040 cond_resched();
570a335b
HD
1041
1042 if (entry.val) {
70e806e4
PX
1043 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1044 ret = -ENOMEM;
1045 goto out;
1046 }
1047 entry.val = 0;
1048 } else if (ret) {
1049 WARN_ON_ONCE(ret != -EAGAIN);
1050 prealloc = page_copy_prealloc(src_mm, vma, addr);
1051 if (!prealloc)
570a335b 1052 return -ENOMEM;
70e806e4
PX
1053 /* We've captured and resolved the error. Reset, try again. */
1054 ret = 0;
570a335b 1055 }
1da177e4
LT
1056 if (addr != end)
1057 goto again;
70e806e4
PX
1058out:
1059 if (unlikely(prealloc))
1060 put_page(prealloc);
1061 return ret;
1da177e4
LT
1062}
1063
1064static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
7a4830c3 1066 struct vm_area_struct *new,
1da177e4
LT
1067 unsigned long addr, unsigned long end)
1068{
1069 pmd_t *src_pmd, *dst_pmd;
1070 unsigned long next;
1071
1072 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1073 if (!dst_pmd)
1074 return -ENOMEM;
1075 src_pmd = pmd_offset(src_pud, addr);
1076 do {
1077 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1078 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1079 || pmd_devmap(*src_pmd)) {
71e3aac0 1080 int err;
a00cc7d9 1081 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1082 err = copy_huge_pmd(dst_mm, src_mm,
1083 dst_pmd, src_pmd, addr, vma);
1084 if (err == -ENOMEM)
1085 return -ENOMEM;
1086 if (!err)
1087 continue;
1088 /* fall through */
1089 }
1da177e4
LT
1090 if (pmd_none_or_clear_bad(src_pmd))
1091 continue;
1092 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
7a4830c3 1093 vma, new, addr, next))
1da177e4
LT
1094 return -ENOMEM;
1095 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1096 return 0;
1097}
1098
1099static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1100 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
7a4830c3 1101 struct vm_area_struct *new,
1da177e4
LT
1102 unsigned long addr, unsigned long end)
1103{
1104 pud_t *src_pud, *dst_pud;
1105 unsigned long next;
1106
c2febafc 1107 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1108 if (!dst_pud)
1109 return -ENOMEM;
c2febafc 1110 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1111 do {
1112 next = pud_addr_end(addr, end);
a00cc7d9
MW
1113 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1114 int err;
1115
1116 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1117 err = copy_huge_pud(dst_mm, src_mm,
1118 dst_pud, src_pud, addr, vma);
1119 if (err == -ENOMEM)
1120 return -ENOMEM;
1121 if (!err)
1122 continue;
1123 /* fall through */
1124 }
1da177e4
LT
1125 if (pud_none_or_clear_bad(src_pud))
1126 continue;
1127 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
7a4830c3 1128 vma, new, addr, next))
1da177e4
LT
1129 return -ENOMEM;
1130 } while (dst_pud++, src_pud++, addr = next, addr != end);
1131 return 0;
1132}
1133
c2febafc
KS
1134static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1135 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
7a4830c3 1136 struct vm_area_struct *new,
c2febafc
KS
1137 unsigned long addr, unsigned long end)
1138{
1139 p4d_t *src_p4d, *dst_p4d;
1140 unsigned long next;
1141
1142 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1143 if (!dst_p4d)
1144 return -ENOMEM;
1145 src_p4d = p4d_offset(src_pgd, addr);
1146 do {
1147 next = p4d_addr_end(addr, end);
1148 if (p4d_none_or_clear_bad(src_p4d))
1149 continue;
1150 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
7a4830c3 1151 vma, new, addr, next))
c2febafc
KS
1152 return -ENOMEM;
1153 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1154 return 0;
1155}
1156
1da177e4 1157int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
7a4830c3 1158 struct vm_area_struct *vma, struct vm_area_struct *new)
1da177e4
LT
1159{
1160 pgd_t *src_pgd, *dst_pgd;
1161 unsigned long next;
1162 unsigned long addr = vma->vm_start;
1163 unsigned long end = vma->vm_end;
ac46d4f3 1164 struct mmu_notifier_range range;
2ec74c3e 1165 bool is_cow;
cddb8a5c 1166 int ret;
1da177e4 1167
d992895b
NP
1168 /*
1169 * Don't copy ptes where a page fault will fill them correctly.
1170 * Fork becomes much lighter when there are big shared or private
1171 * readonly mappings. The tradeoff is that copy_page_range is more
1172 * efficient than faulting.
1173 */
0661a336
KS
1174 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1175 !vma->anon_vma)
1176 return 0;
d992895b 1177
1da177e4
LT
1178 if (is_vm_hugetlb_page(vma))
1179 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1180
b3b9c293 1181 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1182 /*
1183 * We do not free on error cases below as remove_vma
1184 * gets called on error from higher level routine
1185 */
5180da41 1186 ret = track_pfn_copy(vma);
2ab64037 1187 if (ret)
1188 return ret;
1189 }
1190
cddb8a5c
AA
1191 /*
1192 * We need to invalidate the secondary MMU mappings only when
1193 * there could be a permission downgrade on the ptes of the
1194 * parent mm. And a permission downgrade will only happen if
1195 * is_cow_mapping() returns true.
1196 */
2ec74c3e 1197 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1198
1199 if (is_cow) {
7269f999
JG
1200 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1201 0, vma, src_mm, addr, end);
ac46d4f3
JG
1202 mmu_notifier_invalidate_range_start(&range);
1203 }
cddb8a5c
AA
1204
1205 ret = 0;
1da177e4
LT
1206 dst_pgd = pgd_offset(dst_mm, addr);
1207 src_pgd = pgd_offset(src_mm, addr);
1208 do {
1209 next = pgd_addr_end(addr, end);
1210 if (pgd_none_or_clear_bad(src_pgd))
1211 continue;
c2febafc 1212 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
7a4830c3 1213 vma, new, addr, next))) {
cddb8a5c
AA
1214 ret = -ENOMEM;
1215 break;
1216 }
1da177e4 1217 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1218
2ec74c3e 1219 if (is_cow)
ac46d4f3 1220 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1221 return ret;
1da177e4
LT
1222}
1223
51c6f666 1224static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1225 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1226 unsigned long addr, unsigned long end,
97a89413 1227 struct zap_details *details)
1da177e4 1228{
b5810039 1229 struct mm_struct *mm = tlb->mm;
d16dfc55 1230 int force_flush = 0;
d559db08 1231 int rss[NR_MM_COUNTERS];
97a89413 1232 spinlock_t *ptl;
5f1a1907 1233 pte_t *start_pte;
97a89413 1234 pte_t *pte;
8a5f14a2 1235 swp_entry_t entry;
d559db08 1236
ed6a7935 1237 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1238again:
e303297e 1239 init_rss_vec(rss);
5f1a1907
SR
1240 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1241 pte = start_pte;
3ea27719 1242 flush_tlb_batched_pending(mm);
6606c3e0 1243 arch_enter_lazy_mmu_mode();
1da177e4
LT
1244 do {
1245 pte_t ptent = *pte;
166f61b9 1246 if (pte_none(ptent))
1da177e4 1247 continue;
6f5e6b9e 1248
7b167b68
MK
1249 if (need_resched())
1250 break;
1251
1da177e4 1252 if (pte_present(ptent)) {
ee498ed7 1253 struct page *page;
51c6f666 1254
25b2995a 1255 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1256 if (unlikely(details) && page) {
1257 /*
1258 * unmap_shared_mapping_pages() wants to
1259 * invalidate cache without truncating:
1260 * unmap shared but keep private pages.
1261 */
1262 if (details->check_mapping &&
800d8c63 1263 details->check_mapping != page_rmapping(page))
1da177e4 1264 continue;
1da177e4 1265 }
b5810039 1266 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1267 tlb->fullmm);
1da177e4
LT
1268 tlb_remove_tlb_entry(tlb, pte, addr);
1269 if (unlikely(!page))
1270 continue;
eca56ff9
JM
1271
1272 if (!PageAnon(page)) {
1cf35d47
LT
1273 if (pte_dirty(ptent)) {
1274 force_flush = 1;
6237bcd9 1275 set_page_dirty(page);
1cf35d47 1276 }
4917e5d0 1277 if (pte_young(ptent) &&
64363aad 1278 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1279 mark_page_accessed(page);
6237bcd9 1280 }
eca56ff9 1281 rss[mm_counter(page)]--;
d281ee61 1282 page_remove_rmap(page, false);
3dc14741
HD
1283 if (unlikely(page_mapcount(page) < 0))
1284 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1285 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1286 force_flush = 1;
ce9ec37b 1287 addr += PAGE_SIZE;
d16dfc55 1288 break;
1cf35d47 1289 }
1da177e4
LT
1290 continue;
1291 }
5042db43
JG
1292
1293 entry = pte_to_swp_entry(ptent);
463b7a17 1294 if (is_device_private_entry(entry)) {
5042db43
JG
1295 struct page *page = device_private_entry_to_page(entry);
1296
1297 if (unlikely(details && details->check_mapping)) {
1298 /*
1299 * unmap_shared_mapping_pages() wants to
1300 * invalidate cache without truncating:
1301 * unmap shared but keep private pages.
1302 */
1303 if (details->check_mapping !=
1304 page_rmapping(page))
1305 continue;
1306 }
1307
1308 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1309 rss[mm_counter(page)]--;
1310 page_remove_rmap(page, false);
1311 put_page(page);
1312 continue;
1313 }
1314
3e8715fd
KS
1315 /* If details->check_mapping, we leave swap entries. */
1316 if (unlikely(details))
1da177e4 1317 continue;
b084d435 1318
8a5f14a2
KS
1319 if (!non_swap_entry(entry))
1320 rss[MM_SWAPENTS]--;
1321 else if (is_migration_entry(entry)) {
1322 struct page *page;
9f9f1acd 1323
8a5f14a2 1324 page = migration_entry_to_page(entry);
eca56ff9 1325 rss[mm_counter(page)]--;
b084d435 1326 }
8a5f14a2
KS
1327 if (unlikely(!free_swap_and_cache(entry)))
1328 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1329 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1330 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1331
d559db08 1332 add_mm_rss_vec(mm, rss);
6606c3e0 1333 arch_leave_lazy_mmu_mode();
51c6f666 1334
1cf35d47 1335 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1336 if (force_flush)
1cf35d47 1337 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1338 pte_unmap_unlock(start_pte, ptl);
1339
1340 /*
1341 * If we forced a TLB flush (either due to running out of
1342 * batch buffers or because we needed to flush dirty TLB
1343 * entries before releasing the ptl), free the batched
1344 * memory too. Restart if we didn't do everything.
1345 */
1346 if (force_flush) {
1347 force_flush = 0;
fa0aafb8 1348 tlb_flush_mmu(tlb);
7b167b68
MK
1349 }
1350
1351 if (addr != end) {
1352 cond_resched();
1353 goto again;
d16dfc55
PZ
1354 }
1355
51c6f666 1356 return addr;
1da177e4
LT
1357}
1358
51c6f666 1359static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1360 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1361 unsigned long addr, unsigned long end,
97a89413 1362 struct zap_details *details)
1da177e4
LT
1363{
1364 pmd_t *pmd;
1365 unsigned long next;
1366
1367 pmd = pmd_offset(pud, addr);
1368 do {
1369 next = pmd_addr_end(addr, end);
84c3fc4e 1370 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1371 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1372 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1373 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1374 goto next;
71e3aac0
AA
1375 /* fall through */
1376 }
1a5a9906
AA
1377 /*
1378 * Here there can be other concurrent MADV_DONTNEED or
1379 * trans huge page faults running, and if the pmd is
1380 * none or trans huge it can change under us. This is
c1e8d7c6 1381 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1382 * mode.
1383 */
1384 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1385 goto next;
97a89413 1386 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1387next:
97a89413
PZ
1388 cond_resched();
1389 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1390
1391 return addr;
1da177e4
LT
1392}
1393
51c6f666 1394static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1395 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1396 unsigned long addr, unsigned long end,
97a89413 1397 struct zap_details *details)
1da177e4
LT
1398{
1399 pud_t *pud;
1400 unsigned long next;
1401
c2febafc 1402 pud = pud_offset(p4d, addr);
1da177e4
LT
1403 do {
1404 next = pud_addr_end(addr, end);
a00cc7d9
MW
1405 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1406 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1407 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1408 split_huge_pud(vma, pud, addr);
1409 } else if (zap_huge_pud(tlb, vma, pud, addr))
1410 goto next;
1411 /* fall through */
1412 }
97a89413 1413 if (pud_none_or_clear_bad(pud))
1da177e4 1414 continue;
97a89413 1415 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1416next:
1417 cond_resched();
97a89413 1418 } while (pud++, addr = next, addr != end);
51c6f666
RH
1419
1420 return addr;
1da177e4
LT
1421}
1422
c2febafc
KS
1423static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1424 struct vm_area_struct *vma, pgd_t *pgd,
1425 unsigned long addr, unsigned long end,
1426 struct zap_details *details)
1427{
1428 p4d_t *p4d;
1429 unsigned long next;
1430
1431 p4d = p4d_offset(pgd, addr);
1432 do {
1433 next = p4d_addr_end(addr, end);
1434 if (p4d_none_or_clear_bad(p4d))
1435 continue;
1436 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1437 } while (p4d++, addr = next, addr != end);
1438
1439 return addr;
1440}
1441
aac45363 1442void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1443 struct vm_area_struct *vma,
1444 unsigned long addr, unsigned long end,
1445 struct zap_details *details)
1da177e4
LT
1446{
1447 pgd_t *pgd;
1448 unsigned long next;
1449
1da177e4
LT
1450 BUG_ON(addr >= end);
1451 tlb_start_vma(tlb, vma);
1452 pgd = pgd_offset(vma->vm_mm, addr);
1453 do {
1454 next = pgd_addr_end(addr, end);
97a89413 1455 if (pgd_none_or_clear_bad(pgd))
1da177e4 1456 continue;
c2febafc 1457 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1458 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1459 tlb_end_vma(tlb, vma);
1460}
51c6f666 1461
f5cc4eef
AV
1462
1463static void unmap_single_vma(struct mmu_gather *tlb,
1464 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1465 unsigned long end_addr,
f5cc4eef
AV
1466 struct zap_details *details)
1467{
1468 unsigned long start = max(vma->vm_start, start_addr);
1469 unsigned long end;
1470
1471 if (start >= vma->vm_end)
1472 return;
1473 end = min(vma->vm_end, end_addr);
1474 if (end <= vma->vm_start)
1475 return;
1476
cbc91f71
SD
1477 if (vma->vm_file)
1478 uprobe_munmap(vma, start, end);
1479
b3b9c293 1480 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1481 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1482
1483 if (start != end) {
1484 if (unlikely(is_vm_hugetlb_page(vma))) {
1485 /*
1486 * It is undesirable to test vma->vm_file as it
1487 * should be non-null for valid hugetlb area.
1488 * However, vm_file will be NULL in the error
7aa6b4ad 1489 * cleanup path of mmap_region. When
f5cc4eef 1490 * hugetlbfs ->mmap method fails,
7aa6b4ad 1491 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1492 * before calling this function to clean up.
1493 * Since no pte has actually been setup, it is
1494 * safe to do nothing in this case.
1495 */
24669e58 1496 if (vma->vm_file) {
83cde9e8 1497 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1498 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1499 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1500 }
f5cc4eef
AV
1501 } else
1502 unmap_page_range(tlb, vma, start, end, details);
1503 }
1da177e4
LT
1504}
1505
1da177e4
LT
1506/**
1507 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1508 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1509 * @vma: the starting vma
1510 * @start_addr: virtual address at which to start unmapping
1511 * @end_addr: virtual address at which to end unmapping
1da177e4 1512 *
508034a3 1513 * Unmap all pages in the vma list.
1da177e4 1514 *
1da177e4
LT
1515 * Only addresses between `start' and `end' will be unmapped.
1516 *
1517 * The VMA list must be sorted in ascending virtual address order.
1518 *
1519 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1520 * range after unmap_vmas() returns. So the only responsibility here is to
1521 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1522 * drops the lock and schedules.
1523 */
6e8bb019 1524void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1525 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1526 unsigned long end_addr)
1da177e4 1527{
ac46d4f3 1528 struct mmu_notifier_range range;
1da177e4 1529
6f4f13e8
JG
1530 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1531 start_addr, end_addr);
ac46d4f3 1532 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1533 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1534 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1535 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1536}
1537
1538/**
1539 * zap_page_range - remove user pages in a given range
1540 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1541 * @start: starting address of pages to zap
1da177e4 1542 * @size: number of bytes to zap
f5cc4eef
AV
1543 *
1544 * Caller must protect the VMA list
1da177e4 1545 */
7e027b14 1546void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1547 unsigned long size)
1da177e4 1548{
ac46d4f3 1549 struct mmu_notifier_range range;
d16dfc55 1550 struct mmu_gather tlb;
1da177e4 1551
1da177e4 1552 lru_add_drain();
7269f999 1553 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1554 start, start + size);
ac46d4f3
JG
1555 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1556 update_hiwater_rss(vma->vm_mm);
1557 mmu_notifier_invalidate_range_start(&range);
1558 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1559 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1560 mmu_notifier_invalidate_range_end(&range);
1561 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1562}
1563
f5cc4eef
AV
1564/**
1565 * zap_page_range_single - remove user pages in a given range
1566 * @vma: vm_area_struct holding the applicable pages
1567 * @address: starting address of pages to zap
1568 * @size: number of bytes to zap
8a5f14a2 1569 * @details: details of shared cache invalidation
f5cc4eef
AV
1570 *
1571 * The range must fit into one VMA.
