[PATCH] protect remove_proc_entry
[linux-2.6-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
50#include <linux/init.h>
51
52#include <asm/pgalloc.h>
53#include <asm/uaccess.h>
54#include <asm/tlb.h>
55#include <asm/tlbflush.h>
56#include <asm/pgtable.h>
57
58#include <linux/swapops.h>
59#include <linux/elf.h>
60
d41dee36 61#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
62/* use the per-pgdat data instead for discontigmem - mbligh */
63unsigned long max_mapnr;
64struct page *mem_map;
65
66EXPORT_SYMBOL(max_mapnr);
67EXPORT_SYMBOL(mem_map);
68#endif
69
70unsigned long num_physpages;
71/*
72 * A number of key systems in x86 including ioremap() rely on the assumption
73 * that high_memory defines the upper bound on direct map memory, then end
74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76 * and ZONE_HIGHMEM.
77 */
78void * high_memory;
79unsigned long vmalloc_earlyreserve;
80
81EXPORT_SYMBOL(num_physpages);
82EXPORT_SYMBOL(high_memory);
83EXPORT_SYMBOL(vmalloc_earlyreserve);
84
a62eaf15
AK
85int randomize_va_space __read_mostly = 1;
86
87static int __init disable_randmaps(char *s)
88{
89 randomize_va_space = 0;
90 return 0;
91}
92__setup("norandmaps", disable_randmaps);
93
94
1da177e4
LT
95/*
96 * If a p?d_bad entry is found while walking page tables, report
97 * the error, before resetting entry to p?d_none. Usually (but
98 * very seldom) called out from the p?d_none_or_clear_bad macros.
99 */
100
101void pgd_clear_bad(pgd_t *pgd)
102{
103 pgd_ERROR(*pgd);
104 pgd_clear(pgd);
105}
106
107void pud_clear_bad(pud_t *pud)
108{
109 pud_ERROR(*pud);
110 pud_clear(pud);
111}
112
113void pmd_clear_bad(pmd_t *pmd)
114{
115 pmd_ERROR(*pmd);
116 pmd_clear(pmd);
117}
118
119/*
120 * Note: this doesn't free the actual pages themselves. That
121 * has been handled earlier when unmapping all the memory regions.
122 */
e0da382c 123static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 124{
e0da382c
HD
125 struct page *page = pmd_page(*pmd);
126 pmd_clear(pmd);
4c21e2f2 127 pte_lock_deinit(page);
e0da382c
HD
128 pte_free_tlb(tlb, page);
129 dec_page_state(nr_page_table_pages);
130 tlb->mm->nr_ptes--;
1da177e4
LT
131}
132
e0da382c
HD
133static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 unsigned long addr, unsigned long end,
135 unsigned long floor, unsigned long ceiling)
1da177e4
LT
136{
137 pmd_t *pmd;
138 unsigned long next;
e0da382c 139 unsigned long start;
1da177e4 140
e0da382c 141 start = addr;
1da177e4 142 pmd = pmd_offset(pud, addr);
1da177e4
LT
143 do {
144 next = pmd_addr_end(addr, end);
145 if (pmd_none_or_clear_bad(pmd))
146 continue;
e0da382c 147 free_pte_range(tlb, pmd);
1da177e4
LT
148 } while (pmd++, addr = next, addr != end);
149
e0da382c
HD
150 start &= PUD_MASK;
151 if (start < floor)
152 return;
153 if (ceiling) {
154 ceiling &= PUD_MASK;
155 if (!ceiling)
156 return;
1da177e4 157 }
e0da382c
HD
158 if (end - 1 > ceiling - 1)
159 return;
160
161 pmd = pmd_offset(pud, start);
162 pud_clear(pud);
163 pmd_free_tlb(tlb, pmd);
1da177e4
LT
164}
165
e0da382c
HD
166static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 unsigned long addr, unsigned long end,
168 unsigned long floor, unsigned long ceiling)
1da177e4
LT
169{
170 pud_t *pud;
171 unsigned long next;
e0da382c 172 unsigned long start;
1da177e4 173
e0da382c 174 start = addr;
1da177e4 175 pud = pud_offset(pgd, addr);
1da177e4
LT
176 do {
177 next = pud_addr_end(addr, end);
178 if (pud_none_or_clear_bad(pud))
179 continue;
e0da382c 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
181 } while (pud++, addr = next, addr != end);
182
e0da382c
HD
183 start &= PGDIR_MASK;
184 if (start < floor)
185 return;
186 if (ceiling) {
187 ceiling &= PGDIR_MASK;
188 if (!ceiling)
189 return;
1da177e4 190 }
e0da382c
HD
191 if (end - 1 > ceiling - 1)
192 return;
193
194 pud = pud_offset(pgd, start);
195 pgd_clear(pgd);
196 pud_free_tlb(tlb, pud);
1da177e4
LT
197}
198
199/*
e0da382c
HD
200 * This function frees user-level page tables of a process.
201 *
1da177e4
LT
202 * Must be called with pagetable lock held.
203 */
3bf5ee95 204void free_pgd_range(struct mmu_gather **tlb,
e0da382c
HD
205 unsigned long addr, unsigned long end,
206 unsigned long floor, unsigned long ceiling)
1da177e4
LT
207{
208 pgd_t *pgd;
209 unsigned long next;
e0da382c
HD
210 unsigned long start;
211
212 /*
213 * The next few lines have given us lots of grief...
214 *
215 * Why are we testing PMD* at this top level? Because often
216 * there will be no work to do at all, and we'd prefer not to
217 * go all the way down to the bottom just to discover that.
218 *
219 * Why all these "- 1"s? Because 0 represents both the bottom
220 * of the address space and the top of it (using -1 for the
221 * top wouldn't help much: the masks would do the wrong thing).
222 * The rule is that addr 0 and floor 0 refer to the bottom of
223 * the address space, but end 0 and ceiling 0 refer to the top
224 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 * that end 0 case should be mythical).
226 *
227 * Wherever addr is brought up or ceiling brought down, we must
228 * be careful to reject "the opposite 0" before it confuses the
229 * subsequent tests. But what about where end is brought down
230 * by PMD_SIZE below? no, end can't go down to 0 there.
231 *
232 * Whereas we round start (addr) and ceiling down, by different
233 * masks at different levels, in order to test whether a table
234 * now has no other vmas using it, so can be freed, we don't
235 * bother to round floor or end up - the tests don't need that.
236 */
1da177e4 237
e0da382c
HD
238 addr &= PMD_MASK;
239 if (addr < floor) {
240 addr += PMD_SIZE;
241 if (!addr)
242 return;
243 }
244 if (ceiling) {
245 ceiling &= PMD_MASK;
246 if (!ceiling)
247 return;
248 }
249 if (end - 1 > ceiling - 1)
250 end -= PMD_SIZE;
251 if (addr > end - 1)
252 return;
253
254 start = addr;
3bf5ee95 255 pgd = pgd_offset((*tlb)->mm, addr);
1da177e4
LT
256 do {
257 next = pgd_addr_end(addr, end);
258 if (pgd_none_or_clear_bad(pgd))
259 continue;
3bf5ee95 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
1da177e4 261 } while (pgd++, addr = next, addr != end);
e0da382c 262
4d6ddfa9 263 if (!(*tlb)->fullmm)
3bf5ee95 264 flush_tlb_pgtables((*tlb)->mm, start, end);
e0da382c
HD
265}
266
267void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
3bf5ee95 268 unsigned long floor, unsigned long ceiling)
e0da382c
HD
269{
270 while (vma) {
271 struct vm_area_struct *next = vma->vm_next;
272 unsigned long addr = vma->vm_start;
273
8f4f8c16
HD
274 /*
275 * Hide vma from rmap and vmtruncate before freeing pgtables
276 */
277 anon_vma_unlink(vma);
278 unlink_file_vma(vma);
279
9da61aef 280 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 282 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
283 } else {
284 /*
285 * Optimization: gather nearby vmas into one call down
286 */
287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 288 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
289 vma = next;
290 next = vma->vm_next;
8f4f8c16
HD
291 anon_vma_unlink(vma);
292 unlink_file_vma(vma);
3bf5ee95
HD
293 }
294 free_pgd_range(tlb, addr, vma->vm_end,
295 floor, next? next->vm_start: ceiling);
296 }
e0da382c
HD
297 vma = next;
298 }
1da177e4
LT
299}
300
1bb3630e 301int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 302{
c74df32c 303 struct page *new = pte_alloc_one(mm, address);
1bb3630e
HD
304 if (!new)
305 return -ENOMEM;
306
4c21e2f2 307 pte_lock_init(new);
c74df32c 308 spin_lock(&mm->page_table_lock);
4c21e2f2
HD
309 if (pmd_present(*pmd)) { /* Another has populated it */
310 pte_lock_deinit(new);
1bb3630e 311 pte_free(new);
4c21e2f2 312 } else {
1da177e4
LT
313 mm->nr_ptes++;
314 inc_page_state(nr_page_table_pages);
315 pmd_populate(mm, pmd, new);
316 }
c74df32c 317 spin_unlock(&mm->page_table_lock);
1bb3630e 318 return 0;
1da177e4
LT
319}
320
1bb3630e 321int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 322{
1bb3630e
HD
323 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
324 if (!new)
325 return -ENOMEM;
326
327 spin_lock(&init_mm.page_table_lock);
328 if (pmd_present(*pmd)) /* Another has populated it */
329 pte_free_kernel(new);
330 else
331 pmd_populate_kernel(&init_mm, pmd, new);
332 spin_unlock(&init_mm.page_table_lock);
333 return 0;
1da177e4
LT
334}
335
ae859762
HD
336static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
337{
338 if (file_rss)
339 add_mm_counter(mm, file_rss, file_rss);
340 if (anon_rss)
341 add_mm_counter(mm, anon_rss, anon_rss);
342}
343
b5810039 344/*
6aab341e
LT
345 * This function is called to print an error when a bad pte
346 * is found. For example, we might have a PFN-mapped pte in
347 * a region that doesn't allow it.
b5810039
NP
348 *
349 * The calling function must still handle the error.
350 */
351void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
352{
353 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
354 "vm_flags = %lx, vaddr = %lx\n",
355 (long long)pte_val(pte),
356 (vma->vm_mm == current->mm ? current->comm : "???"),
357 vma->vm_flags, vaddr);
358 dump_stack();
359}
360
67121172
LT
361static inline int is_cow_mapping(unsigned int flags)
362{
363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
364}
365
ee498ed7 366/*
6aab341e
LT
367 * This function gets the "struct page" associated with a pte.
