nilfs2: fix incorrect masking of permission flags for symlinks
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728 88#include "internal.h"
014bb1de 89#include "swap.h"
42b77728 90
af27d940 91#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 92#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
93#endif
94
a9ee6cf5 95#ifndef CONFIG_NUMA
1da177e4 96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
5c041f5d
PX
103static vm_fault_t do_fault(struct vm_fault *vmf);
104
1da177e4
LT
105/*
106 * A number of key systems in x86 including ioremap() rely on the assumption
107 * that high_memory defines the upper bound on direct map memory, then end
108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 * and ZONE_HIGHMEM.
111 */
166f61b9 112void *high_memory;
1da177e4 113EXPORT_SYMBOL(high_memory);
1da177e4 114
32a93233
IM
115/*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121int randomize_va_space __read_mostly =
122#ifdef CONFIG_COMPAT_BRK
123 1;
124#else
125 2;
126#endif
a62eaf15 127
83d116c5
JH
128#ifndef arch_faults_on_old_pte
129static inline bool arch_faults_on_old_pte(void)
130{
131 /*
132 * Those arches which don't have hw access flag feature need to
133 * implement their own helper. By default, "true" means pagefault
134 * will be hit on old pte.
135 */
136 return true;
137}
138#endif
139
46bdb427
WD
140#ifndef arch_wants_old_prefaulted_pte
141static inline bool arch_wants_old_prefaulted_pte(void)
142{
143 /*
144 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 * some architectures, even if it's performed in hardware. By
146 * default, "false" means prefaulted entries will be 'young'.
147 */
148 return false;
149}
150#endif
151
a62eaf15
AK
152static int __init disable_randmaps(char *s)
153{
154 randomize_va_space = 0;
9b41046c 155 return 1;
a62eaf15
AK
156}
157__setup("norandmaps", disable_randmaps);
158
62eede62 159unsigned long zero_pfn __read_mostly;
0b70068e
AB
160EXPORT_SYMBOL(zero_pfn);
161
166f61b9
TH
162unsigned long highest_memmap_pfn __read_mostly;
163
a13ea5b7
HD
164/*
165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166 */
167static int __init init_zero_pfn(void)
168{
169 zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 return 0;
171}
e720e7d0 172early_initcall(init_zero_pfn);
a62eaf15 173
e4dcad20 174void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 175{
e4dcad20 176 trace_rss_stat(mm, member, count);
b3d1411b 177}
d559db08 178
34e55232
KH
179#if defined(SPLIT_RSS_COUNTING)
180
ea48cf78 181void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
182{
183 int i;
184
185 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
186 if (current->rss_stat.count[i]) {
187 add_mm_counter(mm, i, current->rss_stat.count[i]);
188 current->rss_stat.count[i] = 0;
34e55232
KH
189 }
190 }
05af2e10 191 current->rss_stat.events = 0;
34e55232
KH
192}
193
194static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195{
196 struct task_struct *task = current;
197
198 if (likely(task->mm == mm))
199 task->rss_stat.count[member] += val;
200 else
201 add_mm_counter(mm, member, val);
202}
203#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206/* sync counter once per 64 page faults */
207#define TASK_RSS_EVENTS_THRESH (64)
208static void check_sync_rss_stat(struct task_struct *task)
209{
210 if (unlikely(task != current))
211 return;
212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 213 sync_mm_rss(task->mm);
34e55232 214}
9547d01b 215#else /* SPLIT_RSS_COUNTING */
34e55232
KH
216
217#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220static void check_sync_rss_stat(struct task_struct *task)
221{
222}
223
9547d01b
PZ
224#endif /* SPLIT_RSS_COUNTING */
225
1da177e4
LT
226/*
227 * Note: this doesn't free the actual pages themselves. That
228 * has been handled earlier when unmapping all the memory regions.
229 */
9e1b32ca
BH
230static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 unsigned long addr)
1da177e4 232{
2f569afd 233 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 234 pmd_clear(pmd);
9e1b32ca 235 pte_free_tlb(tlb, token, addr);
c4812909 236 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
237}
238
e0da382c
HD
239static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 unsigned long addr, unsigned long end,
241 unsigned long floor, unsigned long ceiling)
1da177e4
LT
242{
243 pmd_t *pmd;
244 unsigned long next;
e0da382c 245 unsigned long start;
1da177e4 246
e0da382c 247 start = addr;
1da177e4 248 pmd = pmd_offset(pud, addr);
1da177e4
LT
249 do {
250 next = pmd_addr_end(addr, end);
251 if (pmd_none_or_clear_bad(pmd))
252 continue;
9e1b32ca 253 free_pte_range(tlb, pmd, addr);
1da177e4
LT
254 } while (pmd++, addr = next, addr != end);
255
e0da382c
HD
256 start &= PUD_MASK;
257 if (start < floor)
258 return;
259 if (ceiling) {
260 ceiling &= PUD_MASK;
261 if (!ceiling)
262 return;
1da177e4 263 }
e0da382c
HD
264 if (end - 1 > ceiling - 1)
265 return;
266
267 pmd = pmd_offset(pud, start);
268 pud_clear(pud);
9e1b32ca 269 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 270 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
271}
272
c2febafc 273static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
274 unsigned long addr, unsigned long end,
275 unsigned long floor, unsigned long ceiling)
1da177e4
LT
276{
277 pud_t *pud;
278 unsigned long next;
e0da382c 279 unsigned long start;
1da177e4 280
e0da382c 281 start = addr;
c2febafc 282 pud = pud_offset(p4d, addr);
1da177e4
LT
283 do {
284 next = pud_addr_end(addr, end);
285 if (pud_none_or_clear_bad(pud))
286 continue;
e0da382c 287 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
288 } while (pud++, addr = next, addr != end);
289
c2febafc
KS
290 start &= P4D_MASK;
291 if (start < floor)
292 return;
293 if (ceiling) {
294 ceiling &= P4D_MASK;
295 if (!ceiling)
296 return;
297 }
298 if (end - 1 > ceiling - 1)
299 return;
300
301 pud = pud_offset(p4d, start);
302 p4d_clear(p4d);
303 pud_free_tlb(tlb, pud, start);
b4e98d9a 304 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
305}
306
307static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
310{
311 p4d_t *p4d;
312 unsigned long next;
313 unsigned long start;
314
315 start = addr;
316 p4d = p4d_offset(pgd, addr);
317 do {
318 next = p4d_addr_end(addr, end);
319 if (p4d_none_or_clear_bad(p4d))
320 continue;
321 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 } while (p4d++, addr = next, addr != end);
323
e0da382c
HD
324 start &= PGDIR_MASK;
325 if (start < floor)
326 return;
327 if (ceiling) {
328 ceiling &= PGDIR_MASK;
329 if (!ceiling)
330 return;
1da177e4 331 }
e0da382c
HD
332 if (end - 1 > ceiling - 1)
333 return;
334
c2febafc 335 p4d = p4d_offset(pgd, start);
e0da382c 336 pgd_clear(pgd);
c2febafc 337 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
338}
339
340/*
e0da382c 341 * This function frees user-level page tables of a process.
1da177e4 342 */
42b77728 343void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
1da177e4
LT
346{
347 pgd_t *pgd;
348 unsigned long next;
e0da382c
HD
349
350 /*
351 * The next few lines have given us lots of grief...
352 *
353 * Why are we testing PMD* at this top level? Because often
354 * there will be no work to do at all, and we'd prefer not to
355 * go all the way down to the bottom just to discover that.
356 *
357 * Why all these "- 1"s? Because 0 represents both the bottom
358 * of the address space and the top of it (using -1 for the
359 * top wouldn't help much: the masks would do the wrong thing).
360 * The rule is that addr 0 and floor 0 refer to the bottom of
361 * the address space, but end 0 and ceiling 0 refer to the top
362 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 * that end 0 case should be mythical).
364 *
365 * Wherever addr is brought up or ceiling brought down, we must
366 * be careful to reject "the opposite 0" before it confuses the
367 * subsequent tests. But what about where end is brought down
368 * by PMD_SIZE below? no, end can't go down to 0 there.
369 *
370 * Whereas we round start (addr) and ceiling down, by different
371 * masks at different levels, in order to test whether a table
372 * now has no other vmas using it, so can be freed, we don't
373 * bother to round floor or end up - the tests don't need that.
374 */
1da177e4 375
e0da382c
HD
376 addr &= PMD_MASK;
377 if (addr < floor) {
378 addr += PMD_SIZE;
379 if (!addr)
380 return;
381 }
382 if (ceiling) {
383 ceiling &= PMD_MASK;
384 if (!ceiling)
385 return;
386 }
387 if (end - 1 > ceiling - 1)
388 end -= PMD_SIZE;
389 if (addr > end - 1)
390 return;
07e32661
AK
391 /*
392 * We add page table cache pages with PAGE_SIZE,
393 * (see pte_free_tlb()), flush the tlb if we need
394 */
ed6a7935 395 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 396 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
397 do {
398 next = pgd_addr_end(addr, end);
399 if (pgd_none_or_clear_bad(pgd))
400 continue;
c2febafc 401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 402 } while (pgd++, addr = next, addr != end);
e0da382c
HD
403}
404
42b77728 405void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 406 unsigned long floor, unsigned long ceiling)
e0da382c
HD
407{
408 while (vma) {
409 struct vm_area_struct *next = vma->vm_next;
410 unsigned long addr = vma->vm_start;
411
8f4f8c16 412 /*
25d9e2d1 413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
8f4f8c16 415 */
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16
HD
417 unlink_file_vma(vma);
418
9da61aef 419 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 421 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 427 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
428 vma = next;
429 next = vma->vm_next;
5beb4930 430 unlink_anon_vmas(vma);
8f4f8c16 431 unlink_file_vma(vma);
3bf5ee95
HD
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 434 floor, next ? next->vm_start : ceiling);
3bf5ee95 435 }
e0da382c
HD
436 vma = next;
437 }
1da177e4
LT
438}
439
03c4f204 440void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 441{
03c4f204 442 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 443
8ac1f832 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 445 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
4b471e88 462 }
c4088ebd 463 spin_unlock(ptl);
03c4f204
QZ
464}
465
4cf58924 466int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 467{
4cf58924 468 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
469 if (!new)
470 return -ENOMEM;
471
03c4f204 472 pmd_install(mm, pmd, &new);
2f569afd
MS
473 if (new)
474 pte_free(mm, new);
1bb3630e 475 return 0;
1da177e4
LT
476}
477
4cf58924 478int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 479{
4cf58924 480 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
8ac1f832 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 486 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 487 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 488 new = NULL;
4b471e88 489 }
1bb3630e 490 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
491 if (new)
492 pte_free_kernel(&init_mm, new);
1bb3630e 493 return 0;
1da177e4
LT
494}
495
d559db08
KH
496static inline void init_rss_vec(int *rss)
497{
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499}
500
501static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 502{
d559db08
KH
503 int i;
504
34e55232 505 if (current->mm == mm)
05af2e10 506 sync_mm_rss(mm);
d559db08
KH
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
ae859762
HD
510}
511
b5810039 512/*
6aab341e
LT
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
b5810039
NP
516 *
517 * The calling function must still handle the error.
518 */
3dc14741
HD
519static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
b5810039 521{
3dc14741 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
d936cf9b
HD
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
1170532b
JP
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
d936cf9b
HD
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
3dc14741
HD
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
1170532b
JP
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 557 if (page)
f0b791a3 558 dump_page(page, "bad pte");
6aa9b8b2 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 565 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 566 dump_stack();
373d4d09 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
568}
569
ee498ed7 570/*
7e675137 571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 572 *
7e675137
NP
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 576 *
7e675137
NP
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 585 *
b379d790
JH
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
6aab341e
LT
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
7e675137
NP
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
b379d790 599 *
b379d790 600 *
7e675137 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
ee498ed7 611 */
25b2995a
CH
612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
ee498ed7 614{
22b31eec 615 unsigned long pfn = pte_pfn(pte);
7e675137 616
00b3a331 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 618 if (likely(!pte_special(pte)))
22b31eec 619 goto check_pfn;
667a0a06
DV
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
df6ad698
JG
624 if (is_zero_pfn(pfn))
625 return NULL;
e1fb4a08
DJ
626 if (pte_devmap(pte))
627 return NULL;
628
df6ad698 629 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
630 return NULL;
631 }
632
00b3a331 633 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 634
b379d790
JH
635 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
636 if (vma->vm_flags & VM_MIXEDMAP) {
637 if (!pfn_valid(pfn))
638 return NULL;
639 goto out;
640 } else {
7e675137
NP
641 unsigned long off;
642 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
643 if (pfn == vma->vm_pgoff + off)
644 return NULL;
645 if (!is_cow_mapping(vma->vm_flags))
646 return NULL;
647 }
6aab341e
LT
648 }
649
b38af472
HD
650 if (is_zero_pfn(pfn))
651 return NULL;
00b3a331 652
22b31eec
HD
653check_pfn:
654 if (unlikely(pfn > highest_memmap_pfn)) {
655 print_bad_pte(vma, addr, pte, NULL);
656 return NULL;
657 }
6aab341e
LT
658
659 /*
7e675137 660 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 661 * eg. VDSO mappings can cause them to exist.
6aab341e 662 */
b379d790 663out:
6aab341e 664 return pfn_to_page(pfn);
ee498ed7
HD
665}
666
28093f9f
GS
667#ifdef CONFIG_TRANSPARENT_HUGEPAGE
668struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 pmd_t pmd)
670{
671 unsigned long pfn = pmd_pfn(pmd);
672
673 /*
674 * There is no pmd_special() but there may be special pmds, e.g.
675 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 676 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
677 */
678 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
679 if (vma->vm_flags & VM_MIXEDMAP) {
680 if (!pfn_valid(pfn))
681 return NULL;
682 goto out;
683 } else {
684 unsigned long off;
685 off = (addr - vma->vm_start) >> PAGE_SHIFT;
686 if (pfn == vma->vm_pgoff + off)
687 return NULL;
688 if (!is_cow_mapping(vma->vm_flags))
689 return NULL;
690 }
691 }
692
e1fb4a08
DJ
693 if (pmd_devmap(pmd))
694 return NULL;
3cde287b 695 if (is_huge_zero_pmd(pmd))
28093f9f
GS
696 return NULL;
697 if (unlikely(pfn > highest_memmap_pfn))
698 return NULL;
699
700 /*
701 * NOTE! We still have PageReserved() pages in the page tables.
702 * eg. VDSO mappings can cause them to exist.
703 */
704out:
705 return pfn_to_page(pfn);
706}
707#endif
708
b756a3b5
AP
709static void restore_exclusive_pte(struct vm_area_struct *vma,
710 struct page *page, unsigned long address,
711 pte_t *ptep)
712{
713 pte_t pte;
714 swp_entry_t entry;
715
716 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
717 if (pte_swp_soft_dirty(*ptep))
718 pte = pte_mksoft_dirty(pte);
719
720 entry = pte_to_swp_entry(*ptep);
721 if (pte_swp_uffd_wp(*ptep))
722 pte = pte_mkuffd_wp(pte);
723 else if (is_writable_device_exclusive_entry(entry))
724 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
725
6c287605
DH
726 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
727
b756a3b5
AP
728 /*
729 * No need to take a page reference as one was already
730 * created when the swap entry was made.