1da177e4 1572 */
f5cc4eef 1573static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1574 unsigned long size, struct zap_details *details)
1575{
ac46d4f3 1576 struct mmu_notifier_range range;
d16dfc55 1577 struct mmu_gather tlb;
1da177e4 1578
1da177e4 1579 lru_add_drain();
7269f999 1580 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1581 address, address + size);
ac46d4f3
JG
1582 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1583 update_hiwater_rss(vma->vm_mm);
1584 mmu_notifier_invalidate_range_start(&range);
1585 unmap_single_vma(&tlb, vma, address, range.end, details);
1586 mmu_notifier_invalidate_range_end(&range);
1587 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1588}
1589
c627f9cc
JS
1590/**
1591 * zap_vma_ptes - remove ptes mapping the vma
1592 * @vma: vm_area_struct holding ptes to be zapped
1593 * @address: starting address of pages to zap
1594 * @size: number of bytes to zap
1595 *
1596 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1597 *
1598 * The entire address range must be fully contained within the vma.
1599 *
c627f9cc 1600 */
27d036e3 1601void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1602 unsigned long size)
1603{
1604 if (address < vma->vm_start || address + size > vma->vm_end ||
1605 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1606 return;
1607
f5cc4eef 1608 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1609}
1610EXPORT_SYMBOL_GPL(zap_vma_ptes);
1611
8cd3984d 1612static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1613{
c2febafc
KS
1614 pgd_t *pgd;
1615 p4d_t *p4d;
1616 pud_t *pud;
1617 pmd_t *pmd;
1618
1619 pgd = pgd_offset(mm, addr);
1620 p4d = p4d_alloc(mm, pgd, addr);
1621 if (!p4d)
1622 return NULL;
1623 pud = pud_alloc(mm, p4d, addr);
1624 if (!pud)
1625 return NULL;
1626 pmd = pmd_alloc(mm, pud, addr);
1627 if (!pmd)
1628 return NULL;
1629
1630 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1631 return pmd;
1632}
1633
1634pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1635 spinlock_t **ptl)
1636{
1637 pmd_t *pmd = walk_to_pmd(mm, addr);
1638
1639 if (!pmd)
1640 return NULL;
c2febafc 1641 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1642}
1643
8efd6f5b
AR
1644static int validate_page_before_insert(struct page *page)
1645{
1646 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1647 return -EINVAL;
1648 flush_dcache_page(page);
1649 return 0;
1650}
1651
1652static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1653 unsigned long addr, struct page *page, pgprot_t prot)
1654{
1655 if (!pte_none(*pte))
1656 return -EBUSY;
1657 /* Ok, finally just insert the thing.. */
1658 get_page(page);
1659 inc_mm_counter_fast(mm, mm_counter_file(page));
1660 page_add_file_rmap(page, false);
1661 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1662 return 0;
1663}
1664
238f58d8
LT
1665/*
1666 * This is the old fallback for page remapping.
1667 *
1668 * For historical reasons, it only allows reserved pages. Only
1669 * old drivers should use this, and they needed to mark their
1670 * pages reserved for the old functions anyway.
1671 */
423bad60
NP
1672static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1673 struct page *page, pgprot_t prot)
238f58d8 1674{
423bad60 1675 struct mm_struct *mm = vma->vm_mm;
238f58d8 1676 int retval;
c9cfcddf 1677 pte_t *pte;
8a9f3ccd
BS
1678 spinlock_t *ptl;
1679
8efd6f5b
AR
1680 retval = validate_page_before_insert(page);
1681 if (retval)
5b4e655e 1682 goto out;
238f58d8 1683 retval = -ENOMEM;
c9cfcddf 1684 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1685 if (!pte)
5b4e655e 1686 goto out;
8efd6f5b 1687 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1688 pte_unmap_unlock(pte, ptl);
1689out:
1690 return retval;
1691}
1692
8cd3984d 1693#ifdef pte_index
7f70c2a6 1694static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1695 unsigned long addr, struct page *page, pgprot_t prot)
1696{
1697 int err;
1698
1699 if (!page_count(page))
1700 return -EINVAL;
1701 err = validate_page_before_insert(page);
7f70c2a6
AR
1702 if (err)
1703 return err;
1704 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1705}
1706
1707/* insert_pages() amortizes the cost of spinlock operations
1708 * when inserting pages in a loop. Arch *must* define pte_index.
1709 */
1710static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1711 struct page **pages, unsigned long *num, pgprot_t prot)
1712{
1713 pmd_t *pmd = NULL;
7f70c2a6
AR
1714 pte_t *start_pte, *pte;
1715 spinlock_t *pte_lock;
8cd3984d
AR
1716 struct mm_struct *const mm = vma->vm_mm;
1717 unsigned long curr_page_idx = 0;
1718 unsigned long remaining_pages_total = *num;
1719 unsigned long pages_to_write_in_pmd;
1720 int ret;
1721more:
1722 ret = -EFAULT;
1723 pmd = walk_to_pmd(mm, addr);
1724 if (!pmd)
1725 goto out;
1726
1727 pages_to_write_in_pmd = min_t(unsigned long,
1728 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1729
1730 /* Allocate the PTE if necessary; takes PMD lock once only. */
1731 ret = -ENOMEM;
1732 if (pte_alloc(mm, pmd))
1733 goto out;
8cd3984d
AR
1734
1735 while (pages_to_write_in_pmd) {
1736 int pte_idx = 0;
1737 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1738
7f70c2a6
AR
1739 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1740 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1741 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1742 addr, pages[curr_page_idx], prot);
1743 if (unlikely(err)) {
7f70c2a6 1744 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1745 ret = err;
1746 remaining_pages_total -= pte_idx;
1747 goto out;
1748 }
1749 addr += PAGE_SIZE;
1750 ++curr_page_idx;
1751 }
7f70c2a6 1752 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1753 pages_to_write_in_pmd -= batch_size;
1754 remaining_pages_total -= batch_size;
1755 }
1756 if (remaining_pages_total)
1757 goto more;
1758 ret = 0;
1759out:
1760 *num = remaining_pages_total;
1761 return ret;
1762}
1763#endif /* ifdef pte_index */
1764
1765/**
1766 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1767 * @vma: user vma to map to
1768 * @addr: target start user address of these pages
1769 * @pages: source kernel pages
1770 * @num: in: number of pages to map. out: number of pages that were *not*
1771 * mapped. (0 means all pages were successfully mapped).
1772 *
1773 * Preferred over vm_insert_page() when inserting multiple pages.
1774 *
1775 * In case of error, we may have mapped a subset of the provided
1776 * pages. It is the caller's responsibility to account for this case.
1777 *
1778 * The same restrictions apply as in vm_insert_page().
1779 */
1780int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1781 struct page **pages, unsigned long *num)
1782{
1783#ifdef pte_index
1784 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1785
1786 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1787 return -EFAULT;
1788 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1789 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1790 BUG_ON(vma->vm_flags & VM_PFNMAP);
1791 vma->vm_flags |= VM_MIXEDMAP;
1792 }
1793 /* Defer page refcount checking till we're about to map that page. */
1794 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1795#else
1796 unsigned long idx = 0, pgcount = *num;
45779b03 1797 int err = -EINVAL;
8cd3984d
AR
1798
1799 for (; idx < pgcount; ++idx) {
1800 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1801 if (err)
1802 break;
1803 }
1804 *num = pgcount - idx;
1805 return err;
1806#endif /* ifdef pte_index */
1807}
1808EXPORT_SYMBOL(vm_insert_pages);
1809
bfa5bf6d
REB
1810/**
1811 * vm_insert_page - insert single page into user vma
1812 * @vma: user vma to map to
1813 * @addr: target user address of this page
1814 * @page: source kernel page
1815 *
a145dd41
LT
1816 * This allows drivers to insert individual pages they've allocated
1817 * into a user vma.
1818 *
1819 * The page has to be a nice clean _individual_ kernel allocation.
1820 * If you allocate a compound page, you need to have marked it as
1821 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1822 * (see split_page()).
a145dd41
LT
1823 *
1824 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1825 * took an arbitrary page protection parameter. This doesn't allow
1826 * that. Your vma protection will have to be set up correctly, which
1827 * means that if you want a shared writable mapping, you'd better
1828 * ask for a shared writable mapping!
1829 *
1830 * The page does not need to be reserved.
4b6e1e37
KK
1831 *
1832 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1833 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1834 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1835 * function from other places, for example from page-fault handler.
a862f68a
MR
1836 *
1837 * Return: %0 on success, negative error code otherwise.
a145dd41 1838 */
423bad60
NP
1839int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1840 struct page *page)
a145dd41
LT
1841{
1842 if (addr < vma->vm_start || addr >= vma->vm_end)
1843 return -EFAULT;
1844 if (!page_count(page))
1845 return -EINVAL;
4b6e1e37 1846 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1847 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1848 BUG_ON(vma->vm_flags & VM_PFNMAP);
1849 vma->vm_flags |= VM_MIXEDMAP;
1850 }
423bad60 1851 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1852}
e3c3374f 1853EXPORT_SYMBOL(vm_insert_page);
a145dd41 1854
a667d745
SJ
1855/*
1856 * __vm_map_pages - maps range of kernel pages into user vma
1857 * @vma: user vma to map to
1858 * @pages: pointer to array of source kernel pages
1859 * @num: number of pages in page array
1860 * @offset: user's requested vm_pgoff
1861 *
1862 * This allows drivers to map range of kernel pages into a user vma.
1863 *
1864 * Return: 0 on success and error code otherwise.
1865 */
1866static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1867 unsigned long num, unsigned long offset)
1868{
1869 unsigned long count = vma_pages(vma);
1870 unsigned long uaddr = vma->vm_start;
1871 int ret, i;
1872
1873 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1874 if (offset >= num)
a667d745
SJ
1875 return -ENXIO;
1876
1877 /* Fail if the user requested size exceeds available object size */
1878 if (count > num - offset)
1879 return -ENXIO;
1880
1881 for (i = 0; i < count; i++) {
1882 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1883 if (ret < 0)
1884 return ret;
1885 uaddr += PAGE_SIZE;
1886 }
1887
1888 return 0;
1889}
1890
1891/**
1892 * vm_map_pages - maps range of kernel pages starts with non zero offset
1893 * @vma: user vma to map to
1894 * @pages: pointer to array of source kernel pages
1895 * @num: number of pages in page array
1896 *
1897 * Maps an object consisting of @num pages, catering for the user's
1898 * requested vm_pgoff
1899 *
1900 * If we fail to insert any page into the vma, the function will return
1901 * immediately leaving any previously inserted pages present. Callers
1902 * from the mmap handler may immediately return the error as their caller
1903 * will destroy the vma, removing any successfully inserted pages. Other
1904 * callers should make their own arrangements for calling unmap_region().
1905 *
1906 * Context: Process context. Called by mmap handlers.
1907 * Return: 0 on success and error code otherwise.
1908 */
1909int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1910 unsigned long num)
1911{
1912 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1913}
1914EXPORT_SYMBOL(vm_map_pages);
1915
1916/**
1917 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1918 * @vma: user vma to map to
1919 * @pages: pointer to array of source kernel pages
1920 * @num: number of pages in page array
1921 *
1922 * Similar to vm_map_pages(), except that it explicitly sets the offset
1923 * to 0. This function is intended for the drivers that did not consider
1924 * vm_pgoff.
1925 *
1926 * Context: Process context. Called by mmap handlers.
1927 * Return: 0 on success and error code otherwise.
1928 */
1929int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1930 unsigned long num)
1931{
1932 return __vm_map_pages(vma, pages, num, 0);
1933}
1934EXPORT_SYMBOL(vm_map_pages_zero);
1935
9b5a8e00 1936static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1937 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1938{
1939 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1940 pte_t *pte, entry;
1941 spinlock_t *ptl;
1942
423bad60
NP
1943 pte = get_locked_pte(mm, addr, &ptl);
1944 if (!pte)
9b5a8e00 1945 return VM_FAULT_OOM;
b2770da6
RZ
1946 if (!pte_none(*pte)) {
1947 if (mkwrite) {
1948 /*
1949 * For read faults on private mappings the PFN passed
1950 * in may not match the PFN we have mapped if the
1951 * mapped PFN is a writeable COW page. In the mkwrite
1952 * case we are creating a writable PTE for a shared
f2c57d91
JK
1953 * mapping and we expect the PFNs to match. If they
1954 * don't match, we are likely racing with block
1955 * allocation and mapping invalidation so just skip the
1956 * update.
b2770da6 1957 */
f2c57d91
JK
1958 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1959 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1960 goto out_unlock;
f2c57d91 1961 }
cae85cb8
JK
1962 entry = pte_mkyoung(*pte);
1963 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1964 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1965 update_mmu_cache(vma, addr, pte);
1966 }
1967 goto out_unlock;
b2770da6 1968 }
423bad60
NP
1969
1970 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1971 if (pfn_t_devmap(pfn))
1972 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1973 else
1974 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1975
b2770da6
RZ
1976 if (mkwrite) {
1977 entry = pte_mkyoung(entry);
1978 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1979 }
1980
423bad60 1981 set_pte_at(mm, addr, pte, entry);
4b3073e1 1982 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1983
423bad60
NP
1984out_unlock:
1985 pte_unmap_unlock(pte, ptl);
9b5a8e00 1986 return VM_FAULT_NOPAGE;
423bad60
NP
1987}
1988
f5e6d1d5
MW
1989/**
1990 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1991 * @vma: user vma to map to
1992 * @addr: target user address of this page
1993 * @pfn: source kernel pfn
1994 * @pgprot: pgprot flags for the inserted page
1995 *
a1a0aea5 1996 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1997 * to override pgprot on a per-page basis.
1998 *
1999 * This only makes sense for IO mappings, and it makes no sense for
2000 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2001 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2002 * impractical.
2003 *
574c5b3d
TH
2004 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2005 * a value of @pgprot different from that of @vma->vm_page_prot.
2006 *
ae2b01f3 2007 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2008 * Return: vm_fault_t value.
2009 */
2010vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2011 unsigned long pfn, pgprot_t pgprot)
2012{
6d958546
MW
2013 /*
2014 * Technically, architectures with pte_special can avoid all these
2015 * restrictions (same for remap_pfn_range). However we would like
2016 * consistency in testing and feature parity among all, so we should
2017 * try to keep these invariants in place for everybody.
2018 */
2019 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2020 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2021 (VM_PFNMAP|VM_MIXEDMAP));
2022 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2023 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2024
2025 if (addr < vma->vm_start || addr >= vma->vm_end)
2026 return VM_FAULT_SIGBUS;
2027
2028 if (!pfn_modify_allowed(pfn, pgprot))
2029 return VM_FAULT_SIGBUS;
2030
2031 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2032
9b5a8e00 2033 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2034 false);
f5e6d1d5
MW
2035}
2036EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2037
ae2b01f3
MW
2038/**
2039 * vmf_insert_pfn - insert single pfn into user vma
2040 * @vma: user vma to map to
2041 * @addr: target user address of this page
2042 * @pfn: source kernel pfn
2043 *
2044 * Similar to vm_insert_page, this allows drivers to insert individual pages
2045 * they've allocated into a user vma. Same comments apply.
2046 *
2047 * This function should only be called from a vm_ops->fault handler, and
2048 * in that case the handler should return the result of this function.
2049 *
2050 * vma cannot be a COW mapping.
2051 *
2052 * As this is called only for pages that do not currently exist, we
2053 * do not need to flush old virtual caches or the TLB.
2054 *
2055 * Context: Process context. May allocate using %GFP_KERNEL.
2056 * Return: vm_fault_t value.
2057 */
2058vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2059 unsigned long pfn)
2060{
2061 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2062}
2063EXPORT_SYMBOL(vmf_insert_pfn);
2064
785a3fab
DW
2065static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2066{
2067 /* these checks mirror the abort conditions in vm_normal_page */
2068 if (vma->vm_flags & VM_MIXEDMAP)
2069 return true;
2070 if (pfn_t_devmap(pfn))
2071 return true;
2072 if (pfn_t_special(pfn))
2073 return true;
2074 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2075 return true;
2076 return false;
2077}
2078
79f3aa5b 2079static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2080 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2081 bool mkwrite)
423bad60 2082{
79f3aa5b 2083 int err;
87744ab3 2084
785a3fab 2085 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2086
423bad60 2087 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2088 return VM_FAULT_SIGBUS;
308a047c
BP
2089
2090 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2091
42e4089c 2092 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2093 return VM_FAULT_SIGBUS;
42e4089c 2094
423bad60
NP
2095 /*
2096 * If we don't have pte special, then we have to use the pfn_valid()
2097 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2098 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2099 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2100 * without pte special, it would there be refcounted as a normal page.