368 *
369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
370 * will have each page table entry just pointing to a raw page frame
371 * number, and as far as the VM layer is concerned, those do not have
372 * pages associated with them - even if the PFN might point to memory
373 * that otherwise is perfectly fine and has a "struct page".
374 *
375 * The way we recognize those mappings is through the rules set up
376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
377 * and the vm_pgoff will point to the first PFN mapped: thus every
378 * page that is a raw mapping will always honor the rule
379 *
380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
381 *
382 * and if that isn't true, the page has been COW'ed (in which case it
383 * _does_ have a "struct page" associated with it even if it is in a
384 * VM_PFNMAP range).
ee498ed7 385 */
6aab341e 386struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
ee498ed7 387{
6aab341e
LT
388 unsigned long pfn = pte_pfn(pte);
389
b7ab795b 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
6aab341e
LT
391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
392 if (pfn == vma->vm_pgoff + off)
393 return NULL;
67121172 394 if (!is_cow_mapping(vma->vm_flags))
fb155c16 395 return NULL;
6aab341e
LT
396 }
397
315ab19a
NP
398 /*
399 * Add some anal sanity checks for now. Eventually,
400 * we should just do "return pfn_to_page(pfn)", but
401 * in the meantime we check that we get a valid pfn,
402 * and that the resulting page looks ok.
403 */
6aab341e
LT
404 if (unlikely(!pfn_valid(pfn))) {
405 print_bad_pte(vma, pte, addr);
406 return NULL;
407 }
408
409 /*
410 * NOTE! We still have PageReserved() pages in the page
411 * tables.
412 *
413 * The PAGE_ZERO() pages and various VDSO mappings can
414 * cause them to exist.
415 */
416 return pfn_to_page(pfn);
ee498ed7
HD
417}
418
1da177e4
LT
419/*
420 * copy one vm_area from one task to the other. Assumes the page tables
421 * already present in the new task to be cleared in the whole range
422 * covered by this vma.
1da177e4
LT
423 */
424
8c103762 425static inline void
1da177e4 426copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 428 unsigned long addr, int *rss)
1da177e4 429{
b5810039 430 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
431 pte_t pte = *src_pte;
432 struct page *page;
1da177e4
LT
433
434 /* pte contains position in swap or file, so copy. */
435 if (unlikely(!pte_present(pte))) {
436 if (!pte_file(pte)) {
437 swap_duplicate(pte_to_swp_entry(pte));
438 /* make sure dst_mm is on swapoff's mmlist. */
439 if (unlikely(list_empty(&dst_mm->mmlist))) {
440 spin_lock(&mmlist_lock);
f412ac08
HD
441 if (list_empty(&dst_mm->mmlist))
442 list_add(&dst_mm->mmlist,
443 &src_mm->mmlist);
1da177e4
LT
444 spin_unlock(&mmlist_lock);
445 }
446 }
ae859762 447 goto out_set_pte;
1da177e4
LT
448 }
449
1da177e4
LT
450 /*
451 * If it's a COW mapping, write protect it both
452 * in the parent and the child
453 */
67121172 454 if (is_cow_mapping(vm_flags)) {
1da177e4
LT
455 ptep_set_wrprotect(src_mm, addr, src_pte);
456 pte = *src_pte;
457 }
458
459 /*
460 * If it's a shared mapping, mark it clean in
461 * the child
462 */
463 if (vm_flags & VM_SHARED)
464 pte = pte_mkclean(pte);
465 pte = pte_mkold(pte);
6aab341e
LT
466
467 page = vm_normal_page(vma, addr, pte);
468 if (page) {
469 get_page(page);
470 page_dup_rmap(page);
471 rss[!!PageAnon(page)]++;
472 }
ae859762
HD
473
474out_set_pte:
475 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
476}
477
478static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
479 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
480 unsigned long addr, unsigned long end)
481{
482 pte_t *src_pte, *dst_pte;
c74df32c 483 spinlock_t *src_ptl, *dst_ptl;
e040f218 484 int progress = 0;
8c103762 485 int rss[2];
1da177e4
LT
486
487again:
ae859762 488 rss[1] = rss[0] = 0;
c74df32c 489 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
490 if (!dst_pte)
491 return -ENOMEM;
492 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 493 src_ptl = pte_lockptr(src_mm, src_pmd);
c74df32c 494 spin_lock(src_ptl);
1da177e4 495
1da177e4
LT
496 do {
497 /*
498 * We are holding two locks at this point - either of them
499 * could generate latencies in another task on another CPU.
500 */
e040f218
HD
501 if (progress >= 32) {
502 progress = 0;
503 if (need_resched() ||
c74df32c
HD
504 need_lockbreak(src_ptl) ||
505 need_lockbreak(dst_ptl))
e040f218
HD
506 break;
507 }
1da177e4
LT
508 if (pte_none(*src_pte)) {
509 progress++;
510 continue;
511 }
8c103762 512 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
513 progress += 8;
514 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 515
c74df32c 516 spin_unlock(src_ptl);
1da177e4 517 pte_unmap_nested(src_pte - 1);
ae859762 518 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
519 pte_unmap_unlock(dst_pte - 1, dst_ptl);
520 cond_resched();
1da177e4
LT
521 if (addr != end)
522 goto again;
523 return 0;
524}
525
526static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
527 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
528 unsigned long addr, unsigned long end)
529{
530 pmd_t *src_pmd, *dst_pmd;
531 unsigned long next;
532
533 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
534 if (!dst_pmd)
535 return -ENOMEM;
536 src_pmd = pmd_offset(src_pud, addr);
537 do {
538 next = pmd_addr_end(addr, end);
539 if (pmd_none_or_clear_bad(src_pmd))
540 continue;
541 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
542 vma, addr, next))
543 return -ENOMEM;
544 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
545 return 0;
546}
547
548static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
549 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
550 unsigned long addr, unsigned long end)
551{
552 pud_t *src_pud, *dst_pud;
553 unsigned long next;
554
555 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
556 if (!dst_pud)
557 return -ENOMEM;
558 src_pud = pud_offset(src_pgd, addr);
559 do {
560 next = pud_addr_end(addr, end);
561 if (pud_none_or_clear_bad(src_pud))
562 continue;
563 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
564 vma, addr, next))
565 return -ENOMEM;
566 } while (dst_pud++, src_pud++, addr = next, addr != end);
567 return 0;
568}
569
570int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
571 struct vm_area_struct *vma)
572{
573 pgd_t *src_pgd, *dst_pgd;
574 unsigned long next;
575 unsigned long addr = vma->vm_start;
576 unsigned long end = vma->vm_end;
577
d992895b
NP
578 /*
579 * Don't copy ptes where a page fault will fill them correctly.
580 * Fork becomes much lighter when there are big shared or private
581 * readonly mappings. The tradeoff is that copy_page_range is more
582 * efficient than faulting.
583 */
4d7672b4 584 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
585 if (!vma->anon_vma)
586 return 0;
587 }
588
1da177e4
LT
589 if (is_vm_hugetlb_page(vma))
590 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
591
592 dst_pgd = pgd_offset(dst_mm, addr);
593 src_pgd = pgd_offset(src_mm, addr);
594 do {
595 next = pgd_addr_end(addr, end);
596 if (pgd_none_or_clear_bad(src_pgd))
597 continue;
598 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
599 vma, addr, next))
600 return -ENOMEM;
601 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
602 return 0;
603}
604
51c6f666 605static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 606 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 607 unsigned long addr, unsigned long end,
51c6f666 608 long *zap_work, struct zap_details *details)
1da177e4 609{
b5810039 610 struct mm_struct *mm = tlb->mm;
1da177e4 611 pte_t *pte;
508034a3 612 spinlock_t *ptl;
ae859762
HD
613 int file_rss = 0;
614 int anon_rss = 0;
1da177e4 615
508034a3 616 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
617 do {
618 pte_t ptent = *pte;
51c6f666
RH
619 if (pte_none(ptent)) {
620 (*zap_work)--;
1da177e4 621 continue;
51c6f666 622 }
6f5e6b9e
HD
623
624 (*zap_work) -= PAGE_SIZE;
625
1da177e4 626 if (pte_present(ptent)) {
ee498ed7 627 struct page *page;
51c6f666 628
6aab341e 629 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
630 if (unlikely(details) && page) {
631 /*
632 * unmap_shared_mapping_pages() wants to
633 * invalidate cache without truncating:
634 * unmap shared but keep private pages.
635 */
636 if (details->check_mapping &&
637 details->check_mapping != page->mapping)
638 continue;
639 /*
640 * Each page->index must be checked when
641 * invalidating or truncating nonlinear.
642 */
643 if (details->nonlinear_vma &&
644 (page->index < details->first_index ||
645 page->index > details->last_index))
646 continue;
647 }
b5810039 648 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 649 tlb->fullmm);
1da177e4
LT
650 tlb_remove_tlb_entry(tlb, pte, addr);
651 if (unlikely(!page))
652 continue;
653 if (unlikely(details) && details->nonlinear_vma
654 && linear_page_index(details->nonlinear_vma,
655 addr) != page->index)
b5810039 656 set_pte_at(mm, addr, pte,
1da177e4 657 pgoff_to_pte(page->index));
1da177e4 658 if (PageAnon(page))
86d912f4 659 anon_rss--;
6237bcd9
HD
660 else {
661 if (pte_dirty(ptent))
662 set_page_dirty(page);
663 if (pte_young(ptent))
664 mark_page_accessed(page);
86d912f4 665 file_rss--;
6237bcd9 666 }
1da177e4
LT
667 page_remove_rmap(page);
668 tlb_remove_page(tlb, page);
669 continue;
670 }
671 /*
672 * If details->check_mapping, we leave swap entries;
673 * if details->nonlinear_vma, we leave file entries.
