mm/fork: Pass new vma pointer into copy_page_range()
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
d41dee36 94#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
95/* use the per-pgdat data instead for discontigmem - mbligh */
96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
1da177e4
LT
103/*
104 * A number of key systems in x86 including ioremap() rely on the assumption
105 * that high_memory defines the upper bound on direct map memory, then end
106 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
107 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108 * and ZONE_HIGHMEM.
109 */
166f61b9 110void *high_memory;
1da177e4 111EXPORT_SYMBOL(high_memory);
1da177e4 112
32a93233
IM
113/*
114 * Randomize the address space (stacks, mmaps, brk, etc.).
115 *
116 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117 * as ancient (libc5 based) binaries can segfault. )
118 */
119int randomize_va_space __read_mostly =
120#ifdef CONFIG_COMPAT_BRK
121 1;
122#else
123 2;
124#endif
a62eaf15 125
83d116c5
JH
126#ifndef arch_faults_on_old_pte
127static inline bool arch_faults_on_old_pte(void)
128{
129 /*
130 * Those arches which don't have hw access flag feature need to
131 * implement their own helper. By default, "true" means pagefault
132 * will be hit on old pte.
133 */
134 return true;
135}
136#endif
137
a62eaf15
AK
138static int __init disable_randmaps(char *s)
139{
140 randomize_va_space = 0;
9b41046c 141 return 1;
a62eaf15
AK
142}
143__setup("norandmaps", disable_randmaps);
144
62eede62 145unsigned long zero_pfn __read_mostly;
0b70068e
AB
146EXPORT_SYMBOL(zero_pfn);
147
166f61b9
TH
148unsigned long highest_memmap_pfn __read_mostly;
149
a13ea5b7
HD
150/*
151 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
152 */
153static int __init init_zero_pfn(void)
154{
155 zero_pfn = page_to_pfn(ZERO_PAGE(0));
156 return 0;
157}
158core_initcall(init_zero_pfn);
a62eaf15 159
e4dcad20 160void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 161{
e4dcad20 162 trace_rss_stat(mm, member, count);
b3d1411b 163}
d559db08 164
34e55232
KH
165#if defined(SPLIT_RSS_COUNTING)
166
ea48cf78 167void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
168{
169 int i;
170
171 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
172 if (current->rss_stat.count[i]) {
173 add_mm_counter(mm, i, current->rss_stat.count[i]);
174 current->rss_stat.count[i] = 0;
34e55232
KH
175 }
176 }
05af2e10 177 current->rss_stat.events = 0;
34e55232
KH
178}
179
180static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
181{
182 struct task_struct *task = current;
183
184 if (likely(task->mm == mm))
185 task->rss_stat.count[member] += val;
186 else
187 add_mm_counter(mm, member, val);
188}
189#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
190#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
191
192/* sync counter once per 64 page faults */
193#define TASK_RSS_EVENTS_THRESH (64)
194static void check_sync_rss_stat(struct task_struct *task)
195{
196 if (unlikely(task != current))
197 return;
198 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 199 sync_mm_rss(task->mm);
34e55232 200}
9547d01b 201#else /* SPLIT_RSS_COUNTING */
34e55232
KH
202
203#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
204#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
205
206static void check_sync_rss_stat(struct task_struct *task)
207{
208}
209
9547d01b
PZ
210#endif /* SPLIT_RSS_COUNTING */
211
1da177e4
LT
212/*
213 * Note: this doesn't free the actual pages themselves. That
214 * has been handled earlier when unmapping all the memory regions.
215 */
9e1b32ca
BH
216static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
217 unsigned long addr)
1da177e4 218{
2f569afd 219 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 220 pmd_clear(pmd);
9e1b32ca 221 pte_free_tlb(tlb, token, addr);
c4812909 222 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
223}
224
e0da382c
HD
225static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
226 unsigned long addr, unsigned long end,
227 unsigned long floor, unsigned long ceiling)
1da177e4
LT
228{
229 pmd_t *pmd;
230 unsigned long next;
e0da382c 231 unsigned long start;
1da177e4 232
e0da382c 233 start = addr;
1da177e4 234 pmd = pmd_offset(pud, addr);
1da177e4
LT
235 do {
236 next = pmd_addr_end(addr, end);
237 if (pmd_none_or_clear_bad(pmd))
238 continue;
9e1b32ca 239 free_pte_range(tlb, pmd, addr);
1da177e4
LT
240 } while (pmd++, addr = next, addr != end);
241
e0da382c
HD
242 start &= PUD_MASK;
243 if (start < floor)
244 return;
245 if (ceiling) {
246 ceiling &= PUD_MASK;
247 if (!ceiling)
248 return;
1da177e4 249 }
e0da382c
HD
250 if (end - 1 > ceiling - 1)
251 return;
252
253 pmd = pmd_offset(pud, start);
254 pud_clear(pud);
9e1b32ca 255 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 256 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
257}
258
c2febafc 259static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
260 unsigned long addr, unsigned long end,
261 unsigned long floor, unsigned long ceiling)
1da177e4
LT
262{
263 pud_t *pud;
264 unsigned long next;
e0da382c 265 unsigned long start;
1da177e4 266
e0da382c 267 start = addr;
c2febafc 268 pud = pud_offset(p4d, addr);
1da177e4
LT
269 do {
270 next = pud_addr_end(addr, end);
271 if (pud_none_or_clear_bad(pud))
272 continue;
e0da382c 273 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
274 } while (pud++, addr = next, addr != end);
275
c2febafc
KS
276 start &= P4D_MASK;
277 if (start < floor)
278 return;
279 if (ceiling) {
280 ceiling &= P4D_MASK;
281 if (!ceiling)
282 return;
283 }
284 if (end - 1 > ceiling - 1)
285 return;
286
287 pud = pud_offset(p4d, start);
288 p4d_clear(p4d);
289 pud_free_tlb(tlb, pud, start);
b4e98d9a 290 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
291}
292
293static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
294 unsigned long addr, unsigned long end,
295 unsigned long floor, unsigned long ceiling)
296{
297 p4d_t *p4d;
298 unsigned long next;
299 unsigned long start;
300
301 start = addr;
302 p4d = p4d_offset(pgd, addr);
303 do {
304 next = p4d_addr_end(addr, end);
305 if (p4d_none_or_clear_bad(p4d))
306 continue;
307 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
308 } while (p4d++, addr = next, addr != end);
309
e0da382c
HD
310 start &= PGDIR_MASK;
311 if (start < floor)
312 return;
313 if (ceiling) {
314 ceiling &= PGDIR_MASK;
315 if (!ceiling)
316 return;
1da177e4 317 }
e0da382c
HD
318 if (end - 1 > ceiling - 1)
319 return;
320
c2febafc 321 p4d = p4d_offset(pgd, start);
e0da382c 322 pgd_clear(pgd);
c2febafc 323 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
324}
325
326/*
e0da382c 327 * This function frees user-level page tables of a process.
1da177e4 328 */
42b77728 329void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
330 unsigned long addr, unsigned long end,
331 unsigned long floor, unsigned long ceiling)
1da177e4
LT
332{
333 pgd_t *pgd;
334 unsigned long next;
e0da382c
HD
335
336 /*
337 * The next few lines have given us lots of grief...
338 *
339 * Why are we testing PMD* at this top level? Because often
340 * there will be no work to do at all, and we'd prefer not to
341 * go all the way down to the bottom just to discover that.
342 *
343 * Why all these "- 1"s? Because 0 represents both the bottom
344 * of the address space and the top of it (using -1 for the
345 * top wouldn't help much: the masks would do the wrong thing).
346 * The rule is that addr 0 and floor 0 refer to the bottom of
347 * the address space, but end 0 and ceiling 0 refer to the top
348 * Comparisons need to use "end - 1" and "ceiling - 1" (though
349 * that end 0 case should be mythical).
350 *
351 * Wherever addr is brought up or ceiling brought down, we must
352 * be careful to reject "the opposite 0" before it confuses the
353 * subsequent tests. But what about where end is brought down
354 * by PMD_SIZE below? no, end can't go down to 0 there.
355 *
356 * Whereas we round start (addr) and ceiling down, by different
357 * masks at different levels, in order to test whether a table
358 * now has no other vmas using it, so can be freed, we don't
359 * bother to round floor or end up - the tests don't need that.
360 */
1da177e4 361
e0da382c
HD
362 addr &= PMD_MASK;
363 if (addr < floor) {
364 addr += PMD_SIZE;
365 if (!addr)
366 return;
367 }
368 if (ceiling) {
369 ceiling &= PMD_MASK;
370 if (!ceiling)
371 return;
372 }
373 if (end - 1 > ceiling - 1)
374 end -= PMD_SIZE;
375 if (addr > end - 1)
376 return;
07e32661
AK
377 /*
378 * We add page table cache pages with PAGE_SIZE,
379 * (see pte_free_tlb()), flush the tlb if we need
380 */
ed6a7935 381 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 382 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
383 do {
384 next = pgd_addr_end(addr, end);
385 if (pgd_none_or_clear_bad(pgd))
386 continue;
c2febafc 387 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 388 } while (pgd++, addr = next, addr != end);
e0da382c
HD
389}
390
42b77728 391void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 392 unsigned long floor, unsigned long ceiling)
e0da382c
HD
393{
394 while (vma) {
395 struct vm_area_struct *next = vma->vm_next;
396 unsigned long addr = vma->vm_start;
397
8f4f8c16 398 /*
25d9e2d1 399 * Hide vma from rmap and truncate_pagecache before freeing
400 * pgtables
8f4f8c16 401 */
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16
HD
403 unlink_file_vma(vma);
404
9da61aef 405 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 406 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 407 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
408 } else {
409 /*
410 * Optimization: gather nearby vmas into one call down
411 */
412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 413 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
414 vma = next;
415 next = vma->vm_next;
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16 417 unlink_file_vma(vma);
3bf5ee95
HD
418 }
419 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 420 floor, next ? next->vm_start : ceiling);
3bf5ee95 421 }
e0da382c
HD
422 vma = next;
423 }
1da177e4
LT
424}
425
4cf58924 426int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 427{
c4088ebd 428 spinlock_t *ptl;
4cf58924 429 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
430 if (!new)
431 return -ENOMEM;
432
362a61ad
NP
433 /*
434 * Ensure all pte setup (eg. pte page lock and page clearing) are
435 * visible before the pte is made visible to other CPUs by being
436 * put into page tables.
437 *
438 * The other side of the story is the pointer chasing in the page
439 * table walking code (when walking the page table without locking;
440 * ie. most of the time). Fortunately, these data accesses consist
441 * of a chain of data-dependent loads, meaning most CPUs (alpha
442 * being the notable exception) will already guarantee loads are
443 * seen in-order. See the alpha page table accessors for the
bb7cdd38 444 * smp_rmb() barriers in page table walking code.
362a61ad
NP
445 */
446 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
447
c4088ebd 448 ptl = pmd_lock(mm, pmd);
8ac1f832 449 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 450 mm_inc_nr_ptes(mm);
1da177e4 451 pmd_populate(mm, pmd, new);
2f569afd 452 new = NULL;
4b471e88 453 }
c4088ebd 454 spin_unlock(ptl);
2f569afd
MS
455 if (new)
456 pte_free(mm, new);
1bb3630e 457 return 0;
1da177e4
LT
458}
459
4cf58924 460int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 461{
4cf58924 462 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
463 if (!new)
464 return -ENOMEM;
465
362a61ad
NP
466 smp_wmb(); /* See comment in __pte_alloc */
467
1bb3630e 468 spin_lock(&init_mm.page_table_lock);
8ac1f832 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 470 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 471 new = NULL;
4b471e88 472 }
1bb3630e 473 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
474 if (new)
475 pte_free_kernel(&init_mm, new);
1bb3630e 476 return 0;
1da177e4
LT
477}
478
d559db08
KH
479static inline void init_rss_vec(int *rss)
480{
481 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
482}
483
484static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 485{
d559db08
KH
486 int i;
487
34e55232 488 if (current->mm == mm)
05af2e10 489 sync_mm_rss(mm);
d559db08
KH
490 for (i = 0; i < NR_MM_COUNTERS; i++)
491 if (rss[i])
492 add_mm_counter(mm, i, rss[i]);
ae859762
HD
493}
494
b5810039 495/*
6aab341e
LT
496 * This function is called to print an error when a bad pte
497 * is found. For example, we might have a PFN-mapped pte in
498 * a region that doesn't allow it.
b5810039
NP
499 *
500 * The calling function must still handle the error.
501 */
3dc14741
HD
502static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
503 pte_t pte, struct page *page)
b5810039 504{
3dc14741 505 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
506 p4d_t *p4d = p4d_offset(pgd, addr);
507 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
508 pmd_t *pmd = pmd_offset(pud, addr);
509 struct address_space *mapping;
510 pgoff_t index;
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 return;
523 }
524 if (nr_unshown) {
1170532b
JP
525 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
526 nr_unshown);
d936cf9b
HD
527 nr_unshown = 0;
528 }
529 nr_shown = 0;
530 }
531 if (nr_shown++ == 0)
532 resume = jiffies + 60 * HZ;
3dc14741
HD
533
534 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
535 index = linear_page_index(vma, addr);
536
1170532b
JP
537 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
538 current->comm,
539 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 540 if (page)
f0b791a3 541 dump_page(page, "bad pte");
6aa9b8b2 542 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 543 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 544 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
545 vma->vm_file,
546 vma->vm_ops ? vma->vm_ops->fault : NULL,
547 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
548 mapping ? mapping->a_ops->readpage : NULL);
b5810039 549 dump_stack();
373d4d09 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
551}
552
ee498ed7 553/*
7e675137 554 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 555 *
7e675137
NP
556 * "Special" mappings do not wish to be associated with a "struct page" (either
557 * it doesn't exist, or it exists but they don't want to touch it). In this
558 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 559 *
7e675137
NP
560 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
561 * pte bit, in which case this function is trivial. Secondly, an architecture
562 * may not have a spare pte bit, which requires a more complicated scheme,
563 * described below.
564 *
565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
566 * special mapping (even if there are underlying and valid "struct pages").
567 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 568 *
b379d790
JH
569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
572 * mapping will always honor the rule
6aab341e
LT
573 *
574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
575 *
7e675137
NP
576 * And for normal mappings this is false.
577 *
578 * This restricts such mappings to be a linear translation from virtual address
579 * to pfn. To get around this restriction, we allow arbitrary mappings so long
580 * as the vma is not a COW mapping; in that case, we know that all ptes are
581 * special (because none can have been COWed).
b379d790 582 *
b379d790 583 *
7e675137 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
585 *
586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
587 * page" backing, however the difference is that _all_ pages with a struct
588 * page (that is, those where pfn_valid is true) are refcounted and considered
589 * normal pages by the VM. The disadvantage is that pages are refcounted
590 * (which can be slower and simply not an option for some PFNMAP users). The
591 * advantage is that we don't have to follow the strict linearity rule of
592 * PFNMAP mappings in order to support COWable mappings.
593 *
ee498ed7 594 */
25b2995a
CH
595struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
596 pte_t pte)
ee498ed7 597{
22b31eec 598 unsigned long pfn = pte_pfn(pte);
7e675137 599
00b3a331 600 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 601 if (likely(!pte_special(pte)))
22b31eec 602 goto check_pfn;
667a0a06
DV
603 if (vma->vm_ops && vma->vm_ops->find_special_page)
604 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
605 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
606 return NULL;
df6ad698
JG
607 if (is_zero_pfn(pfn))
608 return NULL;
e1fb4a08
DJ
609 if (pte_devmap(pte))
610 return NULL;
611
df6ad698 612 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
613 return NULL;
614 }
615
00b3a331 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 617
b379d790
JH
618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619 if (vma->vm_flags & VM_MIXEDMAP) {
620 if (!pfn_valid(pfn))
621 return NULL;
622 goto out;
623 } else {
7e675137
NP
624 unsigned long off;
625 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
626 if (pfn == vma->vm_pgoff + off)
627 return NULL;
628 if (!is_cow_mapping(vma->vm_flags))
629 return NULL;
630 }
6aab341e
LT
631 }
632
b38af472
HD
633 if (is_zero_pfn(pfn))
634 return NULL;
00b3a331 635
22b31eec
HD
636check_pfn:
637 if (unlikely(pfn > highest_memmap_pfn)) {
638 print_bad_pte(vma, addr, pte, NULL);
639 return NULL;
640 }
6aab341e
LT
641
642 /*
7e675137 643 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 644 * eg. VDSO mappings can cause them to exist.
6aab341e 645 */
b379d790 646out:
6aab341e 647 return pfn_to_page(pfn);
ee498ed7
HD
648}
649
28093f9f
GS
650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
651struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652 pmd_t pmd)
653{
654 unsigned long pfn = pmd_pfn(pmd);
655
656 /*
657 * There is no pmd_special() but there may be special pmds, e.g.
658 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
660 */
661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662 if (vma->vm_flags & VM_MIXEDMAP) {
663 if (!pfn_valid(pfn))
664 return NULL;
665 goto out;
666 } else {
667 unsigned long off;
668 off = (addr - vma->vm_start) >> PAGE_SHIFT;
669 if (pfn == vma->vm_pgoff + off)
670 return NULL;
671 if (!is_cow_mapping(vma->vm_flags))
672 return NULL;
673 }
674 }
675
e1fb4a08
DJ
676 if (pmd_devmap(pmd))
677 return NULL;
3cde287b 678 if (is_huge_zero_pmd(pmd))
28093f9f
GS
679 return NULL;
680 if (unlikely(pfn > highest_memmap_pfn))
681 return NULL;
682
683 /*
684 * NOTE! We still have PageReserved() pages in the page tables.
685 * eg. VDSO mappings can cause them to exist.
686 */
687out:
688 return pfn_to_page(pfn);
689}
690#endif
691
1da177e4
LT
692/*
693 * copy one vm_area from one task to the other. Assumes the page tables
694 * already present in the new task to be cleared in the whole range
695 * covered by this vma.
1da177e4
LT
696 */
697
df3a57d1
LT
698static unsigned long
699copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 701 unsigned long addr, int *rss)
1da177e4 702{
b5810039 703 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
704 pte_t pte = *src_pte;
705 struct page *page;
df3a57d1
LT
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
1da177e4 723
df3a57d1 724 rss[mm_counter(page)]++;
5042db43 725
df3a57d1
LT
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
5042db43 728 /*
df3a57d1
LT
729 * COW mappings require pages in both
730 * parent and child to be set to read.
5042db43 731 */
df3a57d1
LT
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
5042db43 742
df3a57d1
LT
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 770 }
1da177e4 771 }
df3a57d1
LT
772 set_pte_at(dst_mm, addr, dst_pte, pte);
773 return 0;
774}
775
79a1971c
LT
776static inline void
777copy_present_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
df3a57d1
LT
778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
779 unsigned long addr, int *rss)
780{
781 unsigned long vm_flags = vma->vm_flags;
782 pte_t pte = *src_pte;
783 struct page *page;
784
1da177e4
LT
785 /*
786 * If it's a COW mapping, write protect it both
787 * in the parent and the child
788 */
1b2de5d0 789 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 790 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 791 pte = pte_wrprotect(pte);
1da177e4
LT
792 }
793
794 /*
795 * If it's a shared mapping, mark it clean in
796 * the child
797 */
798 if (vm_flags & VM_SHARED)
799 pte = pte_mkclean(pte);
800 pte = pte_mkold(pte);
6aab341e 801
b569a176
PX
802 /*
803 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
804 * does not have the VM_UFFD_WP, which means that the uffd
805 * fork event is not enabled.
