ksm: count ksm merging pages for each process
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
a9ee6cf5 94#ifndef CONFIG_NUMA
1da177e4 95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1 410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
03c4f204 437void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 438{
03c4f204 439 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 440
8ac1f832 441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 442 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
457 pmd_populate(mm, pmd, *pte);
458 *pte = NULL;
4b471e88 459 }
c4088ebd 460 spin_unlock(ptl);
03c4f204
QZ
461}
462
4cf58924 463int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 464{
4cf58924 465 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
466 if (!new)
467 return -ENOMEM;
468
03c4f204 469 pmd_install(mm, pmd, &new);
2f569afd
MS
470 if (new)
471 pte_free(mm, new);
1bb3630e 472 return 0;
1da177e4
LT
473}
474
4cf58924 475int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 476{
4cf58924 477 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
478 if (!new)
479 return -ENOMEM;
480
481 spin_lock(&init_mm.page_table_lock);
8ac1f832 482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 483 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 484 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 485 new = NULL;
4b471e88 486 }
1bb3630e 487 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
488 if (new)
489 pte_free_kernel(&init_mm, new);
1bb3630e 490 return 0;
1da177e4
LT
491}
492
d559db08
KH
493static inline void init_rss_vec(int *rss)
494{
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496}
497
498static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 499{
d559db08
KH
500 int i;
501
34e55232 502 if (current->mm == mm)
05af2e10 503 sync_mm_rss(mm);
d559db08
KH
504 for (i = 0; i < NR_MM_COUNTERS; i++)
505 if (rss[i])
506 add_mm_counter(mm, i, rss[i]);
ae859762
HD
507}
508
b5810039 509/*
6aab341e
LT
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
b5810039
NP
513 *
514 * The calling function must still handle the error.
515 */
3dc14741
HD
516static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
b5810039 518{
3dc14741 519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
524 pgoff_t index;
d936cf9b
HD
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
528
529 /*
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
532 */
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
535 nr_unshown++;
536 return;
537 }
538 if (nr_unshown) {
1170532b
JP
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 nr_unshown);
d936cf9b
HD
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
3dc14741
HD
547
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
550
1170532b
JP
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 current->comm,
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 554 if (page)
f0b791a3 555 dump_page(page, "bad pte");
6aa9b8b2 556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
559 vma->vm_file,
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
b5810039 563 dump_stack();
373d4d09 564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
565}
566
ee498ed7 567/*
7e675137 568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 569 *
7e675137
NP
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 573 *
7e675137
NP
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
577 * described below.
578 *
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 582 *
b379d790
JH
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
6aab341e
LT
587 *
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 *
7e675137
NP
590 * And for normal mappings this is false.
591 *
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
b379d790 596 *
b379d790 597 *
7e675137 598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
599 *
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
607 *
ee498ed7 608 */
25b2995a
CH
609struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 pte_t pte)
ee498ed7 611{
22b31eec 612 unsigned long pfn = pte_pfn(pte);
7e675137 613
00b3a331 614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 615 if (likely(!pte_special(pte)))
22b31eec 616 goto check_pfn;
667a0a06
DV
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 return NULL;
df6ad698
JG
621 if (is_zero_pfn(pfn))
622 return NULL;
e1fb4a08
DJ
623 if (pte_devmap(pte))
624 return NULL;
625
df6ad698 626 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
627 return NULL;
628 }
629
00b3a331 630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 631
b379d790
JH
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
634 if (!pfn_valid(pfn))
635 return NULL;
636 goto out;
637 } else {
7e675137
NP
638 unsigned long off;
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
640 if (pfn == vma->vm_pgoff + off)
641 return NULL;
642 if (!is_cow_mapping(vma->vm_flags))
643 return NULL;
644 }
6aab341e
LT
645 }
646
b38af472
HD
647 if (is_zero_pfn(pfn))
648 return NULL;
00b3a331 649
22b31eec
HD
650check_pfn:
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
653 return NULL;
654 }
6aab341e
LT
655
656 /*
7e675137 657 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 658 * eg. VDSO mappings can cause them to exist.
6aab341e 659 */
b379d790 660out:
6aab341e 661 return pfn_to_page(pfn);
ee498ed7
HD
662}
663
28093f9f
GS
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
665struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667{
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /*
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
674 */
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
677 if (!pfn_valid(pfn))
678 return NULL;
679 goto out;
680 } else {
681 unsigned long off;
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
684 return NULL;
685 if (!is_cow_mapping(vma->vm_flags))
686 return NULL;
687 }
688 }
689
e1fb4a08
DJ
690 if (pmd_devmap(pmd))
691 return NULL;
3cde287b 692 if (is_huge_zero_pmd(pmd))
28093f9f
GS
693 return NULL;
694 if (unlikely(pfn > highest_memmap_pfn))
695 return NULL;
696
697 /*
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
700 */
701out:
702 return pfn_to_page(pfn);
703}
704#endif
705
b756a3b5
AP
706static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
708 pte_t *ptep)
709{
710 pte_t pte;
711 swp_entry_t entry;
712
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
716
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
b756a3b5
AP
723 /*
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
726 */
727 if (PageAnon(page))
728 page_add_anon_rmap(page, vma, address, false);
729 else
730 /*
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
733 */
734 WARN_ON_ONCE(!PageAnon(page));
735
1eba86c0
PT
736 set_pte_at(vma->vm_mm, address, ptep, pte);
737
b756a3b5
AP
738 /*
739 * No need to invalidate - it was non-present before. However
740 * secondary CPUs may have mappings that need invalidating.
741 */
742 update_mmu_cache(vma, address, ptep);
743}
744
745/*
746 * Tries to restore an exclusive pte if the page lock can be acquired without
747 * sleeping.
748 */
749static int
750try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751 unsigned long addr)
752{
753 swp_entry_t entry = pte_to_swp_entry(*src_pte);
754 struct page *page = pfn_swap_entry_to_page(entry);
755
756 if (trylock_page(page)) {
757 restore_exclusive_pte(vma, page, addr, src_pte);
758 unlock_page(page);
759 return 0;
760 }
761
762 return -EBUSY;
763}
764
1da177e4
LT
765/*
766 * copy one vm_area from one task to the other. Assumes the page tables
767 * already present in the new task to be cleared in the whole range
768 * covered by this vma.
1da177e4
LT
769 */
770
df3a57d1
LT
771static unsigned long
772copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
773 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 775{
8f34f1ea 776 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
777 pte_t pte = *src_pte;
778 struct page *page;
df3a57d1
LT
779 swp_entry_t entry = pte_to_swp_entry(pte);
780
781 if (likely(!non_swap_entry(entry))) {
782 if (swap_duplicate(entry) < 0)
9a5cc85c 783 return -EIO;
df3a57d1
LT
784
785 /* make sure dst_mm is on swapoff's mmlist. */
786 if (unlikely(list_empty(&dst_mm->mmlist))) {
787 spin_lock(&mmlist_lock);
788 if (list_empty(&dst_mm->mmlist))
789 list_add(&dst_mm->mmlist,
790 &src_mm->mmlist);
791 spin_unlock(&mmlist_lock);
792 }
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
af5cdaf8 795 page = pfn_swap_entry_to_page(entry);
1da177e4 796
df3a57d1 797 rss[mm_counter(page)]++;
5042db43 798
4dd845b5 799 if (is_writable_migration_entry(entry) &&
df3a57d1 800 is_cow_mapping(vm_flags)) {
5042db43 801 /*
df3a57d1
LT
802 * COW mappings require pages in both
803 * parent and child to be set to read.
5042db43 804 */
4dd845b5
AP
805 entry = make_readable_migration_entry(
806 swp_offset(entry));
df3a57d1
LT
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
813 }
814 } else if (is_device_private_entry(entry)) {
af5cdaf8 815 page = pfn_swap_entry_to_page(entry);
5042db43 816
df3a57d1
LT
817 /*
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
820 * respect.
821 *
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
825 */
826 get_page(page);
827 rss[mm_counter(page)]++;
828 page_dup_rmap(page, false);
829
830 /*
831 * We do not preserve soft-dirty information, because so
832 * far, checkpoint/restore is the only feature that
833 * requires that. And checkpoint/restore does not work
834 * when a device driver is involved (you cannot easily
835 * save and restore device driver state).
836 */
4dd845b5 837 if (is_writable_device_private_entry(entry) &&
df3a57d1 838 is_cow_mapping(vm_flags)) {
4dd845b5
AP
839 entry = make_readable_device_private_entry(
840 swp_offset(entry));
df3a57d1
LT
841 pte = swp_entry_to_pte(entry);
842 if (pte_swp_uffd_wp(*src_pte))
843 pte = pte_swp_mkuffd_wp(pte);
844 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 845 }
b756a3b5
AP
846 } else if (is_device_exclusive_entry(entry)) {
847 /*
848 * Make device exclusive entries present by restoring the
849 * original entry then copying as for a present pte. Device
850 * exclusive entries currently only support private writable
851 * (ie. COW) mappings.
852 */
853 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
854 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
855 return -EBUSY;
856 return -ENOENT;
1da177e4 857 }
8f34f1ea
PX
858 if (!userfaultfd_wp(dst_vma))
859 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
860 set_pte_at(dst_mm, addr, dst_pte, pte);
861 return 0;
862}
863
70e806e4
PX
864/*
865 * Copy a present and normal page if necessary.
866 *
867 * NOTE! The usual case is that this doesn't need to do
868 * anything, and can just return a positive value. That
869 * will let the caller know that it can just increase
870 * the page refcount and re-use the pte the traditional
871 * way.
872 *
873 * But _if_ we need to copy it because it needs to be
874 * pinned in the parent (and the child should get its own
875 * copy rather than just a reference to the same page),
876 * we'll do that here and return zero to let the caller
877 * know we're done.
878 *
879 * And if we need a pre-allocated page but don't yet have
880 * one, return a negative error to let the preallocation
881 * code know so that it can do so outside the page table
882 * lock.
883 */
884static inline int
c78f4636
PX
885copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
886 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
887 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
888{
889 struct page *new_page;
890
70e806e4 891 /*
70e806e4
PX
892 * What we want to do is to check whether this page may
893 * have been pinned by the parent process. If so,
894 * instead of wrprotect the pte on both sides, we copy
895 * the page immediately so that we'll always guarantee
896 * the pinned page won't be randomly replaced in the
897 * future.
898 *
f3c64eda
LT
899 * The page pinning checks are just "has this mm ever
900 * seen pinning", along with the (inexact) check of
901 * the page count. That might give false positives for
902 * for pinning, but it will work correctly.
70e806e4 903 */
97a7e473 904 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
905 return 1;
906
70e806e4
PX
907 new_page = *prealloc;
908 if (!new_page)
909 return -EAGAIN;
910
911 /*
912 * We have a prealloc page, all good! Take it
913 * over and copy the page & arm it.
914 */
915 *prealloc = NULL;
c78f4636 916 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 917 __SetPageUptodate(new_page);
c78f4636
PX
918 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
919 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
920 rss[mm_counter(new_page)]++;
921
922 /* All done, just insert the new page copy in the child */
c78f4636
PX
923 pte = mk_pte(new_page, dst_vma->vm_page_prot);
924 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
925 if (userfaultfd_pte_wp(dst_vma, *src_pte))
926 /* Uffd-wp needs to be delivered to dest pte as well */
927 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 928 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
929 return 0;
930}
931
932/*
933 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
934 * is required to copy this pte.
935 */
936static inline int
c78f4636
PX
937copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
938 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
939 struct page **prealloc)
df3a57d1 940{
c78f4636
PX
941 struct mm_struct *src_mm = src_vma->vm_mm;
942 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
943 pte_t pte = *src_pte;
944 struct page *page;
945
c78f4636 946 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
947 if (page) {
948 int retval;
949
c78f4636
PX
950 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 addr, rss, prealloc, pte, page);
70e806e4
PX
952 if (retval <= 0)
953 return retval;
954
955 get_page(page);
956 page_dup_rmap(page, false);
957 rss[mm_counter(page)]++;
958 }
959
1da177e4
LT
960 /*
961 * If it's a COW mapping, write protect it both
962 * in the parent and the child
963 */
1b2de5d0 964 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 965 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 966 pte = pte_wrprotect(pte);
1da177e4
LT
967 }
968
969 /*
970 * If it's a shared mapping, mark it clean in
971 * the child
972 */
973 if (vm_flags & VM_SHARED)
974 pte = pte_mkclean(pte);
975 pte = pte_mkold(pte);
6aab341e 976
8f34f1ea 977 if (!userfaultfd_wp(dst_vma))
b569a176
PX
978 pte = pte_clear_uffd_wp(pte);
979
c78f4636 980 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
981 return 0;
982}
983
984static inline struct page *
985page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
986 unsigned long addr)
987{
988 struct page *new_page;
989
990 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
991 if (!new_page)
992 return NULL;
993
8f425e4e 994 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
995 put_page(new_page);
996 return NULL;
6aab341e 997 }
70e806e4 998 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 999
70e806e4 1000 return new_page;
1da177e4
LT
1001}
1002
c78f4636
PX
1003static int
1004copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006 unsigned long end)
1da177e4 1007{
c78f4636
PX
1008 struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1010 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1011 pte_t *src_pte, *dst_pte;
c74df32c 1012 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1013 int progress, ret = 0;
d559db08 1014 int rss[NR_MM_COUNTERS];
570a335b 1015 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1016 struct page *prealloc = NULL;
1da177e4
LT
1017
1018again:
70e806e4 1019 progress = 0;
d559db08
KH
1020 init_rss_vec(rss);
1021
c74df32c 1022 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1023 if (!dst_pte) {
1024 ret = -ENOMEM;
1025 goto out;
1026 }
ece0e2b6 1027 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1028 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1029 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1030 orig_src_pte = src_pte;
1031 orig_dst_pte = dst_pte;
6606c3e0 1032 arch_enter_lazy_mmu_mode();
1da177e4 1033
1da177e4
LT
1034 do {
1035 /*
1036 * We are holding two locks at this point - either of them
1037 * could generate latencies in another task on another CPU.
1038 */
e040f218
HD
1039 if (progress >= 32) {
1040 progress = 0;
1041 if (need_resched() ||
95c354fe 1042 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1043 break;
1044 }
1da177e4
LT
1045 if (pte_none(*src_pte)) {
1046 progress++;
1047 continue;
1048 }
79a1971c 1049 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1050 ret = copy_nonpresent_pte(dst_mm, src_mm,
1051 dst_pte, src_pte,
1052 dst_vma, src_vma,
1053 addr, rss);
1054 if (ret == -EIO) {
1055 entry = pte_to_swp_entry(*src_pte);
79a1971c 1056 break;
b756a3b5
AP
1057 } else if (ret == -EBUSY) {
1058 break;
1059 } else if (!ret) {
1060 progress += 8;
1061 continue;
9a5cc85c 1062 }
b756a3b5
AP
1063
1064 /*
1065 * Device exclusive entry restored, continue by copying
1066 * the now present pte.
1067 */
1068 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1069 }
70e806e4 1070 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1071 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1072 addr, rss, &prealloc);
70e806e4
PX
1073 /*
1074 * If we need a pre-allocated page for this pte, drop the
1075 * locks, allocate, and try again.
1076 */
1077 if (unlikely(ret == -EAGAIN))
1078 break;
1079 if (unlikely(prealloc)) {
1080 /*
1081 * pre-alloc page cannot be reused by next time so as
1082 * to strictly follow mempolicy (e.g., alloc_page_vma()
1083 * will allocate page according to address). This
1084 * could only happen if one pinned pte changed.
1085 */
1086 put_page(prealloc);
1087 prealloc = NULL;
1088 }
1da177e4
LT
1089 progress += 8;
1090 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1091
6606c3e0 1092 arch_leave_lazy_mmu_mode();
c74df32c 1093 spin_unlock(src_ptl);
ece0e2b6 1094 pte_unmap(orig_src_pte);
d559db08 1095 add_mm_rss_vec(dst_mm, rss);
c36987e2 1096 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1097 cond_resched();
570a335b 1098
9a5cc85c
AP
1099 if (ret == -EIO) {
1100 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1101 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1102 ret = -ENOMEM;
1103 goto out;
1104 }
1105 entry.val = 0;
b756a3b5
AP
1106 } else if (ret == -EBUSY) {
1107 goto out;
9a5cc85c 1108 } else if (ret == -EAGAIN) {
c78f4636 1109 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1110 if (!prealloc)
570a335b 1111 return -ENOMEM;
9a5cc85c
AP
1112 } else if (ret) {
1113 VM_WARN_ON_ONCE(1);
570a335b 1114 }
9a5cc85c
AP
1115
1116 /* We've captured and resolved the error. Reset, try again. */
1117 ret = 0;
1118
1da177e4
LT
1119 if (addr != end)
1120 goto again;
70e806e4
PX
1121out:
1122 if (unlikely(prealloc))
1123 put_page(prealloc);
1124 return ret;
1da177e4
LT
1125}
1126
c78f4636
PX
1127static inline int
1128copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1129 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1130 unsigned long end)
1da177e4 1131{
c78f4636
PX
1132 struct mm_struct *dst_mm = dst_vma->vm_mm;
1133 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1134 pmd_t *src_pmd, *dst_pmd;
1135 unsigned long next;
1136
1137 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1138 if (!dst_pmd)
1139 return -ENOMEM;
1140 src_pmd = pmd_offset(src_pud, addr);
1141 do {
1142 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1143 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1144 || pmd_devmap(*src_pmd)) {
71e3aac0 1145 int err;
c78f4636 1146 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1147 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1148 addr, dst_vma, src_vma);
71e3aac0
AA
1149 if (err == -ENOMEM)
1150 return -ENOMEM;
1151 if (!err)
1152 continue;
1153 /* fall through */
1154 }
1da177e4
LT
1155 if (pmd_none_or_clear_bad(src_pmd))
1156 continue;
c78f4636
PX
1157 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1158 addr, next))
1da177e4
LT
1159 return -ENOMEM;
1160 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1161 return 0;
1162}
1163
c78f4636
PX
1164static inline int
1165copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1166 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1167 unsigned long end)
1da177e4 1168{
c78f4636
PX
1169 struct mm_struct *dst_mm = dst_vma->vm_mm;
1170 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1171 pud_t *src_pud, *dst_pud;
1172 unsigned long next;
1173
c2febafc 1174 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1175 if (!dst_pud)
1176 return -ENOMEM;
c2febafc 1177 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1178 do {
1179 next = pud_addr_end(addr, end);
a00cc7d9
MW
1180 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1181 int err;
1182
c78f4636 1183 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1184 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1185 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1186 if (err == -ENOMEM)
1187 return -ENOMEM;
1188 if (!err)
1189 continue;
1190 /* fall through */
1191 }
1da177e4
LT
1192 if (pud_none_or_clear_bad(src_pud))
1193 continue;
c78f4636
PX
1194 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1195 addr, next))
1da177e4
LT
1196 return -ENOMEM;
1197 } while (dst_pud++, src_pud++, addr = next, addr != end);
1198 return 0;
1199}
1200
c78f4636
PX
1201static inline int
1202copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1203 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1204 unsigned long end)
c2febafc 1205{
c78f4636 1206 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1207 p4d_t *src_p4d, *dst_p4d;
1208 unsigned long next;
1209
1210 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1211 if (!dst_p4d)
1212 return -ENOMEM;
1213 src_p4d = p4d_offset(src_pgd, addr);
1214 do {
1215 next = p4d_addr_end(addr, end);
1216 if (p4d_none_or_clear_bad(src_p4d))
1217 continue;
c78f4636
PX
1218 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1219 addr, next))
c2febafc
KS
1220 return -ENOMEM;
1221 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1222 return 0;
1223}
1224
c78f4636
PX
1225int
1226copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1227{
1228 pgd_t *src_pgd, *dst_pgd;
1229 unsigned long next;
c78f4636
PX
1230 unsigned long addr = src_vma->vm_start;
1231 unsigned long end = src_vma->vm_end;
1232 struct mm_struct *dst_mm = dst_vma->vm_mm;
1233 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1234 struct mmu_notifier_range range;
2ec74c3e 1235 bool is_cow;
cddb8a5c 1236 int ret;
1da177e4 1237
d992895b
NP
1238 /*
1239 * Don't copy ptes where a page fault will fill them correctly.
