mm/memory.c: allow different return codes for copy_nonpresent_pte()
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
a9ee6cf5 93#ifndef CONFIG_NUMA
1da177e4 94unsigned long max_mapnr;
1da177e4 95EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
96
97struct page *mem_map;
1da177e4
LT
98EXPORT_SYMBOL(mem_map);
99#endif
100
1da177e4
LT
101/*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
166f61b9 108void *high_memory;
1da177e4 109EXPORT_SYMBOL(high_memory);
1da177e4 110
32a93233
IM
111/*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117int randomize_va_space __read_mostly =
118#ifdef CONFIG_COMPAT_BRK
119 1;
120#else
121 2;
122#endif
a62eaf15 123
83d116c5
JH
124#ifndef arch_faults_on_old_pte
125static inline bool arch_faults_on_old_pte(void)
126{
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133}
134#endif
135
46bdb427
WD
136#ifndef arch_wants_old_prefaulted_pte
137static inline bool arch_wants_old_prefaulted_pte(void)
138{
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145}
146#endif
147
a62eaf15
AK
148static int __init disable_randmaps(char *s)
149{
150 randomize_va_space = 0;
9b41046c 151 return 1;
a62eaf15
AK
152}
153__setup("norandmaps", disable_randmaps);
154
62eede62 155unsigned long zero_pfn __read_mostly;
0b70068e
AB
156EXPORT_SYMBOL(zero_pfn);
157
166f61b9
TH
158unsigned long highest_memmap_pfn __read_mostly;
159
a13ea5b7
HD
160/*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
163static int __init init_zero_pfn(void)
164{
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167}
e720e7d0 168early_initcall(init_zero_pfn);
a62eaf15 169
e4dcad20 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 171{
e4dcad20 172 trace_rss_stat(mm, member, count);
b3d1411b 173}
d559db08 174
34e55232
KH
175#if defined(SPLIT_RSS_COUNTING)
176
ea48cf78 177void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
178{
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
34e55232
KH
185 }
186 }
05af2e10 187 current->rss_stat.events = 0;
34e55232
KH
188}
189
190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191{
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198}
199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202/* sync counter once per 64 page faults */
203#define TASK_RSS_EVENTS_THRESH (64)
204static void check_sync_rss_stat(struct task_struct *task)
205{
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 209 sync_mm_rss(task->mm);
34e55232 210}
9547d01b 211#else /* SPLIT_RSS_COUNTING */
34e55232
KH
212
213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216static void check_sync_rss_stat(struct task_struct *task)
217{
218}
219
9547d01b
PZ
220#endif /* SPLIT_RSS_COUNTING */
221
1da177e4
LT
222/*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
9e1b32ca
BH
226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
1da177e4 228{
2f569afd 229 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 230 pmd_clear(pmd);
9e1b32ca 231 pte_free_tlb(tlb, token, addr);
c4812909 232 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
233}
234
e0da382c
HD
235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
1da177e4
LT
238{
239 pmd_t *pmd;
240 unsigned long next;
e0da382c 241 unsigned long start;
1da177e4 242
e0da382c 243 start = addr;
1da177e4 244 pmd = pmd_offset(pud, addr);
1da177e4
LT
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
9e1b32ca 249 free_pte_range(tlb, pmd, addr);
1da177e4
LT
250 } while (pmd++, addr = next, addr != end);
251
e0da382c
HD
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
1da177e4 259 }
e0da382c
HD
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
9e1b32ca 265 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 266 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
267}
268
c2febafc 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
1da177e4
LT
272{
273 pud_t *pud;
274 unsigned long next;
e0da382c 275 unsigned long start;
1da177e4 276
e0da382c 277 start = addr;
c2febafc 278 pud = pud_offset(p4d, addr);
1da177e4
LT
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
e0da382c 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
284 } while (pud++, addr = next, addr != end);
285
c2febafc
KS
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
b4e98d9a 300 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
301}
302
303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306{
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
e0da382c
HD
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
1da177e4 327 }
e0da382c
HD
328 if (end - 1 > ceiling - 1)
329 return;
330
c2febafc 331 p4d = p4d_offset(pgd, start);
e0da382c 332 pgd_clear(pgd);
c2febafc 333 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
334}
335
336/*
e0da382c 337 * This function frees user-level page tables of a process.
1da177e4 338 */
42b77728 339void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
1da177e4
LT
342{
343 pgd_t *pgd;
344 unsigned long next;
e0da382c
HD
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
1da177e4 371
e0da382c
HD
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
07e32661
AK
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
ed6a7935 391 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 392 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
c2febafc 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 398 } while (pgd++, addr = next, addr != end);
e0da382c
HD
399}
400
42b77728 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 402 unsigned long floor, unsigned long ceiling)
e0da382c
HD
403{
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
8f4f8c16 408 /*
25d9e2d1 409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
8f4f8c16 411 */
5beb4930 412 unlink_anon_vmas(vma);
8f4f8c16
HD
413 unlink_file_vma(vma);
414
9da61aef 415 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 423 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
424 vma = next;
425 next = vma->vm_next;
5beb4930 426 unlink_anon_vmas(vma);
8f4f8c16 427 unlink_file_vma(vma);
3bf5ee95
HD
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 430 floor, next ? next->vm_start : ceiling);
3bf5ee95 431 }
e0da382c
HD
432 vma = next;
433 }
1da177e4
LT
434}
435
4cf58924 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 437{
c4088ebd 438 spinlock_t *ptl;
4cf58924 439 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
440 if (!new)
441 return -ENOMEM;
442
362a61ad
NP
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
bb7cdd38 454 * smp_rmb() barriers in page table walking code.
362a61ad
NP
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
457
c4088ebd 458 ptl = pmd_lock(mm, pmd);
8ac1f832 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 460 mm_inc_nr_ptes(mm);
1da177e4 461 pmd_populate(mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
c4088ebd 464 spin_unlock(ptl);
2f569afd
MS
465 if (new)
466 pte_free(mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
4cf58924 470int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 471{
4cf58924 472 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
473 if (!new)
474 return -ENOMEM;
475
362a61ad
NP
476 smp_wmb(); /* See comment in __pte_alloc */
477
1bb3630e 478 spin_lock(&init_mm.page_table_lock);
8ac1f832 479 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 480 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 481 new = NULL;
4b471e88 482 }
1bb3630e 483 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
484 if (new)
485 pte_free_kernel(&init_mm, new);
1bb3630e 486 return 0;
1da177e4
LT
487}
488
d559db08
KH
489static inline void init_rss_vec(int *rss)
490{
491 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
492}
493
494static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 495{
d559db08
KH
496 int i;
497
34e55232 498 if (current->mm == mm)
05af2e10 499 sync_mm_rss(mm);
d559db08
KH
500 for (i = 0; i < NR_MM_COUNTERS; i++)
501 if (rss[i])
502 add_mm_counter(mm, i, rss[i]);
ae859762
HD
503}
504
b5810039 505/*
6aab341e
LT
506 * This function is called to print an error when a bad pte
507 * is found. For example, we might have a PFN-mapped pte in
508 * a region that doesn't allow it.
b5810039
NP
509 *
510 * The calling function must still handle the error.
511 */
3dc14741
HD
512static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
513 pte_t pte, struct page *page)
b5810039 514{
3dc14741 515 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
516 p4d_t *p4d = p4d_offset(pgd, addr);
517 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
518 pmd_t *pmd = pmd_offset(pud, addr);
519 struct address_space *mapping;
520 pgoff_t index;
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 return;
533 }
534 if (nr_unshown) {
1170532b
JP
535 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
536 nr_unshown);
d936cf9b
HD
537 nr_unshown = 0;
538 }
539 nr_shown = 0;
540 }
541 if (nr_shown++ == 0)
542 resume = jiffies + 60 * HZ;
3dc14741
HD
543
544 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
545 index = linear_page_index(vma, addr);
546
1170532b
JP
547 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
548 current->comm,
549 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 550 if (page)
f0b791a3 551 dump_page(page, "bad pte");
6aa9b8b2 552 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 553 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 554 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
555 vma->vm_file,
556 vma->vm_ops ? vma->vm_ops->fault : NULL,
557 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
558 mapping ? mapping->a_ops->readpage : NULL);
b5810039 559 dump_stack();
373d4d09 560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
561}
562
ee498ed7 563/*
7e675137 564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 565 *
7e675137
NP
566 * "Special" mappings do not wish to be associated with a "struct page" (either
567 * it doesn't exist, or it exists but they don't want to touch it). In this
568 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 569 *
7e675137
NP
570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
571 * pte bit, in which case this function is trivial. Secondly, an architecture
572 * may not have a spare pte bit, which requires a more complicated scheme,
573 * described below.
574 *
575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
576 * special mapping (even if there are underlying and valid "struct pages").
577 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 578 *
b379d790
JH
579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
582 * mapping will always honor the rule
6aab341e
LT
583 *
584 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
585 *
7e675137
NP
586 * And for normal mappings this is false.
587 *
588 * This restricts such mappings to be a linear translation from virtual address
589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
590 * as the vma is not a COW mapping; in that case, we know that all ptes are
591 * special (because none can have been COWed).
b379d790 592 *
b379d790 593 *
7e675137 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
595 *
596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
597 * page" backing, however the difference is that _all_ pages with a struct
598 * page (that is, those where pfn_valid is true) are refcounted and considered
599 * normal pages by the VM. The disadvantage is that pages are refcounted
600 * (which can be slower and simply not an option for some PFNMAP users). The
601 * advantage is that we don't have to follow the strict linearity rule of
602 * PFNMAP mappings in order to support COWable mappings.
603 *
ee498ed7 604 */
25b2995a
CH
605struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
606 pte_t pte)
ee498ed7 607{
22b31eec 608 unsigned long pfn = pte_pfn(pte);
7e675137 609
00b3a331 610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 611 if (likely(!pte_special(pte)))
22b31eec 612 goto check_pfn;
667a0a06
DV
613 if (vma->vm_ops && vma->vm_ops->find_special_page)
614 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
616 return NULL;
df6ad698
JG
617 if (is_zero_pfn(pfn))
618 return NULL;
e1fb4a08
DJ
619 if (pte_devmap(pte))
620 return NULL;
621
df6ad698 622 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
623 return NULL;
624 }
625
00b3a331 626 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 627
b379d790
JH
628 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
629 if (vma->vm_flags & VM_MIXEDMAP) {
630 if (!pfn_valid(pfn))
631 return NULL;
632 goto out;
633 } else {
7e675137
NP
634 unsigned long off;
635 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
636 if (pfn == vma->vm_pgoff + off)
637 return NULL;
638 if (!is_cow_mapping(vma->vm_flags))
639 return NULL;
640 }
6aab341e
LT
641 }
642
b38af472
HD
643 if (is_zero_pfn(pfn))
644 return NULL;
00b3a331 645
22b31eec
HD
646check_pfn:
647 if (unlikely(pfn > highest_memmap_pfn)) {
648 print_bad_pte(vma, addr, pte, NULL);
649 return NULL;
650 }
6aab341e
LT
651
652 /*
7e675137 653 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 654 * eg. VDSO mappings can cause them to exist.
6aab341e 655 */
b379d790 656out:
6aab341e 657 return pfn_to_page(pfn);
ee498ed7
HD
658}
659
28093f9f
GS
660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
661struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
662 pmd_t pmd)
663{
664 unsigned long pfn = pmd_pfn(pmd);
665
666 /*
667 * There is no pmd_special() but there may be special pmds, e.g.
668 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 669 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
670 */
671 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
672 if (vma->vm_flags & VM_MIXEDMAP) {
673 if (!pfn_valid(pfn))
674 return NULL;
675 goto out;
676 } else {
677 unsigned long off;
678 off = (addr - vma->vm_start) >> PAGE_SHIFT;
679 if (pfn == vma->vm_pgoff + off)
680 return NULL;
681 if (!is_cow_mapping(vma->vm_flags))
682 return NULL;
683 }
684 }
685
e1fb4a08
DJ
686 if (pmd_devmap(pmd))
687 return NULL;
3cde287b 688 if (is_huge_zero_pmd(pmd))
28093f9f
GS
689 return NULL;
690 if (unlikely(pfn > highest_memmap_pfn))
691 return NULL;
692
693 /*
694 * NOTE! We still have PageReserved() pages in the page tables.
695 * eg. VDSO mappings can cause them to exist.
696 */
697out:
698 return pfn_to_page(pfn);
699}
700#endif
701
1da177e4
LT
702/*
703 * copy one vm_area from one task to the other. Assumes the page tables
704 * already present in the new task to be cleared in the whole range
705 * covered by this vma.
1da177e4
LT
706 */
707
df3a57d1
LT
708static unsigned long
709copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
710 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
711 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 712{
8f34f1ea 713 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
714 pte_t pte = *src_pte;
715 struct page *page;
df3a57d1
LT
716 swp_entry_t entry = pte_to_swp_entry(pte);
717
718 if (likely(!non_swap_entry(entry))) {
719 if (swap_duplicate(entry) < 0)
9a5cc85c 720 return -EIO;
df3a57d1
LT
721
722 /* make sure dst_mm is on swapoff's mmlist. */
723 if (unlikely(list_empty(&dst_mm->mmlist))) {
724 spin_lock(&mmlist_lock);
725 if (list_empty(&dst_mm->mmlist))
726 list_add(&dst_mm->mmlist,
727 &src_mm->mmlist);
728 spin_unlock(&mmlist_lock);
729 }
730 rss[MM_SWAPENTS]++;
731 } else if (is_migration_entry(entry)) {
af5cdaf8 732 page = pfn_swap_entry_to_page(entry);
1da177e4 733
df3a57d1 734 rss[mm_counter(page)]++;
5042db43 735
4dd845b5 736 if (is_writable_migration_entry(entry) &&
df3a57d1 737 is_cow_mapping(vm_flags)) {
5042db43 738 /*
df3a57d1
LT
739 * COW mappings require pages in both
740 * parent and child to be set to read.
5042db43 741 */
4dd845b5
AP
742 entry = make_readable_migration_entry(
743 swp_offset(entry));
df3a57d1
LT
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
af5cdaf8 752 page = pfn_swap_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
4dd845b5 774 if (is_writable_device_private_entry(entry) &&
df3a57d1 775 is_cow_mapping(vm_flags)) {
4dd845b5
AP
776 entry = make_readable_device_private_entry(
777 swp_offset(entry));
df3a57d1
LT
778 pte = swp_entry_to_pte(entry);
779 if (pte_swp_uffd_wp(*src_pte))
780 pte = pte_swp_mkuffd_wp(pte);
781 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 782 }
1da177e4 783 }
8f34f1ea
PX
784 if (!userfaultfd_wp(dst_vma))
785 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
786 set_pte_at(dst_mm, addr, dst_pte, pte);
787 return 0;
788}
789
70e806e4
PX
790/*
791 * Copy a present and normal page if necessary.
792 *
793 * NOTE! The usual case is that this doesn't need to do
794 * anything, and can just return a positive value. That
795 * will let the caller know that it can just increase
796 * the page refcount and re-use the pte the traditional
797 * way.
798 *
799 * But _if_ we need to copy it because it needs to be
800 * pinned in the parent (and the child should get its own
801 * copy rather than just a reference to the same page),
802 * we'll do that here and return zero to let the caller
803 * know we're done.
804 *
805 * And if we need a pre-allocated page but don't yet have
806 * one, return a negative error to let the preallocation
807 * code know so that it can do so outside the page table
808 * lock.
809 */
810static inline int
c78f4636
PX
811copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
812 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
813 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
814{
815 struct page *new_page;
816
70e806e4 817 /*
70e806e4
PX
818 * What we want to do is to check whether this page may
819 * have been pinned by the parent process. If so,
820 * instead of wrprotect the pte on both sides, we copy
821 * the page immediately so that we'll always guarantee
822 * the pinned page won't be randomly replaced in the
823 * future.
824 *
f3c64eda
LT
825 * The page pinning checks are just "has this mm ever
826 * seen pinning", along with the (inexact) check of
827 * the page count. That might give false positives for
828 * for pinning, but it will work correctly.
70e806e4 829 */
97a7e473 830 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
831 return 1;
832
70e806e4
PX
833 new_page = *prealloc;
834 if (!new_page)
835 return -EAGAIN;
836
837 /*
838 * We have a prealloc page, all good! Take it
839 * over and copy the page & arm it.
840 */
841 *prealloc = NULL;
c78f4636 842 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 843 __SetPageUptodate(new_page);
c78f4636
PX
844 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
845 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
846 rss[mm_counter(new_page)]++;
847
848 /* All done, just insert the new page copy in the child */
c78f4636
PX
849 pte = mk_pte(new_page, dst_vma->vm_page_prot);
850 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
851 if (userfaultfd_pte_wp(dst_vma, *src_pte))
852 /* Uffd-wp needs to be delivered to dest pte as well */
853 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 854 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
855 return 0;
856}
857
858/*
859 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
860 * is required to copy this pte.
861 */
862static inline int
c78f4636
PX
863copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
864 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
865 struct page **prealloc)
df3a57d1 866{
c78f4636
PX
867 struct mm_struct *src_mm = src_vma->vm_mm;
868 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
869 pte_t pte = *src_pte;
870 struct page *page;
871
c78f4636 872 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
873 if (page) {
874 int retval;
875
c78f4636
PX
876 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
877 addr, rss, prealloc, pte, page);
70e806e4
PX
878 if (retval <= 0)
879 return retval;
880
881 get_page(page);
882 page_dup_rmap(page, false);
883 rss[mm_counter(page)]++;
884 }
885
1da177e4
LT
886 /*
887 * If it's a COW mapping, write protect it both
888 * in the parent and the child
889 */
1b2de5d0 890 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 891 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 892 pte = pte_wrprotect(pte);
1da177e4
LT
893 }
894
895 /*
896 * If it's a shared mapping, mark it clean in
897 * the child
898 */
899 if (vm_flags & VM_SHARED)
900 pte = pte_mkclean(pte);
901 pte = pte_mkold(pte);
6aab341e 902
8f34f1ea 903 if (!userfaultfd_wp(dst_vma))
b569a176
PX
904 pte = pte_clear_uffd_wp(pte);
905
c78f4636 906 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
907 return 0;
908}
909
910static inline struct page *
911page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
912 unsigned long addr)
913{
914 struct page *new_page;
915
916 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
917 if (!new_page)
918 return NULL;
919
920 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
921 put_page(new_page);
922 return NULL;
6aab341e 923 }
70e806e4 924 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 925
70e806e4 926 return new_page;
1da177e4
LT
927}
928
c78f4636
PX
929static int
930copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
931 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
932 unsigned long end)
1da177e4 933{
c78f4636
PX
934 struct mm_struct *dst_mm = dst_vma->vm_mm;
935 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 936 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 937 pte_t *src_pte, *dst_pte;
c74df32c 938 spinlock_t *src_ptl, *dst_ptl;
70e806e4 939 int progress, ret = 0;
d559db08 940 int rss[NR_MM_COUNTERS];
570a335b 941 swp_entry_t entry = (swp_entry_t){0};
70e806e4 942 struct page *prealloc = NULL;
1da177e4
LT
943
944again:
70e806e4 945 progress = 0;
d559db08
KH
946 init_rss_vec(rss);
947
c74df32c 948 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
949 if (!dst_pte) {
950 ret = -ENOMEM;
951 goto out;
952 }
ece0e2b6 953 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 954 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 955 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
956 orig_src_pte = src_pte;
957 orig_dst_pte = dst_pte;
6606c3e0 958 arch_enter_lazy_mmu_mode();
1da177e4 959
1da177e4
LT
960 do {
961 /*
962 * We are holding two locks at this point - either of them
963 * could generate latencies in another task on another CPU.
964 */
e040f218
HD
965 if (progress >= 32) {
966 progress = 0;
967 if (need_resched() ||
95c354fe 968 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
969 break;
970 }
1da177e4
LT
971 if (pte_none(*src_pte)) {
972 progress++;
973 continue;
974 }
79a1971c 975 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
976 ret = copy_nonpresent_pte(dst_mm, src_mm,
977 dst_pte, src_pte,
978 dst_vma, src_vma,
979 addr, rss);
980 if (ret == -EIO) {
981 entry = pte_to_swp_entry(*src_pte);
79a1971c 982 break;
9a5cc85c 983 }
79a1971c
LT
984 progress += 8;
985 continue;
986 }
70e806e4 987 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
988 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
989 addr, rss, &prealloc);
70e806e4
PX
990 /*
991 * If we need a pre-allocated page for this pte, drop the
992 * locks, allocate, and try again.