731 */
732 if (PageAnon(page))
f1e2db12 733 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
734 else
735 /*
736 * Currently device exclusive access only supports anonymous
737 * memory so the entry shouldn't point to a filebacked page.
738 */
739 WARN_ON_ONCE(!PageAnon(page));
740
1eba86c0
PT
741 set_pte_at(vma->vm_mm, address, ptep, pte);
742
b756a3b5
AP
743 /*
744 * No need to invalidate - it was non-present before. However
745 * secondary CPUs may have mappings that need invalidating.
746 */
747 update_mmu_cache(vma, address, ptep);
748}
749
750/*
751 * Tries to restore an exclusive pte if the page lock can be acquired without
752 * sleeping.
753 */
754static int
755try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
756 unsigned long addr)
757{
758 swp_entry_t entry = pte_to_swp_entry(*src_pte);
759 struct page *page = pfn_swap_entry_to_page(entry);
760
761 if (trylock_page(page)) {
762 restore_exclusive_pte(vma, page, addr, src_pte);
763 unlock_page(page);
764 return 0;
765 }
766
767 return -EBUSY;
768}
769
1da177e4
LT
770/*
771 * copy one vm_area from one task to the other. Assumes the page tables
772 * already present in the new task to be cleared in the whole range
773 * covered by this vma.
1da177e4
LT
774 */
775
df3a57d1
LT
776static unsigned long
777copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
778 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
779 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 780{
8f34f1ea 781 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
782 pte_t pte = *src_pte;
783 struct page *page;
df3a57d1
LT
784 swp_entry_t entry = pte_to_swp_entry(pte);
785
786 if (likely(!non_swap_entry(entry))) {
787 if (swap_duplicate(entry) < 0)
9a5cc85c 788 return -EIO;
df3a57d1
LT
789
790 /* make sure dst_mm is on swapoff's mmlist. */
791 if (unlikely(list_empty(&dst_mm->mmlist))) {
792 spin_lock(&mmlist_lock);
793 if (list_empty(&dst_mm->mmlist))
794 list_add(&dst_mm->mmlist,
795 &src_mm->mmlist);
796 spin_unlock(&mmlist_lock);
797 }
1493a191
DH
798 /* Mark the swap entry as shared. */
799 if (pte_swp_exclusive(*src_pte)) {
800 pte = pte_swp_clear_exclusive(*src_pte);
801 set_pte_at(src_mm, addr, src_pte, pte);
802 }
df3a57d1
LT
803 rss[MM_SWAPENTS]++;
804 } else if (is_migration_entry(entry)) {
af5cdaf8 805 page = pfn_swap_entry_to_page(entry);
1da177e4 806
df3a57d1 807 rss[mm_counter(page)]++;
5042db43 808
6c287605 809 if (!is_readable_migration_entry(entry) &&
df3a57d1 810 is_cow_mapping(vm_flags)) {
5042db43 811 /*
6c287605
DH
812 * COW mappings require pages in both parent and child
813 * to be set to read. A previously exclusive entry is
814 * now shared.
5042db43 815 */
4dd845b5
AP
816 entry = make_readable_migration_entry(
817 swp_offset(entry));
df3a57d1
LT
818 pte = swp_entry_to_pte(entry);
819 if (pte_swp_soft_dirty(*src_pte))
820 pte = pte_swp_mksoft_dirty(pte);
821 if (pte_swp_uffd_wp(*src_pte))
822 pte = pte_swp_mkuffd_wp(pte);
823 set_pte_at(src_mm, addr, src_pte, pte);
824 }
825 } else if (is_device_private_entry(entry)) {
af5cdaf8 826 page = pfn_swap_entry_to_page(entry);
5042db43 827
df3a57d1
LT
828 /*
829 * Update rss count even for unaddressable pages, as
830 * they should treated just like normal pages in this
831 * respect.
832 *
833 * We will likely want to have some new rss counters
834 * for unaddressable pages, at some point. But for now
835 * keep things as they are.
836 */
837 get_page(page);
838 rss[mm_counter(page)]++;
fb3d824d
DH
839 /* Cannot fail as these pages cannot get pinned. */
840 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
841
842 /*
843 * We do not preserve soft-dirty information, because so
844 * far, checkpoint/restore is the only feature that
845 * requires that. And checkpoint/restore does not work
846 * when a device driver is involved (you cannot easily
847 * save and restore device driver state).
848 */
4dd845b5 849 if (is_writable_device_private_entry(entry) &&
df3a57d1 850 is_cow_mapping(vm_flags)) {
4dd845b5
AP
851 entry = make_readable_device_private_entry(
852 swp_offset(entry));
df3a57d1
LT
853 pte = swp_entry_to_pte(entry);
854 if (pte_swp_uffd_wp(*src_pte))
855 pte = pte_swp_mkuffd_wp(pte);
856 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 857 }
b756a3b5
AP
858 } else if (is_device_exclusive_entry(entry)) {
859 /*
860 * Make device exclusive entries present by restoring the
861 * original entry then copying as for a present pte. Device
862 * exclusive entries currently only support private writable
863 * (ie. COW) mappings.
864 */
865 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
866 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
867 return -EBUSY;
868 return -ENOENT;
c56d1b62
PX
869 } else if (is_pte_marker_entry(entry)) {
870 /*
871 * We're copying the pgtable should only because dst_vma has
872 * uffd-wp enabled, do sanity check.
873 */
874 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
875 set_pte_at(dst_mm, addr, dst_pte, pte);
876 return 0;
1da177e4 877 }
8f34f1ea
PX
878 if (!userfaultfd_wp(dst_vma))
879 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
880 set_pte_at(dst_mm, addr, dst_pte, pte);
881 return 0;
882}
883
70e806e4 884/*
b51ad4f8 885 * Copy a present and normal page.
70e806e4 886 *
b51ad4f8
DH
887 * NOTE! The usual case is that this isn't required;
888 * instead, the caller can just increase the page refcount
889 * and re-use the pte the traditional way.
70e806e4
PX
890 *
891 * And if we need a pre-allocated page but don't yet have
892 * one, return a negative error to let the preallocation
893 * code know so that it can do so outside the page table
894 * lock.
895 */
896static inline int
c78f4636
PX
897copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
898 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 899 struct page **prealloc, struct page *page)
70e806e4
PX
900{
901 struct page *new_page;
b51ad4f8 902 pte_t pte;
70e806e4 903
70e806e4
PX
904 new_page = *prealloc;
905 if (!new_page)
906 return -EAGAIN;
907
908 /*
909 * We have a prealloc page, all good! Take it
910 * over and copy the page & arm it.
911 */
912 *prealloc = NULL;
c78f4636 913 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 914 __SetPageUptodate(new_page);
40f2bbf7 915 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 916 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
917 rss[mm_counter(new_page)]++;
918
919 /* All done, just insert the new page copy in the child */
c78f4636
PX
920 pte = mk_pte(new_page, dst_vma->vm_page_prot);
921 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
922 if (userfaultfd_pte_wp(dst_vma, *src_pte))
923 /* Uffd-wp needs to be delivered to dest pte as well */
924 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 925 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
926 return 0;
927}
928
929/*
930 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
931 * is required to copy this pte.
932 */
933static inline int
c78f4636
PX
934copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
935 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
936 struct page **prealloc)
df3a57d1 937{
c78f4636
PX
938 struct mm_struct *src_mm = src_vma->vm_mm;
939 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
940 pte_t pte = *src_pte;
941 struct page *page;
942
c78f4636 943 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 944 if (page && PageAnon(page)) {
b51ad4f8
DH
945 /*
946 * If this page may have been pinned by the parent process,
947 * copy the page immediately for the child so that we'll always
948 * guarantee the pinned page won't be randomly replaced in the
949 * future.
950 */
70e806e4 951 get_page(page);
fb3d824d
DH
952 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
953 /* Page maybe pinned, we have to copy. */
954 put_page(page);
955 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
956 addr, rss, prealloc, page);
957 }
958 rss[mm_counter(page)]++;
b51ad4f8 959 } else if (page) {
70e806e4 960 get_page(page);
fb3d824d 961 page_dup_file_rmap(page, false);
70e806e4
PX
962 rss[mm_counter(page)]++;
963 }
964
1da177e4
LT
965 /*
966 * If it's a COW mapping, write protect it both
967 * in the parent and the child
968 */
1b2de5d0 969 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 970 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 971 pte = pte_wrprotect(pte);
1da177e4 972 }
6c287605 973 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
974
975 /*
976 * If it's a shared mapping, mark it clean in
977 * the child
978 */
979 if (vm_flags & VM_SHARED)
980 pte = pte_mkclean(pte);
981 pte = pte_mkold(pte);
6aab341e 982
8f34f1ea 983 if (!userfaultfd_wp(dst_vma))
b569a176
PX
984 pte = pte_clear_uffd_wp(pte);
985
c78f4636 986 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
987 return 0;
988}
989
990static inline struct page *
991page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
992 unsigned long addr)
993{
994 struct page *new_page;
995
996 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
997 if (!new_page)
998 return NULL;
999
8f425e4e 1000 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
1001 put_page(new_page);
1002 return NULL;
6aab341e 1003 }
70e806e4 1004 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1005
70e806e4 1006 return new_page;
1da177e4
LT
1007}
1008
c78f4636
PX
1009static int
1010copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012 unsigned long end)
1da177e4 1013{
c78f4636
PX
1014 struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1016 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1017 pte_t *src_pte, *dst_pte;
c74df32c 1018 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1019 int progress, ret = 0;
d559db08 1020 int rss[NR_MM_COUNTERS];
570a335b 1021 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1022 struct page *prealloc = NULL;
1da177e4
LT
1023
1024again:
70e806e4 1025 progress = 0;
d559db08
KH
1026 init_rss_vec(rss);
1027
c74df32c 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
ece0e2b6 1033 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1034 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1036 orig_src_pte = src_pte;
1037 orig_dst_pte = dst_pte;
6606c3e0 1038 arch_enter_lazy_mmu_mode();
1da177e4 1039
1da177e4
LT
1040 do {
1041 /*
1042 * We are holding two locks at this point - either of them
1043 * could generate latencies in another task on another CPU.
1044 */
e040f218
HD
1045 if (progress >= 32) {
1046 progress = 0;
1047 if (need_resched() ||
95c354fe 1048 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1049 break;
1050 }
1da177e4
LT
1051 if (pte_none(*src_pte)) {
1052 progress++;
1053 continue;
1054 }
79a1971c 1055 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1056 ret = copy_nonpresent_pte(dst_mm, src_mm,
1057 dst_pte, src_pte,
1058 dst_vma, src_vma,
1059 addr, rss);
1060 if (ret == -EIO) {
1061 entry = pte_to_swp_entry(*src_pte);
79a1971c 1062 break;
b756a3b5
AP
1063 } else if (ret == -EBUSY) {
1064 break;
1065 } else if (!ret) {
1066 progress += 8;
1067 continue;
9a5cc85c 1068 }
b756a3b5
AP
1069
1070 /*
1071 * Device exclusive entry restored, continue by copying
1072 * the now present pte.
1073 */
1074 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1075 }
70e806e4 1076 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1077 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1078 addr, rss, &prealloc);
70e806e4
PX
1079 /*
1080 * If we need a pre-allocated page for this pte, drop the
1081 * locks, allocate, and try again.
1082 */
1083 if (unlikely(ret == -EAGAIN))
1084 break;
1085 if (unlikely(prealloc)) {
1086 /*
1087 * pre-alloc page cannot be reused by next time so as
1088 * to strictly follow mempolicy (e.g., alloc_page_vma()
1089 * will allocate page according to address). This
1090 * could only happen if one pinned pte changed.
1091 */
1092 put_page(prealloc);
1093 prealloc = NULL;
1094 }
1da177e4
LT
1095 progress += 8;
1096 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1097
6606c3e0 1098 arch_leave_lazy_mmu_mode();
c74df32c 1099 spin_unlock(src_ptl);
ece0e2b6 1100 pte_unmap(orig_src_pte);
d559db08 1101 add_mm_rss_vec(dst_mm, rss);
c36987e2 1102 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1103 cond_resched();
570a335b 1104
9a5cc85c
AP
1105 if (ret == -EIO) {
1106 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1107 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1108 ret = -ENOMEM;
1109 goto out;
1110 }
1111 entry.val = 0;
b756a3b5
AP
1112 } else if (ret == -EBUSY) {
1113 goto out;
9a5cc85c 1114 } else if (ret == -EAGAIN) {
c78f4636 1115 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1116 if (!prealloc)
570a335b 1117 return -ENOMEM;
9a5cc85c
AP
1118 } else if (ret) {
1119 VM_WARN_ON_ONCE(1);
570a335b 1120 }
9a5cc85c
AP
1121
1122 /* We've captured and resolved the error. Reset, try again. */
1123 ret = 0;
1124
1da177e4
LT
1125 if (addr != end)
1126 goto again;
70e806e4
PX
1127out:
1128 if (unlikely(prealloc))
1129 put_page(prealloc);
1130 return ret;
1da177e4
LT
1131}
1132
c78f4636
PX
1133static inline int
1134copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1135 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1136 unsigned long end)
1da177e4 1137{
c78f4636
PX
1138 struct mm_struct *dst_mm = dst_vma->vm_mm;
1139 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1140 pmd_t *src_pmd, *dst_pmd;
1141 unsigned long next;
1142
1143 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1144 if (!dst_pmd)
1145 return -ENOMEM;
1146 src_pmd = pmd_offset(src_pud, addr);
1147 do {
1148 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1149 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1150 || pmd_devmap(*src_pmd)) {
71e3aac0 1151 int err;
c78f4636 1152 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1153 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1154 addr, dst_vma, src_vma);
71e3aac0
AA
1155 if (err == -ENOMEM)
1156 return -ENOMEM;
1157 if (!err)
1158 continue;
1159 /* fall through */
1160 }
1da177e4
LT
1161 if (pmd_none_or_clear_bad(src_pmd))
1162 continue;
c78f4636
PX
1163 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1164 addr, next))
1da177e4
LT
1165 return -ENOMEM;
1166 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1167 return 0;
1168}
1169
c78f4636
PX
1170static inline int
1171copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1172 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1173 unsigned long end)
1da177e4 1174{
c78f4636
PX
1175 struct mm_struct *dst_mm = dst_vma->vm_mm;
1176 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1177 pud_t *src_pud, *dst_pud;
1178 unsigned long next;
1179
c2febafc 1180 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1181 if (!dst_pud)
1182 return -ENOMEM;
c2febafc 1183 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1184 do {
1185 next = pud_addr_end(addr, end);
a00cc7d9
MW
1186 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1187 int err;
1188
c78f4636 1189 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1190 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1191 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1192 if (err == -ENOMEM)
1193 return -ENOMEM;
1194 if (!err)
1195 continue;
1196 /* fall through */
1197 }
1da177e4
LT
1198 if (pud_none_or_clear_bad(src_pud))
1199 continue;
c78f4636
PX
1200 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1201 addr, next))
1da177e4
LT
1202 return -ENOMEM;
1203 } while (dst_pud++, src_pud++, addr = next, addr != end);
1204 return 0;
1205}
1206
c78f4636
PX
1207static inline int
1208copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1209 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1210 unsigned long end)
c2febafc 1211{
c78f4636 1212 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1213 p4d_t *src_p4d, *dst_p4d;
1214 unsigned long next;
1215
1216 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1217 if (!dst_p4d)
1218 return -ENOMEM;
1219 src_p4d = p4d_offset(src_pgd, addr);
1220 do {
1221 next = p4d_addr_end(addr, end);
1222 if (p4d_none_or_clear_bad(src_p4d))
1223 continue;
c78f4636
PX
1224 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1225 addr, next))
c2febafc
KS
1226 return -ENOMEM;
1227 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1228 return 0;
1229}
1230
c56d1b62
PX
1231/*
1232 * Return true if the vma needs to copy the pgtable during this fork(). Return
1233 * false when we can speed up fork() by allowing lazy page faults later until
1234 * when the child accesses the memory range.