1240 * Fork becomes much lighter when there are big shared or private
1241 * readonly mappings. The tradeoff is that copy_page_range is more
1242 * efficient than faulting.
1243 */
c78f4636
PX
1244 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1245 !src_vma->anon_vma)
0661a336 1246 return 0;
d992895b 1247
c78f4636
PX
1248 if (is_vm_hugetlb_page(src_vma))
1249 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1250
c78f4636 1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1252 /*
1253 * We do not free on error cases below as remove_vma
1254 * gets called on error from higher level routine
1255 */
c78f4636 1256 ret = track_pfn_copy(src_vma);
2ab64037 1257 if (ret)
1258 return ret;
1259 }
1260
cddb8a5c
AA
1261 /*
1262 * We need to invalidate the secondary MMU mappings only when
1263 * there could be a permission downgrade on the ptes of the
1264 * parent mm. And a permission downgrade will only happen if
1265 * is_cow_mapping() returns true.
1266 */
c78f4636 1267 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1268
1269 if (is_cow) {
7269f999 1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1271 0, src_vma, src_mm, addr, end);
ac46d4f3 1272 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1273 /*
1274 * Disabling preemption is not needed for the write side, as
1275 * the read side doesn't spin, but goes to the mmap_lock.
1276 *
1277 * Use the raw variant of the seqcount_t write API to avoid
1278 * lockdep complaining about preemptibility.
1279 */
1280 mmap_assert_write_locked(src_mm);
1281 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1282 }
cddb8a5c
AA
1283
1284 ret = 0;
1da177e4
LT
1285 dst_pgd = pgd_offset(dst_mm, addr);
1286 src_pgd = pgd_offset(src_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(src_pgd))
1290 continue;
c78f4636
PX
1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 addr, next))) {
cddb8a5c
AA
1293 ret = -ENOMEM;
1294 break;
1295 }
1da177e4 1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1297
57efa1fe
JG
1298 if (is_cow) {
1299 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1300 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1301 }
cddb8a5c 1302 return ret;
1da177e4
LT
1303}
1304
3506659e
MWO
1305/*
1306 * Parameter block passed down to zap_pte_range in exceptional cases.
1307 */
1308struct zap_details {
3506659e 1309 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1310 bool even_cows; /* Zap COWed private pages too? */
3506659e
MWO
1311};
1312
5abfd71d
PX
1313/* Whether we should zap all COWed (private) pages too */
1314static inline bool should_zap_cows(struct zap_details *details)
1315{
1316 /* By default, zap all pages */
1317 if (!details)
1318 return true;
1319
1320 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1321 return details->even_cows;
5abfd71d
PX
1322}
1323
2e148f1e 1324/* Decides whether we should zap this page with the page pointer specified */
254ab940 1325static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1326{
5abfd71d
PX
1327 /* If we can make a decision without *page.. */
1328 if (should_zap_cows(details))
254ab940 1329 return true;
5abfd71d
PX
1330
1331 /* E.g. the caller passes NULL for the case of a zero page */
1332 if (!page)
254ab940 1333 return true;
3506659e 1334
2e148f1e
PX
1335 /* Otherwise we should only zap non-anon pages */
1336 return !PageAnon(page);
3506659e
MWO
1337}
1338
51c6f666 1339static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1340 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1341 unsigned long addr, unsigned long end,
97a89413 1342 struct zap_details *details)
1da177e4 1343{
b5810039 1344 struct mm_struct *mm = tlb->mm;
d16dfc55 1345 int force_flush = 0;
d559db08 1346 int rss[NR_MM_COUNTERS];
97a89413 1347 spinlock_t *ptl;
5f1a1907 1348 pte_t *start_pte;
97a89413 1349 pte_t *pte;
8a5f14a2 1350 swp_entry_t entry;
d559db08 1351
ed6a7935 1352 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1353again:
e303297e 1354 init_rss_vec(rss);
5f1a1907
SR
1355 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1356 pte = start_pte;
3ea27719 1357 flush_tlb_batched_pending(mm);
6606c3e0 1358 arch_enter_lazy_mmu_mode();
1da177e4
LT
1359 do {
1360 pte_t ptent = *pte;
8018db85
PX
1361 struct page *page;
1362
166f61b9 1363 if (pte_none(ptent))
1da177e4 1364 continue;
6f5e6b9e 1365
7b167b68
MK
1366 if (need_resched())
1367 break;
1368
1da177e4 1369 if (pte_present(ptent)) {
25b2995a 1370 page = vm_normal_page(vma, addr, ptent);
254ab940 1371 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1372 continue;
b5810039 1373 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1374 tlb->fullmm);
1da177e4
LT
1375 tlb_remove_tlb_entry(tlb, pte, addr);
1376 if (unlikely(!page))
1377 continue;
eca56ff9
JM
1378
1379 if (!PageAnon(page)) {
1cf35d47
LT
1380 if (pte_dirty(ptent)) {
1381 force_flush = 1;
6237bcd9 1382 set_page_dirty(page);
1cf35d47 1383 }
4917e5d0 1384 if (pte_young(ptent) &&
64363aad 1385 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1386 mark_page_accessed(page);
6237bcd9 1387 }
eca56ff9 1388 rss[mm_counter(page)]--;
cea86fe2 1389 page_remove_rmap(page, vma, false);
3dc14741
HD
1390 if (unlikely(page_mapcount(page) < 0))
1391 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1392 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1393 force_flush = 1;
ce9ec37b 1394 addr += PAGE_SIZE;
d16dfc55 1395 break;
1cf35d47 1396 }
1da177e4
LT
1397 continue;
1398 }
5042db43
JG
1399
1400 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1401 if (is_device_private_entry(entry) ||
1402 is_device_exclusive_entry(entry)) {
8018db85 1403 page = pfn_swap_entry_to_page(entry);
254ab940 1404 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1405 continue;
5042db43 1406 rss[mm_counter(page)]--;
b756a3b5 1407 if (is_device_private_entry(entry))
cea86fe2 1408 page_remove_rmap(page, vma, false);
5042db43 1409 put_page(page);
8018db85 1410 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1411 /* Genuine swap entry, hence a private anon page */
1412 if (!should_zap_cows(details))
1413 continue;
8a5f14a2 1414 rss[MM_SWAPENTS]--;
8018db85
PX
1415 if (unlikely(!free_swap_and_cache(entry)))
1416 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1417 } else if (is_migration_entry(entry)) {
af5cdaf8 1418 page = pfn_swap_entry_to_page(entry);
254ab940 1419 if (!should_zap_page(details, page))
5abfd71d 1420 continue;
eca56ff9 1421 rss[mm_counter(page)]--;
5abfd71d
PX
1422 } else if (is_hwpoison_entry(entry)) {
1423 if (!should_zap_cows(details))
1424 continue;
1425 } else {
1426 /* We should have covered all the swap entry types */
1427 WARN_ON_ONCE(1);
b084d435 1428 }
9888a1ca 1429 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1430 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1431
d559db08 1432 add_mm_rss_vec(mm, rss);
6606c3e0 1433 arch_leave_lazy_mmu_mode();
51c6f666 1434
1cf35d47 1435 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1436 if (force_flush)
1cf35d47 1437 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1438 pte_unmap_unlock(start_pte, ptl);
1439
1440 /*
1441 * If we forced a TLB flush (either due to running out of
1442 * batch buffers or because we needed to flush dirty TLB
1443 * entries before releasing the ptl), free the batched
1444 * memory too. Restart if we didn't do everything.
1445 */
1446 if (force_flush) {
1447 force_flush = 0;
fa0aafb8 1448 tlb_flush_mmu(tlb);
7b167b68
MK
1449 }
1450
1451 if (addr != end) {
1452 cond_resched();
1453 goto again;
d16dfc55
PZ
1454 }
1455
51c6f666 1456 return addr;
1da177e4
LT
1457}
1458
51c6f666 1459static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1460 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1461 unsigned long addr, unsigned long end,
97a89413 1462 struct zap_details *details)
1da177e4
LT
1463{
1464 pmd_t *pmd;
1465 unsigned long next;
1466
1467 pmd = pmd_offset(pud, addr);
1468 do {
1469 next = pmd_addr_end(addr, end);
84c3fc4e 1470 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1471 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1472 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1473 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1474 goto next;
71e3aac0 1475 /* fall through */
3506659e
MWO
1476 } else if (details && details->single_folio &&
1477 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1478 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1479 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1480 /*
1481 * Take and drop THP pmd lock so that we cannot return
1482 * prematurely, while zap_huge_pmd() has cleared *pmd,
1483 * but not yet decremented compound_mapcount().
1484 */
1485 spin_unlock(ptl);
71e3aac0 1486 }
22061a1f 1487
1a5a9906
AA
1488 /*
1489 * Here there can be other concurrent MADV_DONTNEED or
1490 * trans huge page faults running, and if the pmd is
1491 * none or trans huge it can change under us. This is
c1e8d7c6 1492 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1493 * mode.
1494 */
1495 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1496 goto next;
97a89413 1497 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1498next:
97a89413
PZ
1499 cond_resched();
1500 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1501
1502 return addr;
1da177e4
LT
1503}
1504
51c6f666 1505static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1506 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1507 unsigned long addr, unsigned long end,
97a89413 1508 struct zap_details *details)
1da177e4
LT
1509{
1510 pud_t *pud;
1511 unsigned long next;
1512
c2febafc 1513 pud = pud_offset(p4d, addr);
1da177e4
LT
1514 do {
1515 next = pud_addr_end(addr, end);
a00cc7d9
MW
1516 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1517 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1518 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1519 split_huge_pud(vma, pud, addr);
1520 } else if (zap_huge_pud(tlb, vma, pud, addr))
1521 goto next;
1522 /* fall through */
1523 }
97a89413 1524 if (pud_none_or_clear_bad(pud))
1da177e4 1525 continue;
97a89413 1526 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1527next:
1528 cond_resched();
97a89413 1529 } while (pud++, addr = next, addr != end);
51c6f666
RH
1530
1531 return addr;
1da177e4
LT
1532}
1533
c2febafc
KS
1534static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1535 struct vm_area_struct *vma, pgd_t *pgd,
1536 unsigned long addr, unsigned long end,
1537 struct zap_details *details)
1538{
1539 p4d_t *p4d;
1540 unsigned long next;
1541
1542 p4d = p4d_offset(pgd, addr);
1543 do {
1544 next = p4d_addr_end(addr, end);
1545 if (p4d_none_or_clear_bad(p4d))
1546 continue;
1547 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1548 } while (p4d++, addr = next, addr != end);
1549
1550 return addr;
1551}
1552
aac45363 1553void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1554 struct vm_area_struct *vma,
1555 unsigned long addr, unsigned long end,
1556 struct zap_details *details)
1da177e4
LT
1557{
1558 pgd_t *pgd;
1559 unsigned long next;
1560
1da177e4
LT
1561 BUG_ON(addr >= end);
1562 tlb_start_vma(tlb, vma);
1563 pgd = pgd_offset(vma->vm_mm, addr);
1564 do {
1565 next = pgd_addr_end(addr, end);
97a89413 1566 if (pgd_none_or_clear_bad(pgd))
1da177e4 1567 continue;
c2febafc 1568 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1569 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1570 tlb_end_vma(tlb, vma);
1571}
51c6f666 1572
f5cc4eef
AV
1573
1574static void unmap_single_vma(struct mmu_gather *tlb,
1575 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1576 unsigned long end_addr,
f5cc4eef
AV
1577 struct zap_details *details)
1578{
1579 unsigned long start = max(vma->vm_start, start_addr);
1580 unsigned long end;
1581
1582 if (start >= vma->vm_end)
1583 return;
1584 end = min(vma->vm_end, end_addr);
1585 if (end <= vma->vm_start)
1586 return;
1587
cbc91f71
SD
1588 if (vma->vm_file)
1589 uprobe_munmap(vma, start, end);
1590
b3b9c293 1591 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1592 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1593
1594 if (start != end) {
1595 if (unlikely(is_vm_hugetlb_page(vma))) {
1596 /*
1597 * It is undesirable to test vma->vm_file as it
1598 * should be non-null for valid hugetlb area.
1599 * However, vm_file will be NULL in the error
7aa6b4ad 1600 * cleanup path of mmap_region. When
f5cc4eef 1601 * hugetlbfs ->mmap method fails,
7aa6b4ad 1602 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1603 * before calling this function to clean up.
1604 * Since no pte has actually been setup, it is
1605 * safe to do nothing in this case.
1606 */
24669e58 1607 if (vma->vm_file) {
83cde9e8 1608 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1609 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1610 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1611 }
f5cc4eef
AV
1612 } else
1613 unmap_page_range(tlb, vma, start, end, details);
1614 }
1da177e4
LT
1615}
1616
1da177e4
LT
1617/**
1618 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1619 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1620 * @vma: the starting vma
1621 * @start_addr: virtual address at which to start unmapping
1622 * @end_addr: virtual address at which to end unmapping
1da177e4 1623 *
508034a3 1624 * Unmap all pages in the vma list.
1da177e4 1625 *
1da177e4
LT
1626 * Only addresses between `start' and `end' will be unmapped.
1627 *
1628 * The VMA list must be sorted in ascending virtual address order.
1629 *
1630 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1631 * range after unmap_vmas() returns. So the only responsibility here is to
1632 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1633 * drops the lock and schedules.
1634 */
6e8bb019 1635void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1636 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1637 unsigned long end_addr)
1da177e4 1638{
ac46d4f3 1639 struct mmu_notifier_range range;
1da177e4 1640
6f4f13e8
JG
1641 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1642 start_addr, end_addr);
ac46d4f3 1643 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1644 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1645 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1646 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1647}
1648
1649/**
1650 * zap_page_range - remove user pages in a given range
1651 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1652 * @start: starting address of pages to zap
1da177e4 1653 * @size: number of bytes to zap
f5cc4eef
AV
1654 *
1655 * Caller must protect the VMA list
1da177e4 1656 */
7e027b14 1657void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1658 unsigned long size)
1da177e4 1659{
ac46d4f3 1660 struct mmu_notifier_range range;
d16dfc55 1661 struct mmu_gather tlb;
1da177e4 1662
1da177e4 1663 lru_add_drain();
7269f999 1664 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1665 start, start + size);
a72afd87 1666 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1667 update_hiwater_rss(vma->vm_mm);
1668 mmu_notifier_invalidate_range_start(&range);
1669 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1670 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1671 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1672 tlb_finish_mmu(&tlb);
1da177e4
LT
1673}
1674
f5cc4eef
AV
1675/**
1676 * zap_page_range_single - remove user pages in a given range
1677 * @vma: vm_area_struct holding the applicable pages
1678 * @address: starting address of pages to zap
1679 * @size: number of bytes to zap
8a5f14a2 1680 * @details: details of shared cache invalidation
f5cc4eef
AV
1681 *
1682 * The range must fit into one VMA.
1da177e4 1683 */
f5cc4eef 1684static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1685 unsigned long size, struct zap_details *details)
1686{
ac46d4f3 1687 struct mmu_notifier_range range;
d16dfc55 1688 struct mmu_gather tlb;
1da177e4 1689
1da177e4 1690 lru_add_drain();
7269f999 1691 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1692 address, address + size);
a72afd87 1693 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1694 update_hiwater_rss(vma->vm_mm);
1695 mmu_notifier_invalidate_range_start(&range);
1696 unmap_single_vma(&tlb, vma, address, range.end, details);
1697 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1698 tlb_finish_mmu(&tlb);
1da177e4
LT
1699}
1700
c627f9cc
JS
1701/**
1702 * zap_vma_ptes - remove ptes mapping the vma
1703 * @vma: vm_area_struct holding ptes to be zapped
1704 * @address: starting address of pages to zap
1705 * @size: number of bytes to zap
1706 *
1707 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1708 *
1709 * The entire address range must be fully contained within the vma.
1710 *
c627f9cc 1711 */
27d036e3 1712void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1713 unsigned long size)
1714{
88a35912 1715 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1716 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1717 return;
1718
f5cc4eef 1719 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1720}
1721EXPORT_SYMBOL_GPL(zap_vma_ptes);
1722
8cd3984d 1723static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1724{
c2febafc
KS
1725 pgd_t *pgd;
1726 p4d_t *p4d;
1727 pud_t *pud;
1728 pmd_t *pmd;
1729
1730 pgd = pgd_offset(mm, addr);
1731 p4d = p4d_alloc(mm, pgd, addr);
1732 if (!p4d)
1733 return NULL;
1734 pud = pud_alloc(mm, p4d, addr);
1735 if (!pud)
1736 return NULL;
1737 pmd = pmd_alloc(mm, pud, addr);
1738 if (!pmd)
1739 return NULL;
1740
1741 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1742 return pmd;
1743}
1744
1745pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 spinlock_t **ptl)
1747{
1748 pmd_t *pmd = walk_to_pmd(mm, addr);
1749
1750 if (!pmd)
1751 return NULL;
c2febafc 1752 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1753}
1754
8efd6f5b
AR
1755static int validate_page_before_insert(struct page *page)
1756{
1757 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1758 return -EINVAL;
1759 flush_dcache_page(page);
1760 return 0;
1761}
1762
cea86fe2 1763static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1764 unsigned long addr, struct page *page, pgprot_t prot)
1765{
1766 if (!pte_none(*pte))
1767 return -EBUSY;
1768 /* Ok, finally just insert the thing.. */
1769 get_page(page);
cea86fe2
HD
1770 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1771 page_add_file_rmap(page, vma, false);
1772 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1773 return 0;
1774}
1775
238f58d8
LT
1776/*
1777 * This is the old fallback for page remapping.
1778 *
1779 * For historical reasons, it only allows reserved pages. Only
1780 * old drivers should use this, and they needed to mark their
1781 * pages reserved for the old functions anyway.
1782 */
423bad60
NP
1783static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1784 struct page *page, pgprot_t prot)
238f58d8
LT
1785{
1786 int retval;
c9cfcddf 1787 pte_t *pte;
8a9f3ccd
BS
1788 spinlock_t *ptl;
1789
8efd6f5b
AR
1790 retval = validate_page_before_insert(page);
1791 if (retval)
5b4e655e 1792 goto out;
238f58d8 1793 retval = -ENOMEM;
cea86fe2 1794 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1795 if (!pte)
5b4e655e 1796 goto out;
cea86fe2 1797 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1798 pte_unmap_unlock(pte, ptl);
1799out:
1800 return retval;
1801}
1802
8cd3984d 1803#ifdef pte_index
cea86fe2 1804static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1805 unsigned long addr, struct page *page, pgprot_t prot)
1806{
1807 int err;
1808
1809 if (!page_count(page))
1810 return -EINVAL;
1811 err = validate_page_before_insert(page);
7f70c2a6
AR
1812 if (err)
1813 return err;
cea86fe2 1814 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1815}
1816
1817/* insert_pages() amortizes the cost of spinlock operations
1818 * when inserting pages in a loop. Arch *must* define pte_index.