674 */
675 if (unlikely(details))
676 continue;
677 if (!pte_file(ptent))
678 free_swap_and_cache(pte_to_swp_entry(ptent));
b5810039 679 pte_clear_full(mm, addr, pte, tlb->fullmm);
51c6f666 680 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 681
86d912f4 682 add_mm_rss(mm, file_rss, anon_rss);
508034a3 683 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
684
685 return addr;
1da177e4
LT
686}
687
51c6f666 688static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 689 struct vm_area_struct *vma, pud_t *pud,
1da177e4 690 unsigned long addr, unsigned long end,
51c6f666 691 long *zap_work, struct zap_details *details)
1da177e4
LT
692{
693 pmd_t *pmd;
694 unsigned long next;
695
696 pmd = pmd_offset(pud, addr);
697 do {
698 next = pmd_addr_end(addr, end);
51c6f666
RH
699 if (pmd_none_or_clear_bad(pmd)) {
700 (*zap_work)--;
1da177e4 701 continue;
51c6f666
RH
702 }
703 next = zap_pte_range(tlb, vma, pmd, addr, next,
704 zap_work, details);
705 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
706
707 return addr;
1da177e4
LT
708}
709
51c6f666 710static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 711 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 712 unsigned long addr, unsigned long end,
51c6f666 713 long *zap_work, struct zap_details *details)
1da177e4
LT
714{
715 pud_t *pud;
716 unsigned long next;
717
718 pud = pud_offset(pgd, addr);
719 do {
720 next = pud_addr_end(addr, end);
51c6f666
RH
721 if (pud_none_or_clear_bad(pud)) {
722 (*zap_work)--;
1da177e4 723 continue;
51c6f666
RH
724 }
725 next = zap_pmd_range(tlb, vma, pud, addr, next,
726 zap_work, details);
727 } while (pud++, addr = next, (addr != end && *zap_work > 0));
728
729 return addr;
1da177e4
LT
730}
731
51c6f666
RH
732static unsigned long unmap_page_range(struct mmu_gather *tlb,
733 struct vm_area_struct *vma,
1da177e4 734 unsigned long addr, unsigned long end,
51c6f666 735 long *zap_work, struct zap_details *details)
1da177e4
LT
736{
737 pgd_t *pgd;
738 unsigned long next;
739
740 if (details && !details->check_mapping && !details->nonlinear_vma)
741 details = NULL;
742
743 BUG_ON(addr >= end);
744 tlb_start_vma(tlb, vma);
745 pgd = pgd_offset(vma->vm_mm, addr);
746 do {
747 next = pgd_addr_end(addr, end);
51c6f666
RH
748 if (pgd_none_or_clear_bad(pgd)) {
749 (*zap_work)--;
1da177e4 750 continue;
51c6f666
RH
751 }
752 next = zap_pud_range(tlb, vma, pgd, addr, next,
753 zap_work, details);
754 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 755 tlb_end_vma(tlb, vma);
51c6f666
RH
756
757 return addr;
1da177e4
LT
758}
759
760#ifdef CONFIG_PREEMPT
761# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
762#else
763/* No preempt: go for improved straight-line efficiency */
764# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
765#endif
766
767/**
768 * unmap_vmas - unmap a range of memory covered by a list of vma's
769 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
770 * @vma: the starting vma
771 * @start_addr: virtual address at which to start unmapping
772 * @end_addr: virtual address at which to end unmapping
773 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
774 * @details: details of nonlinear truncation or shared cache invalidation
775 *
ee39b37b 776 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 777 *
508034a3 778 * Unmap all pages in the vma list.
1da177e4 779 *
508034a3
HD
780 * We aim to not hold locks for too long (for scheduling latency reasons).
781 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
782 * return the ending mmu_gather to the caller.
783 *
784 * Only addresses between `start' and `end' will be unmapped.
785 *
786 * The VMA list must be sorted in ascending virtual address order.
787 *
788 * unmap_vmas() assumes that the caller will flush the whole unmapped address
789 * range after unmap_vmas() returns. So the only responsibility here is to
790 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
791 * drops the lock and schedules.
792 */
508034a3 793unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
794 struct vm_area_struct *vma, unsigned long start_addr,
795 unsigned long end_addr, unsigned long *nr_accounted,
796 struct zap_details *details)
797{
51c6f666 798 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
799 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
800 int tlb_start_valid = 0;
ee39b37b 801 unsigned long start = start_addr;
1da177e4 802 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 803 int fullmm = (*tlbp)->fullmm;
1da177e4
LT
804
805 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
806 unsigned long end;
807
808 start = max(vma->vm_start, start_addr);
809 if (start >= vma->vm_end)
810 continue;
811 end = min(vma->vm_end, end_addr);
812 if (end <= vma->vm_start)
813 continue;
814
815 if (vma->vm_flags & VM_ACCOUNT)
816 *nr_accounted += (end - start) >> PAGE_SHIFT;
817
1da177e4 818 while (start != end) {
1da177e4
LT
819 if (!tlb_start_valid) {
820 tlb_start = start;
821 tlb_start_valid = 1;
822 }
823
51c6f666 824 if (unlikely(is_vm_hugetlb_page(vma))) {
1da177e4 825 unmap_hugepage_range(vma, start, end);
51c6f666
RH
826 zap_work -= (end - start) /
827 (HPAGE_SIZE / PAGE_SIZE);
828 start = end;
829 } else
830 start = unmap_page_range(*tlbp, vma,
831 start, end, &zap_work, details);
832
833 if (zap_work > 0) {
834 BUG_ON(start != end);
835 break;
1da177e4
LT
836 }
837
1da177e4
LT
838 tlb_finish_mmu(*tlbp, tlb_start, start);
839
840 if (need_resched() ||
1da177e4
LT
841 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
842 if (i_mmap_lock) {
508034a3 843 *tlbp = NULL;
1da177e4
LT
844 goto out;
845 }
1da177e4 846 cond_resched();
1da177e4
LT
847 }
848
508034a3 849 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 850 tlb_start_valid = 0;
51c6f666 851 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
852 }
853 }
854out:
ee39b37b 855 return start; /* which is now the end (or restart) address */
1da177e4
LT
856}
857
858/**
859 * zap_page_range - remove user pages in a given range
860 * @vma: vm_area_struct holding the applicable pages
861 * @address: starting address of pages to zap
862 * @size: number of bytes to zap
863 * @details: details of nonlinear truncation or shared cache invalidation
864 */
ee39b37b 865unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
866 unsigned long size, struct zap_details *details)
867{
868 struct mm_struct *mm = vma->vm_mm;
869 struct mmu_gather *tlb;
870 unsigned long end = address + size;
871 unsigned long nr_accounted = 0;
872
1da177e4 873 lru_add_drain();
1da177e4 874 tlb = tlb_gather_mmu(mm, 0);
365e9c87 875 update_hiwater_rss(mm);
508034a3
HD
876 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
877 if (tlb)
878 tlb_finish_mmu(tlb, address, end);
ee39b37b 879 return end;
1da177e4
LT
880}
881
882/*
883 * Do a quick page-table lookup for a single page.
1da177e4 884 */
6aab341e 885struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 886 unsigned int flags)
1da177e4
LT
887{
888 pgd_t *pgd;
889 pud_t *pud;
890 pmd_t *pmd;
891 pte_t *ptep, pte;
deceb6cd 892 spinlock_t *ptl;
1da177e4 893 struct page *page;
6aab341e 894 struct mm_struct *mm = vma->vm_mm;
1da177e4 895
deceb6cd
HD
896 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
897 if (!IS_ERR(page)) {
898 BUG_ON(flags & FOLL_GET);
899 goto out;
900 }
1da177e4 901
deceb6cd 902 page = NULL;
1da177e4
LT
903 pgd = pgd_offset(mm, address);
904 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 905 goto no_page_table;
1da177e4
LT
906
907 pud = pud_offset(pgd, address);
908 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
deceb6cd 909 goto no_page_table;
1da177e4
LT
910
911 pmd = pmd_offset(pud, address);
912 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
deceb6cd
HD
913 goto no_page_table;
914
915 if (pmd_huge(*pmd)) {
916 BUG_ON(flags & FOLL_GET);
917 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 918 goto out;
deceb6cd 919 }
1da177e4 920
deceb6cd 921 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
922 if (!ptep)
923 goto out;
924
925 pte = *ptep;
deceb6cd
HD
926 if (!pte_present(pte))
927 goto unlock;
928 if ((flags & FOLL_WRITE) && !pte_write(pte))
929 goto unlock;
6aab341e
LT
930 page = vm_normal_page(vma, address, pte);
931 if (unlikely(!page))
deceb6cd 932 goto unlock;
1da177e4 933
deceb6cd
HD
934 if (flags & FOLL_GET)
935 get_page(page);
936 if (flags & FOLL_TOUCH) {
937 if ((flags & FOLL_WRITE) &&
938 !pte_dirty(pte) && !PageDirty(page))
939 set_page_dirty(page);
940 mark_page_accessed(page);
941 }
942unlock:
943 pte_unmap_unlock(ptep, ptl);
1da177e4 944out:
deceb6cd 945 return page;
1da177e4 946
deceb6cd
HD
947no_page_table:
948 /*
949 * When core dumping an enormous anonymous area that nobody
950 * has touched so far, we don't want to allocate page tables.
951 */
952 if (flags & FOLL_ANON) {
953 page = ZERO_PAGE(address);
954 if (flags & FOLL_GET)
955 get_page(page);
956 BUG_ON(flags & FOLL_WRITE);
957 }
958 return page;
1da177e4
LT
959}
960
1da177e4
LT
961int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
962 unsigned long start, int len, int write, int force,
963 struct page **pages, struct vm_area_struct **vmas)
964{
965 int i;
deceb6cd 966 unsigned int vm_flags;
1da177e4
LT
967
968 /*
969 * Require read or write permissions.
970 * If 'force' is set, we only require the "MAY" flags.