423bad60 2101 */
00b3a331
LD
2102 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2103 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2104 struct page *page;
2105
03fc2da6
DW
2106 /*
2107 * At this point we are committed to insert_page()
2108 * regardless of whether the caller specified flags that
2109 * result in pfn_t_has_page() == false.
2110 */
2111 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2112 err = insert_page(vma, addr, page, pgprot);
2113 } else {
9b5a8e00 2114 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2115 }
b2770da6 2116
5d747637
MW
2117 if (err == -ENOMEM)
2118 return VM_FAULT_OOM;
2119 if (err < 0 && err != -EBUSY)
2120 return VM_FAULT_SIGBUS;
2121
2122 return VM_FAULT_NOPAGE;
e0dc0d8f 2123}
79f3aa5b 2124
574c5b3d
TH
2125/**
2126 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2127 * @vma: user vma to map to
2128 * @addr: target user address of this page
2129 * @pfn: source kernel pfn
2130 * @pgprot: pgprot flags for the inserted page
2131 *
a1a0aea5 2132 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2133 * to override pgprot on a per-page basis.
2134 *
2135 * Typically this function should be used by drivers to set caching- and
2136 * encryption bits different than those of @vma->vm_page_prot, because
2137 * the caching- or encryption mode may not be known at mmap() time.
2138 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2139 * to set caching and encryption bits for those vmas (except for COW pages).
2140 * This is ensured by core vm only modifying these page table entries using
2141 * functions that don't touch caching- or encryption bits, using pte_modify()
2142 * if needed. (See for example mprotect()).
2143 * Also when new page-table entries are created, this is only done using the
2144 * fault() callback, and never using the value of vma->vm_page_prot,
2145 * except for page-table entries that point to anonymous pages as the result
2146 * of COW.
2147 *
2148 * Context: Process context. May allocate using %GFP_KERNEL.
2149 * Return: vm_fault_t value.
2150 */
2151vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2152 pfn_t pfn, pgprot_t pgprot)
2153{
2154 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2155}
5379e4dd 2156EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2157
79f3aa5b
MW
2158vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2159 pfn_t pfn)
2160{
574c5b3d 2161 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2162}
5d747637 2163EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2164
ab77dab4
SJ
2165/*
2166 * If the insertion of PTE failed because someone else already added a
2167 * different entry in the mean time, we treat that as success as we assume
2168 * the same entry was actually inserted.
2169 */
ab77dab4
SJ
2170vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2171 unsigned long addr, pfn_t pfn)
b2770da6 2172{
574c5b3d 2173 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2174}
ab77dab4 2175EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2176
1da177e4
LT
2177/*
2178 * maps a range of physical memory into the requested pages. the old
2179 * mappings are removed. any references to nonexistent pages results
2180 * in null mappings (currently treated as "copy-on-access")
2181 */
2182static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2183 unsigned long addr, unsigned long end,
2184 unsigned long pfn, pgprot_t prot)
2185{
2186 pte_t *pte;
c74df32c 2187 spinlock_t *ptl;
42e4089c 2188 int err = 0;
1da177e4 2189
c74df32c 2190 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2191 if (!pte)
2192 return -ENOMEM;
6606c3e0 2193 arch_enter_lazy_mmu_mode();
1da177e4
LT
2194 do {
2195 BUG_ON(!pte_none(*pte));
42e4089c
AK
2196 if (!pfn_modify_allowed(pfn, prot)) {
2197 err = -EACCES;
2198 break;
2199 }
7e675137 2200 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2201 pfn++;
2202 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2203 arch_leave_lazy_mmu_mode();
c74df32c 2204 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2205 return err;
1da177e4
LT
2206}
2207
2208static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2209 unsigned long addr, unsigned long end,
2210 unsigned long pfn, pgprot_t prot)
2211{
2212 pmd_t *pmd;
2213 unsigned long next;
42e4089c 2214 int err;
1da177e4
LT
2215
2216 pfn -= addr >> PAGE_SHIFT;
2217 pmd = pmd_alloc(mm, pud, addr);
2218 if (!pmd)
2219 return -ENOMEM;
f66055ab 2220 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2221 do {
2222 next = pmd_addr_end(addr, end);
42e4089c
AK
2223 err = remap_pte_range(mm, pmd, addr, next,
2224 pfn + (addr >> PAGE_SHIFT), prot);
2225 if (err)
2226 return err;
1da177e4
LT
2227 } while (pmd++, addr = next, addr != end);
2228 return 0;
2229}
2230
c2febafc 2231static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2232 unsigned long addr, unsigned long end,
2233 unsigned long pfn, pgprot_t prot)
2234{
2235 pud_t *pud;
2236 unsigned long next;
42e4089c 2237 int err;
1da177e4
LT
2238
2239 pfn -= addr >> PAGE_SHIFT;
c2febafc 2240 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2241 if (!pud)
2242 return -ENOMEM;
2243 do {
2244 next = pud_addr_end(addr, end);
42e4089c
AK
2245 err = remap_pmd_range(mm, pud, addr, next,
2246 pfn + (addr >> PAGE_SHIFT), prot);
2247 if (err)
2248 return err;
1da177e4
LT
2249 } while (pud++, addr = next, addr != end);
2250 return 0;
2251}
2252
c2febafc
KS
2253static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2254 unsigned long addr, unsigned long end,
2255 unsigned long pfn, pgprot_t prot)
2256{
2257 p4d_t *p4d;
2258 unsigned long next;
42e4089c 2259 int err;
c2febafc
KS
2260
2261 pfn -= addr >> PAGE_SHIFT;
2262 p4d = p4d_alloc(mm, pgd, addr);
2263 if (!p4d)
2264 return -ENOMEM;
2265 do {
2266 next = p4d_addr_end(addr, end);
42e4089c
AK
2267 err = remap_pud_range(mm, p4d, addr, next,
2268 pfn + (addr >> PAGE_SHIFT), prot);
2269 if (err)
2270 return err;
c2febafc
KS
2271 } while (p4d++, addr = next, addr != end);
2272 return 0;
2273}
2274
bfa5bf6d
REB
2275/**
2276 * remap_pfn_range - remap kernel memory to userspace
2277 * @vma: user vma to map to
0c4123e3 2278 * @addr: target page aligned user address to start at
86a76331 2279 * @pfn: page frame number of kernel physical memory address
552657b7 2280 * @size: size of mapping area
bfa5bf6d
REB
2281 * @prot: page protection flags for this mapping
2282 *
a862f68a
MR
2283 * Note: this is only safe if the mm semaphore is held when called.
2284 *
2285 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2286 */
1da177e4
LT
2287int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2288 unsigned long pfn, unsigned long size, pgprot_t prot)
2289{
2290 pgd_t *pgd;
2291 unsigned long next;
2d15cab8 2292 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2293 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2294 unsigned long remap_pfn = pfn;
1da177e4
LT
2295 int err;
2296
0c4123e3
AZ
2297 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2298 return -EINVAL;
2299
1da177e4
LT
2300 /*
2301 * Physically remapped pages are special. Tell the
2302 * rest of the world about it:
2303 * VM_IO tells people not to look at these pages
2304 * (accesses can have side effects).
6aab341e
LT
2305 * VM_PFNMAP tells the core MM that the base pages are just
2306 * raw PFN mappings, and do not have a "struct page" associated
2307 * with them.
314e51b9
KK
2308 * VM_DONTEXPAND
2309 * Disable vma merging and expanding with mremap().
2310 * VM_DONTDUMP
2311 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2312 *
2313 * There's a horrible special case to handle copy-on-write
2314 * behaviour that some programs depend on. We mark the "original"
2315 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2316 * See vm_normal_page() for details.
1da177e4 2317 */
b3b9c293
KK
2318 if (is_cow_mapping(vma->vm_flags)) {
2319 if (addr != vma->vm_start || end != vma->vm_end)
2320 return -EINVAL;
fb155c16 2321 vma->vm_pgoff = pfn;
b3b9c293
KK
2322 }
2323
d5957d2f 2324 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2325 if (err)
3c8bb73a 2326 return -EINVAL;
fb155c16 2327
314e51b9 2328 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2329
2330 BUG_ON(addr >= end);
2331 pfn -= addr >> PAGE_SHIFT;
2332 pgd = pgd_offset(mm, addr);
2333 flush_cache_range(vma, addr, end);
1da177e4
LT
2334 do {
2335 next = pgd_addr_end(addr, end);
c2febafc 2336 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2337 pfn + (addr >> PAGE_SHIFT), prot);
2338 if (err)
2339 break;
2340 } while (pgd++, addr = next, addr != end);
2ab64037 2341
2342 if (err)
d5957d2f 2343 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2344
1da177e4
LT
2345 return err;
2346}
2347EXPORT_SYMBOL(remap_pfn_range);
2348
b4cbb197
LT
2349/**
2350 * vm_iomap_memory - remap memory to userspace
2351 * @vma: user vma to map to
abd69b9e 2352 * @start: start of the physical memory to be mapped
b4cbb197
LT
2353 * @len: size of area
2354 *
2355 * This is a simplified io_remap_pfn_range() for common driver use. The
2356 * driver just needs to give us the physical memory range to be mapped,
2357 * we'll figure out the rest from the vma information.
2358 *
2359 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2360 * whatever write-combining details or similar.
a862f68a
MR
2361 *
2362 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2363 */
2364int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2365{
2366 unsigned long vm_len, pfn, pages;
2367
2368 /* Check that the physical memory area passed in looks valid */
2369 if (start + len < start)
2370 return -EINVAL;
2371 /*
2372 * You *really* shouldn't map things that aren't page-aligned,
2373 * but we've historically allowed it because IO memory might
2374 * just have smaller alignment.
2375 */
2376 len += start & ~PAGE_MASK;
2377 pfn = start >> PAGE_SHIFT;
2378 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2379 if (pfn + pages < pfn)
2380 return -EINVAL;
2381
2382 /* We start the mapping 'vm_pgoff' pages into the area */
2383 if (vma->vm_pgoff > pages)
2384 return -EINVAL;
2385 pfn += vma->vm_pgoff;
2386 pages -= vma->vm_pgoff;
2387
2388 /* Can we fit all of the mapping? */
2389 vm_len = vma->vm_end - vma->vm_start;
2390 if (vm_len >> PAGE_SHIFT > pages)
2391 return -EINVAL;
2392
2393 /* Ok, let it rip */
2394 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2395}
2396EXPORT_SYMBOL(vm_iomap_memory);
2397
aee16b3c
JF
2398static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2399 unsigned long addr, unsigned long end,
e80d3909
JR
2400 pte_fn_t fn, void *data, bool create,
2401 pgtbl_mod_mask *mask)
aee16b3c
JF
2402{
2403 pte_t *pte;
be1db475 2404 int err = 0;
3f649ab7 2405 spinlock_t *ptl;
aee16b3c 2406
be1db475
DA
2407 if (create) {
2408 pte = (mm == &init_mm) ?
e80d3909 2409 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2410 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2411 if (!pte)
2412 return -ENOMEM;
2413 } else {
2414 pte = (mm == &init_mm) ?
2415 pte_offset_kernel(pmd, addr) :
2416 pte_offset_map_lock(mm, pmd, addr, &ptl);
2417 }
aee16b3c
JF
2418
2419 BUG_ON(pmd_huge(*pmd));
2420
38e0edb1
JF
2421 arch_enter_lazy_mmu_mode();
2422
aee16b3c 2423 do {
be1db475
DA
2424 if (create || !pte_none(*pte)) {
2425 err = fn(pte++, addr, data);
2426 if (err)
2427 break;
2428 }
c36987e2 2429 } while (addr += PAGE_SIZE, addr != end);
e80d3909 2430 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2431
38e0edb1
JF
2432 arch_leave_lazy_mmu_mode();
2433
aee16b3c
JF
2434 if (mm != &init_mm)
2435 pte_unmap_unlock(pte-1, ptl);
2436 return err;
2437}
2438
2439static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2440 unsigned long addr, unsigned long end,
e80d3909
JR
2441 pte_fn_t fn, void *data, bool create,
2442 pgtbl_mod_mask *mask)
aee16b3c
JF
2443{
2444 pmd_t *pmd;
2445 unsigned long next;
be1db475 2446 int err = 0;
aee16b3c 2447
ceb86879
AK
2448 BUG_ON(pud_huge(*pud));
2449
be1db475 2450 if (create) {
e80d3909 2451 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2452 if (!pmd)
2453 return -ENOMEM;
2454 } else {
2455 pmd = pmd_offset(pud, addr);
2456 }
aee16b3c
JF
2457 do {
2458 next = pmd_addr_end(addr, end);
be1db475
DA
2459 if (create || !pmd_none_or_clear_bad(pmd)) {
2460 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2461 create, mask);
be1db475
DA
2462 if (err)
2463 break;
2464 }
aee16b3c
JF
2465 } while (pmd++, addr = next, addr != end);
2466 return err;
2467}
2468
c2febafc 2469static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2470 unsigned long addr, unsigned long end,
e80d3909
JR
2471 pte_fn_t fn, void *data, bool create,
2472 pgtbl_mod_mask *mask)
aee16b3c
JF
2473{
2474 pud_t *pud;
2475 unsigned long next;
be1db475 2476 int err = 0;
aee16b3c 2477
be1db475 2478 if (create) {
e80d3909 2479 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2480 if (!pud)
2481 return -ENOMEM;
2482 } else {
2483 pud = pud_offset(p4d, addr);
2484 }
aee16b3c
JF
2485 do {
2486 next = pud_addr_end(addr, end);
be1db475
DA
2487 if (create || !pud_none_or_clear_bad(pud)) {
2488 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2489 create, mask);
be1db475
DA
2490 if (err)
2491 break;
2492 }
aee16b3c
JF
2493 } while (pud++, addr = next, addr != end);
2494 return err;
2495}
2496
c2febafc
KS
2497static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2498 unsigned long addr, unsigned long end,
e80d3909
JR
2499 pte_fn_t fn, void *data, bool create,
2500 pgtbl_mod_mask *mask)
c2febafc
KS
2501{
2502 p4d_t *p4d;
2503 unsigned long next;
be1db475 2504 int err = 0;
c2febafc 2505
be1db475 2506 if (create) {
e80d3909 2507 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2508 if (!p4d)
2509 return -ENOMEM;
2510 } else {
2511 p4d = p4d_offset(pgd, addr);
2512 }
c2febafc
KS
2513 do {
2514 next = p4d_addr_end(addr, end);
be1db475
DA
2515 if (create || !p4d_none_or_clear_bad(p4d)) {
2516 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2517 create, mask);
be1db475
DA
2518 if (err)
2519 break;
2520 }
c2febafc
KS
2521 } while (p4d++, addr = next, addr != end);
2522 return err;
2523}
2524
be1db475
DA
2525static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2526 unsigned long size, pte_fn_t fn,
2527 void *data, bool create)
aee16b3c
JF
2528{
2529 pgd_t *pgd;
e80d3909 2530 unsigned long start = addr, next;
57250a5b 2531 unsigned long end = addr + size;
e80d3909 2532 pgtbl_mod_mask mask = 0;
be1db475 2533 int err = 0;
aee16b3c 2534
9cb65bc3
MP
2535 if (WARN_ON(addr >= end))
2536 return -EINVAL;
2537
aee16b3c
JF
2538 pgd = pgd_offset(mm, addr);
2539 do {
2540 next = pgd_addr_end(addr, end);
be1db475
DA
2541 if (!create && pgd_none_or_clear_bad(pgd))
2542 continue;
e80d3909 2543 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2544 if (err)
2545 break;
2546 } while (pgd++, addr = next, addr != end);
57250a5b 2547
e80d3909
JR
2548 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2549 arch_sync_kernel_mappings(start, start + size);
2550
aee16b3c
JF
2551 return err;
2552}
be1db475
DA
2553
2554/*
2555 * Scan a region of virtual memory, filling in page tables as necessary
2556 * and calling a provided function on each leaf page table.
2557 */
2558int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2559 unsigned long size, pte_fn_t fn, void *data)
2560{
2561 return __apply_to_page_range(mm, addr, size, fn, data, true);
2562}
aee16b3c
JF
2563EXPORT_SYMBOL_GPL(apply_to_page_range);
2564
be1db475
DA
2565/*
2566 * Scan a region of virtual memory, calling a provided function on
2567 * each leaf page table where it exists.
2568 *
2569 * Unlike apply_to_page_range, this does _not_ fill in page tables
2570 * where they are absent.
2571 */
2572int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2573 unsigned long size, pte_fn_t fn, void *data)
2574{
2575 return __apply_to_page_range(mm, addr, size, fn, data, false);
2576}
2577EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2578
8f4e2101 2579/*
9b4bdd2f
KS
2580 * handle_pte_fault chooses page fault handler according to an entry which was
2581 * read non-atomically. Before making any commitment, on those architectures
2582 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2583 * parts, do_swap_page must check under lock before unmapping the pte and
2584 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2585 * and do_anonymous_page can safely check later on).