1235 */
bc70fbf2 1236static bool
c56d1b62
PX
1237vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1238{
1239 /*
1240 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1241 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1242 * contains uffd-wp protection information, that's something we can't
1243 * retrieve from page cache, and skip copying will lose those info.
1244 */
1245 if (userfaultfd_wp(dst_vma))
1246 return true;
1247
1248 if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP))
1249 return true;
1250
1251 if (src_vma->anon_vma)
1252 return true;
1253
1254 /*
1255 * Don't copy ptes where a page fault will fill them correctly. Fork
1256 * becomes much lighter when there are big shared or private readonly
1257 * mappings. The tradeoff is that copy_page_range is more efficient
1258 * than faulting.
1259 */
1260 return false;
1261}
1262
c78f4636
PX
1263int
1264copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1265{
1266 pgd_t *src_pgd, *dst_pgd;
1267 unsigned long next;
c78f4636
PX
1268 unsigned long addr = src_vma->vm_start;
1269 unsigned long end = src_vma->vm_end;
1270 struct mm_struct *dst_mm = dst_vma->vm_mm;
1271 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1272 struct mmu_notifier_range range;
2ec74c3e 1273 bool is_cow;
cddb8a5c 1274 int ret;
1da177e4 1275
c56d1b62 1276 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1277 return 0;
d992895b 1278
c78f4636 1279 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1280 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1281
c78f4636 1282 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1283 /*
1284 * We do not free on error cases below as remove_vma
1285 * gets called on error from higher level routine
1286 */
c78f4636 1287 ret = track_pfn_copy(src_vma);
2ab64037 1288 if (ret)
1289 return ret;
1290 }
1291
cddb8a5c
AA
1292 /*
1293 * We need to invalidate the secondary MMU mappings only when
1294 * there could be a permission downgrade on the ptes of the
1295 * parent mm. And a permission downgrade will only happen if
1296 * is_cow_mapping() returns true.
1297 */
c78f4636 1298 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1299
1300 if (is_cow) {
7269f999 1301 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1302 0, src_vma, src_mm, addr, end);
ac46d4f3 1303 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1304 /*
1305 * Disabling preemption is not needed for the write side, as
1306 * the read side doesn't spin, but goes to the mmap_lock.
1307 *
1308 * Use the raw variant of the seqcount_t write API to avoid
1309 * lockdep complaining about preemptibility.
1310 */
1311 mmap_assert_write_locked(src_mm);
1312 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1313 }
cddb8a5c
AA
1314
1315 ret = 0;
1da177e4
LT
1316 dst_pgd = pgd_offset(dst_mm, addr);
1317 src_pgd = pgd_offset(src_mm, addr);
1318 do {
1319 next = pgd_addr_end(addr, end);
1320 if (pgd_none_or_clear_bad(src_pgd))
1321 continue;
c78f4636
PX
1322 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1323 addr, next))) {
cddb8a5c
AA
1324 ret = -ENOMEM;
1325 break;
1326 }
1da177e4 1327 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1328
57efa1fe
JG
1329 if (is_cow) {
1330 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1331 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1332 }
cddb8a5c 1333 return ret;
1da177e4
LT
1334}
1335
3506659e
MWO
1336/*
1337 * Parameter block passed down to zap_pte_range in exceptional cases.
1338 */
1339struct zap_details {
3506659e 1340 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1341 bool even_cows; /* Zap COWed private pages too? */
999dad82 1342 zap_flags_t zap_flags; /* Extra flags for zapping */
3506659e
MWO
1343};
1344
5abfd71d
PX
1345/* Whether we should zap all COWed (private) pages too */
1346static inline bool should_zap_cows(struct zap_details *details)
1347{
1348 /* By default, zap all pages */
1349 if (!details)
1350 return true;
1351
1352 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1353 return details->even_cows;
5abfd71d
PX
1354}
1355
2e148f1e 1356/* Decides whether we should zap this page with the page pointer specified */
254ab940 1357static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1358{
5abfd71d
PX
1359 /* If we can make a decision without *page.. */
1360 if (should_zap_cows(details))
254ab940 1361 return true;
5abfd71d
PX
1362
1363 /* E.g. the caller passes NULL for the case of a zero page */
1364 if (!page)
254ab940 1365 return true;
3506659e 1366
2e148f1e
PX
1367 /* Otherwise we should only zap non-anon pages */
1368 return !PageAnon(page);
3506659e
MWO
1369}
1370
999dad82
PX
1371static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1372{
1373 if (!details)
1374 return false;
1375
1376 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1377}
1378
1379/*
1380 * This function makes sure that we'll replace the none pte with an uffd-wp
1381 * swap special pte marker when necessary. Must be with the pgtable lock held.
1382 */
1383static inline void
1384zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1385 unsigned long addr, pte_t *pte,
1386 struct zap_details *details, pte_t pteval)
1387{
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
51c6f666 1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1395 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1396 unsigned long addr, unsigned long end,
97a89413 1397 struct zap_details *details)
1da177e4 1398{
b5810039 1399 struct mm_struct *mm = tlb->mm;
d16dfc55 1400 int force_flush = 0;
d559db08 1401 int rss[NR_MM_COUNTERS];
97a89413 1402 spinlock_t *ptl;
5f1a1907 1403 pte_t *start_pte;
97a89413 1404 pte_t *pte;
8a5f14a2 1405 swp_entry_t entry;
d559db08 1406
ed6a7935 1407 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1408again:
e303297e 1409 init_rss_vec(rss);
5f1a1907
SR
1410 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1411 pte = start_pte;
3ea27719 1412 flush_tlb_batched_pending(mm);
6606c3e0 1413 arch_enter_lazy_mmu_mode();
1da177e4
LT
1414 do {
1415 pte_t ptent = *pte;
8018db85
PX
1416 struct page *page;
1417
166f61b9 1418 if (pte_none(ptent))
1da177e4 1419 continue;
6f5e6b9e 1420
7b167b68
MK
1421 if (need_resched())
1422 break;
1423
1da177e4 1424 if (pte_present(ptent)) {
25b2995a 1425 page = vm_normal_page(vma, addr, ptent);
254ab940 1426 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1427 continue;
b5810039 1428 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1429 tlb->fullmm);
1da177e4 1430 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1431 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1432 ptent);
1da177e4
LT
1433 if (unlikely(!page))
1434 continue;
eca56ff9
JM
1435
1436 if (!PageAnon(page)) {
1cf35d47
LT
1437 if (pte_dirty(ptent)) {
1438 force_flush = 1;
6237bcd9 1439 set_page_dirty(page);
1cf35d47 1440 }
4917e5d0 1441 if (pte_young(ptent) &&
64363aad 1442 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1443 mark_page_accessed(page);
6237bcd9 1444 }
eca56ff9 1445 rss[mm_counter(page)]--;
cea86fe2 1446 page_remove_rmap(page, vma, false);
3dc14741
HD
1447 if (unlikely(page_mapcount(page) < 0))
1448 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1449 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1450 force_flush = 1;
ce9ec37b 1451 addr += PAGE_SIZE;
d16dfc55 1452 break;
1cf35d47 1453 }
1da177e4
LT
1454 continue;
1455 }
5042db43
JG
1456
1457 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1458 if (is_device_private_entry(entry) ||
1459 is_device_exclusive_entry(entry)) {
8018db85 1460 page = pfn_swap_entry_to_page(entry);
254ab940 1461 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1462 continue;
999dad82
PX
1463 /*
1464 * Both device private/exclusive mappings should only
1465 * work with anonymous page so far, so we don't need to
1466 * consider uffd-wp bit when zap. For more information,
1467 * see zap_install_uffd_wp_if_needed().
1468 */
1469 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1470 rss[mm_counter(page)]--;
b756a3b5 1471 if (is_device_private_entry(entry))
cea86fe2 1472 page_remove_rmap(page, vma, false);
5042db43 1473 put_page(page);
8018db85 1474 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1475 /* Genuine swap entry, hence a private anon page */
1476 if (!should_zap_cows(details))
1477 continue;
8a5f14a2 1478 rss[MM_SWAPENTS]--;
8018db85
PX
1479 if (unlikely(!free_swap_and_cache(entry)))
1480 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1481 } else if (is_migration_entry(entry)) {
af5cdaf8 1482 page = pfn_swap_entry_to_page(entry);
254ab940 1483 if (!should_zap_page(details, page))
5abfd71d 1484 continue;
eca56ff9 1485 rss[mm_counter(page)]--;
999dad82
PX
1486 } else if (pte_marker_entry_uffd_wp(entry)) {
1487 /* Only drop the uffd-wp marker if explicitly requested */
1488 if (!zap_drop_file_uffd_wp(details))
1489 continue;
9f186f9e
ML
1490 } else if (is_hwpoison_entry(entry) ||
1491 is_swapin_error_entry(entry)) {
5abfd71d
PX
1492 if (!should_zap_cows(details))
1493 continue;
1494 } else {
1495 /* We should have covered all the swap entry types */
1496 WARN_ON_ONCE(1);
b084d435 1497 }
9888a1ca 1498 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1500 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1501
d559db08 1502 add_mm_rss_vec(mm, rss);
6606c3e0 1503 arch_leave_lazy_mmu_mode();
51c6f666 1504
1cf35d47 1505 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1506 if (force_flush)
1cf35d47 1507 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1508 pte_unmap_unlock(start_pte, ptl);
1509
1510 /*
1511 * If we forced a TLB flush (either due to running out of
1512 * batch buffers or because we needed to flush dirty TLB
1513 * entries before releasing the ptl), free the batched
1514 * memory too. Restart if we didn't do everything.
1515 */
1516 if (force_flush) {
1517 force_flush = 0;
fa0aafb8 1518 tlb_flush_mmu(tlb);
7b167b68
MK
1519 }
1520
1521 if (addr != end) {
1522 cond_resched();
1523 goto again;
d16dfc55
PZ
1524 }
1525
51c6f666 1526 return addr;
1da177e4
LT
1527}
1528
51c6f666 1529static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1530 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1531 unsigned long addr, unsigned long end,
97a89413 1532 struct zap_details *details)
1da177e4
LT
1533{
1534 pmd_t *pmd;
1535 unsigned long next;
1536
1537 pmd = pmd_offset(pud, addr);
1538 do {
1539 next = pmd_addr_end(addr, end);
84c3fc4e 1540 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1541 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1542 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1543 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1544 goto next;
71e3aac0 1545 /* fall through */
3506659e
MWO
1546 } else if (details && details->single_folio &&
1547 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1548 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1549 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1550 /*
1551 * Take and drop THP pmd lock so that we cannot return
1552 * prematurely, while zap_huge_pmd() has cleared *pmd,
1553 * but not yet decremented compound_mapcount().
1554 */
1555 spin_unlock(ptl);
71e3aac0 1556 }
22061a1f 1557
1a5a9906
AA
1558 /*
1559 * Here there can be other concurrent MADV_DONTNEED or
1560 * trans huge page faults running, and if the pmd is
1561 * none or trans huge it can change under us. This is
c1e8d7c6 1562 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1563 * mode.
1564 */
1565 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1566 goto next;
97a89413 1567 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1568next:
97a89413
PZ
1569 cond_resched();
1570 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1571
1572 return addr;
1da177e4
LT
1573}
1574
51c6f666 1575static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1576 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1577 unsigned long addr, unsigned long end,
97a89413 1578 struct zap_details *details)
1da177e4
LT
1579{
1580 pud_t *pud;
1581 unsigned long next;
1582
c2febafc 1583 pud = pud_offset(p4d, addr);
1da177e4
LT
1584 do {
1585 next = pud_addr_end(addr, end);
a00cc7d9
MW
1586 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1587 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1588 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1589 split_huge_pud(vma, pud, addr);
1590 } else if (zap_huge_pud(tlb, vma, pud, addr))
1591 goto next;
1592 /* fall through */
1593 }
97a89413 1594 if (pud_none_or_clear_bad(pud))
1da177e4 1595 continue;
97a89413 1596 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1597next:
1598 cond_resched();
97a89413 1599 } while (pud++, addr = next, addr != end);
51c6f666
RH
1600
1601 return addr;
1da177e4
LT
1602}
1603
c2febafc
KS
1604static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1605 struct vm_area_struct *vma, pgd_t *pgd,
1606 unsigned long addr, unsigned long end,
1607 struct zap_details *details)
1608{
1609 p4d_t *p4d;
1610 unsigned long next;
1611
1612 p4d = p4d_offset(pgd, addr);
1613 do {
1614 next = p4d_addr_end(addr, end);
1615 if (p4d_none_or_clear_bad(p4d))
1616 continue;
1617 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1618 } while (p4d++, addr = next, addr != end);
1619
1620 return addr;
1621}
1622
aac45363 1623void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1624 struct vm_area_struct *vma,
1625 unsigned long addr, unsigned long end,
1626 struct zap_details *details)
1da177e4
LT
1627{
1628 pgd_t *pgd;
1629 unsigned long next;
1630
1da177e4
LT
1631 BUG_ON(addr >= end);
1632 tlb_start_vma(tlb, vma);
1633 pgd = pgd_offset(vma->vm_mm, addr);
1634 do {
1635 next = pgd_addr_end(addr, end);
97a89413 1636 if (pgd_none_or_clear_bad(pgd))
1da177e4 1637 continue;
c2febafc 1638 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1639 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1640 tlb_end_vma(tlb, vma);
1641}
51c6f666 1642
f5cc4eef
AV
1643
1644static void unmap_single_vma(struct mmu_gather *tlb,
1645 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1646 unsigned long end_addr,
f5cc4eef
AV
1647 struct zap_details *details)
1648{
1649 unsigned long start = max(vma->vm_start, start_addr);
1650 unsigned long end;
1651
1652 if (start >= vma->vm_end)
1653 return;
1654 end = min(vma->vm_end, end_addr);
1655 if (end <= vma->vm_start)
1656 return;
1657
cbc91f71
SD
1658 if (vma->vm_file)
1659 uprobe_munmap(vma, start, end);
1660
b3b9c293 1661 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1662 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1663
1664 if (start != end) {
1665 if (unlikely(is_vm_hugetlb_page(vma))) {
1666 /*
1667 * It is undesirable to test vma->vm_file as it
1668 * should be non-null for valid hugetlb area.