806 */
807 if (!(vm_flags & VM_UFFD_WP))
808 pte = pte_clear_uffd_wp(pte);
809
6aab341e
LT
810 page = vm_normal_page(vma, addr, pte);
811 if (page) {
812 get_page(page);
53f9263b 813 page_dup_rmap(page, false);
eca56ff9 814 rss[mm_counter(page)]++;
6aab341e 815 }
ae859762 816
ae859762 817 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
818}
819
21bda264 820static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0 821 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
7a4830c3 822 struct vm_area_struct *new,
71e3aac0 823 unsigned long addr, unsigned long end)
1da177e4 824{
c36987e2 825 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 826 pte_t *src_pte, *dst_pte;
c74df32c 827 spinlock_t *src_ptl, *dst_ptl;
e040f218 828 int progress = 0;
d559db08 829 int rss[NR_MM_COUNTERS];
570a335b 830 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
831
832again:
d559db08
KH
833 init_rss_vec(rss);
834
c74df32c 835 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
836 if (!dst_pte)
837 return -ENOMEM;
ece0e2b6 838 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 839 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 840 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
841 orig_src_pte = src_pte;
842 orig_dst_pte = dst_pte;
6606c3e0 843 arch_enter_lazy_mmu_mode();
1da177e4 844
1da177e4
LT
845 do {
846 /*
847 * We are holding two locks at this point - either of them
848 * could generate latencies in another task on another CPU.
849 */
e040f218
HD
850 if (progress >= 32) {
851 progress = 0;
852 if (need_resched() ||
95c354fe 853 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
854 break;
855 }
1da177e4
LT
856 if (pte_none(*src_pte)) {
857 progress++;
858 continue;
859 }
79a1971c
LT
860 if (unlikely(!pte_present(*src_pte))) {
861 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
862 dst_pte, src_pte,
570a335b 863 vma, addr, rss);
79a1971c
LT
864 if (entry.val)
865 break;
866 progress += 8;
867 continue;
868 }
869 copy_present_pte(dst_mm, src_mm, dst_pte, src_pte,
870 vma, addr, rss);
1da177e4
LT
871 progress += 8;
872 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 873
6606c3e0 874 arch_leave_lazy_mmu_mode();
c74df32c 875 spin_unlock(src_ptl);
ece0e2b6 876 pte_unmap(orig_src_pte);
d559db08 877 add_mm_rss_vec(dst_mm, rss);
c36987e2 878 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 879 cond_resched();
570a335b
HD
880
881 if (entry.val) {
882 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
883 return -ENOMEM;
884 progress = 0;
885 }
1da177e4
LT
886 if (addr != end)
887 goto again;
888 return 0;
889}
890
891static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
892 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
7a4830c3 893 struct vm_area_struct *new,
1da177e4
LT
894 unsigned long addr, unsigned long end)
895{
896 pmd_t *src_pmd, *dst_pmd;
897 unsigned long next;
898
899 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
900 if (!dst_pmd)
901 return -ENOMEM;
902 src_pmd = pmd_offset(src_pud, addr);
903 do {
904 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
905 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
906 || pmd_devmap(*src_pmd)) {
71e3aac0 907 int err;
a00cc7d9 908 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
909 err = copy_huge_pmd(dst_mm, src_mm,
910 dst_pmd, src_pmd, addr, vma);
911 if (err == -ENOMEM)
912 return -ENOMEM;
913 if (!err)
914 continue;
915 /* fall through */
916 }
1da177e4
LT
917 if (pmd_none_or_clear_bad(src_pmd))
918 continue;
919 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
7a4830c3 920 vma, new, addr, next))
1da177e4
LT
921 return -ENOMEM;
922 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
923 return 0;
924}
925
926static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 927 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
7a4830c3 928 struct vm_area_struct *new,
1da177e4
LT
929 unsigned long addr, unsigned long end)
930{
931 pud_t *src_pud, *dst_pud;
932 unsigned long next;
933
c2febafc 934 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
935 if (!dst_pud)
936 return -ENOMEM;
c2febafc 937 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
938 do {
939 next = pud_addr_end(addr, end);
a00cc7d9
MW
940 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
941 int err;
942
943 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
944 err = copy_huge_pud(dst_mm, src_mm,
945 dst_pud, src_pud, addr, vma);
946 if (err == -ENOMEM)
947 return -ENOMEM;
948 if (!err)
949 continue;
950 /* fall through */
951 }
1da177e4
LT
952 if (pud_none_or_clear_bad(src_pud))
953 continue;
954 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
7a4830c3 955 vma, new, addr, next))
1da177e4
LT
956 return -ENOMEM;
957 } while (dst_pud++, src_pud++, addr = next, addr != end);
958 return 0;
959}
960
c2febafc
KS
961static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
962 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
7a4830c3 963 struct vm_area_struct *new,
c2febafc
KS
964 unsigned long addr, unsigned long end)
965{
966 p4d_t *src_p4d, *dst_p4d;
967 unsigned long next;
968
969 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
970 if (!dst_p4d)
971 return -ENOMEM;
972 src_p4d = p4d_offset(src_pgd, addr);
973 do {
974 next = p4d_addr_end(addr, end);
975 if (p4d_none_or_clear_bad(src_p4d))
976 continue;
977 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
7a4830c3 978 vma, new, addr, next))
c2febafc
KS
979 return -ENOMEM;
980 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
981 return 0;
982}
983
1da177e4 984int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
7a4830c3 985 struct vm_area_struct *vma, struct vm_area_struct *new)
1da177e4
LT
986{
987 pgd_t *src_pgd, *dst_pgd;
988 unsigned long next;
989 unsigned long addr = vma->vm_start;
990 unsigned long end = vma->vm_end;
ac46d4f3 991 struct mmu_notifier_range range;
2ec74c3e 992 bool is_cow;
cddb8a5c 993 int ret;
1da177e4 994
d992895b
NP
995 /*
996 * Don't copy ptes where a page fault will fill them correctly.
997 * Fork becomes much lighter when there are big shared or private
998 * readonly mappings. The tradeoff is that copy_page_range is more
999 * efficient than faulting.
1000 */
0661a336
KS
1001 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1002 !vma->anon_vma)
1003 return 0;
d992895b 1004
1da177e4
LT
1005 if (is_vm_hugetlb_page(vma))
1006 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1007
b3b9c293 1008 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1009 /*
1010 * We do not free on error cases below as remove_vma
1011 * gets called on error from higher level routine
1012 */
5180da41 1013 ret = track_pfn_copy(vma);
2ab64037 1014 if (ret)
1015 return ret;
1016 }
1017
cddb8a5c
AA
1018 /*
1019 * We need to invalidate the secondary MMU mappings only when
1020 * there could be a permission downgrade on the ptes of the
1021 * parent mm. And a permission downgrade will only happen if
1022 * is_cow_mapping() returns true.
1023 */
2ec74c3e 1024 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
1025
1026 if (is_cow) {
7269f999
JG
1027 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1028 0, vma, src_mm, addr, end);
ac46d4f3
JG
1029 mmu_notifier_invalidate_range_start(&range);
1030 }
cddb8a5c
AA
1031
1032 ret = 0;
1da177e4
LT
1033 dst_pgd = pgd_offset(dst_mm, addr);
1034 src_pgd = pgd_offset(src_mm, addr);
1035 do {
1036 next = pgd_addr_end(addr, end);
1037 if (pgd_none_or_clear_bad(src_pgd))
1038 continue;
c2febafc 1039 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
7a4830c3 1040 vma, new, addr, next))) {
cddb8a5c
AA
1041 ret = -ENOMEM;
1042 break;
1043 }
1da177e4 1044 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1045
2ec74c3e 1046 if (is_cow)
ac46d4f3 1047 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1048 return ret;
1da177e4
LT
1049}
1050
51c6f666 1051static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1052 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1053 unsigned long addr, unsigned long end,
97a89413 1054 struct zap_details *details)
1da177e4 1055{
b5810039 1056 struct mm_struct *mm = tlb->mm;
d16dfc55 1057 int force_flush = 0;
d559db08 1058 int rss[NR_MM_COUNTERS];
97a89413 1059 spinlock_t *ptl;
5f1a1907 1060 pte_t *start_pte;
97a89413 1061 pte_t *pte;
8a5f14a2 1062 swp_entry_t entry;
d559db08 1063
ed6a7935 1064 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1065again:
e303297e 1066 init_rss_vec(rss);
5f1a1907
SR
1067 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1068 pte = start_pte;
3ea27719 1069 flush_tlb_batched_pending(mm);
6606c3e0 1070 arch_enter_lazy_mmu_mode();
1da177e4
LT
1071 do {
1072 pte_t ptent = *pte;
166f61b9 1073 if (pte_none(ptent))
1da177e4 1074 continue;
6f5e6b9e 1075
7b167b68
MK
1076 if (need_resched())
1077 break;
1078
1da177e4 1079 if (pte_present(ptent)) {
ee498ed7 1080 struct page *page;
51c6f666 1081
25b2995a 1082 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1083 if (unlikely(details) && page) {
1084 /*
1085 * unmap_shared_mapping_pages() wants to
1086 * invalidate cache without truncating:
1087 * unmap shared but keep private pages.
1088 */
1089 if (details->check_mapping &&
800d8c63 1090 details->check_mapping != page_rmapping(page))
1da177e4 1091 continue;
1da177e4 1092 }
b5810039 1093 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1094 tlb->fullmm);
1da177e4
LT
1095 tlb_remove_tlb_entry(tlb, pte, addr);
1096 if (unlikely(!page))
1097 continue;
eca56ff9
JM
1098
1099 if (!PageAnon(page)) {
1cf35d47
LT
1100 if (pte_dirty(ptent)) {
1101 force_flush = 1;
6237bcd9 1102 set_page_dirty(page);
1cf35d47 1103 }
4917e5d0 1104 if (pte_young(ptent) &&
64363aad 1105 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1106 mark_page_accessed(page);
6237bcd9 1107 }
eca56ff9 1108 rss[mm_counter(page)]--;
d281ee61 1109 page_remove_rmap(page, false);
3dc14741
HD
1110 if (unlikely(page_mapcount(page) < 0))
1111 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1112 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1113 force_flush = 1;
ce9ec37b 1114 addr += PAGE_SIZE;
d16dfc55 1115 break;
1cf35d47 1116 }
1da177e4
LT
1117 continue;
1118 }
5042db43
JG
1119
1120 entry = pte_to_swp_entry(ptent);
463b7a17 1121 if (is_device_private_entry(entry)) {
5042db43
JG
1122 struct page *page = device_private_entry_to_page(entry);
1123
1124 if (unlikely(details && details->check_mapping)) {
1125 /*
1126 * unmap_shared_mapping_pages() wants to
1127 * invalidate cache without truncating:
1128 * unmap shared but keep private pages.
1129 */
1130 if (details->check_mapping !=
1131 page_rmapping(page))
1132 continue;
1133 }
1134
1135 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1136 rss[mm_counter(page)]--;
1137 page_remove_rmap(page, false);
1138 put_page(page);
1139 continue;
1140 }
1141
3e8715fd
KS
1142 /* If details->check_mapping, we leave swap entries. */
1143 if (unlikely(details))
1da177e4 1144 continue;
b084d435 1145
8a5f14a2
KS
1146 if (!non_swap_entry(entry))
1147 rss[MM_SWAPENTS]--;
1148 else if (is_migration_entry(entry)) {
1149 struct page *page;
9f9f1acd 1150
8a5f14a2 1151 page = migration_entry_to_page(entry);
eca56ff9 1152 rss[mm_counter(page)]--;
b084d435 1153 }
8a5f14a2
KS
1154 if (unlikely(!free_swap_and_cache(entry)))
1155 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1156 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1157 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1158
d559db08 1159 add_mm_rss_vec(mm, rss);
6606c3e0 1160 arch_leave_lazy_mmu_mode();
51c6f666 1161
1cf35d47 1162 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1163 if (force_flush)
1cf35d47 1164 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1165 pte_unmap_unlock(start_pte, ptl);
1166
1167 /*
1168 * If we forced a TLB flush (either due to running out of
1169 * batch buffers or because we needed to flush dirty TLB
1170 * entries before releasing the ptl), free the batched
1171 * memory too. Restart if we didn't do everything.
1172 */
1173 if (force_flush) {
1174 force_flush = 0;
fa0aafb8 1175 tlb_flush_mmu(tlb);
7b167b68
MK
1176 }
1177
1178 if (addr != end) {
1179 cond_resched();
1180 goto again;
d16dfc55
PZ
1181 }
1182
51c6f666 1183 return addr;
1da177e4
LT
1184}
1185
51c6f666 1186static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1187 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1188 unsigned long addr, unsigned long end,
97a89413 1189 struct zap_details *details)
1da177e4
LT
1190{
1191 pmd_t *pmd;
1192 unsigned long next;
1193
1194 pmd = pmd_offset(pud, addr);
1195 do {
1196 next = pmd_addr_end(addr, end);
84c3fc4e 1197 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1198 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1199 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1200 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1201 goto next;
71e3aac0
AA
1202 /* fall through */
1203 }
1a5a9906
AA
1204 /*
1205 * Here there can be other concurrent MADV_DONTNEED or
1206 * trans huge page faults running, and if the pmd is
1207 * none or trans huge it can change under us. This is
c1e8d7c6 1208 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1209 * mode.
1210 */
1211 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1212 goto next;
97a89413 1213 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1214next:
97a89413
PZ
1215 cond_resched();
1216 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1217
1218 return addr;
1da177e4
LT
1219}
1220
51c6f666 1221static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1222 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1223 unsigned long addr, unsigned long end,
97a89413 1224 struct zap_details *details)
1da177e4
LT
1225{
1226 pud_t *pud;
1227 unsigned long next;
1228
c2febafc 1229 pud = pud_offset(p4d, addr);
1da177e4
LT
1230 do {
1231 next = pud_addr_end(addr, end);
a00cc7d9
MW
1232 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1233 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1234 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1235 split_huge_pud(vma, pud, addr);
1236 } else if (zap_huge_pud(tlb, vma, pud, addr))
1237 goto next;
1238 /* fall through */
1239 }
97a89413 1240 if (pud_none_or_clear_bad(pud))
1da177e4 1241 continue;
97a89413 1242 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1243next:
1244 cond_resched();
97a89413 1245 } while (pud++, addr = next, addr != end);
51c6f666
RH
1246
1247 return addr;
1da177e4
LT
1248}
1249
c2febafc
KS
1250static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1251 struct vm_area_struct *vma, pgd_t *pgd,
1252 unsigned long addr, unsigned long end,
1253 struct zap_details *details)
1254{
1255 p4d_t *p4d;
1256 unsigned long next;
1257
1258 p4d = p4d_offset(pgd, addr);
1259 do {
1260 next = p4d_addr_end(addr, end);
1261 if (p4d_none_or_clear_bad(p4d))
1262 continue;
1263 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1264 } while (p4d++, addr = next, addr != end);
1265
1266 return addr;
1267}
1268
aac45363 1269void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1270 struct vm_area_struct *vma,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1da177e4
LT
1273{
1274 pgd_t *pgd;
1275 unsigned long next;
1276
1da177e4
LT
1277 BUG_ON(addr >= end);
1278 tlb_start_vma(tlb, vma);
1279 pgd = pgd_offset(vma->vm_mm, addr);
1280 do {
1281 next = pgd_addr_end(addr, end);
97a89413 1282 if (pgd_none_or_clear_bad(pgd))
1da177e4 1283 continue;
c2febafc 1284 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1285 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1286 tlb_end_vma(tlb, vma);
1287}
51c6f666 1288
f5cc4eef
AV
1289
1290static void unmap_single_vma(struct mmu_gather *tlb,
1291 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1292 unsigned long end_addr,
f5cc4eef
AV
1293 struct zap_details *details)
1294{
1295 unsigned long start = max(vma->vm_start, start_addr);
1296 unsigned long end;
1297
1298 if (start >= vma->vm_end)
1299 return;
1300 end = min(vma->vm_end, end_addr);
1301 if (end <= vma->vm_start)
1302 return;
1303
cbc91f71
SD
1304 if (vma->vm_file)
1305 uprobe_munmap(vma, start, end);
1306
b3b9c293 1307 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1308 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1309
1310 if (start != end) {
1311 if (unlikely(is_vm_hugetlb_page(vma))) {
1312 /*
1313 * It is undesirable to test vma->vm_file as it
1314 * should be non-null for valid hugetlb area.
1315 * However, vm_file will be NULL in the error
7aa6b4ad 1316 * cleanup path of mmap_region. When
f5cc4eef 1317 * hugetlbfs ->mmap method fails,
7aa6b4ad 1318 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1319 * before calling this function to clean up.
1320 * Since no pte has actually been setup, it is
1321 * safe to do nothing in this case.
1322 */
24669e58 1323 if (vma->vm_file) {
83cde9e8 1324 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1325 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1326 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1327 }
f5cc4eef
AV
1328 } else
1329 unmap_page_range(tlb, vma, start, end, details);
1330 }
1da177e4
LT
1331}
1332
1da177e4
LT
1333/**
1334 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1335 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1336 * @vma: the starting vma
1337 * @start_addr: virtual address at which to start unmapping
1338 * @end_addr: virtual address at which to end unmapping
1da177e4 1339 *
508034a3 1340 * Unmap all pages in the vma list.
1da177e4 1341 *
1da177e4
LT
1342 * Only addresses between `start' and `end' will be unmapped.
1343 *
1344 * The VMA list must be sorted in ascending virtual address order.
1345 *
1346 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1347 * range after unmap_vmas() returns. So the only responsibility here is to
1348 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1349 * drops the lock and schedules.
1350 */
6e8bb019 1351void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1352 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1353 unsigned long end_addr)
1da177e4 1354{
ac46d4f3 1355 struct mmu_notifier_range range;
1da177e4 1356
6f4f13e8
JG
1357 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1358 start_addr, end_addr);
ac46d4f3 1359 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1360 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1361 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1362 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1363}
1364
1365/**
1366 * zap_page_range - remove user pages in a given range
1367 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1368 * @start: starting address of pages to zap
1da177e4 1369 * @size: number of bytes to zap
f5cc4eef
AV
1370 *
1371 * Caller must protect the VMA list
1da177e4 1372 */
7e027b14 1373void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1374 unsigned long size)
1da177e4 1375{
ac46d4f3 1376 struct mmu_notifier_range range;
d16dfc55 1377 struct mmu_gather tlb;
1da177e4 1378
1da177e4 1379 lru_add_drain();
7269f999 1380 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1381 start, start + size);
ac46d4f3
JG
1382 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1383 update_hiwater_rss(vma->vm_mm);
1384 mmu_notifier_invalidate_range_start(&range);
1385 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1386 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1387 mmu_notifier_invalidate_range_end(&range);
1388 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1389}
1390
f5cc4eef
AV
1391/**
1392 * zap_page_range_single - remove user pages in a given range
1393 * @vma: vm_area_struct holding the applicable pages
1394 * @address: starting address of pages to zap
1395 * @size: number of bytes to zap
8a5f14a2 1396 * @details: details of shared cache invalidation
f5cc4eef
AV
1397 *
1398 * The range must fit into one VMA.
1da177e4 1399 */
f5cc4eef 1400static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1401 unsigned long size, struct zap_details *details)
1402{
ac46d4f3 1403 struct mmu_notifier_range range;
d16dfc55 1404 struct mmu_gather tlb;
1da177e4 1405
1da177e4 1406 lru_add_drain();
7269f999 1407 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1408 address, address + size);
ac46d4f3
JG
1409 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1410 update_hiwater_rss(vma->vm_mm);
1411 mmu_notifier_invalidate_range_start(&range);
1412 unmap_single_vma(&tlb, vma, address, range.end, details);
1413 mmu_notifier_invalidate_range_end(&range);
1414 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1415}
1416
c627f9cc
JS
1417/**
1418 * zap_vma_ptes - remove ptes mapping the vma
1419 * @vma: vm_area_struct holding ptes to be zapped
1420 * @address: starting address of pages to zap
1421 * @size: number of bytes to zap
1422 *
1423 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1424 *
1425 * The entire address range must be fully contained within the vma.
