mm: join struct fault_env and vm_fault
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
01c8f1c4 53#include <linux/pfn_t.h>
edc79b2a 54#include <linux/writeback.h>
8a9f3ccd 55#include <linux/memcontrol.h>
cddb8a5c 56#include <linux/mmu_notifier.h>
3dc14741
HD
57#include <linux/kallsyms.h>
58#include <linux/swapops.h>
59#include <linux/elf.h>
5a0e3ad6 60#include <linux/gfp.h>
4daae3b4 61#include <linux/migrate.h>
2fbc57c5 62#include <linux/string.h>
0abdd7a8 63#include <linux/dma-debug.h>
1592eef0 64#include <linux/debugfs.h>
6b251fc9 65#include <linux/userfaultfd_k.h>
bc2466e4 66#include <linux/dax.h>
1da177e4 67
6952b61d 68#include <asm/io.h>
33a709b2 69#include <asm/mmu_context.h>
1da177e4
LT
70#include <asm/pgalloc.h>
71#include <asm/uaccess.h>
72#include <asm/tlb.h>
73#include <asm/tlbflush.h>
74#include <asm/pgtable.h>
75
42b77728
JB
76#include "internal.h"
77
90572890
PZ
78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
80#endif
81
d41dee36 82#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
83/* use the per-pgdat data instead for discontigmem - mbligh */
84unsigned long max_mapnr;
85struct page *mem_map;
86
87EXPORT_SYMBOL(max_mapnr);
88EXPORT_SYMBOL(mem_map);
89#endif
90
1da177e4
LT
91/*
92 * A number of key systems in x86 including ioremap() rely on the assumption
93 * that high_memory defines the upper bound on direct map memory, then end
94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 * and ZONE_HIGHMEM.
97 */
98void * high_memory;
1da177e4 99
1da177e4 100EXPORT_SYMBOL(high_memory);
1da177e4 101
32a93233
IM
102/*
103 * Randomize the address space (stacks, mmaps, brk, etc.).
104 *
105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
106 * as ancient (libc5 based) binaries can segfault. )
107 */
108int randomize_va_space __read_mostly =
109#ifdef CONFIG_COMPAT_BRK
110 1;
111#else
112 2;
113#endif
a62eaf15
AK
114
115static int __init disable_randmaps(char *s)
116{
117 randomize_va_space = 0;
9b41046c 118 return 1;
a62eaf15
AK
119}
120__setup("norandmaps", disable_randmaps);
121
62eede62 122unsigned long zero_pfn __read_mostly;
03f6462a 123unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 124
0b70068e
AB
125EXPORT_SYMBOL(zero_pfn);
126
a13ea5b7
HD
127/*
128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 */
130static int __init init_zero_pfn(void)
131{
132 zero_pfn = page_to_pfn(ZERO_PAGE(0));
133 return 0;
134}
135core_initcall(init_zero_pfn);
a62eaf15 136
d559db08 137
34e55232
KH
138#if defined(SPLIT_RSS_COUNTING)
139
ea48cf78 140void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
141{
142 int i;
143
144 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
145 if (current->rss_stat.count[i]) {
146 add_mm_counter(mm, i, current->rss_stat.count[i]);
147 current->rss_stat.count[i] = 0;
34e55232
KH
148 }
149 }
05af2e10 150 current->rss_stat.events = 0;
34e55232
KH
151}
152
153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154{
155 struct task_struct *task = current;
156
157 if (likely(task->mm == mm))
158 task->rss_stat.count[member] += val;
159 else
160 add_mm_counter(mm, member, val);
161}
162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164
165/* sync counter once per 64 page faults */
166#define TASK_RSS_EVENTS_THRESH (64)
167static void check_sync_rss_stat(struct task_struct *task)
168{
169 if (unlikely(task != current))
170 return;
171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 172 sync_mm_rss(task->mm);
34e55232 173}
9547d01b 174#else /* SPLIT_RSS_COUNTING */
34e55232
KH
175
176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178
179static void check_sync_rss_stat(struct task_struct *task)
180{
181}
182
9547d01b
PZ
183#endif /* SPLIT_RSS_COUNTING */
184
185#ifdef HAVE_GENERIC_MMU_GATHER
186
ca1d6c7d 187static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
188{
189 struct mmu_gather_batch *batch;
190
191 batch = tlb->active;
192 if (batch->next) {
193 tlb->active = batch->next;
ca1d6c7d 194 return true;
9547d01b
PZ
195 }
196
53a59fc6 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 198 return false;
53a59fc6 199
9547d01b
PZ
200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
201 if (!batch)
ca1d6c7d 202 return false;
9547d01b 203
53a59fc6 204 tlb->batch_count++;
9547d01b
PZ
205 batch->next = NULL;
206 batch->nr = 0;
207 batch->max = MAX_GATHER_BATCH;
208
209 tlb->active->next = batch;
210 tlb->active = batch;
211
ca1d6c7d 212 return true;
9547d01b
PZ
213}
214
215/* tlb_gather_mmu
216 * Called to initialize an (on-stack) mmu_gather structure for page-table
217 * tear-down from @mm. The @fullmm argument is used when @mm is without
218 * users and we're going to destroy the full address space (exit/execve).
219 */
2b047252 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
276{
277 struct mmu_gather_batch *batch, *next;
278
279 tlb_flush_mmu(tlb);
280
281 /* keep the page table cache within bounds */
282 check_pgt_cache();
283
284 for (batch = tlb->local.next; batch; batch = next) {
285 next = batch->next;
286 free_pages((unsigned long)batch, 0);
287 }
288 tlb->local.next = NULL;
289}
290
291/* __tlb_remove_page
292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
293 * handling the additional races in SMP caused by other CPUs caching valid
294 * mappings in their TLBs. Returns the number of free page slots left.
295 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 296 *returns true if the caller should flush.
9547d01b 297 */
e77b0852 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
299{
300 struct mmu_gather_batch *batch;
301
fb7332a9 302 VM_BUG_ON(!tlb->end);
692a68c1 303 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 304
9547d01b 305 batch = tlb->active;
692a68c1
AK
306 /*
307 * Add the page and check if we are full. If so
308 * force a flush.
309 */
310 batch->pages[batch->nr++] = page;
9547d01b
PZ
311 if (batch->nr == batch->max) {
312 if (!tlb_next_batch(tlb))
e9d55e15 313 return true;
0b43c3aa 314 batch = tlb->active;
9547d01b 315 }
309381fe 316 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 317
e9d55e15 318 return false;
9547d01b
PZ
319}
320
321#endif /* HAVE_GENERIC_MMU_GATHER */
322
26723911
PZ
323#ifdef CONFIG_HAVE_RCU_TABLE_FREE
324
325/*
326 * See the comment near struct mmu_table_batch.
327 */
328
329static void tlb_remove_table_smp_sync(void *arg)
330{
331 /* Simply deliver the interrupt */
332}
333
334static void tlb_remove_table_one(void *table)
335{
336 /*
337 * This isn't an RCU grace period and hence the page-tables cannot be
338 * assumed to be actually RCU-freed.
339 *
340 * It is however sufficient for software page-table walkers that rely on
341 * IRQ disabling. See the comment near struct mmu_table_batch.
342 */
343 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
344 __tlb_remove_table(table);
345}
346
347static void tlb_remove_table_rcu(struct rcu_head *head)
348{
349 struct mmu_table_batch *batch;
350 int i;
351
352 batch = container_of(head, struct mmu_table_batch, rcu);
353
354 for (i = 0; i < batch->nr; i++)
355 __tlb_remove_table(batch->tables[i]);
356
357 free_page((unsigned long)batch);
358}
359
360void tlb_table_flush(struct mmu_gather *tlb)
361{
362 struct mmu_table_batch **batch = &tlb->batch;
363
364 if (*batch) {
365 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
366 *batch = NULL;
367 }
368}
369
370void tlb_remove_table(struct mmu_gather *tlb, void *table)
371{
372 struct mmu_table_batch **batch = &tlb->batch;
373
26723911
PZ
374 /*
375 * When there's less then two users of this mm there cannot be a
376 * concurrent page-table walk.
377 */
378 if (atomic_read(&tlb->mm->mm_users) < 2) {
379 __tlb_remove_table(table);
380 return;
381 }
382
383 if (*batch == NULL) {
384 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
385 if (*batch == NULL) {
386 tlb_remove_table_one(table);
387 return;
388 }
389 (*batch)->nr = 0;
390 }
391 (*batch)->tables[(*batch)->nr++] = table;
392 if ((*batch)->nr == MAX_TABLE_BATCH)
393 tlb_table_flush(tlb);
394}
395
9547d01b 396#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 397
1da177e4
LT
398/*
399 * Note: this doesn't free the actual pages themselves. That
400 * has been handled earlier when unmapping all the memory regions.
401 */
9e1b32ca
BH
402static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
403 unsigned long addr)
1da177e4 404{
2f569afd 405 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 406 pmd_clear(pmd);
9e1b32ca 407 pte_free_tlb(tlb, token, addr);
e1f56c89 408 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
409}
410
e0da382c
HD
411static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
412 unsigned long addr, unsigned long end,
413 unsigned long floor, unsigned long ceiling)
1da177e4
LT
414{
415 pmd_t *pmd;
416 unsigned long next;
e0da382c 417 unsigned long start;
1da177e4 418
e0da382c 419 start = addr;
1da177e4 420 pmd = pmd_offset(pud, addr);
1da177e4
LT
421 do {
422 next = pmd_addr_end(addr, end);
423 if (pmd_none_or_clear_bad(pmd))
424 continue;
9e1b32ca 425 free_pte_range(tlb, pmd, addr);
1da177e4
LT
426 } while (pmd++, addr = next, addr != end);
427
e0da382c
HD
428 start &= PUD_MASK;
429 if (start < floor)
430 return;
431 if (ceiling) {
432 ceiling &= PUD_MASK;
433 if (!ceiling)
434 return;
1da177e4 435 }
e0da382c
HD
436 if (end - 1 > ceiling - 1)
437 return;
438
439 pmd = pmd_offset(pud, start);
440 pud_clear(pud);
9e1b32ca 441 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 442 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
443}
444
e0da382c
HD
445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 unsigned long addr, unsigned long end,
447 unsigned long floor, unsigned long ceiling)
1da177e4
LT
448{
449 pud_t *pud;
450 unsigned long next;
e0da382c 451 unsigned long start;
1da177e4 452
e0da382c 453 start = addr;
1da177e4 454 pud = pud_offset(pgd, addr);
1da177e4
LT
455 do {
456 next = pud_addr_end(addr, end);
457 if (pud_none_or_clear_bad(pud))
458 continue;
e0da382c 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
460 } while (pud++, addr = next, addr != end);
461
e0da382c
HD
462 start &= PGDIR_MASK;
463 if (start < floor)
464 return;
465 if (ceiling) {
466 ceiling &= PGDIR_MASK;
467 if (!ceiling)
468 return;
1da177e4 469 }
e0da382c
HD
470 if (end - 1 > ceiling - 1)
471 return;
472
473 pud = pud_offset(pgd, start);
474 pgd_clear(pgd);
9e1b32ca 475 pud_free_tlb(tlb, pud, start);
1da177e4
LT
476}
477
478/*
e0da382c 479 * This function frees user-level page tables of a process.
1da177e4 480 */
42b77728 481void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
1da177e4
LT
484{
485 pgd_t *pgd;
486 unsigned long next;
e0da382c
HD
487
488 /*
489 * The next few lines have given us lots of grief...
490 *
491 * Why are we testing PMD* at this top level? Because often
492 * there will be no work to do at all, and we'd prefer not to
493 * go all the way down to the bottom just to discover that.
494 *
495 * Why all these "- 1"s? Because 0 represents both the bottom
496 * of the address space and the top of it (using -1 for the
497 * top wouldn't help much: the masks would do the wrong thing).
498 * The rule is that addr 0 and floor 0 refer to the bottom of
499 * the address space, but end 0 and ceiling 0 refer to the top
500 * Comparisons need to use "end - 1" and "ceiling - 1" (though
501 * that end 0 case should be mythical).
502 *
503 * Wherever addr is brought up or ceiling brought down, we must
504 * be careful to reject "the opposite 0" before it confuses the
505 * subsequent tests. But what about where end is brought down
506 * by PMD_SIZE below? no, end can't go down to 0 there.
507 *
508 * Whereas we round start (addr) and ceiling down, by different
509 * masks at different levels, in order to test whether a table
510 * now has no other vmas using it, so can be freed, we don't
511 * bother to round floor or end up - the tests don't need that.
512 */
1da177e4 513
e0da382c
HD
514 addr &= PMD_MASK;
515 if (addr < floor) {
516 addr += PMD_SIZE;
517 if (!addr)
518 return;
519 }
520 if (ceiling) {
521 ceiling &= PMD_MASK;
522 if (!ceiling)
523 return;
524 }
525 if (end - 1 > ceiling - 1)
526 end -= PMD_SIZE;
527 if (addr > end - 1)
528 return;
07e32661
AK
529 /*
530 * We add page table cache pages with PAGE_SIZE,
531 * (see pte_free_tlb()), flush the tlb if we need
532 */
533 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 534 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
535 do {
536 next = pgd_addr_end(addr, end);
537 if (pgd_none_or_clear_bad(pgd))
538 continue;
42b77728 539 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 540 } while (pgd++, addr = next, addr != end);
e0da382c
HD
541}
542
42b77728 543void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 544 unsigned long floor, unsigned long ceiling)
e0da382c
HD
545{
546 while (vma) {
547 struct vm_area_struct *next = vma->vm_next;
548 unsigned long addr = vma->vm_start;
549
8f4f8c16 550 /*
25d9e2d1 551 * Hide vma from rmap and truncate_pagecache before freeing
552 * pgtables
8f4f8c16 553 */
5beb4930 554 unlink_anon_vmas(vma);
8f4f8c16
HD
555 unlink_file_vma(vma);
556
9da61aef 557 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 559 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
560 } else {
561 /*
562 * Optimization: gather nearby vmas into one call down
563 */
564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 565 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
566 vma = next;
567 next = vma->vm_next;
5beb4930 568 unlink_anon_vmas(vma);
8f4f8c16 569 unlink_file_vma(vma);
3bf5ee95
HD
570 }
571 free_pgd_range(tlb, addr, vma->vm_end,
572 floor, next? next->vm_start: ceiling);
573 }
e0da382c
HD
574 vma = next;
575 }
1da177e4
LT
576}
577
3ed3a4f0 578int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 579{
c4088ebd 580 spinlock_t *ptl;
2f569afd 581 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
582 if (!new)
583 return -ENOMEM;
584
362a61ad
NP
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
c4088ebd 600 ptl = pmd_lock(mm, pmd);
8ac1f832 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 602 atomic_long_inc(&mm->nr_ptes);
1da177e4 603 pmd_populate(mm, pmd, new);
2f569afd 604 new = NULL;
4b471e88 605 }
c4088ebd 606 spin_unlock(ptl);
2f569afd
MS
607 if (new)
608 pte_free(mm, new);
1bb3630e 609 return 0;
1da177e4
LT
610}
611
1bb3630e 612int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 613{
1bb3630e
HD
614 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
615 if (!new)
616 return -ENOMEM;
617
362a61ad
NP
618 smp_wmb(); /* See comment in __pte_alloc */
619
1bb3630e 620 spin_lock(&init_mm.page_table_lock);
8ac1f832 621 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 622 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 623 new = NULL;
4b471e88 624 }
1bb3630e 625 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
626 if (new)
627 pte_free_kernel(&init_mm, new);
1bb3630e 628 return 0;
1da177e4
LT
629}
630
d559db08
KH
631static inline void init_rss_vec(int *rss)
632{
633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
634}
635
636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 637{
d559db08
KH
638 int i;
639
34e55232 640 if (current->mm == mm)
05af2e10 641 sync_mm_rss(mm);
d559db08
KH
642 for (i = 0; i < NR_MM_COUNTERS; i++)
643 if (rss[i])
644 add_mm_counter(mm, i, rss[i]);
ae859762
HD
645}
646
b5810039 647/*
6aab341e
LT
648 * This function is called to print an error when a bad pte
649 * is found. For example, we might have a PFN-mapped pte in
650 * a region that doesn't allow it.
b5810039
NP
651 *
652 * The calling function must still handle the error.
653 */
3dc14741
HD
654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
655 pte_t pte, struct page *page)
b5810039 656{
3dc14741
HD
657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
658 pud_t *pud = pud_offset(pgd, addr);
659 pmd_t *pmd = pmd_offset(pud, addr);
660 struct address_space *mapping;
661 pgoff_t index;
d936cf9b
HD
662 static unsigned long resume;
663 static unsigned long nr_shown;
664 static unsigned long nr_unshown;
665
666 /*
667 * Allow a burst of 60 reports, then keep quiet for that minute;
668 * or allow a steady drip of one report per second.