1669 * However, vm_file will be NULL in the error
7aa6b4ad 1670 * cleanup path of mmap_region. When
f5cc4eef 1671 * hugetlbfs ->mmap method fails,
7aa6b4ad 1672 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1673 * before calling this function to clean up.
1674 * Since no pte has actually been setup, it is
1675 * safe to do nothing in this case.
1676 */
24669e58 1677 if (vma->vm_file) {
05e90bd0
PX
1678 zap_flags_t zap_flags = details ?
1679 details->zap_flags : 0;
83cde9e8 1680 i_mmap_lock_write(vma->vm_file->f_mapping);
05e90bd0
PX
1681 __unmap_hugepage_range_final(tlb, vma, start, end,
1682 NULL, zap_flags);
83cde9e8 1683 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1684 }
f5cc4eef
AV
1685 } else
1686 unmap_page_range(tlb, vma, start, end, details);
1687 }
1da177e4
LT
1688}
1689
1da177e4
LT
1690/**
1691 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1692 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1693 * @vma: the starting vma
1694 * @start_addr: virtual address at which to start unmapping
1695 * @end_addr: virtual address at which to end unmapping
1da177e4 1696 *
508034a3 1697 * Unmap all pages in the vma list.
1da177e4 1698 *
1da177e4
LT
1699 * Only addresses between `start' and `end' will be unmapped.
1700 *
1701 * The VMA list must be sorted in ascending virtual address order.
1702 *
1703 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704 * range after unmap_vmas() returns. So the only responsibility here is to
1705 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706 * drops the lock and schedules.
1707 */
6e8bb019 1708void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1709 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1710 unsigned long end_addr)
1da177e4 1711{
ac46d4f3 1712 struct mmu_notifier_range range;
999dad82
PX
1713 struct zap_details details = {
1714 .zap_flags = ZAP_FLAG_DROP_MARKER,
1715 /* Careful - we need to zap private pages too! */
1716 .even_cows = true,
1717 };
1da177e4 1718
6f4f13e8
JG
1719 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1720 start_addr, end_addr);
ac46d4f3 1721 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1722 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
999dad82 1723 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
ac46d4f3 1724 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1725}
1726
1727/**
1728 * zap_page_range - remove user pages in a given range
1729 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1730 * @start: starting address of pages to zap
1da177e4 1731 * @size: number of bytes to zap
f5cc4eef
AV
1732 *
1733 * Caller must protect the VMA list
1da177e4 1734 */
7e027b14 1735void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1736 unsigned long size)
1da177e4 1737{
ac46d4f3 1738 struct mmu_notifier_range range;
d16dfc55 1739 struct mmu_gather tlb;
1da177e4 1740
1da177e4 1741 lru_add_drain();
7269f999 1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1743 start, start + size);
a72afd87 1744 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1745 update_hiwater_rss(vma->vm_mm);
1746 mmu_notifier_invalidate_range_start(&range);
1747 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1748 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1749 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1750 tlb_finish_mmu(&tlb);
1da177e4
LT
1751}
1752
f5cc4eef
AV
1753/**
1754 * zap_page_range_single - remove user pages in a given range
1755 * @vma: vm_area_struct holding the applicable pages
1756 * @address: starting address of pages to zap
1757 * @size: number of bytes to zap
8a5f14a2 1758 * @details: details of shared cache invalidation
f5cc4eef
AV
1759 *
1760 * The range must fit into one VMA.
1da177e4 1761 */
f5cc4eef 1762static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1763 unsigned long size, struct zap_details *details)
1764{
ac46d4f3 1765 struct mmu_notifier_range range;
d16dfc55 1766 struct mmu_gather tlb;
1da177e4 1767
1da177e4 1768 lru_add_drain();
7269f999 1769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1770 address, address + size);
a72afd87 1771 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1772 update_hiwater_rss(vma->vm_mm);
1773 mmu_notifier_invalidate_range_start(&range);
1774 unmap_single_vma(&tlb, vma, address, range.end, details);
1775 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1776 tlb_finish_mmu(&tlb);
1da177e4
LT
1777}
1778
c627f9cc
JS
1779/**
1780 * zap_vma_ptes - remove ptes mapping the vma
1781 * @vma: vm_area_struct holding ptes to be zapped
1782 * @address: starting address of pages to zap
1783 * @size: number of bytes to zap
1784 *
1785 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1786 *
1787 * The entire address range must be fully contained within the vma.
1788 *
c627f9cc 1789 */
27d036e3 1790void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1791 unsigned long size)
1792{
88a35912 1793 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1794 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1795 return;
1796
f5cc4eef 1797 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1798}
1799EXPORT_SYMBOL_GPL(zap_vma_ptes);
1800
8cd3984d 1801static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1802{
c2febafc
KS
1803 pgd_t *pgd;
1804 p4d_t *p4d;
1805 pud_t *pud;
1806 pmd_t *pmd;
1807
1808 pgd = pgd_offset(mm, addr);
1809 p4d = p4d_alloc(mm, pgd, addr);
1810 if (!p4d)
1811 return NULL;
1812 pud = pud_alloc(mm, p4d, addr);
1813 if (!pud)
1814 return NULL;
1815 pmd = pmd_alloc(mm, pud, addr);
1816 if (!pmd)
1817 return NULL;
1818
1819 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1820 return pmd;
1821}
1822
1823pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1824 spinlock_t **ptl)
1825{
1826 pmd_t *pmd = walk_to_pmd(mm, addr);
1827
1828 if (!pmd)
1829 return NULL;
c2febafc 1830 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1831}
1832
8efd6f5b
AR
1833static int validate_page_before_insert(struct page *page)
1834{
1835 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1836 return -EINVAL;
1837 flush_dcache_page(page);
1838 return 0;
1839}
1840
cea86fe2 1841static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1842 unsigned long addr, struct page *page, pgprot_t prot)
1843{
1844 if (!pte_none(*pte))
1845 return -EBUSY;
1846 /* Ok, finally just insert the thing.. */
1847 get_page(page);
cea86fe2
HD
1848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1849 page_add_file_rmap(page, vma, false);
1850 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1851 return 0;
1852}
1853
238f58d8
LT
1854/*
1855 * This is the old fallback for page remapping.
1856 *
1857 * For historical reasons, it only allows reserved pages. Only
1858 * old drivers should use this, and they needed to mark their
1859 * pages reserved for the old functions anyway.
1860 */
423bad60
NP
1861static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1862 struct page *page, pgprot_t prot)
238f58d8
LT
1863{
1864 int retval;
c9cfcddf 1865 pte_t *pte;
8a9f3ccd
BS
1866 spinlock_t *ptl;
1867
8efd6f5b
AR
1868 retval = validate_page_before_insert(page);
1869 if (retval)
5b4e655e 1870 goto out;
238f58d8 1871 retval = -ENOMEM;
cea86fe2 1872 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1873 if (!pte)
5b4e655e 1874 goto out;
cea86fe2 1875 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1876 pte_unmap_unlock(pte, ptl);
1877out:
1878 return retval;
1879}
1880
8cd3984d 1881#ifdef pte_index
cea86fe2 1882static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1883 unsigned long addr, struct page *page, pgprot_t prot)
1884{
1885 int err;
1886
1887 if (!page_count(page))
1888 return -EINVAL;
1889 err = validate_page_before_insert(page);
7f70c2a6
AR
1890 if (err)
1891 return err;
cea86fe2 1892 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1893}
1894
1895/* insert_pages() amortizes the cost of spinlock operations
1896 * when inserting pages in a loop. Arch *must* define pte_index.
1897 */
1898static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899 struct page **pages, unsigned long *num, pgprot_t prot)
1900{
1901 pmd_t *pmd = NULL;
7f70c2a6
AR
1902 pte_t *start_pte, *pte;
1903 spinlock_t *pte_lock;
8cd3984d
AR
1904 struct mm_struct *const mm = vma->vm_mm;
1905 unsigned long curr_page_idx = 0;
1906 unsigned long remaining_pages_total = *num;
1907 unsigned long pages_to_write_in_pmd;
1908 int ret;
1909more:
1910 ret = -EFAULT;
1911 pmd = walk_to_pmd(mm, addr);
1912 if (!pmd)
1913 goto out;
1914
1915 pages_to_write_in_pmd = min_t(unsigned long,
1916 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917
1918 /* Allocate the PTE if necessary; takes PMD lock once only. */
1919 ret = -ENOMEM;
1920 if (pte_alloc(mm, pmd))
1921 goto out;
8cd3984d
AR
1922
1923 while (pages_to_write_in_pmd) {
1924 int pte_idx = 0;
1925 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926
7f70c2a6
AR
1927 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1929 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1930 addr, pages[curr_page_idx], prot);
1931 if (unlikely(err)) {
7f70c2a6 1932 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1933 ret = err;
1934 remaining_pages_total -= pte_idx;
1935 goto out;
1936 }
1937 addr += PAGE_SIZE;
1938 ++curr_page_idx;
1939 }
7f70c2a6 1940 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1941 pages_to_write_in_pmd -= batch_size;
1942 remaining_pages_total -= batch_size;
1943 }
1944 if (remaining_pages_total)
1945 goto more;
1946 ret = 0;
1947out:
1948 *num = remaining_pages_total;
1949 return ret;
1950}
1951#endif /* ifdef pte_index */
1952
1953/**
1954 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1955 * @vma: user vma to map to
1956 * @addr: target start user address of these pages
1957 * @pages: source kernel pages
1958 * @num: in: number of pages to map. out: number of pages that were *not*
1959 * mapped. (0 means all pages were successfully mapped).
1960 *
1961 * Preferred over vm_insert_page() when inserting multiple pages.
1962 *
1963 * In case of error, we may have mapped a subset of the provided
1964 * pages. It is the caller's responsibility to account for this case.
1965 *
1966 * The same restrictions apply as in vm_insert_page().
1967 */
1968int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1969 struct page **pages, unsigned long *num)
1970{
1971#ifdef pte_index
1972 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1973
1974 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1975 return -EFAULT;
1976 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1977 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1978 BUG_ON(vma->vm_flags & VM_PFNMAP);
1979 vma->vm_flags |= VM_MIXEDMAP;
1980 }
1981 /* Defer page refcount checking till we're about to map that page. */
1982 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1983#else
1984 unsigned long idx = 0, pgcount = *num;
45779b03 1985 int err = -EINVAL;
8cd3984d
AR
1986
1987 for (; idx < pgcount; ++idx) {
1988 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1989 if (err)
1990 break;
1991 }
1992 *num = pgcount - idx;
1993 return err;
1994#endif /* ifdef pte_index */
1995}
1996EXPORT_SYMBOL(vm_insert_pages);
1997
bfa5bf6d
REB
1998/**
1999 * vm_insert_page - insert single page into user vma
2000 * @vma: user vma to map to
2001 * @addr: target user address of this page
2002 * @page: source kernel page
2003 *
a145dd41
LT
2004 * This allows drivers to insert individual pages they've allocated
2005 * into a user vma.
2006 *
2007 * The page has to be a nice clean _individual_ kernel allocation.
2008 * If you allocate a compound page, you need to have marked it as
2009 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2010 * (see split_page()).
a145dd41
LT
2011 *
2012 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2013 * took an arbitrary page protection parameter. This doesn't allow
2014 * that. Your vma protection will have to be set up correctly, which
2015 * means that if you want a shared writable mapping, you'd better
2016 * ask for a shared writable mapping!
2017 *
2018 * The page does not need to be reserved.
4b6e1e37
KK
2019 *
2020 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2021 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2022 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2023 * function from other places, for example from page-fault handler.
a862f68a
MR
2024 *
2025 * Return: %0 on success, negative error code otherwise.
a145dd41 2026 */
423bad60
NP
2027int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2028 struct page *page)
a145dd41
LT
2029{
2030 if (addr < vma->vm_start || addr >= vma->vm_end)
2031 return -EFAULT;
2032 if (!page_count(page))
2033 return -EINVAL;
4b6e1e37 2034 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2035 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2036 BUG_ON(vma->vm_flags & VM_PFNMAP);
2037 vma->vm_flags |= VM_MIXEDMAP;
2038 }
423bad60 2039 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2040}
e3c3374f 2041EXPORT_SYMBOL(vm_insert_page);
a145dd41 2042
a667d745
SJ
2043/*
2044 * __vm_map_pages - maps range of kernel pages into user vma
2045 * @vma: user vma to map to
2046 * @pages: pointer to array of source kernel pages
2047 * @num: number of pages in page array
2048 * @offset: user's requested vm_pgoff
2049 *
2050 * This allows drivers to map range of kernel pages into a user vma.
2051 *
2052 * Return: 0 on success and error code otherwise.
2053 */
2054static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2055 unsigned long num, unsigned long offset)
2056{
2057 unsigned long count = vma_pages(vma);
2058 unsigned long uaddr = vma->vm_start;
2059 int ret, i;
2060
2061 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2062 if (offset >= num)
a667d745
SJ
2063 return -ENXIO;
2064
2065 /* Fail if the user requested size exceeds available object size */
2066 if (count > num - offset)
2067 return -ENXIO;
2068
2069 for (i = 0; i < count; i++) {
2070 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2071 if (ret < 0)
2072 return ret;
2073 uaddr += PAGE_SIZE;
2074 }
2075
2076 return 0;
2077}
2078
2079/**
2080 * vm_map_pages - maps range of kernel pages starts with non zero offset
2081 * @vma: user vma to map to
2082 * @pages: pointer to array of source kernel pages
2083 * @num: number of pages in page array
2084 *
2085 * Maps an object consisting of @num pages, catering for the user's
2086 * requested vm_pgoff
2087 *
2088 * If we fail to insert any page into the vma, the function will return
2089 * immediately leaving any previously inserted pages present. Callers
2090 * from the mmap handler may immediately return the error as their caller
2091 * will destroy the vma, removing any successfully inserted pages. Other
2092 * callers should make their own arrangements for calling unmap_region().
2093 *
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2096 */
2097int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2098 unsigned long num)
2099{
2100 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2101}
2102EXPORT_SYMBOL(vm_map_pages);
2103
2104/**
2105 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2106 * @vma: user vma to map to
2107 * @pages: pointer to array of source kernel pages
2108 * @num: number of pages in page array
2109 *
2110 * Similar to vm_map_pages(), except that it explicitly sets the offset
2111 * to 0. This function is intended for the drivers that did not consider
2112 * vm_pgoff.