971 */
deceb6cd
HD
972 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
973 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
974 i = 0;
975
976 do {
deceb6cd
HD
977 struct vm_area_struct *vma;
978 unsigned int foll_flags;
1da177e4
LT
979
980 vma = find_extend_vma(mm, start);
981 if (!vma && in_gate_area(tsk, start)) {
982 unsigned long pg = start & PAGE_MASK;
983 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
984 pgd_t *pgd;
985 pud_t *pud;
986 pmd_t *pmd;
987 pte_t *pte;
988 if (write) /* user gate pages are read-only */
989 return i ? : -EFAULT;
990 if (pg > TASK_SIZE)
991 pgd = pgd_offset_k(pg);
992 else
993 pgd = pgd_offset_gate(mm, pg);
994 BUG_ON(pgd_none(*pgd));
995 pud = pud_offset(pgd, pg);
996 BUG_ON(pud_none(*pud));
997 pmd = pmd_offset(pud, pg);
690dbe1c
HD
998 if (pmd_none(*pmd))
999 return i ? : -EFAULT;
1da177e4 1000 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1001 if (pte_none(*pte)) {
1002 pte_unmap(pte);
1003 return i ? : -EFAULT;
1004 }
1da177e4 1005 if (pages) {
fa2a455b 1006 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1007 pages[i] = page;
1008 if (page)
1009 get_page(page);
1da177e4
LT
1010 }
1011 pte_unmap(pte);
1012 if (vmas)
1013 vmas[i] = gate_vma;
1014 i++;
1015 start += PAGE_SIZE;
1016 len--;
1017 continue;
1018 }
1019
1ff80389 1020 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
deceb6cd 1021 || !(vm_flags & vma->vm_flags))
1da177e4
LT
1022 return i ? : -EFAULT;
1023
1024 if (is_vm_hugetlb_page(vma)) {
1025 i = follow_hugetlb_page(mm, vma, pages, vmas,
1026 &start, &len, i);
1027 continue;
1028 }
deceb6cd
HD
1029
1030 foll_flags = FOLL_TOUCH;
1031 if (pages)
1032 foll_flags |= FOLL_GET;
1033 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1034 (!vma->vm_ops || !vma->vm_ops->nopage))
1035 foll_flags |= FOLL_ANON;
1036
1da177e4 1037 do {
08ef4729 1038 struct page *page;
1da177e4 1039
deceb6cd
HD
1040 if (write)
1041 foll_flags |= FOLL_WRITE;
a68d2ebc 1042
deceb6cd 1043 cond_resched();
6aab341e 1044 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd
HD
1045 int ret;
1046 ret = __handle_mm_fault(mm, vma, start,
1047 foll_flags & FOLL_WRITE);
a68d2ebc
LT
1048 /*
1049 * The VM_FAULT_WRITE bit tells us that do_wp_page has
1050 * broken COW when necessary, even if maybe_mkwrite
1051 * decided not to set pte_write. We can thus safely do
1052 * subsequent page lookups as if they were reads.
1053 */
1054 if (ret & VM_FAULT_WRITE)
deceb6cd 1055 foll_flags &= ~FOLL_WRITE;
a68d2ebc
LT
1056
1057 switch (ret & ~VM_FAULT_WRITE) {
1da177e4
LT
1058 case VM_FAULT_MINOR:
1059 tsk->min_flt++;
1060 break;
1061 case VM_FAULT_MAJOR:
1062 tsk->maj_flt++;
1063 break;
1064 case VM_FAULT_SIGBUS:
1065 return i ? i : -EFAULT;
1066 case VM_FAULT_OOM:
1067 return i ? i : -ENOMEM;
1068 default:
1069 BUG();
1070 }
1da177e4
LT
1071 }
1072 if (pages) {
08ef4729
HD
1073 pages[i] = page;
1074 flush_dcache_page(page);
1da177e4
LT
1075 }
1076 if (vmas)
1077 vmas[i] = vma;
1078 i++;
1079 start += PAGE_SIZE;
1080 len--;
08ef4729 1081 } while (len && start < vma->vm_end);
08ef4729 1082 } while (len);
1da177e4
LT
1083 return i;
1084}
1da177e4
LT
1085EXPORT_SYMBOL(get_user_pages);
1086
1087static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1088 unsigned long addr, unsigned long end, pgprot_t prot)
1089{
1090 pte_t *pte;
c74df32c 1091 spinlock_t *ptl;
1da177e4 1092
c74df32c 1093 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1094 if (!pte)
1095 return -ENOMEM;
1096 do {
b5810039
NP
1097 struct page *page = ZERO_PAGE(addr);
1098 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot));
1099 page_cache_get(page);
1100 page_add_file_rmap(page);
1101 inc_mm_counter(mm, file_rss);
1da177e4
LT
1102 BUG_ON(!pte_none(*pte));
1103 set_pte_at(mm, addr, pte, zero_pte);
1104 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1105 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1106 return 0;
1107}
1108
1109static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1110 unsigned long addr, unsigned long end, pgprot_t prot)
1111{
1112 pmd_t *pmd;
1113 unsigned long next;
1114
1115 pmd = pmd_alloc(mm, pud, addr);
1116 if (!pmd)
1117 return -ENOMEM;
1118 do {
1119 next = pmd_addr_end(addr, end);
1120 if (zeromap_pte_range(mm, pmd, addr, next, prot))
1121 return -ENOMEM;
1122 } while (pmd++, addr = next, addr != end);
1123 return 0;
1124}
1125
1126static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1127 unsigned long addr, unsigned long end, pgprot_t prot)
1128{
1129 pud_t *pud;
1130 unsigned long next;
1131
1132 pud = pud_alloc(mm, pgd, addr);
1133 if (!pud)
1134 return -ENOMEM;
1135 do {
1136 next = pud_addr_end(addr, end);
1137 if (zeromap_pmd_range(mm, pud, addr, next, prot))
1138 return -ENOMEM;
1139 } while (pud++, addr = next, addr != end);
1140 return 0;
1141}
1142
1143int zeromap_page_range(struct vm_area_struct *vma,
1144 unsigned long addr, unsigned long size, pgprot_t prot)
1145{
1146 pgd_t *pgd;
1147 unsigned long next;
1148 unsigned long end = addr + size;
1149 struct mm_struct *mm = vma->vm_mm;
1150 int err;
1151
1152 BUG_ON(addr >= end);
1153 pgd = pgd_offset(mm, addr);
1154 flush_cache_range(vma, addr, end);
1da177e4
LT
1155 do {
1156 next = pgd_addr_end(addr, end);
1157 err = zeromap_pud_range(mm, pgd, addr, next, prot);
1158 if (err)
1159 break;
1160 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1161 return err;
1162}
1163
49c91fb0 1164pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
c9cfcddf
LT
1165{
1166 pgd_t * pgd = pgd_offset(mm, addr);
1167 pud_t * pud = pud_alloc(mm, pgd, addr);
1168 if (pud) {
49c91fb0 1169 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1170 if (pmd)
1171 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1172 }
1173 return NULL;
1174}
1175
238f58d8
LT
1176/*
1177 * This is the old fallback for page remapping.
1178 *
1179 * For historical reasons, it only allows reserved pages. Only
1180 * old drivers should use this, and they needed to mark their
1181 * pages reserved for the old functions anyway.
1182 */
1183static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1184{
1185 int retval;
c9cfcddf 1186 pte_t *pte;
238f58d8
LT
1187 spinlock_t *ptl;
1188
1189 retval = -EINVAL;
a145dd41 1190 if (PageAnon(page))
238f58d8
LT
1191 goto out;
1192 retval = -ENOMEM;
1193 flush_dcache_page(page);
c9cfcddf 1194 pte = get_locked_pte(mm, addr, &ptl);
238f58d8
LT
1195 if (!pte)
1196 goto out;
1197 retval = -EBUSY;
1198 if (!pte_none(*pte))
1199 goto out_unlock;
1200
1201 /* Ok, finally just insert the thing.. */
1202 get_page(page);
1203 inc_mm_counter(mm, file_rss);
1204 page_add_file_rmap(page);
1205 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1206
1207 retval = 0;
1208out_unlock:
1209 pte_unmap_unlock(pte, ptl);
1210out:
1211 return retval;
1212}
1213
a145dd41
LT
1214/*
1215 * This allows drivers to insert individual pages they've allocated
1216 * into a user vma.
1217 *
1218 * The page has to be a nice clean _individual_ kernel allocation.
1219 * If you allocate a compound page, you need to have marked it as
1220 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1221 * (see split_page()).
a145dd41
LT
1222 *
1223 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1224 * took an arbitrary page protection parameter. This doesn't allow
1225 * that. Your vma protection will have to be set up correctly, which
1226 * means that if you want a shared writable mapping, you'd better
1227 * ask for a shared writable mapping!
1228 *
1229 * The page does not need to be reserved.
1230 */
1231int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1232{
1233 if (addr < vma->vm_start || addr >= vma->vm_end)
1234 return -EFAULT;
1235 if (!page_count(page))
1236 return -EINVAL;
4d7672b4 1237 vma->vm_flags |= VM_INSERTPAGE;
a145dd41
LT
1238 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1239}
e3c3374f 1240EXPORT_SYMBOL(vm_insert_page);
a145dd41 1241
1da177e4
LT
1242/*
1243 * maps a range of physical memory into the requested pages. the old
1244 * mappings are removed. any references to nonexistent pages results
1245 * in null mappings (currently treated as "copy-on-access")
1246 */
1247static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1248 unsigned long addr, unsigned long end,
1249 unsigned long pfn, pgprot_t prot)
1250{
1251 pte_t *pte;
c74df32c 1252 spinlock_t *ptl;
1da177e4 1253
c74df32c 1254 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1255 if (!pte)
1256 return -ENOMEM;
1257 do {
1258 BUG_ON(!pte_none(*pte));
b5810039 1259 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1da177e4
LT
1260 pfn++;
1261 } while (pte++, addr += PAGE_SIZE, addr != end);
c74df32c 1262 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1263 return 0;
1264}
1265
1266static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1267 unsigned long addr, unsigned long end,
1268 unsigned long pfn, pgprot_t prot)
1269{
1270 pmd_t *pmd;
1271 unsigned long next;
1272
1273 pfn -= addr >> PAGE_SHIFT;
1274 pmd = pmd_alloc(mm, pud, addr);
1275 if (!pmd)
1276 return -ENOMEM;
1277 do {
1278 next = pmd_addr_end(addr, end);
1279 if (remap_pte_range(mm, pmd, addr, next,
1280 pfn + (addr >> PAGE_SHIFT), prot))
1281 return -ENOMEM;
1282 } while (pmd++, addr = next, addr != end);
1283 return 0;
1284}
1285
1286static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1287 unsigned long addr, unsigned long end,
1288 unsigned long pfn, pgprot_t prot)
1289{
1290 pud_t *pud;
1291 unsigned long next;
1292
1293 pfn -= addr >> PAGE_SHIFT;
1294 pud = pud_alloc(mm, pgd, addr);
1295 if (!pud)
1296 return -ENOMEM;
1297 do {
1298 next = pud_addr_end(addr, end);
1299 if (remap_pmd_range(mm, pud, addr, next,
1300 pfn + (addr >> PAGE_SHIFT), prot))
1301 return -ENOMEM;
1302 } while (pud++, addr = next, addr != end);
1303 return 0;
1304}
1305
1306/* Note: this is only safe if the mm semaphore is held when called. */
1307int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1308 unsigned long pfn, unsigned long size, pgprot_t prot)
1309{
1310 pgd_t *pgd;
1311 unsigned long next;
2d15cab8 1312 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1313 struct mm_struct *mm = vma->vm_mm;
1314 int err;
1315
1316 /*
1317 * Physically remapped pages are special. Tell the
1318 * rest of the world about it:
1319 * VM_IO tells people not to look at these pages
1320 * (accesses can have side effects).