669 */
670 if (nr_shown == 60) {
671 if (time_before(jiffies, resume)) {
672 nr_unshown++;
673 return;
674 }
675 if (nr_unshown) {
1170532b
JP
676 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
677 nr_unshown);
d936cf9b
HD
678 nr_unshown = 0;
679 }
680 nr_shown = 0;
681 }
682 if (nr_shown++ == 0)
683 resume = jiffies + 60 * HZ;
3dc14741
HD
684
685 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
686 index = linear_page_index(vma, addr);
687
1170532b
JP
688 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
689 current->comm,
690 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 691 if (page)
f0b791a3 692 dump_page(page, "bad pte");
1170532b
JP
693 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
694 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
695 /*
696 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
697 */
2682582a
KK
698 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
699 vma->vm_file,
700 vma->vm_ops ? vma->vm_ops->fault : NULL,
701 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
702 mapping ? mapping->a_ops->readpage : NULL);
b5810039 703 dump_stack();
373d4d09 704 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
705}
706
ee498ed7 707/*
7e675137 708 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 709 *
7e675137
NP
710 * "Special" mappings do not wish to be associated with a "struct page" (either
711 * it doesn't exist, or it exists but they don't want to touch it). In this
712 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 713 *
7e675137
NP
714 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
715 * pte bit, in which case this function is trivial. Secondly, an architecture
716 * may not have a spare pte bit, which requires a more complicated scheme,
717 * described below.
718 *
719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
720 * special mapping (even if there are underlying and valid "struct pages").
721 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 722 *
b379d790
JH
723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
726 * mapping will always honor the rule
6aab341e
LT
727 *
728 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729 *
7e675137
NP
730 * And for normal mappings this is false.
731 *
732 * This restricts such mappings to be a linear translation from virtual address
733 * to pfn. To get around this restriction, we allow arbitrary mappings so long
734 * as the vma is not a COW mapping; in that case, we know that all ptes are
735 * special (because none can have been COWed).
b379d790 736 *
b379d790 737 *
7e675137 738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
739 *
740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
741 * page" backing, however the difference is that _all_ pages with a struct
742 * page (that is, those where pfn_valid is true) are refcounted and considered
743 * normal pages by the VM. The disadvantage is that pages are refcounted
744 * (which can be slower and simply not an option for some PFNMAP users). The
745 * advantage is that we don't have to follow the strict linearity rule of
746 * PFNMAP mappings in order to support COWable mappings.
747 *
ee498ed7 748 */
7e675137
NP
749#ifdef __HAVE_ARCH_PTE_SPECIAL
750# define HAVE_PTE_SPECIAL 1
751#else
752# define HAVE_PTE_SPECIAL 0
753#endif
754struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
755 pte_t pte)
ee498ed7 756{
22b31eec 757 unsigned long pfn = pte_pfn(pte);
7e675137
NP
758
759 if (HAVE_PTE_SPECIAL) {
b38af472 760 if (likely(!pte_special(pte)))
22b31eec 761 goto check_pfn;
667a0a06
DV
762 if (vma->vm_ops && vma->vm_ops->find_special_page)
763 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
764 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
765 return NULL;
62eede62 766 if (!is_zero_pfn(pfn))
22b31eec 767 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
768 return NULL;
769 }
770
771 /* !HAVE_PTE_SPECIAL case follows: */
772
b379d790
JH
773 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
774 if (vma->vm_flags & VM_MIXEDMAP) {
775 if (!pfn_valid(pfn))
776 return NULL;
777 goto out;
778 } else {
7e675137
NP
779 unsigned long off;
780 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
781 if (pfn == vma->vm_pgoff + off)
782 return NULL;
783 if (!is_cow_mapping(vma->vm_flags))
784 return NULL;
785 }
6aab341e
LT
786 }
787
b38af472
HD
788 if (is_zero_pfn(pfn))
789 return NULL;
22b31eec
HD
790check_pfn:
791 if (unlikely(pfn > highest_memmap_pfn)) {
792 print_bad_pte(vma, addr, pte, NULL);
793 return NULL;
794 }
6aab341e
LT
795
796 /*
7e675137 797 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 798 * eg. VDSO mappings can cause them to exist.
6aab341e 799 */
b379d790 800out:
6aab341e 801 return pfn_to_page(pfn);
ee498ed7
HD
802}
803
28093f9f
GS
804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
805struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
806 pmd_t pmd)
807{
808 unsigned long pfn = pmd_pfn(pmd);
809
810 /*
811 * There is no pmd_special() but there may be special pmds, e.g.
812 * in a direct-access (dax) mapping, so let's just replicate the
813 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
814 */
815 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
816 if (vma->vm_flags & VM_MIXEDMAP) {
817 if (!pfn_valid(pfn))
818 return NULL;
819 goto out;
820 } else {
821 unsigned long off;
822 off = (addr - vma->vm_start) >> PAGE_SHIFT;
823 if (pfn == vma->vm_pgoff + off)
824 return NULL;
825 if (!is_cow_mapping(vma->vm_flags))
826 return NULL;
827 }
828 }
829
830 if (is_zero_pfn(pfn))
831 return NULL;
832 if (unlikely(pfn > highest_memmap_pfn))
833 return NULL;
834
835 /*
836 * NOTE! We still have PageReserved() pages in the page tables.
837 * eg. VDSO mappings can cause them to exist.
838 */
839out:
840 return pfn_to_page(pfn);
841}
842#endif
843
1da177e4
LT
844/*
845 * copy one vm_area from one task to the other. Assumes the page tables
846 * already present in the new task to be cleared in the whole range
847 * covered by this vma.
1da177e4
LT
848 */
849
570a335b 850static inline unsigned long
1da177e4 851copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 852 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 853 unsigned long addr, int *rss)
1da177e4 854{
b5810039 855 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
856 pte_t pte = *src_pte;
857 struct page *page;
1da177e4
LT
858
859 /* pte contains position in swap or file, so copy. */
860 if (unlikely(!pte_present(pte))) {
0661a336
KS
861 swp_entry_t entry = pte_to_swp_entry(pte);
862
863 if (likely(!non_swap_entry(entry))) {
864 if (swap_duplicate(entry) < 0)
865 return entry.val;
866
867 /* make sure dst_mm is on swapoff's mmlist. */
868 if (unlikely(list_empty(&dst_mm->mmlist))) {
869 spin_lock(&mmlist_lock);
870 if (list_empty(&dst_mm->mmlist))
871 list_add(&dst_mm->mmlist,
872 &src_mm->mmlist);
873 spin_unlock(&mmlist_lock);
874 }
875 rss[MM_SWAPENTS]++;
876 } else if (is_migration_entry(entry)) {
877 page = migration_entry_to_page(entry);
878
eca56ff9 879 rss[mm_counter(page)]++;
0661a336
KS
880
881 if (is_write_migration_entry(entry) &&
882 is_cow_mapping(vm_flags)) {
883 /*
884 * COW mappings require pages in both
885 * parent and child to be set to read.
886 */
887 make_migration_entry_read(&entry);
888 pte = swp_entry_to_pte(entry);
889 if (pte_swp_soft_dirty(*src_pte))
890 pte = pte_swp_mksoft_dirty(pte);
891 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 892 }
1da177e4 893 }
ae859762 894 goto out_set_pte;
1da177e4
LT
895 }
896
1da177e4
LT
897 /*
898 * If it's a COW mapping, write protect it both
899 * in the parent and the child
900 */
67121172 901 if (is_cow_mapping(vm_flags)) {
1da177e4 902 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 903 pte = pte_wrprotect(pte);
1da177e4
LT
904 }
905
906 /*
907 * If it's a shared mapping, mark it clean in
908 * the child
909 */
910 if (vm_flags & VM_SHARED)
911 pte = pte_mkclean(pte);
912 pte = pte_mkold(pte);
6aab341e
LT
913
914 page = vm_normal_page(vma, addr, pte);
915 if (page) {
916 get_page(page);
53f9263b 917 page_dup_rmap(page, false);
eca56ff9 918 rss[mm_counter(page)]++;
6aab341e 919 }
ae859762
HD
920
921out_set_pte:
922 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 923 return 0;
1da177e4
LT
924}
925
21bda264 926static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
928 unsigned long addr, unsigned long end)
1da177e4 929{
c36987e2 930 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 931 pte_t *src_pte, *dst_pte;
c74df32c 932 spinlock_t *src_ptl, *dst_ptl;
e040f218 933 int progress = 0;
d559db08 934 int rss[NR_MM_COUNTERS];
570a335b 935 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
936
937again:
d559db08
KH
938 init_rss_vec(rss);
939
c74df32c 940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
941 if (!dst_pte)
942 return -ENOMEM;
ece0e2b6 943 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 944 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
946 orig_src_pte = src_pte;
947 orig_dst_pte = dst_pte;
6606c3e0 948 arch_enter_lazy_mmu_mode();
1da177e4 949
1da177e4
LT
950 do {
951 /*
952 * We are holding two locks at this point - either of them
953 * could generate latencies in another task on another CPU.
954 */
e040f218
HD
955 if (progress >= 32) {
956 progress = 0;
957 if (need_resched() ||
95c354fe 958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
959 break;
960 }
1da177e4
LT
961 if (pte_none(*src_pte)) {
962 progress++;
963 continue;
964 }
570a335b
HD
965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
966 vma, addr, rss);
967 if (entry.val)
968 break;
1da177e4
LT
969 progress += 8;
970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 971
6606c3e0 972 arch_leave_lazy_mmu_mode();
c74df32c 973 spin_unlock(src_ptl);
ece0e2b6 974 pte_unmap(orig_src_pte);
d559db08 975 add_mm_rss_vec(dst_mm, rss);
c36987e2 976 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 977 cond_resched();
570a335b
HD
978
979 if (entry.val) {
980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
981 return -ENOMEM;
982 progress = 0;
983 }
1da177e4
LT
984 if (addr != end)
985 goto again;
986 return 0;
987}
988
989static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
991 unsigned long addr, unsigned long end)
992{
993 pmd_t *src_pmd, *dst_pmd;
994 unsigned long next;
995
996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
997 if (!dst_pmd)
998 return -ENOMEM;
999 src_pmd = pmd_offset(src_pud, addr);
1000 do {
1001 next = pmd_addr_end(addr, end);
5c7fb56e 1002 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1003 int err;
14d1a55c 1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
1005 err = copy_huge_pmd(dst_mm, src_mm,
1006 dst_pmd, src_pmd, addr, vma);
1007 if (err == -ENOMEM)
1008 return -ENOMEM;
1009 if (!err)
1010 continue;
1011 /* fall through */
1012 }
1da177e4
LT
1013 if (pmd_none_or_clear_bad(src_pmd))
1014 continue;
1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016 vma, addr, next))
1017 return -ENOMEM;
1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019 return 0;
1020}
1021
1022static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024 unsigned long addr, unsigned long end)
1025{
1026 pud_t *src_pud, *dst_pud;
1027 unsigned long next;
1028
1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030 if (!dst_pud)
1031 return -ENOMEM;
1032 src_pud = pud_offset(src_pgd, addr);
1033 do {
1034 next = pud_addr_end(addr, end);
1035 if (pud_none_or_clear_bad(src_pud))
1036 continue;
1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038 vma, addr, next))
1039 return -ENOMEM;
1040 } while (dst_pud++, src_pud++, addr = next, addr != end);
1041 return 0;
1042}
1043
1044int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045 struct vm_area_struct *vma)
1046{
1047 pgd_t *src_pgd, *dst_pgd;
1048 unsigned long next;
1049 unsigned long addr = vma->vm_start;
1050 unsigned long end = vma->vm_end;
2ec74c3e
SG
1051 unsigned long mmun_start; /* For mmu_notifiers */
1052 unsigned long mmun_end; /* For mmu_notifiers */
1053 bool is_cow;
cddb8a5c 1054 int ret;
1da177e4 1055
d992895b
NP
1056 /*
1057 * Don't copy ptes where a page fault will fill them correctly.
1058 * Fork becomes much lighter when there are big shared or private
1059 * readonly mappings. The tradeoff is that copy_page_range is more
1060 * efficient than faulting.
1061 */
0661a336
KS
1062 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063 !vma->anon_vma)
1064 return 0;
d992895b 1065
1da177e4
LT
1066 if (is_vm_hugetlb_page(vma))
1067 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
b3b9c293 1069 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1070 /*
1071 * We do not free on error cases below as remove_vma
1072 * gets called on error from higher level routine
1073 */
5180da41 1074 ret = track_pfn_copy(vma);
2ab64037 1075 if (ret)
1076 return ret;
1077 }
1078
cddb8a5c
AA
1079 /*
1080 * We need to invalidate the secondary MMU mappings only when
1081 * there could be a permission downgrade on the ptes of the
1082 * parent mm. And a permission downgrade will only happen if
1083 * is_cow_mapping() returns true.
1084 */
2ec74c3e
SG
1085 is_cow = is_cow_mapping(vma->vm_flags);
1086 mmun_start = addr;
1087 mmun_end = end;
1088 if (is_cow)
1089 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090 mmun_end);
cddb8a5c
AA
1091
1092 ret = 0;
1da177e4
LT
1093 dst_pgd = pgd_offset(dst_mm, addr);
1094 src_pgd = pgd_offset(src_mm, addr);
1095 do {
1096 next = pgd_addr_end(addr, end);
1097 if (pgd_none_or_clear_bad(src_pgd))
1098 continue;
cddb8a5c
AA
1099 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100 vma, addr, next))) {
1101 ret = -ENOMEM;
1102 break;
1103 }
1da177e4 1104 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1105
2ec74c3e
SG
1106 if (is_cow)
1107 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1108 return ret;
1da177e4
LT
1109}
1110
51c6f666 1111static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1112 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1113 unsigned long addr, unsigned long end,
97a89413 1114 struct zap_details *details)
1da177e4 1115{
b5810039 1116 struct mm_struct *mm = tlb->mm;
d16dfc55 1117 int force_flush = 0;
d559db08 1118 int rss[NR_MM_COUNTERS];
97a89413 1119 spinlock_t *ptl;
5f1a1907 1120 pte_t *start_pte;
97a89413 1121 pte_t *pte;
8a5f14a2 1122 swp_entry_t entry;
d559db08 1123
07e32661 1124 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1125again:
e303297e 1126 init_rss_vec(rss);
5f1a1907
SR
1127 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128 pte = start_pte;
6606c3e0 1129 arch_enter_lazy_mmu_mode();
1da177e4
LT
1130 do {
1131 pte_t ptent = *pte;
51c6f666 1132 if (pte_none(ptent)) {
1da177e4 1133 continue;
51c6f666 1134 }
6f5e6b9e 1135
1da177e4 1136 if (pte_present(ptent)) {
ee498ed7 1137 struct page *page;
51c6f666 1138
6aab341e 1139 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1140 if (unlikely(details) && page) {
1141 /*
1142 * unmap_shared_mapping_pages() wants to
1143 * invalidate cache without truncating:
1144 * unmap shared but keep private pages.
1145 */
1146 if (details->check_mapping &&
800d8c63 1147 details->check_mapping != page_rmapping(page))
1da177e4 1148 continue;
1da177e4 1149 }
b5810039 1150 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1151 tlb->fullmm);
1da177e4
LT
1152 tlb_remove_tlb_entry(tlb, pte, addr);
1153 if (unlikely(!page))
1154 continue;
eca56ff9
JM
1155
1156 if (!PageAnon(page)) {
1cf35d47 1157 if (pte_dirty(ptent)) {
aac45363
MH
1158 /*
1159 * oom_reaper cannot tear down dirty
1160 * pages
1161 */
1162 if (unlikely(details && details->ignore_dirty))
1163 continue;
1cf35d47 1164 force_flush = 1;
6237bcd9 1165 set_page_dirty(page);
1cf35d47 1166 }
4917e5d0 1167 if (pte_young(ptent) &&
64363aad 1168 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1169 mark_page_accessed(page);
6237bcd9 1170 }
eca56ff9 1171 rss[mm_counter(page)]--;
d281ee61 1172 page_remove_rmap(page, false);
3dc14741
HD
1173 if (unlikely(page_mapcount(page) < 0))
1174 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1175 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1176 force_flush = 1;
ce9ec37b 1177 addr += PAGE_SIZE;
d16dfc55 1178 break;
1cf35d47 1179 }
1da177e4
LT
1180 continue;
1181 }
aac45363
MH
1182 /* only check swap_entries if explicitly asked for in details */
1183 if (unlikely(details && !details->check_swap_entries))
1da177e4 1184 continue;
b084d435 1185
8a5f14a2
KS
1186 entry = pte_to_swp_entry(ptent);
1187 if (!non_swap_entry(entry))
1188 rss[MM_SWAPENTS]--;
1189 else if (is_migration_entry(entry)) {
1190 struct page *page;
9f9f1acd 1191
8a5f14a2 1192 page = migration_entry_to_page(entry);
eca56ff9 1193 rss[mm_counter(page)]--;
b084d435 1194 }
8a5f14a2
KS
1195 if (unlikely(!free_swap_and_cache(entry)))
1196 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1198 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1199
d559db08 1200 add_mm_rss_vec(mm, rss);
6606c3e0 1201 arch_leave_lazy_mmu_mode();
51c6f666 1202
1cf35d47 1203 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1204 if (force_flush)
1cf35d47 1205 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1206 pte_unmap_unlock(start_pte, ptl);
1207
1208 /*
1209 * If we forced a TLB flush (either due to running out of
1210 * batch buffers or because we needed to flush dirty TLB
1211 * entries before releasing the ptl), free the batched
1212 * memory too. Restart if we didn't do everything.