1819 */
1820static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1821 struct page **pages, unsigned long *num, pgprot_t prot)
1822{
1823 pmd_t *pmd = NULL;
7f70c2a6
AR
1824 pte_t *start_pte, *pte;
1825 spinlock_t *pte_lock;
8cd3984d
AR
1826 struct mm_struct *const mm = vma->vm_mm;
1827 unsigned long curr_page_idx = 0;
1828 unsigned long remaining_pages_total = *num;
1829 unsigned long pages_to_write_in_pmd;
1830 int ret;
1831more:
1832 ret = -EFAULT;
1833 pmd = walk_to_pmd(mm, addr);
1834 if (!pmd)
1835 goto out;
1836
1837 pages_to_write_in_pmd = min_t(unsigned long,
1838 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1839
1840 /* Allocate the PTE if necessary; takes PMD lock once only. */
1841 ret = -ENOMEM;
1842 if (pte_alloc(mm, pmd))
1843 goto out;
8cd3984d
AR
1844
1845 while (pages_to_write_in_pmd) {
1846 int pte_idx = 0;
1847 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1848
7f70c2a6
AR
1849 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1850 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1851 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1852 addr, pages[curr_page_idx], prot);
1853 if (unlikely(err)) {
7f70c2a6 1854 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1855 ret = err;
1856 remaining_pages_total -= pte_idx;
1857 goto out;
1858 }
1859 addr += PAGE_SIZE;
1860 ++curr_page_idx;
1861 }
7f70c2a6 1862 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1863 pages_to_write_in_pmd -= batch_size;
1864 remaining_pages_total -= batch_size;
1865 }
1866 if (remaining_pages_total)
1867 goto more;
1868 ret = 0;
1869out:
1870 *num = remaining_pages_total;
1871 return ret;
1872}
1873#endif /* ifdef pte_index */
1874
1875/**
1876 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1877 * @vma: user vma to map to
1878 * @addr: target start user address of these pages
1879 * @pages: source kernel pages
1880 * @num: in: number of pages to map. out: number of pages that were *not*
1881 * mapped. (0 means all pages were successfully mapped).
1882 *
1883 * Preferred over vm_insert_page() when inserting multiple pages.
1884 *
1885 * In case of error, we may have mapped a subset of the provided
1886 * pages. It is the caller's responsibility to account for this case.
1887 *
1888 * The same restrictions apply as in vm_insert_page().
1889 */
1890int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1891 struct page **pages, unsigned long *num)
1892{
1893#ifdef pte_index
1894 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1895
1896 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1897 return -EFAULT;
1898 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1899 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1900 BUG_ON(vma->vm_flags & VM_PFNMAP);
1901 vma->vm_flags |= VM_MIXEDMAP;
1902 }
1903 /* Defer page refcount checking till we're about to map that page. */
1904 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1905#else
1906 unsigned long idx = 0, pgcount = *num;
45779b03 1907 int err = -EINVAL;
8cd3984d
AR
1908
1909 for (; idx < pgcount; ++idx) {
1910 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1911 if (err)
1912 break;
1913 }
1914 *num = pgcount - idx;
1915 return err;
1916#endif /* ifdef pte_index */
1917}
1918EXPORT_SYMBOL(vm_insert_pages);
1919
bfa5bf6d
REB
1920/**
1921 * vm_insert_page - insert single page into user vma
1922 * @vma: user vma to map to
1923 * @addr: target user address of this page
1924 * @page: source kernel page
1925 *
a145dd41
LT
1926 * This allows drivers to insert individual pages they've allocated
1927 * into a user vma.
1928 *
1929 * The page has to be a nice clean _individual_ kernel allocation.
1930 * If you allocate a compound page, you need to have marked it as
1931 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1932 * (see split_page()).
a145dd41
LT
1933 *
1934 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1935 * took an arbitrary page protection parameter. This doesn't allow
1936 * that. Your vma protection will have to be set up correctly, which
1937 * means that if you want a shared writable mapping, you'd better
1938 * ask for a shared writable mapping!
1939 *
1940 * The page does not need to be reserved.
4b6e1e37
KK
1941 *
1942 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1943 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1944 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1945 * function from other places, for example from page-fault handler.
a862f68a
MR
1946 *
1947 * Return: %0 on success, negative error code otherwise.
a145dd41 1948 */
423bad60
NP
1949int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1950 struct page *page)
a145dd41
LT
1951{
1952 if (addr < vma->vm_start || addr >= vma->vm_end)
1953 return -EFAULT;
1954 if (!page_count(page))
1955 return -EINVAL;
4b6e1e37 1956 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1957 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1958 BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 vma->vm_flags |= VM_MIXEDMAP;
1960 }
423bad60 1961 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1962}
e3c3374f 1963EXPORT_SYMBOL(vm_insert_page);
a145dd41 1964
a667d745
SJ
1965/*
1966 * __vm_map_pages - maps range of kernel pages into user vma
1967 * @vma: user vma to map to
1968 * @pages: pointer to array of source kernel pages
1969 * @num: number of pages in page array
1970 * @offset: user's requested vm_pgoff
1971 *
1972 * This allows drivers to map range of kernel pages into a user vma.
1973 *
1974 * Return: 0 on success and error code otherwise.
1975 */
1976static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1977 unsigned long num, unsigned long offset)
1978{
1979 unsigned long count = vma_pages(vma);
1980 unsigned long uaddr = vma->vm_start;
1981 int ret, i;
1982
1983 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1984 if (offset >= num)
a667d745
SJ
1985 return -ENXIO;
1986
1987 /* Fail if the user requested size exceeds available object size */
1988 if (count > num - offset)
1989 return -ENXIO;
1990
1991 for (i = 0; i < count; i++) {
1992 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1993 if (ret < 0)
1994 return ret;
1995 uaddr += PAGE_SIZE;
1996 }
1997
1998 return 0;
1999}
2000
2001/**
2002 * vm_map_pages - maps range of kernel pages starts with non zero offset
2003 * @vma: user vma to map to
2004 * @pages: pointer to array of source kernel pages
2005 * @num: number of pages in page array
2006 *
2007 * Maps an object consisting of @num pages, catering for the user's
2008 * requested vm_pgoff
2009 *
2010 * If we fail to insert any page into the vma, the function will return
2011 * immediately leaving any previously inserted pages present. Callers
2012 * from the mmap handler may immediately return the error as their caller
2013 * will destroy the vma, removing any successfully inserted pages. Other
2014 * callers should make their own arrangements for calling unmap_region().
2015 *
2016 * Context: Process context. Called by mmap handlers.
2017 * Return: 0 on success and error code otherwise.
2018 */
2019int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 unsigned long num)
2021{
2022 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2023}
2024EXPORT_SYMBOL(vm_map_pages);
2025
2026/**
2027 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2028 * @vma: user vma to map to
2029 * @pages: pointer to array of source kernel pages
2030 * @num: number of pages in page array
2031 *
2032 * Similar to vm_map_pages(), except that it explicitly sets the offset
2033 * to 0. This function is intended for the drivers that did not consider
2034 * vm_pgoff.
2035 *
2036 * Context: Process context. Called by mmap handlers.
2037 * Return: 0 on success and error code otherwise.
2038 */
2039int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2040 unsigned long num)
2041{
2042 return __vm_map_pages(vma, pages, num, 0);
2043}
2044EXPORT_SYMBOL(vm_map_pages_zero);
2045
9b5a8e00 2046static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2047 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2048{
2049 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2050 pte_t *pte, entry;
2051 spinlock_t *ptl;
2052
423bad60
NP
2053 pte = get_locked_pte(mm, addr, &ptl);
2054 if (!pte)
9b5a8e00 2055 return VM_FAULT_OOM;
b2770da6
RZ
2056 if (!pte_none(*pte)) {
2057 if (mkwrite) {
2058 /*
2059 * For read faults on private mappings the PFN passed
2060 * in may not match the PFN we have mapped if the
2061 * mapped PFN is a writeable COW page. In the mkwrite
2062 * case we are creating a writable PTE for a shared
f2c57d91
JK
2063 * mapping and we expect the PFNs to match. If they
2064 * don't match, we are likely racing with block
2065 * allocation and mapping invalidation so just skip the
2066 * update.
b2770da6 2067 */
f2c57d91
JK
2068 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2069 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2070 goto out_unlock;
f2c57d91 2071 }
cae85cb8
JK
2072 entry = pte_mkyoung(*pte);
2073 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2075 update_mmu_cache(vma, addr, pte);
2076 }
2077 goto out_unlock;
b2770da6 2078 }
423bad60
NP
2079
2080 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2081 if (pfn_t_devmap(pfn))
2082 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2083 else
2084 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2085
b2770da6
RZ
2086 if (mkwrite) {
2087 entry = pte_mkyoung(entry);
2088 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2089 }
2090
423bad60 2091 set_pte_at(mm, addr, pte, entry);
4b3073e1 2092 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2093
423bad60
NP
2094out_unlock:
2095 pte_unmap_unlock(pte, ptl);
9b5a8e00 2096 return VM_FAULT_NOPAGE;
423bad60
NP
2097}
2098
f5e6d1d5
MW
2099/**
2100 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2101 * @vma: user vma to map to
2102 * @addr: target user address of this page
2103 * @pfn: source kernel pfn
2104 * @pgprot: pgprot flags for the inserted page
2105 *
a1a0aea5 2106 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2107 * to override pgprot on a per-page basis.
2108 *
2109 * This only makes sense for IO mappings, and it makes no sense for
2110 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2111 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2112 * impractical.
2113 *
574c5b3d
TH
2114 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2115 * a value of @pgprot different from that of @vma->vm_page_prot.
2116 *
ae2b01f3 2117 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2118 * Return: vm_fault_t value.
2119 */
2120vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2121 unsigned long pfn, pgprot_t pgprot)
2122{
6d958546
MW
2123 /*
2124 * Technically, architectures with pte_special can avoid all these
2125 * restrictions (same for remap_pfn_range). However we would like
2126 * consistency in testing and feature parity among all, so we should
2127 * try to keep these invariants in place for everybody.
2128 */
2129 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2130 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2131 (VM_PFNMAP|VM_MIXEDMAP));
2132 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2133 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2134
2135 if (addr < vma->vm_start || addr >= vma->vm_end)
2136 return VM_FAULT_SIGBUS;
2137
2138 if (!pfn_modify_allowed(pfn, pgprot))
2139 return VM_FAULT_SIGBUS;
2140
2141 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2142
9b5a8e00 2143 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2144 false);
f5e6d1d5
MW
2145}
2146EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2147
ae2b01f3
MW
2148/**
2149 * vmf_insert_pfn - insert single pfn into user vma
2150 * @vma: user vma to map to
2151 * @addr: target user address of this page
2152 * @pfn: source kernel pfn
2153 *
2154 * Similar to vm_insert_page, this allows drivers to insert individual pages
2155 * they've allocated into a user vma. Same comments apply.
2156 *
2157 * This function should only be called from a vm_ops->fault handler, and
2158 * in that case the handler should return the result of this function.
2159 *
2160 * vma cannot be a COW mapping.
2161 *
2162 * As this is called only for pages that do not currently exist, we
2163 * do not need to flush old virtual caches or the TLB.
2164 *
2165 * Context: Process context. May allocate using %GFP_KERNEL.
2166 * Return: vm_fault_t value.
2167 */
2168vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2169 unsigned long pfn)
2170{
2171 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2172}
2173EXPORT_SYMBOL(vmf_insert_pfn);
2174
785a3fab
DW
2175static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2176{
2177 /* these checks mirror the abort conditions in vm_normal_page */
2178 if (vma->vm_flags & VM_MIXEDMAP)
2179 return true;
2180 if (pfn_t_devmap(pfn))
2181 return true;
2182 if (pfn_t_special(pfn))
2183 return true;
2184 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2185 return true;
2186 return false;
2187}
2188
79f3aa5b 2189static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2190 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2191 bool mkwrite)
423bad60 2192{
79f3aa5b 2193 int err;
87744ab3 2194
785a3fab 2195 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2196
423bad60 2197 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2198 return VM_FAULT_SIGBUS;
308a047c
BP
2199
2200 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2201
42e4089c 2202 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2203 return VM_FAULT_SIGBUS;
42e4089c 2204
423bad60
NP
2205 /*
2206 * If we don't have pte special, then we have to use the pfn_valid()
2207 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2208 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2209 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2210 * without pte special, it would there be refcounted as a normal page.
423bad60 2211 */
00b3a331
LD
2212 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2213 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2214 struct page *page;
2215
03fc2da6
DW
2216 /*
2217 * At this point we are committed to insert_page()
2218 * regardless of whether the caller specified flags that
2219 * result in pfn_t_has_page() == false.
2220 */
2221 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2222 err = insert_page(vma, addr, page, pgprot);
2223 } else {
9b5a8e00 2224 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2225 }
b2770da6 2226
5d747637
MW
2227 if (err == -ENOMEM)
2228 return VM_FAULT_OOM;
2229 if (err < 0 && err != -EBUSY)
2230 return VM_FAULT_SIGBUS;
2231
2232 return VM_FAULT_NOPAGE;
e0dc0d8f 2233}
79f3aa5b 2234
574c5b3d
TH
2235/**
2236 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2237 * @vma: user vma to map to
2238 * @addr: target user address of this page
2239 * @pfn: source kernel pfn
2240 * @pgprot: pgprot flags for the inserted page
2241 *
a1a0aea5 2242 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2243 * to override pgprot on a per-page basis.
2244 *
2245 * Typically this function should be used by drivers to set caching- and
2246 * encryption bits different than those of @vma->vm_page_prot, because
2247 * the caching- or encryption mode may not be known at mmap() time.
2248 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2249 * to set caching and encryption bits for those vmas (except for COW pages).
2250 * This is ensured by core vm only modifying these page table entries using
2251 * functions that don't touch caching- or encryption bits, using pte_modify()
2252 * if needed. (See for example mprotect()).
2253 * Also when new page-table entries are created, this is only done using the
2254 * fault() callback, and never using the value of vma->vm_page_prot,
2255 * except for page-table entries that point to anonymous pages as the result
2256 * of COW.
2257 *
2258 * Context: Process context. May allocate using %GFP_KERNEL.
2259 * Return: vm_fault_t value.
2260 */
2261vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2262 pfn_t pfn, pgprot_t pgprot)
2263{
2264 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2265}
5379e4dd 2266EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2267
79f3aa5b
MW
2268vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2269 pfn_t pfn)
2270{
574c5b3d 2271 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2272}
5d747637 2273EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2274
ab77dab4
SJ
2275/*
2276 * If the insertion of PTE failed because someone else already added a
2277 * different entry in the mean time, we treat that as success as we assume
2278 * the same entry was actually inserted.
2279 */
ab77dab4
SJ
2280vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2281 unsigned long addr, pfn_t pfn)
b2770da6 2282{
574c5b3d 2283 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2284}
ab77dab4 2285EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2286
1da177e4
LT
2287/*
2288 * maps a range of physical memory into the requested pages. the old
2289 * mappings are removed. any references to nonexistent pages results
2290 * in null mappings (currently treated as "copy-on-access")
2291 */
2292static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2293 unsigned long addr, unsigned long end,
2294 unsigned long pfn, pgprot_t prot)
2295{
90a3e375 2296 pte_t *pte, *mapped_pte;
c74df32c 2297 spinlock_t *ptl;
42e4089c 2298 int err = 0;
1da177e4 2299
90a3e375 2300 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2301 if (!pte)
2302 return -ENOMEM;
6606c3e0 2303 arch_enter_lazy_mmu_mode();
1da177e4
LT
2304 do {
2305 BUG_ON(!pte_none(*pte));
42e4089c
AK
2306 if (!pfn_modify_allowed(pfn, prot)) {
2307 err = -EACCES;
2308 break;
2309 }
7e675137 2310 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2311 pfn++;
2312 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2313 arch_leave_lazy_mmu_mode();
90a3e375 2314 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2315 return err;
1da177e4
LT
2316}
2317
2318static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2319 unsigned long addr, unsigned long end,
2320 unsigned long pfn, pgprot_t prot)
2321{
2322 pmd_t *pmd;
2323 unsigned long next;
42e4089c 2324 int err;
1da177e4
LT
2325
2326 pfn -= addr >> PAGE_SHIFT;
2327 pmd = pmd_alloc(mm, pud, addr);
2328 if (!pmd)
2329 return -ENOMEM;
f66055ab 2330 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2331 do {
2332 next = pmd_addr_end(addr, end);
42e4089c
AK
2333 err = remap_pte_range(mm, pmd, addr, next,
2334 pfn + (addr >> PAGE_SHIFT), prot);
2335 if (err)
2336 return err;
1da177e4
LT
2337 } while (pmd++, addr = next, addr != end);
2338 return 0;
2339}
2340
c2febafc 2341static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2342 unsigned long addr, unsigned long end,
2343 unsigned long pfn, pgprot_t prot)
2344{
2345 pud_t *pud;
2346 unsigned long next;
42e4089c 2347 int err;
1da177e4
LT
2348
2349 pfn -= addr >> PAGE_SHIFT;
c2febafc 2350 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2351 if (!pud)
2352 return -ENOMEM;
2353 do {
2354 next = pud_addr_end(addr, end);
42e4089c
AK
2355 err = remap_pmd_range(mm, pud, addr, next,
2356 pfn + (addr >> PAGE_SHIFT), prot);
2357 if (err)
2358 return err;
1da177e4
LT
2359 } while (pud++, addr = next, addr != end);
2360 return 0;
2361}
2362
c2febafc
KS
2363static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2364 unsigned long addr, unsigned long end,
2365 unsigned long pfn, pgprot_t prot)
2366{
2367 p4d_t *p4d;
2368 unsigned long next;
42e4089c 2369 int err;
c2febafc
KS
2370
2371 pfn -= addr >> PAGE_SHIFT;
2372 p4d = p4d_alloc(mm, pgd, addr);
2373 if (!p4d)
2374 return -ENOMEM;
2375 do {
2376 next = p4d_addr_end(addr, end);
42e4089c
AK
2377 err = remap_pud_range(mm, p4d, addr, next,
2378 pfn + (addr >> PAGE_SHIFT), prot);
2379 if (err)
2380 return err;
c2febafc
KS
2381 } while (p4d++, addr = next, addr != end);
2382 return 0;
2383}
2384
74ffa5a3
CH
2385/*
2386 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2387 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2388 */
74ffa5a3
CH
2389int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2390 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2391{
2392 pgd_t *pgd;
2393 unsigned long next;
2d15cab8 2394 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2395 struct mm_struct *mm = vma->vm_mm;
2396 int err;
2397
0c4123e3
AZ
2398 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2399 return -EINVAL;
2400
1da177e4
LT
2401 /*
2402 * Physically remapped pages are special. Tell the
2403 * rest of the world about it:
2404 * VM_IO tells people not to look at these pages
2405 * (accesses can have side effects).
6aab341e
LT
2406 * VM_PFNMAP tells the core MM that the base pages are just
2407 * raw PFN mappings, and do not have a "struct page" associated
2408 * with them.
314e51b9
KK
2409 * VM_DONTEXPAND
2410 * Disable vma merging and expanding with mremap().
2411 * VM_DONTDUMP
2412 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2413 *
2414 * There's a horrible special case to handle copy-on-write
2415 * behaviour that some programs depend on. We mark the "original"
2416 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2417 * See vm_normal_page() for details.
1da177e4 2418 */
b3b9c293
KK
2419 if (is_cow_mapping(vma->vm_flags)) {
2420 if (addr != vma->vm_start || end != vma->vm_end)
2421 return -EINVAL;
fb155c16 2422 vma->vm_pgoff = pfn;
b3b9c293
KK
2423 }
2424
314e51b9 2425 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2426
2427 BUG_ON(addr >= end);
2428 pfn -= addr >> PAGE_SHIFT;
2429 pgd = pgd_offset(mm, addr);
2430 flush_cache_range(vma, addr, end);
1da177e4
LT
2431 do {
2432 next = pgd_addr_end(addr, end);
c2febafc 2433 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2434 pfn + (addr >> PAGE_SHIFT), prot);
2435 if (err)
74ffa5a3 2436 return err;
1da177e4 2437 } while (pgd++, addr = next, addr != end);
2ab64037 2438
74ffa5a3
CH
2439 return 0;
2440}
2441
2442/**
2443 * remap_pfn_range - remap kernel memory to userspace
2444 * @vma: user vma to map to
2445 * @addr: target page aligned user address to start at
2446 * @pfn: page frame number of kernel physical memory address
2447 * @size: size of mapping area
2448 * @prot: page protection flags for this mapping
2449 *
2450 * Note: this is only safe if the mm semaphore is held when called.
2451 *
2452 * Return: %0 on success, negative error code otherwise.