1426 *
c627f9cc 1427 */
27d036e3 1428void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1429 unsigned long size)
1430{
1431 if (address < vma->vm_start || address + size > vma->vm_end ||
1432 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1433 return;
1434
f5cc4eef 1435 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1436}
1437EXPORT_SYMBOL_GPL(zap_vma_ptes);
1438
8cd3984d 1439static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1440{
c2febafc
KS
1441 pgd_t *pgd;
1442 p4d_t *p4d;
1443 pud_t *pud;
1444 pmd_t *pmd;
1445
1446 pgd = pgd_offset(mm, addr);
1447 p4d = p4d_alloc(mm, pgd, addr);
1448 if (!p4d)
1449 return NULL;
1450 pud = pud_alloc(mm, p4d, addr);
1451 if (!pud)
1452 return NULL;
1453 pmd = pmd_alloc(mm, pud, addr);
1454 if (!pmd)
1455 return NULL;
1456
1457 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1458 return pmd;
1459}
1460
1461pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1462 spinlock_t **ptl)
1463{
1464 pmd_t *pmd = walk_to_pmd(mm, addr);
1465
1466 if (!pmd)
1467 return NULL;
c2febafc 1468 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1469}
1470
8efd6f5b
AR
1471static int validate_page_before_insert(struct page *page)
1472{
1473 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1474 return -EINVAL;
1475 flush_dcache_page(page);
1476 return 0;
1477}
1478
1479static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1480 unsigned long addr, struct page *page, pgprot_t prot)
1481{
1482 if (!pte_none(*pte))
1483 return -EBUSY;
1484 /* Ok, finally just insert the thing.. */
1485 get_page(page);
1486 inc_mm_counter_fast(mm, mm_counter_file(page));
1487 page_add_file_rmap(page, false);
1488 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1489 return 0;
1490}
1491
238f58d8
LT
1492/*
1493 * This is the old fallback for page remapping.
1494 *
1495 * For historical reasons, it only allows reserved pages. Only
1496 * old drivers should use this, and they needed to mark their
1497 * pages reserved for the old functions anyway.
1498 */
423bad60
NP
1499static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1500 struct page *page, pgprot_t prot)
238f58d8 1501{
423bad60 1502 struct mm_struct *mm = vma->vm_mm;
238f58d8 1503 int retval;
c9cfcddf 1504 pte_t *pte;
8a9f3ccd
BS
1505 spinlock_t *ptl;
1506
8efd6f5b
AR
1507 retval = validate_page_before_insert(page);
1508 if (retval)
5b4e655e 1509 goto out;
238f58d8 1510 retval = -ENOMEM;
c9cfcddf 1511 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1512 if (!pte)
5b4e655e 1513 goto out;
8efd6f5b 1514 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1515 pte_unmap_unlock(pte, ptl);
1516out:
1517 return retval;
1518}
1519
8cd3984d 1520#ifdef pte_index
7f70c2a6 1521static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1522 unsigned long addr, struct page *page, pgprot_t prot)
1523{
1524 int err;
1525
1526 if (!page_count(page))
1527 return -EINVAL;
1528 err = validate_page_before_insert(page);
7f70c2a6
AR
1529 if (err)
1530 return err;
1531 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1532}
1533
1534/* insert_pages() amortizes the cost of spinlock operations
1535 * when inserting pages in a loop. Arch *must* define pte_index.
1536 */
1537static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1538 struct page **pages, unsigned long *num, pgprot_t prot)
1539{
1540 pmd_t *pmd = NULL;
7f70c2a6
AR
1541 pte_t *start_pte, *pte;
1542 spinlock_t *pte_lock;
8cd3984d
AR
1543 struct mm_struct *const mm = vma->vm_mm;
1544 unsigned long curr_page_idx = 0;
1545 unsigned long remaining_pages_total = *num;
1546 unsigned long pages_to_write_in_pmd;
1547 int ret;
1548more:
1549 ret = -EFAULT;
1550 pmd = walk_to_pmd(mm, addr);
1551 if (!pmd)
1552 goto out;
1553
1554 pages_to_write_in_pmd = min_t(unsigned long,
1555 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1556
1557 /* Allocate the PTE if necessary; takes PMD lock once only. */
1558 ret = -ENOMEM;
1559 if (pte_alloc(mm, pmd))
1560 goto out;
8cd3984d
AR
1561
1562 while (pages_to_write_in_pmd) {
1563 int pte_idx = 0;
1564 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1565
7f70c2a6
AR
1566 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1567 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1568 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1569 addr, pages[curr_page_idx], prot);
1570 if (unlikely(err)) {
7f70c2a6 1571 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1572 ret = err;
1573 remaining_pages_total -= pte_idx;
1574 goto out;
1575 }
1576 addr += PAGE_SIZE;
1577 ++curr_page_idx;
1578 }
7f70c2a6 1579 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1580 pages_to_write_in_pmd -= batch_size;
1581 remaining_pages_total -= batch_size;
1582 }
1583 if (remaining_pages_total)
1584 goto more;
1585 ret = 0;
1586out:
1587 *num = remaining_pages_total;
1588 return ret;
1589}
1590#endif /* ifdef pte_index */
1591
1592/**
1593 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1594 * @vma: user vma to map to
1595 * @addr: target start user address of these pages
1596 * @pages: source kernel pages
1597 * @num: in: number of pages to map. out: number of pages that were *not*
1598 * mapped. (0 means all pages were successfully mapped).
1599 *
1600 * Preferred over vm_insert_page() when inserting multiple pages.
1601 *
1602 * In case of error, we may have mapped a subset of the provided
1603 * pages. It is the caller's responsibility to account for this case.
1604 *
1605 * The same restrictions apply as in vm_insert_page().
1606 */
1607int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1608 struct page **pages, unsigned long *num)
1609{
1610#ifdef pte_index
1611 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1612
1613 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1614 return -EFAULT;
1615 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1616 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1617 BUG_ON(vma->vm_flags & VM_PFNMAP);
1618 vma->vm_flags |= VM_MIXEDMAP;
1619 }
1620 /* Defer page refcount checking till we're about to map that page. */
1621 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1622#else
1623 unsigned long idx = 0, pgcount = *num;
45779b03 1624 int err = -EINVAL;
8cd3984d
AR
1625
1626 for (; idx < pgcount; ++idx) {
1627 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1628 if (err)
1629 break;
1630 }
1631 *num = pgcount - idx;
1632 return err;
1633#endif /* ifdef pte_index */
1634}
1635EXPORT_SYMBOL(vm_insert_pages);
1636
bfa5bf6d
REB
1637/**
1638 * vm_insert_page - insert single page into user vma
1639 * @vma: user vma to map to
1640 * @addr: target user address of this page
1641 * @page: source kernel page
1642 *
a145dd41
LT
1643 * This allows drivers to insert individual pages they've allocated
1644 * into a user vma.
1645 *
1646 * The page has to be a nice clean _individual_ kernel allocation.
1647 * If you allocate a compound page, you need to have marked it as
1648 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1649 * (see split_page()).
a145dd41
LT
1650 *
1651 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1652 * took an arbitrary page protection parameter. This doesn't allow
1653 * that. Your vma protection will have to be set up correctly, which
1654 * means that if you want a shared writable mapping, you'd better
1655 * ask for a shared writable mapping!
1656 *
1657 * The page does not need to be reserved.
4b6e1e37
KK
1658 *
1659 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1660 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1661 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1662 * function from other places, for example from page-fault handler.
a862f68a
MR
1663 *
1664 * Return: %0 on success, negative error code otherwise.
a145dd41 1665 */
423bad60
NP
1666int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1667 struct page *page)
a145dd41
LT
1668{
1669 if (addr < vma->vm_start || addr >= vma->vm_end)
1670 return -EFAULT;
1671 if (!page_count(page))
1672 return -EINVAL;
4b6e1e37 1673 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1674 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1675 BUG_ON(vma->vm_flags & VM_PFNMAP);
1676 vma->vm_flags |= VM_MIXEDMAP;
1677 }
423bad60 1678 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1679}
e3c3374f 1680EXPORT_SYMBOL(vm_insert_page);
a145dd41 1681
a667d745
SJ
1682/*
1683 * __vm_map_pages - maps range of kernel pages into user vma
1684 * @vma: user vma to map to
1685 * @pages: pointer to array of source kernel pages
1686 * @num: number of pages in page array
1687 * @offset: user's requested vm_pgoff
1688 *
1689 * This allows drivers to map range of kernel pages into a user vma.
1690 *
1691 * Return: 0 on success and error code otherwise.
1692 */
1693static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1694 unsigned long num, unsigned long offset)
1695{
1696 unsigned long count = vma_pages(vma);
1697 unsigned long uaddr = vma->vm_start;
1698 int ret, i;
1699
1700 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1701 if (offset >= num)
a667d745
SJ
1702 return -ENXIO;
1703
1704 /* Fail if the user requested size exceeds available object size */
1705 if (count > num - offset)
1706 return -ENXIO;
1707
1708 for (i = 0; i < count; i++) {
1709 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1710 if (ret < 0)
1711 return ret;
1712 uaddr += PAGE_SIZE;
1713 }
1714
1715 return 0;
1716}
1717
1718/**
1719 * vm_map_pages - maps range of kernel pages starts with non zero offset
1720 * @vma: user vma to map to
1721 * @pages: pointer to array of source kernel pages
1722 * @num: number of pages in page array
1723 *
1724 * Maps an object consisting of @num pages, catering for the user's
1725 * requested vm_pgoff
1726 *
1727 * If we fail to insert any page into the vma, the function will return
1728 * immediately leaving any previously inserted pages present. Callers
1729 * from the mmap handler may immediately return the error as their caller
1730 * will destroy the vma, removing any successfully inserted pages. Other
1731 * callers should make their own arrangements for calling unmap_region().
1732 *
1733 * Context: Process context. Called by mmap handlers.
1734 * Return: 0 on success and error code otherwise.
1735 */
1736int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1737 unsigned long num)
1738{
1739 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1740}
1741EXPORT_SYMBOL(vm_map_pages);
1742
1743/**
1744 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1745 * @vma: user vma to map to
1746 * @pages: pointer to array of source kernel pages
1747 * @num: number of pages in page array
1748 *
1749 * Similar to vm_map_pages(), except that it explicitly sets the offset
1750 * to 0. This function is intended for the drivers that did not consider
1751 * vm_pgoff.
1752 *
1753 * Context: Process context. Called by mmap handlers.
1754 * Return: 0 on success and error code otherwise.
1755 */
1756int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1757 unsigned long num)
1758{
1759 return __vm_map_pages(vma, pages, num, 0);
1760}
1761EXPORT_SYMBOL(vm_map_pages_zero);
1762
9b5a8e00 1763static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1764 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1765{
1766 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1767 pte_t *pte, entry;
1768 spinlock_t *ptl;
1769
423bad60
NP
1770 pte = get_locked_pte(mm, addr, &ptl);
1771 if (!pte)
9b5a8e00 1772 return VM_FAULT_OOM;
b2770da6
RZ
1773 if (!pte_none(*pte)) {
1774 if (mkwrite) {
1775 /*
1776 * For read faults on private mappings the PFN passed
1777 * in may not match the PFN we have mapped if the
1778 * mapped PFN is a writeable COW page. In the mkwrite
1779 * case we are creating a writable PTE for a shared
f2c57d91
JK
1780 * mapping and we expect the PFNs to match. If they
1781 * don't match, we are likely racing with block
1782 * allocation and mapping invalidation so just skip the
1783 * update.
b2770da6 1784 */
f2c57d91
JK
1785 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1786 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1787 goto out_unlock;
f2c57d91 1788 }
cae85cb8
JK
1789 entry = pte_mkyoung(*pte);
1790 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1791 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1792 update_mmu_cache(vma, addr, pte);
1793 }
1794 goto out_unlock;
b2770da6 1795 }
423bad60
NP
1796
1797 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1798 if (pfn_t_devmap(pfn))
1799 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1800 else
1801 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1802
b2770da6
RZ
1803 if (mkwrite) {
1804 entry = pte_mkyoung(entry);
1805 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1806 }
1807
423bad60 1808 set_pte_at(mm, addr, pte, entry);
4b3073e1 1809 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1810
423bad60
NP
1811out_unlock:
1812 pte_unmap_unlock(pte, ptl);
9b5a8e00 1813 return VM_FAULT_NOPAGE;
423bad60
NP
1814}
1815
f5e6d1d5
MW
1816/**
1817 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1818 * @vma: user vma to map to
1819 * @addr: target user address of this page
1820 * @pfn: source kernel pfn
1821 * @pgprot: pgprot flags for the inserted page
1822 *
a1a0aea5 1823 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1824 * to override pgprot on a per-page basis.
1825 *
1826 * This only makes sense for IO mappings, and it makes no sense for
1827 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1828 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1829 * impractical.
1830 *
574c5b3d
TH
1831 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1832 * a value of @pgprot different from that of @vma->vm_page_prot.
1833 *
ae2b01f3 1834 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1835 * Return: vm_fault_t value.
1836 */
1837vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1838 unsigned long pfn, pgprot_t pgprot)
1839{
6d958546
MW
1840 /*
1841 * Technically, architectures with pte_special can avoid all these
1842 * restrictions (same for remap_pfn_range). However we would like
1843 * consistency in testing and feature parity among all, so we should
1844 * try to keep these invariants in place for everybody.
1845 */
1846 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1847 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1848 (VM_PFNMAP|VM_MIXEDMAP));
1849 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1850 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1851
1852 if (addr < vma->vm_start || addr >= vma->vm_end)
1853 return VM_FAULT_SIGBUS;
1854
1855 if (!pfn_modify_allowed(pfn, pgprot))
1856 return VM_FAULT_SIGBUS;
1857
1858 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1859
9b5a8e00 1860 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1861 false);
f5e6d1d5
MW
1862}
1863EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1864
ae2b01f3
MW
1865/**
1866 * vmf_insert_pfn - insert single pfn into user vma
1867 * @vma: user vma to map to
1868 * @addr: target user address of this page
1869 * @pfn: source kernel pfn
1870 *
1871 * Similar to vm_insert_page, this allows drivers to insert individual pages
1872 * they've allocated into a user vma. Same comments apply.
1873 *
1874 * This function should only be called from a vm_ops->fault handler, and
1875 * in that case the handler should return the result of this function.
1876 *
1877 * vma cannot be a COW mapping.
1878 *
1879 * As this is called only for pages that do not currently exist, we
1880 * do not need to flush old virtual caches or the TLB.
1881 *
1882 * Context: Process context. May allocate using %GFP_KERNEL.
1883 * Return: vm_fault_t value.
1884 */
1885vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1886 unsigned long pfn)
1887{
1888 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1889}
1890EXPORT_SYMBOL(vmf_insert_pfn);
1891
785a3fab
DW
1892static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1893{
1894 /* these checks mirror the abort conditions in vm_normal_page */
1895 if (vma->vm_flags & VM_MIXEDMAP)
1896 return true;
1897 if (pfn_t_devmap(pfn))
1898 return true;
1899 if (pfn_t_special(pfn))
1900 return true;
1901 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1902 return true;
1903 return false;
1904}
1905
79f3aa5b 1906static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
1907 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1908 bool mkwrite)
423bad60 1909{
79f3aa5b 1910 int err;
87744ab3 1911
785a3fab 1912 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1913
423bad60 1914 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1915 return VM_FAULT_SIGBUS;
308a047c
BP
1916
1917 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1918
42e4089c 1919 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1920 return VM_FAULT_SIGBUS;
42e4089c 1921
423bad60
NP
1922 /*
1923 * If we don't have pte special, then we have to use the pfn_valid()
1924 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1925 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1926 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1927 * without pte special, it would there be refcounted as a normal page.
423bad60 1928 */
00b3a331
LD
1929 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1930 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1931 struct page *page;
1932
03fc2da6
DW
1933 /*
1934 * At this point we are committed to insert_page()
1935 * regardless of whether the caller specified flags that
1936 * result in pfn_t_has_page() == false.
1937 */
1938 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1939 err = insert_page(vma, addr, page, pgprot);
1940 } else {
9b5a8e00 1941 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1942 }
b2770da6 1943
5d747637
MW
1944 if (err == -ENOMEM)
1945 return VM_FAULT_OOM;
1946 if (err < 0 && err != -EBUSY)
1947 return VM_FAULT_SIGBUS;
1948
1949 return VM_FAULT_NOPAGE;
e0dc0d8f 1950}
79f3aa5b 1951
574c5b3d
TH
1952/**
1953 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1954 * @vma: user vma to map to
1955 * @addr: target user address of this page
1956 * @pfn: source kernel pfn
1957 * @pgprot: pgprot flags for the inserted page
1958 *
a1a0aea5 1959 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
1960 * to override pgprot on a per-page basis.
1961 *
1962 * Typically this function should be used by drivers to set caching- and
1963 * encryption bits different than those of @vma->vm_page_prot, because
1964 * the caching- or encryption mode may not be known at mmap() time.
1965 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1966 * to set caching and encryption bits for those vmas (except for COW pages).
1967 * This is ensured by core vm only modifying these page table entries using
1968 * functions that don't touch caching- or encryption bits, using pte_modify()
1969 * if needed. (See for example mprotect()).
1970 * Also when new page-table entries are created, this is only done using the
1971 * fault() callback, and never using the value of vma->vm_page_prot,
1972 * except for page-table entries that point to anonymous pages as the result
1973 * of COW.
1974 *
1975 * Context: Process context. May allocate using %GFP_KERNEL.
1976 * Return: vm_fault_t value.
1977 */
1978vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1979 pfn_t pfn, pgprot_t pgprot)
1980{
1981 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1982}
5379e4dd 1983EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 1984
79f3aa5b
MW
1985vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1986 pfn_t pfn)
1987{
574c5b3d 1988 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 1989}
5d747637 1990EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1991
ab77dab4
SJ
1992/*
1993 * If the insertion of PTE failed because someone else already added a
1994 * different entry in the mean time, we treat that as success as we assume
1995 * the same entry was actually inserted.