2113 *
2114 * Context: Process context. Called by mmap handlers.
2115 * Return: 0 on success and error code otherwise.
2116 */
2117int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2118 unsigned long num)
2119{
2120 return __vm_map_pages(vma, pages, num, 0);
2121}
2122EXPORT_SYMBOL(vm_map_pages_zero);
2123
9b5a8e00 2124static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2125 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2126{
2127 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2128 pte_t *pte, entry;
2129 spinlock_t *ptl;
2130
423bad60
NP
2131 pte = get_locked_pte(mm, addr, &ptl);
2132 if (!pte)
9b5a8e00 2133 return VM_FAULT_OOM;
b2770da6
RZ
2134 if (!pte_none(*pte)) {
2135 if (mkwrite) {
2136 /*
2137 * For read faults on private mappings the PFN passed
2138 * in may not match the PFN we have mapped if the
2139 * mapped PFN is a writeable COW page. In the mkwrite
2140 * case we are creating a writable PTE for a shared
f2c57d91
JK
2141 * mapping and we expect the PFNs to match. If they
2142 * don't match, we are likely racing with block
2143 * allocation and mapping invalidation so just skip the
2144 * update.
b2770da6 2145 */
f2c57d91
JK
2146 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2147 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2148 goto out_unlock;
f2c57d91 2149 }
cae85cb8
JK
2150 entry = pte_mkyoung(*pte);
2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2153 update_mmu_cache(vma, addr, pte);
2154 }
2155 goto out_unlock;
b2770da6 2156 }
423bad60
NP
2157
2158 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2159 if (pfn_t_devmap(pfn))
2160 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2161 else
2162 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2163
b2770da6
RZ
2164 if (mkwrite) {
2165 entry = pte_mkyoung(entry);
2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 }
2168
423bad60 2169 set_pte_at(mm, addr, pte, entry);
4b3073e1 2170 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2171
423bad60
NP
2172out_unlock:
2173 pte_unmap_unlock(pte, ptl);
9b5a8e00 2174 return VM_FAULT_NOPAGE;
423bad60
NP
2175}
2176
f5e6d1d5
MW
2177/**
2178 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2179 * @vma: user vma to map to
2180 * @addr: target user address of this page
2181 * @pfn: source kernel pfn
2182 * @pgprot: pgprot flags for the inserted page
2183 *
a1a0aea5 2184 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2185 * to override pgprot on a per-page basis.
2186 *
2187 * This only makes sense for IO mappings, and it makes no sense for
2188 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2189 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2190 * impractical.
2191 *
574c5b3d
TH
2192 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2193 * a value of @pgprot different from that of @vma->vm_page_prot.
2194 *
ae2b01f3 2195 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2196 * Return: vm_fault_t value.
2197 */
2198vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2199 unsigned long pfn, pgprot_t pgprot)
2200{
6d958546
MW
2201 /*
2202 * Technically, architectures with pte_special can avoid all these
2203 * restrictions (same for remap_pfn_range). However we would like
2204 * consistency in testing and feature parity among all, so we should
2205 * try to keep these invariants in place for everybody.
2206 */
2207 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2208 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2209 (VM_PFNMAP|VM_MIXEDMAP));
2210 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2211 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2212
2213 if (addr < vma->vm_start || addr >= vma->vm_end)
2214 return VM_FAULT_SIGBUS;
2215
2216 if (!pfn_modify_allowed(pfn, pgprot))
2217 return VM_FAULT_SIGBUS;
2218
2219 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2220
9b5a8e00 2221 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2222 false);
f5e6d1d5
MW
2223}
2224EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2225
ae2b01f3
MW
2226/**
2227 * vmf_insert_pfn - insert single pfn into user vma
2228 * @vma: user vma to map to
2229 * @addr: target user address of this page
2230 * @pfn: source kernel pfn
2231 *
2232 * Similar to vm_insert_page, this allows drivers to insert individual pages
2233 * they've allocated into a user vma. Same comments apply.
2234 *
2235 * This function should only be called from a vm_ops->fault handler, and
2236 * in that case the handler should return the result of this function.
2237 *
2238 * vma cannot be a COW mapping.
2239 *
2240 * As this is called only for pages that do not currently exist, we
2241 * do not need to flush old virtual caches or the TLB.
2242 *
2243 * Context: Process context. May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2247 unsigned long pfn)
2248{
2249 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2250}
2251EXPORT_SYMBOL(vmf_insert_pfn);
2252
785a3fab
DW
2253static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2254{
2255 /* these checks mirror the abort conditions in vm_normal_page */
2256 if (vma->vm_flags & VM_MIXEDMAP)
2257 return true;
2258 if (pfn_t_devmap(pfn))
2259 return true;
2260 if (pfn_t_special(pfn))
2261 return true;
2262 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2263 return true;
2264 return false;
2265}
2266
79f3aa5b 2267static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2268 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2269 bool mkwrite)
423bad60 2270{
79f3aa5b 2271 int err;
87744ab3 2272
785a3fab 2273 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2274
423bad60 2275 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2276 return VM_FAULT_SIGBUS;
308a047c
BP
2277
2278 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2279
42e4089c 2280 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2281 return VM_FAULT_SIGBUS;
42e4089c 2282
423bad60
NP
2283 /*
2284 * If we don't have pte special, then we have to use the pfn_valid()
2285 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2286 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2287 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2288 * without pte special, it would there be refcounted as a normal page.
423bad60 2289 */
00b3a331
LD
2290 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2291 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2292 struct page *page;
2293
03fc2da6
DW
2294 /*
2295 * At this point we are committed to insert_page()
2296 * regardless of whether the caller specified flags that
2297 * result in pfn_t_has_page() == false.
2298 */
2299 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2300 err = insert_page(vma, addr, page, pgprot);
2301 } else {
9b5a8e00 2302 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2303 }
b2770da6 2304
5d747637
MW
2305 if (err == -ENOMEM)
2306 return VM_FAULT_OOM;
2307 if (err < 0 && err != -EBUSY)
2308 return VM_FAULT_SIGBUS;
2309
2310 return VM_FAULT_NOPAGE;
e0dc0d8f 2311}
79f3aa5b 2312
574c5b3d
TH
2313/**
2314 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2315 * @vma: user vma to map to
2316 * @addr: target user address of this page
2317 * @pfn: source kernel pfn
2318 * @pgprot: pgprot flags for the inserted page
2319 *
a1a0aea5 2320 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2321 * to override pgprot on a per-page basis.
2322 *
2323 * Typically this function should be used by drivers to set caching- and
2324 * encryption bits different than those of @vma->vm_page_prot, because
2325 * the caching- or encryption mode may not be known at mmap() time.
2326 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2327 * to set caching and encryption bits for those vmas (except for COW pages).
2328 * This is ensured by core vm only modifying these page table entries using
2329 * functions that don't touch caching- or encryption bits, using pte_modify()
2330 * if needed. (See for example mprotect()).
2331 * Also when new page-table entries are created, this is only done using the
2332 * fault() callback, and never using the value of vma->vm_page_prot,
2333 * except for page-table entries that point to anonymous pages as the result
2334 * of COW.
2335 *
2336 * Context: Process context. May allocate using %GFP_KERNEL.
2337 * Return: vm_fault_t value.
2338 */
2339vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2340 pfn_t pfn, pgprot_t pgprot)
2341{
2342 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2343}
5379e4dd 2344EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2345
79f3aa5b
MW
2346vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2347 pfn_t pfn)
2348{
574c5b3d 2349 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2350}
5d747637 2351EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2352
ab77dab4
SJ
2353/*
2354 * If the insertion of PTE failed because someone else already added a
2355 * different entry in the mean time, we treat that as success as we assume
2356 * the same entry was actually inserted.
2357 */
ab77dab4
SJ
2358vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2359 unsigned long addr, pfn_t pfn)
b2770da6 2360{
574c5b3d 2361 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2362}
ab77dab4 2363EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2364
1da177e4
LT
2365/*
2366 * maps a range of physical memory into the requested pages. the old
2367 * mappings are removed. any references to nonexistent pages results
2368 * in null mappings (currently treated as "copy-on-access")
2369 */
2370static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2373{
90a3e375 2374 pte_t *pte, *mapped_pte;
c74df32c 2375 spinlock_t *ptl;
42e4089c 2376 int err = 0;
1da177e4 2377
90a3e375 2378 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2379 if (!pte)
2380 return -ENOMEM;
6606c3e0 2381 arch_enter_lazy_mmu_mode();
1da177e4
LT
2382 do {
2383 BUG_ON(!pte_none(*pte));
42e4089c
AK
2384 if (!pfn_modify_allowed(pfn, prot)) {
2385 err = -EACCES;
2386 break;
2387 }
7e675137 2388 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2389 pfn++;
2390 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2391 arch_leave_lazy_mmu_mode();
90a3e375 2392 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2393 return err;
1da177e4
LT
2394}
2395
2396static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2397 unsigned long addr, unsigned long end,
2398 unsigned long pfn, pgprot_t prot)
2399{
2400 pmd_t *pmd;
2401 unsigned long next;
42e4089c 2402 int err;
1da177e4
LT
2403
2404 pfn -= addr >> PAGE_SHIFT;
2405 pmd = pmd_alloc(mm, pud, addr);
2406 if (!pmd)
2407 return -ENOMEM;
f66055ab 2408 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2409 do {
2410 next = pmd_addr_end(addr, end);
42e4089c
AK
2411 err = remap_pte_range(mm, pmd, addr, next,
2412 pfn + (addr >> PAGE_SHIFT), prot);
2413 if (err)
2414 return err;
1da177e4
LT
2415 } while (pmd++, addr = next, addr != end);
2416 return 0;
2417}
2418
c2febafc 2419static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2420 unsigned long addr, unsigned long end,
2421 unsigned long pfn, pgprot_t prot)
2422{
2423 pud_t *pud;
2424 unsigned long next;
42e4089c 2425 int err;
1da177e4
LT
2426
2427 pfn -= addr >> PAGE_SHIFT;
c2febafc 2428 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2429 if (!pud)
2430 return -ENOMEM;
2431 do {
2432 next = pud_addr_end(addr, end);
42e4089c
AK
2433 err = remap_pmd_range(mm, pud, addr, next,
2434 pfn + (addr >> PAGE_SHIFT), prot);
2435 if (err)
2436 return err;
1da177e4
LT
2437 } while (pud++, addr = next, addr != end);
2438 return 0;
2439}
2440
c2febafc
KS
2441static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2442 unsigned long addr, unsigned long end,
2443 unsigned long pfn, pgprot_t prot)
2444{
2445 p4d_t *p4d;
2446 unsigned long next;
42e4089c 2447 int err;
c2febafc
KS
2448
2449 pfn -= addr >> PAGE_SHIFT;
2450 p4d = p4d_alloc(mm, pgd, addr);
2451 if (!p4d)
2452 return -ENOMEM;
2453 do {
2454 next = p4d_addr_end(addr, end);
42e4089c
AK
2455 err = remap_pud_range(mm, p4d, addr, next,
2456 pfn + (addr >> PAGE_SHIFT), prot);
2457 if (err)
2458 return err;
c2febafc
KS
2459 } while (p4d++, addr = next, addr != end);
2460 return 0;
2461}
2462
74ffa5a3
CH
2463/*
2464 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2465 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2466 */
74ffa5a3
CH
2467int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2468 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2469{
2470 pgd_t *pgd;
2471 unsigned long next;
2d15cab8 2472 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2473 struct mm_struct *mm = vma->vm_mm;
2474 int err;
2475
0c4123e3
AZ
2476 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2477 return -EINVAL;
2478
1da177e4
LT
2479 /*
2480 * Physically remapped pages are special. Tell the
2481 * rest of the world about it:
2482 * VM_IO tells people not to look at these pages
2483 * (accesses can have side effects).
6aab341e
LT
2484 * VM_PFNMAP tells the core MM that the base pages are just
2485 * raw PFN mappings, and do not have a "struct page" associated
2486 * with them.
314e51b9
KK
2487 * VM_DONTEXPAND
2488 * Disable vma merging and expanding with mremap().
2489 * VM_DONTDUMP
2490 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2491 *
2492 * There's a horrible special case to handle copy-on-write
2493 * behaviour that some programs depend on. We mark the "original"
2494 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2495 * See vm_normal_page() for details.
1da177e4 2496 */
b3b9c293
KK
2497 if (is_cow_mapping(vma->vm_flags)) {
2498 if (addr != vma->vm_start || end != vma->vm_end)
2499 return -EINVAL;
fb155c16 2500 vma->vm_pgoff = pfn;
b3b9c293
KK
2501 }
2502
314e51b9 2503 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2504
2505 BUG_ON(addr >= end);
2506 pfn -= addr >> PAGE_SHIFT;
2507 pgd = pgd_offset(mm, addr);
2508 flush_cache_range(vma, addr, end);
1da177e4
LT
2509 do {
2510 next = pgd_addr_end(addr, end);
c2febafc 2511 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2512 pfn + (addr >> PAGE_SHIFT), prot);
2513 if (err)
74ffa5a3 2514 return err;
1da177e4 2515 } while (pgd++, addr = next, addr != end);
2ab64037 2516
74ffa5a3
CH
2517 return 0;
2518}
2519
2520/**
2521 * remap_pfn_range - remap kernel memory to userspace
2522 * @vma: user vma to map to
2523 * @addr: target page aligned user address to start at
2524 * @pfn: page frame number of kernel physical memory address
2525 * @size: size of mapping area
2526 * @prot: page protection flags for this mapping
2527 *
2528 * Note: this is only safe if the mm semaphore is held when called.
2529 *
2530 * Return: %0 on success, negative error code otherwise.
2531 */
2532int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2533 unsigned long pfn, unsigned long size, pgprot_t prot)
2534{
2535 int err;
2536
2537 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2538 if (err)
74ffa5a3 2539 return -EINVAL;
2ab64037 2540
74ffa5a3
CH
2541 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2542 if (err)
2543 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2544 return err;
2545}
2546EXPORT_SYMBOL(remap_pfn_range);
2547
b4cbb197
LT
2548/**
2549 * vm_iomap_memory - remap memory to userspace
2550 * @vma: user vma to map to
abd69b9e 2551 * @start: start of the physical memory to be mapped
b4cbb197
LT
2552 * @len: size of area
2553 *
2554 * This is a simplified io_remap_pfn_range() for common driver use. The
2555 * driver just needs to give us the physical memory range to be mapped,
2556 * we'll figure out the rest from the vma information.
2557 *
2558 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2559 * whatever write-combining details or similar.
a862f68a
MR
2560 *
2561 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2562 */
2563int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2564{
2565 unsigned long vm_len, pfn, pages;
2566
2567 /* Check that the physical memory area passed in looks valid */
2568 if (start + len < start)
2569 return -EINVAL;
2570 /*
2571 * You *really* shouldn't map things that aren't page-aligned,
2572 * but we've historically allowed it because IO memory might
2573 * just have smaller alignment.