2453 */
2454int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2455 unsigned long pfn, unsigned long size, pgprot_t prot)
2456{
2457 int err;
2458
2459 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2460 if (err)
74ffa5a3 2461 return -EINVAL;
2ab64037 2462
74ffa5a3
CH
2463 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2464 if (err)
2465 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2466 return err;
2467}
2468EXPORT_SYMBOL(remap_pfn_range);
2469
b4cbb197
LT
2470/**
2471 * vm_iomap_memory - remap memory to userspace
2472 * @vma: user vma to map to
abd69b9e 2473 * @start: start of the physical memory to be mapped
b4cbb197
LT
2474 * @len: size of area
2475 *
2476 * This is a simplified io_remap_pfn_range() for common driver use. The
2477 * driver just needs to give us the physical memory range to be mapped,
2478 * we'll figure out the rest from the vma information.
2479 *
2480 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2481 * whatever write-combining details or similar.
a862f68a
MR
2482 *
2483 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2484 */
2485int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2486{
2487 unsigned long vm_len, pfn, pages;
2488
2489 /* Check that the physical memory area passed in looks valid */
2490 if (start + len < start)
2491 return -EINVAL;
2492 /*
2493 * You *really* shouldn't map things that aren't page-aligned,
2494 * but we've historically allowed it because IO memory might
2495 * just have smaller alignment.
2496 */
2497 len += start & ~PAGE_MASK;
2498 pfn = start >> PAGE_SHIFT;
2499 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2500 if (pfn + pages < pfn)
2501 return -EINVAL;
2502
2503 /* We start the mapping 'vm_pgoff' pages into the area */
2504 if (vma->vm_pgoff > pages)
2505 return -EINVAL;
2506 pfn += vma->vm_pgoff;
2507 pages -= vma->vm_pgoff;
2508
2509 /* Can we fit all of the mapping? */
2510 vm_len = vma->vm_end - vma->vm_start;
2511 if (vm_len >> PAGE_SHIFT > pages)
2512 return -EINVAL;
2513
2514 /* Ok, let it rip */
2515 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2516}
2517EXPORT_SYMBOL(vm_iomap_memory);
2518
aee16b3c
JF
2519static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2520 unsigned long addr, unsigned long end,
e80d3909
JR
2521 pte_fn_t fn, void *data, bool create,
2522 pgtbl_mod_mask *mask)
aee16b3c 2523{
8abb50c7 2524 pte_t *pte, *mapped_pte;
be1db475 2525 int err = 0;
3f649ab7 2526 spinlock_t *ptl;
aee16b3c 2527
be1db475 2528 if (create) {
8abb50c7 2529 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2530 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2531 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2532 if (!pte)
2533 return -ENOMEM;
2534 } else {
8abb50c7 2535 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2536 pte_offset_kernel(pmd, addr) :
2537 pte_offset_map_lock(mm, pmd, addr, &ptl);
2538 }
aee16b3c
JF
2539
2540 BUG_ON(pmd_huge(*pmd));
2541
38e0edb1
JF
2542 arch_enter_lazy_mmu_mode();
2543
eeb4a05f
CH
2544 if (fn) {
2545 do {
2546 if (create || !pte_none(*pte)) {
2547 err = fn(pte++, addr, data);
2548 if (err)
2549 break;
2550 }
2551 } while (addr += PAGE_SIZE, addr != end);
2552 }
e80d3909 2553 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2554
38e0edb1
JF
2555 arch_leave_lazy_mmu_mode();
2556
aee16b3c 2557 if (mm != &init_mm)
8abb50c7 2558 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2559 return err;
2560}
2561
2562static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2563 unsigned long addr, unsigned long end,
e80d3909
JR
2564 pte_fn_t fn, void *data, bool create,
2565 pgtbl_mod_mask *mask)
aee16b3c
JF
2566{
2567 pmd_t *pmd;
2568 unsigned long next;
be1db475 2569 int err = 0;
aee16b3c 2570
ceb86879
AK
2571 BUG_ON(pud_huge(*pud));
2572
be1db475 2573 if (create) {
e80d3909 2574 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2575 if (!pmd)
2576 return -ENOMEM;
2577 } else {
2578 pmd = pmd_offset(pud, addr);
2579 }
aee16b3c
JF
2580 do {
2581 next = pmd_addr_end(addr, end);
0c95cba4
NP
2582 if (pmd_none(*pmd) && !create)
2583 continue;
2584 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2585 return -EINVAL;
2586 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2587 if (!create)
2588 continue;
2589 pmd_clear_bad(pmd);
be1db475 2590 }
0c95cba4
NP
2591 err = apply_to_pte_range(mm, pmd, addr, next,
2592 fn, data, create, mask);
2593 if (err)
2594 break;
aee16b3c 2595 } while (pmd++, addr = next, addr != end);
0c95cba4 2596
aee16b3c
JF
2597 return err;
2598}
2599
c2febafc 2600static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2601 unsigned long addr, unsigned long end,
e80d3909
JR
2602 pte_fn_t fn, void *data, bool create,
2603 pgtbl_mod_mask *mask)
aee16b3c
JF
2604{
2605 pud_t *pud;
2606 unsigned long next;
be1db475 2607 int err = 0;
aee16b3c 2608
be1db475 2609 if (create) {
e80d3909 2610 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2611 if (!pud)
2612 return -ENOMEM;
2613 } else {
2614 pud = pud_offset(p4d, addr);
2615 }
aee16b3c
JF
2616 do {
2617 next = pud_addr_end(addr, end);
0c95cba4
NP
2618 if (pud_none(*pud) && !create)
2619 continue;
2620 if (WARN_ON_ONCE(pud_leaf(*pud)))
2621 return -EINVAL;
2622 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2623 if (!create)
2624 continue;
2625 pud_clear_bad(pud);
be1db475 2626 }
0c95cba4
NP
2627 err = apply_to_pmd_range(mm, pud, addr, next,
2628 fn, data, create, mask);
2629 if (err)
2630 break;
aee16b3c 2631 } while (pud++, addr = next, addr != end);
0c95cba4 2632
aee16b3c
JF
2633 return err;
2634}
2635
c2febafc
KS
2636static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2637 unsigned long addr, unsigned long end,
e80d3909
JR
2638 pte_fn_t fn, void *data, bool create,
2639 pgtbl_mod_mask *mask)
c2febafc
KS
2640{
2641 p4d_t *p4d;
2642 unsigned long next;
be1db475 2643 int err = 0;
c2febafc 2644
be1db475 2645 if (create) {
e80d3909 2646 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2647 if (!p4d)
2648 return -ENOMEM;
2649 } else {
2650 p4d = p4d_offset(pgd, addr);
2651 }
c2febafc
KS
2652 do {
2653 next = p4d_addr_end(addr, end);
0c95cba4
NP
2654 if (p4d_none(*p4d) && !create)
2655 continue;
2656 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2657 return -EINVAL;
2658 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2659 if (!create)
2660 continue;
2661 p4d_clear_bad(p4d);
be1db475 2662 }
0c95cba4
NP
2663 err = apply_to_pud_range(mm, p4d, addr, next,
2664 fn, data, create, mask);
2665 if (err)
2666 break;
c2febafc 2667 } while (p4d++, addr = next, addr != end);
0c95cba4 2668
c2febafc
KS
2669 return err;
2670}
2671
be1db475
DA
2672static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2673 unsigned long size, pte_fn_t fn,
2674 void *data, bool create)
aee16b3c
JF
2675{
2676 pgd_t *pgd;
e80d3909 2677 unsigned long start = addr, next;
57250a5b 2678 unsigned long end = addr + size;
e80d3909 2679 pgtbl_mod_mask mask = 0;
be1db475 2680 int err = 0;
aee16b3c 2681
9cb65bc3
MP
2682 if (WARN_ON(addr >= end))
2683 return -EINVAL;
2684
aee16b3c
JF
2685 pgd = pgd_offset(mm, addr);
2686 do {
2687 next = pgd_addr_end(addr, end);
0c95cba4 2688 if (pgd_none(*pgd) && !create)
be1db475 2689 continue;
0c95cba4
NP
2690 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2691 return -EINVAL;
2692 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2693 if (!create)
2694 continue;
2695 pgd_clear_bad(pgd);
2696 }
2697 err = apply_to_p4d_range(mm, pgd, addr, next,
2698 fn, data, create, &mask);
aee16b3c
JF
2699 if (err)
2700 break;
2701 } while (pgd++, addr = next, addr != end);
57250a5b 2702
e80d3909
JR
2703 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2704 arch_sync_kernel_mappings(start, start + size);
2705
aee16b3c
JF
2706 return err;
2707}
be1db475
DA
2708
2709/*
2710 * Scan a region of virtual memory, filling in page tables as necessary
2711 * and calling a provided function on each leaf page table.
2712 */
2713int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2714 unsigned long size, pte_fn_t fn, void *data)
2715{
2716 return __apply_to_page_range(mm, addr, size, fn, data, true);
2717}
aee16b3c
JF
2718EXPORT_SYMBOL_GPL(apply_to_page_range);
2719
be1db475
DA
2720/*
2721 * Scan a region of virtual memory, calling a provided function on
2722 * each leaf page table where it exists.
2723 *
2724 * Unlike apply_to_page_range, this does _not_ fill in page tables
2725 * where they are absent.
2726 */
2727int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2728 unsigned long size, pte_fn_t fn, void *data)
2729{
2730 return __apply_to_page_range(mm, addr, size, fn, data, false);
2731}
2732EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2733
8f4e2101 2734/*
9b4bdd2f
KS
2735 * handle_pte_fault chooses page fault handler according to an entry which was
2736 * read non-atomically. Before making any commitment, on those architectures
2737 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2738 * parts, do_swap_page must check under lock before unmapping the pte and
2739 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2740 * and do_anonymous_page can safely check later on).
8f4e2101 2741 */
2ca99358 2742static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2743{
2744 int same = 1;
923717cb 2745#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2746 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2747 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2748 spin_lock(ptl);
2ca99358 2749 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2750 spin_unlock(ptl);
8f4e2101
HD
2751 }
2752#endif
2ca99358
PX
2753 pte_unmap(vmf->pte);
2754 vmf->pte = NULL;
8f4e2101
HD
2755 return same;
2756}
2757
83d116c5
JH
2758static inline bool cow_user_page(struct page *dst, struct page *src,
2759 struct vm_fault *vmf)
6aab341e 2760{
83d116c5
JH
2761 bool ret;
2762 void *kaddr;
2763 void __user *uaddr;
c3e5ea6e 2764 bool locked = false;
83d116c5
JH
2765 struct vm_area_struct *vma = vmf->vma;
2766 struct mm_struct *mm = vma->vm_mm;
2767 unsigned long addr = vmf->address;
2768
83d116c5
JH
2769 if (likely(src)) {
2770 copy_user_highpage(dst, src, addr, vma);
2771 return true;
2772 }
2773
6aab341e
LT
2774 /*
2775 * If the source page was a PFN mapping, we don't have
2776 * a "struct page" for it. We do a best-effort copy by
2777 * just copying from the original user address. If that
2778 * fails, we just zero-fill it. Live with it.
2779 */
83d116c5
JH
2780 kaddr = kmap_atomic(dst);
2781 uaddr = (void __user *)(addr & PAGE_MASK);
2782
2783 /*
2784 * On architectures with software "accessed" bits, we would
2785 * take a double page fault, so mark it accessed here.
2786 */
c3e5ea6e 2787 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2788 pte_t entry;
5d2a2dbb 2789
83d116c5 2790 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2791 locked = true;
83d116c5
JH
2792 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2793 /*
2794 * Other thread has already handled the fault
7df67697 2795 * and update local tlb only
83d116c5 2796 */
7df67697 2797 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2798 ret = false;
2799 goto pte_unlock;
2800 }
2801
2802 entry = pte_mkyoung(vmf->orig_pte);
2803 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2804 update_mmu_cache(vma, addr, vmf->pte);
2805 }
2806
2807 /*
2808 * This really shouldn't fail, because the page is there
2809 * in the page tables. But it might just be unreadable,
2810 * in which case we just give up and fill the result with
2811 * zeroes.
2812 */
2813 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2814 if (locked)
2815 goto warn;
2816
2817 /* Re-validate under PTL if the page is still mapped */
2818 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2819 locked = true;
2820 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2821 /* The PTE changed under us, update local tlb */
2822 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2823 ret = false;
2824 goto pte_unlock;
2825 }
2826
5d2a2dbb 2827 /*
985ba004 2828 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2829 * Try to copy again under PTL.
5d2a2dbb 2830 */
c3e5ea6e
KS
2831 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2832 /*
2833 * Give a warn in case there can be some obscure
2834 * use-case
2835 */
2836warn:
2837 WARN_ON_ONCE(1);
2838 clear_page(kaddr);
2839 }
83d116c5
JH
2840 }
2841
2842 ret = true;
2843
2844pte_unlock:
c3e5ea6e 2845 if (locked)
83d116c5
JH
2846 pte_unmap_unlock(vmf->pte, vmf->ptl);
2847 kunmap_atomic(kaddr);
2848 flush_dcache_page(dst);
2849
2850 return ret;
6aab341e
LT
2851}
2852
c20cd45e
MH
2853static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2854{
2855 struct file *vm_file = vma->vm_file;
2856
2857 if (vm_file)
2858 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2859
2860 /*
2861 * Special mappings (e.g. VDSO) do not have any file so fake
2862 * a default GFP_KERNEL for them.
2863 */
2864 return GFP_KERNEL;
2865}
2866
fb09a464
KS
2867/*
2868 * Notify the address space that the page is about to become writable so that
2869 * it can prohibit this or wait for the page to get into an appropriate state.
2870 *
2871 * We do this without the lock held, so that it can sleep if it needs to.
2872 */
2b740303 2873static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2874{
2b740303 2875 vm_fault_t ret;
38b8cb7f
JK
2876 struct page *page = vmf->page;
2877 unsigned int old_flags = vmf->flags;
fb09a464 2878
38b8cb7f 2879 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2880
dc617f29
DW
2881 if (vmf->vma->vm_file &&
2882 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2883 return VM_FAULT_SIGBUS;
2884
11bac800 2885 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2886 /* Restore original flags so that caller is not surprised */
2887 vmf->flags = old_flags;
fb09a464
KS
2888 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2889 return ret;
2890 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2891 lock_page(page);
2892 if (!page->mapping) {
2893 unlock_page(page);
2894 return 0; /* retry */
2895 }
2896 ret |= VM_FAULT_LOCKED;
2897 } else
2898 VM_BUG_ON_PAGE(!PageLocked(page), page);
2899 return ret;
2900}
2901
97ba0c2b
JK
2902/*
2903 * Handle dirtying of a page in shared file mapping on a write fault.
2904 *
2905 * The function expects the page to be locked and unlocks it.
2906 */
89b15332 2907static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2908{
89b15332 2909 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2910 struct address_space *mapping;
89b15332 2911 struct page *page = vmf->page;
97ba0c2b
JK
2912 bool dirtied;
2913 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2914
2915 dirtied = set_page_dirty(page);
2916 VM_BUG_ON_PAGE(PageAnon(page), page);
2917 /*
2918 * Take a local copy of the address_space - page.mapping may be zeroed
2919 * by truncate after unlock_page(). The address_space itself remains
2920 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2921 * release semantics to prevent the compiler from undoing this copying.
2922 */
2923 mapping = page_rmapping(page);
2924 unlock_page(page);
2925
89b15332
JW
2926 if (!page_mkwrite)
2927 file_update_time(vma->vm_file);
2928
2929 /*
2930 * Throttle page dirtying rate down to writeback speed.
2931 *
2932 * mapping may be NULL here because some device drivers do not
2933 * set page.mapping but still dirty their pages
2934 *
c1e8d7c6 2935 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2936 * is pinning the mapping, as per above.
2937 */
97ba0c2b 2938 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2939 struct file *fpin;
2940
2941 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2942 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2943 if (fpin) {
2944 fput(fpin);
2945 return VM_FAULT_RETRY;
2946 }
97ba0c2b
JK
2947 }
2948
89b15332 2949 return 0;
97ba0c2b
JK
2950}
2951
4e047f89
SR
2952/*
2953 * Handle write page faults for pages that can be reused in the current vma
2954 *
2955 * This can happen either due to the mapping being with the VM_SHARED flag,
2956 * or due to us being the last reference standing to the page. In either
2957 * case, all we need to do here is to mark the page as writable and update
2958 * any related book-keeping.
2959 */
997dd98d 2960static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2961 __releases(vmf->ptl)
4e047f89 2962{
82b0f8c3 2963 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2964 struct page *page = vmf->page;
4e047f89
SR
2965 pte_t entry;
2966 /*
2967 * Clear the pages cpupid information as the existing
2968 * information potentially belongs to a now completely
2969 * unrelated process.
2970 */
2971 if (page)
2972 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2973
2994302b
JK
2974 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2975 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2977 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2978 update_mmu_cache(vma, vmf->address, vmf->pte);
2979 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2980 count_vm_event(PGREUSE);
4e047f89
SR
2981}
2982
2f38ab2c
SR
2983/*
2984 * Handle the case of a page which we actually need to copy to a new page.
2985 *
c1e8d7c6 2986 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2987 * without the ptl held.
2988 *
2989 * High level logic flow:
2990 *
2991 * - Allocate a page, copy the content of the old page to the new one.
2992 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2993 * - Take the PTL. If the pte changed, bail out and release the allocated page
2994 * - If the pte is still the way we remember it, update the page table and all
2995 * relevant references. This includes dropping the reference the page-table
2996 * held to the old page, as well as updating the rmap.
2997 * - In any case, unlock the PTL and drop the reference we took to the old page.
2998 */
2b740303 2999static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3000{
82b0f8c3 3001 struct vm_area_struct *vma = vmf->vma;
bae473a4 3002 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3003 struct page *old_page = vmf->page;
2f38ab2c 3004 struct page *new_page = NULL;
2f38ab2c
SR
3005 pte_t entry;
3006 int page_copied = 0;
ac46d4f3 3007 struct mmu_notifier_range range;
2f38ab2c
SR
3008
3009 if (unlikely(anon_vma_prepare(vma)))
3010 goto oom;
3011
2994302b 3012 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3013 new_page = alloc_zeroed_user_highpage_movable(vma,
3014 vmf->address);
2f38ab2c
SR
3015 if (!new_page)
3016 goto oom;
3017 } else {
bae473a4 3018 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3019 vmf->address);
2f38ab2c
SR
3020 if (!new_page)
3021 goto oom;
83d116c5
JH
3022
3023 if (!cow_user_page(new_page, old_page, vmf)) {
3024 /*
3025 * COW failed, if the fault was solved by other,
3026 * it's fine. If not, userspace would re-fault on
3027 * the same address and we will handle the fault
3028 * from the second attempt.
3029 */
3030 put_page(new_page);
3031 if (old_page)
3032 put_page(old_page);
3033 return 0;
3034 }
2f38ab2c 3035 }
2f38ab2c 3036
8f425e4e 3037 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3038 goto oom_free_new;
9d82c694 3039 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3040
eb3c24f3
MG
3041 __SetPageUptodate(new_page);
3042
7269f999 3043 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3044 vmf->address & PAGE_MASK,
ac46d4f3
JG
3045 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3046 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3047
3048 /*
3049 * Re-check the pte - we dropped the lock
3050 */
82b0f8c3 3051 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3052 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3053 if (old_page) {
3054 if (!PageAnon(old_page)) {
eca56ff9
JM
3055 dec_mm_counter_fast(mm,
3056 mm_counter_file(old_page));
2f38ab2c
SR
3057 inc_mm_counter_fast(mm, MM_ANONPAGES);
3058 }
3059 } else {
3060 inc_mm_counter_fast(mm, MM_ANONPAGES);
3061 }
2994302b 3062 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3063 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3064 entry = pte_sw_mkyoung(entry);
2f38ab2c 3065 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3066
2f38ab2c
SR
3067 /*
3068 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3069 * pte with the new entry, to keep TLBs on different CPUs in
3070 * sync. This code used to set the new PTE then flush TLBs, but
3071 * that left a window where the new PTE could be loaded into
3072 * some TLBs while the old PTE remains in others.