993 */
994 if (unlikely(ret == -EAGAIN))
995 break;
996 if (unlikely(prealloc)) {
997 /*
998 * pre-alloc page cannot be reused by next time so as
999 * to strictly follow mempolicy (e.g., alloc_page_vma()
1000 * will allocate page according to address). This
1001 * could only happen if one pinned pte changed.
1002 */
1003 put_page(prealloc);
1004 prealloc = NULL;
1005 }
1da177e4
LT
1006 progress += 8;
1007 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1008
6606c3e0 1009 arch_leave_lazy_mmu_mode();
c74df32c 1010 spin_unlock(src_ptl);
ece0e2b6 1011 pte_unmap(orig_src_pte);
d559db08 1012 add_mm_rss_vec(dst_mm, rss);
c36987e2 1013 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1014 cond_resched();
570a335b 1015
9a5cc85c
AP
1016 if (ret == -EIO) {
1017 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1018 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1019 ret = -ENOMEM;
1020 goto out;
1021 }
1022 entry.val = 0;
9a5cc85c 1023 } else if (ret == -EAGAIN) {
c78f4636 1024 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1025 if (!prealloc)
570a335b 1026 return -ENOMEM;
9a5cc85c
AP
1027 } else if (ret) {
1028 VM_WARN_ON_ONCE(1);
570a335b 1029 }
9a5cc85c
AP
1030
1031 /* We've captured and resolved the error. Reset, try again. */
1032 ret = 0;
1033
1da177e4
LT
1034 if (addr != end)
1035 goto again;
70e806e4
PX
1036out:
1037 if (unlikely(prealloc))
1038 put_page(prealloc);
1039 return ret;
1da177e4
LT
1040}
1041
c78f4636
PX
1042static inline int
1043copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1044 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1045 unsigned long end)
1da177e4 1046{
c78f4636
PX
1047 struct mm_struct *dst_mm = dst_vma->vm_mm;
1048 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1049 pmd_t *src_pmd, *dst_pmd;
1050 unsigned long next;
1051
1052 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1053 if (!dst_pmd)
1054 return -ENOMEM;
1055 src_pmd = pmd_offset(src_pud, addr);
1056 do {
1057 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1058 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1059 || pmd_devmap(*src_pmd)) {
71e3aac0 1060 int err;
c78f4636 1061 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1062 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1063 addr, dst_vma, src_vma);
71e3aac0
AA
1064 if (err == -ENOMEM)
1065 return -ENOMEM;
1066 if (!err)
1067 continue;
1068 /* fall through */
1069 }
1da177e4
LT
1070 if (pmd_none_or_clear_bad(src_pmd))
1071 continue;
c78f4636
PX
1072 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1073 addr, next))
1da177e4
LT
1074 return -ENOMEM;
1075 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1076 return 0;
1077}
1078
c78f4636
PX
1079static inline int
1080copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1082 unsigned long end)
1da177e4 1083{
c78f4636
PX
1084 struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1086 pud_t *src_pud, *dst_pud;
1087 unsigned long next;
1088
c2febafc 1089 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1090 if (!dst_pud)
1091 return -ENOMEM;
c2febafc 1092 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1093 do {
1094 next = pud_addr_end(addr, end);
a00cc7d9
MW
1095 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1096 int err;
1097
c78f4636 1098 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1099 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1100 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1101 if (err == -ENOMEM)
1102 return -ENOMEM;
1103 if (!err)
1104 continue;
1105 /* fall through */
1106 }
1da177e4
LT
1107 if (pud_none_or_clear_bad(src_pud))
1108 continue;
c78f4636
PX
1109 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1110 addr, next))
1da177e4
LT
1111 return -ENOMEM;
1112 } while (dst_pud++, src_pud++, addr = next, addr != end);
1113 return 0;
1114}
1115
c78f4636
PX
1116static inline int
1117copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1118 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1119 unsigned long end)
c2febafc 1120{
c78f4636 1121 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1122 p4d_t *src_p4d, *dst_p4d;
1123 unsigned long next;
1124
1125 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1126 if (!dst_p4d)
1127 return -ENOMEM;
1128 src_p4d = p4d_offset(src_pgd, addr);
1129 do {
1130 next = p4d_addr_end(addr, end);
1131 if (p4d_none_or_clear_bad(src_p4d))
1132 continue;
c78f4636
PX
1133 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1134 addr, next))
c2febafc
KS
1135 return -ENOMEM;
1136 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1137 return 0;
1138}
1139
c78f4636
PX
1140int
1141copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1142{
1143 pgd_t *src_pgd, *dst_pgd;
1144 unsigned long next;
c78f4636
PX
1145 unsigned long addr = src_vma->vm_start;
1146 unsigned long end = src_vma->vm_end;
1147 struct mm_struct *dst_mm = dst_vma->vm_mm;
1148 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1149 struct mmu_notifier_range range;
2ec74c3e 1150 bool is_cow;
cddb8a5c 1151 int ret;
1da177e4 1152
d992895b
NP
1153 /*
1154 * Don't copy ptes where a page fault will fill them correctly.
1155 * Fork becomes much lighter when there are big shared or private
1156 * readonly mappings. The tradeoff is that copy_page_range is more
1157 * efficient than faulting.
1158 */
c78f4636
PX
1159 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1160 !src_vma->anon_vma)
0661a336 1161 return 0;
d992895b 1162
c78f4636
PX
1163 if (is_vm_hugetlb_page(src_vma))
1164 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1165
c78f4636 1166 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1167 /*
1168 * We do not free on error cases below as remove_vma
1169 * gets called on error from higher level routine
1170 */
c78f4636 1171 ret = track_pfn_copy(src_vma);
2ab64037 1172 if (ret)
1173 return ret;
1174 }
1175
cddb8a5c
AA
1176 /*
1177 * We need to invalidate the secondary MMU mappings only when
1178 * there could be a permission downgrade on the ptes of the
1179 * parent mm. And a permission downgrade will only happen if
1180 * is_cow_mapping() returns true.
1181 */
c78f4636 1182 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1183
1184 if (is_cow) {
7269f999 1185 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1186 0, src_vma, src_mm, addr, end);
ac46d4f3 1187 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1188 /*
1189 * Disabling preemption is not needed for the write side, as
1190 * the read side doesn't spin, but goes to the mmap_lock.
1191 *
1192 * Use the raw variant of the seqcount_t write API to avoid
1193 * lockdep complaining about preemptibility.
1194 */
1195 mmap_assert_write_locked(src_mm);
1196 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1197 }
cddb8a5c
AA
1198
1199 ret = 0;
1da177e4
LT
1200 dst_pgd = pgd_offset(dst_mm, addr);
1201 src_pgd = pgd_offset(src_mm, addr);
1202 do {
1203 next = pgd_addr_end(addr, end);
1204 if (pgd_none_or_clear_bad(src_pgd))
1205 continue;
c78f4636
PX
1206 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1207 addr, next))) {
cddb8a5c
AA
1208 ret = -ENOMEM;
1209 break;
1210 }
1da177e4 1211 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1212
57efa1fe
JG
1213 if (is_cow) {
1214 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1215 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1216 }
cddb8a5c 1217 return ret;
1da177e4
LT
1218}
1219
51c6f666 1220static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1221 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1222 unsigned long addr, unsigned long end,
97a89413 1223 struct zap_details *details)
1da177e4 1224{
b5810039 1225 struct mm_struct *mm = tlb->mm;
d16dfc55 1226 int force_flush = 0;
d559db08 1227 int rss[NR_MM_COUNTERS];
97a89413 1228 spinlock_t *ptl;
5f1a1907 1229 pte_t *start_pte;
97a89413 1230 pte_t *pte;
8a5f14a2 1231 swp_entry_t entry;
d559db08 1232
ed6a7935 1233 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1234again:
e303297e 1235 init_rss_vec(rss);
5f1a1907
SR
1236 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1237 pte = start_pte;
3ea27719 1238 flush_tlb_batched_pending(mm);
6606c3e0 1239 arch_enter_lazy_mmu_mode();
1da177e4
LT
1240 do {
1241 pte_t ptent = *pte;
166f61b9 1242 if (pte_none(ptent))
1da177e4 1243 continue;
6f5e6b9e 1244
7b167b68
MK
1245 if (need_resched())
1246 break;
1247
1da177e4 1248 if (pte_present(ptent)) {
ee498ed7 1249 struct page *page;
51c6f666 1250
25b2995a 1251 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1252 if (unlikely(details) && page) {
1253 /*
1254 * unmap_shared_mapping_pages() wants to
1255 * invalidate cache without truncating:
1256 * unmap shared but keep private pages.
1257 */
1258 if (details->check_mapping &&
800d8c63 1259 details->check_mapping != page_rmapping(page))
1da177e4 1260 continue;
1da177e4 1261 }
b5810039 1262 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1263 tlb->fullmm);
1da177e4
LT
1264 tlb_remove_tlb_entry(tlb, pte, addr);
1265 if (unlikely(!page))
1266 continue;
eca56ff9
JM
1267
1268 if (!PageAnon(page)) {
1cf35d47
LT
1269 if (pte_dirty(ptent)) {
1270 force_flush = 1;
6237bcd9 1271 set_page_dirty(page);
1cf35d47 1272 }
4917e5d0 1273 if (pte_young(ptent) &&
64363aad 1274 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1275 mark_page_accessed(page);
6237bcd9 1276 }
eca56ff9 1277 rss[mm_counter(page)]--;
d281ee61 1278 page_remove_rmap(page, false);
3dc14741
HD
1279 if (unlikely(page_mapcount(page) < 0))
1280 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1281 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1282 force_flush = 1;
ce9ec37b 1283 addr += PAGE_SIZE;
d16dfc55 1284 break;
1cf35d47 1285 }
1da177e4
LT
1286 continue;
1287 }
5042db43
JG
1288
1289 entry = pte_to_swp_entry(ptent);
463b7a17 1290 if (is_device_private_entry(entry)) {
af5cdaf8 1291 struct page *page = pfn_swap_entry_to_page(entry);
5042db43
JG
1292
1293 if (unlikely(details && details->check_mapping)) {
1294 /*
1295 * unmap_shared_mapping_pages() wants to
1296 * invalidate cache without truncating:
1297 * unmap shared but keep private pages.
1298 */
1299 if (details->check_mapping !=
1300 page_rmapping(page))
1301 continue;
1302 }
1303
1304 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1305 rss[mm_counter(page)]--;
1306 page_remove_rmap(page, false);
1307 put_page(page);
1308 continue;
1309 }
1310
3e8715fd
KS
1311 /* If details->check_mapping, we leave swap entries. */
1312 if (unlikely(details))
1da177e4 1313 continue;
b084d435 1314
8a5f14a2
KS
1315 if (!non_swap_entry(entry))
1316 rss[MM_SWAPENTS]--;
1317 else if (is_migration_entry(entry)) {
1318 struct page *page;
9f9f1acd 1319
af5cdaf8 1320 page = pfn_swap_entry_to_page(entry);
eca56ff9 1321 rss[mm_counter(page)]--;
b084d435 1322 }
8a5f14a2
KS
1323 if (unlikely(!free_swap_and_cache(entry)))
1324 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1325 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1326 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1327
d559db08 1328 add_mm_rss_vec(mm, rss);
6606c3e0 1329 arch_leave_lazy_mmu_mode();
51c6f666 1330
1cf35d47 1331 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1332 if (force_flush)
1cf35d47 1333 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1334 pte_unmap_unlock(start_pte, ptl);
1335
1336 /*
1337 * If we forced a TLB flush (either due to running out of
1338 * batch buffers or because we needed to flush dirty TLB
1339 * entries before releasing the ptl), free the batched
1340 * memory too. Restart if we didn't do everything.
1341 */
1342 if (force_flush) {
1343 force_flush = 0;
fa0aafb8 1344 tlb_flush_mmu(tlb);
7b167b68
MK
1345 }
1346
1347 if (addr != end) {
1348 cond_resched();
1349 goto again;
d16dfc55
PZ
1350 }
1351
51c6f666 1352 return addr;
1da177e4
LT
1353}
1354
51c6f666 1355static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1356 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1357 unsigned long addr, unsigned long end,
97a89413 1358 struct zap_details *details)
1da177e4
LT
1359{
1360 pmd_t *pmd;
1361 unsigned long next;
1362
1363 pmd = pmd_offset(pud, addr);
1364 do {
1365 next = pmd_addr_end(addr, end);
84c3fc4e 1366 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1367 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1368 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1369 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1370 goto next;
71e3aac0 1371 /* fall through */
22061a1f
HD
1372 } else if (details && details->single_page &&
1373 PageTransCompound(details->single_page) &&
1374 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1375 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1376 /*
1377 * Take and drop THP pmd lock so that we cannot return
1378 * prematurely, while zap_huge_pmd() has cleared *pmd,
1379 * but not yet decremented compound_mapcount().
1380 */
1381 spin_unlock(ptl);
71e3aac0 1382 }
22061a1f 1383
1a5a9906
AA
1384 /*
1385 * Here there can be other concurrent MADV_DONTNEED or
1386 * trans huge page faults running, and if the pmd is
1387 * none or trans huge it can change under us. This is
c1e8d7c6 1388 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1389 * mode.
1390 */
1391 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1392 goto next;
97a89413 1393 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1394next:
97a89413
PZ
1395 cond_resched();
1396 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1397
1398 return addr;
1da177e4
LT
1399}
1400
51c6f666 1401static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1402 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1403 unsigned long addr, unsigned long end,
97a89413 1404 struct zap_details *details)
1da177e4
LT
1405{
1406 pud_t *pud;
1407 unsigned long next;
1408
c2febafc 1409 pud = pud_offset(p4d, addr);
1da177e4
LT
1410 do {
1411 next = pud_addr_end(addr, end);
a00cc7d9
MW
1412 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1413 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1414 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1415 split_huge_pud(vma, pud, addr);
1416 } else if (zap_huge_pud(tlb, vma, pud, addr))
1417 goto next;
1418 /* fall through */
1419 }
97a89413 1420 if (pud_none_or_clear_bad(pud))
1da177e4 1421 continue;
97a89413 1422 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1423next:
1424 cond_resched();
97a89413 1425 } while (pud++, addr = next, addr != end);
51c6f666
RH
1426
1427 return addr;
1da177e4
LT
1428}
1429
c2febafc
KS
1430static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1431 struct vm_area_struct *vma, pgd_t *pgd,
1432 unsigned long addr, unsigned long end,
1433 struct zap_details *details)
1434{
1435 p4d_t *p4d;
1436 unsigned long next;
1437
1438 p4d = p4d_offset(pgd, addr);
1439 do {
1440 next = p4d_addr_end(addr, end);
1441 if (p4d_none_or_clear_bad(p4d))
1442 continue;
1443 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1444 } while (p4d++, addr = next, addr != end);
1445
1446 return addr;
1447}
1448
aac45363 1449void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1450 struct vm_area_struct *vma,
1451 unsigned long addr, unsigned long end,
1452 struct zap_details *details)
1da177e4
LT
1453{
1454 pgd_t *pgd;
1455 unsigned long next;
1456
1da177e4
LT
1457 BUG_ON(addr >= end);
1458 tlb_start_vma(tlb, vma);
1459 pgd = pgd_offset(vma->vm_mm, addr);
1460 do {
1461 next = pgd_addr_end(addr, end);
97a89413 1462 if (pgd_none_or_clear_bad(pgd))
1da177e4 1463 continue;
c2febafc 1464 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1465 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1466 tlb_end_vma(tlb, vma);
1467}
51c6f666 1468
f5cc4eef
AV
1469
1470static void unmap_single_vma(struct mmu_gather *tlb,
1471 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1472 unsigned long end_addr,
f5cc4eef
AV
1473 struct zap_details *details)
1474{
1475 unsigned long start = max(vma->vm_start, start_addr);
1476 unsigned long end;
1477
1478 if (start >= vma->vm_end)
1479 return;
1480 end = min(vma->vm_end, end_addr);
1481 if (end <= vma->vm_start)
1482 return;
1483
cbc91f71
SD
1484 if (vma->vm_file)
1485 uprobe_munmap(vma, start, end);
1486
b3b9c293 1487 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1488 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1489
1490 if (start != end) {
1491 if (unlikely(is_vm_hugetlb_page(vma))) {
1492 /*
1493 * It is undesirable to test vma->vm_file as it
1494 * should be non-null for valid hugetlb area.
1495 * However, vm_file will be NULL in the error
7aa6b4ad 1496 * cleanup path of mmap_region. When
f5cc4eef 1497 * hugetlbfs ->mmap method fails,
7aa6b4ad 1498 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1499 * before calling this function to clean up.
1500 * Since no pte has actually been setup, it is
1501 * safe to do nothing in this case.
1502 */
24669e58 1503 if (vma->vm_file) {
83cde9e8 1504 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1505 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1506 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1507 }
f5cc4eef
AV
1508 } else
1509 unmap_page_range(tlb, vma, start, end, details);
1510 }
1da177e4
LT
1511}
1512
1da177e4
LT
1513/**
1514 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1515 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1516 * @vma: the starting vma
1517 * @start_addr: virtual address at which to start unmapping
1518 * @end_addr: virtual address at which to end unmapping
1da177e4 1519 *
508034a3 1520 * Unmap all pages in the vma list.
1da177e4 1521 *
1da177e4
LT
1522 * Only addresses between `start' and `end' will be unmapped.
1523 *
1524 * The VMA list must be sorted in ascending virtual address order.
1525 *
1526 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1527 * range after unmap_vmas() returns. So the only responsibility here is to
1528 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1529 * drops the lock and schedules.
1530 */
6e8bb019 1531void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1532 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1533 unsigned long end_addr)
1da177e4 1534{
ac46d4f3 1535 struct mmu_notifier_range range;
1da177e4 1536
6f4f13e8
JG
1537 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1538 start_addr, end_addr);
ac46d4f3 1539 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1540 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1541 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1542 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1543}
1544
1545/**
1546 * zap_page_range - remove user pages in a given range
1547 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1548 * @start: starting address of pages to zap
1da177e4 1549 * @size: number of bytes to zap
f5cc4eef
AV
1550 *
1551 * Caller must protect the VMA list
1da177e4 1552 */
7e027b14 1553void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1554 unsigned long size)
1da177e4 1555{
ac46d4f3 1556 struct mmu_notifier_range range;
d16dfc55 1557 struct mmu_gather tlb;
1da177e4 1558
1da177e4 1559 lru_add_drain();
7269f999 1560 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1561 start, start + size);
a72afd87 1562 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1563 update_hiwater_rss(vma->vm_mm);
1564 mmu_notifier_invalidate_range_start(&range);
1565 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1566 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1567 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1568 tlb_finish_mmu(&tlb);
1da177e4
LT
1569}
1570
f5cc4eef
AV
1571/**
1572 * zap_page_range_single - remove user pages in a given range
1573 * @vma: vm_area_struct holding the applicable pages
1574 * @address: starting address of pages to zap
1575 * @size: number of bytes to zap
8a5f14a2 1576 * @details: details of shared cache invalidation
f5cc4eef
AV
1577 *
1578 * The range must fit into one VMA.
1da177e4 1579 */
f5cc4eef 1580static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1581 unsigned long size, struct zap_details *details)
1582{
ac46d4f3 1583 struct mmu_notifier_range range;
d16dfc55 1584 struct mmu_gather tlb;
1da177e4 1585
1da177e4 1586 lru_add_drain();
7269f999 1587 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1588 address, address + size);
a72afd87 1589 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1590 update_hiwater_rss(vma->vm_mm);
1591 mmu_notifier_invalidate_range_start(&range);
1592 unmap_single_vma(&tlb, vma, address, range.end, details);
1593 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1594 tlb_finish_mmu(&tlb);
1da177e4
LT
1595}
1596
c627f9cc
JS
1597/**
1598 * zap_vma_ptes - remove ptes mapping the vma
1599 * @vma: vm_area_struct holding ptes to be zapped
1600 * @address: starting address of pages to zap
1601 * @size: number of bytes to zap
1602 *
1603 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1604 *
1605 * The entire address range must be fully contained within the vma.