2574 */
2575 len += start & ~PAGE_MASK;
2576 pfn = start >> PAGE_SHIFT;
2577 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2578 if (pfn + pages < pfn)
2579 return -EINVAL;
2580
2581 /* We start the mapping 'vm_pgoff' pages into the area */
2582 if (vma->vm_pgoff > pages)
2583 return -EINVAL;
2584 pfn += vma->vm_pgoff;
2585 pages -= vma->vm_pgoff;
2586
2587 /* Can we fit all of the mapping? */
2588 vm_len = vma->vm_end - vma->vm_start;
2589 if (vm_len >> PAGE_SHIFT > pages)
2590 return -EINVAL;
2591
2592 /* Ok, let it rip */
2593 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2594}
2595EXPORT_SYMBOL(vm_iomap_memory);
2596
aee16b3c
JF
2597static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2598 unsigned long addr, unsigned long end,
e80d3909
JR
2599 pte_fn_t fn, void *data, bool create,
2600 pgtbl_mod_mask *mask)
aee16b3c 2601{
8abb50c7 2602 pte_t *pte, *mapped_pte;
be1db475 2603 int err = 0;
3f649ab7 2604 spinlock_t *ptl;
aee16b3c 2605
be1db475 2606 if (create) {
8abb50c7 2607 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2608 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2609 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2610 if (!pte)
2611 return -ENOMEM;
2612 } else {
8abb50c7 2613 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2614 pte_offset_kernel(pmd, addr) :
2615 pte_offset_map_lock(mm, pmd, addr, &ptl);
2616 }
aee16b3c
JF
2617
2618 BUG_ON(pmd_huge(*pmd));
2619
38e0edb1
JF
2620 arch_enter_lazy_mmu_mode();
2621
eeb4a05f
CH
2622 if (fn) {
2623 do {
2624 if (create || !pte_none(*pte)) {
2625 err = fn(pte++, addr, data);
2626 if (err)
2627 break;
2628 }
2629 } while (addr += PAGE_SIZE, addr != end);
2630 }
e80d3909 2631 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2632
38e0edb1
JF
2633 arch_leave_lazy_mmu_mode();
2634
aee16b3c 2635 if (mm != &init_mm)
8abb50c7 2636 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2637 return err;
2638}
2639
2640static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2641 unsigned long addr, unsigned long end,
e80d3909
JR
2642 pte_fn_t fn, void *data, bool create,
2643 pgtbl_mod_mask *mask)
aee16b3c
JF
2644{
2645 pmd_t *pmd;
2646 unsigned long next;
be1db475 2647 int err = 0;
aee16b3c 2648
ceb86879
AK
2649 BUG_ON(pud_huge(*pud));
2650
be1db475 2651 if (create) {
e80d3909 2652 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2653 if (!pmd)
2654 return -ENOMEM;
2655 } else {
2656 pmd = pmd_offset(pud, addr);
2657 }
aee16b3c
JF
2658 do {
2659 next = pmd_addr_end(addr, end);
0c95cba4
NP
2660 if (pmd_none(*pmd) && !create)
2661 continue;
2662 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2663 return -EINVAL;
2664 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2665 if (!create)
2666 continue;
2667 pmd_clear_bad(pmd);
be1db475 2668 }
0c95cba4
NP
2669 err = apply_to_pte_range(mm, pmd, addr, next,
2670 fn, data, create, mask);
2671 if (err)
2672 break;
aee16b3c 2673 } while (pmd++, addr = next, addr != end);
0c95cba4 2674
aee16b3c
JF
2675 return err;
2676}
2677
c2febafc 2678static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2679 unsigned long addr, unsigned long end,
e80d3909
JR
2680 pte_fn_t fn, void *data, bool create,
2681 pgtbl_mod_mask *mask)
aee16b3c
JF
2682{
2683 pud_t *pud;
2684 unsigned long next;
be1db475 2685 int err = 0;
aee16b3c 2686
be1db475 2687 if (create) {
e80d3909 2688 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2689 if (!pud)
2690 return -ENOMEM;
2691 } else {
2692 pud = pud_offset(p4d, addr);
2693 }
aee16b3c
JF
2694 do {
2695 next = pud_addr_end(addr, end);
0c95cba4
NP
2696 if (pud_none(*pud) && !create)
2697 continue;
2698 if (WARN_ON_ONCE(pud_leaf(*pud)))
2699 return -EINVAL;
2700 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2701 if (!create)
2702 continue;
2703 pud_clear_bad(pud);
be1db475 2704 }
0c95cba4
NP
2705 err = apply_to_pmd_range(mm, pud, addr, next,
2706 fn, data, create, mask);
2707 if (err)
2708 break;
aee16b3c 2709 } while (pud++, addr = next, addr != end);
0c95cba4 2710
aee16b3c
JF
2711 return err;
2712}
2713
c2febafc
KS
2714static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2715 unsigned long addr, unsigned long end,
e80d3909
JR
2716 pte_fn_t fn, void *data, bool create,
2717 pgtbl_mod_mask *mask)
c2febafc
KS
2718{
2719 p4d_t *p4d;
2720 unsigned long next;
be1db475 2721 int err = 0;
c2febafc 2722
be1db475 2723 if (create) {
e80d3909 2724 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2725 if (!p4d)
2726 return -ENOMEM;
2727 } else {
2728 p4d = p4d_offset(pgd, addr);
2729 }
c2febafc
KS
2730 do {
2731 next = p4d_addr_end(addr, end);
0c95cba4
NP
2732 if (p4d_none(*p4d) && !create)
2733 continue;
2734 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2735 return -EINVAL;
2736 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2737 if (!create)
2738 continue;
2739 p4d_clear_bad(p4d);
be1db475 2740 }
0c95cba4
NP
2741 err = apply_to_pud_range(mm, p4d, addr, next,
2742 fn, data, create, mask);
2743 if (err)
2744 break;
c2febafc 2745 } while (p4d++, addr = next, addr != end);
0c95cba4 2746
c2febafc
KS
2747 return err;
2748}
2749
be1db475
DA
2750static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn,
2752 void *data, bool create)
aee16b3c
JF
2753{
2754 pgd_t *pgd;
e80d3909 2755 unsigned long start = addr, next;
57250a5b 2756 unsigned long end = addr + size;
e80d3909 2757 pgtbl_mod_mask mask = 0;
be1db475 2758 int err = 0;
aee16b3c 2759
9cb65bc3
MP
2760 if (WARN_ON(addr >= end))
2761 return -EINVAL;
2762
aee16b3c
JF
2763 pgd = pgd_offset(mm, addr);
2764 do {
2765 next = pgd_addr_end(addr, end);
0c95cba4 2766 if (pgd_none(*pgd) && !create)
be1db475 2767 continue;
0c95cba4
NP
2768 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2769 return -EINVAL;
2770 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2771 if (!create)
2772 continue;
2773 pgd_clear_bad(pgd);
2774 }
2775 err = apply_to_p4d_range(mm, pgd, addr, next,
2776 fn, data, create, &mask);
aee16b3c
JF
2777 if (err)
2778 break;
2779 } while (pgd++, addr = next, addr != end);
57250a5b 2780
e80d3909
JR
2781 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2782 arch_sync_kernel_mappings(start, start + size);
2783
aee16b3c
JF
2784 return err;
2785}
be1db475
DA
2786
2787/*
2788 * Scan a region of virtual memory, filling in page tables as necessary
2789 * and calling a provided function on each leaf page table.
2790 */
2791int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2792 unsigned long size, pte_fn_t fn, void *data)
2793{
2794 return __apply_to_page_range(mm, addr, size, fn, data, true);
2795}
aee16b3c
JF
2796EXPORT_SYMBOL_GPL(apply_to_page_range);
2797
be1db475
DA
2798/*
2799 * Scan a region of virtual memory, calling a provided function on
2800 * each leaf page table where it exists.
2801 *
2802 * Unlike apply_to_page_range, this does _not_ fill in page tables
2803 * where they are absent.
2804 */
2805int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2806 unsigned long size, pte_fn_t fn, void *data)
2807{
2808 return __apply_to_page_range(mm, addr, size, fn, data, false);
2809}
2810EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2811
8f4e2101 2812/*
9b4bdd2f
KS
2813 * handle_pte_fault chooses page fault handler according to an entry which was
2814 * read non-atomically. Before making any commitment, on those architectures
2815 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2816 * parts, do_swap_page must check under lock before unmapping the pte and
2817 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2818 * and do_anonymous_page can safely check later on).
8f4e2101 2819 */
2ca99358 2820static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2821{
2822 int same = 1;
923717cb 2823#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2824 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2825 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2826 spin_lock(ptl);
2ca99358 2827 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2828 spin_unlock(ptl);
8f4e2101
HD
2829 }
2830#endif
2ca99358
PX
2831 pte_unmap(vmf->pte);
2832 vmf->pte = NULL;
8f4e2101
HD
2833 return same;
2834}
2835
c89357e2
DH
2836static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2837 struct vm_fault *vmf)
6aab341e 2838{
83d116c5
JH
2839 bool ret;
2840 void *kaddr;
2841 void __user *uaddr;
c3e5ea6e 2842 bool locked = false;
83d116c5
JH
2843 struct vm_area_struct *vma = vmf->vma;
2844 struct mm_struct *mm = vma->vm_mm;
2845 unsigned long addr = vmf->address;
2846
83d116c5
JH
2847 if (likely(src)) {
2848 copy_user_highpage(dst, src, addr, vma);
2849 return true;
2850 }
2851
6aab341e
LT
2852 /*
2853 * If the source page was a PFN mapping, we don't have
2854 * a "struct page" for it. We do a best-effort copy by
2855 * just copying from the original user address. If that
2856 * fails, we just zero-fill it. Live with it.
2857 */
83d116c5
JH
2858 kaddr = kmap_atomic(dst);
2859 uaddr = (void __user *)(addr & PAGE_MASK);
2860
2861 /*
2862 * On architectures with software "accessed" bits, we would
2863 * take a double page fault, so mark it accessed here.
2864 */
c3e5ea6e 2865 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2866 pte_t entry;
5d2a2dbb 2867
83d116c5 2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2869 locked = true;
83d116c5
JH
2870 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871 /*
2872 * Other thread has already handled the fault
7df67697 2873 * and update local tlb only
83d116c5 2874 */
7df67697 2875 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2876 ret = false;
2877 goto pte_unlock;
2878 }
2879
2880 entry = pte_mkyoung(vmf->orig_pte);
2881 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2882 update_mmu_cache(vma, addr, vmf->pte);
2883 }
2884
2885 /*
2886 * This really shouldn't fail, because the page is there
2887 * in the page tables. But it might just be unreadable,
2888 * in which case we just give up and fill the result with
2889 * zeroes.
2890 */
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2892 if (locked)
2893 goto warn;
2894
2895 /* Re-validate under PTL if the page is still mapped */
2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2897 locked = true;
2898 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2899 /* The PTE changed under us, update local tlb */
2900 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2901 ret = false;
2902 goto pte_unlock;
2903 }
2904
5d2a2dbb 2905 /*
985ba004 2906 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2907 * Try to copy again under PTL.
5d2a2dbb 2908 */
c3e5ea6e
KS
2909 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2910 /*
2911 * Give a warn in case there can be some obscure
2912 * use-case
2913 */
2914warn:
2915 WARN_ON_ONCE(1);
2916 clear_page(kaddr);
2917 }
83d116c5
JH
2918 }
2919
2920 ret = true;
2921
2922pte_unlock:
c3e5ea6e 2923 if (locked)
83d116c5
JH
2924 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 kunmap_atomic(kaddr);
2926 flush_dcache_page(dst);
2927
2928 return ret;
6aab341e
LT
2929}
2930
c20cd45e
MH
2931static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2932{
2933 struct file *vm_file = vma->vm_file;
2934
2935 if (vm_file)
2936 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2937
2938 /*
2939 * Special mappings (e.g. VDSO) do not have any file so fake
2940 * a default GFP_KERNEL for them.
2941 */
2942 return GFP_KERNEL;
2943}
2944
fb09a464
KS
2945/*
2946 * Notify the address space that the page is about to become writable so that
2947 * it can prohibit this or wait for the page to get into an appropriate state.
2948 *
2949 * We do this without the lock held, so that it can sleep if it needs to.
2950 */
2b740303 2951static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2952{
2b740303 2953 vm_fault_t ret;
38b8cb7f
JK
2954 struct page *page = vmf->page;
2955 unsigned int old_flags = vmf->flags;
fb09a464 2956
38b8cb7f 2957 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2958
dc617f29
DW
2959 if (vmf->vma->vm_file &&
2960 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2961 return VM_FAULT_SIGBUS;
2962
11bac800 2963 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2964 /* Restore original flags so that caller is not surprised */
2965 vmf->flags = old_flags;
fb09a464
KS
2966 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2967 return ret;
2968 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2969 lock_page(page);
2970 if (!page->mapping) {
2971 unlock_page(page);
2972 return 0; /* retry */
2973 }
2974 ret |= VM_FAULT_LOCKED;
2975 } else
2976 VM_BUG_ON_PAGE(!PageLocked(page), page);
2977 return ret;
2978}
2979
97ba0c2b
JK
2980/*
2981 * Handle dirtying of a page in shared file mapping on a write fault.
2982 *
2983 * The function expects the page to be locked and unlocks it.
2984 */
89b15332 2985static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2986{
89b15332 2987 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2988 struct address_space *mapping;
89b15332 2989 struct page *page = vmf->page;
97ba0c2b
JK
2990 bool dirtied;
2991 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2992
2993 dirtied = set_page_dirty(page);
2994 VM_BUG_ON_PAGE(PageAnon(page), page);
2995 /*
2996 * Take a local copy of the address_space - page.mapping may be zeroed
2997 * by truncate after unlock_page(). The address_space itself remains
2998 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2999 * release semantics to prevent the compiler from undoing this copying.
3000 */
3001 mapping = page_rmapping(page);
3002 unlock_page(page);
3003
89b15332
JW
3004 if (!page_mkwrite)
3005 file_update_time(vma->vm_file);
3006
3007 /*
3008 * Throttle page dirtying rate down to writeback speed.
3009 *
3010 * mapping may be NULL here because some device drivers do not
3011 * set page.mapping but still dirty their pages
3012 *
c1e8d7c6 3013 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3014 * is pinning the mapping, as per above.
3015 */
97ba0c2b 3016 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3017 struct file *fpin;
3018
3019 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3020 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3021 if (fpin) {
3022 fput(fpin);
3023 return VM_FAULT_RETRY;
3024 }
97ba0c2b
JK
3025 }
3026
89b15332 3027 return 0;
97ba0c2b
JK
3028}
3029
4e047f89
SR
3030/*
3031 * Handle write page faults for pages that can be reused in the current vma
3032 *
3033 * This can happen either due to the mapping being with the VM_SHARED flag,
3034 * or due to us being the last reference standing to the page. In either
3035 * case, all we need to do here is to mark the page as writable and update
3036 * any related book-keeping.