8f4e2101 2586 */
4c21e2f2 2587static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2588 pte_t *page_table, pte_t orig_pte)
2589{
2590 int same = 1;
923717cb 2591#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2592 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2593 spinlock_t *ptl = pte_lockptr(mm, pmd);
2594 spin_lock(ptl);
8f4e2101 2595 same = pte_same(*page_table, orig_pte);
4c21e2f2 2596 spin_unlock(ptl);
8f4e2101
HD
2597 }
2598#endif
2599 pte_unmap(page_table);
2600 return same;
2601}
2602
83d116c5
JH
2603static inline bool cow_user_page(struct page *dst, struct page *src,
2604 struct vm_fault *vmf)
6aab341e 2605{
83d116c5
JH
2606 bool ret;
2607 void *kaddr;
2608 void __user *uaddr;
c3e5ea6e 2609 bool locked = false;
83d116c5
JH
2610 struct vm_area_struct *vma = vmf->vma;
2611 struct mm_struct *mm = vma->vm_mm;
2612 unsigned long addr = vmf->address;
2613
83d116c5
JH
2614 if (likely(src)) {
2615 copy_user_highpage(dst, src, addr, vma);
2616 return true;
2617 }
2618
6aab341e
LT
2619 /*
2620 * If the source page was a PFN mapping, we don't have
2621 * a "struct page" for it. We do a best-effort copy by
2622 * just copying from the original user address. If that
2623 * fails, we just zero-fill it. Live with it.
2624 */
83d116c5
JH
2625 kaddr = kmap_atomic(dst);
2626 uaddr = (void __user *)(addr & PAGE_MASK);
2627
2628 /*
2629 * On architectures with software "accessed" bits, we would
2630 * take a double page fault, so mark it accessed here.
2631 */
c3e5ea6e 2632 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2633 pte_t entry;
5d2a2dbb 2634
83d116c5 2635 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2636 locked = true;
83d116c5
JH
2637 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2638 /*
2639 * Other thread has already handled the fault
7df67697 2640 * and update local tlb only
83d116c5 2641 */
7df67697 2642 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2643 ret = false;
2644 goto pte_unlock;
2645 }
2646
2647 entry = pte_mkyoung(vmf->orig_pte);
2648 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2649 update_mmu_cache(vma, addr, vmf->pte);
2650 }
2651
2652 /*
2653 * This really shouldn't fail, because the page is there
2654 * in the page tables. But it might just be unreadable,
2655 * in which case we just give up and fill the result with
2656 * zeroes.
2657 */
2658 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2659 if (locked)
2660 goto warn;
2661
2662 /* Re-validate under PTL if the page is still mapped */
2663 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2664 locked = true;
2665 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2666 /* The PTE changed under us, update local tlb */
2667 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2668 ret = false;
2669 goto pte_unlock;
2670 }
2671
5d2a2dbb 2672 /*
985ba004 2673 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2674 * Try to copy again under PTL.
5d2a2dbb 2675 */
c3e5ea6e
KS
2676 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2677 /*
2678 * Give a warn in case there can be some obscure
2679 * use-case
2680 */
2681warn:
2682 WARN_ON_ONCE(1);
2683 clear_page(kaddr);
2684 }
83d116c5
JH
2685 }
2686
2687 ret = true;
2688
2689pte_unlock:
c3e5ea6e 2690 if (locked)
83d116c5
JH
2691 pte_unmap_unlock(vmf->pte, vmf->ptl);
2692 kunmap_atomic(kaddr);
2693 flush_dcache_page(dst);
2694
2695 return ret;
6aab341e
LT
2696}
2697
c20cd45e
MH
2698static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2699{
2700 struct file *vm_file = vma->vm_file;
2701
2702 if (vm_file)
2703 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2704
2705 /*
2706 * Special mappings (e.g. VDSO) do not have any file so fake
2707 * a default GFP_KERNEL for them.
2708 */
2709 return GFP_KERNEL;
2710}
2711
fb09a464
KS
2712/*
2713 * Notify the address space that the page is about to become writable so that
2714 * it can prohibit this or wait for the page to get into an appropriate state.
2715 *
2716 * We do this without the lock held, so that it can sleep if it needs to.
2717 */
2b740303 2718static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2719{
2b740303 2720 vm_fault_t ret;
38b8cb7f
JK
2721 struct page *page = vmf->page;
2722 unsigned int old_flags = vmf->flags;
fb09a464 2723
38b8cb7f 2724 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2725
dc617f29
DW
2726 if (vmf->vma->vm_file &&
2727 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2728 return VM_FAULT_SIGBUS;
2729
11bac800 2730 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2731 /* Restore original flags so that caller is not surprised */
2732 vmf->flags = old_flags;
fb09a464
KS
2733 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2734 return ret;
2735 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2736 lock_page(page);
2737 if (!page->mapping) {
2738 unlock_page(page);
2739 return 0; /* retry */
2740 }
2741 ret |= VM_FAULT_LOCKED;
2742 } else
2743 VM_BUG_ON_PAGE(!PageLocked(page), page);
2744 return ret;
2745}
2746
97ba0c2b
JK
2747/*
2748 * Handle dirtying of a page in shared file mapping on a write fault.
2749 *
2750 * The function expects the page to be locked and unlocks it.
2751 */
89b15332 2752static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2753{
89b15332 2754 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2755 struct address_space *mapping;
89b15332 2756 struct page *page = vmf->page;
97ba0c2b
JK
2757 bool dirtied;
2758 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2759
2760 dirtied = set_page_dirty(page);
2761 VM_BUG_ON_PAGE(PageAnon(page), page);
2762 /*
2763 * Take a local copy of the address_space - page.mapping may be zeroed
2764 * by truncate after unlock_page(). The address_space itself remains
2765 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2766 * release semantics to prevent the compiler from undoing this copying.
2767 */
2768 mapping = page_rmapping(page);
2769 unlock_page(page);
2770
89b15332
JW
2771 if (!page_mkwrite)
2772 file_update_time(vma->vm_file);
2773
2774 /*
2775 * Throttle page dirtying rate down to writeback speed.
2776 *
2777 * mapping may be NULL here because some device drivers do not
2778 * set page.mapping but still dirty their pages
2779 *
c1e8d7c6 2780 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2781 * is pinning the mapping, as per above.
2782 */
97ba0c2b 2783 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2784 struct file *fpin;
2785
2786 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2787 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2788 if (fpin) {
2789 fput(fpin);
2790 return VM_FAULT_RETRY;
2791 }
97ba0c2b
JK
2792 }
2793
89b15332 2794 return 0;
97ba0c2b
JK
2795}
2796
4e047f89
SR
2797/*
2798 * Handle write page faults for pages that can be reused in the current vma
2799 *
2800 * This can happen either due to the mapping being with the VM_SHARED flag,
2801 * or due to us being the last reference standing to the page. In either
2802 * case, all we need to do here is to mark the page as writable and update
2803 * any related book-keeping.
2804 */
997dd98d 2805static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2806 __releases(vmf->ptl)
4e047f89 2807{
82b0f8c3 2808 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2809 struct page *page = vmf->page;
4e047f89
SR
2810 pte_t entry;
2811 /*
2812 * Clear the pages cpupid information as the existing
2813 * information potentially belongs to a now completely
2814 * unrelated process.
2815 */
2816 if (page)
2817 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2818
2994302b
JK
2819 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2820 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2821 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2822 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2823 update_mmu_cache(vma, vmf->address, vmf->pte);
2824 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2825 count_vm_event(PGREUSE);
4e047f89
SR
2826}
2827
2f38ab2c
SR
2828/*
2829 * Handle the case of a page which we actually need to copy to a new page.
2830 *
c1e8d7c6 2831 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2832 * without the ptl held.
2833 *
2834 * High level logic flow:
2835 *
2836 * - Allocate a page, copy the content of the old page to the new one.
2837 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2838 * - Take the PTL. If the pte changed, bail out and release the allocated page
2839 * - If the pte is still the way we remember it, update the page table and all
2840 * relevant references. This includes dropping the reference the page-table
2841 * held to the old page, as well as updating the rmap.
2842 * - In any case, unlock the PTL and drop the reference we took to the old page.
2843 */
2b740303 2844static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2845{
82b0f8c3 2846 struct vm_area_struct *vma = vmf->vma;
bae473a4 2847 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2848 struct page *old_page = vmf->page;
2f38ab2c 2849 struct page *new_page = NULL;
2f38ab2c
SR
2850 pte_t entry;
2851 int page_copied = 0;
ac46d4f3 2852 struct mmu_notifier_range range;
2f38ab2c
SR
2853
2854 if (unlikely(anon_vma_prepare(vma)))
2855 goto oom;
2856
2994302b 2857 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2858 new_page = alloc_zeroed_user_highpage_movable(vma,
2859 vmf->address);
2f38ab2c
SR
2860 if (!new_page)
2861 goto oom;
2862 } else {
bae473a4 2863 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2864 vmf->address);
2f38ab2c
SR
2865 if (!new_page)
2866 goto oom;
83d116c5
JH
2867
2868 if (!cow_user_page(new_page, old_page, vmf)) {
2869 /*
2870 * COW failed, if the fault was solved by other,
2871 * it's fine. If not, userspace would re-fault on
2872 * the same address and we will handle the fault
2873 * from the second attempt.
2874 */
2875 put_page(new_page);
2876 if (old_page)
2877 put_page(old_page);
2878 return 0;
2879 }
2f38ab2c 2880 }
2f38ab2c 2881
d9eb1ea2 2882 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2883 goto oom_free_new;
9d82c694 2884 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2885
eb3c24f3
MG
2886 __SetPageUptodate(new_page);
2887
7269f999 2888 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2889 vmf->address & PAGE_MASK,
ac46d4f3
JG
2890 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2891 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2892
2893 /*
2894 * Re-check the pte - we dropped the lock
2895 */
82b0f8c3 2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2897 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2898 if (old_page) {
2899 if (!PageAnon(old_page)) {
eca56ff9
JM
2900 dec_mm_counter_fast(mm,
2901 mm_counter_file(old_page));
2f38ab2c
SR
2902 inc_mm_counter_fast(mm, MM_ANONPAGES);
2903 }
2904 } else {
2905 inc_mm_counter_fast(mm, MM_ANONPAGES);
2906 }
2994302b 2907 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2908 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2909 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2910 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2911 /*
2912 * Clear the pte entry and flush it first, before updating the
2913 * pte with the new entry. This will avoid a race condition
2914 * seen in the presence of one thread doing SMC and another
2915 * thread doing COW.
2916 */
82b0f8c3
JK
2917 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2918 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2919 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2920 /*
2921 * We call the notify macro here because, when using secondary
2922 * mmu page tables (such as kvm shadow page tables), we want the
2923 * new page to be mapped directly into the secondary page table.
2924 */
82b0f8c3
JK
2925 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2926 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2927 if (old_page) {
2928 /*
2929 * Only after switching the pte to the new page may
2930 * we remove the mapcount here. Otherwise another
2931 * process may come and find the rmap count decremented
2932 * before the pte is switched to the new page, and
2933 * "reuse" the old page writing into it while our pte
2934 * here still points into it and can be read by other
2935 * threads.
2936 *
2937 * The critical issue is to order this
2938 * page_remove_rmap with the ptp_clear_flush above.
2939 * Those stores are ordered by (if nothing else,)
2940 * the barrier present in the atomic_add_negative
2941 * in page_remove_rmap.
2942 *
2943 * Then the TLB flush in ptep_clear_flush ensures that
2944 * no process can access the old page before the
2945 * decremented mapcount is visible. And the old page
2946 * cannot be reused until after the decremented
2947 * mapcount is visible. So transitively, TLBs to
2948 * old page will be flushed before it can be reused.
2949 */
d281ee61 2950 page_remove_rmap(old_page, false);
2f38ab2c
SR
2951 }
2952
2953 /* Free the old page.. */
2954 new_page = old_page;
2955 page_copied = 1;
2956 } else {
7df67697 2957 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2958 }
2959
2960 if (new_page)
09cbfeaf 2961 put_page(new_page);
2f38ab2c 2962
82b0f8c3 2963 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2964 /*
2965 * No need to double call mmu_notifier->invalidate_range() callback as
2966 * the above ptep_clear_flush_notify() did already call it.
2967 */
ac46d4f3 2968 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2969 if (old_page) {
2970 /*
2971 * Don't let another task, with possibly unlocked vma,
2972 * keep the mlocked page.
2973 */
2974 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2975 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2976 if (PageMlocked(old_page))
2977 munlock_vma_page(old_page);
2f38ab2c
SR
2978 unlock_page(old_page);
2979 }
09cbfeaf 2980 put_page(old_page);
2f38ab2c
SR
2981 }
2982 return page_copied ? VM_FAULT_WRITE : 0;
2983oom_free_new:
09cbfeaf 2984 put_page(new_page);
2f38ab2c
SR
2985oom:
2986 if (old_page)
09cbfeaf 2987 put_page(old_page);
2f38ab2c
SR
2988 return VM_FAULT_OOM;
2989}
2990
66a6197c
JK
2991/**
2992 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2993 * writeable once the page is prepared
2994 *
2995 * @vmf: structure describing the fault
2996 *
2997 * This function handles all that is needed to finish a write page fault in a
2998 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2999 * It handles locking of PTE and modifying it.
66a6197c
JK
3000 *
3001 * The function expects the page to be locked or other protection against
3002 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
3003 *
3004 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3005 * we acquired PTE lock.
66a6197c 3006 */
2b740303 3007vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3008{
3009 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3010 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3011 &vmf->ptl);
3012 /*
3013 * We might have raced with another page fault while we released the
3014 * pte_offset_map_lock.
3015 */
3016 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3017 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3018 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3019 return VM_FAULT_NOPAGE;
66a6197c
JK
3020 }
3021 wp_page_reuse(vmf);
a19e2553 3022 return 0;
66a6197c
JK
3023}
3024
dd906184
BH
3025/*
3026 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3027 * mapping
3028 */
2b740303 3029static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3030{
82b0f8c3 3031 struct vm_area_struct *vma = vmf->vma;
bae473a4 3032
dd906184 3033 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3034 vm_fault_t ret;
dd906184 3035
82b0f8c3 3036 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3037 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3038 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3039 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3040 return ret;
66a6197c 3041 return finish_mkwrite_fault(vmf);
dd906184 3042 }
997dd98d
JK
3043 wp_page_reuse(vmf);
3044 return VM_FAULT_WRITE;
dd906184
BH
3045}
3046
2b740303 3047static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3048 __releases(vmf->ptl)
93e478d4 3049{
82b0f8c3 3050 struct vm_area_struct *vma = vmf->vma;
89b15332 3051 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3052
a41b70d6 3053 get_page(vmf->page);
93e478d4 3054
93e478d4 3055 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3056 vm_fault_t tmp;
93e478d4 3057
82b0f8c3 3058 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3059 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3060 if (unlikely(!tmp || (tmp &
3061 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3062 put_page(vmf->page);
93e478d4
SR
3063 return tmp;
3064 }
66a6197c 3065 tmp = finish_mkwrite_fault(vmf);
a19e2553 3066 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3067 unlock_page(vmf->page);
a41b70d6 3068 put_page(vmf->page);
66a6197c 3069 return tmp;
93e478d4 3070 }
66a6197c
JK
3071 } else {
3072 wp_page_reuse(vmf);
997dd98d 3073 lock_page(vmf->page);
93e478d4 3074 }
89b15332 3075 ret |= fault_dirty_shared_page(vmf);
997dd98d 3076 put_page(vmf->page);
93e478d4 3077
89b15332 3078 return ret;
93e478d4
SR
3079}
3080
1da177e4
LT
3081/*
3082 * This routine handles present pages, when users try to write
3083 * to a shared page. It is done by copying the page to a new address
3084 * and decrementing the shared-page counter for the old page.
3085 *
1da177e4
LT
3086 * Note that this routine assumes that the protection checks have been
3087 * done by the caller (the low-level page fault routine in most cases).
3088 * Thus we can safely just mark it writable once we've done any necessary
3089 * COW.
3090 *
3091 * We also mark the page dirty at this point even though the page will
3092 * change only once the write actually happens. This avoids a few races,
3093 * and potentially makes it more efficient.
3094 *
c1e8d7c6 3095 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3096 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3097 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3098 */
2b740303 3099static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3100 __releases(vmf->ptl)
1da177e4 3101{
82b0f8c3 3102 struct vm_area_struct *vma = vmf->vma;
1da177e4 3103
292924b2 3104 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3105 pte_unmap_unlock(vmf->pte, vmf->ptl);
3106 return handle_userfault(vmf, VM_UFFD_WP);
3107 }
3108
a41b70d6
JK
3109 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3110 if (!vmf->page) {
251b97f5 3111 /*
64e45507
PF
3112 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3113 * VM_PFNMAP VMA.