1606 *
c627f9cc 1607 */
27d036e3 1608void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1609 unsigned long size)
1610{
1611 if (address < vma->vm_start || address + size > vma->vm_end ||
1612 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1613 return;
1614
f5cc4eef 1615 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1616}
1617EXPORT_SYMBOL_GPL(zap_vma_ptes);
1618
8cd3984d 1619static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1620{
c2febafc
KS
1621 pgd_t *pgd;
1622 p4d_t *p4d;
1623 pud_t *pud;
1624 pmd_t *pmd;
1625
1626 pgd = pgd_offset(mm, addr);
1627 p4d = p4d_alloc(mm, pgd, addr);
1628 if (!p4d)
1629 return NULL;
1630 pud = pud_alloc(mm, p4d, addr);
1631 if (!pud)
1632 return NULL;
1633 pmd = pmd_alloc(mm, pud, addr);
1634 if (!pmd)
1635 return NULL;
1636
1637 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1638 return pmd;
1639}
1640
1641pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1642 spinlock_t **ptl)
1643{
1644 pmd_t *pmd = walk_to_pmd(mm, addr);
1645
1646 if (!pmd)
1647 return NULL;
c2febafc 1648 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1649}
1650
8efd6f5b
AR
1651static int validate_page_before_insert(struct page *page)
1652{
1653 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1654 return -EINVAL;
1655 flush_dcache_page(page);
1656 return 0;
1657}
1658
1659static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1660 unsigned long addr, struct page *page, pgprot_t prot)
1661{
1662 if (!pte_none(*pte))
1663 return -EBUSY;
1664 /* Ok, finally just insert the thing.. */
1665 get_page(page);
1666 inc_mm_counter_fast(mm, mm_counter_file(page));
1667 page_add_file_rmap(page, false);
1668 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1669 return 0;
1670}
1671
238f58d8
LT
1672/*
1673 * This is the old fallback for page remapping.
1674 *
1675 * For historical reasons, it only allows reserved pages. Only
1676 * old drivers should use this, and they needed to mark their
1677 * pages reserved for the old functions anyway.
1678 */
423bad60
NP
1679static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1680 struct page *page, pgprot_t prot)
238f58d8 1681{
423bad60 1682 struct mm_struct *mm = vma->vm_mm;
238f58d8 1683 int retval;
c9cfcddf 1684 pte_t *pte;
8a9f3ccd
BS
1685 spinlock_t *ptl;
1686
8efd6f5b
AR
1687 retval = validate_page_before_insert(page);
1688 if (retval)
5b4e655e 1689 goto out;
238f58d8 1690 retval = -ENOMEM;
c9cfcddf 1691 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1692 if (!pte)
5b4e655e 1693 goto out;
8efd6f5b 1694 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1695 pte_unmap_unlock(pte, ptl);
1696out:
1697 return retval;
1698}
1699
8cd3984d 1700#ifdef pte_index
7f70c2a6 1701static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1702 unsigned long addr, struct page *page, pgprot_t prot)
1703{
1704 int err;
1705
1706 if (!page_count(page))
1707 return -EINVAL;
1708 err = validate_page_before_insert(page);
7f70c2a6
AR
1709 if (err)
1710 return err;
1711 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1712}
1713
1714/* insert_pages() amortizes the cost of spinlock operations
1715 * when inserting pages in a loop. Arch *must* define pte_index.
1716 */
1717static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1718 struct page **pages, unsigned long *num, pgprot_t prot)
1719{
1720 pmd_t *pmd = NULL;
7f70c2a6
AR
1721 pte_t *start_pte, *pte;
1722 spinlock_t *pte_lock;
8cd3984d
AR
1723 struct mm_struct *const mm = vma->vm_mm;
1724 unsigned long curr_page_idx = 0;
1725 unsigned long remaining_pages_total = *num;
1726 unsigned long pages_to_write_in_pmd;
1727 int ret;
1728more:
1729 ret = -EFAULT;
1730 pmd = walk_to_pmd(mm, addr);
1731 if (!pmd)
1732 goto out;
1733
1734 pages_to_write_in_pmd = min_t(unsigned long,
1735 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1736
1737 /* Allocate the PTE if necessary; takes PMD lock once only. */
1738 ret = -ENOMEM;
1739 if (pte_alloc(mm, pmd))
1740 goto out;
8cd3984d
AR
1741
1742 while (pages_to_write_in_pmd) {
1743 int pte_idx = 0;
1744 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1745
7f70c2a6
AR
1746 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1747 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1748 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1749 addr, pages[curr_page_idx], prot);
1750 if (unlikely(err)) {
7f70c2a6 1751 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1752 ret = err;
1753 remaining_pages_total -= pte_idx;
1754 goto out;
1755 }
1756 addr += PAGE_SIZE;
1757 ++curr_page_idx;
1758 }
7f70c2a6 1759 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1760 pages_to_write_in_pmd -= batch_size;
1761 remaining_pages_total -= batch_size;
1762 }
1763 if (remaining_pages_total)
1764 goto more;
1765 ret = 0;
1766out:
1767 *num = remaining_pages_total;
1768 return ret;
1769}
1770#endif /* ifdef pte_index */
1771
1772/**
1773 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1774 * @vma: user vma to map to
1775 * @addr: target start user address of these pages
1776 * @pages: source kernel pages
1777 * @num: in: number of pages to map. out: number of pages that were *not*
1778 * mapped. (0 means all pages were successfully mapped).
1779 *
1780 * Preferred over vm_insert_page() when inserting multiple pages.
1781 *
1782 * In case of error, we may have mapped a subset of the provided
1783 * pages. It is the caller's responsibility to account for this case.
1784 *
1785 * The same restrictions apply as in vm_insert_page().
1786 */
1787int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1788 struct page **pages, unsigned long *num)
1789{
1790#ifdef pte_index
1791 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1792
1793 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1794 return -EFAULT;
1795 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1796 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1797 BUG_ON(vma->vm_flags & VM_PFNMAP);
1798 vma->vm_flags |= VM_MIXEDMAP;
1799 }
1800 /* Defer page refcount checking till we're about to map that page. */
1801 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1802#else
1803 unsigned long idx = 0, pgcount = *num;
45779b03 1804 int err = -EINVAL;
8cd3984d
AR
1805
1806 for (; idx < pgcount; ++idx) {
1807 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1808 if (err)
1809 break;
1810 }
1811 *num = pgcount - idx;
1812 return err;
1813#endif /* ifdef pte_index */
1814}
1815EXPORT_SYMBOL(vm_insert_pages);
1816
bfa5bf6d
REB
1817/**
1818 * vm_insert_page - insert single page into user vma
1819 * @vma: user vma to map to
1820 * @addr: target user address of this page
1821 * @page: source kernel page
1822 *
a145dd41
LT
1823 * This allows drivers to insert individual pages they've allocated
1824 * into a user vma.
1825 *
1826 * The page has to be a nice clean _individual_ kernel allocation.
1827 * If you allocate a compound page, you need to have marked it as
1828 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1829 * (see split_page()).
a145dd41
LT
1830 *
1831 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1832 * took an arbitrary page protection parameter. This doesn't allow
1833 * that. Your vma protection will have to be set up correctly, which
1834 * means that if you want a shared writable mapping, you'd better
1835 * ask for a shared writable mapping!
1836 *
1837 * The page does not need to be reserved.
4b6e1e37
KK
1838 *
1839 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1840 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1841 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1842 * function from other places, for example from page-fault handler.
a862f68a
MR
1843 *
1844 * Return: %0 on success, negative error code otherwise.
a145dd41 1845 */
423bad60
NP
1846int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1847 struct page *page)
a145dd41
LT
1848{
1849 if (addr < vma->vm_start || addr >= vma->vm_end)
1850 return -EFAULT;
1851 if (!page_count(page))
1852 return -EINVAL;
4b6e1e37 1853 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1854 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1855 BUG_ON(vma->vm_flags & VM_PFNMAP);
1856 vma->vm_flags |= VM_MIXEDMAP;
1857 }
423bad60 1858 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1859}
e3c3374f 1860EXPORT_SYMBOL(vm_insert_page);
a145dd41 1861
a667d745
SJ
1862/*
1863 * __vm_map_pages - maps range of kernel pages into user vma
1864 * @vma: user vma to map to
1865 * @pages: pointer to array of source kernel pages
1866 * @num: number of pages in page array
1867 * @offset: user's requested vm_pgoff
1868 *
1869 * This allows drivers to map range of kernel pages into a user vma.
1870 *
1871 * Return: 0 on success and error code otherwise.
1872 */
1873static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1874 unsigned long num, unsigned long offset)
1875{
1876 unsigned long count = vma_pages(vma);
1877 unsigned long uaddr = vma->vm_start;
1878 int ret, i;
1879
1880 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1881 if (offset >= num)
a667d745
SJ
1882 return -ENXIO;
1883
1884 /* Fail if the user requested size exceeds available object size */
1885 if (count > num - offset)
1886 return -ENXIO;
1887
1888 for (i = 0; i < count; i++) {
1889 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1890 if (ret < 0)
1891 return ret;
1892 uaddr += PAGE_SIZE;
1893 }
1894
1895 return 0;
1896}
1897
1898/**
1899 * vm_map_pages - maps range of kernel pages starts with non zero offset
1900 * @vma: user vma to map to
1901 * @pages: pointer to array of source kernel pages
1902 * @num: number of pages in page array
1903 *
1904 * Maps an object consisting of @num pages, catering for the user's
1905 * requested vm_pgoff
1906 *
1907 * If we fail to insert any page into the vma, the function will return
1908 * immediately leaving any previously inserted pages present. Callers
1909 * from the mmap handler may immediately return the error as their caller
1910 * will destroy the vma, removing any successfully inserted pages. Other
1911 * callers should make their own arrangements for calling unmap_region().
1912 *
1913 * Context: Process context. Called by mmap handlers.
1914 * Return: 0 on success and error code otherwise.
1915 */
1916int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1917 unsigned long num)
1918{
1919 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1920}
1921EXPORT_SYMBOL(vm_map_pages);
1922
1923/**
1924 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1925 * @vma: user vma to map to
1926 * @pages: pointer to array of source kernel pages
1927 * @num: number of pages in page array
1928 *
1929 * Similar to vm_map_pages(), except that it explicitly sets the offset
1930 * to 0. This function is intended for the drivers that did not consider
1931 * vm_pgoff.
1932 *
1933 * Context: Process context. Called by mmap handlers.
1934 * Return: 0 on success and error code otherwise.
1935 */
1936int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1937 unsigned long num)
1938{
1939 return __vm_map_pages(vma, pages, num, 0);
1940}
1941EXPORT_SYMBOL(vm_map_pages_zero);
1942
9b5a8e00 1943static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1944 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1945{
1946 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1947 pte_t *pte, entry;
1948 spinlock_t *ptl;
1949
423bad60
NP
1950 pte = get_locked_pte(mm, addr, &ptl);
1951 if (!pte)
9b5a8e00 1952 return VM_FAULT_OOM;
b2770da6
RZ
1953 if (!pte_none(*pte)) {
1954 if (mkwrite) {
1955 /*
1956 * For read faults on private mappings the PFN passed
1957 * in may not match the PFN we have mapped if the
1958 * mapped PFN is a writeable COW page. In the mkwrite
1959 * case we are creating a writable PTE for a shared
f2c57d91
JK
1960 * mapping and we expect the PFNs to match. If they
1961 * don't match, we are likely racing with block
1962 * allocation and mapping invalidation so just skip the
1963 * update.
b2770da6 1964 */
f2c57d91
JK
1965 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1966 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1967 goto out_unlock;
f2c57d91 1968 }
cae85cb8
JK
1969 entry = pte_mkyoung(*pte);
1970 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1971 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1972 update_mmu_cache(vma, addr, pte);
1973 }
1974 goto out_unlock;
b2770da6 1975 }
423bad60
NP
1976
1977 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1978 if (pfn_t_devmap(pfn))
1979 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1980 else
1981 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1982
b2770da6
RZ
1983 if (mkwrite) {
1984 entry = pte_mkyoung(entry);
1985 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1986 }
1987
423bad60 1988 set_pte_at(mm, addr, pte, entry);
4b3073e1 1989 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1990
423bad60
NP
1991out_unlock:
1992 pte_unmap_unlock(pte, ptl);
9b5a8e00 1993 return VM_FAULT_NOPAGE;
423bad60
NP
1994}
1995
f5e6d1d5
MW
1996/**
1997 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1998 * @vma: user vma to map to
1999 * @addr: target user address of this page
2000 * @pfn: source kernel pfn
2001 * @pgprot: pgprot flags for the inserted page
2002 *
a1a0aea5 2003 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2004 * to override pgprot on a per-page basis.
2005 *
2006 * This only makes sense for IO mappings, and it makes no sense for
2007 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2008 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2009 * impractical.
2010 *
574c5b3d
TH
2011 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2012 * a value of @pgprot different from that of @vma->vm_page_prot.
2013 *
ae2b01f3 2014 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2015 * Return: vm_fault_t value.
2016 */
2017vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2018 unsigned long pfn, pgprot_t pgprot)
2019{
6d958546
MW
2020 /*
2021 * Technically, architectures with pte_special can avoid all these
2022 * restrictions (same for remap_pfn_range). However we would like
2023 * consistency in testing and feature parity among all, so we should
2024 * try to keep these invariants in place for everybody.
2025 */
2026 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2027 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2028 (VM_PFNMAP|VM_MIXEDMAP));
2029 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2030 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2031
2032 if (addr < vma->vm_start || addr >= vma->vm_end)
2033 return VM_FAULT_SIGBUS;
2034
2035 if (!pfn_modify_allowed(pfn, pgprot))
2036 return VM_FAULT_SIGBUS;
2037
2038 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2039
9b5a8e00 2040 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2041 false);
f5e6d1d5
MW
2042}
2043EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2044
ae2b01f3
MW
2045/**
2046 * vmf_insert_pfn - insert single pfn into user vma
2047 * @vma: user vma to map to
2048 * @addr: target user address of this page
2049 * @pfn: source kernel pfn
2050 *
2051 * Similar to vm_insert_page, this allows drivers to insert individual pages
2052 * they've allocated into a user vma. Same comments apply.
2053 *
2054 * This function should only be called from a vm_ops->fault handler, and
2055 * in that case the handler should return the result of this function.
2056 *
2057 * vma cannot be a COW mapping.
2058 *
2059 * As this is called only for pages that do not currently exist, we
2060 * do not need to flush old virtual caches or the TLB.
2061 *
2062 * Context: Process context. May allocate using %GFP_KERNEL.
2063 * Return: vm_fault_t value.
2064 */
2065vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2066 unsigned long pfn)
2067{
2068 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2069}
2070EXPORT_SYMBOL(vmf_insert_pfn);
2071
785a3fab
DW
2072static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2073{
2074 /* these checks mirror the abort conditions in vm_normal_page */
2075 if (vma->vm_flags & VM_MIXEDMAP)
2076 return true;
2077 if (pfn_t_devmap(pfn))
2078 return true;
2079 if (pfn_t_special(pfn))
2080 return true;
2081 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2082 return true;
2083 return false;
2084}
2085
79f3aa5b 2086static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2087 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2088 bool mkwrite)
423bad60 2089{
79f3aa5b 2090 int err;
87744ab3 2091
785a3fab 2092 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2093
423bad60 2094 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2095 return VM_FAULT_SIGBUS;
308a047c
BP
2096
2097 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2098
42e4089c 2099 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2100 return VM_FAULT_SIGBUS;
42e4089c 2101
423bad60
NP
2102 /*
2103 * If we don't have pte special, then we have to use the pfn_valid()
2104 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2105 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2106 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2107 * without pte special, it would there be refcounted as a normal page.
423bad60 2108 */
00b3a331
LD
2109 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2110 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2111 struct page *page;
2112
03fc2da6
DW
2113 /*
2114 * At this point we are committed to insert_page()
2115 * regardless of whether the caller specified flags that
2116 * result in pfn_t_has_page() == false.
2117 */
2118 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2119 err = insert_page(vma, addr, page, pgprot);
2120 } else {
9b5a8e00 2121 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2122 }
b2770da6 2123
5d747637
MW
2124 if (err == -ENOMEM)
2125 return VM_FAULT_OOM;
2126 if (err < 0 && err != -EBUSY)
2127 return VM_FAULT_SIGBUS;
2128
2129 return VM_FAULT_NOPAGE;
e0dc0d8f 2130}
79f3aa5b 2131
574c5b3d
TH
2132/**
2133 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2134 * @vma: user vma to map to
2135 * @addr: target user address of this page
2136 * @pfn: source kernel pfn
2137 * @pgprot: pgprot flags for the inserted page
2138 *
a1a0aea5 2139 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2140 * to override pgprot on a per-page basis.
2141 *
2142 * Typically this function should be used by drivers to set caching- and
2143 * encryption bits different than those of @vma->vm_page_prot, because
2144 * the caching- or encryption mode may not be known at mmap() time.
2145 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2146 * to set caching and encryption bits for those vmas (except for COW pages).
2147 * This is ensured by core vm only modifying these page table entries using
2148 * functions that don't touch caching- or encryption bits, using pte_modify()
2149 * if needed. (See for example mprotect()).
2150 * Also when new page-table entries are created, this is only done using the
2151 * fault() callback, and never using the value of vma->vm_page_prot,
2152 * except for page-table entries that point to anonymous pages as the result
2153 * of COW.
2154 *
2155 * Context: Process context. May allocate using %GFP_KERNEL.
2156 * Return: vm_fault_t value.
2157 */
2158vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2159 pfn_t pfn, pgprot_t pgprot)
2160{
2161 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2162}
5379e4dd 2163EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2164
79f3aa5b
MW
2165vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2166 pfn_t pfn)
2167{
574c5b3d 2168 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2169}
5d747637 2170EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2171
ab77dab4
SJ
2172/*
2173 * If the insertion of PTE failed because someone else already added a
2174 * different entry in the mean time, we treat that as success as we assume
2175 * the same entry was actually inserted.