1996 */
ab77dab4
SJ
1997vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1998 unsigned long addr, pfn_t pfn)
b2770da6 1999{
574c5b3d 2000 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2001}
ab77dab4 2002EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2003
1da177e4
LT
2004/*
2005 * maps a range of physical memory into the requested pages. the old
2006 * mappings are removed. any references to nonexistent pages results
2007 * in null mappings (currently treated as "copy-on-access")
2008 */
2009static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2010 unsigned long addr, unsigned long end,
2011 unsigned long pfn, pgprot_t prot)
2012{
2013 pte_t *pte;
c74df32c 2014 spinlock_t *ptl;
42e4089c 2015 int err = 0;
1da177e4 2016
c74df32c 2017 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2018 if (!pte)
2019 return -ENOMEM;
6606c3e0 2020 arch_enter_lazy_mmu_mode();
1da177e4
LT
2021 do {
2022 BUG_ON(!pte_none(*pte));
42e4089c
AK
2023 if (!pfn_modify_allowed(pfn, prot)) {
2024 err = -EACCES;
2025 break;
2026 }
7e675137 2027 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2028 pfn++;
2029 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2030 arch_leave_lazy_mmu_mode();
c74df32c 2031 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2032 return err;
1da177e4
LT
2033}
2034
2035static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2036 unsigned long addr, unsigned long end,
2037 unsigned long pfn, pgprot_t prot)
2038{
2039 pmd_t *pmd;
2040 unsigned long next;
42e4089c 2041 int err;
1da177e4
LT
2042
2043 pfn -= addr >> PAGE_SHIFT;
2044 pmd = pmd_alloc(mm, pud, addr);
2045 if (!pmd)
2046 return -ENOMEM;
f66055ab 2047 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2048 do {
2049 next = pmd_addr_end(addr, end);
42e4089c
AK
2050 err = remap_pte_range(mm, pmd, addr, next,
2051 pfn + (addr >> PAGE_SHIFT), prot);
2052 if (err)
2053 return err;
1da177e4
LT
2054 } while (pmd++, addr = next, addr != end);
2055 return 0;
2056}
2057
c2febafc 2058static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2059 unsigned long addr, unsigned long end,
2060 unsigned long pfn, pgprot_t prot)
2061{
2062 pud_t *pud;
2063 unsigned long next;
42e4089c 2064 int err;
1da177e4
LT
2065
2066 pfn -= addr >> PAGE_SHIFT;
c2febafc 2067 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2068 if (!pud)
2069 return -ENOMEM;
2070 do {
2071 next = pud_addr_end(addr, end);
42e4089c
AK
2072 err = remap_pmd_range(mm, pud, addr, next,
2073 pfn + (addr >> PAGE_SHIFT), prot);
2074 if (err)
2075 return err;
1da177e4
LT
2076 } while (pud++, addr = next, addr != end);
2077 return 0;
2078}
2079
c2febafc
KS
2080static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2081 unsigned long addr, unsigned long end,
2082 unsigned long pfn, pgprot_t prot)
2083{
2084 p4d_t *p4d;
2085 unsigned long next;
42e4089c 2086 int err;
c2febafc
KS
2087
2088 pfn -= addr >> PAGE_SHIFT;
2089 p4d = p4d_alloc(mm, pgd, addr);
2090 if (!p4d)
2091 return -ENOMEM;
2092 do {
2093 next = p4d_addr_end(addr, end);
42e4089c
AK
2094 err = remap_pud_range(mm, p4d, addr, next,
2095 pfn + (addr >> PAGE_SHIFT), prot);
2096 if (err)
2097 return err;
c2febafc
KS
2098 } while (p4d++, addr = next, addr != end);
2099 return 0;
2100}
2101
bfa5bf6d
REB
2102/**
2103 * remap_pfn_range - remap kernel memory to userspace
2104 * @vma: user vma to map to
0c4123e3 2105 * @addr: target page aligned user address to start at
86a76331 2106 * @pfn: page frame number of kernel physical memory address
552657b7 2107 * @size: size of mapping area
bfa5bf6d
REB
2108 * @prot: page protection flags for this mapping
2109 *
a862f68a
MR
2110 * Note: this is only safe if the mm semaphore is held when called.
2111 *
2112 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2113 */
1da177e4
LT
2114int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn, unsigned long size, pgprot_t prot)
2116{
2117 pgd_t *pgd;
2118 unsigned long next;
2d15cab8 2119 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2120 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2121 unsigned long remap_pfn = pfn;
1da177e4
LT
2122 int err;
2123
0c4123e3
AZ
2124 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2125 return -EINVAL;
2126
1da177e4
LT
2127 /*
2128 * Physically remapped pages are special. Tell the
2129 * rest of the world about it:
2130 * VM_IO tells people not to look at these pages
2131 * (accesses can have side effects).
6aab341e
LT
2132 * VM_PFNMAP tells the core MM that the base pages are just
2133 * raw PFN mappings, and do not have a "struct page" associated
2134 * with them.
314e51b9
KK
2135 * VM_DONTEXPAND
2136 * Disable vma merging and expanding with mremap().
2137 * VM_DONTDUMP
2138 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2139 *
2140 * There's a horrible special case to handle copy-on-write
2141 * behaviour that some programs depend on. We mark the "original"
2142 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2143 * See vm_normal_page() for details.
1da177e4 2144 */
b3b9c293
KK
2145 if (is_cow_mapping(vma->vm_flags)) {
2146 if (addr != vma->vm_start || end != vma->vm_end)
2147 return -EINVAL;
fb155c16 2148 vma->vm_pgoff = pfn;
b3b9c293
KK
2149 }
2150
d5957d2f 2151 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2152 if (err)
3c8bb73a 2153 return -EINVAL;
fb155c16 2154
314e51b9 2155 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2156
2157 BUG_ON(addr >= end);
2158 pfn -= addr >> PAGE_SHIFT;
2159 pgd = pgd_offset(mm, addr);
2160 flush_cache_range(vma, addr, end);
1da177e4
LT
2161 do {
2162 next = pgd_addr_end(addr, end);
c2febafc 2163 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2164 pfn + (addr >> PAGE_SHIFT), prot);
2165 if (err)
2166 break;
2167 } while (pgd++, addr = next, addr != end);
2ab64037 2168
2169 if (err)
d5957d2f 2170 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2171
1da177e4
LT
2172 return err;
2173}
2174EXPORT_SYMBOL(remap_pfn_range);
2175
b4cbb197
LT
2176/**
2177 * vm_iomap_memory - remap memory to userspace
2178 * @vma: user vma to map to
abd69b9e 2179 * @start: start of the physical memory to be mapped
b4cbb197
LT
2180 * @len: size of area
2181 *
2182 * This is a simplified io_remap_pfn_range() for common driver use. The
2183 * driver just needs to give us the physical memory range to be mapped,
2184 * we'll figure out the rest from the vma information.
2185 *
2186 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2187 * whatever write-combining details or similar.
a862f68a
MR
2188 *
2189 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2190 */
2191int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2192{
2193 unsigned long vm_len, pfn, pages;
2194
2195 /* Check that the physical memory area passed in looks valid */
2196 if (start + len < start)
2197 return -EINVAL;
2198 /*
2199 * You *really* shouldn't map things that aren't page-aligned,
2200 * but we've historically allowed it because IO memory might
2201 * just have smaller alignment.
2202 */
2203 len += start & ~PAGE_MASK;
2204 pfn = start >> PAGE_SHIFT;
2205 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2206 if (pfn + pages < pfn)
2207 return -EINVAL;
2208
2209 /* We start the mapping 'vm_pgoff' pages into the area */
2210 if (vma->vm_pgoff > pages)
2211 return -EINVAL;
2212 pfn += vma->vm_pgoff;
2213 pages -= vma->vm_pgoff;
2214
2215 /* Can we fit all of the mapping? */
2216 vm_len = vma->vm_end - vma->vm_start;
2217 if (vm_len >> PAGE_SHIFT > pages)
2218 return -EINVAL;
2219
2220 /* Ok, let it rip */
2221 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2222}
2223EXPORT_SYMBOL(vm_iomap_memory);
2224
aee16b3c
JF
2225static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2226 unsigned long addr, unsigned long end,
e80d3909
JR
2227 pte_fn_t fn, void *data, bool create,
2228 pgtbl_mod_mask *mask)
aee16b3c
JF
2229{
2230 pte_t *pte;
be1db475 2231 int err = 0;
3f649ab7 2232 spinlock_t *ptl;
aee16b3c 2233
be1db475
DA
2234 if (create) {
2235 pte = (mm == &init_mm) ?
e80d3909 2236 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2237 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2238 if (!pte)
2239 return -ENOMEM;
2240 } else {
2241 pte = (mm == &init_mm) ?
2242 pte_offset_kernel(pmd, addr) :
2243 pte_offset_map_lock(mm, pmd, addr, &ptl);
2244 }
aee16b3c
JF
2245
2246 BUG_ON(pmd_huge(*pmd));
2247
38e0edb1
JF
2248 arch_enter_lazy_mmu_mode();
2249
aee16b3c 2250 do {
be1db475
DA
2251 if (create || !pte_none(*pte)) {
2252 err = fn(pte++, addr, data);
2253 if (err)
2254 break;
2255 }
c36987e2 2256 } while (addr += PAGE_SIZE, addr != end);
e80d3909 2257 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2258
38e0edb1
JF
2259 arch_leave_lazy_mmu_mode();
2260
aee16b3c
JF
2261 if (mm != &init_mm)
2262 pte_unmap_unlock(pte-1, ptl);
2263 return err;
2264}
2265
2266static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2267 unsigned long addr, unsigned long end,
e80d3909
JR
2268 pte_fn_t fn, void *data, bool create,
2269 pgtbl_mod_mask *mask)
aee16b3c
JF
2270{
2271 pmd_t *pmd;
2272 unsigned long next;
be1db475 2273 int err = 0;
aee16b3c 2274
ceb86879
AK
2275 BUG_ON(pud_huge(*pud));
2276
be1db475 2277 if (create) {
e80d3909 2278 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2279 if (!pmd)
2280 return -ENOMEM;
2281 } else {
2282 pmd = pmd_offset(pud, addr);
2283 }
aee16b3c
JF
2284 do {
2285 next = pmd_addr_end(addr, end);
be1db475
DA
2286 if (create || !pmd_none_or_clear_bad(pmd)) {
2287 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2288 create, mask);
be1db475
DA
2289 if (err)
2290 break;
2291 }
aee16b3c
JF
2292 } while (pmd++, addr = next, addr != end);
2293 return err;
2294}
2295
c2febafc 2296static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2297 unsigned long addr, unsigned long end,
e80d3909
JR
2298 pte_fn_t fn, void *data, bool create,
2299 pgtbl_mod_mask *mask)
aee16b3c
JF
2300{
2301 pud_t *pud;
2302 unsigned long next;
be1db475 2303 int err = 0;
aee16b3c 2304
be1db475 2305 if (create) {
e80d3909 2306 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2307 if (!pud)
2308 return -ENOMEM;
2309 } else {
2310 pud = pud_offset(p4d, addr);
2311 }
aee16b3c
JF
2312 do {
2313 next = pud_addr_end(addr, end);
be1db475
DA
2314 if (create || !pud_none_or_clear_bad(pud)) {
2315 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2316 create, mask);
be1db475
DA
2317 if (err)
2318 break;
2319 }
aee16b3c
JF
2320 } while (pud++, addr = next, addr != end);
2321 return err;
2322}
2323
c2febafc
KS
2324static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2325 unsigned long addr, unsigned long end,
e80d3909
JR
2326 pte_fn_t fn, void *data, bool create,
2327 pgtbl_mod_mask *mask)
c2febafc
KS
2328{
2329 p4d_t *p4d;
2330 unsigned long next;
be1db475 2331 int err = 0;
c2febafc 2332
be1db475 2333 if (create) {
e80d3909 2334 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2335 if (!p4d)
2336 return -ENOMEM;
2337 } else {
2338 p4d = p4d_offset(pgd, addr);
2339 }
c2febafc
KS
2340 do {
2341 next = p4d_addr_end(addr, end);
be1db475
DA
2342 if (create || !p4d_none_or_clear_bad(p4d)) {
2343 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2344 create, mask);
be1db475
DA
2345 if (err)
2346 break;
2347 }
c2febafc
KS
2348 } while (p4d++, addr = next, addr != end);
2349 return err;
2350}
2351
be1db475
DA
2352static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2353 unsigned long size, pte_fn_t fn,
2354 void *data, bool create)
aee16b3c
JF
2355{
2356 pgd_t *pgd;
e80d3909 2357 unsigned long start = addr, next;
57250a5b 2358 unsigned long end = addr + size;
e80d3909 2359 pgtbl_mod_mask mask = 0;
be1db475 2360 int err = 0;
aee16b3c 2361
9cb65bc3
MP
2362 if (WARN_ON(addr >= end))
2363 return -EINVAL;
2364
aee16b3c
JF
2365 pgd = pgd_offset(mm, addr);
2366 do {
2367 next = pgd_addr_end(addr, end);
be1db475
DA
2368 if (!create && pgd_none_or_clear_bad(pgd))
2369 continue;
e80d3909 2370 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2371 if (err)
2372 break;
2373 } while (pgd++, addr = next, addr != end);
57250a5b 2374
e80d3909
JR
2375 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2376 arch_sync_kernel_mappings(start, start + size);
2377
aee16b3c
JF
2378 return err;
2379}
be1db475
DA
2380
2381/*
2382 * Scan a region of virtual memory, filling in page tables as necessary
2383 * and calling a provided function on each leaf page table.
2384 */
2385int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2386 unsigned long size, pte_fn_t fn, void *data)
2387{
2388 return __apply_to_page_range(mm, addr, size, fn, data, true);
2389}
aee16b3c
JF
2390EXPORT_SYMBOL_GPL(apply_to_page_range);
2391
be1db475
DA
2392/*
2393 * Scan a region of virtual memory, calling a provided function on
2394 * each leaf page table where it exists.
2395 *
2396 * Unlike apply_to_page_range, this does _not_ fill in page tables
2397 * where they are absent.
2398 */
2399int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2400 unsigned long size, pte_fn_t fn, void *data)
2401{
2402 return __apply_to_page_range(mm, addr, size, fn, data, false);
2403}
2404EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2405
8f4e2101 2406/*
9b4bdd2f
KS
2407 * handle_pte_fault chooses page fault handler according to an entry which was
2408 * read non-atomically. Before making any commitment, on those architectures
2409 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2410 * parts, do_swap_page must check under lock before unmapping the pte and
2411 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2412 * and do_anonymous_page can safely check later on).
8f4e2101 2413 */
4c21e2f2 2414static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2415 pte_t *page_table, pte_t orig_pte)
2416{
2417 int same = 1;
923717cb 2418#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2419 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2420 spinlock_t *ptl = pte_lockptr(mm, pmd);
2421 spin_lock(ptl);
8f4e2101 2422 same = pte_same(*page_table, orig_pte);
4c21e2f2 2423 spin_unlock(ptl);
8f4e2101
HD
2424 }
2425#endif
2426 pte_unmap(page_table);
2427 return same;
2428}
2429
83d116c5
JH
2430static inline bool cow_user_page(struct page *dst, struct page *src,
2431 struct vm_fault *vmf)
6aab341e 2432{
83d116c5
JH
2433 bool ret;
2434 void *kaddr;
2435 void __user *uaddr;
c3e5ea6e 2436 bool locked = false;
83d116c5
JH
2437 struct vm_area_struct *vma = vmf->vma;
2438 struct mm_struct *mm = vma->vm_mm;
2439 unsigned long addr = vmf->address;
2440
83d116c5
JH
2441 if (likely(src)) {
2442 copy_user_highpage(dst, src, addr, vma);
2443 return true;
2444 }
2445
6aab341e
LT
2446 /*
2447 * If the source page was a PFN mapping, we don't have
2448 * a "struct page" for it. We do a best-effort copy by
2449 * just copying from the original user address. If that
2450 * fails, we just zero-fill it. Live with it.
2451 */
83d116c5
JH
2452 kaddr = kmap_atomic(dst);
2453 uaddr = (void __user *)(addr & PAGE_MASK);
2454
2455 /*
2456 * On architectures with software "accessed" bits, we would
2457 * take a double page fault, so mark it accessed here.
2458 */
c3e5ea6e 2459 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2460 pte_t entry;
5d2a2dbb 2461
83d116c5 2462 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2463 locked = true;
83d116c5
JH
2464 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2465 /*
2466 * Other thread has already handled the fault
7df67697 2467 * and update local tlb only
83d116c5 2468 */
7df67697 2469 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2470 ret = false;
2471 goto pte_unlock;
2472 }
2473
2474 entry = pte_mkyoung(vmf->orig_pte);
2475 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2476 update_mmu_cache(vma, addr, vmf->pte);
2477 }
2478
2479 /*
2480 * This really shouldn't fail, because the page is there
2481 * in the page tables. But it might just be unreadable,
2482 * in which case we just give up and fill the result with
2483 * zeroes.
2484 */
2485 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2486 if (locked)
2487 goto warn;
2488
2489 /* Re-validate under PTL if the page is still mapped */
2490 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2491 locked = true;
2492 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2493 /* The PTE changed under us, update local tlb */
2494 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2495 ret = false;
2496 goto pte_unlock;
2497 }
2498
5d2a2dbb 2499 /*
985ba004 2500 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2501 * Try to copy again under PTL.
5d2a2dbb 2502 */
c3e5ea6e
KS
2503 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2504 /*
2505 * Give a warn in case there can be some obscure
2506 * use-case
2507 */
2508warn:
2509 WARN_ON_ONCE(1);
2510 clear_page(kaddr);
2511 }
83d116c5
JH
2512 }
2513
2514 ret = true;
2515
2516pte_unlock:
c3e5ea6e 2517 if (locked)
83d116c5
JH
2518 pte_unmap_unlock(vmf->pte, vmf->ptl);
2519 kunmap_atomic(kaddr);
2520 flush_dcache_page(dst);
2521
2522 return ret;
6aab341e
LT
2523}
2524
c20cd45e
MH
2525static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2526{
2527 struct file *vm_file = vma->vm_file;
2528
2529 if (vm_file)
2530 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2531
2532 /*
2533 * Special mappings (e.g. VDSO) do not have any file so fake
2534 * a default GFP_KERNEL for them.
2535 */
2536 return GFP_KERNEL;
2537}
2538
fb09a464
KS
2539/*
2540 * Notify the address space that the page is about to become writable so that
2541 * it can prohibit this or wait for the page to get into an appropriate state.
2542 *
2543 * We do this without the lock held, so that it can sleep if it needs to.
2544 */
2b740303 2545static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2546{
2b740303 2547 vm_fault_t ret;
38b8cb7f
JK
2548 struct page *page = vmf->page;
2549 unsigned int old_flags = vmf->flags;
fb09a464 2550
38b8cb7f 2551 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2552
dc617f29
DW
2553 if (vmf->vma->vm_file &&
2554 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2555 return VM_FAULT_SIGBUS;
2556
11bac800 2557 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2558 /* Restore original flags so that caller is not surprised */
2559 vmf->flags = old_flags;
fb09a464
KS
2560 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2561 return ret;
2562 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2563 lock_page(page);
2564 if (!page->mapping) {
2565 unlock_page(page);
2566 return 0; /* retry */
2567 }
2568 ret |= VM_FAULT_LOCKED;
2569 } else
2570 VM_BUG_ON_PAGE(!PageLocked(page), page);
2571 return ret;
2572}
2573
97ba0c2b
JK
2574/*
2575 * Handle dirtying of a page in shared file mapping on a write fault.
2576 *
2577 * The function expects the page to be locked and unlocks it.
2578 */
89b15332 2579static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2580{
89b15332 2581 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2582 struct address_space *mapping;
89b15332 2583 struct page *page = vmf->page;
97ba0c2b
JK
2584 bool dirtied;
2585 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2586
2587 dirtied = set_page_dirty(page);
2588 VM_BUG_ON_PAGE(PageAnon(page), page);
2589 /*
2590 * Take a local copy of the address_space - page.mapping may be zeroed
2591 * by truncate after unlock_page(). The address_space itself remains
2592 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2593 * release semantics to prevent the compiler from undoing this copying.
2594 */
2595 mapping = page_rmapping(page);
2596 unlock_page(page);
2597
89b15332
JW
2598 if (!page_mkwrite)
2599 file_update_time(vma->vm_file);
2600
2601 /*
2602 * Throttle page dirtying rate down to writeback speed.
2603 *
2604 * mapping may be NULL here because some device drivers do not
2605 * set page.mapping but still dirty their pages
2606 *
c1e8d7c6 2607 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2608 * is pinning the mapping, as per above.
2609 */
97ba0c2b 2610 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2611 struct file *fpin;
2612
2613 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2614 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2615 if (fpin) {
2616 fput(fpin);
2617 return VM_FAULT_RETRY;
2618 }
97ba0c2b
JK
2619 }
2620
89b15332 2621 return 0;
97ba0c2b
JK
2622}
2623
4e047f89
SR
2624/*
2625 * Handle write page faults for pages that can be reused in the current vma
2626 *
2627 * This can happen either due to the mapping being with the VM_SHARED flag,
2628 * or due to us being the last reference standing to the page. In either
2629 * case, all we need to do here is to mark the page as writable and update
2630 * any related book-keeping.