0b14c179
HD
1321 * VM_RESERVED is specified all over the place, because
1322 * in 2.4 it kept swapout's vma scan off this vma; but
1323 * in 2.6 the LRU scan won't even find its pages, so this
1324 * flag means no more than count its pages in reserved_vm,
1325 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1326 * VM_PFNMAP tells the core MM that the base pages are just
1327 * raw PFN mappings, and do not have a "struct page" associated
1328 * with them.
fb155c16
LT
1329 *
1330 * There's a horrible special case to handle copy-on-write
1331 * behaviour that some programs depend on. We mark the "original"
1332 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1333 */
67121172 1334 if (is_cow_mapping(vma->vm_flags)) {
fb155c16 1335 if (addr != vma->vm_start || end != vma->vm_end)
7fc7e2ee 1336 return -EINVAL;
fb155c16
LT
1337 vma->vm_pgoff = pfn;
1338 }
1339
6aab341e 1340 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4
LT
1341
1342 BUG_ON(addr >= end);
1343 pfn -= addr >> PAGE_SHIFT;
1344 pgd = pgd_offset(mm, addr);
1345 flush_cache_range(vma, addr, end);
1da177e4
LT
1346 do {
1347 next = pgd_addr_end(addr, end);
1348 err = remap_pud_range(mm, pgd, addr, next,
1349 pfn + (addr >> PAGE_SHIFT), prot);
1350 if (err)
1351 break;
1352 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1353 return err;
1354}
1355EXPORT_SYMBOL(remap_pfn_range);
1356
8f4e2101
HD
1357/*
1358 * handle_pte_fault chooses page fault handler according to an entry
1359 * which was read non-atomically. Before making any commitment, on
1360 * those architectures or configurations (e.g. i386 with PAE) which
1361 * might give a mix of unmatched parts, do_swap_page and do_file_page
1362 * must check under lock before unmapping the pte and proceeding
1363 * (but do_wp_page is only called after already making such a check;
1364 * and do_anonymous_page and do_no_page can safely check later on).
1365 */
4c21e2f2 1366static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1367 pte_t *page_table, pte_t orig_pte)
1368{
1369 int same = 1;
1370#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1371 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1372 spinlock_t *ptl = pte_lockptr(mm, pmd);
1373 spin_lock(ptl);
8f4e2101 1374 same = pte_same(*page_table, orig_pte);
4c21e2f2 1375 spin_unlock(ptl);
8f4e2101
HD
1376 }
1377#endif
1378 pte_unmap(page_table);
1379 return same;
1380}
1381
1da177e4
LT
1382/*
1383 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1384 * servicing faults for write access. In the normal case, do always want
1385 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1386 * that do not have writing enabled, when used by access_process_vm.
1387 */
1388static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1389{
1390 if (likely(vma->vm_flags & VM_WRITE))
1391 pte = pte_mkwrite(pte);
1392 return pte;
1393}
1394
6aab341e
LT
1395static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va)
1396{
1397 /*
1398 * If the source page was a PFN mapping, we don't have
1399 * a "struct page" for it. We do a best-effort copy by
1400 * just copying from the original user address. If that
1401 * fails, we just zero-fill it. Live with it.
1402 */
1403 if (unlikely(!src)) {
1404 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1405 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1406
1407 /*
1408 * This really shouldn't fail, because the page is there
1409 * in the page tables. But it might just be unreadable,
1410 * in which case we just give up and fill the result with
1411 * zeroes.
1412 */
1413 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1414 memset(kaddr, 0, PAGE_SIZE);
1415 kunmap_atomic(kaddr, KM_USER0);
1416 return;
1417
1418 }
1419 copy_user_highpage(dst, src, va);
1420}
1421
1da177e4
LT
1422/*
1423 * This routine handles present pages, when users try to write
1424 * to a shared page. It is done by copying the page to a new address
1425 * and decrementing the shared-page counter for the old page.
1426 *
1da177e4
LT
1427 * Note that this routine assumes that the protection checks have been
1428 * done by the caller (the low-level page fault routine in most cases).
1429 * Thus we can safely just mark it writable once we've done any necessary
1430 * COW.
1431 *
1432 * We also mark the page dirty at this point even though the page will
1433 * change only once the write actually happens. This avoids a few races,
1434 * and potentially makes it more efficient.
1435 *
8f4e2101
HD
1436 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1437 * but allow concurrent faults), with pte both mapped and locked.
1438 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1439 */
65500d23
HD
1440static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1441 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1442 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1443{
e5bbe4df 1444 struct page *old_page, *new_page;
1da177e4 1445 pte_t entry;
65500d23 1446 int ret = VM_FAULT_MINOR;
1da177e4 1447
6aab341e 1448 old_page = vm_normal_page(vma, address, orig_pte);
6aab341e
LT
1449 if (!old_page)
1450 goto gotten;
1da177e4 1451
d296e9cd 1452 if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1da177e4
LT
1453 int reuse = can_share_swap_page(old_page);
1454 unlock_page(old_page);
1455 if (reuse) {
eca35133 1456 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1457 entry = pte_mkyoung(orig_pte);
1458 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4
LT
1459 ptep_set_access_flags(vma, address, page_table, entry, 1);
1460 update_mmu_cache(vma, address, entry);
1461 lazy_mmu_prot_update(entry);
65500d23
HD
1462 ret |= VM_FAULT_WRITE;
1463 goto unlock;
1da177e4
LT
1464 }
1465 }
1da177e4
LT
1466
1467 /*
1468 * Ok, we need to copy. Oh, well..
1469 */
b5810039 1470 page_cache_get(old_page);
920fc356 1471gotten:
8f4e2101 1472 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1473
1474 if (unlikely(anon_vma_prepare(vma)))
65500d23 1475 goto oom;
e5bbe4df 1476 if (old_page == ZERO_PAGE(address)) {
1da177e4
LT
1477 new_page = alloc_zeroed_user_highpage(vma, address);
1478 if (!new_page)
65500d23 1479 goto oom;
1da177e4
LT
1480 } else {
1481 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1482 if (!new_page)
65500d23 1483 goto oom;
e5bbe4df 1484 cow_user_page(new_page, old_page, address);
1da177e4 1485 }
65500d23 1486
1da177e4
LT
1487 /*
1488 * Re-check the pte - we dropped the lock
1489 */
8f4e2101 1490 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1491 if (likely(pte_same(*page_table, orig_pte))) {
920fc356
HD
1492 if (old_page) {
1493 page_remove_rmap(old_page);
1494 if (!PageAnon(old_page)) {
1495 dec_mm_counter(mm, file_rss);
1496 inc_mm_counter(mm, anon_rss);
1497 }
1498 } else
4294621f 1499 inc_mm_counter(mm, anon_rss);
eca35133 1500 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1501 entry = mk_pte(new_page, vma->vm_page_prot);
1502 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1503 ptep_establish(vma, address, page_table, entry);
1504 update_mmu_cache(vma, address, entry);
1505 lazy_mmu_prot_update(entry);
1da177e4 1506 lru_cache_add_active(new_page);
9617d95e 1507 page_add_new_anon_rmap(new_page, vma, address);
1da177e4
LT
1508
1509 /* Free the old page.. */
1510 new_page = old_page;
f33ea7f4 1511 ret |= VM_FAULT_WRITE;
1da177e4 1512 }
920fc356
HD
1513 if (new_page)
1514 page_cache_release(new_page);
1515 if (old_page)
1516 page_cache_release(old_page);
65500d23 1517unlock:
8f4e2101 1518 pte_unmap_unlock(page_table, ptl);
f33ea7f4 1519 return ret;
65500d23 1520oom:
920fc356
HD
1521 if (old_page)
1522 page_cache_release(old_page);
1da177e4
LT
1523 return VM_FAULT_OOM;
1524}
1525
1526/*
1527 * Helper functions for unmap_mapping_range().
1528 *
1529 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1530 *
1531 * We have to restart searching the prio_tree whenever we drop the lock,
1532 * since the iterator is only valid while the lock is held, and anyway
1533 * a later vma might be split and reinserted earlier while lock dropped.
1534 *
1535 * The list of nonlinear vmas could be handled more efficiently, using
1536 * a placeholder, but handle it in the same way until a need is shown.
1537 * It is important to search the prio_tree before nonlinear list: a vma
1538 * may become nonlinear and be shifted from prio_tree to nonlinear list
1539 * while the lock is dropped; but never shifted from list to prio_tree.
1540 *
1541 * In order to make forward progress despite restarting the search,
1542 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1543 * quickly skip it next time around. Since the prio_tree search only
1544 * shows us those vmas affected by unmapping the range in question, we
1545 * can't efficiently keep all vmas in step with mapping->truncate_count:
1546 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1547 * mapping->truncate_count and vma->vm_truncate_count are protected by
1548 * i_mmap_lock.
1549 *
1550 * In order to make forward progress despite repeatedly restarting some
ee39b37b 1551 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
1552 * and restart from that address when we reach that vma again. It might
1553 * have been split or merged, shrunk or extended, but never shifted: so
1554 * restart_addr remains valid so long as it remains in the vma's range.
1555 * unmap_mapping_range forces truncate_count to leap over page-aligned
1556 * values so we can save vma's restart_addr in its truncate_count field.