2176 */
ab77dab4
SJ
2177vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2178 unsigned long addr, pfn_t pfn)
b2770da6 2179{
574c5b3d 2180 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2181}
ab77dab4 2182EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2183
1da177e4
LT
2184/*
2185 * maps a range of physical memory into the requested pages. the old
2186 * mappings are removed. any references to nonexistent pages results
2187 * in null mappings (currently treated as "copy-on-access")
2188 */
2189static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2190 unsigned long addr, unsigned long end,
2191 unsigned long pfn, pgprot_t prot)
2192{
90a3e375 2193 pte_t *pte, *mapped_pte;
c74df32c 2194 spinlock_t *ptl;
42e4089c 2195 int err = 0;
1da177e4 2196
90a3e375 2197 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2198 if (!pte)
2199 return -ENOMEM;
6606c3e0 2200 arch_enter_lazy_mmu_mode();
1da177e4
LT
2201 do {
2202 BUG_ON(!pte_none(*pte));
42e4089c
AK
2203 if (!pfn_modify_allowed(pfn, prot)) {
2204 err = -EACCES;
2205 break;
2206 }
7e675137 2207 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2208 pfn++;
2209 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2210 arch_leave_lazy_mmu_mode();
90a3e375 2211 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2212 return err;
1da177e4
LT
2213}
2214
2215static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2216 unsigned long addr, unsigned long end,
2217 unsigned long pfn, pgprot_t prot)
2218{
2219 pmd_t *pmd;
2220 unsigned long next;
42e4089c 2221 int err;
1da177e4
LT
2222
2223 pfn -= addr >> PAGE_SHIFT;
2224 pmd = pmd_alloc(mm, pud, addr);
2225 if (!pmd)
2226 return -ENOMEM;
f66055ab 2227 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2228 do {
2229 next = pmd_addr_end(addr, end);
42e4089c
AK
2230 err = remap_pte_range(mm, pmd, addr, next,
2231 pfn + (addr >> PAGE_SHIFT), prot);
2232 if (err)
2233 return err;
1da177e4
LT
2234 } while (pmd++, addr = next, addr != end);
2235 return 0;
2236}
2237
c2febafc 2238static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2239 unsigned long addr, unsigned long end,
2240 unsigned long pfn, pgprot_t prot)
2241{
2242 pud_t *pud;
2243 unsigned long next;
42e4089c 2244 int err;
1da177e4
LT
2245
2246 pfn -= addr >> PAGE_SHIFT;
c2febafc 2247 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2248 if (!pud)
2249 return -ENOMEM;
2250 do {
2251 next = pud_addr_end(addr, end);
42e4089c
AK
2252 err = remap_pmd_range(mm, pud, addr, next,
2253 pfn + (addr >> PAGE_SHIFT), prot);
2254 if (err)
2255 return err;
1da177e4
LT
2256 } while (pud++, addr = next, addr != end);
2257 return 0;
2258}
2259
c2febafc
KS
2260static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2261 unsigned long addr, unsigned long end,
2262 unsigned long pfn, pgprot_t prot)
2263{
2264 p4d_t *p4d;
2265 unsigned long next;
42e4089c 2266 int err;
c2febafc
KS
2267
2268 pfn -= addr >> PAGE_SHIFT;
2269 p4d = p4d_alloc(mm, pgd, addr);
2270 if (!p4d)
2271 return -ENOMEM;
2272 do {
2273 next = p4d_addr_end(addr, end);
42e4089c
AK
2274 err = remap_pud_range(mm, p4d, addr, next,
2275 pfn + (addr >> PAGE_SHIFT), prot);
2276 if (err)
2277 return err;
c2febafc
KS
2278 } while (p4d++, addr = next, addr != end);
2279 return 0;
2280}
2281
74ffa5a3
CH
2282/*
2283 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2284 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2285 */
74ffa5a3
CH
2286int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2287 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2288{
2289 pgd_t *pgd;
2290 unsigned long next;
2d15cab8 2291 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2292 struct mm_struct *mm = vma->vm_mm;
2293 int err;
2294
0c4123e3
AZ
2295 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2296 return -EINVAL;
2297
1da177e4
LT
2298 /*
2299 * Physically remapped pages are special. Tell the
2300 * rest of the world about it:
2301 * VM_IO tells people not to look at these pages
2302 * (accesses can have side effects).
6aab341e
LT
2303 * VM_PFNMAP tells the core MM that the base pages are just
2304 * raw PFN mappings, and do not have a "struct page" associated
2305 * with them.
314e51b9
KK
2306 * VM_DONTEXPAND
2307 * Disable vma merging and expanding with mremap().
2308 * VM_DONTDUMP
2309 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2310 *
2311 * There's a horrible special case to handle copy-on-write
2312 * behaviour that some programs depend on. We mark the "original"
2313 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2314 * See vm_normal_page() for details.
1da177e4 2315 */
b3b9c293
KK
2316 if (is_cow_mapping(vma->vm_flags)) {
2317 if (addr != vma->vm_start || end != vma->vm_end)
2318 return -EINVAL;
fb155c16 2319 vma->vm_pgoff = pfn;
b3b9c293
KK
2320 }
2321
314e51b9 2322 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2323
2324 BUG_ON(addr >= end);
2325 pfn -= addr >> PAGE_SHIFT;
2326 pgd = pgd_offset(mm, addr);
2327 flush_cache_range(vma, addr, end);
1da177e4
LT
2328 do {
2329 next = pgd_addr_end(addr, end);
c2febafc 2330 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2331 pfn + (addr >> PAGE_SHIFT), prot);
2332 if (err)
74ffa5a3 2333 return err;
1da177e4 2334 } while (pgd++, addr = next, addr != end);
2ab64037 2335
74ffa5a3
CH
2336 return 0;
2337}
2338
2339/**
2340 * remap_pfn_range - remap kernel memory to userspace
2341 * @vma: user vma to map to
2342 * @addr: target page aligned user address to start at
2343 * @pfn: page frame number of kernel physical memory address
2344 * @size: size of mapping area
2345 * @prot: page protection flags for this mapping
2346 *
2347 * Note: this is only safe if the mm semaphore is held when called.
2348 *
2349 * Return: %0 on success, negative error code otherwise.
2350 */
2351int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2352 unsigned long pfn, unsigned long size, pgprot_t prot)
2353{
2354 int err;
2355
2356 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2357 if (err)
74ffa5a3 2358 return -EINVAL;
2ab64037 2359
74ffa5a3
CH
2360 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2361 if (err)
2362 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2363 return err;
2364}
2365EXPORT_SYMBOL(remap_pfn_range);
2366
b4cbb197
LT
2367/**
2368 * vm_iomap_memory - remap memory to userspace
2369 * @vma: user vma to map to
abd69b9e 2370 * @start: start of the physical memory to be mapped
b4cbb197
LT
2371 * @len: size of area
2372 *
2373 * This is a simplified io_remap_pfn_range() for common driver use. The
2374 * driver just needs to give us the physical memory range to be mapped,
2375 * we'll figure out the rest from the vma information.
2376 *
2377 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2378 * whatever write-combining details or similar.
a862f68a
MR
2379 *
2380 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2381 */
2382int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2383{
2384 unsigned long vm_len, pfn, pages;
2385
2386 /* Check that the physical memory area passed in looks valid */
2387 if (start + len < start)
2388 return -EINVAL;
2389 /*
2390 * You *really* shouldn't map things that aren't page-aligned,
2391 * but we've historically allowed it because IO memory might
2392 * just have smaller alignment.
2393 */
2394 len += start & ~PAGE_MASK;
2395 pfn = start >> PAGE_SHIFT;
2396 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2397 if (pfn + pages < pfn)
2398 return -EINVAL;
2399
2400 /* We start the mapping 'vm_pgoff' pages into the area */
2401 if (vma->vm_pgoff > pages)
2402 return -EINVAL;
2403 pfn += vma->vm_pgoff;
2404 pages -= vma->vm_pgoff;
2405
2406 /* Can we fit all of the mapping? */
2407 vm_len = vma->vm_end - vma->vm_start;
2408 if (vm_len >> PAGE_SHIFT > pages)
2409 return -EINVAL;
2410
2411 /* Ok, let it rip */
2412 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2413}
2414EXPORT_SYMBOL(vm_iomap_memory);
2415
aee16b3c
JF
2416static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2417 unsigned long addr, unsigned long end,
e80d3909
JR
2418 pte_fn_t fn, void *data, bool create,
2419 pgtbl_mod_mask *mask)
aee16b3c 2420{
8abb50c7 2421 pte_t *pte, *mapped_pte;
be1db475 2422 int err = 0;
3f649ab7 2423 spinlock_t *ptl;
aee16b3c 2424
be1db475 2425 if (create) {
8abb50c7 2426 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2427 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2428 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2429 if (!pte)
2430 return -ENOMEM;
2431 } else {
8abb50c7 2432 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2433 pte_offset_kernel(pmd, addr) :
2434 pte_offset_map_lock(mm, pmd, addr, &ptl);
2435 }
aee16b3c
JF
2436
2437 BUG_ON(pmd_huge(*pmd));
2438
38e0edb1
JF
2439 arch_enter_lazy_mmu_mode();
2440
eeb4a05f
CH
2441 if (fn) {
2442 do {
2443 if (create || !pte_none(*pte)) {
2444 err = fn(pte++, addr, data);
2445 if (err)
2446 break;
2447 }
2448 } while (addr += PAGE_SIZE, addr != end);
2449 }
e80d3909 2450 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2451
38e0edb1
JF
2452 arch_leave_lazy_mmu_mode();
2453
aee16b3c 2454 if (mm != &init_mm)
8abb50c7 2455 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2456 return err;
2457}
2458
2459static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2460 unsigned long addr, unsigned long end,
e80d3909
JR
2461 pte_fn_t fn, void *data, bool create,
2462 pgtbl_mod_mask *mask)
aee16b3c
JF
2463{
2464 pmd_t *pmd;
2465 unsigned long next;
be1db475 2466 int err = 0;
aee16b3c 2467
ceb86879
AK
2468 BUG_ON(pud_huge(*pud));
2469
be1db475 2470 if (create) {
e80d3909 2471 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2472 if (!pmd)
2473 return -ENOMEM;
2474 } else {
2475 pmd = pmd_offset(pud, addr);
2476 }
aee16b3c
JF
2477 do {
2478 next = pmd_addr_end(addr, end);
0c95cba4
NP
2479 if (pmd_none(*pmd) && !create)
2480 continue;
2481 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2482 return -EINVAL;
2483 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2484 if (!create)
2485 continue;
2486 pmd_clear_bad(pmd);
be1db475 2487 }
0c95cba4
NP
2488 err = apply_to_pte_range(mm, pmd, addr, next,
2489 fn, data, create, mask);
2490 if (err)
2491 break;
aee16b3c 2492 } while (pmd++, addr = next, addr != end);
0c95cba4 2493
aee16b3c
JF
2494 return err;
2495}
2496
c2febafc 2497static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2498 unsigned long addr, unsigned long end,
e80d3909
JR
2499 pte_fn_t fn, void *data, bool create,
2500 pgtbl_mod_mask *mask)
aee16b3c
JF
2501{
2502 pud_t *pud;
2503 unsigned long next;
be1db475 2504 int err = 0;
aee16b3c 2505
be1db475 2506 if (create) {
e80d3909 2507 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2508 if (!pud)
2509 return -ENOMEM;
2510 } else {
2511 pud = pud_offset(p4d, addr);
2512 }
aee16b3c
JF
2513 do {
2514 next = pud_addr_end(addr, end);
0c95cba4
NP
2515 if (pud_none(*pud) && !create)
2516 continue;
2517 if (WARN_ON_ONCE(pud_leaf(*pud)))
2518 return -EINVAL;
2519 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2520 if (!create)
2521 continue;
2522 pud_clear_bad(pud);
be1db475 2523 }
0c95cba4
NP
2524 err = apply_to_pmd_range(mm, pud, addr, next,
2525 fn, data, create, mask);
2526 if (err)
2527 break;
aee16b3c 2528 } while (pud++, addr = next, addr != end);
0c95cba4 2529
aee16b3c
JF
2530 return err;
2531}
2532
c2febafc
KS
2533static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2534 unsigned long addr, unsigned long end,
e80d3909
JR
2535 pte_fn_t fn, void *data, bool create,
2536 pgtbl_mod_mask *mask)
c2febafc
KS
2537{
2538 p4d_t *p4d;
2539 unsigned long next;
be1db475 2540 int err = 0;
c2febafc 2541
be1db475 2542 if (create) {
e80d3909 2543 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2544 if (!p4d)
2545 return -ENOMEM;
2546 } else {
2547 p4d = p4d_offset(pgd, addr);
2548 }
c2febafc
KS
2549 do {
2550 next = p4d_addr_end(addr, end);
0c95cba4
NP
2551 if (p4d_none(*p4d) && !create)
2552 continue;
2553 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2554 return -EINVAL;
2555 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2556 if (!create)
2557 continue;
2558 p4d_clear_bad(p4d);
be1db475 2559 }
0c95cba4
NP
2560 err = apply_to_pud_range(mm, p4d, addr, next,
2561 fn, data, create, mask);
2562 if (err)
2563 break;
c2febafc 2564 } while (p4d++, addr = next, addr != end);
0c95cba4 2565
c2febafc
KS
2566 return err;
2567}
2568
be1db475
DA
2569static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2570 unsigned long size, pte_fn_t fn,
2571 void *data, bool create)
aee16b3c
JF
2572{
2573 pgd_t *pgd;
e80d3909 2574 unsigned long start = addr, next;
57250a5b 2575 unsigned long end = addr + size;
e80d3909 2576 pgtbl_mod_mask mask = 0;
be1db475 2577 int err = 0;
aee16b3c 2578
9cb65bc3
MP
2579 if (WARN_ON(addr >= end))
2580 return -EINVAL;
2581
aee16b3c
JF
2582 pgd = pgd_offset(mm, addr);
2583 do {
2584 next = pgd_addr_end(addr, end);
0c95cba4 2585 if (pgd_none(*pgd) && !create)
be1db475 2586 continue;
0c95cba4
NP
2587 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2588 return -EINVAL;
2589 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2590 if (!create)
2591 continue;
2592 pgd_clear_bad(pgd);
2593 }
2594 err = apply_to_p4d_range(mm, pgd, addr, next,
2595 fn, data, create, &mask);
aee16b3c
JF
2596 if (err)
2597 break;
2598 } while (pgd++, addr = next, addr != end);
57250a5b 2599
e80d3909
JR
2600 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2601 arch_sync_kernel_mappings(start, start + size);
2602
aee16b3c
JF
2603 return err;
2604}
be1db475
DA
2605
2606/*
2607 * Scan a region of virtual memory, filling in page tables as necessary
2608 * and calling a provided function on each leaf page table.
2609 */
2610int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2611 unsigned long size, pte_fn_t fn, void *data)
2612{
2613 return __apply_to_page_range(mm, addr, size, fn, data, true);
2614}
aee16b3c
JF
2615EXPORT_SYMBOL_GPL(apply_to_page_range);
2616
be1db475
DA
2617/*
2618 * Scan a region of virtual memory, calling a provided function on
2619 * each leaf page table where it exists.
2620 *
2621 * Unlike apply_to_page_range, this does _not_ fill in page tables
2622 * where they are absent.
2623 */
2624int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2625 unsigned long size, pte_fn_t fn, void *data)
2626{
2627 return __apply_to_page_range(mm, addr, size, fn, data, false);
2628}
2629EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2630
8f4e2101 2631/*
9b4bdd2f
KS
2632 * handle_pte_fault chooses page fault handler according to an entry which was
2633 * read non-atomically. Before making any commitment, on those architectures
2634 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2635 * parts, do_swap_page must check under lock before unmapping the pte and
2636 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2637 * and do_anonymous_page can safely check later on).
8f4e2101 2638 */
4c21e2f2 2639static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2640 pte_t *page_table, pte_t orig_pte)
2641{
2642 int same = 1;
923717cb 2643#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2644 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2645 spinlock_t *ptl = pte_lockptr(mm, pmd);
2646 spin_lock(ptl);
8f4e2101 2647 same = pte_same(*page_table, orig_pte);
4c21e2f2 2648 spin_unlock(ptl);
8f4e2101
HD
2649 }
2650#endif
2651 pte_unmap(page_table);
2652 return same;
2653}
2654
83d116c5
JH
2655static inline bool cow_user_page(struct page *dst, struct page *src,
2656 struct vm_fault *vmf)
6aab341e 2657{
83d116c5
JH
2658 bool ret;
2659 void *kaddr;
2660 void __user *uaddr;
c3e5ea6e 2661 bool locked = false;
83d116c5
JH
2662 struct vm_area_struct *vma = vmf->vma;
2663 struct mm_struct *mm = vma->vm_mm;
2664 unsigned long addr = vmf->address;
2665
83d116c5
JH
2666 if (likely(src)) {
2667 copy_user_highpage(dst, src, addr, vma);
2668 return true;
2669 }
2670
6aab341e
LT
2671 /*
2672 * If the source page was a PFN mapping, we don't have
2673 * a "struct page" for it. We do a best-effort copy by
2674 * just copying from the original user address. If that
2675 * fails, we just zero-fill it. Live with it.
2676 */
83d116c5
JH
2677 kaddr = kmap_atomic(dst);
2678 uaddr = (void __user *)(addr & PAGE_MASK);
2679
2680 /*
2681 * On architectures with software "accessed" bits, we would
2682 * take a double page fault, so mark it accessed here.
2683 */
c3e5ea6e 2684 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2685 pte_t entry;
5d2a2dbb 2686
83d116c5 2687 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2688 locked = true;
83d116c5
JH
2689 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2690 /*
2691 * Other thread has already handled the fault
7df67697 2692 * and update local tlb only
83d116c5 2693 */
7df67697 2694 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2695 ret = false;
2696 goto pte_unlock;
2697 }
2698
2699 entry = pte_mkyoung(vmf->orig_pte);
2700 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2701 update_mmu_cache(vma, addr, vmf->pte);
2702 }
2703
2704 /*
2705 * This really shouldn't fail, because the page is there
2706 * in the page tables. But it might just be unreadable,
2707 * in which case we just give up and fill the result with
2708 * zeroes.
2709 */
2710 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2711 if (locked)
2712 goto warn;
2713
2714 /* Re-validate under PTL if the page is still mapped */
2715 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2716 locked = true;
2717 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2718 /* The PTE changed under us, update local tlb */
2719 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2720 ret = false;
2721 goto pte_unlock;
2722 }
2723
5d2a2dbb 2724 /*
985ba004 2725 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2726 * Try to copy again under PTL.
5d2a2dbb 2727 */
c3e5ea6e
KS
2728 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2729 /*
2730 * Give a warn in case there can be some obscure
2731 * use-case
2732 */
2733warn:
2734 WARN_ON_ONCE(1);
2735 clear_page(kaddr);
2736 }
83d116c5
JH
2737 }
2738
2739 ret = true;
2740
2741pte_unlock:
c3e5ea6e 2742 if (locked)
83d116c5
JH
2743 pte_unmap_unlock(vmf->pte, vmf->ptl);
2744 kunmap_atomic(kaddr);
2745 flush_dcache_page(dst);
2746
2747 return ret;
6aab341e
LT
2748}
2749
c20cd45e
MH
2750static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2751{
2752 struct file *vm_file = vma->vm_file;
2753
2754 if (vm_file)
2755 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2756
2757 /*
2758 * Special mappings (e.g. VDSO) do not have any file so fake
2759 * a default GFP_KERNEL for them.
2760 */
2761 return GFP_KERNEL;
2762}
2763
fb09a464
KS
2764/*
2765 * Notify the address space that the page is about to become writable so that
2766 * it can prohibit this or wait for the page to get into an appropriate state.
2767 *
2768 * We do this without the lock held, so that it can sleep if it needs to.
2769 */
2b740303 2770static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2771{
2b740303 2772 vm_fault_t ret;
38b8cb7f
JK
2773 struct page *page = vmf->page;
2774 unsigned int old_flags = vmf->flags;
fb09a464 2775
38b8cb7f 2776 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2777
dc617f29
DW
2778 if (vmf->vma->vm_file &&
2779 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2780 return VM_FAULT_SIGBUS;
2781
11bac800 2782 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2783 /* Restore original flags so that caller is not surprised */
2784 vmf->flags = old_flags;
fb09a464
KS
2785 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2786 return ret;
2787 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2788 lock_page(page);
2789 if (!page->mapping) {
2790 unlock_page(page);
2791 return 0; /* retry */
2792 }
2793 ret |= VM_FAULT_LOCKED;
2794 } else
2795 VM_BUG_ON_PAGE(!PageLocked(page), page);
2796 return ret;
2797}
2798
97ba0c2b
JK
2799/*
2800 * Handle dirtying of a page in shared file mapping on a write fault.
2801 *
2802 * The function expects the page to be locked and unlocks it.
2803 */
89b15332 2804static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2805{
89b15332 2806 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2807 struct address_space *mapping;
89b15332 2808 struct page *page = vmf->page;
97ba0c2b
JK
2809 bool dirtied;
2810 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2811
2812 dirtied = set_page_dirty(page);
2813 VM_BUG_ON_PAGE(PageAnon(page), page);
2814 /*
2815 * Take a local copy of the address_space - page.mapping may be zeroed
2816 * by truncate after unlock_page(). The address_space itself remains
2817 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2818 * release semantics to prevent the compiler from undoing this copying.
2819 */
2820 mapping = page_rmapping(page);
2821 unlock_page(page);
2822
89b15332
JW
2823 if (!page_mkwrite)
2824 file_update_time(vma->vm_file);
2825
2826 /*
2827 * Throttle page dirtying rate down to writeback speed.
2828 *
2829 * mapping may be NULL here because some device drivers do not
2830 * set page.mapping but still dirty their pages
2831 *
c1e8d7c6 2832 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2833 * is pinning the mapping, as per above.
2834 */
97ba0c2b 2835 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2836 struct file *fpin;
2837
2838 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2839 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2840 if (fpin) {
2841 fput(fpin);
2842 return VM_FAULT_RETRY;
2843 }
97ba0c2b
JK
2844 }
2845
89b15332 2846 return 0;
97ba0c2b
JK
2847}
2848
4e047f89
SR
2849/*
2850 * Handle write page faults for pages that can be reused in the current vma
2851 *
2852 * This can happen either due to the mapping being with the VM_SHARED flag,
2853 * or due to us being the last reference standing to the page. In either
2854 * case, all we need to do here is to mark the page as writable and update
2855 * any related book-keeping.