3037 */
997dd98d 3038static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3039 __releases(vmf->ptl)
4e047f89 3040{
82b0f8c3 3041 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3042 struct page *page = vmf->page;
4e047f89 3043 pte_t entry;
6c287605 3044
c89357e2 3045 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605
DH
3046 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
3047
4e047f89
SR
3048 /*
3049 * Clear the pages cpupid information as the existing
3050 * information potentially belongs to a now completely
3051 * unrelated process.
3052 */
3053 if (page)
3054 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3055
2994302b
JK
3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3059 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3060 update_mmu_cache(vma, vmf->address, vmf->pte);
3061 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3062 count_vm_event(PGREUSE);
4e047f89
SR
3063}
3064
2f38ab2c 3065/*
c89357e2
DH
3066 * Handle the case of a page which we actually need to copy to a new page,
3067 * either due to COW or unsharing.
2f38ab2c 3068 *
c1e8d7c6 3069 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3070 * without the ptl held.
3071 *
3072 * High level logic flow:
3073 *
3074 * - Allocate a page, copy the content of the old page to the new one.
3075 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3076 * - Take the PTL. If the pte changed, bail out and release the allocated page
3077 * - If the pte is still the way we remember it, update the page table and all
3078 * relevant references. This includes dropping the reference the page-table
3079 * held to the old page, as well as updating the rmap.
3080 * - In any case, unlock the PTL and drop the reference we took to the old page.
3081 */
2b740303 3082static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3083{
c89357e2 3084 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3085 struct vm_area_struct *vma = vmf->vma;
bae473a4 3086 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3087 struct page *old_page = vmf->page;
2f38ab2c 3088 struct page *new_page = NULL;
2f38ab2c
SR
3089 pte_t entry;
3090 int page_copied = 0;
ac46d4f3 3091 struct mmu_notifier_range range;
2f38ab2c 3092
662ce1dc
YY
3093 delayacct_wpcopy_start();
3094
2f38ab2c
SR
3095 if (unlikely(anon_vma_prepare(vma)))
3096 goto oom;
3097
2994302b 3098 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3099 new_page = alloc_zeroed_user_highpage_movable(vma,
3100 vmf->address);
2f38ab2c
SR
3101 if (!new_page)
3102 goto oom;
3103 } else {
bae473a4 3104 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3105 vmf->address);
2f38ab2c
SR
3106 if (!new_page)
3107 goto oom;
83d116c5 3108
c89357e2 3109 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
83d116c5
JH
3110 /*
3111 * COW failed, if the fault was solved by other,
3112 * it's fine. If not, userspace would re-fault on
3113 * the same address and we will handle the fault
3114 * from the second attempt.
3115 */
3116 put_page(new_page);
3117 if (old_page)
3118 put_page(old_page);
662ce1dc
YY
3119
3120 delayacct_wpcopy_end();
83d116c5
JH
3121 return 0;
3122 }
2f38ab2c 3123 }
2f38ab2c 3124
8f425e4e 3125 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3126 goto oom_free_new;
9d82c694 3127 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3128
eb3c24f3
MG
3129 __SetPageUptodate(new_page);
3130
7269f999 3131 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3132 vmf->address & PAGE_MASK,
ac46d4f3
JG
3133 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3134 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3135
3136 /*
3137 * Re-check the pte - we dropped the lock
3138 */
82b0f8c3 3139 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3140 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3141 if (old_page) {
3142 if (!PageAnon(old_page)) {
eca56ff9
JM
3143 dec_mm_counter_fast(mm,
3144 mm_counter_file(old_page));
2f38ab2c
SR
3145 inc_mm_counter_fast(mm, MM_ANONPAGES);
3146 }
3147 } else {
3148 inc_mm_counter_fast(mm, MM_ANONPAGES);
3149 }
2994302b 3150 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3151 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3152 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3153 if (unlikely(unshare)) {
3154 if (pte_soft_dirty(vmf->orig_pte))
3155 entry = pte_mksoft_dirty(entry);
3156 if (pte_uffd_wp(vmf->orig_pte))
3157 entry = pte_mkuffd_wp(entry);
3158 } else {
3159 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3160 }
111fe718 3161
2f38ab2c
SR
3162 /*
3163 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3164 * pte with the new entry, to keep TLBs on different CPUs in
3165 * sync. This code used to set the new PTE then flush TLBs, but
3166 * that left a window where the new PTE could be loaded into
3167 * some TLBs while the old PTE remains in others.
2f38ab2c 3168 */
82b0f8c3 3169 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3170 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3171 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3172 /*
3173 * We call the notify macro here because, when using secondary
3174 * mmu page tables (such as kvm shadow page tables), we want the
3175 * new page to be mapped directly into the secondary page table.
3176 */
c89357e2 3177 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3178 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3179 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3180 if (old_page) {
3181 /*
3182 * Only after switching the pte to the new page may
3183 * we remove the mapcount here. Otherwise another
3184 * process may come and find the rmap count decremented
3185 * before the pte is switched to the new page, and
3186 * "reuse" the old page writing into it while our pte
3187 * here still points into it and can be read by other
3188 * threads.
3189 *
3190 * The critical issue is to order this
3191 * page_remove_rmap with the ptp_clear_flush above.
3192 * Those stores are ordered by (if nothing else,)
3193 * the barrier present in the atomic_add_negative
3194 * in page_remove_rmap.
3195 *
3196 * Then the TLB flush in ptep_clear_flush ensures that
3197 * no process can access the old page before the
3198 * decremented mapcount is visible. And the old page
3199 * cannot be reused until after the decremented
3200 * mapcount is visible. So transitively, TLBs to
3201 * old page will be flushed before it can be reused.
3202 */
cea86fe2 3203 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3204 }
3205
3206 /* Free the old page.. */
3207 new_page = old_page;
3208 page_copied = 1;
3209 } else {
7df67697 3210 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3211 }
3212
3213 if (new_page)
09cbfeaf 3214 put_page(new_page);
2f38ab2c 3215
82b0f8c3 3216 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3217 /*
3218 * No need to double call mmu_notifier->invalidate_range() callback as
3219 * the above ptep_clear_flush_notify() did already call it.
3220 */
ac46d4f3 3221 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3222 if (old_page) {
f4c4a3f4
HY
3223 if (page_copied)
3224 free_swap_cache(old_page);
09cbfeaf 3225 put_page(old_page);
2f38ab2c 3226 }
662ce1dc
YY
3227
3228 delayacct_wpcopy_end();
c89357e2 3229 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3230oom_free_new:
09cbfeaf 3231 put_page(new_page);
2f38ab2c
SR
3232oom:
3233 if (old_page)
09cbfeaf 3234 put_page(old_page);
662ce1dc
YY
3235
3236 delayacct_wpcopy_end();
2f38ab2c
SR
3237 return VM_FAULT_OOM;
3238}
3239
66a6197c
JK
3240/**
3241 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3242 * writeable once the page is prepared
3243 *
3244 * @vmf: structure describing the fault
3245 *
3246 * This function handles all that is needed to finish a write page fault in a
3247 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3248 * It handles locking of PTE and modifying it.
66a6197c
JK
3249 *
3250 * The function expects the page to be locked or other protection against
3251 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3252 *
2797e79f 3253 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3254 * we acquired PTE lock.
66a6197c 3255 */
2b740303 3256vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3257{
3258 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3259 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3260 &vmf->ptl);
3261 /*
3262 * We might have raced with another page fault while we released the
3263 * pte_offset_map_lock.
3264 */
3265 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3266 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3267 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3268 return VM_FAULT_NOPAGE;
66a6197c
JK
3269 }
3270 wp_page_reuse(vmf);
a19e2553 3271 return 0;
66a6197c
JK
3272}
3273
dd906184
BH
3274/*
3275 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3276 * mapping
3277 */
2b740303 3278static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3279{
82b0f8c3 3280 struct vm_area_struct *vma = vmf->vma;
bae473a4 3281
dd906184 3282 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3283 vm_fault_t ret;
dd906184 3284
82b0f8c3 3285 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3286 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3287 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3288 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3289 return ret;
66a6197c 3290 return finish_mkwrite_fault(vmf);
dd906184 3291 }
997dd98d
JK
3292 wp_page_reuse(vmf);
3293 return VM_FAULT_WRITE;
dd906184
BH
3294}
3295
2b740303 3296static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3297 __releases(vmf->ptl)
93e478d4 3298{
82b0f8c3 3299 struct vm_area_struct *vma = vmf->vma;
89b15332 3300 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3301
a41b70d6 3302 get_page(vmf->page);
93e478d4 3303
93e478d4 3304 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3305 vm_fault_t tmp;
93e478d4 3306
82b0f8c3 3307 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3308 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3309 if (unlikely(!tmp || (tmp &
3310 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3311 put_page(vmf->page);
93e478d4
SR
3312 return tmp;
3313 }
66a6197c 3314 tmp = finish_mkwrite_fault(vmf);
a19e2553 3315 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3316 unlock_page(vmf->page);
a41b70d6 3317 put_page(vmf->page);
66a6197c 3318 return tmp;
93e478d4 3319 }
66a6197c
JK
3320 } else {
3321 wp_page_reuse(vmf);
997dd98d 3322 lock_page(vmf->page);
93e478d4 3323 }
89b15332 3324 ret |= fault_dirty_shared_page(vmf);
997dd98d 3325 put_page(vmf->page);
93e478d4 3326
89b15332 3327 return ret;
93e478d4
SR
3328}
3329
1da177e4 3330/*
c89357e2
DH
3331 * This routine handles present pages, when
3332 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3333 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3334 * (FAULT_FLAG_UNSHARE)
3335 *
3336 * It is done by copying the page to a new address and decrementing the
3337 * shared-page counter for the old page.
1da177e4 3338 *
1da177e4
LT
3339 * Note that this routine assumes that the protection checks have been
3340 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3341 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3342 * done any necessary COW.
1da177e4 3343 *
c89357e2
DH
3344 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3345 * though the page will change only once the write actually happens. This
3346 * avoids a few races, and potentially makes it more efficient.
1da177e4 3347 *
c1e8d7c6 3348 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3349 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3350 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3351 */
2b740303 3352static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3353 __releases(vmf->ptl)
1da177e4 3354{
c89357e2 3355 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3356 struct vm_area_struct *vma = vmf->vma;
1da177e4 3357
c89357e2
DH
3358 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3359 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3360
c89357e2
DH
3361 if (likely(!unshare)) {
3362 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3363 pte_unmap_unlock(vmf->pte, vmf->ptl);
3364 return handle_userfault(vmf, VM_UFFD_WP);
3365 }
3366
3367 /*
3368 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3369 * is flushed in this case before copying.
3370 */
3371 if (unlikely(userfaultfd_wp(vmf->vma) &&
3372 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3373 flush_tlb_page(vmf->vma, vmf->address);
3374 }
6ce64428 3375
a41b70d6
JK
3376 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3377 if (!vmf->page) {
c89357e2
DH
3378 if (unlikely(unshare)) {
3379 /* No anonymous page -> nothing to do. */
3380 pte_unmap_unlock(vmf->pte, vmf->ptl);
3381 return 0;
3382 }
3383
251b97f5 3384 /*
64e45507
PF
3385 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3386 * VM_PFNMAP VMA.
251b97f5
PZ
3387 *
3388 * We should not cow pages in a shared writeable mapping.
dd906184 3389 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3390 */
3391 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3392 (VM_WRITE|VM_SHARED))
2994302b 3393 return wp_pfn_shared(vmf);
2f38ab2c 3394
82b0f8c3 3395 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3396 return wp_page_copy(vmf);
251b97f5 3397 }
1da177e4 3398
d08b3851 3399 /*
ee6a6457
PZ
3400 * Take out anonymous pages first, anonymous shared vmas are
3401 * not dirty accountable.
d08b3851 3402 */
52d1e606 3403 if (PageAnon(vmf->page)) {
09854ba9
LT
3404 struct page *page = vmf->page;
3405
6c287605
DH
3406 /*
3407 * If the page is exclusive to this process we must reuse the
3408 * page without further checks.
3409 */
3410 if (PageAnonExclusive(page))
3411 goto reuse;
3412
53a05ad9
DH
3413 /*
3414 * We have to verify under page lock: these early checks are
3415 * just an optimization to avoid locking the page and freeing
3416 * the swapcache if there is little hope that we can reuse.
3417 *
3418 * PageKsm() doesn't necessarily raise the page refcount.
3419 */
d4c47097
DH
3420 if (PageKsm(page) || page_count(page) > 3)
3421 goto copy;
3422 if (!PageLRU(page))
3423 /*
3424 * Note: We cannot easily detect+handle references from
3425 * remote LRU pagevecs or references to PageLRU() pages.
3426 */
3427 lru_add_drain();
3428 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3429 goto copy;
3430 if (!trylock_page(page))
3431 goto copy;
53a05ad9
DH
3432 if (PageSwapCache(page))
3433 try_to_free_swap(page);
3434 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3435 unlock_page(page);
52d1e606 3436 goto copy;
b009c024 3437 }
09854ba9 3438 /*
53a05ad9
DH
3439 * Ok, we've got the only page reference from our mapping
3440 * and the page is locked, it's dark out, and we're wearing
3441 * sunglasses. Hit it.
09854ba9 3442 */
6c54dc6c 3443 page_move_anon_rmap(page, vma);
09854ba9 3444 unlock_page(page);
6c287605 3445reuse:
c89357e2
DH
3446 if (unlikely(unshare)) {
3447 pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 return 0;
3449 }
be068f29 3450 wp_page_reuse(vmf);
09854ba9 3451 return VM_FAULT_WRITE;
c89357e2
DH
3452 } else if (unshare) {
3453 /* No anonymous page -> nothing to do. */
3454 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455 return 0;
ee6a6457 3456 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3457 (VM_WRITE|VM_SHARED))) {
a41b70d6 3458 return wp_page_shared(vmf);
1da177e4 3459 }
52d1e606 3460copy:
1da177e4
LT
3461 /*
3462 * Ok, we need to copy. Oh, well..