1557 */
1558#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1559
1560static void reset_vma_truncate_counts(struct address_space *mapping)
1561{
1562 struct vm_area_struct *vma;
1563 struct prio_tree_iter iter;
1564
1565 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1566 vma->vm_truncate_count = 0;
1567 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1568 vma->vm_truncate_count = 0;
1569}
1570
1571static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1572 unsigned long start_addr, unsigned long end_addr,
1573 struct zap_details *details)
1574{
1575 unsigned long restart_addr;
1576 int need_break;
1577
1578again:
1579 restart_addr = vma->vm_truncate_count;
1580 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1581 start_addr = restart_addr;
1582 if (start_addr >= end_addr) {
1583 /* Top of vma has been split off since last time */
1584 vma->vm_truncate_count = details->truncate_count;
1585 return 0;
1586 }
1587 }
1588
ee39b37b
HD
1589 restart_addr = zap_page_range(vma, start_addr,
1590 end_addr - start_addr, details);
1da177e4
LT
1591 need_break = need_resched() ||
1592 need_lockbreak(details->i_mmap_lock);
1593
ee39b37b 1594 if (restart_addr >= end_addr) {
1da177e4
LT
1595 /* We have now completed this vma: mark it so */
1596 vma->vm_truncate_count = details->truncate_count;
1597 if (!need_break)
1598 return 0;
1599 } else {
1600 /* Note restart_addr in vma's truncate_count field */
ee39b37b 1601 vma->vm_truncate_count = restart_addr;
1da177e4
LT
1602 if (!need_break)
1603 goto again;
1604 }
1605
1606 spin_unlock(details->i_mmap_lock);
1607 cond_resched();
1608 spin_lock(details->i_mmap_lock);
1609 return -EINTR;
1610}
1611
1612static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1613 struct zap_details *details)
1614{
1615 struct vm_area_struct *vma;
1616 struct prio_tree_iter iter;
1617 pgoff_t vba, vea, zba, zea;
1618
1619restart:
1620 vma_prio_tree_foreach(vma, &iter, root,
1621 details->first_index, details->last_index) {
1622 /* Skip quickly over those we have already dealt with */
1623 if (vma->vm_truncate_count == details->truncate_count)
1624 continue;
1625
1626 vba = vma->vm_pgoff;
1627 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1628 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1629 zba = details->first_index;
1630 if (zba < vba)
1631 zba = vba;
1632 zea = details->last_index;
1633 if (zea > vea)
1634 zea = vea;
1635
1636 if (unmap_mapping_range_vma(vma,
1637 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1638 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1639 details) < 0)
1640 goto restart;
1641 }
1642}
1643
1644static inline void unmap_mapping_range_list(struct list_head *head,
1645 struct zap_details *details)
1646{
1647 struct vm_area_struct *vma;
1648
1649 /*
1650 * In nonlinear VMAs there is no correspondence between virtual address
1651 * offset and file offset. So we must perform an exhaustive search
1652 * across *all* the pages in each nonlinear VMA, not just the pages
1653 * whose virtual address lies outside the file truncation point.
1654 */
1655restart:
1656 list_for_each_entry(vma, head, shared.vm_set.list) {
1657 /* Skip quickly over those we have already dealt with */
1658 if (vma->vm_truncate_count == details->truncate_count)
1659 continue;
1660 details->nonlinear_vma = vma;
1661 if (unmap_mapping_range_vma(vma, vma->vm_start,
1662 vma->vm_end, details) < 0)
1663 goto restart;
1664 }
1665}
1666
1667/**
1668 * unmap_mapping_range - unmap the portion of all mmaps
1669 * in the specified address_space corresponding to the specified
1670 * page range in the underlying file.
3d41088f 1671 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
1672 * @holebegin: byte in first page to unmap, relative to the start of
1673 * the underlying file. This will be rounded down to a PAGE_SIZE
1674 * boundary. Note that this is different from vmtruncate(), which
1675 * must keep the partial page. In contrast, we must get rid of
1676 * partial pages.
1677 * @holelen: size of prospective hole in bytes. This will be rounded
1678 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1679 * end of the file.
1680 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1681 * but 0 when invalidating pagecache, don't throw away private data.
1682 */
1683void unmap_mapping_range(struct address_space *mapping,
1684 loff_t const holebegin, loff_t const holelen, int even_cows)
1685{
1686 struct zap_details details;
1687 pgoff_t hba = holebegin >> PAGE_SHIFT;
1688 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1689
1690 /* Check for overflow. */
1691 if (sizeof(holelen) > sizeof(hlen)) {
1692 long long holeend =
1693 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1694 if (holeend & ~(long long)ULONG_MAX)
1695 hlen = ULONG_MAX - hba + 1;
1696 }
1697
1698 details.check_mapping = even_cows? NULL: mapping;
1699 details.nonlinear_vma = NULL;
1700 details.first_index = hba;
1701 details.last_index = hba + hlen - 1;
1702 if (details.last_index < details.first_index)
1703 details.last_index = ULONG_MAX;
1704 details.i_mmap_lock = &mapping->i_mmap_lock;
1705
1706 spin_lock(&mapping->i_mmap_lock);
1707
1708 /* serialize i_size write against truncate_count write */
1709 smp_wmb();
1710 /* Protect against page faults, and endless unmapping loops */
1711 mapping->truncate_count++;
1712 /*
1713 * For archs where spin_lock has inclusive semantics like ia64
1714 * this smp_mb() will prevent to read pagetable contents
1715 * before the truncate_count increment is visible to
1716 * other cpus.
1717 */
1718 smp_mb();
1719 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1720 if (mapping->truncate_count == 0)
1721 reset_vma_truncate_counts(mapping);
1722 mapping->truncate_count++;
1723 }
1724 details.truncate_count = mapping->truncate_count;
1725
1726 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1727 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1728 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1729 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1730 spin_unlock(&mapping->i_mmap_lock);
1731}
1732EXPORT_SYMBOL(unmap_mapping_range);
1733
1734/*
1735 * Handle all mappings that got truncated by a "truncate()"
1736 * system call.
1737 *
1738 * NOTE! We have to be ready to update the memory sharing
1739 * between the file and the memory map for a potential last
1740 * incomplete page. Ugly, but necessary.
1741 */
1742int vmtruncate(struct inode * inode, loff_t offset)
1743{
1744 struct address_space *mapping = inode->i_mapping;
1745 unsigned long limit;
1746
1747 if (inode->i_size < offset)
1748 goto do_expand;
1749 /*
1750 * truncation of in-use swapfiles is disallowed - it would cause
1751 * subsequent swapout to scribble on the now-freed blocks.
1752 */
1753 if (IS_SWAPFILE(inode))
1754 goto out_busy;
1755 i_size_write(inode, offset);
1756 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1757 truncate_inode_pages(mapping, offset);
1758 goto out_truncate;
1759
1760do_expand:
1761 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1762 if (limit != RLIM_INFINITY && offset > limit)
1763 goto out_sig;
1764 if (offset > inode->i_sb->s_maxbytes)
1765 goto out_big;
1766 i_size_write(inode, offset);
1767
1768out_truncate:
1769 if (inode->i_op && inode->i_op->truncate)
1770 inode->i_op->truncate(inode);
1771 return 0;
1772out_sig:
1773 send_sig(SIGXFSZ, current, 0);
1774out_big:
1775 return -EFBIG;
1776out_busy:
1777 return -ETXTBSY;
1778}
1da177e4
LT
1779EXPORT_SYMBOL(vmtruncate);
1780
f6b3ec23
BP
1781int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1782{
1783 struct address_space *mapping = inode->i_mapping;
1784
1785 /*
1786 * If the underlying filesystem is not going to provide
1787 * a way to truncate a range of blocks (punch a hole) -
1788 * we should return failure right now.
1789 */
1790 if (!inode->i_op || !inode->i_op->truncate_range)
1791 return -ENOSYS;
1792
1b1dcc1b 1793 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
1794 down_write(&inode->i_alloc_sem);
1795 unmap_mapping_range(mapping, offset, (end - offset), 1);
1796 truncate_inode_pages_range(mapping, offset, end);
1797 inode->i_op->truncate_range(inode, offset, end);
1798 up_write(&inode->i_alloc_sem);
1b1dcc1b 1799 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
1800
1801 return 0;
1802}
1803EXPORT_SYMBOL(vmtruncate_range);
1804
1da177e4
LT
1805/*
1806 * Primitive swap readahead code. We simply read an aligned block of
1807 * (1 << page_cluster) entries in the swap area. This method is chosen
1808 * because it doesn't cost us any seek time. We also make sure to queue
1809 * the 'original' request together with the readahead ones...
1810 *
1811 * This has been extended to use the NUMA policies from the mm triggering
1812 * the readahead.
1813 *
1814 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1815 */
1816void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1817{
1818#ifdef CONFIG_NUMA
1819 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1820#endif
1821 int i, num;
1822 struct page *new_page;
1823 unsigned long offset;
1824
1825 /*
1826 * Get the number of handles we should do readahead io to.
1827 */
1828 num = valid_swaphandles(entry, &offset);
1829 for (i = 0; i < num; offset++, i++) {
1830 /* Ok, do the async read-ahead now */
1831 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1832 offset), vma, addr);
1833 if (!new_page)
1834 break;
1835 page_cache_release(new_page);
1836#ifdef CONFIG_NUMA
1837 /*
1838 * Find the next applicable VMA for the NUMA policy.
1839 */
1840 addr += PAGE_SIZE;
1841 if (addr == 0)
1842 vma = NULL;
1843 if (vma) {
1844 if (addr >= vma->vm_end) {
1845 vma = next_vma;
1846 next_vma = vma ? vma->vm_next : NULL;
1847 }
1848 if (vma && addr < vma->vm_start)
1849 vma = NULL;
1850 } else {
1851 if (next_vma && addr >= next_vma->vm_start) {
1852 vma = next_vma;
1853 next_vma = vma->vm_next;
1854 }
1855 }
1856#endif
1857 }
1858 lru_add_drain(); /* Push any new pages onto the LRU now */
1859}
1860
1861/*
8f4e2101
HD
1862 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1863 * but allow concurrent faults), and pte mapped but not yet locked.
1864 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1865 */
65500d23
HD
1866static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
1867 unsigned long address, pte_t *page_table, pmd_t *pmd,
1868 int write_access, pte_t orig_pte)
1da177e4 1869{
8f4e2101 1870 spinlock_t *ptl;
1da177e4 1871 struct page *page;
65500d23 1872 swp_entry_t entry;
1da177e4
LT
1873 pte_t pte;
1874 int ret = VM_FAULT_MINOR;
1875
4c21e2f2 1876 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 1877 goto out;
65500d23
HD
1878
1879 entry = pte_to_swp_entry(orig_pte);
b16664e4 1880again:
1da177e4
LT
1881 page = lookup_swap_cache(entry);
1882 if (!page) {
1883 swapin_readahead(entry, address, vma);
1884 page = read_swap_cache_async(entry, vma, address);
1885 if (!page) {
1886 /*
8f4e2101
HD
1887 * Back out if somebody else faulted in this pte
1888 * while we released the pte lock.