2856 */
997dd98d 2857static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2858 __releases(vmf->ptl)
4e047f89 2859{
82b0f8c3 2860 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2861 struct page *page = vmf->page;
4e047f89
SR
2862 pte_t entry;
2863 /*
2864 * Clear the pages cpupid information as the existing
2865 * information potentially belongs to a now completely
2866 * unrelated process.
2867 */
2868 if (page)
2869 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2870
2994302b
JK
2871 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2872 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2873 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2874 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2875 update_mmu_cache(vma, vmf->address, vmf->pte);
2876 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2877 count_vm_event(PGREUSE);
4e047f89
SR
2878}
2879
2f38ab2c
SR
2880/*
2881 * Handle the case of a page which we actually need to copy to a new page.
2882 *
c1e8d7c6 2883 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2884 * without the ptl held.
2885 *
2886 * High level logic flow:
2887 *
2888 * - Allocate a page, copy the content of the old page to the new one.
2889 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2890 * - Take the PTL. If the pte changed, bail out and release the allocated page
2891 * - If the pte is still the way we remember it, update the page table and all
2892 * relevant references. This includes dropping the reference the page-table
2893 * held to the old page, as well as updating the rmap.
2894 * - In any case, unlock the PTL and drop the reference we took to the old page.
2895 */
2b740303 2896static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2897{
82b0f8c3 2898 struct vm_area_struct *vma = vmf->vma;
bae473a4 2899 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2900 struct page *old_page = vmf->page;
2f38ab2c 2901 struct page *new_page = NULL;
2f38ab2c
SR
2902 pte_t entry;
2903 int page_copied = 0;
ac46d4f3 2904 struct mmu_notifier_range range;
2f38ab2c
SR
2905
2906 if (unlikely(anon_vma_prepare(vma)))
2907 goto oom;
2908
2994302b 2909 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2910 new_page = alloc_zeroed_user_highpage_movable(vma,
2911 vmf->address);
2f38ab2c
SR
2912 if (!new_page)
2913 goto oom;
2914 } else {
bae473a4 2915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2916 vmf->address);
2f38ab2c
SR
2917 if (!new_page)
2918 goto oom;
83d116c5
JH
2919
2920 if (!cow_user_page(new_page, old_page, vmf)) {
2921 /*
2922 * COW failed, if the fault was solved by other,
2923 * it's fine. If not, userspace would re-fault on
2924 * the same address and we will handle the fault
2925 * from the second attempt.
2926 */
2927 put_page(new_page);
2928 if (old_page)
2929 put_page(old_page);
2930 return 0;
2931 }
2f38ab2c 2932 }
2f38ab2c 2933
d9eb1ea2 2934 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2935 goto oom_free_new;
9d82c694 2936 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2937
eb3c24f3
MG
2938 __SetPageUptodate(new_page);
2939
7269f999 2940 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2941 vmf->address & PAGE_MASK,
ac46d4f3
JG
2942 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2943 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2944
2945 /*
2946 * Re-check the pte - we dropped the lock
2947 */
82b0f8c3 2948 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2949 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2950 if (old_page) {
2951 if (!PageAnon(old_page)) {
eca56ff9
JM
2952 dec_mm_counter_fast(mm,
2953 mm_counter_file(old_page));
2f38ab2c
SR
2954 inc_mm_counter_fast(mm, MM_ANONPAGES);
2955 }
2956 } else {
2957 inc_mm_counter_fast(mm, MM_ANONPAGES);
2958 }
2994302b 2959 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2960 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 2961 entry = pte_sw_mkyoung(entry);
2f38ab2c 2962 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2963
2f38ab2c
SR
2964 /*
2965 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2966 * pte with the new entry, to keep TLBs on different CPUs in
2967 * sync. This code used to set the new PTE then flush TLBs, but
2968 * that left a window where the new PTE could be loaded into
2969 * some TLBs while the old PTE remains in others.
2f38ab2c 2970 */
82b0f8c3
JK
2971 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2972 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2973 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2974 /*
2975 * We call the notify macro here because, when using secondary
2976 * mmu page tables (such as kvm shadow page tables), we want the
2977 * new page to be mapped directly into the secondary page table.
2978 */
82b0f8c3
JK
2979 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2980 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2981 if (old_page) {
2982 /*
2983 * Only after switching the pte to the new page may
2984 * we remove the mapcount here. Otherwise another
2985 * process may come and find the rmap count decremented
2986 * before the pte is switched to the new page, and
2987 * "reuse" the old page writing into it while our pte
2988 * here still points into it and can be read by other
2989 * threads.
2990 *
2991 * The critical issue is to order this
2992 * page_remove_rmap with the ptp_clear_flush above.
2993 * Those stores are ordered by (if nothing else,)
2994 * the barrier present in the atomic_add_negative
2995 * in page_remove_rmap.
2996 *
2997 * Then the TLB flush in ptep_clear_flush ensures that
2998 * no process can access the old page before the
2999 * decremented mapcount is visible. And the old page
3000 * cannot be reused until after the decremented
3001 * mapcount is visible. So transitively, TLBs to
3002 * old page will be flushed before it can be reused.
3003 */
d281ee61 3004 page_remove_rmap(old_page, false);
2f38ab2c
SR
3005 }
3006
3007 /* Free the old page.. */
3008 new_page = old_page;
3009 page_copied = 1;
3010 } else {
7df67697 3011 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3012 }
3013
3014 if (new_page)
09cbfeaf 3015 put_page(new_page);
2f38ab2c 3016
82b0f8c3 3017 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3018 /*
3019 * No need to double call mmu_notifier->invalidate_range() callback as
3020 * the above ptep_clear_flush_notify() did already call it.
3021 */
ac46d4f3 3022 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3023 if (old_page) {
3024 /*
3025 * Don't let another task, with possibly unlocked vma,
3026 * keep the mlocked page.
3027 */
3028 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3029 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3030 if (PageMlocked(old_page))
3031 munlock_vma_page(old_page);
2f38ab2c
SR
3032 unlock_page(old_page);
3033 }
f4c4a3f4
HY
3034 if (page_copied)
3035 free_swap_cache(old_page);
09cbfeaf 3036 put_page(old_page);
2f38ab2c
SR
3037 }
3038 return page_copied ? VM_FAULT_WRITE : 0;
3039oom_free_new:
09cbfeaf 3040 put_page(new_page);
2f38ab2c
SR
3041oom:
3042 if (old_page)
09cbfeaf 3043 put_page(old_page);
2f38ab2c
SR
3044 return VM_FAULT_OOM;
3045}
3046
66a6197c
JK
3047/**
3048 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3049 * writeable once the page is prepared
3050 *
3051 * @vmf: structure describing the fault
3052 *
3053 * This function handles all that is needed to finish a write page fault in a
3054 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3055 * It handles locking of PTE and modifying it.
66a6197c
JK
3056 *
3057 * The function expects the page to be locked or other protection against
3058 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3059 *
2797e79f 3060 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3061 * we acquired PTE lock.
66a6197c 3062 */
2b740303 3063vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3064{
3065 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3066 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3067 &vmf->ptl);
3068 /*
3069 * We might have raced with another page fault while we released the
3070 * pte_offset_map_lock.
3071 */
3072 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3073 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3074 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3075 return VM_FAULT_NOPAGE;
66a6197c
JK
3076 }
3077 wp_page_reuse(vmf);
a19e2553 3078 return 0;
66a6197c
JK
3079}
3080
dd906184
BH
3081/*
3082 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3083 * mapping
3084 */
2b740303 3085static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3086{
82b0f8c3 3087 struct vm_area_struct *vma = vmf->vma;
bae473a4 3088
dd906184 3089 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3090 vm_fault_t ret;
dd906184 3091
82b0f8c3 3092 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3093 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3094 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3095 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3096 return ret;
66a6197c 3097 return finish_mkwrite_fault(vmf);
dd906184 3098 }
997dd98d
JK
3099 wp_page_reuse(vmf);
3100 return VM_FAULT_WRITE;
dd906184
BH
3101}
3102
2b740303 3103static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3104 __releases(vmf->ptl)
93e478d4 3105{
82b0f8c3 3106 struct vm_area_struct *vma = vmf->vma;
89b15332 3107 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3108
a41b70d6 3109 get_page(vmf->page);
93e478d4 3110
93e478d4 3111 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3112 vm_fault_t tmp;
93e478d4 3113
82b0f8c3 3114 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3115 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3116 if (unlikely(!tmp || (tmp &
3117 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3118 put_page(vmf->page);
93e478d4
SR
3119 return tmp;
3120 }
66a6197c 3121 tmp = finish_mkwrite_fault(vmf);
a19e2553 3122 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3123 unlock_page(vmf->page);
a41b70d6 3124 put_page(vmf->page);
66a6197c 3125 return tmp;
93e478d4 3126 }
66a6197c
JK
3127 } else {
3128 wp_page_reuse(vmf);
997dd98d 3129 lock_page(vmf->page);
93e478d4 3130 }
89b15332 3131 ret |= fault_dirty_shared_page(vmf);
997dd98d 3132 put_page(vmf->page);
93e478d4 3133
89b15332 3134 return ret;
93e478d4
SR
3135}
3136
1da177e4
LT
3137/*
3138 * This routine handles present pages, when users try to write
3139 * to a shared page. It is done by copying the page to a new address
3140 * and decrementing the shared-page counter for the old page.
3141 *
1da177e4
LT
3142 * Note that this routine assumes that the protection checks have been
3143 * done by the caller (the low-level page fault routine in most cases).
3144 * Thus we can safely just mark it writable once we've done any necessary
3145 * COW.
3146 *
3147 * We also mark the page dirty at this point even though the page will
3148 * change only once the write actually happens. This avoids a few races,
3149 * and potentially makes it more efficient.
3150 *
c1e8d7c6 3151 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3152 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3153 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3154 */
2b740303 3155static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3156 __releases(vmf->ptl)
1da177e4 3157{
82b0f8c3 3158 struct vm_area_struct *vma = vmf->vma;
1da177e4 3159
292924b2 3160 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3161 pte_unmap_unlock(vmf->pte, vmf->ptl);
3162 return handle_userfault(vmf, VM_UFFD_WP);
3163 }
3164
6ce64428
NA
3165 /*
3166 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3167 * is flushed in this case before copying.
3168 */
3169 if (unlikely(userfaultfd_wp(vmf->vma) &&
3170 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3171 flush_tlb_page(vmf->vma, vmf->address);
3172
a41b70d6
JK
3173 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3174 if (!vmf->page) {
251b97f5 3175 /*
64e45507
PF
3176 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3177 * VM_PFNMAP VMA.
251b97f5
PZ
3178 *
3179 * We should not cow pages in a shared writeable mapping.
dd906184 3180 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3181 */
3182 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3183 (VM_WRITE|VM_SHARED))
2994302b 3184 return wp_pfn_shared(vmf);
2f38ab2c 3185
82b0f8c3 3186 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3187 return wp_page_copy(vmf);
251b97f5 3188 }
1da177e4 3189
d08b3851 3190 /*
ee6a6457
PZ
3191 * Take out anonymous pages first, anonymous shared vmas are
3192 * not dirty accountable.
d08b3851 3193 */
52d1e606 3194 if (PageAnon(vmf->page)) {
09854ba9
LT
3195 struct page *page = vmf->page;
3196
3197 /* PageKsm() doesn't necessarily raise the page refcount */
3198 if (PageKsm(page) || page_count(page) != 1)
3199 goto copy;
3200 if (!trylock_page(page))
3201 goto copy;
3202 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3203 unlock_page(page);
52d1e606 3204 goto copy;
b009c024 3205 }
09854ba9
LT
3206 /*
3207 * Ok, we've got the only map reference, and the only
3208 * page count reference, and the page is locked,
3209 * it's dark out, and we're wearing sunglasses. Hit it.
3210 */
09854ba9 3211 unlock_page(page);
be068f29 3212 wp_page_reuse(vmf);
09854ba9 3213 return VM_FAULT_WRITE;
ee6a6457 3214 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3215 (VM_WRITE|VM_SHARED))) {
a41b70d6 3216 return wp_page_shared(vmf);
1da177e4 3217 }
52d1e606 3218copy:
1da177e4
LT
3219 /*
3220 * Ok, we need to copy. Oh, well..
3221 */
a41b70d6 3222 get_page(vmf->page);
28766805 3223
82b0f8c3 3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3225 return wp_page_copy(vmf);
1da177e4
LT
3226}
3227
97a89413 3228static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3229 unsigned long start_addr, unsigned long end_addr,
3230 struct zap_details *details)
3231{
f5cc4eef 3232 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3233}
3234
f808c13f 3235static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3236 struct zap_details *details)
3237{
3238 struct vm_area_struct *vma;
1da177e4
LT
3239 pgoff_t vba, vea, zba, zea;
3240
6b2dbba8 3241 vma_interval_tree_foreach(vma, root,
1da177e4 3242 details->first_index, details->last_index) {
1da177e4
LT
3243
3244 vba = vma->vm_pgoff;
d6e93217 3245 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3246 zba = details->first_index;
3247 if (zba < vba)
3248 zba = vba;
3249 zea = details->last_index;
3250 if (zea > vea)
3251 zea = vea;
3252
97a89413 3253 unmap_mapping_range_vma(vma,
1da177e4
LT
3254 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3255 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3256 details);
1da177e4
LT
3257 }
3258}
3259
22061a1f
HD
3260/**
3261 * unmap_mapping_page() - Unmap single page from processes.
3262 * @page: The locked page to be unmapped.
3263 *
3264 * Unmap this page from any userspace process which still has it mmaped.
3265 * Typically, for efficiency, the range of nearby pages has already been
3266 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3267 * truncation or invalidation holds the lock on a page, it may find that
3268 * the page has been remapped again: and then uses unmap_mapping_page()
3269 * to unmap it finally.
3270 */
3271void unmap_mapping_page(struct page *page)
3272{
3273 struct address_space *mapping = page->mapping;
3274 struct zap_details details = { };
3275
3276 VM_BUG_ON(!PageLocked(page));
3277 VM_BUG_ON(PageTail(page));
3278
3279 details.check_mapping = mapping;
3280 details.first_index = page->index;
3281 details.last_index = page->index + thp_nr_pages(page) - 1;
3282 details.single_page = page;
3283
3284 i_mmap_lock_write(mapping);
3285 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3286 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3287 i_mmap_unlock_write(mapping);
3288}
3289
977fbdcd
MW
3290/**
3291 * unmap_mapping_pages() - Unmap pages from processes.
3292 * @mapping: The address space containing pages to be unmapped.
3293 * @start: Index of first page to be unmapped.
3294 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3295 * @even_cows: Whether to unmap even private COWed pages.
3296 *
3297 * Unmap the pages in this address space from any userspace process which
3298 * has them mmaped. Generally, you want to remove COWed pages as well when
3299 * a file is being truncated, but not when invalidating pages from the page
3300 * cache.
3301 */
3302void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3303 pgoff_t nr, bool even_cows)
3304{
3305 struct zap_details details = { };
3306
3307 details.check_mapping = even_cows ? NULL : mapping;
3308 details.first_index = start;
3309 details.last_index = start + nr - 1;
3310 if (details.last_index < details.first_index)
3311 details.last_index = ULONG_MAX;
3312
3313 i_mmap_lock_write(mapping);
3314 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3315 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3316 i_mmap_unlock_write(mapping);
3317}
3318
1da177e4 3319/**
8a5f14a2 3320 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3321 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3322 * file.
3323 *
3d41088f 3324 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3325 * @holebegin: byte in first page to unmap, relative to the start of
3326 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3327 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3328 * must keep the partial page. In contrast, we must get rid of
3329 * partial pages.
3330 * @holelen: size of prospective hole in bytes. This will be rounded
3331 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3332 * end of the file.
3333 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3334 * but 0 when invalidating pagecache, don't throw away private data.
3335 */
3336void unmap_mapping_range(struct address_space *mapping,
3337 loff_t const holebegin, loff_t const holelen, int even_cows)
3338{
1da177e4
LT
3339 pgoff_t hba = holebegin >> PAGE_SHIFT;
3340 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3341
3342 /* Check for overflow. */
3343 if (sizeof(holelen) > sizeof(hlen)) {
3344 long long holeend =
3345 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3346 if (holeend & ~(long long)ULONG_MAX)
3347 hlen = ULONG_MAX - hba + 1;
3348 }
3349
977fbdcd 3350 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3351}
3352EXPORT_SYMBOL(unmap_mapping_range);
3353
1da177e4 3354/*
c1e8d7c6 3355 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3356 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3357 * We return with pte unmapped and unlocked.
3358 *
c1e8d7c6 3359 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3360 * as does filemap_fault().
1da177e4 3361 */
2b740303 3362vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3363{
82b0f8c3 3364 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3365 struct page *page = NULL, *swapcache;
2799e775 3366 struct swap_info_struct *si = NULL;
65500d23 3367 swp_entry_t entry;
1da177e4 3368 pte_t pte;
d065bd81 3369 int locked;
ad8c2ee8 3370 int exclusive = 0;
2b740303 3371 vm_fault_t ret = 0;
aae466b0 3372 void *shadow = NULL;
1da177e4 3373
eaf649eb 3374 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3375 goto out;
65500d23 3376
2994302b 3377 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3378 if (unlikely(non_swap_entry(entry))) {
3379 if (is_migration_entry(entry)) {
82b0f8c3
JK
3380 migration_entry_wait(vma->vm_mm, vmf->pmd,
3381 vmf->address);
5042db43 3382 } else if (is_device_private_entry(entry)) {
af5cdaf8 3383 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3384 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3385 } else if (is_hwpoison_entry(entry)) {
3386 ret = VM_FAULT_HWPOISON;
3387 } else {
2994302b 3388 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3389 ret = VM_FAULT_SIGBUS;
d1737fdb 3390 }
0697212a
CL
3391 goto out;
3392 }
0bcac06f 3393
2799e775
ML
3394 /* Prevent swapoff from happening to us. */
3395 si = get_swap_device(entry);
3396 if (unlikely(!si))
3397 goto out;
0bcac06f 3398
3d1c7fd9 3399 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3400 page = lookup_swap_cache(entry, vma, vmf->address);
3401 swapcache = page;
f8020772 3402
1da177e4 3403 if (!page) {
a449bf58
QC
3404 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3405 __swap_count(entry) == 1) {
0bcac06f 3406 /* skip swapcache */
e9e9b7ec
MK
3407 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3408 vmf->address);
0bcac06f
MK
3409 if (page) {
3410 __SetPageLocked(page);
3411 __SetPageSwapBacked(page);
4c6355b2 3412
0add0c77
SB
3413 if (mem_cgroup_swapin_charge_page(page,
3414 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3415 ret = VM_FAULT_OOM;
4c6355b2 3416 goto out_page;
545b1b07 3417 }
0add0c77 3418 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3419
aae466b0
JK
3420 shadow = get_shadow_from_swap_cache(entry);
3421 if (shadow)
3422 workingset_refault(page, shadow);
0076f029 3423
6058eaec 3424 lru_cache_add(page);
0add0c77
SB
3425
3426 /* To provide entry to swap_readpage() */
3427 set_page_private(page, entry.val);
0bcac06f 3428 swap_readpage(page, true);
0add0c77 3429 set_page_private(page, 0);
0bcac06f 3430 }
aa8d22a1 3431 } else {
e9e9b7ec
MK
3432 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3433 vmf);
aa8d22a1 3434 swapcache = page;
0bcac06f
MK
3435 }
3436
1da177e4
LT
3437 if (!page) {
3438 /*
8f4e2101
HD
3439 * Back out if somebody else faulted in this pte
3440 * while we released the pte lock.