251b97f5
PZ
3114 *
3115 * We should not cow pages in a shared writeable mapping.
dd906184 3116 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3117 */
3118 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3119 (VM_WRITE|VM_SHARED))
2994302b 3120 return wp_pfn_shared(vmf);
2f38ab2c 3121
82b0f8c3 3122 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3123 return wp_page_copy(vmf);
251b97f5 3124 }
1da177e4 3125
d08b3851 3126 /*
ee6a6457
PZ
3127 * Take out anonymous pages first, anonymous shared vmas are
3128 * not dirty accountable.
d08b3851 3129 */
52d1e606 3130 if (PageAnon(vmf->page)) {
09854ba9
LT
3131 struct page *page = vmf->page;
3132
3133 /* PageKsm() doesn't necessarily raise the page refcount */
3134 if (PageKsm(page) || page_count(page) != 1)
3135 goto copy;
3136 if (!trylock_page(page))
3137 goto copy;
3138 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3139 unlock_page(page);
52d1e606 3140 goto copy;
b009c024 3141 }
09854ba9
LT
3142 /*
3143 * Ok, we've got the only map reference, and the only
3144 * page count reference, and the page is locked,
3145 * it's dark out, and we're wearing sunglasses. Hit it.
3146 */
09854ba9 3147 unlock_page(page);
be068f29 3148 wp_page_reuse(vmf);
09854ba9 3149 return VM_FAULT_WRITE;
ee6a6457 3150 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3151 (VM_WRITE|VM_SHARED))) {
a41b70d6 3152 return wp_page_shared(vmf);
1da177e4 3153 }
52d1e606 3154copy:
1da177e4
LT
3155 /*
3156 * Ok, we need to copy. Oh, well..
3157 */
a41b70d6 3158 get_page(vmf->page);
28766805 3159
82b0f8c3 3160 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3161 return wp_page_copy(vmf);
1da177e4
LT
3162}
3163
97a89413 3164static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3165 unsigned long start_addr, unsigned long end_addr,
3166 struct zap_details *details)
3167{
f5cc4eef 3168 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3169}
3170
f808c13f 3171static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3172 struct zap_details *details)
3173{
3174 struct vm_area_struct *vma;
1da177e4
LT
3175 pgoff_t vba, vea, zba, zea;
3176
6b2dbba8 3177 vma_interval_tree_foreach(vma, root,
1da177e4 3178 details->first_index, details->last_index) {
1da177e4
LT
3179
3180 vba = vma->vm_pgoff;
d6e93217 3181 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3182 zba = details->first_index;
3183 if (zba < vba)
3184 zba = vba;
3185 zea = details->last_index;
3186 if (zea > vea)
3187 zea = vea;
3188
97a89413 3189 unmap_mapping_range_vma(vma,
1da177e4
LT
3190 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3191 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3192 details);
1da177e4
LT
3193 }
3194}
3195
977fbdcd
MW
3196/**
3197 * unmap_mapping_pages() - Unmap pages from processes.
3198 * @mapping: The address space containing pages to be unmapped.
3199 * @start: Index of first page to be unmapped.
3200 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3201 * @even_cows: Whether to unmap even private COWed pages.
3202 *
3203 * Unmap the pages in this address space from any userspace process which
3204 * has them mmaped. Generally, you want to remove COWed pages as well when
3205 * a file is being truncated, but not when invalidating pages from the page
3206 * cache.
3207 */
3208void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3209 pgoff_t nr, bool even_cows)
3210{
3211 struct zap_details details = { };
3212
3213 details.check_mapping = even_cows ? NULL : mapping;
3214 details.first_index = start;
3215 details.last_index = start + nr - 1;
3216 if (details.last_index < details.first_index)
3217 details.last_index = ULONG_MAX;
3218
3219 i_mmap_lock_write(mapping);
3220 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3221 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3222 i_mmap_unlock_write(mapping);
3223}
3224
1da177e4 3225/**
8a5f14a2 3226 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3227 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3228 * file.
3229 *
3d41088f 3230 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3231 * @holebegin: byte in first page to unmap, relative to the start of
3232 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3233 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3234 * must keep the partial page. In contrast, we must get rid of
3235 * partial pages.
3236 * @holelen: size of prospective hole in bytes. This will be rounded
3237 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3238 * end of the file.
3239 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3240 * but 0 when invalidating pagecache, don't throw away private data.
3241 */
3242void unmap_mapping_range(struct address_space *mapping,
3243 loff_t const holebegin, loff_t const holelen, int even_cows)
3244{
1da177e4
LT
3245 pgoff_t hba = holebegin >> PAGE_SHIFT;
3246 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3247
3248 /* Check for overflow. */
3249 if (sizeof(holelen) > sizeof(hlen)) {
3250 long long holeend =
3251 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3252 if (holeend & ~(long long)ULONG_MAX)
3253 hlen = ULONG_MAX - hba + 1;
3254 }
3255
977fbdcd 3256 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3257}
3258EXPORT_SYMBOL(unmap_mapping_range);
3259
1da177e4 3260/*
c1e8d7c6 3261 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3262 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3263 * We return with pte unmapped and unlocked.
3264 *
c1e8d7c6 3265 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3266 * as does filemap_fault().
1da177e4 3267 */
2b740303 3268vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3269{
82b0f8c3 3270 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3271 struct page *page = NULL, *swapcache;
65500d23 3272 swp_entry_t entry;
1da177e4 3273 pte_t pte;
d065bd81 3274 int locked;
ad8c2ee8 3275 int exclusive = 0;
2b740303 3276 vm_fault_t ret = 0;
aae466b0 3277 void *shadow = NULL;
1da177e4 3278
eaf649eb 3279 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3280 goto out;
65500d23 3281
2994302b 3282 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3283 if (unlikely(non_swap_entry(entry))) {
3284 if (is_migration_entry(entry)) {
82b0f8c3
JK
3285 migration_entry_wait(vma->vm_mm, vmf->pmd,
3286 vmf->address);
5042db43 3287 } else if (is_device_private_entry(entry)) {
897e6365
CH
3288 vmf->page = device_private_entry_to_page(entry);
3289 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3290 } else if (is_hwpoison_entry(entry)) {
3291 ret = VM_FAULT_HWPOISON;
3292 } else {
2994302b 3293 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3294 ret = VM_FAULT_SIGBUS;
d1737fdb 3295 }
0697212a
CL
3296 goto out;
3297 }
0bcac06f
MK
3298
3299
0ff92245 3300 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3301 page = lookup_swap_cache(entry, vma, vmf->address);
3302 swapcache = page;
f8020772 3303
1da177e4 3304 if (!page) {
0bcac06f
MK
3305 struct swap_info_struct *si = swp_swap_info(entry);
3306
a449bf58
QC
3307 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3308 __swap_count(entry) == 1) {
0bcac06f 3309 /* skip swapcache */
e9e9b7ec
MK
3310 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3311 vmf->address);
0bcac06f 3312 if (page) {
4c6355b2
JW
3313 int err;
3314
0bcac06f
MK
3315 __SetPageLocked(page);
3316 __SetPageSwapBacked(page);
3317 set_page_private(page, entry.val);
4c6355b2
JW
3318
3319 /* Tell memcg to use swap ownership records */
3320 SetPageSwapCache(page);
3321 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3322 GFP_KERNEL);
4c6355b2 3323 ClearPageSwapCache(page);
545b1b07
MH
3324 if (err) {
3325 ret = VM_FAULT_OOM;
4c6355b2 3326 goto out_page;
545b1b07 3327 }
4c6355b2 3328
aae466b0
JK
3329 shadow = get_shadow_from_swap_cache(entry);
3330 if (shadow)
3331 workingset_refault(page, shadow);
0076f029 3332
6058eaec 3333 lru_cache_add(page);
0bcac06f
MK
3334 swap_readpage(page, true);
3335 }
aa8d22a1 3336 } else {
e9e9b7ec
MK
3337 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3338 vmf);
aa8d22a1 3339 swapcache = page;
0bcac06f
MK
3340 }
3341
1da177e4
LT
3342 if (!page) {
3343 /*
8f4e2101
HD
3344 * Back out if somebody else faulted in this pte
3345 * while we released the pte lock.
1da177e4 3346 */
82b0f8c3
JK
3347 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3348 vmf->address, &vmf->ptl);
2994302b 3349 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3350 ret = VM_FAULT_OOM;
0ff92245 3351 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3352 goto unlock;
1da177e4
LT
3353 }
3354
3355 /* Had to read the page from swap area: Major fault */
3356 ret = VM_FAULT_MAJOR;
f8891e5e 3357 count_vm_event(PGMAJFAULT);
2262185c 3358 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3359 } else if (PageHWPoison(page)) {
71f72525
WF
3360 /*
3361 * hwpoisoned dirty swapcache pages are kept for killing
3362 * owner processes (which may be unknown at hwpoison time)
3363 */
d1737fdb
AK
3364 ret = VM_FAULT_HWPOISON;
3365 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3366 goto out_release;
1da177e4
LT
3367 }
3368
82b0f8c3 3369 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3370
073e587e 3371 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3372 if (!locked) {
3373 ret |= VM_FAULT_RETRY;
3374 goto out_release;
3375 }
073e587e 3376
4969c119 3377 /*
31c4a3d3
HD
3378 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3379 * release the swapcache from under us. The page pin, and pte_same
3380 * test below, are not enough to exclude that. Even if it is still
3381 * swapcache, we need to check that the page's swap has not changed.
4969c119 3382 */
0bcac06f
MK
3383 if (unlikely((!PageSwapCache(page) ||
3384 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3385 goto out_page;
3386
82b0f8c3 3387 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3388 if (unlikely(!page)) {
3389 ret = VM_FAULT_OOM;
3390 page = swapcache;
cbf86cfe 3391 goto out_page;
5ad64688
HD
3392 }
3393
9d82c694 3394 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3395
1da177e4 3396 /*
8f4e2101 3397 * Back out if somebody else already faulted in this pte.
1da177e4 3398 */
82b0f8c3
JK
3399 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3400 &vmf->ptl);
2994302b 3401 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3402 goto out_nomap;
b8107480
KK
3403
3404 if (unlikely(!PageUptodate(page))) {
3405 ret = VM_FAULT_SIGBUS;
3406 goto out_nomap;
1da177e4
LT
3407 }
3408
8c7c6e34
KH
3409 /*
3410 * The page isn't present yet, go ahead with the fault.
3411 *
3412 * Be careful about the sequence of operations here.
3413 * To get its accounting right, reuse_swap_page() must be called
3414 * while the page is counted on swap but not yet in mapcount i.e.
3415 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3416 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3417 */
1da177e4 3418
bae473a4
KS
3419 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3420 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3421 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3422 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3423 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3424 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3425 ret |= VM_FAULT_WRITE;
d281ee61 3426 exclusive = RMAP_EXCLUSIVE;
1da177e4 3427 }
1da177e4 3428 flush_icache_page(vma, page);
2994302b 3429 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3430 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3431 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3432 pte = pte_mkuffd_wp(pte);
3433 pte = pte_wrprotect(pte);
3434 }
82b0f8c3 3435 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3436 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3437 vmf->orig_pte = pte;
0bcac06f
MK
3438
3439 /* ksm created a completely new copy */
3440 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3441 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3442 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3443 } else {
3444 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3445 }
1da177e4 3446
c475a8ab 3447 swap_free(entry);
5ccc5aba
VD
3448 if (mem_cgroup_swap_full(page) ||
3449 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3450 try_to_free_swap(page);
c475a8ab 3451 unlock_page(page);
0bcac06f 3452 if (page != swapcache && swapcache) {
4969c119
AA
3453 /*
3454 * Hold the lock to avoid the swap entry to be reused
3455 * until we take the PT lock for the pte_same() check
3456 * (to avoid false positives from pte_same). For
3457 * further safety release the lock after the swap_free
3458 * so that the swap count won't change under a
3459 * parallel locked swapcache.
3460 */
3461 unlock_page(swapcache);
09cbfeaf 3462 put_page(swapcache);
4969c119 3463 }
c475a8ab 3464
82b0f8c3 3465 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3466 ret |= do_wp_page(vmf);
61469f1d
HD
3467 if (ret & VM_FAULT_ERROR)
3468 ret &= VM_FAULT_ERROR;
1da177e4
LT
3469 goto out;
3470 }
3471
3472 /* No need to invalidate - it was non-present before */
82b0f8c3 3473 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3474unlock:
82b0f8c3 3475 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3476out:
3477 return ret;
b8107480 3478out_nomap:
82b0f8c3 3479 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3480out_page:
b8107480 3481 unlock_page(page);
4779cb31 3482out_release:
09cbfeaf 3483 put_page(page);
0bcac06f 3484 if (page != swapcache && swapcache) {
4969c119 3485 unlock_page(swapcache);
09cbfeaf 3486 put_page(swapcache);
4969c119 3487 }
65500d23 3488 return ret;
1da177e4
LT
3489}
3490
3491/*
c1e8d7c6 3492 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3493 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3494 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3495 */
2b740303 3496static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3497{
82b0f8c3 3498 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3499 struct page *page;
2b740303 3500 vm_fault_t ret = 0;
1da177e4 3501 pte_t entry;
1da177e4 3502
6b7339f4
KS
3503 /* File mapping without ->vm_ops ? */
3504 if (vma->vm_flags & VM_SHARED)
3505 return VM_FAULT_SIGBUS;
3506
7267ec00
KS
3507 /*
3508 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3509 * pte_offset_map() on pmds where a huge pmd might be created
3510 * from a different thread.
3511 *
3e4e28c5 3512 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3513 * parallel threads are excluded by other means.
3514 *
3e4e28c5 3515 * Here we only have mmap_read_lock(mm).
7267ec00 3516 */
4cf58924 3517 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3518 return VM_FAULT_OOM;
3519
3520 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3521 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3522 return 0;
3523
11ac5524 3524 /* Use the zero-page for reads */
82b0f8c3 3525 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3526 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3527 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3528 vma->vm_page_prot));
82b0f8c3
JK
3529 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3530 vmf->address, &vmf->ptl);
7df67697
BM
3531 if (!pte_none(*vmf->pte)) {
3532 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3533 goto unlock;
7df67697 3534 }
6b31d595
MH
3535 ret = check_stable_address_space(vma->vm_mm);
3536 if (ret)
3537 goto unlock;
6b251fc9
AA
3538 /* Deliver the page fault to userland, check inside PT lock */
3539 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3540 pte_unmap_unlock(vmf->pte, vmf->ptl);
3541 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3542 }
a13ea5b7
HD
3543 goto setpte;
3544 }
3545
557ed1fa 3546 /* Allocate our own private page. */
557ed1fa
NP
3547 if (unlikely(anon_vma_prepare(vma)))
3548 goto oom;
82b0f8c3 3549 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3550 if (!page)
3551 goto oom;
eb3c24f3 3552
d9eb1ea2 3553 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3554 goto oom_free_page;
9d82c694 3555 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3556
52f37629
MK
3557 /*
3558 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3559 * preceding stores to the page contents become visible before
52f37629
MK
3560 * the set_pte_at() write.
3561 */
0ed361de 3562 __SetPageUptodate(page);
8f4e2101 3563
557ed1fa 3564 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3565 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3566 if (vma->vm_flags & VM_WRITE)
3567 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3568
82b0f8c3
JK
3569 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3570 &vmf->ptl);
7df67697
BM
3571 if (!pte_none(*vmf->pte)) {
3572 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3573 goto release;
7df67697 3574 }
9ba69294 3575
6b31d595
MH
3576 ret = check_stable_address_space(vma->vm_mm);
3577 if (ret)
3578 goto release;
3579
6b251fc9
AA
3580 /* Deliver the page fault to userland, check inside PT lock */
3581 if (userfaultfd_missing(vma)) {
82b0f8c3 3582 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3583 put_page(page);
82b0f8c3 3584 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3585 }
3586
bae473a4 3587 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3588 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3589 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3590setpte:
82b0f8c3 3591 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3592
3593 /* No need to invalidate - it was non-present before */
82b0f8c3 3594 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3595unlock:
82b0f8c3 3596 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3597 return ret;
8f4e2101 3598release:
09cbfeaf 3599 put_page(page);
8f4e2101 3600 goto unlock;
8a9f3ccd 3601oom_free_page:
09cbfeaf 3602 put_page(page);
65500d23 3603oom:
1da177e4
LT
3604 return VM_FAULT_OOM;
3605}
3606
9a95f3cf 3607/*
c1e8d7c6 3608 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3609 * released depending on flags and vma->vm_ops->fault() return value.
3610 * See filemap_fault() and __lock_page_retry().