2f38ab2c 3073 */
82b0f8c3
JK
3074 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3075 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3076 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3077 /*
3078 * We call the notify macro here because, when using secondary
3079 * mmu page tables (such as kvm shadow page tables), we want the
3080 * new page to be mapped directly into the secondary page table.
3081 */
82b0f8c3
JK
3082 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3083 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3084 if (old_page) {
3085 /*
3086 * Only after switching the pte to the new page may
3087 * we remove the mapcount here. Otherwise another
3088 * process may come and find the rmap count decremented
3089 * before the pte is switched to the new page, and
3090 * "reuse" the old page writing into it while our pte
3091 * here still points into it and can be read by other
3092 * threads.
3093 *
3094 * The critical issue is to order this
3095 * page_remove_rmap with the ptp_clear_flush above.
3096 * Those stores are ordered by (if nothing else,)
3097 * the barrier present in the atomic_add_negative
3098 * in page_remove_rmap.
3099 *
3100 * Then the TLB flush in ptep_clear_flush ensures that
3101 * no process can access the old page before the
3102 * decremented mapcount is visible. And the old page
3103 * cannot be reused until after the decremented
3104 * mapcount is visible. So transitively, TLBs to
3105 * old page will be flushed before it can be reused.
3106 */
cea86fe2 3107 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3108 }
3109
3110 /* Free the old page.. */
3111 new_page = old_page;
3112 page_copied = 1;
3113 } else {
7df67697 3114 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3115 }
3116
3117 if (new_page)
09cbfeaf 3118 put_page(new_page);
2f38ab2c 3119
82b0f8c3 3120 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3121 /*
3122 * No need to double call mmu_notifier->invalidate_range() callback as
3123 * the above ptep_clear_flush_notify() did already call it.
3124 */
ac46d4f3 3125 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3126 if (old_page) {
f4c4a3f4
HY
3127 if (page_copied)
3128 free_swap_cache(old_page);
09cbfeaf 3129 put_page(old_page);
2f38ab2c
SR
3130 }
3131 return page_copied ? VM_FAULT_WRITE : 0;
3132oom_free_new:
09cbfeaf 3133 put_page(new_page);
2f38ab2c
SR
3134oom:
3135 if (old_page)
09cbfeaf 3136 put_page(old_page);
2f38ab2c
SR
3137 return VM_FAULT_OOM;
3138}
3139
66a6197c
JK
3140/**
3141 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3142 * writeable once the page is prepared
3143 *
3144 * @vmf: structure describing the fault
3145 *
3146 * This function handles all that is needed to finish a write page fault in a
3147 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3148 * It handles locking of PTE and modifying it.
66a6197c
JK
3149 *
3150 * The function expects the page to be locked or other protection against
3151 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3152 *
2797e79f 3153 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3154 * we acquired PTE lock.
66a6197c 3155 */
2b740303 3156vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3157{
3158 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3159 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3160 &vmf->ptl);
3161 /*
3162 * We might have raced with another page fault while we released the
3163 * pte_offset_map_lock.
3164 */
3165 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3166 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3167 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3168 return VM_FAULT_NOPAGE;
66a6197c
JK
3169 }
3170 wp_page_reuse(vmf);
a19e2553 3171 return 0;
66a6197c
JK
3172}
3173
dd906184
BH
3174/*
3175 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3176 * mapping
3177 */
2b740303 3178static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3179{
82b0f8c3 3180 struct vm_area_struct *vma = vmf->vma;
bae473a4 3181
dd906184 3182 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3183 vm_fault_t ret;
dd906184 3184
82b0f8c3 3185 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3186 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3187 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3188 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3189 return ret;
66a6197c 3190 return finish_mkwrite_fault(vmf);
dd906184 3191 }
997dd98d
JK
3192 wp_page_reuse(vmf);
3193 return VM_FAULT_WRITE;
dd906184
BH
3194}
3195
2b740303 3196static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3197 __releases(vmf->ptl)
93e478d4 3198{
82b0f8c3 3199 struct vm_area_struct *vma = vmf->vma;
89b15332 3200 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3201
a41b70d6 3202 get_page(vmf->page);
93e478d4 3203
93e478d4 3204 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3205 vm_fault_t tmp;
93e478d4 3206
82b0f8c3 3207 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3208 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3209 if (unlikely(!tmp || (tmp &
3210 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3211 put_page(vmf->page);
93e478d4
SR
3212 return tmp;
3213 }
66a6197c 3214 tmp = finish_mkwrite_fault(vmf);
a19e2553 3215 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3216 unlock_page(vmf->page);
a41b70d6 3217 put_page(vmf->page);
66a6197c 3218 return tmp;
93e478d4 3219 }
66a6197c
JK
3220 } else {
3221 wp_page_reuse(vmf);
997dd98d 3222 lock_page(vmf->page);
93e478d4 3223 }
89b15332 3224 ret |= fault_dirty_shared_page(vmf);
997dd98d 3225 put_page(vmf->page);
93e478d4 3226
89b15332 3227 return ret;
93e478d4
SR
3228}
3229
1da177e4
LT
3230/*
3231 * This routine handles present pages, when users try to write
3232 * to a shared page. It is done by copying the page to a new address
3233 * and decrementing the shared-page counter for the old page.
3234 *
1da177e4
LT
3235 * Note that this routine assumes that the protection checks have been
3236 * done by the caller (the low-level page fault routine in most cases).
3237 * Thus we can safely just mark it writable once we've done any necessary
3238 * COW.
3239 *
3240 * We also mark the page dirty at this point even though the page will
3241 * change only once the write actually happens. This avoids a few races,
3242 * and potentially makes it more efficient.
3243 *
c1e8d7c6 3244 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3245 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3246 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3247 */
2b740303 3248static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3249 __releases(vmf->ptl)
1da177e4 3250{
82b0f8c3 3251 struct vm_area_struct *vma = vmf->vma;
1da177e4 3252
292924b2 3253 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3254 pte_unmap_unlock(vmf->pte, vmf->ptl);
3255 return handle_userfault(vmf, VM_UFFD_WP);
3256 }
3257
6ce64428
NA
3258 /*
3259 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3260 * is flushed in this case before copying.
3261 */
3262 if (unlikely(userfaultfd_wp(vmf->vma) &&
3263 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3264 flush_tlb_page(vmf->vma, vmf->address);
3265
a41b70d6
JK
3266 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3267 if (!vmf->page) {
251b97f5 3268 /*
64e45507
PF
3269 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3270 * VM_PFNMAP VMA.
251b97f5
PZ
3271 *
3272 * We should not cow pages in a shared writeable mapping.
dd906184 3273 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3274 */
3275 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3276 (VM_WRITE|VM_SHARED))
2994302b 3277 return wp_pfn_shared(vmf);
2f38ab2c 3278
82b0f8c3 3279 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3280 return wp_page_copy(vmf);
251b97f5 3281 }
1da177e4 3282
d08b3851 3283 /*
ee6a6457
PZ
3284 * Take out anonymous pages first, anonymous shared vmas are
3285 * not dirty accountable.
d08b3851 3286 */
52d1e606 3287 if (PageAnon(vmf->page)) {
09854ba9
LT
3288 struct page *page = vmf->page;
3289
53a05ad9
DH
3290 /*
3291 * We have to verify under page lock: these early checks are
3292 * just an optimization to avoid locking the page and freeing
3293 * the swapcache if there is little hope that we can reuse.
3294 *
3295 * PageKsm() doesn't necessarily raise the page refcount.
3296 */
d4c47097
DH
3297 if (PageKsm(page) || page_count(page) > 3)
3298 goto copy;
3299 if (!PageLRU(page))
3300 /*
3301 * Note: We cannot easily detect+handle references from
3302 * remote LRU pagevecs or references to PageLRU() pages.
3303 */
3304 lru_add_drain();
3305 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3306 goto copy;
3307 if (!trylock_page(page))
3308 goto copy;
53a05ad9
DH
3309 if (PageSwapCache(page))
3310 try_to_free_swap(page);
3311 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3312 unlock_page(page);
52d1e606 3313 goto copy;
b009c024 3314 }
09854ba9 3315 /*
53a05ad9
DH
3316 * Ok, we've got the only page reference from our mapping
3317 * and the page is locked, it's dark out, and we're wearing
3318 * sunglasses. Hit it.
09854ba9 3319 */
09854ba9 3320 unlock_page(page);
be068f29 3321 wp_page_reuse(vmf);
09854ba9 3322 return VM_FAULT_WRITE;
ee6a6457 3323 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3324 (VM_WRITE|VM_SHARED))) {
a41b70d6 3325 return wp_page_shared(vmf);
1da177e4 3326 }
52d1e606 3327copy:
1da177e4
LT
3328 /*
3329 * Ok, we need to copy. Oh, well..
3330 */
a41b70d6 3331 get_page(vmf->page);
28766805 3332
82b0f8c3 3333 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3334 return wp_page_copy(vmf);
1da177e4
LT
3335}
3336
97a89413 3337static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3338 unsigned long start_addr, unsigned long end_addr,
3339 struct zap_details *details)
3340{
f5cc4eef 3341 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3342}
3343
f808c13f 3344static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3345 pgoff_t first_index,
3346 pgoff_t last_index,
1da177e4
LT
3347 struct zap_details *details)
3348{
3349 struct vm_area_struct *vma;
1da177e4
LT
3350 pgoff_t vba, vea, zba, zea;
3351
232a6a1c 3352 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3353 vba = vma->vm_pgoff;
d6e93217 3354 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3355 zba = max(first_index, vba);
3356 zea = min(last_index, vea);
1da177e4 3357
97a89413 3358 unmap_mapping_range_vma(vma,
1da177e4
LT
3359 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3360 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3361 details);
1da177e4
LT
3362 }
3363}
3364
22061a1f 3365/**
3506659e
MWO
3366 * unmap_mapping_folio() - Unmap single folio from processes.
3367 * @folio: The locked folio to be unmapped.
22061a1f 3368 *
3506659e 3369 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3370 * Typically, for efficiency, the range of nearby pages has already been
3371 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3372 * truncation or invalidation holds the lock on a folio, it may find that
3373 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3374 * to unmap it finally.
3375 */
3506659e 3376void unmap_mapping_folio(struct folio *folio)
22061a1f 3377{
3506659e 3378 struct address_space *mapping = folio->mapping;
22061a1f 3379 struct zap_details details = { };
232a6a1c
PX
3380 pgoff_t first_index;
3381 pgoff_t last_index;
22061a1f 3382
3506659e 3383 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3384
3506659e
MWO
3385 first_index = folio->index;
3386 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3387
2e148f1e 3388 details.even_cows = false;
3506659e 3389 details.single_folio = folio;
22061a1f 3390
2c865995 3391 i_mmap_lock_read(mapping);
22061a1f 3392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3393 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394 last_index, &details);
2c865995 3395 i_mmap_unlock_read(mapping);
22061a1f
HD
3396}
3397
977fbdcd
MW
3398/**
3399 * unmap_mapping_pages() - Unmap pages from processes.
3400 * @mapping: The address space containing pages to be unmapped.
3401 * @start: Index of first page to be unmapped.
3402 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3403 * @even_cows: Whether to unmap even private COWed pages.
3404 *
3405 * Unmap the pages in this address space from any userspace process which
3406 * has them mmaped. Generally, you want to remove COWed pages as well when
3407 * a file is being truncated, but not when invalidating pages from the page
3408 * cache.
3409 */
3410void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3411 pgoff_t nr, bool even_cows)
3412{
3413 struct zap_details details = { };
232a6a1c
PX
3414 pgoff_t first_index = start;
3415 pgoff_t last_index = start + nr - 1;
977fbdcd 3416
2e148f1e 3417 details.even_cows = even_cows;
232a6a1c
PX
3418 if (last_index < first_index)
3419 last_index = ULONG_MAX;
977fbdcd 3420
2c865995 3421 i_mmap_lock_read(mapping);
977fbdcd 3422 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3423 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3424 last_index, &details);
2c865995 3425 i_mmap_unlock_read(mapping);
977fbdcd 3426}
6e0e99d5 3427EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3428
1da177e4 3429/**
8a5f14a2 3430 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3431 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3432 * file.
3433 *
3d41088f 3434 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3435 * @holebegin: byte in first page to unmap, relative to the start of
3436 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3437 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3438 * must keep the partial page. In contrast, we must get rid of
3439 * partial pages.
3440 * @holelen: size of prospective hole in bytes. This will be rounded
3441 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3442 * end of the file.
3443 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3444 * but 0 when invalidating pagecache, don't throw away private data.
3445 */
3446void unmap_mapping_range(struct address_space *mapping,
3447 loff_t const holebegin, loff_t const holelen, int even_cows)
3448{
1da177e4
LT
3449 pgoff_t hba = holebegin >> PAGE_SHIFT;
3450 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3451
3452 /* Check for overflow. */
3453 if (sizeof(holelen) > sizeof(hlen)) {
3454 long long holeend =
3455 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3456 if (holeend & ~(long long)ULONG_MAX)
3457 hlen = ULONG_MAX - hba + 1;
3458 }
3459
977fbdcd 3460 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3461}
3462EXPORT_SYMBOL(unmap_mapping_range);
3463
b756a3b5
AP
3464/*
3465 * Restore a potential device exclusive pte to a working pte entry
3466 */
3467static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3468{
3469 struct page *page = vmf->page;
3470 struct vm_area_struct *vma = vmf->vma;
3471 struct mmu_notifier_range range;
3472
3473 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3474 return VM_FAULT_RETRY;
3475 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3476 vma->vm_mm, vmf->address & PAGE_MASK,
3477 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3478 mmu_notifier_invalidate_range_start(&range);
3479
3480 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3481 &vmf->ptl);
3482 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3483 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3484
3485 pte_unmap_unlock(vmf->pte, vmf->ptl);
3486 unlock_page(page);
3487
3488 mmu_notifier_invalidate_range_end(&range);
3489 return 0;
3490}
3491
c145e0b4
DH
3492static inline bool should_try_to_free_swap(struct page *page,
3493 struct vm_area_struct *vma,
3494 unsigned int fault_flags)
3495{
3496 if (!PageSwapCache(page))
3497 return false;
3498 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3499 PageMlocked(page))
3500 return true;
3501 /*
3502 * If we want to map a page that's in the swapcache writable, we
3503 * have to detect via the refcount if we're really the exclusive
3504 * user. Try freeing the swapcache to get rid of the swapcache
3505 * reference only in case it's likely that we'll be the exlusive user.
3506 */
3507 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3508 page_count(page) == 2;
3509}
3510
1da177e4 3511/*
c1e8d7c6 3512 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3513 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3514 * We return with pte unmapped and unlocked.
3515 *
c1e8d7c6 3516 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3517 * as does filemap_fault().
1da177e4 3518 */
2b740303 3519vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3520{
82b0f8c3 3521 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3522 struct page *page = NULL, *swapcache;
2799e775 3523 struct swap_info_struct *si = NULL;
65500d23 3524 swp_entry_t entry;
1da177e4 3525 pte_t pte;
d065bd81 3526 int locked;
ad8c2ee8 3527 int exclusive = 0;
2b740303 3528 vm_fault_t ret = 0;
aae466b0 3529 void *shadow = NULL;
1da177e4 3530
2ca99358 3531 if (!pte_unmap_same(vmf))
8f4e2101 3532 goto out;
65500d23 3533
2994302b 3534 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3535 if (unlikely(non_swap_entry(entry))) {
3536 if (is_migration_entry(entry)) {
82b0f8c3
JK
3537 migration_entry_wait(vma->vm_mm, vmf->pmd,
3538 vmf->address);
b756a3b5
AP
3539 } else if (is_device_exclusive_entry(entry)) {
3540 vmf->page = pfn_swap_entry_to_page(entry);
3541 ret = remove_device_exclusive_entry(vmf);
5042db43 3542 } else if (is_device_private_entry(entry)) {
af5cdaf8 3543 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3544 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3545 } else if (is_hwpoison_entry(entry)) {
3546 ret = VM_FAULT_HWPOISON;
3547 } else {
2994302b 3548 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3549 ret = VM_FAULT_SIGBUS;
d1737fdb 3550 }
0697212a
CL
3551 goto out;
3552 }
0bcac06f 3553
2799e775
ML
3554 /* Prevent swapoff from happening to us. */
3555 si = get_swap_device(entry);
3556 if (unlikely(!si))
3557 goto out;
0bcac06f 3558
eaf649eb
MK
3559 page = lookup_swap_cache(entry, vma, vmf->address);
3560 swapcache = page;
f8020772 3561
1da177e4 3562 if (!page) {
a449bf58
QC
3563 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3564 __swap_count(entry) == 1) {
0bcac06f 3565 /* skip swapcache */
e9e9b7ec
MK
3566 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3567 vmf->address);
0bcac06f
MK
3568 if (page) {
3569 __SetPageLocked(page);
3570 __SetPageSwapBacked(page);
4c6355b2 3571
0add0c77
SB
3572 if (mem_cgroup_swapin_charge_page(page,
3573 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3574 ret = VM_FAULT_OOM;
4c6355b2 3575 goto out_page;
545b1b07 3576 }
0add0c77 3577 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3578
aae466b0
JK
3579 shadow = get_shadow_from_swap_cache(entry);
3580 if (shadow)
0995d7e5
MWO
3581 workingset_refault(page_folio(page),
3582 shadow);
0076f029 3583
6058eaec 3584 lru_cache_add(page);
0add0c77
SB
3585
3586 /* To provide entry to swap_readpage() */
3587 set_page_private(page, entry.val);
0bcac06f 3588 swap_readpage(page, true);
0add0c77 3589 set_page_private(page, 0);
0bcac06f 3590 }
aa8d22a1 3591 } else {
e9e9b7ec
MK
3592 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3593 vmf);
aa8d22a1 3594 swapcache = page;
0bcac06f
MK
3595 }
3596
1da177e4
LT
3597 if (!page) {
3598 /*
8f4e2101
HD
3599 * Back out if somebody else faulted in this pte
3600 * while we released the pte lock.
1da177e4 3601 */
82b0f8c3
JK
3602 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3603 vmf->address, &vmf->ptl);
2994302b 3604 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3605 ret = VM_FAULT_OOM;
65500d23 3606 goto unlock;
1da177e4
LT
3607 }
3608
3609 /* Had to read the page from swap area: Major fault */
3610 ret = VM_FAULT_MAJOR;
f8891e5e 3611 count_vm_event(PGMAJFAULT);
2262185c 3612 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3613 } else if (PageHWPoison(page)) {
71f72525
WF
3614 /*
3615 * hwpoisoned dirty swapcache pages are kept for killing
3616 * owner processes (which may be unknown at hwpoison time)
3617 */
d1737fdb 3618 ret = VM_FAULT_HWPOISON;
4779cb31 3619 goto out_release;
1da177e4
LT
3620 }
3621
82b0f8c3 3622 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3623
d065bd81
ML
3624 if (!locked) {
3625 ret |= VM_FAULT_RETRY;
3626 goto out_release;
3627 }
073e587e 3628
84d60fdd
DH
3629 if (swapcache) {
3630 /*
3631 * Make sure try_to_free_swap or swapoff did not release the
3632 * swapcache from under us. The page pin, and pte_same test
3633 * below, are not enough to exclude that. Even if it is still
3634 * swapcache, we need to check that the page's swap has not
3635 * changed.
3636 */
3637 if (unlikely(!PageSwapCache(page) ||
3638 page_private(page) != entry.val))
3639 goto out_page;
3640
3641 /*
3642 * KSM sometimes has to copy on read faults, for example, if
3643 * page->index of !PageKSM() pages would be nonlinear inside the
3644 * anon VMA -- PageKSM() is lost on actual swapout.