1da177e4 3441 */
82b0f8c3
JK
3442 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3443 vmf->address, &vmf->ptl);
2994302b 3444 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3445 ret = VM_FAULT_OOM;
3d1c7fd9 3446 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3447 goto unlock;
1da177e4
LT
3448 }
3449
3450 /* Had to read the page from swap area: Major fault */
3451 ret = VM_FAULT_MAJOR;
f8891e5e 3452 count_vm_event(PGMAJFAULT);
2262185c 3453 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3454 } else if (PageHWPoison(page)) {
71f72525
WF
3455 /*
3456 * hwpoisoned dirty swapcache pages are kept for killing
3457 * owner processes (which may be unknown at hwpoison time)
3458 */
d1737fdb 3459 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3460 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3461 goto out_release;
1da177e4
LT
3462 }
3463
82b0f8c3 3464 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3465
3d1c7fd9 3466 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3467 if (!locked) {
3468 ret |= VM_FAULT_RETRY;
3469 goto out_release;
3470 }
073e587e 3471
4969c119 3472 /*
31c4a3d3
HD
3473 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3474 * release the swapcache from under us. The page pin, and pte_same
3475 * test below, are not enough to exclude that. Even if it is still
3476 * swapcache, we need to check that the page's swap has not changed.
4969c119 3477 */
0bcac06f
MK
3478 if (unlikely((!PageSwapCache(page) ||
3479 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3480 goto out_page;
3481
82b0f8c3 3482 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3483 if (unlikely(!page)) {
3484 ret = VM_FAULT_OOM;
3485 page = swapcache;
cbf86cfe 3486 goto out_page;
5ad64688
HD
3487 }
3488
9d82c694 3489 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3490
1da177e4 3491 /*
8f4e2101 3492 * Back out if somebody else already faulted in this pte.
1da177e4 3493 */
82b0f8c3
JK
3494 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3495 &vmf->ptl);
2994302b 3496 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3497 goto out_nomap;
b8107480
KK
3498
3499 if (unlikely(!PageUptodate(page))) {
3500 ret = VM_FAULT_SIGBUS;
3501 goto out_nomap;
1da177e4
LT
3502 }
3503
8c7c6e34
KH
3504 /*
3505 * The page isn't present yet, go ahead with the fault.
3506 *
3507 * Be careful about the sequence of operations here.
3508 * To get its accounting right, reuse_swap_page() must be called
3509 * while the page is counted on swap but not yet in mapcount i.e.
3510 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3511 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3512 */
1da177e4 3513
bae473a4
KS
3514 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3515 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3516 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3517 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3518 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3519 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3520 ret |= VM_FAULT_WRITE;
d281ee61 3521 exclusive = RMAP_EXCLUSIVE;
1da177e4 3522 }
1da177e4 3523 flush_icache_page(vma, page);
2994302b 3524 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3525 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3526 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3527 pte = pte_mkuffd_wp(pte);
3528 pte = pte_wrprotect(pte);
3529 }
82b0f8c3 3530 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3531 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3532 vmf->orig_pte = pte;
0bcac06f
MK
3533
3534 /* ksm created a completely new copy */
3535 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3536 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3537 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3538 } else {
3539 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3540 }
1da177e4 3541
c475a8ab 3542 swap_free(entry);
5ccc5aba
VD
3543 if (mem_cgroup_swap_full(page) ||
3544 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3545 try_to_free_swap(page);
c475a8ab 3546 unlock_page(page);
0bcac06f 3547 if (page != swapcache && swapcache) {
4969c119
AA
3548 /*
3549 * Hold the lock to avoid the swap entry to be reused
3550 * until we take the PT lock for the pte_same() check
3551 * (to avoid false positives from pte_same). For
3552 * further safety release the lock after the swap_free
3553 * so that the swap count won't change under a
3554 * parallel locked swapcache.
3555 */
3556 unlock_page(swapcache);
09cbfeaf 3557 put_page(swapcache);
4969c119 3558 }
c475a8ab 3559
82b0f8c3 3560 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3561 ret |= do_wp_page(vmf);
61469f1d
HD
3562 if (ret & VM_FAULT_ERROR)
3563 ret &= VM_FAULT_ERROR;
1da177e4
LT
3564 goto out;
3565 }
3566
3567 /* No need to invalidate - it was non-present before */
82b0f8c3 3568 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3569unlock:
82b0f8c3 3570 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3571out:
2799e775
ML
3572 if (si)
3573 put_swap_device(si);
1da177e4 3574 return ret;
b8107480 3575out_nomap:
82b0f8c3 3576 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3577out_page:
b8107480 3578 unlock_page(page);
4779cb31 3579out_release:
09cbfeaf 3580 put_page(page);
0bcac06f 3581 if (page != swapcache && swapcache) {
4969c119 3582 unlock_page(swapcache);
09cbfeaf 3583 put_page(swapcache);
4969c119 3584 }
2799e775
ML
3585 if (si)
3586 put_swap_device(si);
65500d23 3587 return ret;
1da177e4
LT
3588}
3589
3590/*
c1e8d7c6 3591 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3592 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3593 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3594 */
2b740303 3595static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3596{
82b0f8c3 3597 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3598 struct page *page;
2b740303 3599 vm_fault_t ret = 0;
1da177e4 3600 pte_t entry;
1da177e4 3601
6b7339f4
KS
3602 /* File mapping without ->vm_ops ? */
3603 if (vma->vm_flags & VM_SHARED)
3604 return VM_FAULT_SIGBUS;
3605
7267ec00
KS
3606 /*
3607 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3608 * pte_offset_map() on pmds where a huge pmd might be created
3609 * from a different thread.
3610 *
3e4e28c5 3611 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3612 * parallel threads are excluded by other means.
3613 *
3e4e28c5 3614 * Here we only have mmap_read_lock(mm).
7267ec00 3615 */
4cf58924 3616 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3617 return VM_FAULT_OOM;
3618
f9ce0be7 3619 /* See comment in handle_pte_fault() */
82b0f8c3 3620 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3621 return 0;
3622
11ac5524 3623 /* Use the zero-page for reads */
82b0f8c3 3624 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3625 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3626 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3627 vma->vm_page_prot));
82b0f8c3
JK
3628 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3629 vmf->address, &vmf->ptl);
7df67697
BM
3630 if (!pte_none(*vmf->pte)) {
3631 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3632 goto unlock;
7df67697 3633 }
6b31d595
MH
3634 ret = check_stable_address_space(vma->vm_mm);
3635 if (ret)
3636 goto unlock;
6b251fc9
AA
3637 /* Deliver the page fault to userland, check inside PT lock */
3638 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3639 pte_unmap_unlock(vmf->pte, vmf->ptl);
3640 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3641 }
a13ea5b7
HD
3642 goto setpte;
3643 }
3644
557ed1fa 3645 /* Allocate our own private page. */
557ed1fa
NP
3646 if (unlikely(anon_vma_prepare(vma)))
3647 goto oom;
82b0f8c3 3648 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3649 if (!page)
3650 goto oom;
eb3c24f3 3651
d9eb1ea2 3652 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3653 goto oom_free_page;
9d82c694 3654 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3655
52f37629
MK
3656 /*
3657 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3658 * preceding stores to the page contents become visible before
52f37629
MK
3659 * the set_pte_at() write.
3660 */
0ed361de 3661 __SetPageUptodate(page);
8f4e2101 3662
557ed1fa 3663 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3664 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3665 if (vma->vm_flags & VM_WRITE)
3666 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3667
82b0f8c3
JK
3668 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3669 &vmf->ptl);
7df67697
BM
3670 if (!pte_none(*vmf->pte)) {
3671 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3672 goto release;
7df67697 3673 }
9ba69294 3674
6b31d595
MH
3675 ret = check_stable_address_space(vma->vm_mm);
3676 if (ret)
3677 goto release;
3678
6b251fc9
AA
3679 /* Deliver the page fault to userland, check inside PT lock */
3680 if (userfaultfd_missing(vma)) {
82b0f8c3 3681 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3682 put_page(page);
82b0f8c3 3683 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3684 }
3685
bae473a4 3686 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3687 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3688 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3689setpte:
82b0f8c3 3690 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3691
3692 /* No need to invalidate - it was non-present before */
82b0f8c3 3693 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3694unlock:
82b0f8c3 3695 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3696 return ret;
8f4e2101 3697release:
09cbfeaf 3698 put_page(page);
8f4e2101 3699 goto unlock;
8a9f3ccd 3700oom_free_page:
09cbfeaf 3701 put_page(page);
65500d23 3702oom:
1da177e4
LT
3703 return VM_FAULT_OOM;
3704}
3705
9a95f3cf 3706/*
c1e8d7c6 3707 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3708 * released depending on flags and vma->vm_ops->fault() return value.
3709 * See filemap_fault() and __lock_page_retry().
3710 */
2b740303 3711static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3712{
82b0f8c3 3713 struct vm_area_struct *vma = vmf->vma;
2b740303 3714 vm_fault_t ret;
7eae74af 3715
63f3655f
MH
3716 /*
3717 * Preallocate pte before we take page_lock because this might lead to
3718 * deadlocks for memcg reclaim which waits for pages under writeback:
3719 * lock_page(A)
3720 * SetPageWriteback(A)
3721 * unlock_page(A)
3722 * lock_page(B)
3723 * lock_page(B)
d383807a 3724 * pte_alloc_one
63f3655f
MH
3725 * shrink_page_list
3726 * wait_on_page_writeback(A)
3727 * SetPageWriteback(B)
3728 * unlock_page(B)
3729 * # flush A, B to clear the writeback
3730 */
3731 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3732 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3733 if (!vmf->prealloc_pte)
3734 return VM_FAULT_OOM;
3735 smp_wmb(); /* See comment in __pte_alloc() */
3736 }
3737
11bac800 3738 ret = vma->vm_ops->fault(vmf);
3917048d 3739 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3740 VM_FAULT_DONE_COW)))
bc2466e4 3741 return ret;
7eae74af 3742
667240e0 3743 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3744 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3745 unlock_page(vmf->page);
3746 put_page(vmf->page);
936ca80d 3747 vmf->page = NULL;
7eae74af
KS
3748 return VM_FAULT_HWPOISON;
3749 }
3750
3751 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3752 lock_page(vmf->page);
7eae74af 3753 else
667240e0 3754 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3755
7eae74af
KS
3756 return ret;
3757}
3758
396bcc52 3759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3760static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3761{
82b0f8c3 3762 struct vm_area_struct *vma = vmf->vma;
953c66c2 3763
82b0f8c3 3764 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3765 /*
3766 * We are going to consume the prealloc table,
3767 * count that as nr_ptes.
3768 */
c4812909 3769 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3770 vmf->prealloc_pte = NULL;
953c66c2
AK
3771}
3772
f9ce0be7 3773vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3774{
82b0f8c3
JK
3775 struct vm_area_struct *vma = vmf->vma;
3776 bool write = vmf->flags & FAULT_FLAG_WRITE;
3777 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3778 pmd_t entry;
2b740303 3779 int i;
d01ac3c3 3780 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3781
3782 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3783 return ret;
10102459 3784
10102459 3785 page = compound_head(page);
d01ac3c3
MWO
3786 if (compound_order(page) != HPAGE_PMD_ORDER)
3787 return ret;
10102459 3788
953c66c2 3789 /*
f0953a1b 3790 * Archs like ppc64 need additional space to store information
953c66c2
AK
3791 * related to pte entry. Use the preallocated table for that.
3792 */
82b0f8c3 3793 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3794 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3795 if (!vmf->prealloc_pte)
953c66c2
AK
3796 return VM_FAULT_OOM;
3797 smp_wmb(); /* See comment in __pte_alloc() */
3798 }
3799
82b0f8c3
JK
3800 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3801 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3802 goto out;
3803
3804 for (i = 0; i < HPAGE_PMD_NR; i++)
3805 flush_icache_page(vma, page + i);
3806
3807 entry = mk_huge_pmd(page, vma->vm_page_prot);
3808 if (write)
f55e1014 3809 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3810
fadae295 3811 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3812 page_add_file_rmap(page, true);
953c66c2
AK
3813 /*
3814 * deposit and withdraw with pmd lock held
3815 */
3816 if (arch_needs_pgtable_deposit())
82b0f8c3 3817 deposit_prealloc_pte(vmf);
10102459 3818
82b0f8c3 3819 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3820
82b0f8c3 3821 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3822
3823 /* fault is handled */
3824 ret = 0;
95ecedcd 3825 count_vm_event(THP_FILE_MAPPED);
10102459 3826out:
82b0f8c3 3827 spin_unlock(vmf->ptl);
10102459
KS
3828 return ret;
3829}
3830#else
f9ce0be7 3831vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3832{
f9ce0be7 3833 return VM_FAULT_FALLBACK;
10102459
KS
3834}
3835#endif
3836
9d3af4b4 3837void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3838{
82b0f8c3
JK
3839 struct vm_area_struct *vma = vmf->vma;
3840 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3841 bool prefault = vmf->address != addr;
3bb97794 3842 pte_t entry;
7267ec00 3843
3bb97794
KS
3844 flush_icache_page(vma, page);
3845 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3846
3847 if (prefault && arch_wants_old_prefaulted_pte())
3848 entry = pte_mkold(entry);
50c25ee9
TB
3849 else
3850 entry = pte_sw_mkyoung(entry);
46bdb427 3851
3bb97794
KS
3852 if (write)
3853 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3854 /* copy-on-write page */
3855 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3856 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3857 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3858 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3859 } else {
eca56ff9 3860 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3861 page_add_file_rmap(page, false);
3bb97794 3862 }
9d3af4b4 3863 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3864}
3865
9118c0cb
JK
3866/**
3867 * finish_fault - finish page fault once we have prepared the page to fault
3868 *
3869 * @vmf: structure describing the fault
3870 *
3871 * This function handles all that is needed to finish a page fault once the
3872 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3873 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3874 * addition.
9118c0cb
JK
3875 *
3876 * The function expects the page to be locked and on success it consumes a
3877 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3878 *
3879 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3880 */
2b740303 3881vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3882{
f9ce0be7 3883 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3884 struct page *page;
f9ce0be7 3885 vm_fault_t ret;
9118c0cb
JK
3886
3887 /* Did we COW the page? */
f9ce0be7 3888 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3889 page = vmf->cow_page;
3890 else
3891 page = vmf->page;
6b31d595
MH
3892
3893 /*
3894 * check even for read faults because we might have lost our CoWed
3895 * page
3896 */
f9ce0be7
KS
3897 if (!(vma->vm_flags & VM_SHARED)) {
3898 ret = check_stable_address_space(vma->vm_mm);
3899 if (ret)
3900 return ret;
3901 }
3902
3903 if (pmd_none(*vmf->pmd)) {
3904 if (PageTransCompound(page)) {
3905 ret = do_set_pmd(vmf, page);
3906 if (ret != VM_FAULT_FALLBACK)
3907 return ret;
3908 }
3909
3910 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3911 return VM_FAULT_OOM;
3912 }
3913
3914 /* See comment in handle_pte_fault() */
3915 if (pmd_devmap_trans_unstable(vmf->pmd))
3916 return 0;
3917
3918 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3919 vmf->address, &vmf->ptl);
3920 ret = 0;
3921 /* Re-check under ptl */
3922 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3923 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3924 else
3925 ret = VM_FAULT_NOPAGE;
3926
3927 update_mmu_tlb(vma, vmf->address, vmf->pte);
3928 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3929 return ret;
3930}
3931
3a91053a
KS
3932static unsigned long fault_around_bytes __read_mostly =
3933 rounddown_pow_of_two(65536);
a9b0f861 3934
a9b0f861
KS
3935#ifdef CONFIG_DEBUG_FS
3936static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3937{
a9b0f861 3938 *val = fault_around_bytes;
1592eef0
KS
3939 return 0;
3940}
3941
b4903d6e 3942/*
da391d64
WK
3943 * fault_around_bytes must be rounded down to the nearest page order as it's
3944 * what do_fault_around() expects to see.
b4903d6e 3945 */
a9b0f861 3946static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3947{
a9b0f861 3948 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3949 return -EINVAL;
b4903d6e
AR
3950 if (val > PAGE_SIZE)
3951 fault_around_bytes = rounddown_pow_of_two(val);
3952 else
3953 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3954 return 0;
3955}
0a1345f8 3956DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3957 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3958
3959static int __init fault_around_debugfs(void)
3960{
d9f7979c
GKH
3961 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3962 &fault_around_bytes_fops);
1592eef0
KS
3963 return 0;
3964}
3965late_initcall(fault_around_debugfs);
1592eef0 3966#endif
8c6e50b0 3967
1fdb412b
KS
3968/*
3969 * do_fault_around() tries to map few pages around the fault address. The hope
3970 * is that the pages will be needed soon and this will lower the number of
3971 * faults to handle.
3972 *
3973 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3974 * not ready to be mapped: not up-to-date, locked, etc.
3975 *
3976 * This function is called with the page table lock taken. In the split ptlock
3977 * case the page table lock only protects only those entries which belong to
3978 * the page table corresponding to the fault address.
3979 *
3980 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3981 * only once.
3982 *
da391d64
WK
3983 * fault_around_bytes defines how many bytes we'll try to map.
3984 * do_fault_around() expects it to be set to a power of two less than or equal
3985 * to PTRS_PER_PTE.
1fdb412b 3986 *
da391d64
WK
3987 * The virtual address of the area that we map is naturally aligned to
3988 * fault_around_bytes rounded down to the machine page size
3989 * (and therefore to page order). This way it's easier to guarantee
3990 * that we don't cross page table boundaries.
1fdb412b 3991 */
2b740303 3992static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3993{
82b0f8c3 3994 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3995 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3996 pgoff_t end_pgoff;
2b740303 3997 int off;
8c6e50b0 3998
4db0c3c2 3999 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4000 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4001
f9ce0be7
KS
4002 address = max(address & mask, vmf->vma->vm_start);
4003 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4004 start_pgoff -= off;
8c6e50b0
KS
4005
4006 /*
da391d64
WK
4007 * end_pgoff is either the end of the page table, the end of
4008 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4009 */
bae473a4 4010 end_pgoff = start_pgoff -
f9ce0be7 4011 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4012 PTRS_PER_PTE - 1;
82b0f8c3 4013 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4014 start_pgoff + nr_pages - 1);
8c6e50b0 4015
82b0f8c3 4016 if (pmd_none(*vmf->pmd)) {
4cf58924 4017 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4018 if (!vmf->prealloc_pte)
f9ce0be7 4019 return VM_FAULT_OOM;
7267ec00 4020 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
4021 }
4022
f9ce0be7 4023 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4024}
4025
2b740303 4026static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4027{
82b0f8c3 4028 struct vm_area_struct *vma = vmf->vma;
2b740303 4029 vm_fault_t ret = 0;
8c6e50b0
KS
4030
4031 /*
4032 * Let's call ->map_pages() first and use ->fault() as fallback
4033 * if page by the offset is not ready to be mapped (cold cache or
4034 * something).