3611 */
2b740303 3612static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3613{
82b0f8c3 3614 struct vm_area_struct *vma = vmf->vma;
2b740303 3615 vm_fault_t ret;
7eae74af 3616
63f3655f
MH
3617 /*
3618 * Preallocate pte before we take page_lock because this might lead to
3619 * deadlocks for memcg reclaim which waits for pages under writeback:
3620 * lock_page(A)
3621 * SetPageWriteback(A)
3622 * unlock_page(A)
3623 * lock_page(B)
3624 * lock_page(B)
3625 * pte_alloc_pne
3626 * shrink_page_list
3627 * wait_on_page_writeback(A)
3628 * SetPageWriteback(B)
3629 * unlock_page(B)
3630 * # flush A, B to clear the writeback
3631 */
3632 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3633 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3634 if (!vmf->prealloc_pte)
3635 return VM_FAULT_OOM;
3636 smp_wmb(); /* See comment in __pte_alloc() */
3637 }
3638
11bac800 3639 ret = vma->vm_ops->fault(vmf);
3917048d 3640 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3641 VM_FAULT_DONE_COW)))
bc2466e4 3642 return ret;
7eae74af 3643
667240e0 3644 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3645 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3646 unlock_page(vmf->page);
3647 put_page(vmf->page);
936ca80d 3648 vmf->page = NULL;
7eae74af
KS
3649 return VM_FAULT_HWPOISON;
3650 }
3651
3652 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3653 lock_page(vmf->page);
7eae74af 3654 else
667240e0 3655 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3656
7eae74af
KS
3657 return ret;
3658}
3659
d0f0931d
RZ
3660/*
3661 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3662 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3663 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3664 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3665 */
3666static int pmd_devmap_trans_unstable(pmd_t *pmd)
3667{
3668 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3669}
3670
2b740303 3671static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3672{
82b0f8c3 3673 struct vm_area_struct *vma = vmf->vma;
7267ec00 3674
82b0f8c3 3675 if (!pmd_none(*vmf->pmd))
7267ec00 3676 goto map_pte;
82b0f8c3
JK
3677 if (vmf->prealloc_pte) {
3678 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3679 if (unlikely(!pmd_none(*vmf->pmd))) {
3680 spin_unlock(vmf->ptl);
7267ec00
KS
3681 goto map_pte;
3682 }
3683
c4812909 3684 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3685 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3686 spin_unlock(vmf->ptl);
7f2b6ce8 3687 vmf->prealloc_pte = NULL;
4cf58924 3688 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3689 return VM_FAULT_OOM;
3690 }
3691map_pte:
3692 /*
3693 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3694 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3695 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3696 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3697 * running immediately after a huge pmd fault in a different thread of
3698 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3699 * All we have to ensure is that it is a regular pmd that we can walk
3700 * with pte_offset_map() and we can do that through an atomic read in
3701 * C, which is what pmd_trans_unstable() provides.
7267ec00 3702 */
d0f0931d 3703 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3704 return VM_FAULT_NOPAGE;
3705
d0f0931d
RZ
3706 /*
3707 * At this point we know that our vmf->pmd points to a page of ptes
3708 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3709 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3710 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3711 * be valid and we will re-check to make sure the vmf->pte isn't
3712 * pte_none() under vmf->ptl protection when we return to
3713 * alloc_set_pte().
3714 */
82b0f8c3
JK
3715 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3716 &vmf->ptl);
7267ec00
KS
3717 return 0;
3718}
3719
396bcc52 3720#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3721static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3722{
82b0f8c3 3723 struct vm_area_struct *vma = vmf->vma;
953c66c2 3724
82b0f8c3 3725 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3726 /*
3727 * We are going to consume the prealloc table,
3728 * count that as nr_ptes.
3729 */
c4812909 3730 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3731 vmf->prealloc_pte = NULL;
953c66c2
AK
3732}
3733
2b740303 3734static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3735{
82b0f8c3
JK
3736 struct vm_area_struct *vma = vmf->vma;
3737 bool write = vmf->flags & FAULT_FLAG_WRITE;
3738 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3739 pmd_t entry;
2b740303
SJ
3740 int i;
3741 vm_fault_t ret;
10102459
KS
3742
3743 if (!transhuge_vma_suitable(vma, haddr))
3744 return VM_FAULT_FALLBACK;
3745
3746 ret = VM_FAULT_FALLBACK;
3747 page = compound_head(page);
3748
953c66c2
AK
3749 /*
3750 * Archs like ppc64 need additonal space to store information
3751 * related to pte entry. Use the preallocated table for that.
3752 */
82b0f8c3 3753 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3754 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3755 if (!vmf->prealloc_pte)
953c66c2
AK
3756 return VM_FAULT_OOM;
3757 smp_wmb(); /* See comment in __pte_alloc() */
3758 }
3759
82b0f8c3
JK
3760 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3761 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3762 goto out;
3763
3764 for (i = 0; i < HPAGE_PMD_NR; i++)
3765 flush_icache_page(vma, page + i);
3766
3767 entry = mk_huge_pmd(page, vma->vm_page_prot);
3768 if (write)
f55e1014 3769 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3770
fadae295 3771 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3772 page_add_file_rmap(page, true);
953c66c2
AK
3773 /*
3774 * deposit and withdraw with pmd lock held
3775 */
3776 if (arch_needs_pgtable_deposit())
82b0f8c3 3777 deposit_prealloc_pte(vmf);
10102459 3778
82b0f8c3 3779 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3780
82b0f8c3 3781 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3782
3783 /* fault is handled */
3784 ret = 0;
95ecedcd 3785 count_vm_event(THP_FILE_MAPPED);
10102459 3786out:
82b0f8c3 3787 spin_unlock(vmf->ptl);
10102459
KS
3788 return ret;
3789}
3790#else
2b740303 3791static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3792{
3793 BUILD_BUG();
3794 return 0;
3795}
3796#endif
3797
8c6e50b0 3798/**
7267ec00
KS
3799 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3800 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3801 *
82b0f8c3 3802 * @vmf: fault environment
8c6e50b0 3803 * @page: page to map
8c6e50b0 3804 *
82b0f8c3
JK
3805 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3806 * return.
8c6e50b0
KS
3807 *
3808 * Target users are page handler itself and implementations of
3809 * vm_ops->map_pages.
a862f68a
MR
3810 *
3811 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3812 */
9d82c694 3813vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3814{
82b0f8c3
JK
3815 struct vm_area_struct *vma = vmf->vma;
3816 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3817 pte_t entry;
2b740303 3818 vm_fault_t ret;
10102459 3819
396bcc52 3820 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3821 ret = do_set_pmd(vmf, page);
10102459 3822 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3823 return ret;
10102459 3824 }
3bb97794 3825
82b0f8c3
JK
3826 if (!vmf->pte) {
3827 ret = pte_alloc_one_map(vmf);
7267ec00 3828 if (ret)
b0b9b3df 3829 return ret;
7267ec00
KS
3830 }
3831
3832 /* Re-check under ptl */
7df67697
BM
3833 if (unlikely(!pte_none(*vmf->pte))) {
3834 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3835 return VM_FAULT_NOPAGE;
7df67697 3836 }
7267ec00 3837
3bb97794
KS
3838 flush_icache_page(vma, page);
3839 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3840 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3841 if (write)
3842 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3843 /* copy-on-write page */
3844 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3845 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3846 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3847 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3848 } else {
eca56ff9 3849 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3850 page_add_file_rmap(page, false);
3bb97794 3851 }
82b0f8c3 3852 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3853
3854 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3855 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3856
b0b9b3df 3857 return 0;
3bb97794
KS
3858}
3859
9118c0cb
JK
3860
3861/**
3862 * finish_fault - finish page fault once we have prepared the page to fault
3863 *
3864 * @vmf: structure describing the fault
3865 *
3866 * This function handles all that is needed to finish a page fault once the
3867 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3868 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3869 * addition.
9118c0cb
JK
3870 *
3871 * The function expects the page to be locked and on success it consumes a
3872 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3873 *
3874 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3875 */
2b740303 3876vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3877{
3878 struct page *page;
2b740303 3879 vm_fault_t ret = 0;
9118c0cb
JK
3880
3881 /* Did we COW the page? */
3882 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3883 !(vmf->vma->vm_flags & VM_SHARED))
3884 page = vmf->cow_page;
3885 else
3886 page = vmf->page;
6b31d595
MH
3887
3888 /*
3889 * check even for read faults because we might have lost our CoWed
3890 * page
3891 */
3892 if (!(vmf->vma->vm_flags & VM_SHARED))
3893 ret = check_stable_address_space(vmf->vma->vm_mm);
3894 if (!ret)
9d82c694 3895 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3896 if (vmf->pte)
3897 pte_unmap_unlock(vmf->pte, vmf->ptl);
3898 return ret;
3899}
3900
3a91053a
KS
3901static unsigned long fault_around_bytes __read_mostly =
3902 rounddown_pow_of_two(65536);
a9b0f861 3903
a9b0f861
KS
3904#ifdef CONFIG_DEBUG_FS
3905static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3906{
a9b0f861 3907 *val = fault_around_bytes;
1592eef0
KS
3908 return 0;
3909}
3910
b4903d6e 3911/*
da391d64
WK
3912 * fault_around_bytes must be rounded down to the nearest page order as it's
3913 * what do_fault_around() expects to see.
b4903d6e 3914 */
a9b0f861 3915static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3916{
a9b0f861 3917 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3918 return -EINVAL;
b4903d6e
AR
3919 if (val > PAGE_SIZE)
3920 fault_around_bytes = rounddown_pow_of_two(val);
3921 else
3922 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3923 return 0;
3924}
0a1345f8 3925DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3926 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3927
3928static int __init fault_around_debugfs(void)
3929{
d9f7979c
GKH
3930 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3931 &fault_around_bytes_fops);
1592eef0
KS
3932 return 0;
3933}
3934late_initcall(fault_around_debugfs);
1592eef0 3935#endif
8c6e50b0 3936
1fdb412b
KS
3937/*
3938 * do_fault_around() tries to map few pages around the fault address. The hope
3939 * is that the pages will be needed soon and this will lower the number of
3940 * faults to handle.
3941 *
3942 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3943 * not ready to be mapped: not up-to-date, locked, etc.
3944 *
3945 * This function is called with the page table lock taken. In the split ptlock
3946 * case the page table lock only protects only those entries which belong to
3947 * the page table corresponding to the fault address.
3948 *
3949 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3950 * only once.
3951 *
da391d64
WK
3952 * fault_around_bytes defines how many bytes we'll try to map.
3953 * do_fault_around() expects it to be set to a power of two less than or equal
3954 * to PTRS_PER_PTE.
1fdb412b 3955 *
da391d64
WK
3956 * The virtual address of the area that we map is naturally aligned to
3957 * fault_around_bytes rounded down to the machine page size
3958 * (and therefore to page order). This way it's easier to guarantee
3959 * that we don't cross page table boundaries.
1fdb412b 3960 */
2b740303 3961static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3962{
82b0f8c3 3963 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3964 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3965 pgoff_t end_pgoff;
2b740303
SJ
3966 int off;
3967 vm_fault_t ret = 0;
8c6e50b0 3968
4db0c3c2 3969 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3970 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3971
82b0f8c3
JK
3972 vmf->address = max(address & mask, vmf->vma->vm_start);
3973 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3974 start_pgoff -= off;
8c6e50b0
KS
3975
3976 /*
da391d64
WK
3977 * end_pgoff is either the end of the page table, the end of
3978 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3979 */
bae473a4 3980 end_pgoff = start_pgoff -
82b0f8c3 3981 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3982 PTRS_PER_PTE - 1;
82b0f8c3 3983 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3984 start_pgoff + nr_pages - 1);
8c6e50b0 3985
82b0f8c3 3986 if (pmd_none(*vmf->pmd)) {
4cf58924 3987 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3988 if (!vmf->prealloc_pte)
c5f88bd2 3989 goto out;
7267ec00 3990 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3991 }
3992
82b0f8c3 3993 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3994
7267ec00 3995 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3996 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3997 ret = VM_FAULT_NOPAGE;
3998 goto out;
3999 }
4000
4001 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 4002 if (!vmf->pte)
7267ec00
KS
4003 goto out;
4004
4005 /* check if the page fault is solved */
82b0f8c3
JK
4006 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
4007 if (!pte_none(*vmf->pte))
7267ec00 4008 ret = VM_FAULT_NOPAGE;
82b0f8c3 4009 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 4010out:
82b0f8c3
JK
4011 vmf->address = address;
4012 vmf->pte = NULL;
7267ec00 4013 return ret;
8c6e50b0
KS
4014}
4015
2b740303 4016static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4017{
82b0f8c3 4018 struct vm_area_struct *vma = vmf->vma;
2b740303 4019 vm_fault_t ret = 0;
8c6e50b0
KS
4020
4021 /*
4022 * Let's call ->map_pages() first and use ->fault() as fallback
4023 * if page by the offset is not ready to be mapped (cold cache or
4024 * something).
4025 */
9b4bdd2f 4026 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 4027 ret = do_fault_around(vmf);
7267ec00
KS
4028 if (ret)
4029 return ret;
8c6e50b0 4030 }
e655fb29 4031
936ca80d 4032 ret = __do_fault(vmf);
e655fb29
KS
4033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4034 return ret;
4035
9118c0cb 4036 ret |= finish_fault(vmf);
936ca80d 4037 unlock_page(vmf->page);
7267ec00 4038 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4039 put_page(vmf->page);
e655fb29
KS
4040 return ret;
4041}
4042
2b740303 4043static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4044{
82b0f8c3 4045 struct vm_area_struct *vma = vmf->vma;
2b740303 4046 vm_fault_t ret;
ec47c3b9
KS
4047
4048 if (unlikely(anon_vma_prepare(vma)))
4049 return VM_FAULT_OOM;
4050
936ca80d
JK
4051 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4052 if (!vmf->cow_page)
ec47c3b9
KS
4053 return VM_FAULT_OOM;
4054
d9eb1ea2 4055 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4056 put_page(vmf->cow_page);
ec47c3b9
KS
4057 return VM_FAULT_OOM;
4058 }
9d82c694 4059 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4060
936ca80d 4061 ret = __do_fault(vmf);
ec47c3b9
KS
4062 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4063 goto uncharge_out;
3917048d
JK
4064 if (ret & VM_FAULT_DONE_COW)
4065 return ret;
ec47c3b9 4066
b1aa812b 4067 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4068 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4069
9118c0cb 4070 ret |= finish_fault(vmf);
b1aa812b
JK
4071 unlock_page(vmf->page);
4072 put_page(vmf->page);
7267ec00
KS
4073 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4074 goto uncharge_out;
ec47c3b9
KS
4075 return ret;
4076uncharge_out:
936ca80d 4077 put_page(vmf->cow_page);
ec47c3b9
KS
4078 return ret;
4079}
4080
2b740303 4081static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4082{
82b0f8c3 4083 struct vm_area_struct *vma = vmf->vma;
2b740303 4084 vm_fault_t ret, tmp;
1d65f86d 4085
936ca80d 4086 ret = __do_fault(vmf);
7eae74af 4087 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4088 return ret;
1da177e4
LT
4089
4090 /*
f0c6d4d2
KS
4091 * Check if the backing address space wants to know that the page is
4092 * about to become writable
1da177e4 4093 */
fb09a464 4094 if (vma->vm_ops->page_mkwrite) {
936ca80d 4095 unlock_page(vmf->page);
38b8cb7f 4096 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4097 if (unlikely(!tmp ||
4098 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4099 put_page(vmf->page);
fb09a464 4100 return tmp;
4294621f 4101 }
fb09a464
KS
4102 }
4103
9118c0cb 4104 ret |= finish_fault(vmf);
7267ec00
KS
4105 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4106 VM_FAULT_RETRY))) {
936ca80d
JK
4107 unlock_page(vmf->page);
4108 put_page(vmf->page);
f0c6d4d2 4109 return ret;
1da177e4 4110 }
b827e496 4111
89b15332 4112 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4113 return ret;
54cb8821 4114}
d00806b1 4115
9a95f3cf 4116/*
c1e8d7c6 4117 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4118 * but allow concurrent faults).
c1e8d7c6 4119 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4120 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4121 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4122 * by other thread calling munmap()).
9a95f3cf 4123 */
2b740303 4124static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4125{
82b0f8c3 4126 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4127 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4128 vm_fault_t ret;
54cb8821 4129
ff09d7ec
AK
4130 /*
4131 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4132 */
4133 if (!vma->vm_ops->fault) {
4134 /*
4135 * If we find a migration pmd entry or a none pmd entry, which
4136 * should never happen, return SIGBUS
4137 */
4138 if (unlikely(!pmd_present(*vmf->pmd)))
4139 ret = VM_FAULT_SIGBUS;
4140 else {
4141 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4142 vmf->pmd,
4143 vmf->address,
4144 &vmf->ptl);
4145 /*
4146 * Make sure this is not a temporary clearing of pte
4147 * by holding ptl and checking again. A R/M/W update
4148 * of pte involves: take ptl, clearing the pte so that
4149 * we don't have concurrent modification by hardware
4150 * followed by an update.