1213 */
1214 if (force_flush) {
1215 force_flush = 0;
1216 tlb_flush_mmu_free(tlb);
2b047252 1217 if (addr != end)
d16dfc55
PZ
1218 goto again;
1219 }
1220
51c6f666 1221 return addr;
1da177e4
LT
1222}
1223
51c6f666 1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1225 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1226 unsigned long addr, unsigned long end,
97a89413 1227 struct zap_details *details)
1da177e4
LT
1228{
1229 pmd_t *pmd;
1230 unsigned long next;
1231
1232 pmd = pmd_offset(pud, addr);
1233 do {
1234 next = pmd_addr_end(addr, end);
5c7fb56e 1235 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1236 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1237 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1238 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1239 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1240 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1241 goto next;
71e3aac0
AA
1242 /* fall through */
1243 }
1a5a9906
AA
1244 /*
1245 * Here there can be other concurrent MADV_DONTNEED or
1246 * trans huge page faults running, and if the pmd is
1247 * none or trans huge it can change under us. This is
1248 * because MADV_DONTNEED holds the mmap_sem in read
1249 * mode.
1250 */
1251 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252 goto next;
97a89413 1253 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1254next:
97a89413
PZ
1255 cond_resched();
1256 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1257
1258 return addr;
1da177e4
LT
1259}
1260
51c6f666 1261static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1262 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1263 unsigned long addr, unsigned long end,
97a89413 1264 struct zap_details *details)
1da177e4
LT
1265{
1266 pud_t *pud;
1267 unsigned long next;
1268
1269 pud = pud_offset(pgd, addr);
1270 do {
1271 next = pud_addr_end(addr, end);
97a89413 1272 if (pud_none_or_clear_bad(pud))
1da177e4 1273 continue;
97a89413
PZ
1274 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1275 } while (pud++, addr = next, addr != end);
51c6f666
RH
1276
1277 return addr;
1da177e4
LT
1278}
1279
aac45363 1280void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1281 struct vm_area_struct *vma,
1282 unsigned long addr, unsigned long end,
1283 struct zap_details *details)
1da177e4
LT
1284{
1285 pgd_t *pgd;
1286 unsigned long next;
1287
1da177e4
LT
1288 BUG_ON(addr >= end);
1289 tlb_start_vma(tlb, vma);
1290 pgd = pgd_offset(vma->vm_mm, addr);
1291 do {
1292 next = pgd_addr_end(addr, end);
97a89413 1293 if (pgd_none_or_clear_bad(pgd))
1da177e4 1294 continue;
97a89413
PZ
1295 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1296 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1297 tlb_end_vma(tlb, vma);
1298}
51c6f666 1299
f5cc4eef
AV
1300
1301static void unmap_single_vma(struct mmu_gather *tlb,
1302 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1303 unsigned long end_addr,
f5cc4eef
AV
1304 struct zap_details *details)
1305{
1306 unsigned long start = max(vma->vm_start, start_addr);
1307 unsigned long end;
1308
1309 if (start >= vma->vm_end)
1310 return;
1311 end = min(vma->vm_end, end_addr);
1312 if (end <= vma->vm_start)
1313 return;
1314
cbc91f71
SD
1315 if (vma->vm_file)
1316 uprobe_munmap(vma, start, end);
1317
b3b9c293 1318 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1319 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1320
1321 if (start != end) {
1322 if (unlikely(is_vm_hugetlb_page(vma))) {
1323 /*
1324 * It is undesirable to test vma->vm_file as it
1325 * should be non-null for valid hugetlb area.
1326 * However, vm_file will be NULL in the error
7aa6b4ad 1327 * cleanup path of mmap_region. When
f5cc4eef 1328 * hugetlbfs ->mmap method fails,
7aa6b4ad 1329 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1330 * before calling this function to clean up.
1331 * Since no pte has actually been setup, it is
1332 * safe to do nothing in this case.
1333 */
24669e58 1334 if (vma->vm_file) {
83cde9e8 1335 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1336 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1337 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1338 }
f5cc4eef
AV
1339 } else
1340 unmap_page_range(tlb, vma, start, end, details);
1341 }
1da177e4
LT
1342}
1343
1da177e4
LT
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1346 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1da177e4 1350 *
508034a3 1351 * Unmap all pages in the vma list.
1da177e4 1352 *
1da177e4
LT
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns. So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
6e8bb019 1362void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1363 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1364 unsigned long end_addr)
1da177e4 1365{
cddb8a5c 1366 struct mm_struct *mm = vma->vm_mm;
1da177e4 1367
cddb8a5c 1368 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1369 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1370 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1377 * @start: starting address of pages to zap
1da177e4 1378 * @size: number of bytes to zap
8a5f14a2 1379 * @details: details of shared cache invalidation
f5cc4eef
AV
1380 *
1381 * Caller must protect the VMA list
1da177e4 1382 */
7e027b14 1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1384 unsigned long size, struct zap_details *details)
1385{
1386 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1387 struct mmu_gather tlb;
7e027b14 1388 unsigned long end = start + size;
1da177e4 1389
1da177e4 1390 lru_add_drain();
2b047252 1391 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1392 update_hiwater_rss(mm);
7e027b14
LT
1393 mmu_notifier_invalidate_range_start(mm, start, end);
1394 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1395 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1396 mmu_notifier_invalidate_range_end(mm, start, end);
1397 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1398}
1399
f5cc4eef
AV
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
8a5f14a2 1405 * @details: details of shared cache invalidation
f5cc4eef
AV
1406 *
1407 * The range must fit into one VMA.
1da177e4 1408 */
f5cc4eef 1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1410 unsigned long size, struct zap_details *details)
1411{
1412 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1413 struct mmu_gather tlb;
1da177e4 1414 unsigned long end = address + size;
1da177e4 1415
1da177e4 1416 lru_add_drain();
2b047252 1417 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1418 update_hiwater_rss(mm);
f5cc4eef 1419 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1420 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1421 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1422 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1423}
1424
c627f9cc
JS
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438 unsigned long size)
1439{
1440 if (address < vma->vm_start || address + size > vma->vm_end ||
1441 !(vma->vm_flags & VM_PFNMAP))
1442 return -1;
f5cc4eef 1443 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1444 return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
25ca1d6c 1448pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1449 spinlock_t **ptl)
c9cfcddf
LT
1450{
1451 pgd_t * pgd = pgd_offset(mm, addr);
1452 pud_t * pud = pud_alloc(mm, pgd, addr);
1453 if (pud) {
49c91fb0 1454 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1455 if (pmd) {
1456 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1457 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1458 }
c9cfcddf
LT
1459 }
1460 return NULL;
1461}
1462
238f58d8
LT
1463/*
1464 * This is the old fallback for page remapping.
1465 *
1466 * For historical reasons, it only allows reserved pages. Only
1467 * old drivers should use this, and they needed to mark their
1468 * pages reserved for the old functions anyway.
1469 */
423bad60
NP
1470static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1471 struct page *page, pgprot_t prot)
238f58d8 1472{
423bad60 1473 struct mm_struct *mm = vma->vm_mm;
238f58d8 1474 int retval;
c9cfcddf 1475 pte_t *pte;
8a9f3ccd
BS
1476 spinlock_t *ptl;
1477
238f58d8 1478 retval = -EINVAL;
a145dd41 1479 if (PageAnon(page))
5b4e655e 1480 goto out;
238f58d8
LT
1481 retval = -ENOMEM;
1482 flush_dcache_page(page);
c9cfcddf 1483 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1484 if (!pte)
5b4e655e 1485 goto out;
238f58d8
LT
1486 retval = -EBUSY;
1487 if (!pte_none(*pte))
1488 goto out_unlock;
1489
1490 /* Ok, finally just insert the thing.. */
1491 get_page(page);
eca56ff9 1492 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1493 page_add_file_rmap(page, false);
238f58d8
LT
1494 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1495
1496 retval = 0;
8a9f3ccd
BS
1497 pte_unmap_unlock(pte, ptl);
1498 return retval;
238f58d8
LT
1499out_unlock:
1500 pte_unmap_unlock(pte, ptl);
1501out:
1502 return retval;
1503}
1504
bfa5bf6d
REB
1505/**
1506 * vm_insert_page - insert single page into user vma
1507 * @vma: user vma to map to
1508 * @addr: target user address of this page
1509 * @page: source kernel page
1510 *
a145dd41
LT
1511 * This allows drivers to insert individual pages they've allocated
1512 * into a user vma.
1513 *
1514 * The page has to be a nice clean _individual_ kernel allocation.
1515 * If you allocate a compound page, you need to have marked it as
1516 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1517 * (see split_page()).
a145dd41
LT
1518 *
1519 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1520 * took an arbitrary page protection parameter. This doesn't allow
1521 * that. Your vma protection will have to be set up correctly, which
1522 * means that if you want a shared writable mapping, you'd better
1523 * ask for a shared writable mapping!
1524 *
1525 * The page does not need to be reserved.
4b6e1e37
KK
1526 *
1527 * Usually this function is called from f_op->mmap() handler
1528 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1529 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1530 * function from other places, for example from page-fault handler.
a145dd41 1531 */
423bad60
NP
1532int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1533 struct page *page)
a145dd41
LT
1534{
1535 if (addr < vma->vm_start || addr >= vma->vm_end)
1536 return -EFAULT;
1537 if (!page_count(page))
1538 return -EINVAL;
4b6e1e37
KK
1539 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1540 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1541 BUG_ON(vma->vm_flags & VM_PFNMAP);
1542 vma->vm_flags |= VM_MIXEDMAP;
1543 }
423bad60 1544 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1545}
e3c3374f 1546EXPORT_SYMBOL(vm_insert_page);
a145dd41 1547
423bad60 1548static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1549 pfn_t pfn, pgprot_t prot)
423bad60
NP
1550{
1551 struct mm_struct *mm = vma->vm_mm;
1552 int retval;
1553 pte_t *pte, entry;
1554 spinlock_t *ptl;
1555
1556 retval = -ENOMEM;
1557 pte = get_locked_pte(mm, addr, &ptl);
1558 if (!pte)
1559 goto out;
1560 retval = -EBUSY;
1561 if (!pte_none(*pte))
1562 goto out_unlock;
1563
1564 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1565 if (pfn_t_devmap(pfn))
1566 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567 else
1568 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
423bad60 1569 set_pte_at(mm, addr, pte, entry);
4b3073e1 1570 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1571
1572 retval = 0;
1573out_unlock:
1574 pte_unmap_unlock(pte, ptl);
1575out:
1576 return retval;
1577}
1578
e0dc0d8f
NP
1579/**
1580 * vm_insert_pfn - insert single pfn into user vma
1581 * @vma: user vma to map to
1582 * @addr: target user address of this page
1583 * @pfn: source kernel pfn
1584 *
c462f179 1585 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1586 * they've allocated into a user vma. Same comments apply.
1587 *
1588 * This function should only be called from a vm_ops->fault handler, and
1589 * in that case the handler should return NULL.
0d71d10a
NP
1590 *
1591 * vma cannot be a COW mapping.
1592 *
1593 * As this is called only for pages that do not currently exist, we
1594 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1595 */
1596int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1597 unsigned long pfn)
1745cbc5
AL
1598{
1599 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600}
1601EXPORT_SYMBOL(vm_insert_pfn);
1602
1603/**
1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 * @pgprot: pgprot flags for the inserted page
1609 *
1610 * This is exactly like vm_insert_pfn, except that it allows drivers to
1611 * to override pgprot on a per-page basis.
1612 *
1613 * This only makes sense for IO mappings, and it makes no sense for
1614 * cow mappings. In general, using multiple vmas is preferable;
1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616 * impractical.
1617 */
1618int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1620{
2ab64037 1621 int ret;
7e675137
NP
1622 /*
1623 * Technically, architectures with pte_special can avoid all these
1624 * restrictions (same for remap_pfn_range). However we would like
1625 * consistency in testing and feature parity among all, so we should
1626 * try to keep these invariants in place for everybody.
1627 */
b379d790
JH
1628 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630 (VM_PFNMAP|VM_MIXEDMAP));
1631 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1633
423bad60
NP
1634 if (addr < vma->vm_start || addr >= vma->vm_end)
1635 return -EFAULT;
308a047c
BP
1636
1637 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1638
01c8f1c4 1639 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
2ab64037 1640
2ab64037 1641 return ret;
423bad60 1642}
1745cbc5 1643EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1644
423bad60 1645int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 1646 pfn_t pfn)
423bad60 1647{
87744ab3
DW
1648 pgprot_t pgprot = vma->vm_page_prot;
1649
423bad60 1650 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1651
423bad60
NP
1652 if (addr < vma->vm_start || addr >= vma->vm_end)
1653 return -EFAULT;
308a047c
BP
1654
1655 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1656
423bad60
NP
1657 /*
1658 * If we don't have pte special, then we have to use the pfn_valid()
1659 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1661 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1662 * without pte special, it would there be refcounted as a normal page.
423bad60 1663 */
03fc2da6 1664 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1665 struct page *page;
1666
03fc2da6
DW
1667 /*
1668 * At this point we are committed to insert_page()
1669 * regardless of whether the caller specified flags that
1670 * result in pfn_t_has_page() == false.
1671 */
1672 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1673 return insert_page(vma, addr, page, pgprot);
423bad60 1674 }
87744ab3 1675 return insert_pfn(vma, addr, pfn, pgprot);
e0dc0d8f 1676}
423bad60 1677EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1678
1da177e4
LT
1679/*
1680 * maps a range of physical memory into the requested pages. the old
1681 * mappings are removed. any references to nonexistent pages results
1682 * in null mappings (currently treated as "copy-on-access")
1683 */
1684static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687{
1688 pte_t *pte;
c74df32c 1689 spinlock_t *ptl;
1da177e4 1690
c74df32c 1691 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1692 if (!pte)
1693 return -ENOMEM;
6606c3e0 1694 arch_enter_lazy_mmu_mode();
1da177e4
LT
1695 do {
1696 BUG_ON(!pte_none(*pte));
7e675137 1697 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1698 pfn++;
1699 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1700 arch_leave_lazy_mmu_mode();
c74df32c 1701 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1702 return 0;
1703}
1704
1705static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1706 unsigned long addr, unsigned long end,
1707 unsigned long pfn, pgprot_t prot)
1708{
1709 pmd_t *pmd;
1710 unsigned long next;
1711
1712 pfn -= addr >> PAGE_SHIFT;
1713 pmd = pmd_alloc(mm, pud, addr);
1714 if (!pmd)
1715 return -ENOMEM;
f66055ab 1716 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1717 do {
1718 next = pmd_addr_end(addr, end);
1719 if (remap_pte_range(mm, pmd, addr, next,
1720 pfn + (addr >> PAGE_SHIFT), prot))
1721 return -ENOMEM;
1722 } while (pmd++, addr = next, addr != end);
1723 return 0;
1724}
1725
1726static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727 unsigned long addr, unsigned long end,
1728 unsigned long pfn, pgprot_t prot)
1729{
1730 pud_t *pud;
1731 unsigned long next;
1732
1733 pfn -= addr >> PAGE_SHIFT;
1734 pud = pud_alloc(mm, pgd, addr);
1735 if (!pud)
1736 return -ENOMEM;
1737 do {
1738 next = pud_addr_end(addr, end);
1739 if (remap_pmd_range(mm, pud, addr, next,
1740 pfn + (addr >> PAGE_SHIFT), prot))
1741 return -ENOMEM;
1742 } while (pud++, addr = next, addr != end);
1743 return 0;
1744}
1745
bfa5bf6d
REB
1746/**
1747 * remap_pfn_range - remap kernel memory to userspace
1748 * @vma: user vma to map to
1749 * @addr: target user address to start at
1750 * @pfn: physical address of kernel memory
1751 * @size: size of map area
1752 * @prot: page protection flags for this mapping
1753 *
1754 * Note: this is only safe if the mm semaphore is held when called.
1755 */
1da177e4
LT
1756int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757 unsigned long pfn, unsigned long size, pgprot_t prot)
1758{
1759 pgd_t *pgd;
1760 unsigned long next;
2d15cab8 1761 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1762 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1763 unsigned long remap_pfn = pfn;
1da177e4
LT
1764 int err;
1765
1766 /*
1767 * Physically remapped pages are special. Tell the
1768 * rest of the world about it:
1769 * VM_IO tells people not to look at these pages
1770 * (accesses can have side effects).