4035 */
9b4bdd2f 4036 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4037 if (likely(!userfaultfd_minor(vmf->vma))) {
4038 ret = do_fault_around(vmf);
4039 if (ret)
4040 return ret;
4041 }
8c6e50b0 4042 }
e655fb29 4043
936ca80d 4044 ret = __do_fault(vmf);
e655fb29
KS
4045 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4046 return ret;
4047
9118c0cb 4048 ret |= finish_fault(vmf);
936ca80d 4049 unlock_page(vmf->page);
7267ec00 4050 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4051 put_page(vmf->page);
e655fb29
KS
4052 return ret;
4053}
4054
2b740303 4055static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4056{
82b0f8c3 4057 struct vm_area_struct *vma = vmf->vma;
2b740303 4058 vm_fault_t ret;
ec47c3b9
KS
4059
4060 if (unlikely(anon_vma_prepare(vma)))
4061 return VM_FAULT_OOM;
4062
936ca80d
JK
4063 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4064 if (!vmf->cow_page)
ec47c3b9
KS
4065 return VM_FAULT_OOM;
4066
d9eb1ea2 4067 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4068 put_page(vmf->cow_page);
ec47c3b9
KS
4069 return VM_FAULT_OOM;
4070 }
9d82c694 4071 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4072
936ca80d 4073 ret = __do_fault(vmf);
ec47c3b9
KS
4074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4075 goto uncharge_out;
3917048d
JK
4076 if (ret & VM_FAULT_DONE_COW)
4077 return ret;
ec47c3b9 4078
b1aa812b 4079 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4080 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4081
9118c0cb 4082 ret |= finish_fault(vmf);
b1aa812b
JK
4083 unlock_page(vmf->page);
4084 put_page(vmf->page);
7267ec00
KS
4085 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4086 goto uncharge_out;
ec47c3b9
KS
4087 return ret;
4088uncharge_out:
936ca80d 4089 put_page(vmf->cow_page);
ec47c3b9
KS
4090 return ret;
4091}
4092
2b740303 4093static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4094{
82b0f8c3 4095 struct vm_area_struct *vma = vmf->vma;
2b740303 4096 vm_fault_t ret, tmp;
1d65f86d 4097
936ca80d 4098 ret = __do_fault(vmf);
7eae74af 4099 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4100 return ret;
1da177e4
LT
4101
4102 /*
f0c6d4d2
KS
4103 * Check if the backing address space wants to know that the page is
4104 * about to become writable
1da177e4 4105 */
fb09a464 4106 if (vma->vm_ops->page_mkwrite) {
936ca80d 4107 unlock_page(vmf->page);
38b8cb7f 4108 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4109 if (unlikely(!tmp ||
4110 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4111 put_page(vmf->page);
fb09a464 4112 return tmp;
4294621f 4113 }
fb09a464
KS
4114 }
4115
9118c0cb 4116 ret |= finish_fault(vmf);
7267ec00
KS
4117 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4118 VM_FAULT_RETRY))) {
936ca80d
JK
4119 unlock_page(vmf->page);
4120 put_page(vmf->page);
f0c6d4d2 4121 return ret;
1da177e4 4122 }
b827e496 4123
89b15332 4124 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4125 return ret;
54cb8821 4126}
d00806b1 4127
9a95f3cf 4128/*
c1e8d7c6 4129 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4130 * but allow concurrent faults).
c1e8d7c6 4131 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4132 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4133 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4134 * by other thread calling munmap()).
9a95f3cf 4135 */
2b740303 4136static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4137{
82b0f8c3 4138 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4139 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4140 vm_fault_t ret;
54cb8821 4141
ff09d7ec
AK
4142 /*
4143 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4144 */
4145 if (!vma->vm_ops->fault) {
4146 /*
4147 * If we find a migration pmd entry or a none pmd entry, which
4148 * should never happen, return SIGBUS
4149 */
4150 if (unlikely(!pmd_present(*vmf->pmd)))
4151 ret = VM_FAULT_SIGBUS;
4152 else {
4153 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4154 vmf->pmd,
4155 vmf->address,
4156 &vmf->ptl);
4157 /*
4158 * Make sure this is not a temporary clearing of pte
4159 * by holding ptl and checking again. A R/M/W update
4160 * of pte involves: take ptl, clearing the pte so that
4161 * we don't have concurrent modification by hardware
4162 * followed by an update.
4163 */
4164 if (unlikely(pte_none(*vmf->pte)))
4165 ret = VM_FAULT_SIGBUS;
4166 else
4167 ret = VM_FAULT_NOPAGE;
4168
4169 pte_unmap_unlock(vmf->pte, vmf->ptl);
4170 }
4171 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4172 ret = do_read_fault(vmf);
4173 else if (!(vma->vm_flags & VM_SHARED))
4174 ret = do_cow_fault(vmf);
4175 else
4176 ret = do_shared_fault(vmf);
4177
4178 /* preallocated pagetable is unused: free it */
4179 if (vmf->prealloc_pte) {
fc8efd2d 4180 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4181 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4182 }
4183 return ret;
54cb8821
NP
4184}
4185
f4c0d836
YS
4186int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4187 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4188{
4189 get_page(page);
4190
4191 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4192 if (page_nid == numa_node_id()) {
9532fec1 4193 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4194 *flags |= TNF_FAULT_LOCAL;
4195 }
9532fec1
MG
4196
4197 return mpol_misplaced(page, vma, addr);
4198}
4199
2b740303 4200static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4201{
82b0f8c3 4202 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4203 struct page *page = NULL;
98fa15f3 4204 int page_nid = NUMA_NO_NODE;
90572890 4205 int last_cpupid;
cbee9f88 4206 int target_nid;
04a86453 4207 pte_t pte, old_pte;
288bc549 4208 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4209 int flags = 0;
d10e63f2
MG
4210
4211 /*
166f61b9
TH
4212 * The "pte" at this point cannot be used safely without
4213 * validation through pte_unmap_same(). It's of NUMA type but
4214 * the pfn may be screwed if the read is non atomic.
166f61b9 4215 */
82b0f8c3
JK
4216 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4217 spin_lock(vmf->ptl);
cee216a6 4218 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4219 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4220 goto out;
4221 }
4222
b99a342d
HY
4223 /* Get the normal PTE */
4224 old_pte = ptep_get(vmf->pte);
04a86453 4225 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4226
82b0f8c3 4227 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4228 if (!page)
4229 goto out_map;
d10e63f2 4230
e81c4802 4231 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4232 if (PageCompound(page))
4233 goto out_map;
e81c4802 4234
6688cc05 4235 /*
bea66fbd
MG
4236 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4237 * much anyway since they can be in shared cache state. This misses
4238 * the case where a mapping is writable but the process never writes
4239 * to it but pte_write gets cleared during protection updates and
4240 * pte_dirty has unpredictable behaviour between PTE scan updates,
4241 * background writeback, dirty balancing and application behaviour.
6688cc05 4242 */
b99a342d 4243 if (!was_writable)
6688cc05
PZ
4244 flags |= TNF_NO_GROUP;
4245
dabe1d99
RR
4246 /*
4247 * Flag if the page is shared between multiple address spaces. This
4248 * is later used when determining whether to group tasks together
4249 */
4250 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4251 flags |= TNF_SHARED;
4252
90572890 4253 last_cpupid = page_cpupid_last(page);
8191acbd 4254 page_nid = page_to_nid(page);
82b0f8c3 4255 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4256 &flags);
98fa15f3 4257 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4258 put_page(page);
b99a342d 4259 goto out_map;
4daae3b4 4260 }
b99a342d 4261 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4262
4263 /* Migrate to the requested node */
bf90ac19 4264 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4265 page_nid = target_nid;
6688cc05 4266 flags |= TNF_MIGRATED;
b99a342d 4267 } else {
074c2381 4268 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4269 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4270 spin_lock(vmf->ptl);
4271 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4272 pte_unmap_unlock(vmf->pte, vmf->ptl);
4273 goto out;
4274 }
4275 goto out_map;
4276 }
4daae3b4
MG
4277
4278out:
98fa15f3 4279 if (page_nid != NUMA_NO_NODE)
6688cc05 4280 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4281 return 0;
b99a342d
HY
4282out_map:
4283 /*
4284 * Make it present again, depending on how arch implements
4285 * non-accessible ptes, some can allow access by kernel mode.
4286 */
4287 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4288 pte = pte_modify(old_pte, vma->vm_page_prot);
4289 pte = pte_mkyoung(pte);
4290 if (was_writable)
4291 pte = pte_mkwrite(pte);
4292 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4293 update_mmu_cache(vma, vmf->address, vmf->pte);
4294 pte_unmap_unlock(vmf->pte, vmf->ptl);
4295 goto out;
d10e63f2
MG
4296}
4297
2b740303 4298static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4299{
f4200391 4300 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4301 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4302 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4303 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4304 return VM_FAULT_FALLBACK;
4305}
4306
183f24aa 4307/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4308static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4309{
529b930b 4310 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4311 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4312 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4313 return do_huge_pmd_wp_page(vmf);
529b930b 4314 }
327e9fd4
THV
4315 if (vmf->vma->vm_ops->huge_fault) {
4316 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4317
4318 if (!(ret & VM_FAULT_FALLBACK))
4319 return ret;
4320 }
af9e4d5f 4321
327e9fd4 4322 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4323 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4324
b96375f7
MW
4325 return VM_FAULT_FALLBACK;
4326}
4327
2b740303 4328static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4329{
327e9fd4
THV
4330#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4331 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4332 /* No support for anonymous transparent PUD pages yet */
4333 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4334 goto split;
4335 if (vmf->vma->vm_ops->huge_fault) {
4336 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4337
4338 if (!(ret & VM_FAULT_FALLBACK))
4339 return ret;
4340 }
4341split:
4342 /* COW or write-notify not handled on PUD level: split pud.*/
4343 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4344#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4345 return VM_FAULT_FALLBACK;
4346}
4347
2b740303 4348static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4349{
4350#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4351 /* No support for anonymous transparent PUD pages yet */
4352 if (vma_is_anonymous(vmf->vma))
4353 return VM_FAULT_FALLBACK;
4354 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4355 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4356#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4357 return VM_FAULT_FALLBACK;
4358}
4359
1da177e4
LT
4360/*
4361 * These routines also need to handle stuff like marking pages dirty
4362 * and/or accessed for architectures that don't do it in hardware (most
4363 * RISC architectures). The early dirtying is also good on the i386.
4364 *
4365 * There is also a hook called "update_mmu_cache()" that architectures
4366 * with external mmu caches can use to update those (ie the Sparc or
4367 * PowerPC hashed page tables that act as extended TLBs).
4368 *
c1e8d7c6 4369 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4370 * concurrent faults).
9a95f3cf 4371 *
c1e8d7c6 4372 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4373 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4374 */
2b740303 4375static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4376{
4377 pte_t entry;
4378
82b0f8c3 4379 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4380 /*
4381 * Leave __pte_alloc() until later: because vm_ops->fault may
4382 * want to allocate huge page, and if we expose page table
4383 * for an instant, it will be difficult to retract from
4384 * concurrent faults and from rmap lookups.
4385 */
82b0f8c3 4386 vmf->pte = NULL;
7267ec00 4387 } else {
f9ce0be7
KS
4388 /*
4389 * If a huge pmd materialized under us just retry later. Use
4390 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4391 * of pmd_trans_huge() to ensure the pmd didn't become
4392 * pmd_trans_huge under us and then back to pmd_none, as a
4393 * result of MADV_DONTNEED running immediately after a huge pmd
4394 * fault in a different thread of this mm, in turn leading to a
4395 * misleading pmd_trans_huge() retval. All we have to ensure is
4396 * that it is a regular pmd that we can walk with
4397 * pte_offset_map() and we can do that through an atomic read
4398 * in C, which is what pmd_trans_unstable() provides.
4399 */
d0f0931d 4400 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4401 return 0;
4402 /*
4403 * A regular pmd is established and it can't morph into a huge
4404 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4405 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4406 * So now it's safe to run pte_offset_map().
4407 */
82b0f8c3 4408 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4409 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4410
4411 /*
4412 * some architectures can have larger ptes than wordsize,
4413 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4414 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4415 * accesses. The code below just needs a consistent view
4416 * for the ifs and we later double check anyway with the
7267ec00
KS
4417 * ptl lock held. So here a barrier will do.
4418 */
4419 barrier();
2994302b 4420 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4421 pte_unmap(vmf->pte);
4422 vmf->pte = NULL;
65500d23 4423 }
1da177e4
LT
4424 }
4425
82b0f8c3
JK
4426 if (!vmf->pte) {
4427 if (vma_is_anonymous(vmf->vma))
4428 return do_anonymous_page(vmf);
7267ec00 4429 else
82b0f8c3 4430 return do_fault(vmf);
7267ec00
KS
4431 }
4432
2994302b
JK
4433 if (!pte_present(vmf->orig_pte))
4434 return do_swap_page(vmf);
7267ec00 4435
2994302b
JK
4436 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4437 return do_numa_page(vmf);
d10e63f2 4438
82b0f8c3
JK
4439 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4440 spin_lock(vmf->ptl);
2994302b 4441 entry = vmf->orig_pte;
7df67697
BM
4442 if (unlikely(!pte_same(*vmf->pte, entry))) {
4443 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4444 goto unlock;
7df67697 4445 }
82b0f8c3 4446 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4447 if (!pte_write(entry))
2994302b 4448 return do_wp_page(vmf);
1da177e4
LT
4449 entry = pte_mkdirty(entry);
4450 }
4451 entry = pte_mkyoung(entry);
82b0f8c3
JK
4452 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4453 vmf->flags & FAULT_FLAG_WRITE)) {
4454 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4455 } else {
b7333b58
YS
4456 /* Skip spurious TLB flush for retried page fault */
4457 if (vmf->flags & FAULT_FLAG_TRIED)
4458 goto unlock;
1a44e149
AA
4459 /*
4460 * This is needed only for protection faults but the arch code
4461 * is not yet telling us if this is a protection fault or not.
4462 * This still avoids useless tlb flushes for .text page faults
4463 * with threads.
4464 */
82b0f8c3
JK
4465 if (vmf->flags & FAULT_FLAG_WRITE)
4466 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4467 }
8f4e2101 4468unlock:
82b0f8c3 4469 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4470 return 0;
1da177e4
LT
4471}
4472
4473/*
4474 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4475 *
c1e8d7c6 4476 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4477 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4478 */
2b740303
SJ
4479static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4480 unsigned long address, unsigned int flags)
1da177e4 4481{
82b0f8c3 4482 struct vm_fault vmf = {
bae473a4 4483 .vma = vma,
1a29d85e 4484 .address = address & PAGE_MASK,
bae473a4 4485 .flags = flags,
0721ec8b 4486 .pgoff = linear_page_index(vma, address),
667240e0 4487 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4488 };
fde26bed 4489 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4490 struct mm_struct *mm = vma->vm_mm;
1da177e4 4491 pgd_t *pgd;
c2febafc 4492 p4d_t *p4d;
2b740303 4493 vm_fault_t ret;
1da177e4 4494
1da177e4 4495 pgd = pgd_offset(mm, address);
c2febafc
KS
4496 p4d = p4d_alloc(mm, pgd, address);
4497 if (!p4d)
4498 return VM_FAULT_OOM;
a00cc7d9 4499
c2febafc 4500 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4501 if (!vmf.pud)
c74df32c 4502 return VM_FAULT_OOM;
625110b5 4503retry_pud:
7635d9cb 4504 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4505 ret = create_huge_pud(&vmf);
4506 if (!(ret & VM_FAULT_FALLBACK))
4507 return ret;
4508 } else {
4509 pud_t orig_pud = *vmf.pud;
4510
4511 barrier();
4512 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4513
a00cc7d9
MW
4514 /* NUMA case for anonymous PUDs would go here */
4515
f6f37321 4516 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4517 ret = wp_huge_pud(&vmf, orig_pud);
4518 if (!(ret & VM_FAULT_FALLBACK))
4519 return ret;
4520 } else {
4521 huge_pud_set_accessed(&vmf, orig_pud);
4522 return 0;
4523 }
4524 }
4525 }
4526
4527 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4528 if (!vmf.pmd)
c74df32c 4529 return VM_FAULT_OOM;
625110b5
TH
4530
4531 /* Huge pud page fault raced with pmd_alloc? */
4532 if (pud_trans_unstable(vmf.pud))
4533 goto retry_pud;
4534
7635d9cb 4535 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4536 ret = create_huge_pmd(&vmf);
c0292554
KS
4537 if (!(ret & VM_FAULT_FALLBACK))
4538 return ret;
71e3aac0 4539 } else {
5db4f15c 4540 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4541
71e3aac0 4542 barrier();
5db4f15c 4543 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4544 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4545 !is_pmd_migration_entry(vmf.orig_pmd));
4546 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4547 pmd_migration_entry_wait(mm, vmf.pmd);
4548 return 0;
4549 }
5db4f15c
YS
4550 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4551 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4552 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4553
5db4f15c
YS
4554 if (dirty && !pmd_write(vmf.orig_pmd)) {
4555 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4556 if (!(ret & VM_FAULT_FALLBACK))
4557 return ret;
a1dd450b 4558 } else {
5db4f15c 4559 huge_pmd_set_accessed(&vmf);
9845cbbd 4560 return 0;
1f1d06c3 4561 }
71e3aac0
AA
4562 }
4563 }
4564
82b0f8c3 4565 return handle_pte_fault(&vmf);
1da177e4
LT
4566}
4567
bce617ed 4568/**
f0953a1b 4569 * mm_account_fault - Do page fault accounting
bce617ed
PX
4570 *
4571 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4572 * of perf event counters, but we'll still do the per-task accounting to
4573 * the task who triggered this page fault.
4574 * @address: the faulted address.
4575 * @flags: the fault flags.
4576 * @ret: the fault retcode.
4577 *
f0953a1b 4578 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4579 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4580 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4581 * still be in per-arch page fault handlers at the entry of page fault.
4582 */
4583static inline void mm_account_fault(struct pt_regs *regs,
4584 unsigned long address, unsigned int flags,
4585 vm_fault_t ret)
4586{
4587 bool major;
4588
4589 /*
4590 * We don't do accounting for some specific faults:
4591 *
4592 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4593 * includes arch_vma_access_permitted() failing before reaching here.
4594 * So this is not a "this many hardware page faults" counter. We
4595 * should use the hw profiling for that.
4596 *
4597 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4598 * once they're completed.
4599 */
4600 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4601 return;
4602
4603 /*
4604 * We define the fault as a major fault when the final successful fault
4605 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4606 * handle it immediately previously).
4607 */
4608 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4609
a2beb5f1
PX
4610 if (major)
4611 current->maj_flt++;
4612 else
4613 current->min_flt++;
4614
bce617ed 4615 /*
a2beb5f1
PX
4616 * If the fault is done for GUP, regs will be NULL. We only do the
4617 * accounting for the per thread fault counters who triggered the
4618 * fault, and we skip the perf event updates.
bce617ed
PX
4619 */
4620 if (!regs)
4621 return;
4622
a2beb5f1 4623 if (major)
bce617ed 4624 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4625 else
bce617ed 4626 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4627}
4628
9a95f3cf
PC
4629/*
4630 * By the time we get here, we already hold the mm semaphore
4631 *
c1e8d7c6 4632 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4633 * return value. See filemap_fault() and __lock_page_or_retry().
4634 */
2b740303 4635vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4636 unsigned int flags, struct pt_regs *regs)
519e5247 4637{
2b740303 4638 vm_fault_t ret;
519e5247
JW
4639
4640 __set_current_state(TASK_RUNNING);
4641
4642 count_vm_event(PGFAULT);
2262185c 4643 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4644
4645 /* do counter updates before entering really critical section. */
4646 check_sync_rss_stat(current);
4647
de0c799b
LD
4648 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4649 flags & FAULT_FLAG_INSTRUCTION,
4650 flags & FAULT_FLAG_REMOTE))
4651 return VM_FAULT_SIGSEGV;
4652
519e5247
JW
4653 /*
4654 * Enable the memcg OOM handling for faults triggered in user
4655 * space. Kernel faults are handled more gracefully.
4656 */
4657 if (flags & FAULT_FLAG_USER)
29ef680a 4658 mem_cgroup_enter_user_fault();
519e5247 4659
bae473a4
KS
4660 if (unlikely(is_vm_hugetlb_page(vma)))
4661 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4662 else
4663 ret = __handle_mm_fault(vma, address, flags);
519e5247 4664
49426420 4665 if (flags & FAULT_FLAG_USER) {
29ef680a 4666 mem_cgroup_exit_user_fault();
166f61b9
TH
4667 /*
4668 * The task may have entered a memcg OOM situation but
4669 * if the allocation error was handled gracefully (no
4670 * VM_FAULT_OOM), there is no need to kill anything.
4671 * Just clean up the OOM state peacefully.
4672 */
4673 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4674 mem_cgroup_oom_synchronize(false);
49426420 4675 }
3812c8c8 4676
bce617ed
PX
4677 mm_account_fault(regs, address, flags, ret);
4678
519e5247
JW
4679 return ret;
4680}
e1d6d01a 4681EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4682
90eceff1
KS
4683#ifndef __PAGETABLE_P4D_FOLDED
4684/*
4685 * Allocate p4d page table.
4686 * We've already handled the fast-path in-line.
4687 */
4688int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4689{
4690 p4d_t *new = p4d_alloc_one(mm, address);
4691 if (!new)
4692 return -ENOMEM;
4693
4694 smp_wmb(); /* See comment in __pte_alloc */
4695
4696 spin_lock(&mm->page_table_lock);
4697 if (pgd_present(*pgd)) /* Another has populated it */
4698 p4d_free(mm, new);
4699 else
4700 pgd_populate(mm, pgd, new);
4701 spin_unlock(&mm->page_table_lock);
4702 return 0;
4703}
4704#endif /* __PAGETABLE_P4D_FOLDED */
4705
1da177e4
LT
4706#ifndef __PAGETABLE_PUD_FOLDED
4707/*
4708 * Allocate page upper directory.