4151 */
4152 if (unlikely(pte_none(*vmf->pte)))
4153 ret = VM_FAULT_SIGBUS;
4154 else
4155 ret = VM_FAULT_NOPAGE;
4156
4157 pte_unmap_unlock(vmf->pte, vmf->ptl);
4158 }
4159 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4160 ret = do_read_fault(vmf);
4161 else if (!(vma->vm_flags & VM_SHARED))
4162 ret = do_cow_fault(vmf);
4163 else
4164 ret = do_shared_fault(vmf);
4165
4166 /* preallocated pagetable is unused: free it */
4167 if (vmf->prealloc_pte) {
fc8efd2d 4168 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4169 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4170 }
4171 return ret;
54cb8821
NP
4172}
4173
b19a9939 4174static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4175 unsigned long addr, int page_nid,
4176 int *flags)
9532fec1
MG
4177{
4178 get_page(page);
4179
4180 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4181 if (page_nid == numa_node_id()) {
9532fec1 4182 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4183 *flags |= TNF_FAULT_LOCAL;
4184 }
9532fec1
MG
4185
4186 return mpol_misplaced(page, vma, addr);
4187}
4188
2b740303 4189static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4190{
82b0f8c3 4191 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4192 struct page *page = NULL;
98fa15f3 4193 int page_nid = NUMA_NO_NODE;
90572890 4194 int last_cpupid;
cbee9f88 4195 int target_nid;
b8593bfd 4196 bool migrated = false;
04a86453 4197 pte_t pte, old_pte;
288bc549 4198 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4199 int flags = 0;
d10e63f2
MG
4200
4201 /*
166f61b9
TH
4202 * The "pte" at this point cannot be used safely without
4203 * validation through pte_unmap_same(). It's of NUMA type but
4204 * the pfn may be screwed if the read is non atomic.
166f61b9 4205 */
82b0f8c3
JK
4206 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4207 spin_lock(vmf->ptl);
cee216a6 4208 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4209 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4210 goto out;
4211 }
4212
cee216a6
AK
4213 /*
4214 * Make it present again, Depending on how arch implementes non
4215 * accessible ptes, some can allow access by kernel mode.
4216 */
04a86453
AK
4217 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4218 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4219 pte = pte_mkyoung(pte);
b191f9b1
MG
4220 if (was_writable)
4221 pte = pte_mkwrite(pte);
04a86453 4222 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4223 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4224
82b0f8c3 4225 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4226 if (!page) {
82b0f8c3 4227 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4228 return 0;
4229 }
4230
e81c4802
KS
4231 /* TODO: handle PTE-mapped THP */
4232 if (PageCompound(page)) {
82b0f8c3 4233 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4234 return 0;
4235 }
4236
6688cc05 4237 /*
bea66fbd
MG
4238 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4239 * much anyway since they can be in shared cache state. This misses
4240 * the case where a mapping is writable but the process never writes
4241 * to it but pte_write gets cleared during protection updates and
4242 * pte_dirty has unpredictable behaviour between PTE scan updates,
4243 * background writeback, dirty balancing and application behaviour.
6688cc05 4244 */
d59dc7bc 4245 if (!pte_write(pte))
6688cc05
PZ
4246 flags |= TNF_NO_GROUP;
4247
dabe1d99
RR
4248 /*
4249 * Flag if the page is shared between multiple address spaces. This
4250 * is later used when determining whether to group tasks together
4251 */
4252 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4253 flags |= TNF_SHARED;
4254
90572890 4255 last_cpupid = page_cpupid_last(page);
8191acbd 4256 page_nid = page_to_nid(page);
82b0f8c3 4257 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4258 &flags);
82b0f8c3 4259 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4260 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4261 put_page(page);
4262 goto out;
4263 }
4264
4265 /* Migrate to the requested node */
1bc115d8 4266 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4267 if (migrated) {
8191acbd 4268 page_nid = target_nid;
6688cc05 4269 flags |= TNF_MIGRATED;
074c2381
MG
4270 } else
4271 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4272
4273out:
98fa15f3 4274 if (page_nid != NUMA_NO_NODE)
6688cc05 4275 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4276 return 0;
4277}
4278
2b740303 4279static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4280{
f4200391 4281 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4282 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4283 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4284 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4285 return VM_FAULT_FALLBACK;
4286}
4287
183f24aa 4288/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4289static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4290{
529b930b 4291 if (vma_is_anonymous(vmf->vma)) {
292924b2 4292 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4293 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4294 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4295 }
327e9fd4
THV
4296 if (vmf->vma->vm_ops->huge_fault) {
4297 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4298
4299 if (!(ret & VM_FAULT_FALLBACK))
4300 return ret;
4301 }
af9e4d5f 4302
327e9fd4 4303 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4304 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4305
b96375f7
MW
4306 return VM_FAULT_FALLBACK;
4307}
4308
2b740303 4309static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4310{
327e9fd4
THV
4311#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4312 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4313 /* No support for anonymous transparent PUD pages yet */
4314 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4315 goto split;
4316 if (vmf->vma->vm_ops->huge_fault) {
4317 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4318
4319 if (!(ret & VM_FAULT_FALLBACK))
4320 return ret;
4321 }
4322split:
4323 /* COW or write-notify not handled on PUD level: split pud.*/
4324 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4325#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4326 return VM_FAULT_FALLBACK;
4327}
4328
2b740303 4329static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4330{
4331#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4332 /* No support for anonymous transparent PUD pages yet */
4333 if (vma_is_anonymous(vmf->vma))
4334 return VM_FAULT_FALLBACK;
4335 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4336 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4337#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4338 return VM_FAULT_FALLBACK;
4339}
4340
1da177e4
LT
4341/*
4342 * These routines also need to handle stuff like marking pages dirty
4343 * and/or accessed for architectures that don't do it in hardware (most
4344 * RISC architectures). The early dirtying is also good on the i386.
4345 *
4346 * There is also a hook called "update_mmu_cache()" that architectures
4347 * with external mmu caches can use to update those (ie the Sparc or
4348 * PowerPC hashed page tables that act as extended TLBs).
4349 *
c1e8d7c6 4350 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4351 * concurrent faults).
9a95f3cf 4352 *
c1e8d7c6 4353 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4354 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4355 */
2b740303 4356static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4357{
4358 pte_t entry;
4359
82b0f8c3 4360 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4361 /*
4362 * Leave __pte_alloc() until later: because vm_ops->fault may
4363 * want to allocate huge page, and if we expose page table
4364 * for an instant, it will be difficult to retract from
4365 * concurrent faults and from rmap lookups.
4366 */
82b0f8c3 4367 vmf->pte = NULL;
7267ec00
KS
4368 } else {
4369 /* See comment in pte_alloc_one_map() */
d0f0931d 4370 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4371 return 0;
4372 /*
4373 * A regular pmd is established and it can't morph into a huge
4374 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4375 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4376 * So now it's safe to run pte_offset_map().
4377 */
82b0f8c3 4378 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4379 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4380
4381 /*
4382 * some architectures can have larger ptes than wordsize,
4383 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4384 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4385 * accesses. The code below just needs a consistent view
4386 * for the ifs and we later double check anyway with the
7267ec00
KS
4387 * ptl lock held. So here a barrier will do.
4388 */
4389 barrier();
2994302b 4390 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4391 pte_unmap(vmf->pte);
4392 vmf->pte = NULL;
65500d23 4393 }
1da177e4
LT
4394 }
4395
82b0f8c3
JK
4396 if (!vmf->pte) {
4397 if (vma_is_anonymous(vmf->vma))
4398 return do_anonymous_page(vmf);
7267ec00 4399 else
82b0f8c3 4400 return do_fault(vmf);
7267ec00
KS
4401 }
4402
2994302b
JK
4403 if (!pte_present(vmf->orig_pte))
4404 return do_swap_page(vmf);
7267ec00 4405
2994302b
JK
4406 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4407 return do_numa_page(vmf);
d10e63f2 4408
82b0f8c3
JK
4409 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4410 spin_lock(vmf->ptl);
2994302b 4411 entry = vmf->orig_pte;
7df67697
BM
4412 if (unlikely(!pte_same(*vmf->pte, entry))) {
4413 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4414 goto unlock;
7df67697 4415 }
82b0f8c3 4416 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4417 if (!pte_write(entry))
2994302b 4418 return do_wp_page(vmf);
1da177e4
LT
4419 entry = pte_mkdirty(entry);
4420 }
4421 entry = pte_mkyoung(entry);
82b0f8c3
JK
4422 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4423 vmf->flags & FAULT_FLAG_WRITE)) {
4424 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4425 } else {
b7333b58
YS
4426 /* Skip spurious TLB flush for retried page fault */
4427 if (vmf->flags & FAULT_FLAG_TRIED)
4428 goto unlock;
1a44e149
AA
4429 /*
4430 * This is needed only for protection faults but the arch code
4431 * is not yet telling us if this is a protection fault or not.
4432 * This still avoids useless tlb flushes for .text page faults
4433 * with threads.
4434 */
82b0f8c3
JK
4435 if (vmf->flags & FAULT_FLAG_WRITE)
4436 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4437 }
8f4e2101 4438unlock:
82b0f8c3 4439 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4440 return 0;
1da177e4
LT
4441}
4442
4443/*
4444 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4445 *
c1e8d7c6 4446 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4447 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4448 */
2b740303
SJ
4449static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4450 unsigned long address, unsigned int flags)
1da177e4 4451{
82b0f8c3 4452 struct vm_fault vmf = {
bae473a4 4453 .vma = vma,
1a29d85e 4454 .address = address & PAGE_MASK,
bae473a4 4455 .flags = flags,
0721ec8b 4456 .pgoff = linear_page_index(vma, address),
667240e0 4457 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4458 };
fde26bed 4459 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4460 struct mm_struct *mm = vma->vm_mm;
1da177e4 4461 pgd_t *pgd;
c2febafc 4462 p4d_t *p4d;
2b740303 4463 vm_fault_t ret;
1da177e4 4464
1da177e4 4465 pgd = pgd_offset(mm, address);
c2febafc
KS
4466 p4d = p4d_alloc(mm, pgd, address);
4467 if (!p4d)
4468 return VM_FAULT_OOM;
a00cc7d9 4469
c2febafc 4470 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4471 if (!vmf.pud)
c74df32c 4472 return VM_FAULT_OOM;
625110b5 4473retry_pud:
7635d9cb 4474 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4475 ret = create_huge_pud(&vmf);
4476 if (!(ret & VM_FAULT_FALLBACK))
4477 return ret;
4478 } else {
4479 pud_t orig_pud = *vmf.pud;
4480
4481 barrier();
4482 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4483
a00cc7d9
MW
4484 /* NUMA case for anonymous PUDs would go here */
4485
f6f37321 4486 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4487 ret = wp_huge_pud(&vmf, orig_pud);
4488 if (!(ret & VM_FAULT_FALLBACK))
4489 return ret;
4490 } else {
4491 huge_pud_set_accessed(&vmf, orig_pud);
4492 return 0;
4493 }
4494 }
4495 }
4496
4497 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4498 if (!vmf.pmd)
c74df32c 4499 return VM_FAULT_OOM;
625110b5
TH
4500
4501 /* Huge pud page fault raced with pmd_alloc? */
4502 if (pud_trans_unstable(vmf.pud))
4503 goto retry_pud;
4504
7635d9cb 4505 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4506 ret = create_huge_pmd(&vmf);
c0292554
KS
4507 if (!(ret & VM_FAULT_FALLBACK))
4508 return ret;
71e3aac0 4509 } else {
82b0f8c3 4510 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4511
71e3aac0 4512 barrier();
84c3fc4e
ZY
4513 if (unlikely(is_swap_pmd(orig_pmd))) {
4514 VM_BUG_ON(thp_migration_supported() &&
4515 !is_pmd_migration_entry(orig_pmd));
4516 if (is_pmd_migration_entry(orig_pmd))
4517 pmd_migration_entry_wait(mm, vmf.pmd);
4518 return 0;
4519 }
5c7fb56e 4520 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4521 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4522 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4523
f6f37321 4524 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4525 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4526 if (!(ret & VM_FAULT_FALLBACK))
4527 return ret;
a1dd450b 4528 } else {
82b0f8c3 4529 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4530 return 0;
1f1d06c3 4531 }
71e3aac0
AA
4532 }
4533 }
4534
82b0f8c3 4535 return handle_pte_fault(&vmf);
1da177e4
LT
4536}
4537
bce617ed
PX
4538/**
4539 * mm_account_fault - Do page fault accountings
4540 *
4541 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4542 * of perf event counters, but we'll still do the per-task accounting to
4543 * the task who triggered this page fault.
4544 * @address: the faulted address.
4545 * @flags: the fault flags.
4546 * @ret: the fault retcode.
4547 *
4548 * This will take care of most of the page fault accountings. Meanwhile, it
4549 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4550 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4551 * still be in per-arch page fault handlers at the entry of page fault.
4552 */
4553static inline void mm_account_fault(struct pt_regs *regs,
4554 unsigned long address, unsigned int flags,
4555 vm_fault_t ret)
4556{
4557 bool major;
4558
4559 /*
4560 * We don't do accounting for some specific faults:
4561 *
4562 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4563 * includes arch_vma_access_permitted() failing before reaching here.
4564 * So this is not a "this many hardware page faults" counter. We
4565 * should use the hw profiling for that.
4566 *
4567 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4568 * once they're completed.
4569 */
4570 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4571 return;
4572
4573 /*
4574 * We define the fault as a major fault when the final successful fault
4575 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4576 * handle it immediately previously).
4577 */
4578 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4579
a2beb5f1
PX
4580 if (major)
4581 current->maj_flt++;
4582 else
4583 current->min_flt++;
4584
bce617ed 4585 /*
a2beb5f1
PX
4586 * If the fault is done for GUP, regs will be NULL. We only do the
4587 * accounting for the per thread fault counters who triggered the
4588 * fault, and we skip the perf event updates.
bce617ed
PX
4589 */
4590 if (!regs)
4591 return;
4592
a2beb5f1 4593 if (major)
bce617ed 4594 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4595 else
bce617ed 4596 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4597}
4598
9a95f3cf
PC
4599/*
4600 * By the time we get here, we already hold the mm semaphore
4601 *
c1e8d7c6 4602 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4603 * return value. See filemap_fault() and __lock_page_or_retry().
4604 */
2b740303 4605vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4606 unsigned int flags, struct pt_regs *regs)
519e5247 4607{
2b740303 4608 vm_fault_t ret;
519e5247
JW
4609
4610 __set_current_state(TASK_RUNNING);
4611
4612 count_vm_event(PGFAULT);
2262185c 4613 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4614
4615 /* do counter updates before entering really critical section. */
4616 check_sync_rss_stat(current);
4617
de0c799b
LD
4618 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4619 flags & FAULT_FLAG_INSTRUCTION,
4620 flags & FAULT_FLAG_REMOTE))
4621 return VM_FAULT_SIGSEGV;
4622
519e5247
JW
4623 /*
4624 * Enable the memcg OOM handling for faults triggered in user
4625 * space. Kernel faults are handled more gracefully.
4626 */
4627 if (flags & FAULT_FLAG_USER)
29ef680a 4628 mem_cgroup_enter_user_fault();
519e5247 4629
bae473a4
KS
4630 if (unlikely(is_vm_hugetlb_page(vma)))
4631 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4632 else
4633 ret = __handle_mm_fault(vma, address, flags);
519e5247 4634
49426420 4635 if (flags & FAULT_FLAG_USER) {
29ef680a 4636 mem_cgroup_exit_user_fault();
166f61b9
TH
4637 /*
4638 * The task may have entered a memcg OOM situation but
4639 * if the allocation error was handled gracefully (no
4640 * VM_FAULT_OOM), there is no need to kill anything.
4641 * Just clean up the OOM state peacefully.
4642 */
4643 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4644 mem_cgroup_oom_synchronize(false);
49426420 4645 }
3812c8c8 4646
bce617ed
PX
4647 mm_account_fault(regs, address, flags, ret);
4648
519e5247
JW
4649 return ret;
4650}
e1d6d01a 4651EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4652
90eceff1
KS
4653#ifndef __PAGETABLE_P4D_FOLDED
4654/*
4655 * Allocate p4d page table.
4656 * We've already handled the fast-path in-line.
4657 */
4658int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4659{
4660 p4d_t *new = p4d_alloc_one(mm, address);
4661 if (!new)
4662 return -ENOMEM;
4663
4664 smp_wmb(); /* See comment in __pte_alloc */
4665
4666 spin_lock(&mm->page_table_lock);
4667 if (pgd_present(*pgd)) /* Another has populated it */
4668 p4d_free(mm, new);
4669 else
4670 pgd_populate(mm, pgd, new);
4671 spin_unlock(&mm->page_table_lock);
4672 return 0;
4673}
4674#endif /* __PAGETABLE_P4D_FOLDED */
4675
1da177e4
LT
4676#ifndef __PAGETABLE_PUD_FOLDED
4677/*
4678 * Allocate page upper directory.
872fec16 4679 * We've already handled the fast-path in-line.
1da177e4 4680 */
c2febafc 4681int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4682{
c74df32c
HD
4683 pud_t *new = pud_alloc_one(mm, address);
4684 if (!new)
1bb3630e 4685 return -ENOMEM;
1da177e4 4686
362a61ad
NP
4687 smp_wmb(); /* See comment in __pte_alloc */
4688
872fec16 4689 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4690 if (!p4d_present(*p4d)) {
4691 mm_inc_nr_puds(mm);
c2febafc 4692 p4d_populate(mm, p4d, new);
b4e98d9a 4693 } else /* Another has populated it */
5e541973 4694 pud_free(mm, new);
c74df32c 4695 spin_unlock(&mm->page_table_lock);
1bb3630e 4696 return 0;
1da177e4
LT
4697}
4698#endif /* __PAGETABLE_PUD_FOLDED */
4699
4700#ifndef __PAGETABLE_PMD_FOLDED
4701/*
4702 * Allocate page middle directory.