6aab341e
LT
1771 * VM_PFNMAP tells the core MM that the base pages are just
1772 * raw PFN mappings, and do not have a "struct page" associated
1773 * with them.
314e51b9
KK
1774 * VM_DONTEXPAND
1775 * Disable vma merging and expanding with mremap().
1776 * VM_DONTDUMP
1777 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1778 *
1779 * There's a horrible special case to handle copy-on-write
1780 * behaviour that some programs depend on. We mark the "original"
1781 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1782 * See vm_normal_page() for details.
1da177e4 1783 */
b3b9c293
KK
1784 if (is_cow_mapping(vma->vm_flags)) {
1785 if (addr != vma->vm_start || end != vma->vm_end)
1786 return -EINVAL;
fb155c16 1787 vma->vm_pgoff = pfn;
b3b9c293
KK
1788 }
1789
d5957d2f 1790 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1791 if (err)
3c8bb73a 1792 return -EINVAL;
fb155c16 1793
314e51b9 1794 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1795
1796 BUG_ON(addr >= end);
1797 pfn -= addr >> PAGE_SHIFT;
1798 pgd = pgd_offset(mm, addr);
1799 flush_cache_range(vma, addr, end);
1da177e4
LT
1800 do {
1801 next = pgd_addr_end(addr, end);
1802 err = remap_pud_range(mm, pgd, addr, next,
1803 pfn + (addr >> PAGE_SHIFT), prot);
1804 if (err)
1805 break;
1806 } while (pgd++, addr = next, addr != end);
2ab64037 1807
1808 if (err)
d5957d2f 1809 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1810
1da177e4
LT
1811 return err;
1812}
1813EXPORT_SYMBOL(remap_pfn_range);
1814
b4cbb197
LT
1815/**
1816 * vm_iomap_memory - remap memory to userspace
1817 * @vma: user vma to map to
1818 * @start: start of area
1819 * @len: size of area
1820 *
1821 * This is a simplified io_remap_pfn_range() for common driver use. The
1822 * driver just needs to give us the physical memory range to be mapped,
1823 * we'll figure out the rest from the vma information.
1824 *
1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826 * whatever write-combining details or similar.
1827 */
1828int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829{
1830 unsigned long vm_len, pfn, pages;
1831
1832 /* Check that the physical memory area passed in looks valid */
1833 if (start + len < start)
1834 return -EINVAL;
1835 /*
1836 * You *really* shouldn't map things that aren't page-aligned,
1837 * but we've historically allowed it because IO memory might
1838 * just have smaller alignment.
1839 */
1840 len += start & ~PAGE_MASK;
1841 pfn = start >> PAGE_SHIFT;
1842 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1843 if (pfn + pages < pfn)
1844 return -EINVAL;
1845
1846 /* We start the mapping 'vm_pgoff' pages into the area */
1847 if (vma->vm_pgoff > pages)
1848 return -EINVAL;
1849 pfn += vma->vm_pgoff;
1850 pages -= vma->vm_pgoff;
1851
1852 /* Can we fit all of the mapping? */
1853 vm_len = vma->vm_end - vma->vm_start;
1854 if (vm_len >> PAGE_SHIFT > pages)
1855 return -EINVAL;
1856
1857 /* Ok, let it rip */
1858 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859}
1860EXPORT_SYMBOL(vm_iomap_memory);
1861
aee16b3c
JF
1862static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863 unsigned long addr, unsigned long end,
1864 pte_fn_t fn, void *data)
1865{
1866 pte_t *pte;
1867 int err;
2f569afd 1868 pgtable_t token;
94909914 1869 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1870
1871 pte = (mm == &init_mm) ?
1872 pte_alloc_kernel(pmd, addr) :
1873 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1874 if (!pte)
1875 return -ENOMEM;
1876
1877 BUG_ON(pmd_huge(*pmd));
1878
38e0edb1
JF
1879 arch_enter_lazy_mmu_mode();
1880
2f569afd 1881 token = pmd_pgtable(*pmd);
aee16b3c
JF
1882
1883 do {
c36987e2 1884 err = fn(pte++, token, addr, data);
aee16b3c
JF
1885 if (err)
1886 break;
c36987e2 1887 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1888
38e0edb1
JF
1889 arch_leave_lazy_mmu_mode();
1890
aee16b3c
JF
1891 if (mm != &init_mm)
1892 pte_unmap_unlock(pte-1, ptl);
1893 return err;
1894}
1895
1896static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1897 unsigned long addr, unsigned long end,
1898 pte_fn_t fn, void *data)
1899{
1900 pmd_t *pmd;
1901 unsigned long next;
1902 int err;
1903
ceb86879
AK
1904 BUG_ON(pud_huge(*pud));
1905
aee16b3c
JF
1906 pmd = pmd_alloc(mm, pud, addr);
1907 if (!pmd)
1908 return -ENOMEM;
1909 do {
1910 next = pmd_addr_end(addr, end);
1911 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1912 if (err)
1913 break;
1914 } while (pmd++, addr = next, addr != end);
1915 return err;
1916}
1917
1918static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919 unsigned long addr, unsigned long end,
1920 pte_fn_t fn, void *data)
1921{
1922 pud_t *pud;
1923 unsigned long next;
1924 int err;
1925
1926 pud = pud_alloc(mm, pgd, addr);
1927 if (!pud)
1928 return -ENOMEM;
1929 do {
1930 next = pud_addr_end(addr, end);
1931 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1932 if (err)
1933 break;
1934 } while (pud++, addr = next, addr != end);
1935 return err;
1936}
1937
1938/*
1939 * Scan a region of virtual memory, filling in page tables as necessary
1940 * and calling a provided function on each leaf page table.
1941 */
1942int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1943 unsigned long size, pte_fn_t fn, void *data)
1944{
1945 pgd_t *pgd;
1946 unsigned long next;
57250a5b 1947 unsigned long end = addr + size;
aee16b3c
JF
1948 int err;
1949
9cb65bc3
MP
1950 if (WARN_ON(addr >= end))
1951 return -EINVAL;
1952
aee16b3c
JF
1953 pgd = pgd_offset(mm, addr);
1954 do {
1955 next = pgd_addr_end(addr, end);
1956 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1957 if (err)
1958 break;
1959 } while (pgd++, addr = next, addr != end);
57250a5b 1960
aee16b3c
JF
1961 return err;
1962}
1963EXPORT_SYMBOL_GPL(apply_to_page_range);
1964
8f4e2101 1965/*
9b4bdd2f
KS
1966 * handle_pte_fault chooses page fault handler according to an entry which was
1967 * read non-atomically. Before making any commitment, on those architectures
1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969 * parts, do_swap_page must check under lock before unmapping the pte and
1970 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 1971 * and do_anonymous_page can safely check later on).
8f4e2101 1972 */
4c21e2f2 1973static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1974 pte_t *page_table, pte_t orig_pte)
1975{
1976 int same = 1;
1977#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1979 spinlock_t *ptl = pte_lockptr(mm, pmd);
1980 spin_lock(ptl);
8f4e2101 1981 same = pte_same(*page_table, orig_pte);
4c21e2f2 1982 spin_unlock(ptl);
8f4e2101
HD
1983 }
1984#endif
1985 pte_unmap(page_table);
1986 return same;
1987}
1988
9de455b2 1989static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1990{
0abdd7a8
DW
1991 debug_dma_assert_idle(src);
1992
6aab341e
LT
1993 /*
1994 * If the source page was a PFN mapping, we don't have
1995 * a "struct page" for it. We do a best-effort copy by
1996 * just copying from the original user address. If that
1997 * fails, we just zero-fill it. Live with it.
1998 */
1999 if (unlikely(!src)) {
9b04c5fe 2000 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2001 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2002
2003 /*
2004 * This really shouldn't fail, because the page is there
2005 * in the page tables. But it might just be unreadable,
2006 * in which case we just give up and fill the result with
2007 * zeroes.
2008 */
2009 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2010 clear_page(kaddr);
9b04c5fe 2011 kunmap_atomic(kaddr);
c4ec7b0d 2012 flush_dcache_page(dst);
0ed361de
NP
2013 } else
2014 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2015}
2016
c20cd45e
MH
2017static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2018{
2019 struct file *vm_file = vma->vm_file;
2020
2021 if (vm_file)
2022 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2023
2024 /*
2025 * Special mappings (e.g. VDSO) do not have any file so fake
2026 * a default GFP_KERNEL for them.
2027 */
2028 return GFP_KERNEL;
2029}
2030
fb09a464
KS
2031/*
2032 * Notify the address space that the page is about to become writable so that
2033 * it can prohibit this or wait for the page to get into an appropriate state.
2034 *
2035 * We do this without the lock held, so that it can sleep if it needs to.
2036 */
2037static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2038 unsigned long address)
2039{
2040 struct vm_fault vmf;
2041 int ret;
2042
2043 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2044 vmf.pgoff = page->index;
2045 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
c20cd45e 2046 vmf.gfp_mask = __get_fault_gfp_mask(vma);
fb09a464 2047 vmf.page = page;
2e4cdab0 2048 vmf.cow_page = NULL;
fb09a464
KS
2049
2050 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2051 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2052 return ret;
2053 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2054 lock_page(page);
2055 if (!page->mapping) {
2056 unlock_page(page);
2057 return 0; /* retry */
2058 }
2059 ret |= VM_FAULT_LOCKED;
2060 } else
2061 VM_BUG_ON_PAGE(!PageLocked(page), page);
2062 return ret;
2063}
2064
4e047f89
SR
2065/*
2066 * Handle write page faults for pages that can be reused in the current vma
2067 *
2068 * This can happen either due to the mapping being with the VM_SHARED flag,
2069 * or due to us being the last reference standing to the page. In either
2070 * case, all we need to do here is to mark the page as writable and update
2071 * any related book-keeping.
2072 */
82b0f8c3 2073static inline int wp_page_reuse(struct vm_fault *vmf, pte_t orig_pte,
bae473a4 2074 struct page *page, int page_mkwrite, int dirty_shared)
82b0f8c3 2075 __releases(vmf->ptl)
4e047f89 2076{
82b0f8c3 2077 struct vm_area_struct *vma = vmf->vma;
4e047f89
SR
2078 pte_t entry;
2079 /*
2080 * Clear the pages cpupid information as the existing
2081 * information potentially belongs to a now completely
2082 * unrelated process.
2083 */
2084 if (page)
2085 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2086
82b0f8c3 2087 flush_cache_page(vma, vmf->address, pte_pfn(orig_pte));
4e047f89
SR
2088 entry = pte_mkyoung(orig_pte);
2089 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2090 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2091 update_mmu_cache(vma, vmf->address, vmf->pte);
2092 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2093
2094 if (dirty_shared) {
2095 struct address_space *mapping;
2096 int dirtied;
2097
2098 if (!page_mkwrite)
2099 lock_page(page);
2100
2101 dirtied = set_page_dirty(page);
2102 VM_BUG_ON_PAGE(PageAnon(page), page);
2103 mapping = page->mapping;
2104 unlock_page(page);
09cbfeaf 2105 put_page(page);
4e047f89
SR
2106
2107 if ((dirtied || page_mkwrite) && mapping) {
2108 /*
2109 * Some device drivers do not set page.mapping
2110 * but still dirty their pages
2111 */
2112 balance_dirty_pages_ratelimited(mapping);
2113 }
2114
2115 if (!page_mkwrite)
2116 file_update_time(vma->vm_file);
2117 }
2118
2119 return VM_FAULT_WRITE;
2120}
2121
2f38ab2c
SR
2122/*
2123 * Handle the case of a page which we actually need to copy to a new page.
2124 *
2125 * Called with mmap_sem locked and the old page referenced, but
2126 * without the ptl held.
2127 *
2128 * High level logic flow:
2129 *
2130 * - Allocate a page, copy the content of the old page to the new one.
2131 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2132 * - Take the PTL. If the pte changed, bail out and release the allocated page
2133 * - If the pte is still the way we remember it, update the page table and all
2134 * relevant references. This includes dropping the reference the page-table
2135 * held to the old page, as well as updating the rmap.
2136 * - In any case, unlock the PTL and drop the reference we took to the old page.
2137 */
82b0f8c3 2138static int wp_page_copy(struct vm_fault *vmf, pte_t orig_pte,
bae473a4 2139 struct page *old_page)
2f38ab2c 2140{
82b0f8c3 2141 struct vm_area_struct *vma = vmf->vma;
bae473a4 2142 struct mm_struct *mm = vma->vm_mm;
2f38ab2c 2143 struct page *new_page = NULL;
2f38ab2c
SR
2144 pte_t entry;
2145 int page_copied = 0;
82b0f8c3 2146 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2147 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2148 struct mem_cgroup *memcg;
2149
2150 if (unlikely(anon_vma_prepare(vma)))
2151 goto oom;
2152
2153 if (is_zero_pfn(pte_pfn(orig_pte))) {
82b0f8c3
JK
2154 new_page = alloc_zeroed_user_highpage_movable(vma,
2155 vmf->address);
2f38ab2c
SR
2156 if (!new_page)
2157 goto oom;
2158 } else {
bae473a4 2159 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2160 vmf->address);
2f38ab2c
SR
2161 if (!new_page)
2162 goto oom;
82b0f8c3 2163 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2164 }
2f38ab2c 2165
f627c2f5 2166 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2167 goto oom_free_new;
2168
eb3c24f3
MG
2169 __SetPageUptodate(new_page);
2170
2f38ab2c
SR
2171 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2172
2173 /*
2174 * Re-check the pte - we dropped the lock
2175 */
82b0f8c3
JK
2176 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2177 if (likely(pte_same(*vmf->pte, orig_pte))) {
2f38ab2c
SR
2178 if (old_page) {
2179 if (!PageAnon(old_page)) {
eca56ff9
JM
2180 dec_mm_counter_fast(mm,
2181 mm_counter_file(old_page));
2f38ab2c
SR
2182 inc_mm_counter_fast(mm, MM_ANONPAGES);
2183 }
2184 } else {
2185 inc_mm_counter_fast(mm, MM_ANONPAGES);
2186 }
82b0f8c3 2187 flush_cache_page(vma, vmf->address, pte_pfn(orig_pte));
2f38ab2c
SR
2188 entry = mk_pte(new_page, vma->vm_page_prot);
2189 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2190 /*
2191 * Clear the pte entry and flush it first, before updating the
2192 * pte with the new entry. This will avoid a race condition
2193 * seen in the presence of one thread doing SMC and another
2194 * thread doing COW.
2195 */
82b0f8c3
JK
2196 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2197 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2198 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2199 lru_cache_add_active_or_unevictable(new_page, vma);
2200 /*
2201 * We call the notify macro here because, when using secondary
2202 * mmu page tables (such as kvm shadow page tables), we want the
2203 * new page to be mapped directly into the secondary page table.
2204 */
82b0f8c3
JK
2205 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2206 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2207 if (old_page) {
2208 /*
2209 * Only after switching the pte to the new page may
2210 * we remove the mapcount here. Otherwise another
2211 * process may come and find the rmap count decremented
2212 * before the pte is switched to the new page, and
2213 * "reuse" the old page writing into it while our pte
2214 * here still points into it and can be read by other
2215 * threads.
2216 *
2217 * The critical issue is to order this
2218 * page_remove_rmap with the ptp_clear_flush above.
2219 * Those stores are ordered by (if nothing else,)
2220 * the barrier present in the atomic_add_negative
2221 * in page_remove_rmap.
2222 *
2223 * Then the TLB flush in ptep_clear_flush ensures that
2224 * no process can access the old page before the
2225 * decremented mapcount is visible. And the old page
2226 * cannot be reused until after the decremented
2227 * mapcount is visible. So transitively, TLBs to
2228 * old page will be flushed before it can be reused.
2229 */
d281ee61 2230 page_remove_rmap(old_page, false);
2f38ab2c
SR
2231 }
2232
2233 /* Free the old page.. */
2234 new_page = old_page;
2235 page_copied = 1;
2236 } else {
f627c2f5 2237 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2238 }
2239
2240 if (new_page)
09cbfeaf 2241 put_page(new_page);
2f38ab2c 2242
82b0f8c3 2243 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2244 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2245 if (old_page) {
2246 /*
2247 * Don't let another task, with possibly unlocked vma,
2248 * keep the mlocked page.