3645 */
3646 page = ksm_might_need_to_copy(page, vma, vmf->address);
3647 if (unlikely(!page)) {
3648 ret = VM_FAULT_OOM;
3649 page = swapcache;
3650 goto out_page;
3651 }
c145e0b4
DH
3652
3653 /*
3654 * If we want to map a page that's in the swapcache writable, we
3655 * have to detect via the refcount if we're really the exclusive
3656 * owner. Try removing the extra reference from the local LRU
3657 * pagevecs if required.
3658 */
3659 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3660 !PageKsm(page) && !PageLRU(page))
3661 lru_add_drain();
5ad64688
HD
3662 }
3663
9d82c694 3664 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3665
1da177e4 3666 /*
8f4e2101 3667 * Back out if somebody else already faulted in this pte.
1da177e4 3668 */
82b0f8c3
JK
3669 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3670 &vmf->ptl);
2994302b 3671 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3672 goto out_nomap;
b8107480
KK
3673
3674 if (unlikely(!PageUptodate(page))) {
3675 ret = VM_FAULT_SIGBUS;
3676 goto out_nomap;
1da177e4
LT
3677 }
3678
8c7c6e34 3679 /*
c145e0b4
DH
3680 * Remove the swap entry and conditionally try to free up the swapcache.
3681 * We're already holding a reference on the page but haven't mapped it
3682 * yet.
8c7c6e34 3683 */
c145e0b4
DH
3684 swap_free(entry);
3685 if (should_try_to_free_swap(page, vma, vmf->flags))
3686 try_to_free_swap(page);
1da177e4 3687
bae473a4
KS
3688 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3689 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3690 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3691
3692 /*
3693 * Same logic as in do_wp_page(); however, optimize for fresh pages
3694 * that are certainly not shared because we just allocated them without
3695 * exposing them to the swapcache.
3696 */
3697 if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3698 (page != swapcache || page_count(page) == 1)) {
1da177e4 3699 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3700 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3701 ret |= VM_FAULT_WRITE;
d281ee61 3702 exclusive = RMAP_EXCLUSIVE;
1da177e4 3703 }
1da177e4 3704 flush_icache_page(vma, page);
2994302b 3705 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3706 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3707 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3708 pte = pte_mkuffd_wp(pte);
3709 pte = pte_wrprotect(pte);
3710 }
2994302b 3711 vmf->orig_pte = pte;
0bcac06f
MK
3712
3713 /* ksm created a completely new copy */
3714 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3715 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3716 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3717 } else {
3718 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3719 }
1da177e4 3720
1eba86c0
PT
3721 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3722 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3723
c475a8ab 3724 unlock_page(page);
0bcac06f 3725 if (page != swapcache && swapcache) {
4969c119
AA
3726 /*
3727 * Hold the lock to avoid the swap entry to be reused
3728 * until we take the PT lock for the pte_same() check
3729 * (to avoid false positives from pte_same). For
3730 * further safety release the lock after the swap_free
3731 * so that the swap count won't change under a
3732 * parallel locked swapcache.
3733 */
3734 unlock_page(swapcache);
09cbfeaf 3735 put_page(swapcache);
4969c119 3736 }
c475a8ab 3737
82b0f8c3 3738 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3739 ret |= do_wp_page(vmf);
61469f1d
HD
3740 if (ret & VM_FAULT_ERROR)
3741 ret &= VM_FAULT_ERROR;
1da177e4
LT
3742 goto out;
3743 }
3744
3745 /* No need to invalidate - it was non-present before */
82b0f8c3 3746 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3747unlock:
82b0f8c3 3748 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3749out:
2799e775
ML
3750 if (si)
3751 put_swap_device(si);
1da177e4 3752 return ret;
b8107480 3753out_nomap:
82b0f8c3 3754 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3755out_page:
b8107480 3756 unlock_page(page);
4779cb31 3757out_release:
09cbfeaf 3758 put_page(page);
0bcac06f 3759 if (page != swapcache && swapcache) {
4969c119 3760 unlock_page(swapcache);
09cbfeaf 3761 put_page(swapcache);
4969c119 3762 }
2799e775
ML
3763 if (si)
3764 put_swap_device(si);
65500d23 3765 return ret;
1da177e4
LT
3766}
3767
3768/*
c1e8d7c6 3769 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3770 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3771 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3772 */
2b740303 3773static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3774{
82b0f8c3 3775 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3776 struct page *page;
2b740303 3777 vm_fault_t ret = 0;
1da177e4 3778 pte_t entry;
1da177e4 3779
6b7339f4
KS
3780 /* File mapping without ->vm_ops ? */
3781 if (vma->vm_flags & VM_SHARED)
3782 return VM_FAULT_SIGBUS;
3783
7267ec00
KS
3784 /*
3785 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3786 * pte_offset_map() on pmds where a huge pmd might be created
3787 * from a different thread.
3788 *
3e4e28c5 3789 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3790 * parallel threads are excluded by other means.
3791 *
3e4e28c5 3792 * Here we only have mmap_read_lock(mm).
7267ec00 3793 */
4cf58924 3794 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3795 return VM_FAULT_OOM;
3796
f9ce0be7 3797 /* See comment in handle_pte_fault() */
82b0f8c3 3798 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3799 return 0;
3800
11ac5524 3801 /* Use the zero-page for reads */
82b0f8c3 3802 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3803 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3804 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3805 vma->vm_page_prot));
82b0f8c3
JK
3806 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 vmf->address, &vmf->ptl);
7df67697
BM
3808 if (!pte_none(*vmf->pte)) {
3809 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3810 goto unlock;
7df67697 3811 }
6b31d595
MH
3812 ret = check_stable_address_space(vma->vm_mm);
3813 if (ret)
3814 goto unlock;
6b251fc9
AA
3815 /* Deliver the page fault to userland, check inside PT lock */
3816 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3817 pte_unmap_unlock(vmf->pte, vmf->ptl);
3818 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3819 }
a13ea5b7
HD
3820 goto setpte;
3821 }
3822
557ed1fa 3823 /* Allocate our own private page. */
557ed1fa
NP
3824 if (unlikely(anon_vma_prepare(vma)))
3825 goto oom;
82b0f8c3 3826 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3827 if (!page)
3828 goto oom;
eb3c24f3 3829
8f425e4e 3830 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 3831 goto oom_free_page;
9d82c694 3832 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3833
52f37629
MK
3834 /*
3835 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3836 * preceding stores to the page contents become visible before
52f37629
MK
3837 * the set_pte_at() write.
3838 */
0ed361de 3839 __SetPageUptodate(page);
8f4e2101 3840
557ed1fa 3841 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3842 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3843 if (vma->vm_flags & VM_WRITE)
3844 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3845
82b0f8c3
JK
3846 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3847 &vmf->ptl);
7df67697
BM
3848 if (!pte_none(*vmf->pte)) {
3849 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3850 goto release;
7df67697 3851 }
9ba69294 3852
6b31d595
MH
3853 ret = check_stable_address_space(vma->vm_mm);
3854 if (ret)
3855 goto release;
3856
6b251fc9
AA
3857 /* Deliver the page fault to userland, check inside PT lock */
3858 if (userfaultfd_missing(vma)) {
82b0f8c3 3859 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3860 put_page(page);
82b0f8c3 3861 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3862 }
3863
bae473a4 3864 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3865 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3866 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3867setpte:
82b0f8c3 3868 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3869
3870 /* No need to invalidate - it was non-present before */
82b0f8c3 3871 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3872unlock:
82b0f8c3 3873 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3874 return ret;
8f4e2101 3875release:
09cbfeaf 3876 put_page(page);
8f4e2101 3877 goto unlock;
8a9f3ccd 3878oom_free_page:
09cbfeaf 3879 put_page(page);
65500d23 3880oom:
1da177e4
LT
3881 return VM_FAULT_OOM;
3882}
3883
9a95f3cf 3884/*
c1e8d7c6 3885 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3886 * released depending on flags and vma->vm_ops->fault() return value.
3887 * See filemap_fault() and __lock_page_retry().
3888 */
2b740303 3889static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3890{
82b0f8c3 3891 struct vm_area_struct *vma = vmf->vma;
2b740303 3892 vm_fault_t ret;
7eae74af 3893
63f3655f
MH
3894 /*
3895 * Preallocate pte before we take page_lock because this might lead to
3896 * deadlocks for memcg reclaim which waits for pages under writeback:
3897 * lock_page(A)
3898 * SetPageWriteback(A)
3899 * unlock_page(A)
3900 * lock_page(B)
3901 * lock_page(B)
d383807a 3902 * pte_alloc_one
63f3655f
MH
3903 * shrink_page_list
3904 * wait_on_page_writeback(A)
3905 * SetPageWriteback(B)
3906 * unlock_page(B)
3907 * # flush A, B to clear the writeback
3908 */
3909 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3910 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3911 if (!vmf->prealloc_pte)
3912 return VM_FAULT_OOM;
63f3655f
MH
3913 }
3914
11bac800 3915 ret = vma->vm_ops->fault(vmf);
3917048d 3916 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3917 VM_FAULT_DONE_COW)))
bc2466e4 3918 return ret;
7eae74af 3919
667240e0 3920 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 3921 struct page *page = vmf->page;
e53ac737
RR
3922 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3923 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
3924 if (page_mapped(page))
3925 unmap_mapping_pages(page_mapping(page),
3926 page->index, 1, false);
e53ac737 3927 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
3928 if (invalidate_inode_page(page))
3929 poisonret = VM_FAULT_NOPAGE;
3930 unlock_page(page);
e53ac737 3931 }
3149c79f 3932 put_page(page);
936ca80d 3933 vmf->page = NULL;
e53ac737 3934 return poisonret;
7eae74af
KS
3935 }
3936
3937 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3938 lock_page(vmf->page);
7eae74af 3939 else
667240e0 3940 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3941
7eae74af
KS
3942 return ret;
3943}
3944
396bcc52 3945#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3946static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3947{
82b0f8c3 3948 struct vm_area_struct *vma = vmf->vma;
953c66c2 3949
82b0f8c3 3950 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3951 /*
3952 * We are going to consume the prealloc table,
3953 * count that as nr_ptes.
3954 */
c4812909 3955 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3956 vmf->prealloc_pte = NULL;
953c66c2
AK
3957}
3958
f9ce0be7 3959vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3960{
82b0f8c3
JK
3961 struct vm_area_struct *vma = vmf->vma;
3962 bool write = vmf->flags & FAULT_FLAG_WRITE;
3963 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3964 pmd_t entry;
2b740303 3965 int i;
d01ac3c3 3966 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3967
3968 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3969 return ret;
10102459 3970
10102459 3971 page = compound_head(page);
d01ac3c3
MWO
3972 if (compound_order(page) != HPAGE_PMD_ORDER)
3973 return ret;
10102459 3974
eac96c3e
YS
3975 /*
3976 * Just backoff if any subpage of a THP is corrupted otherwise
3977 * the corrupted page may mapped by PMD silently to escape the
3978 * check. This kind of THP just can be PTE mapped. Access to
3979 * the corrupted subpage should trigger SIGBUS as expected.
3980 */
3981 if (unlikely(PageHasHWPoisoned(page)))
3982 return ret;
3983
953c66c2 3984 /*
f0953a1b 3985 * Archs like ppc64 need additional space to store information
953c66c2
AK
3986 * related to pte entry. Use the preallocated table for that.
3987 */
82b0f8c3 3988 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3989 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3990 if (!vmf->prealloc_pte)
953c66c2 3991 return VM_FAULT_OOM;
953c66c2
AK
3992 }
3993
82b0f8c3
JK
3994 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3995 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3996 goto out;
3997
3998 for (i = 0; i < HPAGE_PMD_NR; i++)
3999 flush_icache_page(vma, page + i);
4000
4001 entry = mk_huge_pmd(page, vma->vm_page_prot);
4002 if (write)
f55e1014 4003 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4004
fadae295 4005 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4006 page_add_file_rmap(page, vma, true);
4007
953c66c2
AK
4008 /*
4009 * deposit and withdraw with pmd lock held
4010 */
4011 if (arch_needs_pgtable_deposit())
82b0f8c3 4012 deposit_prealloc_pte(vmf);
10102459 4013
82b0f8c3 4014 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4015
82b0f8c3 4016 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4017
4018 /* fault is handled */
4019 ret = 0;
95ecedcd 4020 count_vm_event(THP_FILE_MAPPED);
10102459 4021out:
82b0f8c3 4022 spin_unlock(vmf->ptl);
10102459
KS
4023 return ret;
4024}
4025#else
f9ce0be7 4026vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4027{
f9ce0be7 4028 return VM_FAULT_FALLBACK;
10102459
KS
4029}
4030#endif
4031
9d3af4b4 4032void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4033{
82b0f8c3
JK
4034 struct vm_area_struct *vma = vmf->vma;
4035 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4036 bool prefault = vmf->address != addr;
3bb97794 4037 pte_t entry;
7267ec00 4038
3bb97794
KS
4039 flush_icache_page(vma, page);
4040 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4041
4042 if (prefault && arch_wants_old_prefaulted_pte())
4043 entry = pte_mkold(entry);
50c25ee9
TB
4044 else
4045 entry = pte_sw_mkyoung(entry);
46bdb427 4046
3bb97794
KS
4047 if (write)
4048 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
4049 /* copy-on-write page */
4050 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4051 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 4052 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 4053 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4054 } else {
eca56ff9 4055 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4056 page_add_file_rmap(page, vma, false);
3bb97794 4057 }
9d3af4b4 4058 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4059}
4060
9118c0cb
JK
4061/**
4062 * finish_fault - finish page fault once we have prepared the page to fault
4063 *
4064 * @vmf: structure describing the fault
4065 *
4066 * This function handles all that is needed to finish a page fault once the
4067 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4068 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4069 * addition.
9118c0cb
JK
4070 *
4071 * The function expects the page to be locked and on success it consumes a
4072 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4073 *
4074 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4075 */
2b740303 4076vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4077{
f9ce0be7 4078 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4079 struct page *page;
f9ce0be7 4080 vm_fault_t ret;
9118c0cb
JK
4081
4082 /* Did we COW the page? */
f9ce0be7 4083 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4084 page = vmf->cow_page;
4085 else
4086 page = vmf->page;
6b31d595
MH
4087
4088 /*
4089 * check even for read faults because we might have lost our CoWed
4090 * page
4091 */
f9ce0be7
KS
4092 if (!(vma->vm_flags & VM_SHARED)) {
4093 ret = check_stable_address_space(vma->vm_mm);
4094 if (ret)
4095 return ret;
4096 }
4097
4098 if (pmd_none(*vmf->pmd)) {
4099 if (PageTransCompound(page)) {
4100 ret = do_set_pmd(vmf, page);
4101 if (ret != VM_FAULT_FALLBACK)
4102 return ret;
4103 }
4104
03c4f204
QZ
4105 if (vmf->prealloc_pte)
4106 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4107 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4108 return VM_FAULT_OOM;
4109 }
4110
4111 /* See comment in handle_pte_fault() */
4112 if (pmd_devmap_trans_unstable(vmf->pmd))
4113 return 0;
4114
4115 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4116 vmf->address, &vmf->ptl);
4117 ret = 0;
4118 /* Re-check under ptl */
4119 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4120 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4121 else
4122 ret = VM_FAULT_NOPAGE;
4123
4124 update_mmu_tlb(vma, vmf->address, vmf->pte);
4125 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4126 return ret;
4127}
4128
3a91053a
KS
4129static unsigned long fault_around_bytes __read_mostly =
4130 rounddown_pow_of_two(65536);
a9b0f861 4131
a9b0f861
KS
4132#ifdef CONFIG_DEBUG_FS
4133static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4134{
a9b0f861 4135 *val = fault_around_bytes;
1592eef0
KS
4136 return 0;
4137}
4138
b4903d6e 4139/*
da391d64
WK
4140 * fault_around_bytes must be rounded down to the nearest page order as it's
4141 * what do_fault_around() expects to see.
b4903d6e 4142 */
a9b0f861 4143static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4144{
a9b0f861 4145 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4146 return -EINVAL;
b4903d6e
AR
4147 if (val > PAGE_SIZE)
4148 fault_around_bytes = rounddown_pow_of_two(val);
4149 else
4150 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4151 return 0;
4152}
0a1345f8 4153DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4154 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4155
4156static int __init fault_around_debugfs(void)
4157{
d9f7979c
GKH
4158 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4159 &fault_around_bytes_fops);
1592eef0
KS
4160 return 0;
4161}
4162late_initcall(fault_around_debugfs);
1592eef0 4163#endif
8c6e50b0 4164
1fdb412b
KS
4165/*
4166 * do_fault_around() tries to map few pages around the fault address. The hope
4167 * is that the pages will be needed soon and this will lower the number of
4168 * faults to handle.
4169 *
4170 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4171 * not ready to be mapped: not up-to-date, locked, etc.
4172 *
4173 * This function is called with the page table lock taken. In the split ptlock
4174 * case the page table lock only protects only those entries which belong to
4175 * the page table corresponding to the fault address.
4176 *
4177 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4178 * only once.
4179 *
da391d64
WK
4180 * fault_around_bytes defines how many bytes we'll try to map.
4181 * do_fault_around() expects it to be set to a power of two less than or equal
4182 * to PTRS_PER_PTE.
1fdb412b 4183 *
da391d64
WK
4184 * The virtual address of the area that we map is naturally aligned to
4185 * fault_around_bytes rounded down to the machine page size
4186 * (and therefore to page order). This way it's easier to guarantee
4187 * that we don't cross page table boundaries.
1fdb412b 4188 */
2b740303 4189static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4190{
82b0f8c3 4191 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4192 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4193 pgoff_t end_pgoff;
2b740303 4194 int off;
8c6e50b0 4195
4db0c3c2 4196 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4197 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4198
f9ce0be7
KS
4199 address = max(address & mask, vmf->vma->vm_start);
4200 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4201 start_pgoff -= off;
8c6e50b0
KS
4202
4203 /*
da391d64
WK
4204 * end_pgoff is either the end of the page table, the end of
4205 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4206 */
bae473a4 4207 end_pgoff = start_pgoff -
f9ce0be7 4208 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4209 PTRS_PER_PTE - 1;
82b0f8c3 4210 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4211 start_pgoff + nr_pages - 1);
8c6e50b0 4212
82b0f8c3 4213 if (pmd_none(*vmf->pmd)) {
4cf58924 4214 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4215 if (!vmf->prealloc_pte)
f9ce0be7 4216 return VM_FAULT_OOM;
8c6e50b0
KS
4217 }
4218
f9ce0be7 4219 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4220}
4221
2b740303 4222static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4223{
82b0f8c3 4224 struct vm_area_struct *vma = vmf->vma;
2b740303 4225 vm_fault_t ret = 0;
8c6e50b0
KS
4226
4227 /*
4228 * Let's call ->map_pages() first and use ->fault() as fallback
4229 * if page by the offset is not ready to be mapped (cold cache or
4230 * something).