2631 */
997dd98d 2632static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2633 __releases(vmf->ptl)
4e047f89 2634{
82b0f8c3 2635 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2636 struct page *page = vmf->page;
4e047f89
SR
2637 pte_t entry;
2638 /*
2639 * Clear the pages cpupid information as the existing
2640 * information potentially belongs to a now completely
2641 * unrelated process.
2642 */
2643 if (page)
2644 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2645
2994302b
JK
2646 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2647 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2648 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2649 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2650 update_mmu_cache(vma, vmf->address, vmf->pte);
2651 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2652 count_vm_event(PGREUSE);
4e047f89
SR
2653}
2654
2f38ab2c
SR
2655/*
2656 * Handle the case of a page which we actually need to copy to a new page.
2657 *
c1e8d7c6 2658 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2659 * without the ptl held.
2660 *
2661 * High level logic flow:
2662 *
2663 * - Allocate a page, copy the content of the old page to the new one.
2664 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2665 * - Take the PTL. If the pte changed, bail out and release the allocated page
2666 * - If the pte is still the way we remember it, update the page table and all
2667 * relevant references. This includes dropping the reference the page-table
2668 * held to the old page, as well as updating the rmap.
2669 * - In any case, unlock the PTL and drop the reference we took to the old page.
2670 */
2b740303 2671static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2672{
82b0f8c3 2673 struct vm_area_struct *vma = vmf->vma;
bae473a4 2674 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2675 struct page *old_page = vmf->page;
2f38ab2c 2676 struct page *new_page = NULL;
2f38ab2c
SR
2677 pte_t entry;
2678 int page_copied = 0;
ac46d4f3 2679 struct mmu_notifier_range range;
2f38ab2c
SR
2680
2681 if (unlikely(anon_vma_prepare(vma)))
2682 goto oom;
2683
2994302b 2684 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2685 new_page = alloc_zeroed_user_highpage_movable(vma,
2686 vmf->address);
2f38ab2c
SR
2687 if (!new_page)
2688 goto oom;
2689 } else {
bae473a4 2690 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2691 vmf->address);
2f38ab2c
SR
2692 if (!new_page)
2693 goto oom;
83d116c5
JH
2694
2695 if (!cow_user_page(new_page, old_page, vmf)) {
2696 /*
2697 * COW failed, if the fault was solved by other,
2698 * it's fine. If not, userspace would re-fault on
2699 * the same address and we will handle the fault
2700 * from the second attempt.
2701 */
2702 put_page(new_page);
2703 if (old_page)
2704 put_page(old_page);
2705 return 0;
2706 }
2f38ab2c 2707 }
2f38ab2c 2708
d9eb1ea2 2709 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2710 goto oom_free_new;
9d82c694 2711 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2712
eb3c24f3
MG
2713 __SetPageUptodate(new_page);
2714
7269f999 2715 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2716 vmf->address & PAGE_MASK,
ac46d4f3
JG
2717 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2718 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2719
2720 /*
2721 * Re-check the pte - we dropped the lock
2722 */
82b0f8c3 2723 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2724 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2725 if (old_page) {
2726 if (!PageAnon(old_page)) {
eca56ff9
JM
2727 dec_mm_counter_fast(mm,
2728 mm_counter_file(old_page));
2f38ab2c
SR
2729 inc_mm_counter_fast(mm, MM_ANONPAGES);
2730 }
2731 } else {
2732 inc_mm_counter_fast(mm, MM_ANONPAGES);
2733 }
2994302b 2734 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2735 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2736 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2737 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2738 /*
2739 * Clear the pte entry and flush it first, before updating the
2740 * pte with the new entry. This will avoid a race condition
2741 * seen in the presence of one thread doing SMC and another
2742 * thread doing COW.
2743 */
82b0f8c3
JK
2744 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2745 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2746 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2747 /*
2748 * We call the notify macro here because, when using secondary
2749 * mmu page tables (such as kvm shadow page tables), we want the
2750 * new page to be mapped directly into the secondary page table.
2751 */
82b0f8c3
JK
2752 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2753 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2754 if (old_page) {
2755 /*
2756 * Only after switching the pte to the new page may
2757 * we remove the mapcount here. Otherwise another
2758 * process may come and find the rmap count decremented
2759 * before the pte is switched to the new page, and
2760 * "reuse" the old page writing into it while our pte
2761 * here still points into it and can be read by other
2762 * threads.
2763 *
2764 * The critical issue is to order this
2765 * page_remove_rmap with the ptp_clear_flush above.
2766 * Those stores are ordered by (if nothing else,)
2767 * the barrier present in the atomic_add_negative
2768 * in page_remove_rmap.
2769 *
2770 * Then the TLB flush in ptep_clear_flush ensures that
2771 * no process can access the old page before the
2772 * decremented mapcount is visible. And the old page
2773 * cannot be reused until after the decremented
2774 * mapcount is visible. So transitively, TLBs to
2775 * old page will be flushed before it can be reused.
2776 */
d281ee61 2777 page_remove_rmap(old_page, false);
2f38ab2c
SR
2778 }
2779
2780 /* Free the old page.. */
2781 new_page = old_page;
2782 page_copied = 1;
2783 } else {
7df67697 2784 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2785 }
2786
2787 if (new_page)
09cbfeaf 2788 put_page(new_page);
2f38ab2c 2789
82b0f8c3 2790 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2791 /*
2792 * No need to double call mmu_notifier->invalidate_range() callback as
2793 * the above ptep_clear_flush_notify() did already call it.
2794 */
ac46d4f3 2795 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2796 if (old_page) {
2797 /*
2798 * Don't let another task, with possibly unlocked vma,
2799 * keep the mlocked page.
2800 */
2801 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2802 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2803 if (PageMlocked(old_page))
2804 munlock_vma_page(old_page);
2f38ab2c
SR
2805 unlock_page(old_page);
2806 }
09cbfeaf 2807 put_page(old_page);
2f38ab2c
SR
2808 }
2809 return page_copied ? VM_FAULT_WRITE : 0;
2810oom_free_new:
09cbfeaf 2811 put_page(new_page);
2f38ab2c
SR
2812oom:
2813 if (old_page)
09cbfeaf 2814 put_page(old_page);
2f38ab2c
SR
2815 return VM_FAULT_OOM;
2816}
2817
66a6197c
JK
2818/**
2819 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2820 * writeable once the page is prepared
2821 *
2822 * @vmf: structure describing the fault
2823 *
2824 * This function handles all that is needed to finish a write page fault in a
2825 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2826 * It handles locking of PTE and modifying it.
66a6197c
JK
2827 *
2828 * The function expects the page to be locked or other protection against
2829 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2830 *
2831 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2832 * we acquired PTE lock.
66a6197c 2833 */
2b740303 2834vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2835{
2836 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2837 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2838 &vmf->ptl);
2839 /*
2840 * We might have raced with another page fault while we released the
2841 * pte_offset_map_lock.
2842 */
2843 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2844 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2845 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2846 return VM_FAULT_NOPAGE;
66a6197c
JK
2847 }
2848 wp_page_reuse(vmf);
a19e2553 2849 return 0;
66a6197c
JK
2850}
2851
dd906184
BH
2852/*
2853 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2854 * mapping
2855 */
2b740303 2856static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2857{
82b0f8c3 2858 struct vm_area_struct *vma = vmf->vma;
bae473a4 2859
dd906184 2860 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2861 vm_fault_t ret;
dd906184 2862
82b0f8c3 2863 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2864 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2865 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2866 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2867 return ret;
66a6197c 2868 return finish_mkwrite_fault(vmf);
dd906184 2869 }
997dd98d
JK
2870 wp_page_reuse(vmf);
2871 return VM_FAULT_WRITE;
dd906184
BH
2872}
2873
2b740303 2874static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2875 __releases(vmf->ptl)
93e478d4 2876{
82b0f8c3 2877 struct vm_area_struct *vma = vmf->vma;
89b15332 2878 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2879
a41b70d6 2880 get_page(vmf->page);
93e478d4 2881
93e478d4 2882 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2883 vm_fault_t tmp;
93e478d4 2884
82b0f8c3 2885 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2886 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2887 if (unlikely(!tmp || (tmp &
2888 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2889 put_page(vmf->page);
93e478d4
SR
2890 return tmp;
2891 }
66a6197c 2892 tmp = finish_mkwrite_fault(vmf);
a19e2553 2893 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2894 unlock_page(vmf->page);
a41b70d6 2895 put_page(vmf->page);
66a6197c 2896 return tmp;
93e478d4 2897 }
66a6197c
JK
2898 } else {
2899 wp_page_reuse(vmf);
997dd98d 2900 lock_page(vmf->page);
93e478d4 2901 }
89b15332 2902 ret |= fault_dirty_shared_page(vmf);
997dd98d 2903 put_page(vmf->page);
93e478d4 2904
89b15332 2905 return ret;
93e478d4
SR
2906}
2907
1da177e4
LT
2908/*
2909 * This routine handles present pages, when users try to write
2910 * to a shared page. It is done by copying the page to a new address
2911 * and decrementing the shared-page counter for the old page.
2912 *
1da177e4
LT
2913 * Note that this routine assumes that the protection checks have been
2914 * done by the caller (the low-level page fault routine in most cases).
2915 * Thus we can safely just mark it writable once we've done any necessary
2916 * COW.
2917 *
2918 * We also mark the page dirty at this point even though the page will
2919 * change only once the write actually happens. This avoids a few races,
2920 * and potentially makes it more efficient.
2921 *
c1e8d7c6 2922 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 2923 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 2924 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 2925 */
2b740303 2926static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2927 __releases(vmf->ptl)
1da177e4 2928{
82b0f8c3 2929 struct vm_area_struct *vma = vmf->vma;
1da177e4 2930
292924b2 2931 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
2932 pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 return handle_userfault(vmf, VM_UFFD_WP);
2934 }
2935
a41b70d6
JK
2936 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2937 if (!vmf->page) {
251b97f5 2938 /*
64e45507
PF
2939 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2940 * VM_PFNMAP VMA.
251b97f5
PZ
2941 *
2942 * We should not cow pages in a shared writeable mapping.
dd906184 2943 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2944 */
2945 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2946 (VM_WRITE|VM_SHARED))
2994302b 2947 return wp_pfn_shared(vmf);
2f38ab2c 2948
82b0f8c3 2949 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2950 return wp_page_copy(vmf);
251b97f5 2951 }
1da177e4 2952
d08b3851 2953 /*
ee6a6457
PZ
2954 * Take out anonymous pages first, anonymous shared vmas are
2955 * not dirty accountable.
d08b3851 2956 */
52d1e606 2957 if (PageAnon(vmf->page)) {
09854ba9
LT
2958 struct page *page = vmf->page;
2959
2960 /* PageKsm() doesn't necessarily raise the page refcount */
2961 if (PageKsm(page) || page_count(page) != 1)
2962 goto copy;
2963 if (!trylock_page(page))
2964 goto copy;
2965 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
2966 unlock_page(page);
52d1e606 2967 goto copy;
b009c024 2968 }
09854ba9
LT
2969 /*
2970 * Ok, we've got the only map reference, and the only
2971 * page count reference, and the page is locked,
2972 * it's dark out, and we're wearing sunglasses. Hit it.
2973 */
09854ba9 2974 unlock_page(page);
be068f29 2975 wp_page_reuse(vmf);
09854ba9 2976 return VM_FAULT_WRITE;
ee6a6457 2977 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2978 (VM_WRITE|VM_SHARED))) {
a41b70d6 2979 return wp_page_shared(vmf);
1da177e4 2980 }
52d1e606 2981copy:
1da177e4
LT
2982 /*
2983 * Ok, we need to copy. Oh, well..
2984 */
a41b70d6 2985 get_page(vmf->page);
28766805 2986
82b0f8c3 2987 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2988 return wp_page_copy(vmf);
1da177e4
LT
2989}
2990
97a89413 2991static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2992 unsigned long start_addr, unsigned long end_addr,
2993 struct zap_details *details)
2994{
f5cc4eef 2995 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2996}
2997
f808c13f 2998static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2999 struct zap_details *details)
3000{
3001 struct vm_area_struct *vma;
1da177e4
LT
3002 pgoff_t vba, vea, zba, zea;
3003
6b2dbba8 3004 vma_interval_tree_foreach(vma, root,
1da177e4 3005 details->first_index, details->last_index) {
1da177e4
LT
3006
3007 vba = vma->vm_pgoff;
d6e93217 3008 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3009 zba = details->first_index;
3010 if (zba < vba)
3011 zba = vba;
3012 zea = details->last_index;
3013 if (zea > vea)
3014 zea = vea;
3015
97a89413 3016 unmap_mapping_range_vma(vma,
1da177e4
LT
3017 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3018 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3019 details);
1da177e4
LT
3020 }
3021}
3022
977fbdcd
MW
3023/**
3024 * unmap_mapping_pages() - Unmap pages from processes.
3025 * @mapping: The address space containing pages to be unmapped.
3026 * @start: Index of first page to be unmapped.
3027 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3028 * @even_cows: Whether to unmap even private COWed pages.
3029 *
3030 * Unmap the pages in this address space from any userspace process which
3031 * has them mmaped. Generally, you want to remove COWed pages as well when
3032 * a file is being truncated, but not when invalidating pages from the page
3033 * cache.
3034 */
3035void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3036 pgoff_t nr, bool even_cows)
3037{
3038 struct zap_details details = { };
3039
3040 details.check_mapping = even_cows ? NULL : mapping;
3041 details.first_index = start;
3042 details.last_index = start + nr - 1;
3043 if (details.last_index < details.first_index)
3044 details.last_index = ULONG_MAX;
3045
3046 i_mmap_lock_write(mapping);
3047 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3048 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3049 i_mmap_unlock_write(mapping);
3050}
3051
1da177e4 3052/**
8a5f14a2 3053 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3054 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3055 * file.
3056 *
3d41088f 3057 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3058 * @holebegin: byte in first page to unmap, relative to the start of
3059 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3060 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3061 * must keep the partial page. In contrast, we must get rid of
3062 * partial pages.
3063 * @holelen: size of prospective hole in bytes. This will be rounded
3064 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3065 * end of the file.
3066 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3067 * but 0 when invalidating pagecache, don't throw away private data.
3068 */
3069void unmap_mapping_range(struct address_space *mapping,
3070 loff_t const holebegin, loff_t const holelen, int even_cows)
3071{
1da177e4
LT
3072 pgoff_t hba = holebegin >> PAGE_SHIFT;
3073 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3074
3075 /* Check for overflow. */
3076 if (sizeof(holelen) > sizeof(hlen)) {
3077 long long holeend =
3078 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3079 if (holeend & ~(long long)ULONG_MAX)
3080 hlen = ULONG_MAX - hba + 1;
3081 }
3082
977fbdcd 3083 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3084}
3085EXPORT_SYMBOL(unmap_mapping_range);
3086
1da177e4 3087/*
c1e8d7c6 3088 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3089 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3090 * We return with pte unmapped and unlocked.
3091 *
c1e8d7c6 3092 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3093 * as does filemap_fault().
1da177e4 3094 */
2b740303 3095vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3096{
82b0f8c3 3097 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3098 struct page *page = NULL, *swapcache;
65500d23 3099 swp_entry_t entry;
1da177e4 3100 pte_t pte;
d065bd81 3101 int locked;
ad8c2ee8 3102 int exclusive = 0;
2b740303 3103 vm_fault_t ret = 0;
aae466b0 3104 void *shadow = NULL;
1da177e4 3105
eaf649eb 3106 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3107 goto out;
65500d23 3108
2994302b 3109 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3110 if (unlikely(non_swap_entry(entry))) {
3111 if (is_migration_entry(entry)) {
82b0f8c3
JK
3112 migration_entry_wait(vma->vm_mm, vmf->pmd,
3113 vmf->address);
5042db43 3114 } else if (is_device_private_entry(entry)) {
897e6365
CH
3115 vmf->page = device_private_entry_to_page(entry);
3116 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3117 } else if (is_hwpoison_entry(entry)) {
3118 ret = VM_FAULT_HWPOISON;
3119 } else {
2994302b 3120 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3121 ret = VM_FAULT_SIGBUS;
d1737fdb 3122 }
0697212a
CL
3123 goto out;
3124 }
0bcac06f
MK
3125
3126
0ff92245 3127 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3128 page = lookup_swap_cache(entry, vma, vmf->address);
3129 swapcache = page;
f8020772 3130
1da177e4 3131 if (!page) {
0bcac06f
MK
3132 struct swap_info_struct *si = swp_swap_info(entry);
3133
a449bf58
QC
3134 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3135 __swap_count(entry) == 1) {
0bcac06f 3136 /* skip swapcache */
e9e9b7ec
MK
3137 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3138 vmf->address);
0bcac06f 3139 if (page) {
4c6355b2
JW
3140 int err;
3141
0bcac06f
MK
3142 __SetPageLocked(page);
3143 __SetPageSwapBacked(page);
3144 set_page_private(page, entry.val);
4c6355b2
JW
3145
3146 /* Tell memcg to use swap ownership records */
3147 SetPageSwapCache(page);
3148 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3149 GFP_KERNEL);
4c6355b2 3150 ClearPageSwapCache(page);
545b1b07
MH
3151 if (err) {
3152 ret = VM_FAULT_OOM;
4c6355b2 3153 goto out_page;
545b1b07 3154 }
4c6355b2 3155
aae466b0
JK
3156 shadow = get_shadow_from_swap_cache(entry);
3157 if (shadow)
3158 workingset_refault(page, shadow);
0076f029 3159
6058eaec 3160 lru_cache_add(page);
0bcac06f
MK
3161 swap_readpage(page, true);
3162 }
aa8d22a1 3163 } else {
e9e9b7ec
MK
3164 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3165 vmf);
aa8d22a1 3166 swapcache = page;
0bcac06f
MK
3167 }
3168
1da177e4
LT
3169 if (!page) {
3170 /*
8f4e2101
HD
3171 * Back out if somebody else faulted in this pte
3172 * while we released the pte lock.
1da177e4 3173 */
82b0f8c3
JK
3174 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3175 vmf->address, &vmf->ptl);
2994302b 3176 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3177 ret = VM_FAULT_OOM;
0ff92245 3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3179 goto unlock;
1da177e4
LT
3180 }
3181
3182 /* Had to read the page from swap area: Major fault */
3183 ret = VM_FAULT_MAJOR;
f8891e5e 3184 count_vm_event(PGMAJFAULT);
2262185c 3185 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3186 } else if (PageHWPoison(page)) {
71f72525
WF
3187 /*
3188 * hwpoisoned dirty swapcache pages are kept for killing
3189 * owner processes (which may be unknown at hwpoison time)
3190 */
d1737fdb
AK
3191 ret = VM_FAULT_HWPOISON;
3192 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3193 goto out_release;
1da177e4
LT
3194 }
3195
82b0f8c3 3196 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3197
073e587e 3198 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3199 if (!locked) {
3200 ret |= VM_FAULT_RETRY;
3201 goto out_release;
3202 }
073e587e 3203
4969c119 3204 /*
31c4a3d3
HD
3205 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3206 * release the swapcache from under us. The page pin, and pte_same
3207 * test below, are not enough to exclude that. Even if it is still
3208 * swapcache, we need to check that the page's swap has not changed.