2249 */
2250 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2251 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2252 if (PageMlocked(old_page))
2253 munlock_vma_page(old_page);
2f38ab2c
SR
2254 unlock_page(old_page);
2255 }
09cbfeaf 2256 put_page(old_page);
2f38ab2c
SR
2257 }
2258 return page_copied ? VM_FAULT_WRITE : 0;
2259oom_free_new:
09cbfeaf 2260 put_page(new_page);
2f38ab2c
SR
2261oom:
2262 if (old_page)
09cbfeaf 2263 put_page(old_page);
2f38ab2c
SR
2264 return VM_FAULT_OOM;
2265}
2266
dd906184
BH
2267/*
2268 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2269 * mapping
2270 */
82b0f8c3 2271static int wp_pfn_shared(struct vm_fault *vmf, pte_t orig_pte)
dd906184 2272{
82b0f8c3 2273 struct vm_area_struct *vma = vmf->vma;
bae473a4 2274
dd906184 2275 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
82b0f8c3 2276 struct vm_fault vmf2 = {
dd906184 2277 .page = NULL,
82b0f8c3 2278 .pgoff = linear_page_index(vma, vmf->address),
bae473a4 2279 .virtual_address =
82b0f8c3 2280 (void __user *)(vmf->address & PAGE_MASK),
dd906184
BH
2281 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2282 };
2283 int ret;
2284
82b0f8c3
JK
2285 pte_unmap_unlock(vmf->pte, vmf->ptl);
2286 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf2);
dd906184
BH
2287 if (ret & VM_FAULT_ERROR)
2288 return ret;
82b0f8c3
JK
2289 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2290 vmf->address, &vmf->ptl);
dd906184
BH
2291 /*
2292 * We might have raced with another page fault while we
2293 * released the pte_offset_map_lock.
2294 */
82b0f8c3
JK
2295 if (!pte_same(*vmf->pte, orig_pte)) {
2296 pte_unmap_unlock(vmf->pte, vmf->ptl);
dd906184
BH
2297 return 0;
2298 }
2299 }
82b0f8c3 2300 return wp_page_reuse(vmf, orig_pte, NULL, 0, 0);
dd906184
BH
2301}
2302
82b0f8c3 2303static int wp_page_shared(struct vm_fault *vmf, pte_t orig_pte,
bae473a4 2304 struct page *old_page)
82b0f8c3 2305 __releases(vmf->ptl)
93e478d4 2306{
82b0f8c3 2307 struct vm_area_struct *vma = vmf->vma;
93e478d4
SR
2308 int page_mkwrite = 0;
2309
09cbfeaf 2310 get_page(old_page);
93e478d4 2311
93e478d4
SR
2312 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2313 int tmp;
2314
82b0f8c3
JK
2315 pte_unmap_unlock(vmf->pte, vmf->ptl);
2316 tmp = do_page_mkwrite(vma, old_page, vmf->address);
93e478d4
SR
2317 if (unlikely(!tmp || (tmp &
2318 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 2319 put_page(old_page);
93e478d4
SR
2320 return tmp;
2321 }
2322 /*
2323 * Since we dropped the lock we need to revalidate
2324 * the PTE as someone else may have changed it. If
2325 * they did, we just return, as we can count on the
2326 * MMU to tell us if they didn't also make it writable.
2327 */
82b0f8c3
JK
2328 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2329 vmf->address, &vmf->ptl);
2330 if (!pte_same(*vmf->pte, orig_pte)) {
93e478d4 2331 unlock_page(old_page);
82b0f8c3 2332 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 2333 put_page(old_page);
93e478d4
SR
2334 return 0;
2335 }
2336 page_mkwrite = 1;
2337 }
2338
82b0f8c3 2339 return wp_page_reuse(vmf, orig_pte, old_page, page_mkwrite, 1);
93e478d4
SR
2340}
2341
1da177e4
LT
2342/*
2343 * This routine handles present pages, when users try to write
2344 * to a shared page. It is done by copying the page to a new address
2345 * and decrementing the shared-page counter for the old page.
2346 *
1da177e4
LT
2347 * Note that this routine assumes that the protection checks have been
2348 * done by the caller (the low-level page fault routine in most cases).
2349 * Thus we can safely just mark it writable once we've done any necessary
2350 * COW.
2351 *
2352 * We also mark the page dirty at this point even though the page will
2353 * change only once the write actually happens. This avoids a few races,
2354 * and potentially makes it more efficient.
2355 *
8f4e2101
HD
2356 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2357 * but allow concurrent faults), with pte both mapped and locked.
2358 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2359 */
82b0f8c3
JK
2360static int do_wp_page(struct vm_fault *vmf, pte_t orig_pte)
2361 __releases(vmf->ptl)
1da177e4 2362{
82b0f8c3 2363 struct vm_area_struct *vma = vmf->vma;
2f38ab2c 2364 struct page *old_page;
1da177e4 2365
82b0f8c3 2366 old_page = vm_normal_page(vma, vmf->address, orig_pte);
251b97f5
PZ
2367 if (!old_page) {
2368 /*
64e45507
PF
2369 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2370 * VM_PFNMAP VMA.
251b97f5
PZ
2371 *
2372 * We should not cow pages in a shared writeable mapping.
dd906184 2373 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2374 */
2375 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2376 (VM_WRITE|VM_SHARED))
82b0f8c3 2377 return wp_pfn_shared(vmf, orig_pte);
2f38ab2c 2378
82b0f8c3
JK
2379 pte_unmap_unlock(vmf->pte, vmf->ptl);
2380 return wp_page_copy(vmf, orig_pte, old_page);
251b97f5 2381 }
1da177e4 2382
d08b3851 2383 /*
ee6a6457
PZ
2384 * Take out anonymous pages first, anonymous shared vmas are
2385 * not dirty accountable.
d08b3851 2386 */
9a840895 2387 if (PageAnon(old_page) && !PageKsm(old_page)) {
6d0a07ed 2388 int total_mapcount;
ab967d86 2389 if (!trylock_page(old_page)) {
09cbfeaf 2390 get_page(old_page);
82b0f8c3 2391 pte_unmap_unlock(vmf->pte, vmf->ptl);
ab967d86 2392 lock_page(old_page);
82b0f8c3
JK
2393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2394 vmf->address, &vmf->ptl);
2395 if (!pte_same(*vmf->pte, orig_pte)) {
ab967d86 2396 unlock_page(old_page);
82b0f8c3 2397 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 2398 put_page(old_page);
28766805 2399 return 0;
ab967d86 2400 }
09cbfeaf 2401 put_page(old_page);
ee6a6457 2402 }
6d0a07ed
AA
2403 if (reuse_swap_page(old_page, &total_mapcount)) {
2404 if (total_mapcount == 1) {
2405 /*
2406 * The page is all ours. Move it to
2407 * our anon_vma so the rmap code will
2408 * not search our parent or siblings.
2409 * Protected against the rmap code by
2410 * the page lock.
2411 */
5a49973d 2412 page_move_anon_rmap(old_page, vma);
6d0a07ed 2413 }
b009c024 2414 unlock_page(old_page);
82b0f8c3 2415 return wp_page_reuse(vmf, orig_pte, old_page, 0, 0);
b009c024 2416 }
ab967d86 2417 unlock_page(old_page);
ee6a6457 2418 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2419 (VM_WRITE|VM_SHARED))) {
82b0f8c3 2420 return wp_page_shared(vmf, orig_pte, old_page);
1da177e4 2421 }
1da177e4
LT
2422
2423 /*
2424 * Ok, we need to copy. Oh, well..
2425 */
09cbfeaf 2426 get_page(old_page);
28766805 2427
82b0f8c3
JK
2428 pte_unmap_unlock(vmf->pte, vmf->ptl);
2429 return wp_page_copy(vmf, orig_pte, old_page);
1da177e4
LT
2430}
2431
97a89413 2432static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2433 unsigned long start_addr, unsigned long end_addr,
2434 struct zap_details *details)
2435{
f5cc4eef 2436 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2437}
2438
6b2dbba8 2439static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2440 struct zap_details *details)
2441{
2442 struct vm_area_struct *vma;
1da177e4
LT
2443 pgoff_t vba, vea, zba, zea;
2444
6b2dbba8 2445 vma_interval_tree_foreach(vma, root,
1da177e4 2446 details->first_index, details->last_index) {
1da177e4
LT
2447
2448 vba = vma->vm_pgoff;
d6e93217 2449 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2450 zba = details->first_index;
2451 if (zba < vba)
2452 zba = vba;
2453 zea = details->last_index;
2454 if (zea > vea)
2455 zea = vea;
2456
97a89413 2457 unmap_mapping_range_vma(vma,
1da177e4
LT
2458 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2459 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2460 details);
1da177e4
LT
2461 }
2462}
2463
1da177e4 2464/**
8a5f14a2
KS
2465 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2466 * address_space corresponding to the specified page range in the underlying
2467 * file.
2468 *
3d41088f 2469 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2470 * @holebegin: byte in first page to unmap, relative to the start of
2471 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2472 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2473 * must keep the partial page. In contrast, we must get rid of
2474 * partial pages.
2475 * @holelen: size of prospective hole in bytes. This will be rounded
2476 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2477 * end of the file.
2478 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2479 * but 0 when invalidating pagecache, don't throw away private data.
2480 */
2481void unmap_mapping_range(struct address_space *mapping,
2482 loff_t const holebegin, loff_t const holelen, int even_cows)
2483{
aac45363 2484 struct zap_details details = { };
1da177e4
LT
2485 pgoff_t hba = holebegin >> PAGE_SHIFT;
2486 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2487
2488 /* Check for overflow. */
2489 if (sizeof(holelen) > sizeof(hlen)) {
2490 long long holeend =
2491 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2492 if (holeend & ~(long long)ULONG_MAX)
2493 hlen = ULONG_MAX - hba + 1;
2494 }
2495
2496 details.check_mapping = even_cows? NULL: mapping;
1da177e4
LT
2497 details.first_index = hba;
2498 details.last_index = hba + hlen - 1;
2499 if (details.last_index < details.first_index)
2500 details.last_index = ULONG_MAX;
1da177e4 2501
46c043ed 2502 i_mmap_lock_write(mapping);
6b2dbba8 2503 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2504 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2505 i_mmap_unlock_write(mapping);
1da177e4
LT
2506}
2507EXPORT_SYMBOL(unmap_mapping_range);
2508
1da177e4 2509/*
8f4e2101
HD
2510 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2511 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2512 * We return with pte unmapped and unlocked.
2513 *
2514 * We return with the mmap_sem locked or unlocked in the same cases
2515 * as does filemap_fault().
1da177e4 2516 */
82b0f8c3 2517int do_swap_page(struct vm_fault *vmf, pte_t orig_pte)
1da177e4 2518{
82b0f8c3 2519 struct vm_area_struct *vma = vmf->vma;
56f31801 2520 struct page *page, *swapcache;
00501b53 2521 struct mem_cgroup *memcg;
65500d23 2522 swp_entry_t entry;
1da177e4 2523 pte_t pte;
d065bd81 2524 int locked;
ad8c2ee8 2525 int exclusive = 0;
83c54070 2526 int ret = 0;
1da177e4 2527
82b0f8c3 2528 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, orig_pte))
8f4e2101 2529 goto out;
65500d23
HD
2530
2531 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2532 if (unlikely(non_swap_entry(entry))) {
2533 if (is_migration_entry(entry)) {
82b0f8c3
JK
2534 migration_entry_wait(vma->vm_mm, vmf->pmd,
2535 vmf->address);
d1737fdb
AK
2536 } else if (is_hwpoison_entry(entry)) {
2537 ret = VM_FAULT_HWPOISON;
2538 } else {
82b0f8c3 2539 print_bad_pte(vma, vmf->address, orig_pte, NULL);
d99be1a8 2540 ret = VM_FAULT_SIGBUS;
d1737fdb 2541 }
0697212a
CL
2542 goto out;
2543 }
0ff92245 2544 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2545 page = lookup_swap_cache(entry);
2546 if (!page) {
82b0f8c3
JK
2547 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2548 vmf->address);
1da177e4
LT
2549 if (!page) {
2550 /*
8f4e2101
HD
2551 * Back out if somebody else faulted in this pte
2552 * while we released the pte lock.
1da177e4 2553 */
82b0f8c3
JK
2554 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2555 vmf->address, &vmf->ptl);
2556 if (likely(pte_same(*vmf->pte, orig_pte)))
1da177e4 2557 ret = VM_FAULT_OOM;
0ff92245 2558 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2559 goto unlock;
1da177e4
LT
2560 }
2561
2562 /* Had to read the page from swap area: Major fault */
2563 ret = VM_FAULT_MAJOR;
f8891e5e 2564 count_vm_event(PGMAJFAULT);
bae473a4 2565 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
d1737fdb 2566 } else if (PageHWPoison(page)) {
71f72525
WF
2567 /*
2568 * hwpoisoned dirty swapcache pages are kept for killing
2569 * owner processes (which may be unknown at hwpoison time)
2570 */
d1737fdb
AK
2571 ret = VM_FAULT_HWPOISON;
2572 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2573 swapcache = page;
4779cb31 2574 goto out_release;
1da177e4
LT
2575 }
2576
56f31801 2577 swapcache = page;
82b0f8c3 2578 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2579
073e587e 2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2581 if (!locked) {
2582 ret |= VM_FAULT_RETRY;
2583 goto out_release;
2584 }
073e587e 2585
4969c119 2586 /*
31c4a3d3
HD
2587 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2588 * release the swapcache from under us. The page pin, and pte_same
2589 * test below, are not enough to exclude that. Even if it is still
2590 * swapcache, we need to check that the page's swap has not changed.
4969c119 2591 */
31c4a3d3 2592 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2593 goto out_page;
2594
82b0f8c3 2595 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2596 if (unlikely(!page)) {
2597 ret = VM_FAULT_OOM;
2598 page = swapcache;
cbf86cfe 2599 goto out_page;
5ad64688
HD
2600 }
2601
bae473a4
KS
2602 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2603 &memcg, false)) {
8a9f3ccd 2604 ret = VM_FAULT_OOM;
bc43f75c 2605 goto out_page;
8a9f3ccd
BS
2606 }
2607
1da177e4 2608 /*
8f4e2101 2609 * Back out if somebody else already faulted in this pte.
1da177e4 2610 */
82b0f8c3
JK
2611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2612 &vmf->ptl);
2613 if (unlikely(!pte_same(*vmf->pte, orig_pte)))
b8107480 2614 goto out_nomap;
b8107480
KK
2615
2616 if (unlikely(!PageUptodate(page))) {
2617 ret = VM_FAULT_SIGBUS;
2618 goto out_nomap;
1da177e4
LT
2619 }
2620
8c7c6e34
KH
2621 /*
2622 * The page isn't present yet, go ahead with the fault.
2623 *
2624 * Be careful about the sequence of operations here.
2625 * To get its accounting right, reuse_swap_page() must be called
2626 * while the page is counted on swap but not yet in mapcount i.e.
2627 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2628 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2629 */
1da177e4 2630
bae473a4
KS
2631 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2632 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2633 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2634 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2635 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2636 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2637 ret |= VM_FAULT_WRITE;
d281ee61 2638 exclusive = RMAP_EXCLUSIVE;
1da177e4 2639 }
1da177e4 2640 flush_icache_page(vma, page);
179ef71c
CG
2641 if (pte_swp_soft_dirty(orig_pte))
2642 pte = pte_mksoft_dirty(pte);
82b0f8c3 2643 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
00501b53 2644 if (page == swapcache) {
82b0f8c3 2645 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2646 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2647 activate_page(page);
00501b53 2648 } else { /* ksm created a completely new copy */
82b0f8c3 2649 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2650 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2651 lru_cache_add_active_or_unevictable(page, vma);
2652 }
1da177e4 2653
c475a8ab 2654 swap_free(entry);
5ccc5aba
VD
2655 if (mem_cgroup_swap_full(page) ||
2656 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2657 try_to_free_swap(page);
c475a8ab 2658 unlock_page(page);
56f31801 2659 if (page != swapcache) {
4969c119
AA
2660 /*
2661 * Hold the lock to avoid the swap entry to be reused
2662 * until we take the PT lock for the pte_same() check
2663 * (to avoid false positives from pte_same). For
2664 * further safety release the lock after the swap_free
2665 * so that the swap count won't change under a
2666 * parallel locked swapcache.
2667 */
2668 unlock_page(swapcache);
09cbfeaf 2669 put_page(swapcache);
4969c119 2670 }
c475a8ab 2671
82b0f8c3
JK
2672 if (vmf->flags & FAULT_FLAG_WRITE) {
2673 ret |= do_wp_page(vmf, pte);
61469f1d
HD
2674 if (ret & VM_FAULT_ERROR)
2675 ret &= VM_FAULT_ERROR;
1da177e4
LT
2676 goto out;
2677 }
2678
2679 /* No need to invalidate - it was non-present before */
82b0f8c3 2680 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2681unlock:
82b0f8c3 2682 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2683out:
2684 return ret;
b8107480 2685out_nomap:
f627c2f5 2686 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2687 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2688out_page:
b8107480 2689 unlock_page(page);
4779cb31 2690out_release:
09cbfeaf 2691 put_page(page);
56f31801 2692 if (page != swapcache) {
4969c119 2693 unlock_page(swapcache);
09cbfeaf 2694 put_page(swapcache);
4969c119 2695 }
65500d23 2696 return ret;
1da177e4
LT
2697}
2698
320b2b8d 2699/*
8ca3eb08
LT
2700 * This is like a special single-page "expand_{down|up}wards()",
2701 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2702 * doesn't hit another vma.