4231 */
9b4bdd2f 4232 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4233 if (likely(!userfaultfd_minor(vmf->vma))) {
4234 ret = do_fault_around(vmf);
4235 if (ret)
4236 return ret;
4237 }
8c6e50b0 4238 }
e655fb29 4239
936ca80d 4240 ret = __do_fault(vmf);
e655fb29
KS
4241 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4242 return ret;
4243
9118c0cb 4244 ret |= finish_fault(vmf);
936ca80d 4245 unlock_page(vmf->page);
7267ec00 4246 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4247 put_page(vmf->page);
e655fb29
KS
4248 return ret;
4249}
4250
2b740303 4251static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4252{
82b0f8c3 4253 struct vm_area_struct *vma = vmf->vma;
2b740303 4254 vm_fault_t ret;
ec47c3b9
KS
4255
4256 if (unlikely(anon_vma_prepare(vma)))
4257 return VM_FAULT_OOM;
4258
936ca80d
JK
4259 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4260 if (!vmf->cow_page)
ec47c3b9
KS
4261 return VM_FAULT_OOM;
4262
8f425e4e
MWO
4263 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4264 GFP_KERNEL)) {
936ca80d 4265 put_page(vmf->cow_page);
ec47c3b9
KS
4266 return VM_FAULT_OOM;
4267 }
9d82c694 4268 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4269
936ca80d 4270 ret = __do_fault(vmf);
ec47c3b9
KS
4271 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4272 goto uncharge_out;
3917048d
JK
4273 if (ret & VM_FAULT_DONE_COW)
4274 return ret;
ec47c3b9 4275
b1aa812b 4276 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4277 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4278
9118c0cb 4279 ret |= finish_fault(vmf);
b1aa812b
JK
4280 unlock_page(vmf->page);
4281 put_page(vmf->page);
7267ec00
KS
4282 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4283 goto uncharge_out;
ec47c3b9
KS
4284 return ret;
4285uncharge_out:
936ca80d 4286 put_page(vmf->cow_page);
ec47c3b9
KS
4287 return ret;
4288}
4289
2b740303 4290static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4291{
82b0f8c3 4292 struct vm_area_struct *vma = vmf->vma;
2b740303 4293 vm_fault_t ret, tmp;
1d65f86d 4294
936ca80d 4295 ret = __do_fault(vmf);
7eae74af 4296 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4297 return ret;
1da177e4
LT
4298
4299 /*
f0c6d4d2
KS
4300 * Check if the backing address space wants to know that the page is
4301 * about to become writable
1da177e4 4302 */
fb09a464 4303 if (vma->vm_ops->page_mkwrite) {
936ca80d 4304 unlock_page(vmf->page);
38b8cb7f 4305 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4306 if (unlikely(!tmp ||
4307 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4308 put_page(vmf->page);
fb09a464 4309 return tmp;
4294621f 4310 }
fb09a464
KS
4311 }
4312
9118c0cb 4313 ret |= finish_fault(vmf);
7267ec00
KS
4314 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4315 VM_FAULT_RETRY))) {
936ca80d
JK
4316 unlock_page(vmf->page);
4317 put_page(vmf->page);
f0c6d4d2 4318 return ret;
1da177e4 4319 }
b827e496 4320
89b15332 4321 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4322 return ret;
54cb8821 4323}
d00806b1 4324
9a95f3cf 4325/*
c1e8d7c6 4326 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4327 * but allow concurrent faults).
c1e8d7c6 4328 * The mmap_lock may have been released depending on flags and our
9138e47e 4329 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4330 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4331 * by other thread calling munmap()).
9a95f3cf 4332 */
2b740303 4333static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4334{
82b0f8c3 4335 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4336 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4337 vm_fault_t ret;
54cb8821 4338
ff09d7ec
AK
4339 /*
4340 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4341 */
4342 if (!vma->vm_ops->fault) {
4343 /*
4344 * If we find a migration pmd entry or a none pmd entry, which
4345 * should never happen, return SIGBUS
4346 */
4347 if (unlikely(!pmd_present(*vmf->pmd)))
4348 ret = VM_FAULT_SIGBUS;
4349 else {
4350 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4351 vmf->pmd,
4352 vmf->address,
4353 &vmf->ptl);
4354 /*
4355 * Make sure this is not a temporary clearing of pte
4356 * by holding ptl and checking again. A R/M/W update
4357 * of pte involves: take ptl, clearing the pte so that
4358 * we don't have concurrent modification by hardware
4359 * followed by an update.
4360 */
4361 if (unlikely(pte_none(*vmf->pte)))
4362 ret = VM_FAULT_SIGBUS;
4363 else
4364 ret = VM_FAULT_NOPAGE;
4365
4366 pte_unmap_unlock(vmf->pte, vmf->ptl);
4367 }
4368 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4369 ret = do_read_fault(vmf);
4370 else if (!(vma->vm_flags & VM_SHARED))
4371 ret = do_cow_fault(vmf);
4372 else
4373 ret = do_shared_fault(vmf);
4374
4375 /* preallocated pagetable is unused: free it */
4376 if (vmf->prealloc_pte) {
fc8efd2d 4377 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4378 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4379 }
4380 return ret;
54cb8821
NP
4381}
4382
f4c0d836
YS
4383int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4384 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4385{
4386 get_page(page);
4387
4388 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4389 if (page_nid == numa_node_id()) {
9532fec1 4390 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4391 *flags |= TNF_FAULT_LOCAL;
4392 }
9532fec1
MG
4393
4394 return mpol_misplaced(page, vma, addr);
4395}
4396
2b740303 4397static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4398{
82b0f8c3 4399 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4400 struct page *page = NULL;
98fa15f3 4401 int page_nid = NUMA_NO_NODE;
90572890 4402 int last_cpupid;
cbee9f88 4403 int target_nid;
04a86453 4404 pte_t pte, old_pte;
288bc549 4405 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4406 int flags = 0;
d10e63f2
MG
4407
4408 /*
166f61b9
TH
4409 * The "pte" at this point cannot be used safely without
4410 * validation through pte_unmap_same(). It's of NUMA type but
4411 * the pfn may be screwed if the read is non atomic.
166f61b9 4412 */
82b0f8c3
JK
4413 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4414 spin_lock(vmf->ptl);
cee216a6 4415 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4416 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4417 goto out;
4418 }
4419
b99a342d
HY
4420 /* Get the normal PTE */
4421 old_pte = ptep_get(vmf->pte);
04a86453 4422 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4423
82b0f8c3 4424 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4425 if (!page)
4426 goto out_map;
d10e63f2 4427
e81c4802 4428 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4429 if (PageCompound(page))
4430 goto out_map;
e81c4802 4431
6688cc05 4432 /*
bea66fbd
MG
4433 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4434 * much anyway since they can be in shared cache state. This misses
4435 * the case where a mapping is writable but the process never writes
4436 * to it but pte_write gets cleared during protection updates and
4437 * pte_dirty has unpredictable behaviour between PTE scan updates,
4438 * background writeback, dirty balancing and application behaviour.
6688cc05 4439 */
b99a342d 4440 if (!was_writable)
6688cc05
PZ
4441 flags |= TNF_NO_GROUP;
4442
dabe1d99
RR
4443 /*
4444 * Flag if the page is shared between multiple address spaces. This
4445 * is later used when determining whether to group tasks together
4446 */
4447 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4448 flags |= TNF_SHARED;
4449
90572890 4450 last_cpupid = page_cpupid_last(page);
8191acbd 4451 page_nid = page_to_nid(page);
82b0f8c3 4452 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4453 &flags);
98fa15f3 4454 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4455 put_page(page);
b99a342d 4456 goto out_map;
4daae3b4 4457 }
b99a342d 4458 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4459
4460 /* Migrate to the requested node */
bf90ac19 4461 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4462 page_nid = target_nid;
6688cc05 4463 flags |= TNF_MIGRATED;
b99a342d 4464 } else {
074c2381 4465 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4466 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4467 spin_lock(vmf->ptl);
4468 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4469 pte_unmap_unlock(vmf->pte, vmf->ptl);
4470 goto out;
4471 }
4472 goto out_map;
4473 }
4daae3b4
MG
4474
4475out:
98fa15f3 4476 if (page_nid != NUMA_NO_NODE)
6688cc05 4477 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4478 return 0;
b99a342d
HY
4479out_map:
4480 /*
4481 * Make it present again, depending on how arch implements
4482 * non-accessible ptes, some can allow access by kernel mode.
4483 */
4484 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4485 pte = pte_modify(old_pte, vma->vm_page_prot);
4486 pte = pte_mkyoung(pte);
4487 if (was_writable)
4488 pte = pte_mkwrite(pte);
4489 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4490 update_mmu_cache(vma, vmf->address, vmf->pte);
4491 pte_unmap_unlock(vmf->pte, vmf->ptl);
4492 goto out;
d10e63f2
MG
4493}
4494
2b740303 4495static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4496{
f4200391 4497 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4498 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4499 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4500 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4501 return VM_FAULT_FALLBACK;
4502}
4503
183f24aa 4504/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4505static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4506{
529b930b 4507 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4508 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4509 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4510 return do_huge_pmd_wp_page(vmf);
529b930b 4511 }
327e9fd4
THV
4512 if (vmf->vma->vm_ops->huge_fault) {
4513 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4514
4515 if (!(ret & VM_FAULT_FALLBACK))
4516 return ret;
4517 }
af9e4d5f 4518
327e9fd4 4519 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4520 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4521
b96375f7
MW
4522 return VM_FAULT_FALLBACK;
4523}
4524
2b740303 4525static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4526{
327e9fd4
THV
4527#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4528 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4529 /* No support for anonymous transparent PUD pages yet */
4530 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4531 goto split;
4532 if (vmf->vma->vm_ops->huge_fault) {
4533 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4534
4535 if (!(ret & VM_FAULT_FALLBACK))
4536 return ret;
4537 }
4538split:
4539 /* COW or write-notify not handled on PUD level: split pud.*/
4540 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4541#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4542 return VM_FAULT_FALLBACK;
4543}
4544
2b740303 4545static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4546{
4547#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4548 /* No support for anonymous transparent PUD pages yet */
4549 if (vma_is_anonymous(vmf->vma))
4550 return VM_FAULT_FALLBACK;
4551 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4552 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4553#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4554 return VM_FAULT_FALLBACK;
4555}
4556
1da177e4
LT
4557/*
4558 * These routines also need to handle stuff like marking pages dirty
4559 * and/or accessed for architectures that don't do it in hardware (most
4560 * RISC architectures). The early dirtying is also good on the i386.
4561 *
4562 * There is also a hook called "update_mmu_cache()" that architectures
4563 * with external mmu caches can use to update those (ie the Sparc or
4564 * PowerPC hashed page tables that act as extended TLBs).
4565 *
c1e8d7c6 4566 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4567 * concurrent faults).
9a95f3cf 4568 *
c1e8d7c6 4569 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4570 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4571 */
2b740303 4572static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4573{
4574 pte_t entry;
4575
82b0f8c3 4576 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4577 /*
4578 * Leave __pte_alloc() until later: because vm_ops->fault may
4579 * want to allocate huge page, and if we expose page table
4580 * for an instant, it will be difficult to retract from
4581 * concurrent faults and from rmap lookups.
4582 */
82b0f8c3 4583 vmf->pte = NULL;
7267ec00 4584 } else {
f9ce0be7
KS
4585 /*
4586 * If a huge pmd materialized under us just retry later. Use
4587 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4588 * of pmd_trans_huge() to ensure the pmd didn't become
4589 * pmd_trans_huge under us and then back to pmd_none, as a
4590 * result of MADV_DONTNEED running immediately after a huge pmd
4591 * fault in a different thread of this mm, in turn leading to a
4592 * misleading pmd_trans_huge() retval. All we have to ensure is
4593 * that it is a regular pmd that we can walk with
4594 * pte_offset_map() and we can do that through an atomic read
4595 * in C, which is what pmd_trans_unstable() provides.
4596 */
d0f0931d 4597 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4598 return 0;
4599 /*
4600 * A regular pmd is established and it can't morph into a huge
4601 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4602 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4603 * So now it's safe to run pte_offset_map().
4604 */
82b0f8c3 4605 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4606 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4607
4608 /*
4609 * some architectures can have larger ptes than wordsize,
4610 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4611 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4612 * accesses. The code below just needs a consistent view
4613 * for the ifs and we later double check anyway with the
7267ec00
KS
4614 * ptl lock held. So here a barrier will do.
4615 */
4616 barrier();
2994302b 4617 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4618 pte_unmap(vmf->pte);
4619 vmf->pte = NULL;
65500d23 4620 }
1da177e4
LT
4621 }
4622
82b0f8c3
JK
4623 if (!vmf->pte) {
4624 if (vma_is_anonymous(vmf->vma))
4625 return do_anonymous_page(vmf);
7267ec00 4626 else
82b0f8c3 4627 return do_fault(vmf);
7267ec00
KS
4628 }
4629
2994302b
JK
4630 if (!pte_present(vmf->orig_pte))
4631 return do_swap_page(vmf);
7267ec00 4632
2994302b
JK
4633 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4634 return do_numa_page(vmf);
d10e63f2 4635
82b0f8c3
JK
4636 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4637 spin_lock(vmf->ptl);
2994302b 4638 entry = vmf->orig_pte;
7df67697
BM
4639 if (unlikely(!pte_same(*vmf->pte, entry))) {
4640 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4641 goto unlock;
7df67697 4642 }
82b0f8c3 4643 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4644 if (!pte_write(entry))
2994302b 4645 return do_wp_page(vmf);
1da177e4
LT
4646 entry = pte_mkdirty(entry);
4647 }
4648 entry = pte_mkyoung(entry);
82b0f8c3
JK
4649 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4650 vmf->flags & FAULT_FLAG_WRITE)) {
4651 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4652 } else {
b7333b58
YS
4653 /* Skip spurious TLB flush for retried page fault */
4654 if (vmf->flags & FAULT_FLAG_TRIED)
4655 goto unlock;
1a44e149
AA
4656 /*
4657 * This is needed only for protection faults but the arch code
4658 * is not yet telling us if this is a protection fault or not.
4659 * This still avoids useless tlb flushes for .text page faults
4660 * with threads.
4661 */
82b0f8c3
JK
4662 if (vmf->flags & FAULT_FLAG_WRITE)
4663 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4664 }
8f4e2101 4665unlock:
82b0f8c3 4666 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4667 return 0;
1da177e4
LT
4668}
4669
4670/*
4671 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4672 *
c1e8d7c6 4673 * The mmap_lock may have been released depending on flags and our
9138e47e 4674 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4675 */
2b740303
SJ
4676static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4677 unsigned long address, unsigned int flags)
1da177e4 4678{
82b0f8c3 4679 struct vm_fault vmf = {
bae473a4 4680 .vma = vma,
1a29d85e 4681 .address = address & PAGE_MASK,
824ddc60 4682 .real_address = address,
bae473a4 4683 .flags = flags,
0721ec8b 4684 .pgoff = linear_page_index(vma, address),
667240e0 4685 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4686 };
fde26bed 4687 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4688 struct mm_struct *mm = vma->vm_mm;
1da177e4 4689 pgd_t *pgd;
c2febafc 4690 p4d_t *p4d;
2b740303 4691 vm_fault_t ret;
1da177e4 4692
1da177e4 4693 pgd = pgd_offset(mm, address);
c2febafc
KS
4694 p4d = p4d_alloc(mm, pgd, address);
4695 if (!p4d)
4696 return VM_FAULT_OOM;
a00cc7d9 4697
c2febafc 4698 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4699 if (!vmf.pud)
c74df32c 4700 return VM_FAULT_OOM;
625110b5 4701retry_pud:
7635d9cb 4702 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4703 ret = create_huge_pud(&vmf);
4704 if (!(ret & VM_FAULT_FALLBACK))
4705 return ret;
4706 } else {
4707 pud_t orig_pud = *vmf.pud;
4708
4709 barrier();
4710 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4711
a00cc7d9
MW
4712 /* NUMA case for anonymous PUDs would go here */
4713
f6f37321 4714 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4715 ret = wp_huge_pud(&vmf, orig_pud);
4716 if (!(ret & VM_FAULT_FALLBACK))
4717 return ret;
4718 } else {
4719 huge_pud_set_accessed(&vmf, orig_pud);
4720 return 0;
4721 }
4722 }
4723 }
4724
4725 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4726 if (!vmf.pmd)
c74df32c 4727 return VM_FAULT_OOM;
625110b5
TH
4728
4729 /* Huge pud page fault raced with pmd_alloc? */
4730 if (pud_trans_unstable(vmf.pud))
4731 goto retry_pud;
4732
7635d9cb 4733 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4734 ret = create_huge_pmd(&vmf);
c0292554
KS
4735 if (!(ret & VM_FAULT_FALLBACK))
4736 return ret;
71e3aac0 4737 } else {
5db4f15c 4738 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4739
71e3aac0 4740 barrier();
5db4f15c 4741 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4742 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4743 !is_pmd_migration_entry(vmf.orig_pmd));
4744 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4745 pmd_migration_entry_wait(mm, vmf.pmd);
4746 return 0;
4747 }
5db4f15c
YS
4748 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4749 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4750 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4751
5db4f15c
YS
4752 if (dirty && !pmd_write(vmf.orig_pmd)) {
4753 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4754 if (!(ret & VM_FAULT_FALLBACK))
4755 return ret;
a1dd450b 4756 } else {
5db4f15c 4757 huge_pmd_set_accessed(&vmf);
9845cbbd 4758 return 0;
1f1d06c3 4759 }
71e3aac0
AA
4760 }
4761 }
4762
82b0f8c3 4763 return handle_pte_fault(&vmf);
1da177e4
LT
4764}
4765
bce617ed 4766/**
f0953a1b 4767 * mm_account_fault - Do page fault accounting
bce617ed
PX
4768 *
4769 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4770 * of perf event counters, but we'll still do the per-task accounting to
4771 * the task who triggered this page fault.
4772 * @address: the faulted address.
4773 * @flags: the fault flags.
4774 * @ret: the fault retcode.
4775 *
f0953a1b 4776 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4777 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4778 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4779 * still be in per-arch page fault handlers at the entry of page fault.
4780 */
4781static inline void mm_account_fault(struct pt_regs *regs,
4782 unsigned long address, unsigned int flags,
4783 vm_fault_t ret)
4784{
4785 bool major;
4786
4787 /*
4788 * We don't do accounting for some specific faults:
4789 *
4790 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4791 * includes arch_vma_access_permitted() failing before reaching here.
4792 * So this is not a "this many hardware page faults" counter. We
4793 * should use the hw profiling for that.
4794 *
4795 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4796 * once they're completed.
4797 */
4798 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4799 return;
4800
4801 /*
4802 * We define the fault as a major fault when the final successful fault
4803 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4804 * handle it immediately previously).
4805 */
4806 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4807
a2beb5f1
PX
4808 if (major)
4809 current->maj_flt++;
4810 else
4811 current->min_flt++;
4812
bce617ed 4813 /*
a2beb5f1
PX
4814 * If the fault is done for GUP, regs will be NULL. We only do the
4815 * accounting for the per thread fault counters who triggered the
4816 * fault, and we skip the perf event updates.
bce617ed
PX
4817 */
4818 if (!regs)
4819 return;
4820
a2beb5f1 4821 if (major)
bce617ed 4822 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4823 else
bce617ed 4824 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4825}
4826
9a95f3cf
PC
4827/*
4828 * By the time we get here, we already hold the mm semaphore
4829 *
c1e8d7c6 4830 * The mmap_lock may have been released depending on flags and our
9138e47e 4831 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 4832 */
2b740303 4833vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4834 unsigned int flags, struct pt_regs *regs)
519e5247 4835{
2b740303 4836 vm_fault_t ret;
519e5247
JW
4837
4838 __set_current_state(TASK_RUNNING);
4839
4840 count_vm_event(PGFAULT);
2262185c 4841 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4842
4843 /* do counter updates before entering really critical section. */
4844 check_sync_rss_stat(current);
4845
de0c799b
LD
4846 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4847 flags & FAULT_FLAG_INSTRUCTION,
4848 flags & FAULT_FLAG_REMOTE))
4849 return VM_FAULT_SIGSEGV;
4850
519e5247
JW
4851 /*
4852 * Enable the memcg OOM handling for faults triggered in user
4853 * space. Kernel faults are handled more gracefully.
4854 */
4855 if (flags & FAULT_FLAG_USER)
29ef680a 4856 mem_cgroup_enter_user_fault();
519e5247 4857
bae473a4
KS
4858 if (unlikely(is_vm_hugetlb_page(vma)))
4859 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4860 else
4861 ret = __handle_mm_fault(vma, address, flags);
519e5247 4862
49426420 4863 if (flags & FAULT_FLAG_USER) {
29ef680a 4864 mem_cgroup_exit_user_fault();
166f61b9
TH
4865 /*
4866 * The task may have entered a memcg OOM situation but
4867 * if the allocation error was handled gracefully (no
4868 * VM_FAULT_OOM), there is no need to kill anything.
4869 * Just clean up the OOM state peacefully.