4969c119 3209 */
0bcac06f
MK
3210 if (unlikely((!PageSwapCache(page) ||
3211 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3212 goto out_page;
3213
82b0f8c3 3214 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3215 if (unlikely(!page)) {
3216 ret = VM_FAULT_OOM;
3217 page = swapcache;
cbf86cfe 3218 goto out_page;
5ad64688
HD
3219 }
3220
9d82c694 3221 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3222
1da177e4 3223 /*
8f4e2101 3224 * Back out if somebody else already faulted in this pte.
1da177e4 3225 */
82b0f8c3
JK
3226 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3227 &vmf->ptl);
2994302b 3228 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3229 goto out_nomap;
b8107480
KK
3230
3231 if (unlikely(!PageUptodate(page))) {
3232 ret = VM_FAULT_SIGBUS;
3233 goto out_nomap;
1da177e4
LT
3234 }
3235
8c7c6e34
KH
3236 /*
3237 * The page isn't present yet, go ahead with the fault.
3238 *
3239 * Be careful about the sequence of operations here.
3240 * To get its accounting right, reuse_swap_page() must be called
3241 * while the page is counted on swap but not yet in mapcount i.e.
3242 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3243 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3244 */
1da177e4 3245
bae473a4
KS
3246 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3247 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3248 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3249 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3250 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3251 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3252 ret |= VM_FAULT_WRITE;
d281ee61 3253 exclusive = RMAP_EXCLUSIVE;
1da177e4 3254 }
1da177e4 3255 flush_icache_page(vma, page);
2994302b 3256 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3257 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3258 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3259 pte = pte_mkuffd_wp(pte);
3260 pte = pte_wrprotect(pte);
3261 }
82b0f8c3 3262 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3263 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3264 vmf->orig_pte = pte;
0bcac06f
MK
3265
3266 /* ksm created a completely new copy */
3267 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3268 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3269 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3270 } else {
3271 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3272 }
1da177e4 3273
c475a8ab 3274 swap_free(entry);
5ccc5aba
VD
3275 if (mem_cgroup_swap_full(page) ||
3276 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3277 try_to_free_swap(page);
c475a8ab 3278 unlock_page(page);
0bcac06f 3279 if (page != swapcache && swapcache) {
4969c119
AA
3280 /*
3281 * Hold the lock to avoid the swap entry to be reused
3282 * until we take the PT lock for the pte_same() check
3283 * (to avoid false positives from pte_same). For
3284 * further safety release the lock after the swap_free
3285 * so that the swap count won't change under a
3286 * parallel locked swapcache.
3287 */
3288 unlock_page(swapcache);
09cbfeaf 3289 put_page(swapcache);
4969c119 3290 }
c475a8ab 3291
82b0f8c3 3292 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3293 ret |= do_wp_page(vmf);
61469f1d
HD
3294 if (ret & VM_FAULT_ERROR)
3295 ret &= VM_FAULT_ERROR;
1da177e4
LT
3296 goto out;
3297 }
3298
3299 /* No need to invalidate - it was non-present before */
82b0f8c3 3300 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3301unlock:
82b0f8c3 3302 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3303out:
3304 return ret;
b8107480 3305out_nomap:
82b0f8c3 3306 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3307out_page:
b8107480 3308 unlock_page(page);
4779cb31 3309out_release:
09cbfeaf 3310 put_page(page);
0bcac06f 3311 if (page != swapcache && swapcache) {
4969c119 3312 unlock_page(swapcache);
09cbfeaf 3313 put_page(swapcache);
4969c119 3314 }
65500d23 3315 return ret;
1da177e4
LT
3316}
3317
3318/*
c1e8d7c6 3319 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3320 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3321 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3322 */
2b740303 3323static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3324{
82b0f8c3 3325 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3326 struct page *page;
2b740303 3327 vm_fault_t ret = 0;
1da177e4 3328 pte_t entry;
1da177e4 3329
6b7339f4
KS
3330 /* File mapping without ->vm_ops ? */
3331 if (vma->vm_flags & VM_SHARED)
3332 return VM_FAULT_SIGBUS;
3333
7267ec00
KS
3334 /*
3335 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3336 * pte_offset_map() on pmds where a huge pmd might be created
3337 * from a different thread.
3338 *
3e4e28c5 3339 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3340 * parallel threads are excluded by other means.
3341 *
3e4e28c5 3342 * Here we only have mmap_read_lock(mm).
7267ec00 3343 */
4cf58924 3344 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3345 return VM_FAULT_OOM;
3346
3347 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3348 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3349 return 0;
3350
11ac5524 3351 /* Use the zero-page for reads */
82b0f8c3 3352 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3353 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3354 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3355 vma->vm_page_prot));
82b0f8c3
JK
3356 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3357 vmf->address, &vmf->ptl);
7df67697
BM
3358 if (!pte_none(*vmf->pte)) {
3359 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3360 goto unlock;
7df67697 3361 }
6b31d595
MH
3362 ret = check_stable_address_space(vma->vm_mm);
3363 if (ret)
3364 goto unlock;
6b251fc9
AA
3365 /* Deliver the page fault to userland, check inside PT lock */
3366 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3367 pte_unmap_unlock(vmf->pte, vmf->ptl);
3368 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3369 }
a13ea5b7
HD
3370 goto setpte;
3371 }
3372
557ed1fa 3373 /* Allocate our own private page. */
557ed1fa
NP
3374 if (unlikely(anon_vma_prepare(vma)))
3375 goto oom;
82b0f8c3 3376 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3377 if (!page)
3378 goto oom;
eb3c24f3 3379
d9eb1ea2 3380 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3381 goto oom_free_page;
9d82c694 3382 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3383
52f37629
MK
3384 /*
3385 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3386 * preceding stores to the page contents become visible before
52f37629
MK
3387 * the set_pte_at() write.
3388 */
0ed361de 3389 __SetPageUptodate(page);
8f4e2101 3390
557ed1fa 3391 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3392 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3393 if (vma->vm_flags & VM_WRITE)
3394 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3395
82b0f8c3
JK
3396 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3397 &vmf->ptl);
7df67697
BM
3398 if (!pte_none(*vmf->pte)) {
3399 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3400 goto release;
7df67697 3401 }
9ba69294 3402
6b31d595
MH
3403 ret = check_stable_address_space(vma->vm_mm);
3404 if (ret)
3405 goto release;
3406
6b251fc9
AA
3407 /* Deliver the page fault to userland, check inside PT lock */
3408 if (userfaultfd_missing(vma)) {
82b0f8c3 3409 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3410 put_page(page);
82b0f8c3 3411 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3412 }
3413
bae473a4 3414 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3415 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3416 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3417setpte:
82b0f8c3 3418 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3419
3420 /* No need to invalidate - it was non-present before */
82b0f8c3 3421 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3422unlock:
82b0f8c3 3423 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3424 return ret;
8f4e2101 3425release:
09cbfeaf 3426 put_page(page);
8f4e2101 3427 goto unlock;
8a9f3ccd 3428oom_free_page:
09cbfeaf 3429 put_page(page);
65500d23 3430oom:
1da177e4
LT
3431 return VM_FAULT_OOM;
3432}
3433
9a95f3cf 3434/*
c1e8d7c6 3435 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3436 * released depending on flags and vma->vm_ops->fault() return value.
3437 * See filemap_fault() and __lock_page_retry().
3438 */
2b740303 3439static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3440{
82b0f8c3 3441 struct vm_area_struct *vma = vmf->vma;
2b740303 3442 vm_fault_t ret;
7eae74af 3443
63f3655f
MH
3444 /*
3445 * Preallocate pte before we take page_lock because this might lead to
3446 * deadlocks for memcg reclaim which waits for pages under writeback:
3447 * lock_page(A)
3448 * SetPageWriteback(A)
3449 * unlock_page(A)
3450 * lock_page(B)
3451 * lock_page(B)
3452 * pte_alloc_pne
3453 * shrink_page_list
3454 * wait_on_page_writeback(A)
3455 * SetPageWriteback(B)
3456 * unlock_page(B)
3457 * # flush A, B to clear the writeback
3458 */
3459 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3460 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3461 if (!vmf->prealloc_pte)
3462 return VM_FAULT_OOM;
3463 smp_wmb(); /* See comment in __pte_alloc() */
3464 }
3465
11bac800 3466 ret = vma->vm_ops->fault(vmf);
3917048d 3467 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3468 VM_FAULT_DONE_COW)))
bc2466e4 3469 return ret;
7eae74af 3470
667240e0 3471 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3472 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3473 unlock_page(vmf->page);
3474 put_page(vmf->page);
936ca80d 3475 vmf->page = NULL;
7eae74af
KS
3476 return VM_FAULT_HWPOISON;
3477 }
3478
3479 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3480 lock_page(vmf->page);
7eae74af 3481 else
667240e0 3482 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3483
7eae74af
KS
3484 return ret;
3485}
3486
d0f0931d
RZ
3487/*
3488 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3489 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3490 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3491 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3492 */
3493static int pmd_devmap_trans_unstable(pmd_t *pmd)
3494{
3495 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3496}
3497
2b740303 3498static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3499{
82b0f8c3 3500 struct vm_area_struct *vma = vmf->vma;
7267ec00 3501
82b0f8c3 3502 if (!pmd_none(*vmf->pmd))
7267ec00 3503 goto map_pte;
82b0f8c3
JK
3504 if (vmf->prealloc_pte) {
3505 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3506 if (unlikely(!pmd_none(*vmf->pmd))) {
3507 spin_unlock(vmf->ptl);
7267ec00
KS
3508 goto map_pte;
3509 }
3510
c4812909 3511 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3512 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3513 spin_unlock(vmf->ptl);
7f2b6ce8 3514 vmf->prealloc_pte = NULL;
4cf58924 3515 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3516 return VM_FAULT_OOM;
3517 }
3518map_pte:
3519 /*
3520 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3521 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3522 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3523 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3524 * running immediately after a huge pmd fault in a different thread of
3525 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3526 * All we have to ensure is that it is a regular pmd that we can walk
3527 * with pte_offset_map() and we can do that through an atomic read in
3528 * C, which is what pmd_trans_unstable() provides.
7267ec00 3529 */
d0f0931d 3530 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3531 return VM_FAULT_NOPAGE;
3532
d0f0931d
RZ
3533 /*
3534 * At this point we know that our vmf->pmd points to a page of ptes
3535 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3536 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3537 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3538 * be valid and we will re-check to make sure the vmf->pte isn't
3539 * pte_none() under vmf->ptl protection when we return to
3540 * alloc_set_pte().
3541 */
82b0f8c3
JK
3542 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3543 &vmf->ptl);
7267ec00
KS
3544 return 0;
3545}
3546
396bcc52 3547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3548static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3549{
82b0f8c3 3550 struct vm_area_struct *vma = vmf->vma;
953c66c2 3551
82b0f8c3 3552 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3553 /*
3554 * We are going to consume the prealloc table,
3555 * count that as nr_ptes.
3556 */
c4812909 3557 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3558 vmf->prealloc_pte = NULL;
953c66c2
AK
3559}
3560
2b740303 3561static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3562{
82b0f8c3
JK
3563 struct vm_area_struct *vma = vmf->vma;
3564 bool write = vmf->flags & FAULT_FLAG_WRITE;
3565 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3566 pmd_t entry;
2b740303
SJ
3567 int i;
3568 vm_fault_t ret;
10102459
KS
3569
3570 if (!transhuge_vma_suitable(vma, haddr))
3571 return VM_FAULT_FALLBACK;
3572
3573 ret = VM_FAULT_FALLBACK;
3574 page = compound_head(page);
3575
953c66c2
AK
3576 /*
3577 * Archs like ppc64 need additonal space to store information
3578 * related to pte entry. Use the preallocated table for that.
3579 */
82b0f8c3 3580 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3581 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3582 if (!vmf->prealloc_pte)
953c66c2
AK
3583 return VM_FAULT_OOM;
3584 smp_wmb(); /* See comment in __pte_alloc() */
3585 }
3586
82b0f8c3
JK
3587 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3588 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3589 goto out;
3590
3591 for (i = 0; i < HPAGE_PMD_NR; i++)
3592 flush_icache_page(vma, page + i);
3593
3594 entry = mk_huge_pmd(page, vma->vm_page_prot);
3595 if (write)
f55e1014 3596 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3597
fadae295 3598 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3599 page_add_file_rmap(page, true);
953c66c2
AK
3600 /*
3601 * deposit and withdraw with pmd lock held
3602 */
3603 if (arch_needs_pgtable_deposit())
82b0f8c3 3604 deposit_prealloc_pte(vmf);
10102459 3605
82b0f8c3 3606 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3607
82b0f8c3 3608 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3609
3610 /* fault is handled */
3611 ret = 0;
95ecedcd 3612 count_vm_event(THP_FILE_MAPPED);
10102459 3613out:
82b0f8c3 3614 spin_unlock(vmf->ptl);
10102459
KS
3615 return ret;
3616}
3617#else
2b740303 3618static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3619{
3620 BUILD_BUG();
3621 return 0;
3622}
3623#endif
3624
8c6e50b0 3625/**
7267ec00
KS
3626 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3627 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3628 *
82b0f8c3 3629 * @vmf: fault environment
8c6e50b0 3630 * @page: page to map
8c6e50b0 3631 *
82b0f8c3
JK
3632 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3633 * return.
8c6e50b0
KS
3634 *
3635 * Target users are page handler itself and implementations of
3636 * vm_ops->map_pages.
a862f68a
MR
3637 *
3638 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3639 */
9d82c694 3640vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3641{
82b0f8c3
JK
3642 struct vm_area_struct *vma = vmf->vma;
3643 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3644 pte_t entry;
2b740303 3645 vm_fault_t ret;
10102459 3646
396bcc52 3647 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3648 ret = do_set_pmd(vmf, page);
10102459 3649 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3650 return ret;
10102459 3651 }
3bb97794 3652
82b0f8c3
JK
3653 if (!vmf->pte) {
3654 ret = pte_alloc_one_map(vmf);
7267ec00 3655 if (ret)
b0b9b3df 3656 return ret;
7267ec00
KS
3657 }
3658
3659 /* Re-check under ptl */
7df67697
BM
3660 if (unlikely(!pte_none(*vmf->pte))) {
3661 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3662 return VM_FAULT_NOPAGE;
7df67697 3663 }
7267ec00 3664
3bb97794
KS
3665 flush_icache_page(vma, page);
3666 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3667 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3668 if (write)
3669 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3670 /* copy-on-write page */
3671 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3672 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3673 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3674 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3675 } else {
eca56ff9 3676 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3677 page_add_file_rmap(page, false);
3bb97794 3678 }
82b0f8c3 3679 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3680
3681 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3682 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3683
b0b9b3df 3684 return 0;
3bb97794
KS
3685}
3686
9118c0cb
JK
3687
3688/**
3689 * finish_fault - finish page fault once we have prepared the page to fault
3690 *
3691 * @vmf: structure describing the fault
3692 *
3693 * This function handles all that is needed to finish a page fault once the
3694 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3695 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3696 * addition.
9118c0cb
JK
3697 *
3698 * The function expects the page to be locked and on success it consumes a
3699 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3700 *
3701 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3702 */
2b740303 3703vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3704{
3705 struct page *page;
2b740303 3706 vm_fault_t ret = 0;
9118c0cb
JK
3707
3708 /* Did we COW the page? */
3709 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3710 !(vmf->vma->vm_flags & VM_SHARED))
3711 page = vmf->cow_page;
3712 else
3713 page = vmf->page;
6b31d595
MH
3714
3715 /*
3716 * check even for read faults because we might have lost our CoWed
3717 * page
3718 */
3719 if (!(vmf->vma->vm_flags & VM_SHARED))
3720 ret = check_stable_address_space(vmf->vma->vm_mm);
3721 if (!ret)
9d82c694 3722 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3723 if (vmf->pte)
3724 pte_unmap_unlock(vmf->pte, vmf->ptl);
3725 return ret;
3726}
3727
3a91053a
KS
3728static unsigned long fault_around_bytes __read_mostly =
3729 rounddown_pow_of_two(65536);
a9b0f861 3730
a9b0f861
KS
3731#ifdef CONFIG_DEBUG_FS
3732static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3733{
a9b0f861 3734 *val = fault_around_bytes;
1592eef0
KS
3735 return 0;
3736}
3737
b4903d6e 3738/*
da391d64
WK
3739 * fault_around_bytes must be rounded down to the nearest page order as it's
3740 * what do_fault_around() expects to see.
b4903d6e 3741 */
a9b0f861 3742static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3743{
a9b0f861 3744 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3745 return -EINVAL;
b4903d6e
AR
3746 if (val > PAGE_SIZE)
3747 fault_around_bytes = rounddown_pow_of_two(val);
3748 else
3749 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3750 return 0;
3751}
0a1345f8 3752DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3753 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3754
3755static int __init fault_around_debugfs(void)
3756{
d9f7979c
GKH
3757 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3758 &fault_around_bytes_fops);
1592eef0
KS
3759 return 0;
3760}
3761late_initcall(fault_around_debugfs);
1592eef0 3762#endif
8c6e50b0 3763
1fdb412b
KS
3764/*
3765 * do_fault_around() tries to map few pages around the fault address. The hope
3766 * is that the pages will be needed soon and this will lower the number of
3767 * faults to handle.
3768 *
3769 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3770 * not ready to be mapped: not up-to-date, locked, etc.
3771 *
3772 * This function is called with the page table lock taken. In the split ptlock
3773 * case the page table lock only protects only those entries which belong to
3774 * the page table corresponding to the fault address.
3775 *
3776 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3777 * only once.
3778 *
da391d64
WK
3779 * fault_around_bytes defines how many bytes we'll try to map.
3780 * do_fault_around() expects it to be set to a power of two less than or equal
3781 * to PTRS_PER_PTE.
1fdb412b 3782 *
da391d64
WK
3783 * The virtual address of the area that we map is naturally aligned to
3784 * fault_around_bytes rounded down to the machine page size
3785 * (and therefore to page order). This way it's easier to guarantee
3786 * that we don't cross page table boundaries.
1fdb412b 3787 */
2b740303 3788static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3789{
82b0f8c3 3790 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3791 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3792 pgoff_t end_pgoff;
2b740303
SJ
3793 int off;
3794 vm_fault_t ret = 0;
8c6e50b0 3795
4db0c3c2 3796 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3797 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3798
82b0f8c3
JK
3799 vmf->address = max(address & mask, vmf->vma->vm_start);
3800 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3801 start_pgoff -= off;
8c6e50b0
KS
3802
3803 /*
da391d64
WK
3804 * end_pgoff is either the end of the page table, the end of
3805 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3806 */
bae473a4 3807 end_pgoff = start_pgoff -
82b0f8c3 3808 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3809 PTRS_PER_PTE - 1;
82b0f8c3 3810 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3811 start_pgoff + nr_pages - 1);
8c6e50b0 3812
82b0f8c3 3813 if (pmd_none(*vmf->pmd)) {
4cf58924 3814 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3815 if (!vmf->prealloc_pte)
c5f88bd2 3816 goto out;
7267ec00 3817 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3818 }
3819
82b0f8c3 3820 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3821
7267ec00 3822 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3823 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3824 ret = VM_FAULT_NOPAGE;
3825 goto out;
3826 }
3827
3828 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3829 if (!vmf->pte)
7267ec00
KS
3830 goto out;
3831
3832 /* check if the page fault is solved */
82b0f8c3
JK
3833 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3834 if (!pte_none(*vmf->pte))
7267ec00 3835 ret = VM_FAULT_NOPAGE;
82b0f8c3 3836 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3837out:
82b0f8c3
JK
3838 vmf->address = address;
3839 vmf->pte = NULL;
7267ec00 3840 return ret;
8c6e50b0
KS
3841}
3842
2b740303 3843static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3844{
82b0f8c3 3845 struct vm_area_struct *vma = vmf->vma;
2b740303 3846 vm_fault_t ret = 0;
8c6e50b0
KS
3847
3848 /*
3849 * Let's call ->map_pages() first and use ->fault() as fallback
3850 * if page by the offset is not ready to be mapped (cold cache or
3851 * something).