320b2b8d
LT
2703 */
2704static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2705{
2706 address &= PAGE_MASK;
2707 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2708 struct vm_area_struct *prev = vma->vm_prev;
2709
2710 /*
2711 * Is there a mapping abutting this one below?
2712 *
2713 * That's only ok if it's the same stack mapping
2714 * that has gotten split..
2715 */
2716 if (prev && prev->vm_end == address)
2717 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2718
fee7e49d 2719 return expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2720 }
8ca3eb08
LT
2721 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2722 struct vm_area_struct *next = vma->vm_next;
2723
2724 /* As VM_GROWSDOWN but s/below/above/ */
2725 if (next && next->vm_start == address + PAGE_SIZE)
2726 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2727
fee7e49d 2728 return expand_upwards(vma, address + PAGE_SIZE);
8ca3eb08 2729 }
320b2b8d
LT
2730 return 0;
2731}
2732
1da177e4 2733/*
8f4e2101
HD
2734 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2735 * but allow concurrent faults), and pte mapped but not yet locked.
2736 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2737 */
82b0f8c3 2738static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2739{
82b0f8c3 2740 struct vm_area_struct *vma = vmf->vma;
00501b53 2741 struct mem_cgroup *memcg;
8f4e2101 2742 struct page *page;
1da177e4 2743 pte_t entry;
1da177e4 2744
6b7339f4
KS
2745 /* File mapping without ->vm_ops ? */
2746 if (vma->vm_flags & VM_SHARED)
2747 return VM_FAULT_SIGBUS;
2748
11ac5524 2749 /* Check if we need to add a guard page to the stack */
82b0f8c3 2750 if (check_stack_guard_page(vma, vmf->address) < 0)
9c145c56 2751 return VM_FAULT_SIGSEGV;
320b2b8d 2752
7267ec00
KS
2753 /*
2754 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2755 * pte_offset_map() on pmds where a huge pmd might be created
2756 * from a different thread.
2757 *
2758 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2759 * parallel threads are excluded by other means.
2760 *
2761 * Here we only have down_read(mmap_sem).
2762 */
82b0f8c3 2763 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2764 return VM_FAULT_OOM;
2765
2766 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2767 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2768 return 0;
2769
11ac5524 2770 /* Use the zero-page for reads */
82b0f8c3 2771 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2772 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2773 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2774 vma->vm_page_prot));
82b0f8c3
JK
2775 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2776 vmf->address, &vmf->ptl);
2777 if (!pte_none(*vmf->pte))
a13ea5b7 2778 goto unlock;
6b251fc9
AA
2779 /* Deliver the page fault to userland, check inside PT lock */
2780 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2781 pte_unmap_unlock(vmf->pte, vmf->ptl);
2782 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2783 }
a13ea5b7
HD
2784 goto setpte;
2785 }
2786
557ed1fa 2787 /* Allocate our own private page. */
557ed1fa
NP
2788 if (unlikely(anon_vma_prepare(vma)))
2789 goto oom;
82b0f8c3 2790 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2791 if (!page)
2792 goto oom;
eb3c24f3 2793
bae473a4 2794 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2795 goto oom_free_page;
2796
52f37629
MK
2797 /*
2798 * The memory barrier inside __SetPageUptodate makes sure that
2799 * preceeding stores to the page contents become visible before
2800 * the set_pte_at() write.
2801 */
0ed361de 2802 __SetPageUptodate(page);
8f4e2101 2803
557ed1fa 2804 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2805 if (vma->vm_flags & VM_WRITE)
2806 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2807
82b0f8c3
JK
2808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2809 &vmf->ptl);
2810 if (!pte_none(*vmf->pte))
557ed1fa 2811 goto release;
9ba69294 2812
6b251fc9
AA
2813 /* Deliver the page fault to userland, check inside PT lock */
2814 if (userfaultfd_missing(vma)) {
82b0f8c3 2815 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 2816 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2817 put_page(page);
82b0f8c3 2818 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
2819 }
2820
bae473a4 2821 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 2822 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2823 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2824 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2825setpte:
82b0f8c3 2826 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
2827
2828 /* No need to invalidate - it was non-present before */
82b0f8c3 2829 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2830unlock:
82b0f8c3 2831 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 2832 return 0;
8f4e2101 2833release:
f627c2f5 2834 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 2835 put_page(page);
8f4e2101 2836 goto unlock;
8a9f3ccd 2837oom_free_page:
09cbfeaf 2838 put_page(page);
65500d23 2839oom:
1da177e4
LT
2840 return VM_FAULT_OOM;
2841}
2842
9a95f3cf
PC
2843/*
2844 * The mmap_sem must have been held on entry, and may have been
2845 * released depending on flags and vma->vm_ops->fault() return value.
2846 * See filemap_fault() and __lock_page_retry().
2847 */
82b0f8c3 2848static int __do_fault(struct vm_fault *vmf, pgoff_t pgoff,
bae473a4 2849 struct page *cow_page, struct page **page, void **entry)
7eae74af 2850{
82b0f8c3
JK
2851 struct vm_area_struct *vma = vmf->vma;
2852 struct vm_fault vmf2;
7eae74af
KS
2853 int ret;
2854
82b0f8c3
JK
2855 vmf2.virtual_address = (void __user *)(vmf->address & PAGE_MASK);
2856 vmf2.pgoff = pgoff;
2857 vmf2.flags = vmf->flags;
2858 vmf2.page = NULL;
2859 vmf2.gfp_mask = __get_fault_gfp_mask(vma);
2860 vmf2.cow_page = cow_page;
7eae74af 2861
82b0f8c3 2862 ret = vma->vm_ops->fault(vma, &vmf2);
7eae74af
KS
2863 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2864 return ret;
bc2466e4 2865 if (ret & VM_FAULT_DAX_LOCKED) {
82b0f8c3 2866 *entry = vmf2.entry;
bc2466e4
JK
2867 return ret;
2868 }
7eae74af 2869
82b0f8c3 2870 if (unlikely(PageHWPoison(vmf2.page))) {
7eae74af 2871 if (ret & VM_FAULT_LOCKED)
82b0f8c3
JK
2872 unlock_page(vmf2.page);
2873 put_page(vmf2.page);
7eae74af
KS
2874 return VM_FAULT_HWPOISON;
2875 }
2876
2877 if (unlikely(!(ret & VM_FAULT_LOCKED)))
82b0f8c3 2878 lock_page(vmf2.page);
7eae74af 2879 else
82b0f8c3 2880 VM_BUG_ON_PAGE(!PageLocked(vmf2.page), vmf2.page);
7eae74af 2881
82b0f8c3 2882 *page = vmf2.page;
7eae74af
KS
2883 return ret;
2884}
2885
82b0f8c3 2886static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 2887{
82b0f8c3 2888 struct vm_area_struct *vma = vmf->vma;
7267ec00 2889
82b0f8c3 2890 if (!pmd_none(*vmf->pmd))
7267ec00 2891 goto map_pte;
82b0f8c3
JK
2892 if (vmf->prealloc_pte) {
2893 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2894 if (unlikely(!pmd_none(*vmf->pmd))) {
2895 spin_unlock(vmf->ptl);
7267ec00
KS
2896 goto map_pte;
2897 }
2898
2899 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
2900 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2901 spin_unlock(vmf->ptl);
2902 vmf->prealloc_pte = 0;
2903 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
2904 return VM_FAULT_OOM;
2905 }
2906map_pte:
2907 /*
2908 * If a huge pmd materialized under us just retry later. Use
2909 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2910 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2911 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2912 * in a different thread of this mm, in turn leading to a misleading
2913 * pmd_trans_huge() retval. All we have to ensure is that it is a
2914 * regular pmd that we can walk with pte_offset_map() and we can do that
2915 * through an atomic read in C, which is what pmd_trans_unstable()
2916 * provides.
2917 */
82b0f8c3 2918 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
2919 return VM_FAULT_NOPAGE;
2920
82b0f8c3
JK
2921 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2922 &vmf->ptl);
7267ec00
KS
2923 return 0;
2924}
2925
e496cf3d 2926#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
2927
2928#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2929static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2930 unsigned long haddr)
2931{
2932 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2933 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2934 return false;
2935 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2936 return false;
2937 return true;
2938}
2939
82b0f8c3 2940static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 2941{
82b0f8c3 2942 struct vm_area_struct *vma = vmf->vma;
953c66c2 2943
82b0f8c3 2944 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
2945 /*
2946 * We are going to consume the prealloc table,
2947 * count that as nr_ptes.
2948 */
2949 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 2950 vmf->prealloc_pte = 0;
953c66c2
AK
2951}
2952
82b0f8c3 2953static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 2954{
82b0f8c3
JK
2955 struct vm_area_struct *vma = vmf->vma;
2956 bool write = vmf->flags & FAULT_FLAG_WRITE;
2957 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
2958 pmd_t entry;
2959 int i, ret;
2960
2961 if (!transhuge_vma_suitable(vma, haddr))
2962 return VM_FAULT_FALLBACK;
2963
2964 ret = VM_FAULT_FALLBACK;
2965 page = compound_head(page);
2966
953c66c2
AK
2967 /*
2968 * Archs like ppc64 need additonal space to store information
2969 * related to pte entry. Use the preallocated table for that.
2970 */
82b0f8c3
JK
2971 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2972 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2973 if (!vmf->prealloc_pte)
953c66c2
AK
2974 return VM_FAULT_OOM;
2975 smp_wmb(); /* See comment in __pte_alloc() */
2976 }
2977
82b0f8c3
JK
2978 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2979 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
2980 goto out;
2981
2982 for (i = 0; i < HPAGE_PMD_NR; i++)
2983 flush_icache_page(vma, page + i);
2984
2985 entry = mk_huge_pmd(page, vma->vm_page_prot);
2986 if (write)
2987 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2988
2989 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2990 page_add_file_rmap(page, true);
953c66c2
AK
2991 /*
2992 * deposit and withdraw with pmd lock held
2993 */
2994 if (arch_needs_pgtable_deposit())
82b0f8c3 2995 deposit_prealloc_pte(vmf);
10102459 2996
82b0f8c3 2997 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 2998
82b0f8c3 2999 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3000
3001 /* fault is handled */
3002 ret = 0;
95ecedcd 3003 count_vm_event(THP_FILE_MAPPED);
10102459 3004out:
953c66c2
AK
3005 /*
3006 * If we are going to fallback to pte mapping, do a
3007 * withdraw with pmd lock held.
3008 */
3009 if (arch_needs_pgtable_deposit() && ret == VM_FAULT_FALLBACK)
82b0f8c3
JK
3010 vmf->prealloc_pte = pgtable_trans_huge_withdraw(vma->vm_mm,
3011 vmf->pmd);
3012 spin_unlock(vmf->ptl);
10102459
KS
3013 return ret;
3014}
3015#else
82b0f8c3 3016static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3017{
3018 BUILD_BUG();
3019 return 0;
3020}
3021#endif
3022
8c6e50b0 3023/**
7267ec00
KS
3024 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3025 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3026 *
82b0f8c3 3027 * @vmf: fault environment
7267ec00 3028 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3029 * @page: page to map
8c6e50b0 3030 *
82b0f8c3
JK
3031 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3032 * return.
8c6e50b0
KS
3033 *
3034 * Target users are page handler itself and implementations of
3035 * vm_ops->map_pages.
3036 */
82b0f8c3 3037int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3038 struct page *page)
3bb97794 3039{
82b0f8c3
JK
3040 struct vm_area_struct *vma = vmf->vma;
3041 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3042 pte_t entry;
10102459
KS
3043 int ret;
3044
82b0f8c3 3045 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3046 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3047 /* THP on COW? */
3048 VM_BUG_ON_PAGE(memcg, page);
3049
82b0f8c3 3050 ret = do_set_pmd(vmf, page);
10102459 3051 if (ret != VM_FAULT_FALLBACK)
953c66c2 3052 goto fault_handled;
10102459 3053 }
3bb97794 3054
82b0f8c3
JK
3055 if (!vmf->pte) {
3056 ret = pte_alloc_one_map(vmf);
7267ec00 3057 if (ret)
953c66c2 3058 goto fault_handled;
7267ec00
KS
3059 }
3060
3061 /* Re-check under ptl */
82b0f8c3 3062 if (unlikely(!pte_none(*vmf->pte))) {
953c66c2
AK
3063 ret = VM_FAULT_NOPAGE;
3064 goto fault_handled;
3065 }
7267ec00 3066
3bb97794
KS
3067 flush_icache_page(vma, page);
3068 entry = mk_pte(page, vma->vm_page_prot);
3069 if (write)
3070 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3071 /* copy-on-write page */
3072 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3073 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3074 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3075 mem_cgroup_commit_charge(page, memcg, false, false);
3076 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3077 } else {
eca56ff9 3078 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3079 page_add_file_rmap(page, false);
3bb97794 3080 }
82b0f8c3 3081 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3082
3083 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3084 update_mmu_cache(vma, vmf->address, vmf->pte);
953c66c2 3085 ret = 0;
7267ec00 3086
953c66c2
AK
3087fault_handled:
3088 /* preallocated pagetable is unused: free it */
82b0f8c3
JK
3089 if (vmf->prealloc_pte) {
3090 pte_free(vmf->vma->vm_mm, vmf->prealloc_pte);
3091 vmf->prealloc_pte = 0;
953c66c2
AK
3092 }
3093 return ret;
3bb97794
KS
3094}
3095
3a91053a
KS
3096static unsigned long fault_around_bytes __read_mostly =
3097 rounddown_pow_of_two(65536);
a9b0f861 3098
a9b0f861
KS
3099#ifdef CONFIG_DEBUG_FS
3100static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3101{
a9b0f861 3102 *val = fault_around_bytes;
1592eef0
KS
3103 return 0;
3104}
3105
b4903d6e
AR
3106/*
3107 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3108 * rounded down to nearest page order. It's what do_fault_around() expects to
3109 * see.
3110 */
a9b0f861 3111static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3112{
a9b0f861 3113 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3114 return -EINVAL;
b4903d6e
AR
3115 if (val > PAGE_SIZE)
3116 fault_around_bytes = rounddown_pow_of_two(val);
3117 else
3118 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3119 return 0;
3120}
a9b0f861
KS
3121DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3122 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3123
3124static int __init fault_around_debugfs(void)
3125{
3126 void *ret;
3127
a9b0f861
KS
3128 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3129 &fault_around_bytes_fops);
1592eef0 3130 if (!ret)
a9b0f861 3131 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3132 return 0;
3133}
3134late_initcall(fault_around_debugfs);
1592eef0 3135#endif
8c6e50b0 3136
1fdb412b
KS
3137/*
3138 * do_fault_around() tries to map few pages around the fault address. The hope
3139 * is that the pages will be needed soon and this will lower the number of
3140 * faults to handle.
3141 *
3142 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3143 * not ready to be mapped: not up-to-date, locked, etc.
3144 *
3145 * This function is called with the page table lock taken. In the split ptlock
3146 * case the page table lock only protects only those entries which belong to
3147 * the page table corresponding to the fault address.
3148 *
3149 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3150 * only once.
3151 *
3152 * fault_around_pages() defines how many pages we'll try to map.
3153 * do_fault_around() expects it to return a power of two less than or equal to
3154 * PTRS_PER_PTE.
3155 *
3156 * The virtual address of the area that we map is naturally aligned to the
3157 * fault_around_pages() value (and therefore to page order). This way it's
3158 * easier to guarantee that we don't cross page table boundaries.
3159 */
82b0f8c3 3160static int do_fault_around(struct vm_fault *vmf, pgoff_t start_pgoff)
8c6e50b0 3161{
82b0f8c3 3162 unsigned long address = vmf->address, nr_pages, mask;
bae473a4 3163 pgoff_t end_pgoff;
7267ec00 3164 int off, ret = 0;
8c6e50b0 3165
4db0c3c2 3166 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3167 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3168
82b0f8c3
JK
3169 vmf->address = max(address & mask, vmf->vma->vm_start);
3170 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3171 start_pgoff -= off;
8c6e50b0
KS
3172
3173 /*
bae473a4
KS
3174 * end_pgoff is either end of page table or end of vma
3175 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3176 */
bae473a4 3177 end_pgoff = start_pgoff -
82b0f8c3 3178 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3179 PTRS_PER_PTE - 1;
82b0f8c3 3180 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3181 start_pgoff + nr_pages - 1);
8c6e50b0 3182
82b0f8c3
JK
3183 if (pmd_none(*vmf->pmd)) {
3184 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3185 vmf->address);
3186 if (!vmf->prealloc_pte)
c5f88bd2 3187 goto out;
7267ec00 3188 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3189 }
3190
82b0f8c3 3191 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3192
7267ec00 3193 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3194 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3195 ret = VM_FAULT_NOPAGE;
3196 goto out;
3197 }
3198
3199 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3200 if (!vmf->pte)
7267ec00
KS
3201 goto out;
3202
3203 /* check if the page fault is solved */
82b0f8c3
JK
3204 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3205 if (!pte_none(*vmf->pte))
7267ec00 3206 ret = VM_FAULT_NOPAGE;
82b0f8c3 3207 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3208out:
82b0f8c3
JK
3209 vmf->address = address;
3210 vmf->pte = NULL;
7267ec00 3211 return ret;
8c6e50b0
KS
3212}
3213
82b0f8c3 3214static int do_read_fault(struct vm_fault *vmf, pgoff_t pgoff)
e655fb29 3215{
82b0f8c3 3216 struct vm_area_struct *vma = vmf->vma;
e655fb29 3217 struct page *fault_page;
8c6e50b0
KS
3218 int ret = 0;
3219
3220 /*
3221 * Let's call ->map_pages() first and use ->fault() as fallback
3222 * if page by the offset is not ready to be mapped (cold cache or
3223 * something).