872fec16 4709 * We've already handled the fast-path in-line.
1da177e4 4710 */
c2febafc 4711int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4712{
c74df32c
HD
4713 pud_t *new = pud_alloc_one(mm, address);
4714 if (!new)
1bb3630e 4715 return -ENOMEM;
1da177e4 4716
362a61ad
NP
4717 smp_wmb(); /* See comment in __pte_alloc */
4718
872fec16 4719 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4720 if (!p4d_present(*p4d)) {
4721 mm_inc_nr_puds(mm);
c2febafc 4722 p4d_populate(mm, p4d, new);
b4e98d9a 4723 } else /* Another has populated it */
5e541973 4724 pud_free(mm, new);
c74df32c 4725 spin_unlock(&mm->page_table_lock);
1bb3630e 4726 return 0;
1da177e4
LT
4727}
4728#endif /* __PAGETABLE_PUD_FOLDED */
4729
4730#ifndef __PAGETABLE_PMD_FOLDED
4731/*
4732 * Allocate page middle directory.
872fec16 4733 * We've already handled the fast-path in-line.
1da177e4 4734 */
1bb3630e 4735int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4736{
a00cc7d9 4737 spinlock_t *ptl;
c74df32c
HD
4738 pmd_t *new = pmd_alloc_one(mm, address);
4739 if (!new)
1bb3630e 4740 return -ENOMEM;
1da177e4 4741
362a61ad
NP
4742 smp_wmb(); /* See comment in __pte_alloc */
4743
a00cc7d9 4744 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4745 if (!pud_present(*pud)) {
4746 mm_inc_nr_pmds(mm);
1bb3630e 4747 pud_populate(mm, pud, new);
dc6c9a35 4748 } else /* Another has populated it */
5e541973 4749 pmd_free(mm, new);
a00cc7d9 4750 spin_unlock(ptl);
1bb3630e 4751 return 0;
e0f39591 4752}
1da177e4
LT
4753#endif /* __PAGETABLE_PMD_FOLDED */
4754
9fd6dad1
PB
4755int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4756 struct mmu_notifier_range *range, pte_t **ptepp,
4757 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4758{
4759 pgd_t *pgd;
c2febafc 4760 p4d_t *p4d;
f8ad0f49
JW
4761 pud_t *pud;
4762 pmd_t *pmd;
4763 pte_t *ptep;
4764
4765 pgd = pgd_offset(mm, address);
4766 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4767 goto out;
4768
c2febafc
KS
4769 p4d = p4d_offset(pgd, address);
4770 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4771 goto out;
4772
4773 pud = pud_offset(p4d, address);
f8ad0f49
JW
4774 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4775 goto out;
4776
4777 pmd = pmd_offset(pud, address);
f66055ab 4778 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4779
09796395
RZ
4780 if (pmd_huge(*pmd)) {
4781 if (!pmdpp)
4782 goto out;
4783
ac46d4f3 4784 if (range) {
7269f999 4785 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4786 NULL, mm, address & PMD_MASK,
4787 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4788 mmu_notifier_invalidate_range_start(range);
a4d1a885 4789 }
09796395
RZ
4790 *ptlp = pmd_lock(mm, pmd);
4791 if (pmd_huge(*pmd)) {
4792 *pmdpp = pmd;
4793 return 0;
4794 }
4795 spin_unlock(*ptlp);
ac46d4f3
JG
4796 if (range)
4797 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4798 }
4799
4800 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4801 goto out;
4802
ac46d4f3 4803 if (range) {
7269f999 4804 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4805 address & PAGE_MASK,
4806 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4807 mmu_notifier_invalidate_range_start(range);
a4d1a885 4808 }
f8ad0f49 4809 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4810 if (!pte_present(*ptep))
4811 goto unlock;
4812 *ptepp = ptep;
4813 return 0;
4814unlock:
4815 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4816 if (range)
4817 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4818out:
4819 return -EINVAL;
4820}
4821
9fd6dad1
PB
4822/**
4823 * follow_pte - look up PTE at a user virtual address
4824 * @mm: the mm_struct of the target address space
4825 * @address: user virtual address
4826 * @ptepp: location to store found PTE
4827 * @ptlp: location to store the lock for the PTE
4828 *
4829 * On a successful return, the pointer to the PTE is stored in @ptepp;
4830 * the corresponding lock is taken and its location is stored in @ptlp.
4831 * The contents of the PTE are only stable until @ptlp is released;
4832 * any further use, if any, must be protected against invalidation
4833 * with MMU notifiers.
4834 *
4835 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4836 * should be taken for read.
4837 *
4838 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4839 * it is not a good general-purpose API.
4840 *
4841 * Return: zero on success, -ve otherwise.
4842 */
4843int follow_pte(struct mm_struct *mm, unsigned long address,
4844 pte_t **ptepp, spinlock_t **ptlp)
4845{
4846 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4847}
4848EXPORT_SYMBOL_GPL(follow_pte);
4849
3b6748e2
JW
4850/**
4851 * follow_pfn - look up PFN at a user virtual address
4852 * @vma: memory mapping
4853 * @address: user virtual address
4854 * @pfn: location to store found PFN
4855 *
4856 * Only IO mappings and raw PFN mappings are allowed.
4857 *
9fd6dad1
PB
4858 * This function does not allow the caller to read the permissions
4859 * of the PTE. Do not use it.
4860 *
a862f68a 4861 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4862 */
4863int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4864 unsigned long *pfn)
4865{
4866 int ret = -EINVAL;
4867 spinlock_t *ptl;
4868 pte_t *ptep;
4869
4870 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4871 return ret;
4872
9fd6dad1 4873 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4874 if (ret)
4875 return ret;
4876 *pfn = pte_pfn(*ptep);
4877 pte_unmap_unlock(ptep, ptl);
4878 return 0;
4879}
4880EXPORT_SYMBOL(follow_pfn);
4881
28b2ee20 4882#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4883int follow_phys(struct vm_area_struct *vma,
4884 unsigned long address, unsigned int flags,
4885 unsigned long *prot, resource_size_t *phys)
28b2ee20 4886{
03668a4d 4887 int ret = -EINVAL;
28b2ee20
RR
4888 pte_t *ptep, pte;
4889 spinlock_t *ptl;
28b2ee20 4890
d87fe660 4891 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4892 goto out;
28b2ee20 4893
9fd6dad1 4894 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4895 goto out;
28b2ee20 4896 pte = *ptep;
03668a4d 4897
f6f37321 4898 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4899 goto unlock;
28b2ee20
RR
4900
4901 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4902 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4903
03668a4d 4904 ret = 0;
28b2ee20
RR
4905unlock:
4906 pte_unmap_unlock(ptep, ptl);
4907out:
d87fe660 4908 return ret;
28b2ee20
RR
4909}
4910
96667f8a
DV
4911/**
4912 * generic_access_phys - generic implementation for iomem mmap access
4913 * @vma: the vma to access
f0953a1b 4914 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
4915 * @buf: buffer to read/write
4916 * @len: length of transfer
4917 * @write: set to FOLL_WRITE when writing, otherwise reading
4918 *
4919 * This is a generic implementation for &vm_operations_struct.access for an
4920 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4921 * not page based.
4922 */
28b2ee20
RR
4923int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4924 void *buf, int len, int write)
4925{
4926 resource_size_t phys_addr;
4927 unsigned long prot = 0;
2bc7273b 4928 void __iomem *maddr;
96667f8a
DV
4929 pte_t *ptep, pte;
4930 spinlock_t *ptl;
4931 int offset = offset_in_page(addr);
4932 int ret = -EINVAL;
4933
4934 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4935 return -EINVAL;
4936
4937retry:
e913a8cd 4938 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4939 return -EINVAL;
4940 pte = *ptep;
4941 pte_unmap_unlock(ptep, ptl);
28b2ee20 4942
96667f8a
DV
4943 prot = pgprot_val(pte_pgprot(pte));
4944 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4945
4946 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4947 return -EINVAL;
4948
9cb12d7b 4949 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4950 if (!maddr)
4951 return -ENOMEM;
4952
e913a8cd 4953 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
4954 goto out_unmap;
4955
4956 if (!pte_same(pte, *ptep)) {
4957 pte_unmap_unlock(ptep, ptl);
4958 iounmap(maddr);
4959
4960 goto retry;
4961 }
4962
28b2ee20
RR
4963 if (write)
4964 memcpy_toio(maddr + offset, buf, len);
4965 else
4966 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
4967 ret = len;
4968 pte_unmap_unlock(ptep, ptl);
4969out_unmap:
28b2ee20
RR
4970 iounmap(maddr);
4971
96667f8a 4972 return ret;
28b2ee20 4973}
5a73633e 4974EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4975#endif
4976
0ec76a11 4977/*
d3f5ffca 4978 * Access another process' address space as given in mm.
0ec76a11 4979 */
d3f5ffca
JH
4980int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4981 int len, unsigned int gup_flags)
0ec76a11 4982{
0ec76a11 4983 struct vm_area_struct *vma;
0ec76a11 4984 void *old_buf = buf;
442486ec 4985 int write = gup_flags & FOLL_WRITE;
0ec76a11 4986
d8ed45c5 4987 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4988 return 0;
4989
183ff22b 4990 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4991 while (len) {
4992 int bytes, ret, offset;
4993 void *maddr;
28b2ee20 4994 struct page *page = NULL;
0ec76a11 4995
64019a2e 4996 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4997 gup_flags, &page, &vma, NULL);
28b2ee20 4998 if (ret <= 0) {
dbffcd03
RR
4999#ifndef CONFIG_HAVE_IOREMAP_PROT
5000 break;
5001#else
28b2ee20
RR
5002 /*
5003 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5004 * we can access using slightly different code.
5005 */
3e418f98
LH
5006 vma = vma_lookup(mm, addr);
5007 if (!vma)
28b2ee20
RR
5008 break;
5009 if (vma->vm_ops && vma->vm_ops->access)
5010 ret = vma->vm_ops->access(vma, addr, buf,
5011 len, write);
5012 if (ret <= 0)
28b2ee20
RR
5013 break;
5014 bytes = ret;
dbffcd03 5015#endif
0ec76a11 5016 } else {
28b2ee20
RR
5017 bytes = len;
5018 offset = addr & (PAGE_SIZE-1);
5019 if (bytes > PAGE_SIZE-offset)
5020 bytes = PAGE_SIZE-offset;
5021
5022 maddr = kmap(page);
5023 if (write) {
5024 copy_to_user_page(vma, page, addr,
5025 maddr + offset, buf, bytes);
5026 set_page_dirty_lock(page);
5027 } else {
5028 copy_from_user_page(vma, page, addr,
5029 buf, maddr + offset, bytes);
5030 }
5031 kunmap(page);
09cbfeaf 5032 put_page(page);
0ec76a11 5033 }
0ec76a11
DH
5034 len -= bytes;
5035 buf += bytes;
5036 addr += bytes;
5037 }
d8ed45c5 5038 mmap_read_unlock(mm);
0ec76a11
DH
5039
5040 return buf - old_buf;
5041}
03252919 5042
5ddd36b9 5043/**
ae91dbfc 5044 * access_remote_vm - access another process' address space
5ddd36b9
SW
5045 * @mm: the mm_struct of the target address space
5046 * @addr: start address to access
5047 * @buf: source or destination buffer
5048 * @len: number of bytes to transfer
6347e8d5 5049 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5050 *
5051 * The caller must hold a reference on @mm.
a862f68a
MR
5052 *
5053 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5054 */
5055int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5056 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5057{
d3f5ffca 5058 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5059}
5060
206cb636
SW
5061/*
5062 * Access another process' address space.
5063 * Source/target buffer must be kernel space,
5064 * Do not walk the page table directly, use get_user_pages
5065 */
5066int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5067 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5068{
5069 struct mm_struct *mm;
5070 int ret;
5071
5072 mm = get_task_mm(tsk);
5073 if (!mm)
5074 return 0;
5075
d3f5ffca 5076 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5077
206cb636
SW
5078 mmput(mm);
5079
5080 return ret;
5081}
fcd35857 5082EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5083
03252919
AK
5084/*
5085 * Print the name of a VMA.
5086 */
5087void print_vma_addr(char *prefix, unsigned long ip)
5088{
5089 struct mm_struct *mm = current->mm;
5090 struct vm_area_struct *vma;
5091
e8bff74a 5092 /*
0a7f682d 5093 * we might be running from an atomic context so we cannot sleep
e8bff74a 5094 */
d8ed45c5 5095 if (!mmap_read_trylock(mm))
e8bff74a
IM
5096 return;
5097
03252919
AK
5098 vma = find_vma(mm, ip);
5099 if (vma && vma->vm_file) {
5100 struct file *f = vma->vm_file;
0a7f682d 5101 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5102 if (buf) {
2fbc57c5 5103 char *p;
03252919 5104
9bf39ab2 5105 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5106 if (IS_ERR(p))
5107 p = "?";
2fbc57c5 5108 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5109 vma->vm_start,
5110 vma->vm_end - vma->vm_start);
5111 free_page((unsigned long)buf);
5112 }
5113 }
d8ed45c5 5114 mmap_read_unlock(mm);
03252919 5115}
3ee1afa3 5116
662bbcb2 5117#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5118void __might_fault(const char *file, int line)
3ee1afa3 5119{
95156f00
PZ
5120 /*
5121 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5122 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5123 * get paged out, therefore we'll never actually fault, and the
5124 * below annotations will generate false positives.
5125 */
db68ce10 5126 if (uaccess_kernel())
95156f00 5127 return;
9ec23531 5128 if (pagefault_disabled())
662bbcb2 5129 return;
9ec23531
DH
5130 __might_sleep(file, line, 0);
5131#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5132 if (current->mm)
da1c55f1 5133 might_lock_read(&current->mm->mmap_lock);
9ec23531 5134#endif
3ee1afa3 5135}
9ec23531 5136EXPORT_SYMBOL(__might_fault);
3ee1afa3 5137#endif
47ad8475
AA
5138
5139#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5140/*
5141 * Process all subpages of the specified huge page with the specified
5142 * operation. The target subpage will be processed last to keep its
5143 * cache lines hot.
5144 */
5145static inline void process_huge_page(
5146 unsigned long addr_hint, unsigned int pages_per_huge_page,
5147 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5148 void *arg)
47ad8475 5149{
c79b57e4
HY
5150 int i, n, base, l;
5151 unsigned long addr = addr_hint &
5152 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5153
c6ddfb6c 5154 /* Process target subpage last to keep its cache lines hot */
47ad8475 5155 might_sleep();
c79b57e4
HY
5156 n = (addr_hint - addr) / PAGE_SIZE;
5157 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5158 /* If target subpage in first half of huge page */
c79b57e4
HY
5159 base = 0;
5160 l = n;
c6ddfb6c 5161 /* Process subpages at the end of huge page */
c79b57e4
HY
5162 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5163 cond_resched();
c6ddfb6c 5164 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5165 }
5166 } else {
c6ddfb6c 5167 /* If target subpage in second half of huge page */
c79b57e4
HY
5168 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5169 l = pages_per_huge_page - n;
c6ddfb6c 5170 /* Process subpages at the begin of huge page */
c79b57e4
HY
5171 for (i = 0; i < base; i++) {
5172 cond_resched();
c6ddfb6c 5173 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5174 }
5175 }
5176 /*
c6ddfb6c
HY
5177 * Process remaining subpages in left-right-left-right pattern
5178 * towards the target subpage
c79b57e4
HY
5179 */
5180 for (i = 0; i < l; i++) {
5181 int left_idx = base + i;
5182 int right_idx = base + 2 * l - 1 - i;
5183
5184 cond_resched();
c6ddfb6c 5185 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5186 cond_resched();
c6ddfb6c 5187 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5188 }
5189}
5190
c6ddfb6c
HY
5191static void clear_gigantic_page(struct page *page,
5192 unsigned long addr,
5193 unsigned int pages_per_huge_page)
5194{
5195 int i;
5196 struct page *p = page;
5197
5198 might_sleep();
5199 for (i = 0; i < pages_per_huge_page;
5200 i++, p = mem_map_next(p, page, i)) {
5201 cond_resched();
5202 clear_user_highpage(p, addr + i * PAGE_SIZE);
5203 }
5204}
5205
5206static void clear_subpage(unsigned long addr, int idx, void *arg)
5207{
5208 struct page *page = arg;
5209
5210 clear_user_highpage(page + idx, addr);
5211}
5212
5213void clear_huge_page(struct page *page,
5214 unsigned long addr_hint, unsigned int pages_per_huge_page)
5215{
5216 unsigned long addr = addr_hint &
5217 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5218
5219 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5220 clear_gigantic_page(page, addr, pages_per_huge_page);
5221 return;
5222 }
5223
5224 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5225}
5226
47ad8475
AA
5227static void copy_user_gigantic_page(struct page *dst, struct page *src,
5228 unsigned long addr,
5229 struct vm_area_struct *vma,
5230 unsigned int pages_per_huge_page)
5231{
5232 int i;
5233 struct page *dst_base = dst;
5234 struct page *src_base = src;
5235
5236 for (i = 0; i < pages_per_huge_page; ) {
5237 cond_resched();
5238 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5239
5240 i++;
5241 dst = mem_map_next(dst, dst_base, i);
5242 src = mem_map_next(src, src_base, i);
5243 }
5244}
5245
c9f4cd71
HY
5246struct copy_subpage_arg {
5247 struct page *dst;
5248 struct page *src;
5249 struct vm_area_struct *vma;
5250};
5251
5252static void copy_subpage(unsigned long addr, int idx, void *arg)
5253{
5254 struct copy_subpage_arg *copy_arg = arg;
5255
5256 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5257 addr, copy_arg->vma);
5258}
5259
47ad8475 5260void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5261 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5262 unsigned int pages_per_huge_page)
5263{
c9f4cd71
HY
5264 unsigned long addr = addr_hint &
5265 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5266 struct copy_subpage_arg arg = {
5267 .dst = dst,
5268 .src = src,
5269 .vma = vma,
5270 };
47ad8475
AA
5271
5272 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5273 copy_user_gigantic_page(dst, src, addr, vma,
5274 pages_per_huge_page);
5275 return;
5276 }
5277
c9f4cd71 5278 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5279}
fa4d75c1
MK
5280
5281long copy_huge_page_from_user(struct page *dst_page,
5282 const void __user *usr_src,
810a56b9
MK
5283 unsigned int pages_per_huge_page,
5284 bool allow_pagefault)
fa4d75c1
MK
5285{
5286 void *src = (void *)usr_src;
5287 void *page_kaddr;
5288 unsigned long i, rc = 0;
5289 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5290 struct page *subpage = dst_page;
fa4d75c1 5291
3272cfc2
MK
5292 for (i = 0; i < pages_per_huge_page;
5293 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5294 if (allow_pagefault)
3272cfc2 5295 page_kaddr = kmap(subpage);
810a56b9 5296 else
3272cfc2 5297 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5298 rc = copy_from_user(page_kaddr,
5299 (const void __user *)(src + i * PAGE_SIZE),
5300 PAGE_SIZE);
810a56b9 5301 if (allow_pagefault)
3272cfc2 5302 kunmap(subpage);
810a56b9
MK
5303 else
5304 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5305
5306 ret_val -= (PAGE_SIZE - rc);
5307 if (rc)
5308 break;
5309
5310 cond_resched();
5311 }
5312 return ret_val;
5313}
47ad8475 5314#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5315
40b64acd 5316#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5317
5318static struct kmem_cache *page_ptl_cachep;
5319
5320void __init ptlock_cache_init(void)
5321{
5322 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5323 SLAB_PANIC, NULL);
5324}
5325
539edb58 5326bool ptlock_alloc(struct page *page)
49076ec2
KS
5327{
5328 spinlock_t *ptl;
5329
b35f1819 5330 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5331 if (!ptl)
5332 return false;
539edb58 5333 page->ptl = ptl;
49076ec2
KS
5334 return true;
5335}
5336
539edb58 5337void ptlock_free(struct page *page)
49076ec2 5338{
b35f1819 5339 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5340}
5341#endif