3852 */
9b4bdd2f 3853 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3854 ret = do_fault_around(vmf);
7267ec00
KS
3855 if (ret)
3856 return ret;
8c6e50b0 3857 }
e655fb29 3858
936ca80d 3859 ret = __do_fault(vmf);
e655fb29
KS
3860 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3861 return ret;
3862
9118c0cb 3863 ret |= finish_fault(vmf);
936ca80d 3864 unlock_page(vmf->page);
7267ec00 3865 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3866 put_page(vmf->page);
e655fb29
KS
3867 return ret;
3868}
3869
2b740303 3870static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3871{
82b0f8c3 3872 struct vm_area_struct *vma = vmf->vma;
2b740303 3873 vm_fault_t ret;
ec47c3b9
KS
3874
3875 if (unlikely(anon_vma_prepare(vma)))
3876 return VM_FAULT_OOM;
3877
936ca80d
JK
3878 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3879 if (!vmf->cow_page)
ec47c3b9
KS
3880 return VM_FAULT_OOM;
3881
d9eb1ea2 3882 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 3883 put_page(vmf->cow_page);
ec47c3b9
KS
3884 return VM_FAULT_OOM;
3885 }
9d82c694 3886 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 3887
936ca80d 3888 ret = __do_fault(vmf);
ec47c3b9
KS
3889 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3890 goto uncharge_out;
3917048d
JK
3891 if (ret & VM_FAULT_DONE_COW)
3892 return ret;
ec47c3b9 3893
b1aa812b 3894 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3895 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3896
9118c0cb 3897 ret |= finish_fault(vmf);
b1aa812b
JK
3898 unlock_page(vmf->page);
3899 put_page(vmf->page);
7267ec00
KS
3900 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3901 goto uncharge_out;
ec47c3b9
KS
3902 return ret;
3903uncharge_out:
936ca80d 3904 put_page(vmf->cow_page);
ec47c3b9
KS
3905 return ret;
3906}
3907
2b740303 3908static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3909{
82b0f8c3 3910 struct vm_area_struct *vma = vmf->vma;
2b740303 3911 vm_fault_t ret, tmp;
1d65f86d 3912
936ca80d 3913 ret = __do_fault(vmf);
7eae74af 3914 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3915 return ret;
1da177e4
LT
3916
3917 /*
f0c6d4d2
KS
3918 * Check if the backing address space wants to know that the page is
3919 * about to become writable
1da177e4 3920 */
fb09a464 3921 if (vma->vm_ops->page_mkwrite) {
936ca80d 3922 unlock_page(vmf->page);
38b8cb7f 3923 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3924 if (unlikely(!tmp ||
3925 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3926 put_page(vmf->page);
fb09a464 3927 return tmp;
4294621f 3928 }
fb09a464
KS
3929 }
3930
9118c0cb 3931 ret |= finish_fault(vmf);
7267ec00
KS
3932 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3933 VM_FAULT_RETRY))) {
936ca80d
JK
3934 unlock_page(vmf->page);
3935 put_page(vmf->page);
f0c6d4d2 3936 return ret;
1da177e4 3937 }
b827e496 3938
89b15332 3939 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3940 return ret;
54cb8821 3941}
d00806b1 3942
9a95f3cf 3943/*
c1e8d7c6 3944 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 3945 * but allow concurrent faults).
c1e8d7c6 3946 * The mmap_lock may have been released depending on flags and our
9a95f3cf 3947 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 3948 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 3949 * by other thread calling munmap()).
9a95f3cf 3950 */
2b740303 3951static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3952{
82b0f8c3 3953 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3954 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3955 vm_fault_t ret;
54cb8821 3956
ff09d7ec
AK
3957 /*
3958 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3959 */
3960 if (!vma->vm_ops->fault) {
3961 /*
3962 * If we find a migration pmd entry or a none pmd entry, which
3963 * should never happen, return SIGBUS
3964 */
3965 if (unlikely(!pmd_present(*vmf->pmd)))
3966 ret = VM_FAULT_SIGBUS;
3967 else {
3968 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3969 vmf->pmd,
3970 vmf->address,
3971 &vmf->ptl);
3972 /*
3973 * Make sure this is not a temporary clearing of pte
3974 * by holding ptl and checking again. A R/M/W update
3975 * of pte involves: take ptl, clearing the pte so that
3976 * we don't have concurrent modification by hardware
3977 * followed by an update.
3978 */
3979 if (unlikely(pte_none(*vmf->pte)))
3980 ret = VM_FAULT_SIGBUS;
3981 else
3982 ret = VM_FAULT_NOPAGE;
3983
3984 pte_unmap_unlock(vmf->pte, vmf->ptl);
3985 }
3986 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3987 ret = do_read_fault(vmf);
3988 else if (!(vma->vm_flags & VM_SHARED))
3989 ret = do_cow_fault(vmf);
3990 else
3991 ret = do_shared_fault(vmf);
3992
3993 /* preallocated pagetable is unused: free it */
3994 if (vmf->prealloc_pte) {
fc8efd2d 3995 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3996 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3997 }
3998 return ret;
54cb8821
NP
3999}
4000
b19a9939 4001static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4002 unsigned long addr, int page_nid,
4003 int *flags)
9532fec1
MG
4004{
4005 get_page(page);
4006
4007 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4008 if (page_nid == numa_node_id()) {
9532fec1 4009 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4010 *flags |= TNF_FAULT_LOCAL;
4011 }
9532fec1
MG
4012
4013 return mpol_misplaced(page, vma, addr);
4014}
4015
2b740303 4016static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4017{
82b0f8c3 4018 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4019 struct page *page = NULL;
98fa15f3 4020 int page_nid = NUMA_NO_NODE;
90572890 4021 int last_cpupid;
cbee9f88 4022 int target_nid;
b8593bfd 4023 bool migrated = false;
04a86453 4024 pte_t pte, old_pte;
288bc549 4025 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4026 int flags = 0;
d10e63f2
MG
4027
4028 /*
166f61b9
TH
4029 * The "pte" at this point cannot be used safely without
4030 * validation through pte_unmap_same(). It's of NUMA type but
4031 * the pfn may be screwed if the read is non atomic.
166f61b9 4032 */
82b0f8c3
JK
4033 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4034 spin_lock(vmf->ptl);
cee216a6 4035 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4036 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4037 goto out;
4038 }
4039
cee216a6
AK
4040 /*
4041 * Make it present again, Depending on how arch implementes non
4042 * accessible ptes, some can allow access by kernel mode.
4043 */
04a86453
AK
4044 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4045 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4046 pte = pte_mkyoung(pte);
b191f9b1
MG
4047 if (was_writable)
4048 pte = pte_mkwrite(pte);
04a86453 4049 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4050 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4051
82b0f8c3 4052 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4053 if (!page) {
82b0f8c3 4054 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4055 return 0;
4056 }
4057
e81c4802
KS
4058 /* TODO: handle PTE-mapped THP */
4059 if (PageCompound(page)) {
82b0f8c3 4060 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4061 return 0;
4062 }
4063
6688cc05 4064 /*
bea66fbd
MG
4065 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4066 * much anyway since they can be in shared cache state. This misses
4067 * the case where a mapping is writable but the process never writes
4068 * to it but pte_write gets cleared during protection updates and
4069 * pte_dirty has unpredictable behaviour between PTE scan updates,
4070 * background writeback, dirty balancing and application behaviour.
6688cc05 4071 */
d59dc7bc 4072 if (!pte_write(pte))
6688cc05
PZ
4073 flags |= TNF_NO_GROUP;
4074
dabe1d99
RR
4075 /*
4076 * Flag if the page is shared between multiple address spaces. This
4077 * is later used when determining whether to group tasks together
4078 */
4079 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4080 flags |= TNF_SHARED;
4081
90572890 4082 last_cpupid = page_cpupid_last(page);
8191acbd 4083 page_nid = page_to_nid(page);
82b0f8c3 4084 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4085 &flags);
82b0f8c3 4086 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4087 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4088 put_page(page);
4089 goto out;
4090 }
4091
4092 /* Migrate to the requested node */
1bc115d8 4093 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4094 if (migrated) {
8191acbd 4095 page_nid = target_nid;
6688cc05 4096 flags |= TNF_MIGRATED;
074c2381
MG
4097 } else
4098 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4099
4100out:
98fa15f3 4101 if (page_nid != NUMA_NO_NODE)
6688cc05 4102 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4103 return 0;
4104}
4105
2b740303 4106static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4107{
f4200391 4108 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4109 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4110 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4111 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4112 return VM_FAULT_FALLBACK;
4113}
4114
183f24aa 4115/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4116static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4117{
529b930b 4118 if (vma_is_anonymous(vmf->vma)) {
292924b2 4119 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4120 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4121 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4122 }
327e9fd4
THV
4123 if (vmf->vma->vm_ops->huge_fault) {
4124 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4125
4126 if (!(ret & VM_FAULT_FALLBACK))
4127 return ret;
4128 }
af9e4d5f 4129
327e9fd4 4130 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4131 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4132
b96375f7
MW
4133 return VM_FAULT_FALLBACK;
4134}
4135
2b740303 4136static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4137{
327e9fd4
THV
4138#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4139 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4140 /* No support for anonymous transparent PUD pages yet */
4141 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4142 goto split;
4143 if (vmf->vma->vm_ops->huge_fault) {
4144 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4145
4146 if (!(ret & VM_FAULT_FALLBACK))
4147 return ret;
4148 }
4149split:
4150 /* COW or write-notify not handled on PUD level: split pud.*/
4151 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4152#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4153 return VM_FAULT_FALLBACK;
4154}
4155
2b740303 4156static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4157{
4158#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4159 /* No support for anonymous transparent PUD pages yet */
4160 if (vma_is_anonymous(vmf->vma))
4161 return VM_FAULT_FALLBACK;
4162 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4163 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4164#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4165 return VM_FAULT_FALLBACK;
4166}
4167
1da177e4
LT
4168/*
4169 * These routines also need to handle stuff like marking pages dirty
4170 * and/or accessed for architectures that don't do it in hardware (most
4171 * RISC architectures). The early dirtying is also good on the i386.
4172 *
4173 * There is also a hook called "update_mmu_cache()" that architectures
4174 * with external mmu caches can use to update those (ie the Sparc or
4175 * PowerPC hashed page tables that act as extended TLBs).
4176 *
c1e8d7c6 4177 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4178 * concurrent faults).
9a95f3cf 4179 *
c1e8d7c6 4180 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4181 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4182 */
2b740303 4183static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4184{
4185 pte_t entry;
4186
82b0f8c3 4187 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4188 /*
4189 * Leave __pte_alloc() until later: because vm_ops->fault may
4190 * want to allocate huge page, and if we expose page table
4191 * for an instant, it will be difficult to retract from
4192 * concurrent faults and from rmap lookups.
4193 */
82b0f8c3 4194 vmf->pte = NULL;
7267ec00
KS
4195 } else {
4196 /* See comment in pte_alloc_one_map() */
d0f0931d 4197 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4198 return 0;
4199 /*
4200 * A regular pmd is established and it can't morph into a huge
4201 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4202 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4203 * So now it's safe to run pte_offset_map().
4204 */
82b0f8c3 4205 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4206 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4207
4208 /*
4209 * some architectures can have larger ptes than wordsize,
4210 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4211 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4212 * accesses. The code below just needs a consistent view
4213 * for the ifs and we later double check anyway with the
7267ec00
KS
4214 * ptl lock held. So here a barrier will do.
4215 */
4216 barrier();
2994302b 4217 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4218 pte_unmap(vmf->pte);
4219 vmf->pte = NULL;
65500d23 4220 }
1da177e4
LT
4221 }
4222
82b0f8c3
JK
4223 if (!vmf->pte) {
4224 if (vma_is_anonymous(vmf->vma))
4225 return do_anonymous_page(vmf);
7267ec00 4226 else
82b0f8c3 4227 return do_fault(vmf);
7267ec00
KS
4228 }
4229
2994302b
JK
4230 if (!pte_present(vmf->orig_pte))
4231 return do_swap_page(vmf);
7267ec00 4232
2994302b
JK
4233 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4234 return do_numa_page(vmf);
d10e63f2 4235
82b0f8c3
JK
4236 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4237 spin_lock(vmf->ptl);
2994302b 4238 entry = vmf->orig_pte;
7df67697
BM
4239 if (unlikely(!pte_same(*vmf->pte, entry))) {
4240 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4241 goto unlock;
7df67697 4242 }
82b0f8c3 4243 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4244 if (!pte_write(entry))
2994302b 4245 return do_wp_page(vmf);
1da177e4
LT
4246 entry = pte_mkdirty(entry);
4247 }
4248 entry = pte_mkyoung(entry);
82b0f8c3
JK
4249 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4250 vmf->flags & FAULT_FLAG_WRITE)) {
4251 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4252 } else {
b7333b58
YS
4253 /* Skip spurious TLB flush for retried page fault */
4254 if (vmf->flags & FAULT_FLAG_TRIED)
4255 goto unlock;
1a44e149
AA
4256 /*
4257 * This is needed only for protection faults but the arch code
4258 * is not yet telling us if this is a protection fault or not.
4259 * This still avoids useless tlb flushes for .text page faults
4260 * with threads.
4261 */
82b0f8c3
JK
4262 if (vmf->flags & FAULT_FLAG_WRITE)
4263 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4264 }
8f4e2101 4265unlock:
82b0f8c3 4266 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4267 return 0;
1da177e4
LT
4268}
4269
4270/*
4271 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4272 *
c1e8d7c6 4273 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4274 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4275 */
2b740303
SJ
4276static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4277 unsigned long address, unsigned int flags)
1da177e4 4278{
82b0f8c3 4279 struct vm_fault vmf = {
bae473a4 4280 .vma = vma,
1a29d85e 4281 .address = address & PAGE_MASK,
bae473a4 4282 .flags = flags,
0721ec8b 4283 .pgoff = linear_page_index(vma, address),
667240e0 4284 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4285 };
fde26bed 4286 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4287 struct mm_struct *mm = vma->vm_mm;
1da177e4 4288 pgd_t *pgd;
c2febafc 4289 p4d_t *p4d;
2b740303 4290 vm_fault_t ret;
1da177e4 4291
1da177e4 4292 pgd = pgd_offset(mm, address);
c2febafc
KS
4293 p4d = p4d_alloc(mm, pgd, address);
4294 if (!p4d)
4295 return VM_FAULT_OOM;
a00cc7d9 4296
c2febafc 4297 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4298 if (!vmf.pud)
c74df32c 4299 return VM_FAULT_OOM;
625110b5 4300retry_pud:
7635d9cb 4301 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4302 ret = create_huge_pud(&vmf);
4303 if (!(ret & VM_FAULT_FALLBACK))
4304 return ret;
4305 } else {
4306 pud_t orig_pud = *vmf.pud;
4307
4308 barrier();
4309 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4310
a00cc7d9
MW
4311 /* NUMA case for anonymous PUDs would go here */
4312
f6f37321 4313 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4314 ret = wp_huge_pud(&vmf, orig_pud);
4315 if (!(ret & VM_FAULT_FALLBACK))
4316 return ret;
4317 } else {
4318 huge_pud_set_accessed(&vmf, orig_pud);
4319 return 0;
4320 }
4321 }
4322 }
4323
4324 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4325 if (!vmf.pmd)
c74df32c 4326 return VM_FAULT_OOM;
625110b5
TH
4327
4328 /* Huge pud page fault raced with pmd_alloc? */
4329 if (pud_trans_unstable(vmf.pud))
4330 goto retry_pud;
4331
7635d9cb 4332 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4333 ret = create_huge_pmd(&vmf);
c0292554
KS
4334 if (!(ret & VM_FAULT_FALLBACK))
4335 return ret;
71e3aac0 4336 } else {
82b0f8c3 4337 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4338
71e3aac0 4339 barrier();
84c3fc4e
ZY
4340 if (unlikely(is_swap_pmd(orig_pmd))) {
4341 VM_BUG_ON(thp_migration_supported() &&
4342 !is_pmd_migration_entry(orig_pmd));
4343 if (is_pmd_migration_entry(orig_pmd))
4344 pmd_migration_entry_wait(mm, vmf.pmd);
4345 return 0;
4346 }
5c7fb56e 4347 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4348 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4349 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4350
f6f37321 4351 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4352 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4353 if (!(ret & VM_FAULT_FALLBACK))
4354 return ret;
a1dd450b 4355 } else {
82b0f8c3 4356 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4357 return 0;
1f1d06c3 4358 }
71e3aac0
AA
4359 }
4360 }
4361
82b0f8c3 4362 return handle_pte_fault(&vmf);
1da177e4
LT
4363}
4364
bce617ed
PX
4365/**
4366 * mm_account_fault - Do page fault accountings
4367 *
4368 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4369 * of perf event counters, but we'll still do the per-task accounting to
4370 * the task who triggered this page fault.
4371 * @address: the faulted address.
4372 * @flags: the fault flags.
4373 * @ret: the fault retcode.
4374 *
4375 * This will take care of most of the page fault accountings. Meanwhile, it
4376 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4377 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4378 * still be in per-arch page fault handlers at the entry of page fault.
4379 */
4380static inline void mm_account_fault(struct pt_regs *regs,
4381 unsigned long address, unsigned int flags,
4382 vm_fault_t ret)
4383{
4384 bool major;
4385
4386 /*
4387 * We don't do accounting for some specific faults:
4388 *
4389 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4390 * includes arch_vma_access_permitted() failing before reaching here.
4391 * So this is not a "this many hardware page faults" counter. We
4392 * should use the hw profiling for that.
4393 *
4394 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4395 * once they're completed.
4396 */
4397 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4398 return;
4399
4400 /*
4401 * We define the fault as a major fault when the final successful fault
4402 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4403 * handle it immediately previously).
4404 */
4405 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4406
a2beb5f1
PX
4407 if (major)
4408 current->maj_flt++;
4409 else
4410 current->min_flt++;
4411
bce617ed 4412 /*
a2beb5f1
PX
4413 * If the fault is done for GUP, regs will be NULL. We only do the
4414 * accounting for the per thread fault counters who triggered the
4415 * fault, and we skip the perf event updates.
bce617ed
PX
4416 */
4417 if (!regs)
4418 return;
4419
a2beb5f1 4420 if (major)
bce617ed 4421 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4422 else
bce617ed 4423 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4424}
4425
9a95f3cf
PC
4426/*
4427 * By the time we get here, we already hold the mm semaphore
4428 *
c1e8d7c6 4429 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4430 * return value. See filemap_fault() and __lock_page_or_retry().
4431 */
2b740303 4432vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4433 unsigned int flags, struct pt_regs *regs)
519e5247 4434{
2b740303 4435 vm_fault_t ret;
519e5247
JW
4436
4437 __set_current_state(TASK_RUNNING);
4438
4439 count_vm_event(PGFAULT);
2262185c 4440 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4441
4442 /* do counter updates before entering really critical section. */
4443 check_sync_rss_stat(current);
4444
de0c799b
LD
4445 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4446 flags & FAULT_FLAG_INSTRUCTION,
4447 flags & FAULT_FLAG_REMOTE))
4448 return VM_FAULT_SIGSEGV;
4449
519e5247
JW
4450 /*
4451 * Enable the memcg OOM handling for faults triggered in user
4452 * space. Kernel faults are handled more gracefully.