3224 */
9b4bdd2f 3225 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
82b0f8c3 3226 ret = do_fault_around(vmf, pgoff);
7267ec00
KS
3227 if (ret)
3228 return ret;
8c6e50b0 3229 }
e655fb29 3230
82b0f8c3 3231 ret = __do_fault(vmf, pgoff, NULL, &fault_page, NULL);
e655fb29
KS
3232 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3233 return ret;
3234
82b0f8c3
JK
3235 ret |= alloc_set_pte(vmf, NULL, fault_page);
3236 if (vmf->pte)
3237 pte_unmap_unlock(vmf->pte, vmf->ptl);
e655fb29 3238 unlock_page(fault_page);
7267ec00
KS
3239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3240 put_page(fault_page);
e655fb29
KS
3241 return ret;
3242}
3243
82b0f8c3 3244static int do_cow_fault(struct vm_fault *vmf, pgoff_t pgoff)
ec47c3b9 3245{
82b0f8c3 3246 struct vm_area_struct *vma = vmf->vma;
ec47c3b9 3247 struct page *fault_page, *new_page;
bc2466e4 3248 void *fault_entry;
00501b53 3249 struct mem_cgroup *memcg;
ec47c3b9
KS
3250 int ret;
3251
3252 if (unlikely(anon_vma_prepare(vma)))
3253 return VM_FAULT_OOM;
3254
82b0f8c3 3255 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
ec47c3b9
KS
3256 if (!new_page)
3257 return VM_FAULT_OOM;
3258
bae473a4
KS
3259 if (mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
3260 &memcg, false)) {
09cbfeaf 3261 put_page(new_page);
ec47c3b9
KS
3262 return VM_FAULT_OOM;
3263 }
3264
82b0f8c3 3265 ret = __do_fault(vmf, pgoff, new_page, &fault_page, &fault_entry);
ec47c3b9
KS
3266 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3267 goto uncharge_out;
3268
bc2466e4 3269 if (!(ret & VM_FAULT_DAX_LOCKED))
82b0f8c3 3270 copy_user_highpage(new_page, fault_page, vmf->address, vma);
ec47c3b9
KS
3271 __SetPageUptodate(new_page);
3272
82b0f8c3
JK
3273 ret |= alloc_set_pte(vmf, memcg, new_page);
3274 if (vmf->pte)
3275 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc2466e4 3276 if (!(ret & VM_FAULT_DAX_LOCKED)) {
2e4cdab0 3277 unlock_page(fault_page);
09cbfeaf 3278 put_page(fault_page);
2e4cdab0 3279 } else {
bc2466e4 3280 dax_unlock_mapping_entry(vma->vm_file->f_mapping, pgoff);
2e4cdab0 3281 }
7267ec00
KS
3282 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3283 goto uncharge_out;
ec47c3b9
KS
3284 return ret;
3285uncharge_out:
f627c2f5 3286 mem_cgroup_cancel_charge(new_page, memcg, false);
09cbfeaf 3287 put_page(new_page);
ec47c3b9
KS
3288 return ret;
3289}
3290
82b0f8c3 3291static int do_shared_fault(struct vm_fault *vmf, pgoff_t pgoff)
1da177e4 3292{
82b0f8c3 3293 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2
KS
3294 struct page *fault_page;
3295 struct address_space *mapping;
f0c6d4d2 3296 int dirtied = 0;
f0c6d4d2 3297 int ret, tmp;
1d65f86d 3298
82b0f8c3 3299 ret = __do_fault(vmf, pgoff, NULL, &fault_page, NULL);
7eae74af 3300 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3301 return ret;
1da177e4
LT
3302
3303 /*
f0c6d4d2
KS
3304 * Check if the backing address space wants to know that the page is
3305 * about to become writable
1da177e4 3306 */
fb09a464
KS
3307 if (vma->vm_ops->page_mkwrite) {
3308 unlock_page(fault_page);
82b0f8c3 3309 tmp = do_page_mkwrite(vma, fault_page, vmf->address);
fb09a464
KS
3310 if (unlikely(!tmp ||
3311 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
09cbfeaf 3312 put_page(fault_page);
fb09a464 3313 return tmp;
4294621f 3314 }
fb09a464
KS
3315 }
3316
82b0f8c3
JK
3317 ret |= alloc_set_pte(vmf, NULL, fault_page);
3318 if (vmf->pte)
3319 pte_unmap_unlock(vmf->pte, vmf->ptl);
7267ec00
KS
3320 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3321 VM_FAULT_RETRY))) {
f0c6d4d2 3322 unlock_page(fault_page);
09cbfeaf 3323 put_page(fault_page);
f0c6d4d2 3324 return ret;
1da177e4 3325 }
b827e496 3326
f0c6d4d2
KS
3327 if (set_page_dirty(fault_page))
3328 dirtied = 1;
d82fa87d
AM
3329 /*
3330 * Take a local copy of the address_space - page.mapping may be zeroed
3331 * by truncate after unlock_page(). The address_space itself remains
3332 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3333 * release semantics to prevent the compiler from undoing this copying.
3334 */
1c290f64 3335 mapping = page_rmapping(fault_page);
f0c6d4d2
KS
3336 unlock_page(fault_page);
3337 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3338 /*
3339 * Some device drivers do not set page.mapping but still
3340 * dirty their pages
3341 */
3342 balance_dirty_pages_ratelimited(mapping);
d08b3851 3343 }
d00806b1 3344
74ec6751 3345 if (!vma->vm_ops->page_mkwrite)
f0c6d4d2 3346 file_update_time(vma->vm_file);
b827e496 3347
1d65f86d 3348 return ret;
54cb8821 3349}
d00806b1 3350
9a95f3cf
PC
3351/*
3352 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3353 * but allow concurrent faults).
3354 * The mmap_sem may have been released depending on flags and our
3355 * return value. See filemap_fault() and __lock_page_or_retry().
3356 */
82b0f8c3 3357static int do_fault(struct vm_fault *vmf)
54cb8821 3358{
82b0f8c3
JK
3359 struct vm_area_struct *vma = vmf->vma;
3360 pgoff_t pgoff = linear_page_index(vma, vmf->address);
54cb8821 3361
6b7339f4
KS
3362 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3363 if (!vma->vm_ops->fault)
3364 return VM_FAULT_SIGBUS;
82b0f8c3
JK
3365 if (!(vmf->flags & FAULT_FLAG_WRITE))
3366 return do_read_fault(vmf, pgoff);
ec47c3b9 3367 if (!(vma->vm_flags & VM_SHARED))
82b0f8c3
JK
3368 return do_cow_fault(vmf, pgoff);
3369 return do_shared_fault(vmf, pgoff);
54cb8821
NP
3370}
3371
b19a9939 3372static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3373 unsigned long addr, int page_nid,
3374 int *flags)
9532fec1
MG
3375{
3376 get_page(page);
3377
3378 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3379 if (page_nid == numa_node_id()) {
9532fec1 3380 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3381 *flags |= TNF_FAULT_LOCAL;
3382 }
9532fec1
MG
3383
3384 return mpol_misplaced(page, vma, addr);
3385}
3386
82b0f8c3 3387static int do_numa_page(struct vm_fault *vmf, pte_t pte)
d10e63f2 3388{
82b0f8c3 3389 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3390 struct page *page = NULL;
8191acbd 3391 int page_nid = -1;
90572890 3392 int last_cpupid;
cbee9f88 3393 int target_nid;
b8593bfd 3394 bool migrated = false;
b191f9b1 3395 bool was_writable = pte_write(pte);
6688cc05 3396 int flags = 0;
d10e63f2
MG
3397
3398 /*
3399 * The "pte" at this point cannot be used safely without
3400 * validation through pte_unmap_same(). It's of NUMA type but
3401 * the pfn may be screwed if the read is non atomic.
3402 *
4d942466
MG
3403 * We can safely just do a "set_pte_at()", because the old
3404 * page table entry is not accessible, so there would be no
3405 * concurrent hardware modifications to the PTE.
d10e63f2 3406 */
82b0f8c3
JK
3407 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3408 spin_lock(vmf->ptl);
3409 if (unlikely(!pte_same(*vmf->pte, pte))) {
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3411 goto out;
3412 }
3413
4d942466
MG
3414 /* Make it present again */
3415 pte = pte_modify(pte, vma->vm_page_prot);
3416 pte = pte_mkyoung(pte);
b191f9b1
MG
3417 if (was_writable)
3418 pte = pte_mkwrite(pte);
82b0f8c3
JK
3419 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3420 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3421
82b0f8c3 3422 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3423 if (!page) {
82b0f8c3 3424 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3425 return 0;
3426 }
3427
e81c4802
KS
3428 /* TODO: handle PTE-mapped THP */
3429 if (PageCompound(page)) {
82b0f8c3 3430 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3431 return 0;
3432 }
3433
6688cc05 3434 /*
bea66fbd
MG
3435 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3436 * much anyway since they can be in shared cache state. This misses
3437 * the case where a mapping is writable but the process never writes
3438 * to it but pte_write gets cleared during protection updates and
3439 * pte_dirty has unpredictable behaviour between PTE scan updates,
3440 * background writeback, dirty balancing and application behaviour.
6688cc05 3441 */
d59dc7bc 3442 if (!pte_write(pte))
6688cc05
PZ
3443 flags |= TNF_NO_GROUP;
3444
dabe1d99
RR
3445 /*
3446 * Flag if the page is shared between multiple address spaces. This
3447 * is later used when determining whether to group tasks together
3448 */
3449 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3450 flags |= TNF_SHARED;
3451
90572890 3452 last_cpupid = page_cpupid_last(page);
8191acbd 3453 page_nid = page_to_nid(page);
82b0f8c3 3454 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3455 &flags);
82b0f8c3 3456 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3457 if (target_nid == -1) {
4daae3b4
MG
3458 put_page(page);
3459 goto out;
3460 }
3461
3462 /* Migrate to the requested node */
1bc115d8 3463 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3464 if (migrated) {
8191acbd 3465 page_nid = target_nid;
6688cc05 3466 flags |= TNF_MIGRATED;
074c2381
MG
3467 } else
3468 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3469
3470out:
8191acbd 3471 if (page_nid != -1)
6688cc05 3472 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3473 return 0;
3474}
3475
82b0f8c3 3476static int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3477{
82b0f8c3 3478 struct vm_area_struct *vma = vmf->vma;
fb6dd5fa 3479 if (vma_is_anonymous(vma))
82b0f8c3 3480 return do_huge_pmd_anonymous_page(vmf);
b96375f7 3481 if (vma->vm_ops->pmd_fault)
82b0f8c3
JK
3482 return vma->vm_ops->pmd_fault(vma, vmf->address, vmf->pmd,
3483 vmf->flags);
b96375f7
MW
3484 return VM_FAULT_FALLBACK;
3485}
3486
82b0f8c3 3487static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3488{
82b0f8c3
JK
3489 if (vma_is_anonymous(vmf->vma))
3490 return do_huge_pmd_wp_page(vmf, orig_pmd);
3491 if (vmf->vma->vm_ops->pmd_fault)
3492 return vmf->vma->vm_ops->pmd_fault(vmf->vma, vmf->address,
3493 vmf->pmd, vmf->flags);
af9e4d5f
KS
3494
3495 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3496 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3497 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3498
b96375f7
MW
3499 return VM_FAULT_FALLBACK;
3500}
3501
38e08854
LS
3502static inline bool vma_is_accessible(struct vm_area_struct *vma)
3503{
3504 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3505}
3506
1da177e4
LT
3507/*
3508 * These routines also need to handle stuff like marking pages dirty
3509 * and/or accessed for architectures that don't do it in hardware (most
3510 * RISC architectures). The early dirtying is also good on the i386.
3511 *
3512 * There is also a hook called "update_mmu_cache()" that architectures
3513 * with external mmu caches can use to update those (ie the Sparc or
3514 * PowerPC hashed page tables that act as extended TLBs).
3515 *
7267ec00
KS
3516 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3517 * concurrent faults).
9a95f3cf 3518 *
7267ec00
KS
3519 * The mmap_sem may have been released depending on flags and our return value.
3520 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3521 */
82b0f8c3 3522static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3523{
3524 pte_t entry;
3525
82b0f8c3 3526 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3527 /*
3528 * Leave __pte_alloc() until later: because vm_ops->fault may
3529 * want to allocate huge page, and if we expose page table
3530 * for an instant, it will be difficult to retract from
3531 * concurrent faults and from rmap lookups.
3532 */
82b0f8c3 3533 vmf->pte = NULL;
7267ec00
KS
3534 } else {
3535 /* See comment in pte_alloc_one_map() */
82b0f8c3 3536 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
7267ec00
KS
3537 return 0;
3538 /*
3539 * A regular pmd is established and it can't morph into a huge
3540 * pmd from under us anymore at this point because we hold the
3541 * mmap_sem read mode and khugepaged takes it in write mode.
3542 * So now it's safe to run pte_offset_map().
3543 */
82b0f8c3 3544 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
7267ec00 3545
82b0f8c3 3546 entry = *vmf->pte;
7267ec00
KS
3547
3548 /*
3549 * some architectures can have larger ptes than wordsize,
3550 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3551 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3552 * atomic accesses. The code below just needs a consistent
3553 * view for the ifs and we later double check anyway with the
3554 * ptl lock held. So here a barrier will do.
3555 */
3556 barrier();
65500d23 3557 if (pte_none(entry)) {
82b0f8c3
JK
3558 pte_unmap(vmf->pte);
3559 vmf->pte = NULL;
65500d23 3560 }
1da177e4
LT
3561 }
3562
82b0f8c3
JK
3563 if (!vmf->pte) {
3564 if (vma_is_anonymous(vmf->vma))
3565 return do_anonymous_page(vmf);
7267ec00 3566 else
82b0f8c3 3567 return do_fault(vmf);
7267ec00
KS
3568 }
3569
3570 if (!pte_present(entry))
82b0f8c3 3571 return do_swap_page(vmf, entry);
7267ec00 3572
82b0f8c3
JK
3573 if (pte_protnone(entry) && vma_is_accessible(vmf->vma))
3574 return do_numa_page(vmf, entry);
d10e63f2 3575
82b0f8c3
JK
3576 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3577 spin_lock(vmf->ptl);
3578 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3579 goto unlock;
82b0f8c3 3580 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3581 if (!pte_write(entry))
82b0f8c3 3582 return do_wp_page(vmf, entry);
1da177e4
LT
3583 entry = pte_mkdirty(entry);
3584 }
3585 entry = pte_mkyoung(entry);
82b0f8c3
JK
3586 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3587 vmf->flags & FAULT_FLAG_WRITE)) {
3588 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3589 } else {
3590 /*
3591 * This is needed only for protection faults but the arch code
3592 * is not yet telling us if this is a protection fault or not.
3593 * This still avoids useless tlb flushes for .text page faults
3594 * with threads.
3595 */
82b0f8c3
JK
3596 if (vmf->flags & FAULT_FLAG_WRITE)
3597 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3598 }
8f4e2101 3599unlock:
82b0f8c3 3600 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3601 return 0;
1da177e4
LT
3602}
3603
3604/*
3605 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3606 *
3607 * The mmap_sem may have been released depending on flags and our
3608 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3609 */
dcddffd4
KS
3610static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3611 unsigned int flags)
1da177e4 3612{
82b0f8c3 3613 struct vm_fault vmf = {
bae473a4
KS
3614 .vma = vma,
3615 .address = address,
3616 .flags = flags,
3617 };
dcddffd4 3618 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
3619 pgd_t *pgd;
3620 pud_t *pud;
1da177e4 3621
1da177e4 3622 pgd = pgd_offset(mm, address);
1da177e4
LT
3623 pud = pud_alloc(mm, pgd, address);
3624 if (!pud)
c74df32c 3625 return VM_FAULT_OOM;
82b0f8c3
JK
3626 vmf.pmd = pmd_alloc(mm, pud, address);
3627 if (!vmf.pmd)
c74df32c 3628 return VM_FAULT_OOM;
82b0f8c3
JK
3629 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3630 int ret = create_huge_pmd(&vmf);
c0292554
KS
3631 if (!(ret & VM_FAULT_FALLBACK))
3632 return ret;
71e3aac0 3633 } else {
82b0f8c3 3634 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3
DR
3635 int ret;
3636
71e3aac0 3637 barrier();
5c7fb56e 3638 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3639 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3640 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3641
82b0f8c3 3642 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3643 !pmd_write(orig_pmd)) {
82b0f8c3 3644 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3645 if (!(ret & VM_FAULT_FALLBACK))
3646 return ret;
a1dd450b 3647 } else {
82b0f8c3 3648 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3649 return 0;
1f1d06c3 3650 }
71e3aac0
AA
3651 }
3652 }
3653
82b0f8c3 3654 return handle_pte_fault(&vmf);
1da177e4
LT
3655}
3656
9a95f3cf
PC
3657/*
3658 * By the time we get here, we already hold the mm semaphore
3659 *
3660 * The mmap_sem may have been released depending on flags and our
3661 * return value. See filemap_fault() and __lock_page_or_retry().