872fec16 4703 * We've already handled the fast-path in-line.
1da177e4 4704 */
1bb3630e 4705int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4706{
a00cc7d9 4707 spinlock_t *ptl;
c74df32c
HD
4708 pmd_t *new = pmd_alloc_one(mm, address);
4709 if (!new)
1bb3630e 4710 return -ENOMEM;
1da177e4 4711
362a61ad
NP
4712 smp_wmb(); /* See comment in __pte_alloc */
4713
a00cc7d9 4714 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4715 if (!pud_present(*pud)) {
4716 mm_inc_nr_pmds(mm);
1bb3630e 4717 pud_populate(mm, pud, new);
dc6c9a35 4718 } else /* Another has populated it */
5e541973 4719 pmd_free(mm, new);
a00cc7d9 4720 spin_unlock(ptl);
1bb3630e 4721 return 0;
e0f39591 4722}
1da177e4
LT
4723#endif /* __PAGETABLE_PMD_FOLDED */
4724
09796395 4725static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4726 struct mmu_notifier_range *range,
a4d1a885 4727 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4728{
4729 pgd_t *pgd;
c2febafc 4730 p4d_t *p4d;
f8ad0f49
JW
4731 pud_t *pud;
4732 pmd_t *pmd;
4733 pte_t *ptep;
4734
4735 pgd = pgd_offset(mm, address);
4736 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4737 goto out;
4738
c2febafc
KS
4739 p4d = p4d_offset(pgd, address);
4740 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4741 goto out;
4742
4743 pud = pud_offset(p4d, address);
f8ad0f49
JW
4744 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4745 goto out;
4746
4747 pmd = pmd_offset(pud, address);
f66055ab 4748 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4749
09796395
RZ
4750 if (pmd_huge(*pmd)) {
4751 if (!pmdpp)
4752 goto out;
4753
ac46d4f3 4754 if (range) {
7269f999 4755 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4756 NULL, mm, address & PMD_MASK,
4757 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4758 mmu_notifier_invalidate_range_start(range);
a4d1a885 4759 }
09796395
RZ
4760 *ptlp = pmd_lock(mm, pmd);
4761 if (pmd_huge(*pmd)) {
4762 *pmdpp = pmd;
4763 return 0;
4764 }
4765 spin_unlock(*ptlp);
ac46d4f3
JG
4766 if (range)
4767 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4768 }
4769
4770 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4771 goto out;
4772
ac46d4f3 4773 if (range) {
7269f999 4774 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4775 address & PAGE_MASK,
4776 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4777 mmu_notifier_invalidate_range_start(range);
a4d1a885 4778 }
f8ad0f49 4779 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4780 if (!pte_present(*ptep))
4781 goto unlock;
4782 *ptepp = ptep;
4783 return 0;
4784unlock:
4785 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4786 if (range)
4787 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4788out:
4789 return -EINVAL;
4790}
4791
f729c8c9
RZ
4792static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4793 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4794{
4795 int res;
4796
4797 /* (void) is needed to make gcc happy */
4798 (void) __cond_lock(*ptlp,
ac46d4f3 4799 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4800 ptepp, NULL, ptlp)));
09796395
RZ
4801 return res;
4802}
4803
4804int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4805 struct mmu_notifier_range *range,
4806 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4807{
4808 int res;
4809
4810 /* (void) is needed to make gcc happy */
4811 (void) __cond_lock(*ptlp,
ac46d4f3 4812 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4813 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4814 return res;
4815}
09796395 4816EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4817
3b6748e2
JW
4818/**
4819 * follow_pfn - look up PFN at a user virtual address
4820 * @vma: memory mapping
4821 * @address: user virtual address
4822 * @pfn: location to store found PFN
4823 *
4824 * Only IO mappings and raw PFN mappings are allowed.
4825 *
a862f68a 4826 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4827 */
4828int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4829 unsigned long *pfn)
4830{
4831 int ret = -EINVAL;
4832 spinlock_t *ptl;
4833 pte_t *ptep;
4834
4835 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4836 return ret;
4837
4838 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4839 if (ret)
4840 return ret;
4841 *pfn = pte_pfn(*ptep);
4842 pte_unmap_unlock(ptep, ptl);
4843 return 0;
4844}
4845EXPORT_SYMBOL(follow_pfn);
4846
28b2ee20 4847#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4848int follow_phys(struct vm_area_struct *vma,
4849 unsigned long address, unsigned int flags,
4850 unsigned long *prot, resource_size_t *phys)
28b2ee20 4851{
03668a4d 4852 int ret = -EINVAL;
28b2ee20
RR
4853 pte_t *ptep, pte;
4854 spinlock_t *ptl;
28b2ee20 4855
d87fe660 4856 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4857 goto out;
28b2ee20 4858
03668a4d 4859 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4860 goto out;
28b2ee20 4861 pte = *ptep;
03668a4d 4862
f6f37321 4863 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4864 goto unlock;
28b2ee20
RR
4865
4866 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4867 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4868
03668a4d 4869 ret = 0;
28b2ee20
RR
4870unlock:
4871 pte_unmap_unlock(ptep, ptl);
4872out:
d87fe660 4873 return ret;
28b2ee20
RR
4874}
4875
4876int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4877 void *buf, int len, int write)
4878{
4879 resource_size_t phys_addr;
4880 unsigned long prot = 0;
2bc7273b 4881 void __iomem *maddr;
28b2ee20
RR
4882 int offset = addr & (PAGE_SIZE-1);
4883
d87fe660 4884 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4885 return -EINVAL;
4886
9cb12d7b 4887 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4888 if (!maddr)
4889 return -ENOMEM;
4890
28b2ee20
RR
4891 if (write)
4892 memcpy_toio(maddr + offset, buf, len);
4893 else
4894 memcpy_fromio(buf, maddr + offset, len);
4895 iounmap(maddr);
4896
4897 return len;
4898}
5a73633e 4899EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4900#endif
4901
0ec76a11 4902/*
206cb636
SW
4903 * Access another process' address space as given in mm. If non-NULL, use the
4904 * given task for page fault accounting.
0ec76a11 4905 */
84d77d3f 4906int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4907 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4908{
0ec76a11 4909 struct vm_area_struct *vma;
0ec76a11 4910 void *old_buf = buf;
442486ec 4911 int write = gup_flags & FOLL_WRITE;
0ec76a11 4912
d8ed45c5 4913 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4914 return 0;
4915
183ff22b 4916 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4917 while (len) {
4918 int bytes, ret, offset;
4919 void *maddr;
28b2ee20 4920 struct page *page = NULL;
0ec76a11 4921
64019a2e 4922 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4923 gup_flags, &page, &vma, NULL);
28b2ee20 4924 if (ret <= 0) {
dbffcd03
RR
4925#ifndef CONFIG_HAVE_IOREMAP_PROT
4926 break;
4927#else
28b2ee20
RR
4928 /*
4929 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4930 * we can access using slightly different code.
4931 */
28b2ee20 4932 vma = find_vma(mm, addr);
fe936dfc 4933 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4934 break;
4935 if (vma->vm_ops && vma->vm_ops->access)
4936 ret = vma->vm_ops->access(vma, addr, buf,
4937 len, write);
4938 if (ret <= 0)
28b2ee20
RR
4939 break;
4940 bytes = ret;
dbffcd03 4941#endif
0ec76a11 4942 } else {
28b2ee20
RR
4943 bytes = len;
4944 offset = addr & (PAGE_SIZE-1);
4945 if (bytes > PAGE_SIZE-offset)
4946 bytes = PAGE_SIZE-offset;
4947
4948 maddr = kmap(page);
4949 if (write) {
4950 copy_to_user_page(vma, page, addr,
4951 maddr + offset, buf, bytes);
4952 set_page_dirty_lock(page);
4953 } else {
4954 copy_from_user_page(vma, page, addr,
4955 buf, maddr + offset, bytes);
4956 }
4957 kunmap(page);
09cbfeaf 4958 put_page(page);
0ec76a11 4959 }
0ec76a11
DH
4960 len -= bytes;
4961 buf += bytes;
4962 addr += bytes;
4963 }
d8ed45c5 4964 mmap_read_unlock(mm);
0ec76a11
DH
4965
4966 return buf - old_buf;
4967}
03252919 4968
5ddd36b9 4969/**
ae91dbfc 4970 * access_remote_vm - access another process' address space
5ddd36b9
SW
4971 * @mm: the mm_struct of the target address space
4972 * @addr: start address to access
4973 * @buf: source or destination buffer
4974 * @len: number of bytes to transfer
6347e8d5 4975 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4976 *
4977 * The caller must hold a reference on @mm.
a862f68a
MR
4978 *
4979 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4980 */
4981int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4982 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4983{
6347e8d5 4984 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4985}
4986
206cb636
SW
4987/*
4988 * Access another process' address space.
4989 * Source/target buffer must be kernel space,
4990 * Do not walk the page table directly, use get_user_pages
4991 */
4992int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4993 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4994{
4995 struct mm_struct *mm;
4996 int ret;
4997
4998 mm = get_task_mm(tsk);
4999 if (!mm)
5000 return 0;
5001
f307ab6d 5002 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 5003
206cb636
SW
5004 mmput(mm);
5005
5006 return ret;
5007}
fcd35857 5008EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5009
03252919
AK
5010/*
5011 * Print the name of a VMA.
5012 */
5013void print_vma_addr(char *prefix, unsigned long ip)
5014{
5015 struct mm_struct *mm = current->mm;
5016 struct vm_area_struct *vma;
5017
e8bff74a 5018 /*
0a7f682d 5019 * we might be running from an atomic context so we cannot sleep
e8bff74a 5020 */
d8ed45c5 5021 if (!mmap_read_trylock(mm))
e8bff74a
IM
5022 return;
5023
03252919
AK
5024 vma = find_vma(mm, ip);
5025 if (vma && vma->vm_file) {
5026 struct file *f = vma->vm_file;
0a7f682d 5027 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5028 if (buf) {
2fbc57c5 5029 char *p;
03252919 5030
9bf39ab2 5031 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5032 if (IS_ERR(p))
5033 p = "?";
2fbc57c5 5034 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5035 vma->vm_start,
5036 vma->vm_end - vma->vm_start);
5037 free_page((unsigned long)buf);
5038 }
5039 }
d8ed45c5 5040 mmap_read_unlock(mm);
03252919 5041}
3ee1afa3 5042
662bbcb2 5043#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5044void __might_fault(const char *file, int line)
3ee1afa3 5045{
95156f00
PZ
5046 /*
5047 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5048 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5049 * get paged out, therefore we'll never actually fault, and the
5050 * below annotations will generate false positives.
5051 */
db68ce10 5052 if (uaccess_kernel())
95156f00 5053 return;
9ec23531 5054 if (pagefault_disabled())
662bbcb2 5055 return;
9ec23531
DH
5056 __might_sleep(file, line, 0);
5057#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5058 if (current->mm)
da1c55f1 5059 might_lock_read(&current->mm->mmap_lock);
9ec23531 5060#endif
3ee1afa3 5061}
9ec23531 5062EXPORT_SYMBOL(__might_fault);
3ee1afa3 5063#endif
47ad8475
AA
5064
5065#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5066/*
5067 * Process all subpages of the specified huge page with the specified
5068 * operation. The target subpage will be processed last to keep its
5069 * cache lines hot.
5070 */
5071static inline void process_huge_page(
5072 unsigned long addr_hint, unsigned int pages_per_huge_page,
5073 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5074 void *arg)
47ad8475 5075{
c79b57e4
HY
5076 int i, n, base, l;
5077 unsigned long addr = addr_hint &
5078 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5079
c6ddfb6c 5080 /* Process target subpage last to keep its cache lines hot */
47ad8475 5081 might_sleep();
c79b57e4
HY
5082 n = (addr_hint - addr) / PAGE_SIZE;
5083 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5084 /* If target subpage in first half of huge page */
c79b57e4
HY
5085 base = 0;
5086 l = n;
c6ddfb6c 5087 /* Process subpages at the end of huge page */
c79b57e4
HY
5088 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5089 cond_resched();
c6ddfb6c 5090 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5091 }
5092 } else {
c6ddfb6c 5093 /* If target subpage in second half of huge page */
c79b57e4
HY
5094 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5095 l = pages_per_huge_page - n;
c6ddfb6c 5096 /* Process subpages at the begin of huge page */
c79b57e4
HY
5097 for (i = 0; i < base; i++) {
5098 cond_resched();
c6ddfb6c 5099 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5100 }
5101 }
5102 /*
c6ddfb6c
HY
5103 * Process remaining subpages in left-right-left-right pattern
5104 * towards the target subpage
c79b57e4
HY
5105 */
5106 for (i = 0; i < l; i++) {
5107 int left_idx = base + i;
5108 int right_idx = base + 2 * l - 1 - i;
5109
5110 cond_resched();
c6ddfb6c 5111 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5112 cond_resched();
c6ddfb6c 5113 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5114 }
5115}
5116
c6ddfb6c
HY
5117static void clear_gigantic_page(struct page *page,
5118 unsigned long addr,
5119 unsigned int pages_per_huge_page)
5120{
5121 int i;
5122 struct page *p = page;
5123
5124 might_sleep();
5125 for (i = 0; i < pages_per_huge_page;
5126 i++, p = mem_map_next(p, page, i)) {
5127 cond_resched();
5128 clear_user_highpage(p, addr + i * PAGE_SIZE);
5129 }
5130}
5131
5132static void clear_subpage(unsigned long addr, int idx, void *arg)
5133{
5134 struct page *page = arg;
5135
5136 clear_user_highpage(page + idx, addr);
5137}
5138
5139void clear_huge_page(struct page *page,
5140 unsigned long addr_hint, unsigned int pages_per_huge_page)
5141{
5142 unsigned long addr = addr_hint &
5143 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5144
5145 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5146 clear_gigantic_page(page, addr, pages_per_huge_page);
5147 return;
5148 }
5149
5150 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5151}
5152
47ad8475
AA
5153static void copy_user_gigantic_page(struct page *dst, struct page *src,
5154 unsigned long addr,
5155 struct vm_area_struct *vma,
5156 unsigned int pages_per_huge_page)
5157{
5158 int i;
5159 struct page *dst_base = dst;
5160 struct page *src_base = src;
5161
5162 for (i = 0; i < pages_per_huge_page; ) {
5163 cond_resched();
5164 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5165
5166 i++;
5167 dst = mem_map_next(dst, dst_base, i);
5168 src = mem_map_next(src, src_base, i);
5169 }
5170}
5171
c9f4cd71
HY
5172struct copy_subpage_arg {
5173 struct page *dst;
5174 struct page *src;
5175 struct vm_area_struct *vma;
5176};
5177
5178static void copy_subpage(unsigned long addr, int idx, void *arg)
5179{
5180 struct copy_subpage_arg *copy_arg = arg;
5181
5182 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5183 addr, copy_arg->vma);
5184}
5185
47ad8475 5186void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5187 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5188 unsigned int pages_per_huge_page)
5189{
c9f4cd71
HY
5190 unsigned long addr = addr_hint &
5191 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5192 struct copy_subpage_arg arg = {
5193 .dst = dst,
5194 .src = src,
5195 .vma = vma,
5196 };
47ad8475
AA
5197
5198 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5199 copy_user_gigantic_page(dst, src, addr, vma,
5200 pages_per_huge_page);
5201 return;
5202 }
5203
c9f4cd71 5204 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5205}
fa4d75c1
MK
5206
5207long copy_huge_page_from_user(struct page *dst_page,
5208 const void __user *usr_src,
810a56b9
MK
5209 unsigned int pages_per_huge_page,
5210 bool allow_pagefault)
fa4d75c1
MK
5211{
5212 void *src = (void *)usr_src;
5213 void *page_kaddr;
5214 unsigned long i, rc = 0;
5215 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5216
5217 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5218 if (allow_pagefault)
5219 page_kaddr = kmap(dst_page + i);
5220 else
5221 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5222 rc = copy_from_user(page_kaddr,
5223 (const void __user *)(src + i * PAGE_SIZE),
5224 PAGE_SIZE);
810a56b9
MK
5225 if (allow_pagefault)
5226 kunmap(dst_page + i);
5227 else
5228 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5229
5230 ret_val -= (PAGE_SIZE - rc);
5231 if (rc)
5232 break;
5233
5234 cond_resched();
5235 }
5236 return ret_val;
5237}
47ad8475 5238#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5239
40b64acd 5240#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5241
5242static struct kmem_cache *page_ptl_cachep;
5243
5244void __init ptlock_cache_init(void)
5245{
5246 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5247 SLAB_PANIC, NULL);
5248}
5249
539edb58 5250bool ptlock_alloc(struct page *page)
49076ec2
KS
5251{
5252 spinlock_t *ptl;
5253
b35f1819 5254 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5255 if (!ptl)
5256 return false;
539edb58 5257 page->ptl = ptl;
49076ec2
KS
5258 return true;
5259}
5260
539edb58 5261void ptlock_free(struct page *page)
49076ec2 5262{
b35f1819 5263 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5264}
5265#endif