4453 */
4454 if (flags & FAULT_FLAG_USER)
29ef680a 4455 mem_cgroup_enter_user_fault();
519e5247 4456
bae473a4
KS
4457 if (unlikely(is_vm_hugetlb_page(vma)))
4458 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4459 else
4460 ret = __handle_mm_fault(vma, address, flags);
519e5247 4461
49426420 4462 if (flags & FAULT_FLAG_USER) {
29ef680a 4463 mem_cgroup_exit_user_fault();
166f61b9
TH
4464 /*
4465 * The task may have entered a memcg OOM situation but
4466 * if the allocation error was handled gracefully (no
4467 * VM_FAULT_OOM), there is no need to kill anything.
4468 * Just clean up the OOM state peacefully.
4469 */
4470 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4471 mem_cgroup_oom_synchronize(false);
49426420 4472 }
3812c8c8 4473
bce617ed
PX
4474 mm_account_fault(regs, address, flags, ret);
4475
519e5247
JW
4476 return ret;
4477}
e1d6d01a 4478EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4479
90eceff1
KS
4480#ifndef __PAGETABLE_P4D_FOLDED
4481/*
4482 * Allocate p4d page table.
4483 * We've already handled the fast-path in-line.
4484 */
4485int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4486{
4487 p4d_t *new = p4d_alloc_one(mm, address);
4488 if (!new)
4489 return -ENOMEM;
4490
4491 smp_wmb(); /* See comment in __pte_alloc */
4492
4493 spin_lock(&mm->page_table_lock);
4494 if (pgd_present(*pgd)) /* Another has populated it */
4495 p4d_free(mm, new);
4496 else
4497 pgd_populate(mm, pgd, new);
4498 spin_unlock(&mm->page_table_lock);
4499 return 0;
4500}
4501#endif /* __PAGETABLE_P4D_FOLDED */
4502
1da177e4
LT
4503#ifndef __PAGETABLE_PUD_FOLDED
4504/*
4505 * Allocate page upper directory.
872fec16 4506 * We've already handled the fast-path in-line.
1da177e4 4507 */
c2febafc 4508int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4509{
c74df32c
HD
4510 pud_t *new = pud_alloc_one(mm, address);
4511 if (!new)
1bb3630e 4512 return -ENOMEM;
1da177e4 4513
362a61ad
NP
4514 smp_wmb(); /* See comment in __pte_alloc */
4515
872fec16 4516 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4517 if (!p4d_present(*p4d)) {
4518 mm_inc_nr_puds(mm);
c2febafc 4519 p4d_populate(mm, p4d, new);
b4e98d9a 4520 } else /* Another has populated it */
5e541973 4521 pud_free(mm, new);
c74df32c 4522 spin_unlock(&mm->page_table_lock);
1bb3630e 4523 return 0;
1da177e4
LT
4524}
4525#endif /* __PAGETABLE_PUD_FOLDED */
4526
4527#ifndef __PAGETABLE_PMD_FOLDED
4528/*
4529 * Allocate page middle directory.
872fec16 4530 * We've already handled the fast-path in-line.
1da177e4 4531 */
1bb3630e 4532int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4533{
a00cc7d9 4534 spinlock_t *ptl;
c74df32c
HD
4535 pmd_t *new = pmd_alloc_one(mm, address);
4536 if (!new)
1bb3630e 4537 return -ENOMEM;
1da177e4 4538
362a61ad
NP
4539 smp_wmb(); /* See comment in __pte_alloc */
4540
a00cc7d9 4541 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4542 if (!pud_present(*pud)) {
4543 mm_inc_nr_pmds(mm);
1bb3630e 4544 pud_populate(mm, pud, new);
dc6c9a35 4545 } else /* Another has populated it */
5e541973 4546 pmd_free(mm, new);
a00cc7d9 4547 spin_unlock(ptl);
1bb3630e 4548 return 0;
e0f39591 4549}
1da177e4
LT
4550#endif /* __PAGETABLE_PMD_FOLDED */
4551
09796395 4552static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4553 struct mmu_notifier_range *range,
a4d1a885 4554 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4555{
4556 pgd_t *pgd;
c2febafc 4557 p4d_t *p4d;
f8ad0f49
JW
4558 pud_t *pud;
4559 pmd_t *pmd;
4560 pte_t *ptep;
4561
4562 pgd = pgd_offset(mm, address);
4563 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4564 goto out;
4565
c2febafc
KS
4566 p4d = p4d_offset(pgd, address);
4567 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4568 goto out;
4569
4570 pud = pud_offset(p4d, address);
f8ad0f49
JW
4571 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4572 goto out;
4573
4574 pmd = pmd_offset(pud, address);
f66055ab 4575 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4576
09796395
RZ
4577 if (pmd_huge(*pmd)) {
4578 if (!pmdpp)
4579 goto out;
4580
ac46d4f3 4581 if (range) {
7269f999 4582 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4583 NULL, mm, address & PMD_MASK,
4584 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4585 mmu_notifier_invalidate_range_start(range);
a4d1a885 4586 }
09796395
RZ
4587 *ptlp = pmd_lock(mm, pmd);
4588 if (pmd_huge(*pmd)) {
4589 *pmdpp = pmd;
4590 return 0;
4591 }
4592 spin_unlock(*ptlp);
ac46d4f3
JG
4593 if (range)
4594 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4595 }
4596
4597 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4598 goto out;
4599
ac46d4f3 4600 if (range) {
7269f999 4601 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4602 address & PAGE_MASK,
4603 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4604 mmu_notifier_invalidate_range_start(range);
a4d1a885 4605 }
f8ad0f49 4606 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4607 if (!pte_present(*ptep))
4608 goto unlock;
4609 *ptepp = ptep;
4610 return 0;
4611unlock:
4612 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4613 if (range)
4614 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4615out:
4616 return -EINVAL;
4617}
4618
f729c8c9
RZ
4619static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4620 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4621{
4622 int res;
4623
4624 /* (void) is needed to make gcc happy */
4625 (void) __cond_lock(*ptlp,
ac46d4f3 4626 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4627 ptepp, NULL, ptlp)));
09796395
RZ
4628 return res;
4629}
4630
4631int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4632 struct mmu_notifier_range *range,
4633 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4634{
4635 int res;
4636
4637 /* (void) is needed to make gcc happy */
4638 (void) __cond_lock(*ptlp,
ac46d4f3 4639 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4640 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4641 return res;
4642}
09796395 4643EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4644
3b6748e2
JW
4645/**
4646 * follow_pfn - look up PFN at a user virtual address
4647 * @vma: memory mapping
4648 * @address: user virtual address
4649 * @pfn: location to store found PFN
4650 *
4651 * Only IO mappings and raw PFN mappings are allowed.
4652 *
a862f68a 4653 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4654 */
4655int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4656 unsigned long *pfn)
4657{
4658 int ret = -EINVAL;
4659 spinlock_t *ptl;
4660 pte_t *ptep;
4661
4662 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4663 return ret;
4664
4665 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4666 if (ret)
4667 return ret;
4668 *pfn = pte_pfn(*ptep);
4669 pte_unmap_unlock(ptep, ptl);
4670 return 0;
4671}
4672EXPORT_SYMBOL(follow_pfn);
4673
28b2ee20 4674#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4675int follow_phys(struct vm_area_struct *vma,
4676 unsigned long address, unsigned int flags,
4677 unsigned long *prot, resource_size_t *phys)
28b2ee20 4678{
03668a4d 4679 int ret = -EINVAL;
28b2ee20
RR
4680 pte_t *ptep, pte;
4681 spinlock_t *ptl;
28b2ee20 4682
d87fe660 4683 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4684 goto out;
28b2ee20 4685
03668a4d 4686 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4687 goto out;
28b2ee20 4688 pte = *ptep;
03668a4d 4689
f6f37321 4690 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4691 goto unlock;
28b2ee20
RR
4692
4693 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4694 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4695
03668a4d 4696 ret = 0;
28b2ee20
RR
4697unlock:
4698 pte_unmap_unlock(ptep, ptl);
4699out:
d87fe660 4700 return ret;
28b2ee20
RR
4701}
4702
4703int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4704 void *buf, int len, int write)
4705{
4706 resource_size_t phys_addr;
4707 unsigned long prot = 0;
2bc7273b 4708 void __iomem *maddr;
28b2ee20
RR
4709 int offset = addr & (PAGE_SIZE-1);
4710
d87fe660 4711 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4712 return -EINVAL;
4713
9cb12d7b 4714 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4715 if (!maddr)
4716 return -ENOMEM;
4717
28b2ee20
RR
4718 if (write)
4719 memcpy_toio(maddr + offset, buf, len);
4720 else
4721 memcpy_fromio(buf, maddr + offset, len);
4722 iounmap(maddr);
4723
4724 return len;
4725}
5a73633e 4726EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4727#endif
4728
0ec76a11 4729/*
206cb636
SW
4730 * Access another process' address space as given in mm. If non-NULL, use the
4731 * given task for page fault accounting.
0ec76a11 4732 */
84d77d3f 4733int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4734 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4735{
0ec76a11 4736 struct vm_area_struct *vma;
0ec76a11 4737 void *old_buf = buf;
442486ec 4738 int write = gup_flags & FOLL_WRITE;
0ec76a11 4739
d8ed45c5 4740 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4741 return 0;
4742
183ff22b 4743 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4744 while (len) {
4745 int bytes, ret, offset;
4746 void *maddr;
28b2ee20 4747 struct page *page = NULL;
0ec76a11 4748
64019a2e 4749 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4750 gup_flags, &page, &vma, NULL);
28b2ee20 4751 if (ret <= 0) {
dbffcd03
RR
4752#ifndef CONFIG_HAVE_IOREMAP_PROT
4753 break;
4754#else
28b2ee20
RR
4755 /*
4756 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4757 * we can access using slightly different code.
4758 */
28b2ee20 4759 vma = find_vma(mm, addr);
fe936dfc 4760 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4761 break;
4762 if (vma->vm_ops && vma->vm_ops->access)
4763 ret = vma->vm_ops->access(vma, addr, buf,
4764 len, write);
4765 if (ret <= 0)
28b2ee20
RR
4766 break;
4767 bytes = ret;
dbffcd03 4768#endif
0ec76a11 4769 } else {
28b2ee20
RR
4770 bytes = len;
4771 offset = addr & (PAGE_SIZE-1);
4772 if (bytes > PAGE_SIZE-offset)
4773 bytes = PAGE_SIZE-offset;
4774
4775 maddr = kmap(page);
4776 if (write) {
4777 copy_to_user_page(vma, page, addr,
4778 maddr + offset, buf, bytes);
4779 set_page_dirty_lock(page);
4780 } else {
4781 copy_from_user_page(vma, page, addr,
4782 buf, maddr + offset, bytes);
4783 }
4784 kunmap(page);
09cbfeaf 4785 put_page(page);
0ec76a11 4786 }
0ec76a11
DH
4787 len -= bytes;
4788 buf += bytes;
4789 addr += bytes;
4790 }
d8ed45c5 4791 mmap_read_unlock(mm);
0ec76a11
DH
4792
4793 return buf - old_buf;
4794}
03252919 4795
5ddd36b9 4796/**
ae91dbfc 4797 * access_remote_vm - access another process' address space
5ddd36b9
SW
4798 * @mm: the mm_struct of the target address space
4799 * @addr: start address to access
4800 * @buf: source or destination buffer
4801 * @len: number of bytes to transfer
6347e8d5 4802 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4803 *
4804 * The caller must hold a reference on @mm.
a862f68a
MR
4805 *
4806 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4807 */
4808int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4809 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4810{
6347e8d5 4811 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4812}
4813
206cb636
SW
4814/*
4815 * Access another process' address space.
4816 * Source/target buffer must be kernel space,
4817 * Do not walk the page table directly, use get_user_pages
4818 */
4819int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4820 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4821{
4822 struct mm_struct *mm;
4823 int ret;
4824
4825 mm = get_task_mm(tsk);
4826 if (!mm)
4827 return 0;
4828
f307ab6d 4829 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4830
206cb636
SW
4831 mmput(mm);
4832
4833 return ret;
4834}
fcd35857 4835EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4836
03252919
AK
4837/*
4838 * Print the name of a VMA.
4839 */
4840void print_vma_addr(char *prefix, unsigned long ip)
4841{
4842 struct mm_struct *mm = current->mm;
4843 struct vm_area_struct *vma;
4844
e8bff74a 4845 /*
0a7f682d 4846 * we might be running from an atomic context so we cannot sleep
e8bff74a 4847 */
d8ed45c5 4848 if (!mmap_read_trylock(mm))
e8bff74a
IM
4849 return;
4850
03252919
AK
4851 vma = find_vma(mm, ip);
4852 if (vma && vma->vm_file) {
4853 struct file *f = vma->vm_file;
0a7f682d 4854 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4855 if (buf) {
2fbc57c5 4856 char *p;
03252919 4857
9bf39ab2 4858 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4859 if (IS_ERR(p))
4860 p = "?";
2fbc57c5 4861 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4862 vma->vm_start,
4863 vma->vm_end - vma->vm_start);
4864 free_page((unsigned long)buf);
4865 }
4866 }
d8ed45c5 4867 mmap_read_unlock(mm);
03252919 4868}
3ee1afa3 4869
662bbcb2 4870#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4871void __might_fault(const char *file, int line)
3ee1afa3 4872{
95156f00
PZ
4873 /*
4874 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 4875 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
4876 * get paged out, therefore we'll never actually fault, and the
4877 * below annotations will generate false positives.
4878 */
db68ce10 4879 if (uaccess_kernel())
95156f00 4880 return;
9ec23531 4881 if (pagefault_disabled())
662bbcb2 4882 return;
9ec23531
DH
4883 __might_sleep(file, line, 0);
4884#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4885 if (current->mm)
da1c55f1 4886 might_lock_read(&current->mm->mmap_lock);
9ec23531 4887#endif
3ee1afa3 4888}
9ec23531 4889EXPORT_SYMBOL(__might_fault);
3ee1afa3 4890#endif
47ad8475
AA
4891
4892#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4893/*
4894 * Process all subpages of the specified huge page with the specified
4895 * operation. The target subpage will be processed last to keep its
4896 * cache lines hot.
4897 */
4898static inline void process_huge_page(
4899 unsigned long addr_hint, unsigned int pages_per_huge_page,
4900 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4901 void *arg)
47ad8475 4902{
c79b57e4
HY
4903 int i, n, base, l;
4904 unsigned long addr = addr_hint &
4905 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4906
c6ddfb6c 4907 /* Process target subpage last to keep its cache lines hot */
47ad8475 4908 might_sleep();
c79b57e4
HY
4909 n = (addr_hint - addr) / PAGE_SIZE;
4910 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4911 /* If target subpage in first half of huge page */
c79b57e4
HY
4912 base = 0;
4913 l = n;
c6ddfb6c 4914 /* Process subpages at the end of huge page */
c79b57e4
HY
4915 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4916 cond_resched();
c6ddfb6c 4917 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4918 }
4919 } else {
c6ddfb6c 4920 /* If target subpage in second half of huge page */
c79b57e4
HY
4921 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4922 l = pages_per_huge_page - n;
c6ddfb6c 4923 /* Process subpages at the begin of huge page */
c79b57e4
HY
4924 for (i = 0; i < base; i++) {
4925 cond_resched();
c6ddfb6c 4926 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4927 }
4928 }
4929 /*
c6ddfb6c
HY
4930 * Process remaining subpages in left-right-left-right pattern
4931 * towards the target subpage
c79b57e4
HY
4932 */
4933 for (i = 0; i < l; i++) {
4934 int left_idx = base + i;
4935 int right_idx = base + 2 * l - 1 - i;
4936
4937 cond_resched();
c6ddfb6c 4938 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4939 cond_resched();
c6ddfb6c 4940 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4941 }
4942}
4943
c6ddfb6c
HY
4944static void clear_gigantic_page(struct page *page,
4945 unsigned long addr,
4946 unsigned int pages_per_huge_page)
4947{
4948 int i;
4949 struct page *p = page;
4950
4951 might_sleep();
4952 for (i = 0; i < pages_per_huge_page;
4953 i++, p = mem_map_next(p, page, i)) {
4954 cond_resched();
4955 clear_user_highpage(p, addr + i * PAGE_SIZE);
4956 }
4957}
4958
4959static void clear_subpage(unsigned long addr, int idx, void *arg)
4960{
4961 struct page *page = arg;
4962
4963 clear_user_highpage(page + idx, addr);
4964}
4965
4966void clear_huge_page(struct page *page,
4967 unsigned long addr_hint, unsigned int pages_per_huge_page)
4968{
4969 unsigned long addr = addr_hint &
4970 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4971
4972 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4973 clear_gigantic_page(page, addr, pages_per_huge_page);
4974 return;
4975 }
4976
4977 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4978}
4979
47ad8475
AA
4980static void copy_user_gigantic_page(struct page *dst, struct page *src,
4981 unsigned long addr,
4982 struct vm_area_struct *vma,
4983 unsigned int pages_per_huge_page)
4984{
4985 int i;
4986 struct page *dst_base = dst;
4987 struct page *src_base = src;
4988
4989 for (i = 0; i < pages_per_huge_page; ) {
4990 cond_resched();
4991 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4992
4993 i++;
4994 dst = mem_map_next(dst, dst_base, i);
4995 src = mem_map_next(src, src_base, i);
4996 }
4997}
4998
c9f4cd71
HY
4999struct copy_subpage_arg {
5000 struct page *dst;
5001 struct page *src;
5002 struct vm_area_struct *vma;
5003};
5004
5005static void copy_subpage(unsigned long addr, int idx, void *arg)
5006{
5007 struct copy_subpage_arg *copy_arg = arg;
5008
5009 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5010 addr, copy_arg->vma);
5011}
5012
47ad8475 5013void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5014 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5015 unsigned int pages_per_huge_page)
5016{
c9f4cd71
HY
5017 unsigned long addr = addr_hint &
5018 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5019 struct copy_subpage_arg arg = {
5020 .dst = dst,
5021 .src = src,
5022 .vma = vma,
5023 };
47ad8475
AA
5024
5025 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5026 copy_user_gigantic_page(dst, src, addr, vma,
5027 pages_per_huge_page);
5028 return;
5029 }
5030
c9f4cd71 5031 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5032}
fa4d75c1
MK
5033
5034long copy_huge_page_from_user(struct page *dst_page,
5035 const void __user *usr_src,
810a56b9
MK
5036 unsigned int pages_per_huge_page,
5037 bool allow_pagefault)
fa4d75c1
MK
5038{
5039 void *src = (void *)usr_src;
5040 void *page_kaddr;
5041 unsigned long i, rc = 0;
5042 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5043
5044 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5045 if (allow_pagefault)
5046 page_kaddr = kmap(dst_page + i);
5047 else
5048 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5049 rc = copy_from_user(page_kaddr,
5050 (const void __user *)(src + i * PAGE_SIZE),
5051 PAGE_SIZE);
810a56b9
MK
5052 if (allow_pagefault)
5053 kunmap(dst_page + i);
5054 else
5055 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5056
5057 ret_val -= (PAGE_SIZE - rc);
5058 if (rc)
5059 break;
5060
5061 cond_resched();
5062 }
5063 return ret_val;
5064}
47ad8475 5065#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5066
40b64acd 5067#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5068
5069static struct kmem_cache *page_ptl_cachep;
5070
5071void __init ptlock_cache_init(void)
5072{
5073 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5074 SLAB_PANIC, NULL);
5075}
5076
539edb58 5077bool ptlock_alloc(struct page *page)
49076ec2
KS
5078{
5079 spinlock_t *ptl;
5080
b35f1819 5081 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5082 if (!ptl)
5083 return false;
539edb58 5084 page->ptl = ptl;
49076ec2
KS
5085 return true;
5086}
5087
539edb58 5088void ptlock_free(struct page *page)
49076ec2 5089{
b35f1819 5090 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5091}
5092#endif