3662 */
dcddffd4
KS
3663int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3664 unsigned int flags)
519e5247
JW
3665{
3666 int ret;
3667
3668 __set_current_state(TASK_RUNNING);
3669
3670 count_vm_event(PGFAULT);
dcddffd4 3671 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
519e5247
JW
3672
3673 /* do counter updates before entering really critical section. */
3674 check_sync_rss_stat(current);
3675
3676 /*
3677 * Enable the memcg OOM handling for faults triggered in user
3678 * space. Kernel faults are handled more gracefully.
3679 */
3680 if (flags & FAULT_FLAG_USER)
49426420 3681 mem_cgroup_oom_enable();
519e5247 3682
bae473a4
KS
3683 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3684 flags & FAULT_FLAG_INSTRUCTION,
3685 flags & FAULT_FLAG_REMOTE))
3686 return VM_FAULT_SIGSEGV;
3687
3688 if (unlikely(is_vm_hugetlb_page(vma)))
3689 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3690 else
3691 ret = __handle_mm_fault(vma, address, flags);
519e5247 3692
49426420
JW
3693 if (flags & FAULT_FLAG_USER) {
3694 mem_cgroup_oom_disable();
3695 /*
3696 * The task may have entered a memcg OOM situation but
3697 * if the allocation error was handled gracefully (no
3698 * VM_FAULT_OOM), there is no need to kill anything.
3699 * Just clean up the OOM state peacefully.
3700 */
3701 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3702 mem_cgroup_oom_synchronize(false);
3703 }
3812c8c8 3704
3f70dc38
MH
3705 /*
3706 * This mm has been already reaped by the oom reaper and so the
3707 * refault cannot be trusted in general. Anonymous refaults would
3708 * lose data and give a zero page instead e.g. This is especially
3709 * problem for use_mm() because regular tasks will just die and
3710 * the corrupted data will not be visible anywhere while kthread
3711 * will outlive the oom victim and potentially propagate the date
3712 * further.
3713 */
3714 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3715 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3716 ret = VM_FAULT_SIGBUS;
3717
519e5247
JW
3718 return ret;
3719}
e1d6d01a 3720EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3721
1da177e4
LT
3722#ifndef __PAGETABLE_PUD_FOLDED
3723/*
3724 * Allocate page upper directory.
872fec16 3725 * We've already handled the fast-path in-line.
1da177e4 3726 */
1bb3630e 3727int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3728{
c74df32c
HD
3729 pud_t *new = pud_alloc_one(mm, address);
3730 if (!new)
1bb3630e 3731 return -ENOMEM;
1da177e4 3732
362a61ad
NP
3733 smp_wmb(); /* See comment in __pte_alloc */
3734
872fec16 3735 spin_lock(&mm->page_table_lock);
1bb3630e 3736 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3737 pud_free(mm, new);
1bb3630e
HD
3738 else
3739 pgd_populate(mm, pgd, new);
c74df32c 3740 spin_unlock(&mm->page_table_lock);
1bb3630e 3741 return 0;
1da177e4
LT
3742}
3743#endif /* __PAGETABLE_PUD_FOLDED */
3744
3745#ifndef __PAGETABLE_PMD_FOLDED
3746/*
3747 * Allocate page middle directory.
872fec16 3748 * We've already handled the fast-path in-line.
1da177e4 3749 */
1bb3630e 3750int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3751{
c74df32c
HD
3752 pmd_t *new = pmd_alloc_one(mm, address);
3753 if (!new)
1bb3630e 3754 return -ENOMEM;
1da177e4 3755
362a61ad
NP
3756 smp_wmb(); /* See comment in __pte_alloc */
3757
872fec16 3758 spin_lock(&mm->page_table_lock);
1da177e4 3759#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
3760 if (!pud_present(*pud)) {
3761 mm_inc_nr_pmds(mm);
1bb3630e 3762 pud_populate(mm, pud, new);
dc6c9a35 3763 } else /* Another has populated it */
5e541973 3764 pmd_free(mm, new);
dc6c9a35
KS
3765#else
3766 if (!pgd_present(*pud)) {
3767 mm_inc_nr_pmds(mm);
1bb3630e 3768 pgd_populate(mm, pud, new);
dc6c9a35
KS
3769 } else /* Another has populated it */
3770 pmd_free(mm, new);
1da177e4 3771#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3772 spin_unlock(&mm->page_table_lock);
1bb3630e 3773 return 0;
e0f39591 3774}
1da177e4
LT
3775#endif /* __PAGETABLE_PMD_FOLDED */
3776
1b36ba81 3777static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3778 pte_t **ptepp, spinlock_t **ptlp)
3779{
3780 pgd_t *pgd;
3781 pud_t *pud;
3782 pmd_t *pmd;
3783 pte_t *ptep;
3784
3785 pgd = pgd_offset(mm, address);
3786 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3787 goto out;
3788
3789 pud = pud_offset(pgd, address);
3790 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3791 goto out;
3792
3793 pmd = pmd_offset(pud, address);
f66055ab 3794 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3795 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3796 goto out;
3797
3798 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3799 if (pmd_huge(*pmd))
3800 goto out;
3801
3802 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3803 if (!ptep)
3804 goto out;
3805 if (!pte_present(*ptep))
3806 goto unlock;
3807 *ptepp = ptep;
3808 return 0;
3809unlock:
3810 pte_unmap_unlock(ptep, *ptlp);
3811out:
3812 return -EINVAL;
3813}
3814
1b36ba81
NK
3815static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3816 pte_t **ptepp, spinlock_t **ptlp)
3817{
3818 int res;
3819
3820 /* (void) is needed to make gcc happy */
3821 (void) __cond_lock(*ptlp,
3822 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3823 return res;
3824}
3825
3b6748e2
JW
3826/**
3827 * follow_pfn - look up PFN at a user virtual address
3828 * @vma: memory mapping
3829 * @address: user virtual address
3830 * @pfn: location to store found PFN
3831 *
3832 * Only IO mappings and raw PFN mappings are allowed.
3833 *
3834 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3835 */
3836int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3837 unsigned long *pfn)
3838{
3839 int ret = -EINVAL;
3840 spinlock_t *ptl;
3841 pte_t *ptep;
3842
3843 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3844 return ret;
3845
3846 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3847 if (ret)
3848 return ret;
3849 *pfn = pte_pfn(*ptep);
3850 pte_unmap_unlock(ptep, ptl);
3851 return 0;
3852}
3853EXPORT_SYMBOL(follow_pfn);
3854
28b2ee20 3855#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3856int follow_phys(struct vm_area_struct *vma,
3857 unsigned long address, unsigned int flags,
3858 unsigned long *prot, resource_size_t *phys)
28b2ee20 3859{
03668a4d 3860 int ret = -EINVAL;
28b2ee20
RR
3861 pte_t *ptep, pte;
3862 spinlock_t *ptl;
28b2ee20 3863
d87fe660 3864 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3865 goto out;
28b2ee20 3866
03668a4d 3867 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3868 goto out;
28b2ee20 3869 pte = *ptep;
03668a4d 3870
28b2ee20
RR
3871 if ((flags & FOLL_WRITE) && !pte_write(pte))
3872 goto unlock;
28b2ee20
RR
3873
3874 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3875 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3876
03668a4d 3877 ret = 0;
28b2ee20
RR
3878unlock:
3879 pte_unmap_unlock(ptep, ptl);
3880out:
d87fe660 3881 return ret;
28b2ee20
RR
3882}
3883
3884int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3885 void *buf, int len, int write)
3886{
3887 resource_size_t phys_addr;
3888 unsigned long prot = 0;
2bc7273b 3889 void __iomem *maddr;
28b2ee20
RR
3890 int offset = addr & (PAGE_SIZE-1);
3891
d87fe660 3892 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3893 return -EINVAL;
3894
9cb12d7b 3895 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
3896 if (write)
3897 memcpy_toio(maddr + offset, buf, len);
3898 else
3899 memcpy_fromio(buf, maddr + offset, len);
3900 iounmap(maddr);
3901
3902 return len;
3903}
5a73633e 3904EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3905#endif
3906
0ec76a11 3907/*
206cb636
SW
3908 * Access another process' address space as given in mm. If non-NULL, use the
3909 * given task for page fault accounting.
0ec76a11 3910 */
206cb636 3911static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 3912 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 3913{
0ec76a11 3914 struct vm_area_struct *vma;
0ec76a11 3915 void *old_buf = buf;
442486ec 3916 int write = gup_flags & FOLL_WRITE;
0ec76a11 3917
0ec76a11 3918 down_read(&mm->mmap_sem);
183ff22b 3919 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3920 while (len) {
3921 int bytes, ret, offset;
3922 void *maddr;
28b2ee20 3923 struct page *page = NULL;
0ec76a11 3924
1e987790 3925 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 3926 gup_flags, &page, &vma, NULL);
28b2ee20 3927 if (ret <= 0) {
dbffcd03
RR
3928#ifndef CONFIG_HAVE_IOREMAP_PROT
3929 break;
3930#else
28b2ee20
RR
3931 /*
3932 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3933 * we can access using slightly different code.
3934 */
28b2ee20 3935 vma = find_vma(mm, addr);
fe936dfc 3936 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3937 break;
3938 if (vma->vm_ops && vma->vm_ops->access)
3939 ret = vma->vm_ops->access(vma, addr, buf,
3940 len, write);
3941 if (ret <= 0)
28b2ee20
RR
3942 break;
3943 bytes = ret;
dbffcd03 3944#endif
0ec76a11 3945 } else {
28b2ee20
RR
3946 bytes = len;
3947 offset = addr & (PAGE_SIZE-1);
3948 if (bytes > PAGE_SIZE-offset)
3949 bytes = PAGE_SIZE-offset;
3950
3951 maddr = kmap(page);
3952 if (write) {
3953 copy_to_user_page(vma, page, addr,
3954 maddr + offset, buf, bytes);
3955 set_page_dirty_lock(page);
3956 } else {
3957 copy_from_user_page(vma, page, addr,
3958 buf, maddr + offset, bytes);
3959 }
3960 kunmap(page);
09cbfeaf 3961 put_page(page);
0ec76a11 3962 }
0ec76a11
DH
3963 len -= bytes;
3964 buf += bytes;
3965 addr += bytes;
3966 }
3967 up_read(&mm->mmap_sem);
0ec76a11
DH
3968
3969 return buf - old_buf;
3970}
03252919 3971
5ddd36b9 3972/**
ae91dbfc 3973 * access_remote_vm - access another process' address space
5ddd36b9
SW
3974 * @mm: the mm_struct of the target address space
3975 * @addr: start address to access
3976 * @buf: source or destination buffer
3977 * @len: number of bytes to transfer
6347e8d5 3978 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
3979 *
3980 * The caller must hold a reference on @mm.
3981 */
3982int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 3983 void *buf, int len, unsigned int gup_flags)
5ddd36b9 3984{
6347e8d5 3985 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
3986}
3987
206cb636
SW
3988/*
3989 * Access another process' address space.
3990 * Source/target buffer must be kernel space,
3991 * Do not walk the page table directly, use get_user_pages
3992 */
3993int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 3994 void *buf, int len, unsigned int gup_flags)
206cb636
SW
3995{
3996 struct mm_struct *mm;
3997 int ret;
3998
3999 mm = get_task_mm(tsk);
4000 if (!mm)
4001 return 0;
4002
f307ab6d 4003 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4004
206cb636
SW
4005 mmput(mm);
4006
4007 return ret;
4008}
fcd35857 4009EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4010
03252919
AK
4011/*
4012 * Print the name of a VMA.
4013 */
4014void print_vma_addr(char *prefix, unsigned long ip)
4015{
4016 struct mm_struct *mm = current->mm;
4017 struct vm_area_struct *vma;
4018
e8bff74a
IM
4019 /*
4020 * Do not print if we are in atomic
4021 * contexts (in exception stacks, etc.):
4022 */
4023 if (preempt_count())
4024 return;
4025
03252919
AK
4026 down_read(&mm->mmap_sem);
4027 vma = find_vma(mm, ip);
4028 if (vma && vma->vm_file) {
4029 struct file *f = vma->vm_file;
4030 char *buf = (char *)__get_free_page(GFP_KERNEL);
4031 if (buf) {
2fbc57c5 4032 char *p;
03252919 4033
9bf39ab2 4034 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4035 if (IS_ERR(p))
4036 p = "?";
2fbc57c5 4037 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4038 vma->vm_start,
4039 vma->vm_end - vma->vm_start);
4040 free_page((unsigned long)buf);
4041 }
4042 }
51a07e50 4043 up_read(&mm->mmap_sem);
03252919 4044}
3ee1afa3 4045
662bbcb2 4046#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4047void __might_fault(const char *file, int line)
3ee1afa3 4048{
95156f00
PZ
4049 /*
4050 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4051 * holding the mmap_sem, this is safe because kernel memory doesn't
4052 * get paged out, therefore we'll never actually fault, and the
4053 * below annotations will generate false positives.
4054 */
4055 if (segment_eq(get_fs(), KERNEL_DS))
4056 return;
9ec23531 4057 if (pagefault_disabled())
662bbcb2 4058 return;
9ec23531
DH
4059 __might_sleep(file, line, 0);
4060#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4061 if (current->mm)
3ee1afa3 4062 might_lock_read(&current->mm->mmap_sem);
9ec23531 4063#endif
3ee1afa3 4064}
9ec23531 4065EXPORT_SYMBOL(__might_fault);
3ee1afa3 4066#endif
47ad8475
AA
4067
4068#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4069static void clear_gigantic_page(struct page *page,
4070 unsigned long addr,
4071 unsigned int pages_per_huge_page)
4072{
4073 int i;
4074 struct page *p = page;
4075
4076 might_sleep();
4077 for (i = 0; i < pages_per_huge_page;
4078 i++, p = mem_map_next(p, page, i)) {
4079 cond_resched();
4080 clear_user_highpage(p, addr + i * PAGE_SIZE);
4081 }
4082}
4083void clear_huge_page(struct page *page,
4084 unsigned long addr, unsigned int pages_per_huge_page)
4085{
4086 int i;
4087
4088 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4089 clear_gigantic_page(page, addr, pages_per_huge_page);
4090 return;
4091 }
4092
4093 might_sleep();
4094 for (i = 0; i < pages_per_huge_page; i++) {
4095 cond_resched();
4096 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4097 }
4098}
4099
4100static void copy_user_gigantic_page(struct page *dst, struct page *src,
4101 unsigned long addr,
4102 struct vm_area_struct *vma,
4103 unsigned int pages_per_huge_page)
4104{
4105 int i;
4106 struct page *dst_base = dst;
4107 struct page *src_base = src;
4108
4109 for (i = 0; i < pages_per_huge_page; ) {
4110 cond_resched();
4111 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4112
4113 i++;
4114 dst = mem_map_next(dst, dst_base, i);
4115 src = mem_map_next(src, src_base, i);
4116 }
4117}
4118
4119void copy_user_huge_page(struct page *dst, struct page *src,
4120 unsigned long addr, struct vm_area_struct *vma,
4121 unsigned int pages_per_huge_page)
4122{
4123 int i;
4124
4125 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4126 copy_user_gigantic_page(dst, src, addr, vma,
4127 pages_per_huge_page);
4128 return;
4129 }
4130
4131 might_sleep();
4132 for (i = 0; i < pages_per_huge_page; i++) {
4133 cond_resched();
4134 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4135 }
4136}
4137#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4138
40b64acd 4139#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4140
4141static struct kmem_cache *page_ptl_cachep;
4142
4143void __init ptlock_cache_init(void)
4144{
4145 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4146 SLAB_PANIC, NULL);
4147}
4148
539edb58 4149bool ptlock_alloc(struct page *page)
49076ec2
KS
4150{
4151 spinlock_t *ptl;
4152
b35f1819 4153 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4154 if (!ptl)
4155 return false;
539edb58 4156 page->ptl = ptl;
49076ec2
KS
4157 return true;
4158}
4159
539edb58 4160void ptlock_free(struct page *page)
49076ec2 4161{
b35f1819 4162 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4163}
4164#endif