1da177e4 1889 */
8f4e2101 1890 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1891 if (likely(pte_same(*page_table, orig_pte)))
1892 ret = VM_FAULT_OOM;
65500d23 1893 goto unlock;
1da177e4
LT
1894 }
1895
1896 /* Had to read the page from swap area: Major fault */
1897 ret = VM_FAULT_MAJOR;
1898 inc_page_state(pgmajfault);
1899 grab_swap_token();
1900 }
1901
1902 mark_page_accessed(page);
1903 lock_page(page);
b16664e4
CL
1904 if (!PageSwapCache(page)) {
1905 /* Page migration has occured */
1906 unlock_page(page);
1907 page_cache_release(page);
1908 goto again;
1909 }
1da177e4
LT
1910
1911 /*
8f4e2101 1912 * Back out if somebody else already faulted in this pte.
1da177e4 1913 */
8f4e2101 1914 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 1915 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 1916 goto out_nomap;
b8107480
KK
1917
1918 if (unlikely(!PageUptodate(page))) {
1919 ret = VM_FAULT_SIGBUS;
1920 goto out_nomap;
1da177e4
LT
1921 }
1922
1923 /* The page isn't present yet, go ahead with the fault. */
1da177e4 1924
4294621f 1925 inc_mm_counter(mm, anon_rss);
1da177e4
LT
1926 pte = mk_pte(page, vma->vm_page_prot);
1927 if (write_access && can_share_swap_page(page)) {
1928 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1929 write_access = 0;
1930 }
1da177e4
LT
1931
1932 flush_icache_page(vma, page);
1933 set_pte_at(mm, address, page_table, pte);
1934 page_add_anon_rmap(page, vma, address);
1935
c475a8ab
HD
1936 swap_free(entry);
1937 if (vm_swap_full())
1938 remove_exclusive_swap_page(page);
1939 unlock_page(page);
1940
1da177e4
LT
1941 if (write_access) {
1942 if (do_wp_page(mm, vma, address,
8f4e2101 1943 page_table, pmd, ptl, pte) == VM_FAULT_OOM)
1da177e4
LT
1944 ret = VM_FAULT_OOM;
1945 goto out;
1946 }
1947
1948 /* No need to invalidate - it was non-present before */
1949 update_mmu_cache(vma, address, pte);
1950 lazy_mmu_prot_update(pte);
65500d23 1951unlock:
8f4e2101 1952 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1953out:
1954 return ret;
b8107480 1955out_nomap:
8f4e2101 1956 pte_unmap_unlock(page_table, ptl);
b8107480
KK
1957 unlock_page(page);
1958 page_cache_release(page);
65500d23 1959 return ret;
1da177e4
LT
1960}
1961
1962/*
8f4e2101
HD
1963 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1964 * but allow concurrent faults), and pte mapped but not yet locked.
1965 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1966 */
65500d23
HD
1967static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1968 unsigned long address, pte_t *page_table, pmd_t *pmd,
1969 int write_access)
1da177e4 1970{
8f4e2101
HD
1971 struct page *page;
1972 spinlock_t *ptl;
1da177e4 1973 pte_t entry;
1da177e4 1974
6aab341e 1975 if (write_access) {
1da177e4
LT
1976 /* Allocate our own private page. */
1977 pte_unmap(page_table);
1da177e4
LT
1978
1979 if (unlikely(anon_vma_prepare(vma)))
65500d23
HD
1980 goto oom;
1981 page = alloc_zeroed_user_highpage(vma, address);
1da177e4 1982 if (!page)
65500d23 1983 goto oom;
1da177e4 1984
65500d23
HD
1985 entry = mk_pte(page, vma->vm_page_prot);
1986 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
8f4e2101
HD
1987
1988 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1989 if (!pte_none(*page_table))
1990 goto release;
1991 inc_mm_counter(mm, anon_rss);
1da177e4 1992 lru_cache_add_active(page);
9617d95e 1993 page_add_new_anon_rmap(page, vma, address);
b5810039 1994 } else {
8f4e2101
HD
1995 /* Map the ZERO_PAGE - vm_page_prot is readonly */
1996 page = ZERO_PAGE(address);
1997 page_cache_get(page);
1998 entry = mk_pte(page, vma->vm_page_prot);
1999
4c21e2f2 2000 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2001 spin_lock(ptl);
2002 if (!pte_none(*page_table))
2003 goto release;
b5810039
NP
2004 inc_mm_counter(mm, file_rss);
2005 page_add_file_rmap(page);
1da177e4
LT
2006 }
2007
65500d23 2008 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2009
2010 /* No need to invalidate - it was non-present before */
65500d23 2011 update_mmu_cache(vma, address, entry);
1da177e4 2012 lazy_mmu_prot_update(entry);
65500d23 2013unlock:
8f4e2101 2014 pte_unmap_unlock(page_table, ptl);
1da177e4 2015 return VM_FAULT_MINOR;
8f4e2101
HD
2016release:
2017 page_cache_release(page);
2018 goto unlock;
65500d23 2019oom:
1da177e4
LT
2020 return VM_FAULT_OOM;
2021}
2022
2023/*
2024 * do_no_page() tries to create a new page mapping. It aggressively
2025 * tries to share with existing pages, but makes a separate copy if
2026 * the "write_access" parameter is true in order to avoid the next
2027 * page fault.
2028 *
2029 * As this is called only for pages that do not currently exist, we
2030 * do not need to flush old virtual caches or the TLB.
2031 *
8f4e2101
HD
2032 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2033 * but allow concurrent faults), and pte mapped but not yet locked.
2034 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2035 */
65500d23
HD
2036static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2037 unsigned long address, pte_t *page_table, pmd_t *pmd,
2038 int write_access)
1da177e4 2039{
8f4e2101 2040 spinlock_t *ptl;
65500d23 2041 struct page *new_page;
1da177e4
LT
2042 struct address_space *mapping = NULL;
2043 pte_t entry;
2044 unsigned int sequence = 0;
2045 int ret = VM_FAULT_MINOR;
2046 int anon = 0;
2047
1da177e4 2048 pte_unmap(page_table);
325f04db
HD
2049 BUG_ON(vma->vm_flags & VM_PFNMAP);
2050
1da177e4
LT
2051 if (vma->vm_file) {
2052 mapping = vma->vm_file->f_mapping;
2053 sequence = mapping->truncate_count;
2054 smp_rmb(); /* serializes i_size against truncate_count */
2055 }
2056retry:
1da177e4
LT
2057 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2058 /*
2059 * No smp_rmb is needed here as long as there's a full
2060 * spin_lock/unlock sequence inside the ->nopage callback
2061 * (for the pagecache lookup) that acts as an implicit
2062 * smp_mb() and prevents the i_size read to happen
2063 * after the next truncate_count read.
2064 */
2065
2066 /* no page was available -- either SIGBUS or OOM */
2067 if (new_page == NOPAGE_SIGBUS)
2068 return VM_FAULT_SIGBUS;
2069 if (new_page == NOPAGE_OOM)
2070 return VM_FAULT_OOM;
2071
2072 /*
2073 * Should we do an early C-O-W break?
2074 */
2075 if (write_access && !(vma->vm_flags & VM_SHARED)) {
2076 struct page *page;
2077
2078 if (unlikely(anon_vma_prepare(vma)))
2079 goto oom;
2080 page = alloc_page_vma(GFP_HIGHUSER, vma, address);
2081 if (!page)
2082 goto oom;
325f04db 2083 copy_user_highpage(page, new_page, address);
1da177e4
LT
2084 page_cache_release(new_page);
2085 new_page = page;
2086 anon = 1;
2087 }
2088
8f4e2101 2089 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2090 /*
2091 * For a file-backed vma, someone could have truncated or otherwise
2092 * invalidated this page. If unmap_mapping_range got called,
2093 * retry getting the page.
2094 */
2095 if (mapping && unlikely(sequence != mapping->truncate_count)) {
8f4e2101 2096 pte_unmap_unlock(page_table, ptl);
1da177e4 2097 page_cache_release(new_page);
65500d23
HD
2098 cond_resched();
2099 sequence = mapping->truncate_count;
2100 smp_rmb();
1da177e4
LT
2101 goto retry;
2102 }
1da177e4
LT
2103
2104 /*
2105 * This silly early PAGE_DIRTY setting removes a race
2106 * due to the bad i386 page protection. But it's valid
2107 * for other architectures too.
2108 *
2109 * Note that if write_access is true, we either now have
2110 * an exclusive copy of the page, or this is a shared mapping,
2111 * so we can make it writable and dirty to avoid having to
2112 * handle that later.
2113 */
2114 /* Only go through if we didn't race with anybody else... */
2115 if (pte_none(*page_table)) {
1da177e4
LT
2116 flush_icache_page(vma, new_page);
2117 entry = mk_pte(new_page, vma->vm_page_prot);
2118 if (write_access)
2119 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2120 set_pte_at(mm, address, page_table, entry);
2121 if (anon) {
4294621f 2122 inc_mm_counter(mm, anon_rss);
1da177e4 2123 lru_cache_add_active(new_page);
9617d95e 2124 page_add_new_anon_rmap(new_page, vma, address);
f57e88a8 2125 } else {
4294621f 2126 inc_mm_counter(mm, file_rss);
1da177e4 2127 page_add_file_rmap(new_page);
4294621f 2128 }
1da177e4
LT
2129 } else {
2130 /* One of our sibling threads was faster, back out. */
1da177e4 2131 page_cache_release(new_page);
65500d23 2132 goto unlock;
1da177e4
LT
2133 }
2134
2135 /* no need to invalidate: a not-present page shouldn't be cached */
2136 update_mmu_cache(vma, address, entry);
2137 lazy_mmu_prot_update(entry);
65500d23 2138unlock:
8f4e2101 2139 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2140 return ret;
2141oom:
2142 page_cache_release(new_page);
65500d23 2143 return VM_FAULT_OOM;
1da177e4
LT
2144}
2145
2146/*
2147 * Fault of a previously existing named mapping. Repopulate the pte
2148 * from the encoded file_pte if possible. This enables swappable
2149 * nonlinear vmas.
8f4e2101
HD
2150 *
2151 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2152 * but allow concurrent faults), and pte mapped but not yet locked.