4870 */
4871 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4872 mem_cgroup_oom_synchronize(false);
49426420 4873 }
3812c8c8 4874
bce617ed
PX
4875 mm_account_fault(regs, address, flags, ret);
4876
519e5247
JW
4877 return ret;
4878}
e1d6d01a 4879EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4880
90eceff1
KS
4881#ifndef __PAGETABLE_P4D_FOLDED
4882/*
4883 * Allocate p4d page table.
4884 * We've already handled the fast-path in-line.
4885 */
4886int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4887{
4888 p4d_t *new = p4d_alloc_one(mm, address);
4889 if (!new)
4890 return -ENOMEM;
4891
90eceff1 4892 spin_lock(&mm->page_table_lock);
ed33b5a6 4893 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 4894 p4d_free(mm, new);
ed33b5a6
QZ
4895 } else {
4896 smp_wmb(); /* See comment in pmd_install() */
90eceff1 4897 pgd_populate(mm, pgd, new);
ed33b5a6 4898 }
90eceff1
KS
4899 spin_unlock(&mm->page_table_lock);
4900 return 0;
4901}
4902#endif /* __PAGETABLE_P4D_FOLDED */
4903
1da177e4
LT
4904#ifndef __PAGETABLE_PUD_FOLDED
4905/*
4906 * Allocate page upper directory.
872fec16 4907 * We've already handled the fast-path in-line.
1da177e4 4908 */
c2febafc 4909int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4910{
c74df32c
HD
4911 pud_t *new = pud_alloc_one(mm, address);
4912 if (!new)
1bb3630e 4913 return -ENOMEM;
1da177e4 4914
872fec16 4915 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4916 if (!p4d_present(*p4d)) {
4917 mm_inc_nr_puds(mm);
ed33b5a6 4918 smp_wmb(); /* See comment in pmd_install() */
c2febafc 4919 p4d_populate(mm, p4d, new);
b4e98d9a 4920 } else /* Another has populated it */
5e541973 4921 pud_free(mm, new);
c74df32c 4922 spin_unlock(&mm->page_table_lock);
1bb3630e 4923 return 0;
1da177e4
LT
4924}
4925#endif /* __PAGETABLE_PUD_FOLDED */
4926
4927#ifndef __PAGETABLE_PMD_FOLDED
4928/*
4929 * Allocate page middle directory.
872fec16 4930 * We've already handled the fast-path in-line.
1da177e4 4931 */
1bb3630e 4932int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4933{
a00cc7d9 4934 spinlock_t *ptl;
c74df32c
HD
4935 pmd_t *new = pmd_alloc_one(mm, address);
4936 if (!new)
1bb3630e 4937 return -ENOMEM;
1da177e4 4938
a00cc7d9 4939 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4940 if (!pud_present(*pud)) {
4941 mm_inc_nr_pmds(mm);
ed33b5a6 4942 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 4943 pud_populate(mm, pud, new);
ed33b5a6 4944 } else { /* Another has populated it */
5e541973 4945 pmd_free(mm, new);
ed33b5a6 4946 }
a00cc7d9 4947 spin_unlock(ptl);
1bb3630e 4948 return 0;
e0f39591 4949}
1da177e4
LT
4950#endif /* __PAGETABLE_PMD_FOLDED */
4951
0e5e64c0
MS
4952/**
4953 * follow_pte - look up PTE at a user virtual address
4954 * @mm: the mm_struct of the target address space
4955 * @address: user virtual address
4956 * @ptepp: location to store found PTE
4957 * @ptlp: location to store the lock for the PTE
4958 *
4959 * On a successful return, the pointer to the PTE is stored in @ptepp;
4960 * the corresponding lock is taken and its location is stored in @ptlp.
4961 * The contents of the PTE are only stable until @ptlp is released;
4962 * any further use, if any, must be protected against invalidation
4963 * with MMU notifiers.
4964 *
4965 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4966 * should be taken for read.
4967 *
4968 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4969 * it is not a good general-purpose API.
4970 *
4971 * Return: zero on success, -ve otherwise.
4972 */
4973int follow_pte(struct mm_struct *mm, unsigned long address,
4974 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
4975{
4976 pgd_t *pgd;
c2febafc 4977 p4d_t *p4d;
f8ad0f49
JW
4978 pud_t *pud;
4979 pmd_t *pmd;
4980 pte_t *ptep;
4981
4982 pgd = pgd_offset(mm, address);
4983 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4984 goto out;
4985
c2febafc
KS
4986 p4d = p4d_offset(pgd, address);
4987 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4988 goto out;
4989
4990 pud = pud_offset(p4d, address);
f8ad0f49
JW
4991 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4992 goto out;
4993
4994 pmd = pmd_offset(pud, address);
f66055ab 4995 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4996
09796395 4997 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4998 goto out;
4999
5000 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5001 if (!pte_present(*ptep))
5002 goto unlock;
5003 *ptepp = ptep;
5004 return 0;
5005unlock:
5006 pte_unmap_unlock(ptep, *ptlp);
5007out:
5008 return -EINVAL;
5009}
9fd6dad1
PB
5010EXPORT_SYMBOL_GPL(follow_pte);
5011
3b6748e2
JW
5012/**
5013 * follow_pfn - look up PFN at a user virtual address
5014 * @vma: memory mapping
5015 * @address: user virtual address
5016 * @pfn: location to store found PFN
5017 *
5018 * Only IO mappings and raw PFN mappings are allowed.
5019 *
9fd6dad1
PB
5020 * This function does not allow the caller to read the permissions
5021 * of the PTE. Do not use it.
5022 *
a862f68a 5023 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5024 */
5025int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5026 unsigned long *pfn)
5027{
5028 int ret = -EINVAL;
5029 spinlock_t *ptl;
5030 pte_t *ptep;
5031
5032 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5033 return ret;
5034
9fd6dad1 5035 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5036 if (ret)
5037 return ret;
5038 *pfn = pte_pfn(*ptep);
5039 pte_unmap_unlock(ptep, ptl);
5040 return 0;
5041}
5042EXPORT_SYMBOL(follow_pfn);
5043
28b2ee20 5044#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5045int follow_phys(struct vm_area_struct *vma,
5046 unsigned long address, unsigned int flags,
5047 unsigned long *prot, resource_size_t *phys)
28b2ee20 5048{
03668a4d 5049 int ret = -EINVAL;
28b2ee20
RR
5050 pte_t *ptep, pte;
5051 spinlock_t *ptl;
28b2ee20 5052
d87fe660 5053 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5054 goto out;
28b2ee20 5055
9fd6dad1 5056 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5057 goto out;
28b2ee20 5058 pte = *ptep;
03668a4d 5059
f6f37321 5060 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5061 goto unlock;
28b2ee20
RR
5062
5063 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5064 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5065
03668a4d 5066 ret = 0;
28b2ee20
RR
5067unlock:
5068 pte_unmap_unlock(ptep, ptl);
5069out:
d87fe660 5070 return ret;
28b2ee20
RR
5071}
5072
96667f8a
DV
5073/**
5074 * generic_access_phys - generic implementation for iomem mmap access
5075 * @vma: the vma to access
f0953a1b 5076 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5077 * @buf: buffer to read/write
5078 * @len: length of transfer
5079 * @write: set to FOLL_WRITE when writing, otherwise reading
5080 *
5081 * This is a generic implementation for &vm_operations_struct.access for an
5082 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5083 * not page based.
5084 */
28b2ee20
RR
5085int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5086 void *buf, int len, int write)
5087{
5088 resource_size_t phys_addr;
5089 unsigned long prot = 0;
2bc7273b 5090 void __iomem *maddr;
96667f8a
DV
5091 pte_t *ptep, pte;
5092 spinlock_t *ptl;
5093 int offset = offset_in_page(addr);
5094 int ret = -EINVAL;
5095
5096 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5097 return -EINVAL;
5098
5099retry:
e913a8cd 5100 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5101 return -EINVAL;
5102 pte = *ptep;
5103 pte_unmap_unlock(ptep, ptl);
28b2ee20 5104
96667f8a
DV
5105 prot = pgprot_val(pte_pgprot(pte));
5106 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5107
5108 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5109 return -EINVAL;
5110
9cb12d7b 5111 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5112 if (!maddr)
5113 return -ENOMEM;
5114
e913a8cd 5115 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5116 goto out_unmap;
5117
5118 if (!pte_same(pte, *ptep)) {
5119 pte_unmap_unlock(ptep, ptl);
5120 iounmap(maddr);
5121
5122 goto retry;
5123 }
5124
28b2ee20
RR
5125 if (write)
5126 memcpy_toio(maddr + offset, buf, len);
5127 else
5128 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5129 ret = len;
5130 pte_unmap_unlock(ptep, ptl);
5131out_unmap:
28b2ee20
RR
5132 iounmap(maddr);
5133
96667f8a 5134 return ret;
28b2ee20 5135}
5a73633e 5136EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5137#endif
5138
0ec76a11 5139/*
d3f5ffca 5140 * Access another process' address space as given in mm.
0ec76a11 5141 */
d3f5ffca
JH
5142int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5143 int len, unsigned int gup_flags)
0ec76a11 5144{
0ec76a11 5145 struct vm_area_struct *vma;
0ec76a11 5146 void *old_buf = buf;
442486ec 5147 int write = gup_flags & FOLL_WRITE;
0ec76a11 5148
d8ed45c5 5149 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5150 return 0;
5151
183ff22b 5152 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5153 while (len) {
5154 int bytes, ret, offset;
5155 void *maddr;
28b2ee20 5156 struct page *page = NULL;
0ec76a11 5157
64019a2e 5158 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5159 gup_flags, &page, &vma, NULL);
28b2ee20 5160 if (ret <= 0) {
dbffcd03
RR
5161#ifndef CONFIG_HAVE_IOREMAP_PROT
5162 break;
5163#else
28b2ee20
RR
5164 /*
5165 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5166 * we can access using slightly different code.
5167 */
3e418f98
LH
5168 vma = vma_lookup(mm, addr);
5169 if (!vma)
28b2ee20
RR
5170 break;
5171 if (vma->vm_ops && vma->vm_ops->access)
5172 ret = vma->vm_ops->access(vma, addr, buf,
5173 len, write);
5174 if (ret <= 0)
28b2ee20
RR
5175 break;
5176 bytes = ret;
dbffcd03 5177#endif
0ec76a11 5178 } else {
28b2ee20
RR
5179 bytes = len;
5180 offset = addr & (PAGE_SIZE-1);
5181 if (bytes > PAGE_SIZE-offset)
5182 bytes = PAGE_SIZE-offset;
5183
5184 maddr = kmap(page);
5185 if (write) {
5186 copy_to_user_page(vma, page, addr,
5187 maddr + offset, buf, bytes);
5188 set_page_dirty_lock(page);
5189 } else {
5190 copy_from_user_page(vma, page, addr,
5191 buf, maddr + offset, bytes);
5192 }
5193 kunmap(page);
09cbfeaf 5194 put_page(page);
0ec76a11 5195 }
0ec76a11
DH
5196 len -= bytes;
5197 buf += bytes;
5198 addr += bytes;
5199 }
d8ed45c5 5200 mmap_read_unlock(mm);
0ec76a11
DH
5201
5202 return buf - old_buf;
5203}
03252919 5204
5ddd36b9 5205/**
ae91dbfc 5206 * access_remote_vm - access another process' address space
5ddd36b9
SW
5207 * @mm: the mm_struct of the target address space
5208 * @addr: start address to access
5209 * @buf: source or destination buffer
5210 * @len: number of bytes to transfer
6347e8d5 5211 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5212 *
5213 * The caller must hold a reference on @mm.
a862f68a
MR
5214 *
5215 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5216 */
5217int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5218 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5219{
d3f5ffca 5220 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5221}
5222
206cb636
SW
5223/*
5224 * Access another process' address space.
5225 * Source/target buffer must be kernel space,
5226 * Do not walk the page table directly, use get_user_pages
5227 */
5228int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5229 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5230{
5231 struct mm_struct *mm;
5232 int ret;
5233
5234 mm = get_task_mm(tsk);
5235 if (!mm)
5236 return 0;
5237
d3f5ffca 5238 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5239
206cb636
SW
5240 mmput(mm);
5241
5242 return ret;
5243}
fcd35857 5244EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5245
03252919
AK
5246/*
5247 * Print the name of a VMA.
5248 */
5249void print_vma_addr(char *prefix, unsigned long ip)
5250{
5251 struct mm_struct *mm = current->mm;
5252 struct vm_area_struct *vma;
5253
e8bff74a 5254 /*
0a7f682d 5255 * we might be running from an atomic context so we cannot sleep
e8bff74a 5256 */
d8ed45c5 5257 if (!mmap_read_trylock(mm))
e8bff74a
IM
5258 return;
5259
03252919
AK
5260 vma = find_vma(mm, ip);
5261 if (vma && vma->vm_file) {
5262 struct file *f = vma->vm_file;
0a7f682d 5263 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5264 if (buf) {
2fbc57c5 5265 char *p;
03252919 5266
9bf39ab2 5267 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5268 if (IS_ERR(p))
5269 p = "?";
2fbc57c5 5270 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5271 vma->vm_start,
5272 vma->vm_end - vma->vm_start);
5273 free_page((unsigned long)buf);
5274 }
5275 }
d8ed45c5 5276 mmap_read_unlock(mm);
03252919 5277}
3ee1afa3 5278
662bbcb2 5279#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5280void __might_fault(const char *file, int line)
3ee1afa3 5281{
9ec23531 5282 if (pagefault_disabled())
662bbcb2 5283 return;
42a38756 5284 __might_sleep(file, line);
9ec23531 5285#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5286 if (current->mm)
da1c55f1 5287 might_lock_read(&current->mm->mmap_lock);
9ec23531 5288#endif
3ee1afa3 5289}
9ec23531 5290EXPORT_SYMBOL(__might_fault);
3ee1afa3 5291#endif
47ad8475
AA
5292
5293#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5294/*
5295 * Process all subpages of the specified huge page with the specified
5296 * operation. The target subpage will be processed last to keep its
5297 * cache lines hot.
5298 */
5299static inline void process_huge_page(
5300 unsigned long addr_hint, unsigned int pages_per_huge_page,
5301 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5302 void *arg)
47ad8475 5303{
c79b57e4
HY
5304 int i, n, base, l;
5305 unsigned long addr = addr_hint &
5306 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5307
c6ddfb6c 5308 /* Process target subpage last to keep its cache lines hot */
47ad8475 5309 might_sleep();
c79b57e4
HY
5310 n = (addr_hint - addr) / PAGE_SIZE;
5311 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5312 /* If target subpage in first half of huge page */
c79b57e4
HY
5313 base = 0;
5314 l = n;
c6ddfb6c 5315 /* Process subpages at the end of huge page */
c79b57e4
HY
5316 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5317 cond_resched();
c6ddfb6c 5318 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5319 }
5320 } else {
c6ddfb6c 5321 /* If target subpage in second half of huge page */
c79b57e4
HY
5322 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5323 l = pages_per_huge_page - n;
c6ddfb6c 5324 /* Process subpages at the begin of huge page */
c79b57e4
HY
5325 for (i = 0; i < base; i++) {
5326 cond_resched();
c6ddfb6c 5327 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5328 }
5329 }
5330 /*
c6ddfb6c
HY
5331 * Process remaining subpages in left-right-left-right pattern
5332 * towards the target subpage
c79b57e4
HY
5333 */
5334 for (i = 0; i < l; i++) {
5335 int left_idx = base + i;
5336 int right_idx = base + 2 * l - 1 - i;
5337
5338 cond_resched();
c6ddfb6c 5339 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5340 cond_resched();
c6ddfb6c 5341 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5342 }
5343}
5344
c6ddfb6c
HY
5345static void clear_gigantic_page(struct page *page,
5346 unsigned long addr,
5347 unsigned int pages_per_huge_page)
5348{
5349 int i;
5350 struct page *p = page;
5351
5352 might_sleep();
5353 for (i = 0; i < pages_per_huge_page;
5354 i++, p = mem_map_next(p, page, i)) {
5355 cond_resched();
5356 clear_user_highpage(p, addr + i * PAGE_SIZE);
5357 }
5358}
5359
5360static void clear_subpage(unsigned long addr, int idx, void *arg)
5361{
5362 struct page *page = arg;
5363
5364 clear_user_highpage(page + idx, addr);
5365}
5366
5367void clear_huge_page(struct page *page,
5368 unsigned long addr_hint, unsigned int pages_per_huge_page)
5369{
5370 unsigned long addr = addr_hint &
5371 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5372
5373 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5374 clear_gigantic_page(page, addr, pages_per_huge_page);
5375 return;
5376 }
5377
5378 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5379}
5380
47ad8475
AA
5381static void copy_user_gigantic_page(struct page *dst, struct page *src,
5382 unsigned long addr,
5383 struct vm_area_struct *vma,
5384 unsigned int pages_per_huge_page)
5385{
5386 int i;
5387 struct page *dst_base = dst;
5388 struct page *src_base = src;
5389
5390 for (i = 0; i < pages_per_huge_page; ) {
5391 cond_resched();
5392 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5393
5394 i++;
5395 dst = mem_map_next(dst, dst_base, i);
5396 src = mem_map_next(src, src_base, i);
5397 }
5398}
5399
c9f4cd71
HY
5400struct copy_subpage_arg {
5401 struct page *dst;
5402 struct page *src;
5403 struct vm_area_struct *vma;
5404};
5405
5406static void copy_subpage(unsigned long addr, int idx, void *arg)
5407{
5408 struct copy_subpage_arg *copy_arg = arg;
5409
5410 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5411 addr, copy_arg->vma);
5412}
5413
47ad8475 5414void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5415 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5416 unsigned int pages_per_huge_page)
5417{
c9f4cd71
HY
5418 unsigned long addr = addr_hint &
5419 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5420 struct copy_subpage_arg arg = {
5421 .dst = dst,
5422 .src = src,
5423 .vma = vma,
5424 };
47ad8475
AA
5425
5426 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5427 copy_user_gigantic_page(dst, src, addr, vma,
5428 pages_per_huge_page);
5429 return;
5430 }
5431
c9f4cd71 5432 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5433}
fa4d75c1
MK
5434
5435long copy_huge_page_from_user(struct page *dst_page,
5436 const void __user *usr_src,
810a56b9
MK
5437 unsigned int pages_per_huge_page,
5438 bool allow_pagefault)
fa4d75c1 5439{
fa4d75c1
MK
5440 void *page_kaddr;
5441 unsigned long i, rc = 0;
5442 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5443 struct page *subpage = dst_page;
fa4d75c1 5444
3272cfc2
MK
5445 for (i = 0; i < pages_per_huge_page;
5446 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5447 if (allow_pagefault)
3272cfc2 5448 page_kaddr = kmap(subpage);
810a56b9 5449 else
3272cfc2 5450 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5451 rc = copy_from_user(page_kaddr,
b063e374 5452 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5453 if (allow_pagefault)
3272cfc2 5454 kunmap(subpage);
810a56b9
MK
5455 else
5456 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5457
5458 ret_val -= (PAGE_SIZE - rc);
5459 if (rc)
5460 break;
5461
e763243c
MS
5462 flush_dcache_page(subpage);
5463
fa4d75c1
MK
5464 cond_resched();
5465 }
5466 return ret_val;
5467}
47ad8475 5468#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5469
40b64acd 5470#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5471
5472static struct kmem_cache *page_ptl_cachep;
5473
5474void __init ptlock_cache_init(void)
5475{
5476 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5477 SLAB_PANIC, NULL);
5478}
5479
539edb58 5480bool ptlock_alloc(struct page *page)
49076ec2
KS
5481{
5482 spinlock_t *ptl;
5483
b35f1819 5484 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5485 if (!ptl)
5486 return false;
539edb58 5487 page->ptl = ptl;
49076ec2
KS
5488 return true;
5489}
5490
539edb58 5491void ptlock_free(struct page *page)
49076ec2 5492{
b35f1819 5493 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5494}
5495#endif