2153 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2154 */
65500d23
HD
2155static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma,
2156 unsigned long address, pte_t *page_table, pmd_t *pmd,
2157 int write_access, pte_t orig_pte)
1da177e4 2158{
65500d23 2159 pgoff_t pgoff;
1da177e4
LT
2160 int err;
2161
4c21e2f2 2162 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2163 return VM_FAULT_MINOR;
1da177e4 2164
65500d23
HD
2165 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2166 /*
2167 * Page table corrupted: show pte and kill process.
2168 */
b5810039 2169 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2170 return VM_FAULT_OOM;
2171 }
2172 /* We can then assume vm->vm_ops && vma->vm_ops->populate */
2173
2174 pgoff = pte_to_pgoff(orig_pte);
2175 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE,
2176 vma->vm_page_prot, pgoff, 0);
1da177e4
LT
2177 if (err == -ENOMEM)
2178 return VM_FAULT_OOM;
2179 if (err)
2180 return VM_FAULT_SIGBUS;
2181 return VM_FAULT_MAJOR;
2182}
2183
2184/*
2185 * These routines also need to handle stuff like marking pages dirty
2186 * and/or accessed for architectures that don't do it in hardware (most
2187 * RISC architectures). The early dirtying is also good on the i386.
2188 *
2189 * There is also a hook called "update_mmu_cache()" that architectures
2190 * with external mmu caches can use to update those (ie the Sparc or
2191 * PowerPC hashed page tables that act as extended TLBs).
2192 *
c74df32c
HD
2193 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2194 * but allow concurrent faults), and pte mapped but not yet locked.
2195 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2196 */
2197static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2198 struct vm_area_struct *vma, unsigned long address,
2199 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2200{
2201 pte_t entry;
1a44e149 2202 pte_t old_entry;
8f4e2101 2203 spinlock_t *ptl;
1da177e4 2204
1a44e149 2205 old_entry = entry = *pte;
1da177e4 2206 if (!pte_present(entry)) {
65500d23
HD
2207 if (pte_none(entry)) {
2208 if (!vma->vm_ops || !vma->vm_ops->nopage)
2209 return do_anonymous_page(mm, vma, address,
2210 pte, pmd, write_access);
2211 return do_no_page(mm, vma, address,
2212 pte, pmd, write_access);
2213 }
1da177e4 2214 if (pte_file(entry))
65500d23
HD
2215 return do_file_page(mm, vma, address,
2216 pte, pmd, write_access, entry);
2217 return do_swap_page(mm, vma, address,
2218 pte, pmd, write_access, entry);
1da177e4
LT
2219 }
2220
4c21e2f2 2221 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2222 spin_lock(ptl);
2223 if (unlikely(!pte_same(*pte, entry)))
2224 goto unlock;
1da177e4
LT
2225 if (write_access) {
2226 if (!pte_write(entry))
8f4e2101
HD
2227 return do_wp_page(mm, vma, address,
2228 pte, pmd, ptl, entry);
1da177e4
LT
2229 entry = pte_mkdirty(entry);
2230 }
2231 entry = pte_mkyoung(entry);
1a44e149
AA
2232 if (!pte_same(old_entry, entry)) {
2233 ptep_set_access_flags(vma, address, pte, entry, write_access);
2234 update_mmu_cache(vma, address, entry);
2235 lazy_mmu_prot_update(entry);
2236 } else {
2237 /*
2238 * This is needed only for protection faults but the arch code
2239 * is not yet telling us if this is a protection fault or not.
2240 * This still avoids useless tlb flushes for .text page faults
2241 * with threads.
2242 */
2243 if (write_access)
2244 flush_tlb_page(vma, address);
2245 }
8f4e2101
HD
2246unlock:
2247 pte_unmap_unlock(pte, ptl);
1da177e4
LT
2248 return VM_FAULT_MINOR;
2249}
2250
2251/*
2252 * By the time we get here, we already hold the mm semaphore
2253 */
65500d23 2254int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2255 unsigned long address, int write_access)
2256{
2257 pgd_t *pgd;
2258 pud_t *pud;
2259 pmd_t *pmd;
2260 pte_t *pte;
2261
2262 __set_current_state(TASK_RUNNING);
2263
2264 inc_page_state(pgfault);
2265
ac9b9c66
HD
2266 if (unlikely(is_vm_hugetlb_page(vma)))
2267 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2268
1da177e4 2269 pgd = pgd_offset(mm, address);
1da177e4
LT
2270 pud = pud_alloc(mm, pgd, address);
2271 if (!pud)
c74df32c 2272 return VM_FAULT_OOM;
1da177e4
LT
2273 pmd = pmd_alloc(mm, pud, address);
2274 if (!pmd)
c74df32c 2275 return VM_FAULT_OOM;
1da177e4
LT
2276 pte = pte_alloc_map(mm, pmd, address);
2277 if (!pte)
c74df32c 2278 return VM_FAULT_OOM;
1da177e4 2279
c74df32c 2280 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2281}
2282
67207b96
AB
2283EXPORT_SYMBOL_GPL(__handle_mm_fault);
2284
1da177e4
LT
2285#ifndef __PAGETABLE_PUD_FOLDED
2286/*
2287 * Allocate page upper directory.
872fec16 2288 * We've already handled the fast-path in-line.
1da177e4 2289 */
1bb3630e 2290int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2291{
c74df32c
HD
2292 pud_t *new = pud_alloc_one(mm, address);
2293 if (!new)
1bb3630e 2294 return -ENOMEM;
1da177e4 2295
872fec16 2296 spin_lock(&mm->page_table_lock);
1bb3630e 2297 if (pgd_present(*pgd)) /* Another has populated it */
1da177e4 2298 pud_free(new);
1bb3630e
HD
2299 else
2300 pgd_populate(mm, pgd, new);
c74df32c 2301 spin_unlock(&mm->page_table_lock);
1bb3630e 2302 return 0;
1da177e4 2303}
e0f39591
AS
2304#else
2305/* Workaround for gcc 2.96 */
2306int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2307{
2308 return 0;
2309}
1da177e4
LT
2310#endif /* __PAGETABLE_PUD_FOLDED */
2311
2312#ifndef __PAGETABLE_PMD_FOLDED
2313/*
2314 * Allocate page middle directory.
872fec16 2315 * We've already handled the fast-path in-line.
1da177e4 2316 */
1bb3630e 2317int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2318{
c74df32c
HD
2319 pmd_t *new = pmd_alloc_one(mm, address);
2320 if (!new)
1bb3630e 2321 return -ENOMEM;
1da177e4 2322
872fec16 2323 spin_lock(&mm->page_table_lock);
1da177e4 2324#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2325 if (pud_present(*pud)) /* Another has populated it */
1da177e4 2326 pmd_free(new);
1bb3630e
HD
2327 else
2328 pud_populate(mm, pud, new);
1da177e4 2329#else
1bb3630e 2330 if (pgd_present(*pud)) /* Another has populated it */
1da177e4 2331 pmd_free(new);
1bb3630e
HD
2332 else
2333 pgd_populate(mm, pud, new);
1da177e4 2334#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2335 spin_unlock(&mm->page_table_lock);
1bb3630e 2336 return 0;
e0f39591
AS
2337}
2338#else
2339/* Workaround for gcc 2.96 */
2340int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2341{
2342 return 0;
1da177e4
LT
2343}
2344#endif /* __PAGETABLE_PMD_FOLDED */
2345
2346int make_pages_present(unsigned long addr, unsigned long end)
2347{
2348 int ret, len, write;
2349 struct vm_area_struct * vma;
2350
2351 vma = find_vma(current->mm, addr);
2352 if (!vma)
2353 return -1;
2354 write = (vma->vm_flags & VM_WRITE) != 0;
2355 if (addr >= end)
2356 BUG();
2357 if (end > vma->vm_end)
2358 BUG();
2359 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2360 ret = get_user_pages(current, current->mm, addr,
2361 len, write, 0, NULL, NULL);
2362 if (ret < 0)
2363 return ret;
2364 return ret == len ? 0 : -1;
2365}
2366
2367/*
2368 * Map a vmalloc()-space virtual address to the physical page.
2369 */
2370struct page * vmalloc_to_page(void * vmalloc_addr)
2371{
2372 unsigned long addr = (unsigned long) vmalloc_addr;
2373 struct page *page = NULL;
2374 pgd_t *pgd = pgd_offset_k(addr);
2375 pud_t *pud;
2376 pmd_t *pmd;
2377 pte_t *ptep, pte;
2378
2379 if (!pgd_none(*pgd)) {
2380 pud = pud_offset(pgd, addr);
2381 if (!pud_none(*pud)) {
2382 pmd = pmd_offset(pud, addr);
2383 if (!pmd_none(*pmd)) {
2384 ptep = pte_offset_map(pmd, addr);
2385 pte = *ptep;
2386 if (pte_present(pte))
2387 page = pte_page(pte);
2388 pte_unmap(ptep);
2389 }
2390 }
2391 }
2392 return page;
2393}
2394
2395EXPORT_SYMBOL(vmalloc_to_page);
2396
2397/*
2398 * Map a vmalloc()-space virtual address to the physical page frame number.
2399 */
2400unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2401{
2402 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2403}
2404
2405EXPORT_SYMBOL(vmalloc_to_pfn);
2406
1da177e4
LT
2407#if !defined(__HAVE_ARCH_GATE_AREA)
2408
2409#if defined(AT_SYSINFO_EHDR)
5ce7852c 2410static struct vm_area_struct gate_vma;
1da177e4
LT
2411
2412static int __init gate_vma_init(void)
2413{
2414 gate_vma.vm_mm = NULL;
2415 gate_vma.vm_start = FIXADDR_USER_START;
2416 gate_vma.vm_end = FIXADDR_USER_END;
2417 gate_vma.vm_page_prot = PAGE_READONLY;
0b14c179 2418 gate_vma.vm_flags = 0;
1da177e4
LT
2419 return 0;
2420}
2421__initcall(gate_vma_init);
2422#endif
2423
2424struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2425{
2426#ifdef AT_SYSINFO_EHDR
2427 return &gate_vma;
2428#else
2429 return NULL;
2430#endif
2431}
2432
2433int in_gate_area_no_task(unsigned long addr)
2434{
2435#ifdef AT_SYSINFO_EHDR
2436 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2437 return 1;
2438#endif
2439 return 0;
2440}
2441
2442#endif /* __HAVE_ARCH_GATE_AREA */