3463 */
a41b70d6 3464 get_page(vmf->page);
28766805 3465
82b0f8c3 3466 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3467#ifdef CONFIG_KSM
3468 if (PageKsm(vmf->page))
3469 count_vm_event(COW_KSM);
3470#endif
a41b70d6 3471 return wp_page_copy(vmf);
1da177e4
LT
3472}
3473
97a89413 3474static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3475 unsigned long start_addr, unsigned long end_addr,
3476 struct zap_details *details)
3477{
f5cc4eef 3478 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3479}
3480
f808c13f 3481static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3482 pgoff_t first_index,
3483 pgoff_t last_index,
1da177e4
LT
3484 struct zap_details *details)
3485{
3486 struct vm_area_struct *vma;
1da177e4
LT
3487 pgoff_t vba, vea, zba, zea;
3488
232a6a1c 3489 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3490 vba = vma->vm_pgoff;
d6e93217 3491 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3492 zba = max(first_index, vba);
3493 zea = min(last_index, vea);
1da177e4 3494
97a89413 3495 unmap_mapping_range_vma(vma,
1da177e4
LT
3496 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3497 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3498 details);
1da177e4
LT
3499 }
3500}
3501
22061a1f 3502/**
3506659e
MWO
3503 * unmap_mapping_folio() - Unmap single folio from processes.
3504 * @folio: The locked folio to be unmapped.
22061a1f 3505 *
3506659e 3506 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3507 * Typically, for efficiency, the range of nearby pages has already been
3508 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3509 * truncation or invalidation holds the lock on a folio, it may find that
3510 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3511 * to unmap it finally.
3512 */
3506659e 3513void unmap_mapping_folio(struct folio *folio)
22061a1f 3514{
3506659e 3515 struct address_space *mapping = folio->mapping;
22061a1f 3516 struct zap_details details = { };
232a6a1c
PX
3517 pgoff_t first_index;
3518 pgoff_t last_index;
22061a1f 3519
3506659e 3520 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3521
3506659e
MWO
3522 first_index = folio->index;
3523 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3524
2e148f1e 3525 details.even_cows = false;
3506659e 3526 details.single_folio = folio;
999dad82 3527 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3528
2c865995 3529 i_mmap_lock_read(mapping);
22061a1f 3530 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3531 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3532 last_index, &details);
2c865995 3533 i_mmap_unlock_read(mapping);
22061a1f
HD
3534}
3535
977fbdcd
MW
3536/**
3537 * unmap_mapping_pages() - Unmap pages from processes.
3538 * @mapping: The address space containing pages to be unmapped.
3539 * @start: Index of first page to be unmapped.
3540 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3541 * @even_cows: Whether to unmap even private COWed pages.
3542 *
3543 * Unmap the pages in this address space from any userspace process which
3544 * has them mmaped. Generally, you want to remove COWed pages as well when
3545 * a file is being truncated, but not when invalidating pages from the page
3546 * cache.
3547 */
3548void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3549 pgoff_t nr, bool even_cows)
3550{
3551 struct zap_details details = { };
232a6a1c
PX
3552 pgoff_t first_index = start;
3553 pgoff_t last_index = start + nr - 1;
977fbdcd 3554
2e148f1e 3555 details.even_cows = even_cows;
232a6a1c
PX
3556 if (last_index < first_index)
3557 last_index = ULONG_MAX;
977fbdcd 3558
2c865995 3559 i_mmap_lock_read(mapping);
977fbdcd 3560 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3561 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3562 last_index, &details);
2c865995 3563 i_mmap_unlock_read(mapping);
977fbdcd 3564}
6e0e99d5 3565EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3566
1da177e4 3567/**
8a5f14a2 3568 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3569 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3570 * file.
3571 *
3d41088f 3572 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3573 * @holebegin: byte in first page to unmap, relative to the start of
3574 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3575 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3576 * must keep the partial page. In contrast, we must get rid of
3577 * partial pages.
3578 * @holelen: size of prospective hole in bytes. This will be rounded
3579 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3580 * end of the file.
3581 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3582 * but 0 when invalidating pagecache, don't throw away private data.
3583 */
3584void unmap_mapping_range(struct address_space *mapping,
3585 loff_t const holebegin, loff_t const holelen, int even_cows)
3586{
1da177e4
LT
3587 pgoff_t hba = holebegin >> PAGE_SHIFT;
3588 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3589
3590 /* Check for overflow. */
3591 if (sizeof(holelen) > sizeof(hlen)) {
3592 long long holeend =
3593 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3594 if (holeend & ~(long long)ULONG_MAX)
3595 hlen = ULONG_MAX - hba + 1;
3596 }
3597
977fbdcd 3598 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3599}
3600EXPORT_SYMBOL(unmap_mapping_range);
3601
b756a3b5
AP
3602/*
3603 * Restore a potential device exclusive pte to a working pte entry
3604 */
3605static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3606{
3607 struct page *page = vmf->page;
3608 struct vm_area_struct *vma = vmf->vma;
3609 struct mmu_notifier_range range;
3610
3611 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3612 return VM_FAULT_RETRY;
3613 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3614 vma->vm_mm, vmf->address & PAGE_MASK,
3615 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3616 mmu_notifier_invalidate_range_start(&range);
3617
3618 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3619 &vmf->ptl);
3620 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3621 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3622
3623 pte_unmap_unlock(vmf->pte, vmf->ptl);
3624 unlock_page(page);
3625
3626 mmu_notifier_invalidate_range_end(&range);
3627 return 0;
3628}
3629
c145e0b4
DH
3630static inline bool should_try_to_free_swap(struct page *page,
3631 struct vm_area_struct *vma,
3632 unsigned int fault_flags)
3633{
3634 if (!PageSwapCache(page))
3635 return false;
3636 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3637 PageMlocked(page))
3638 return true;
3639 /*
3640 * If we want to map a page that's in the swapcache writable, we
3641 * have to detect via the refcount if we're really the exclusive
3642 * user. Try freeing the swapcache to get rid of the swapcache
3643 * reference only in case it's likely that we'll be the exlusive user.
3644 */
3645 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3646 page_count(page) == 2;
3647}
3648
9c28a205
PX
3649static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3650{
3651 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3652 vmf->address, &vmf->ptl);
3653 /*
3654 * Be careful so that we will only recover a special uffd-wp pte into a
3655 * none pte. Otherwise it means the pte could have changed, so retry.
3656 */
3657 if (is_pte_marker(*vmf->pte))
3658 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3659 pte_unmap_unlock(vmf->pte, vmf->ptl);
3660 return 0;
3661}
3662
3663/*
3664 * This is actually a page-missing access, but with uffd-wp special pte
3665 * installed. It means this pte was wr-protected before being unmapped.
3666 */
3667static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3668{
3669 /*
3670 * Just in case there're leftover special ptes even after the region
3671 * got unregistered - we can simply clear them. We can also do that
3672 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3673 * ranges, but it should be more efficient to be done lazily here.
3674 */
3675 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3676 return pte_marker_clear(vmf);
3677
3678 /* do_fault() can handle pte markers too like none pte */
3679 return do_fault(vmf);
3680}
3681
5c041f5d
PX
3682static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3683{
3684 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3685 unsigned long marker = pte_marker_get(entry);
3686
3687 /*
3688 * PTE markers should always be with file-backed memories, and the
3689 * marker should never be empty. If anything weird happened, the best
3690 * thing to do is to kill the process along with its mm.
3691 */
3692 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3693 return VM_FAULT_SIGBUS;
3694
9c28a205
PX
3695 if (pte_marker_entry_uffd_wp(entry))
3696 return pte_marker_handle_uffd_wp(vmf);
3697
3698 /* This is an unknown pte marker */
3699 return VM_FAULT_SIGBUS;
5c041f5d
PX
3700}
3701
1da177e4 3702/*
c1e8d7c6 3703 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3704 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3705 * We return with pte unmapped and unlocked.
3706 *
c1e8d7c6 3707 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3708 * as does filemap_fault().
1da177e4 3709 */
2b740303 3710vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3711{
82b0f8c3 3712 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3713 struct page *page = NULL, *swapcache;
2799e775 3714 struct swap_info_struct *si = NULL;
14f9135d 3715 rmap_t rmap_flags = RMAP_NONE;
1493a191 3716 bool exclusive = false;
65500d23 3717 swp_entry_t entry;
1da177e4 3718 pte_t pte;
d065bd81 3719 int locked;
2b740303 3720 vm_fault_t ret = 0;
aae466b0 3721 void *shadow = NULL;
1da177e4 3722
2ca99358 3723 if (!pte_unmap_same(vmf))
8f4e2101 3724 goto out;
65500d23 3725
2994302b 3726 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3727 if (unlikely(non_swap_entry(entry))) {
3728 if (is_migration_entry(entry)) {
82b0f8c3
JK
3729 migration_entry_wait(vma->vm_mm, vmf->pmd,
3730 vmf->address);
b756a3b5
AP
3731 } else if (is_device_exclusive_entry(entry)) {
3732 vmf->page = pfn_swap_entry_to_page(entry);
3733 ret = remove_device_exclusive_entry(vmf);
5042db43 3734 } else if (is_device_private_entry(entry)) {
af5cdaf8 3735 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3736 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3737 } else if (is_hwpoison_entry(entry)) {
3738 ret = VM_FAULT_HWPOISON;
9f186f9e
ML
3739 } else if (is_swapin_error_entry(entry)) {
3740 ret = VM_FAULT_SIGBUS;
5c041f5d
PX
3741 } else if (is_pte_marker_entry(entry)) {
3742 ret = handle_pte_marker(vmf);
d1737fdb 3743 } else {
2994302b 3744 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3745 ret = VM_FAULT_SIGBUS;
d1737fdb 3746 }
0697212a
CL
3747 goto out;
3748 }
0bcac06f 3749
2799e775
ML
3750 /* Prevent swapoff from happening to us. */
3751 si = get_swap_device(entry);
3752 if (unlikely(!si))
3753 goto out;
0bcac06f 3754
eaf649eb
MK
3755 page = lookup_swap_cache(entry, vma, vmf->address);
3756 swapcache = page;
f8020772 3757
1da177e4 3758 if (!page) {
a449bf58
QC
3759 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3760 __swap_count(entry) == 1) {
0bcac06f 3761 /* skip swapcache */
e9e9b7ec
MK
3762 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3763 vmf->address);
0bcac06f
MK
3764 if (page) {
3765 __SetPageLocked(page);
3766 __SetPageSwapBacked(page);
4c6355b2 3767
0add0c77
SB
3768 if (mem_cgroup_swapin_charge_page(page,
3769 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3770 ret = VM_FAULT_OOM;
4c6355b2 3771 goto out_page;
545b1b07 3772 }
0add0c77 3773 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3774
aae466b0
JK
3775 shadow = get_shadow_from_swap_cache(entry);
3776 if (shadow)
0995d7e5
MWO
3777 workingset_refault(page_folio(page),
3778 shadow);
0076f029 3779
6058eaec 3780 lru_cache_add(page);
0add0c77
SB
3781
3782 /* To provide entry to swap_readpage() */
3783 set_page_private(page, entry.val);
5169b844 3784 swap_readpage(page, true, NULL);
0add0c77 3785 set_page_private(page, 0);
0bcac06f 3786 }
aa8d22a1 3787 } else {
e9e9b7ec
MK
3788 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3789 vmf);
aa8d22a1 3790 swapcache = page;
0bcac06f
MK
3791 }
3792
1da177e4
LT
3793 if (!page) {
3794 /*
8f4e2101
HD
3795 * Back out if somebody else faulted in this pte
3796 * while we released the pte lock.
1da177e4 3797 */
82b0f8c3
JK
3798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3799 vmf->address, &vmf->ptl);
2994302b 3800 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3801 ret = VM_FAULT_OOM;
65500d23 3802 goto unlock;
1da177e4
LT
3803 }
3804
3805 /* Had to read the page from swap area: Major fault */
3806 ret = VM_FAULT_MAJOR;
f8891e5e 3807 count_vm_event(PGMAJFAULT);
2262185c 3808 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3809 } else if (PageHWPoison(page)) {
71f72525
WF
3810 /*
3811 * hwpoisoned dirty swapcache pages are kept for killing
3812 * owner processes (which may be unknown at hwpoison time)
3813 */
d1737fdb 3814 ret = VM_FAULT_HWPOISON;
4779cb31 3815 goto out_release;
1da177e4
LT
3816 }
3817
82b0f8c3 3818 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3819
d065bd81
ML
3820 if (!locked) {
3821 ret |= VM_FAULT_RETRY;
3822 goto out_release;
3823 }
073e587e 3824
84d60fdd
DH
3825 if (swapcache) {
3826 /*
3827 * Make sure try_to_free_swap or swapoff did not release the
3828 * swapcache from under us. The page pin, and pte_same test
3829 * below, are not enough to exclude that. Even if it is still
3830 * swapcache, we need to check that the page's swap has not
3831 * changed.
3832 */
3833 if (unlikely(!PageSwapCache(page) ||
3834 page_private(page) != entry.val))
3835 goto out_page;
3836
3837 /*
3838 * KSM sometimes has to copy on read faults, for example, if
3839 * page->index of !PageKSM() pages would be nonlinear inside the
3840 * anon VMA -- PageKSM() is lost on actual swapout.
3841 */
3842 page = ksm_might_need_to_copy(page, vma, vmf->address);
3843 if (unlikely(!page)) {
3844 ret = VM_FAULT_OOM;
3845 page = swapcache;
3846 goto out_page;
3847 }
c145e0b4
DH
3848
3849 /*
3850 * If we want to map a page that's in the swapcache writable, we
3851 * have to detect via the refcount if we're really the exclusive
3852 * owner. Try removing the extra reference from the local LRU
3853 * pagevecs if required.
3854 */
3855 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3856 !PageKsm(page) && !PageLRU(page))
3857 lru_add_drain();
5ad64688
HD
3858 }
3859
9d82c694 3860 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3861
1da177e4 3862 /*
8f4e2101 3863 * Back out if somebody else already faulted in this pte.
1da177e4 3864 */
82b0f8c3
JK
3865 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3866 &vmf->ptl);
2994302b 3867 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3868 goto out_nomap;
b8107480
KK
3869
3870 if (unlikely(!PageUptodate(page))) {
3871 ret = VM_FAULT_SIGBUS;
3872 goto out_nomap;
1da177e4
LT
3873 }
3874
78fbe906
DH
3875 /*
3876 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3877 * must never point at an anonymous page in the swapcache that is
3878 * PG_anon_exclusive. Sanity check that this holds and especially, that
3879 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3880 * check after taking the PT lock and making sure that nobody
3881 * concurrently faulted in this page and set PG_anon_exclusive.
3882 */
3883 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3884 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3885
1493a191
DH
3886 /*
3887 * Check under PT lock (to protect against concurrent fork() sharing
3888 * the swap entry concurrently) for certainly exclusive pages.
3889 */
3890 if (!PageKsm(page)) {
3891 /*
3892 * Note that pte_swp_exclusive() == false for architectures
3893 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3894 */
3895 exclusive = pte_swp_exclusive(vmf->orig_pte);
3896 if (page != swapcache) {
3897 /*
3898 * We have a fresh page that is not exposed to the
3899 * swapcache -> certainly exclusive.
3900 */
3901 exclusive = true;
3902 } else if (exclusive && PageWriteback(page) &&
eacde327 3903 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3904 /*
3905 * This is tricky: not all swap backends support
3906 * concurrent page modifications while under writeback.
3907 *
3908 * So if we stumble over such a page in the swapcache
3909 * we must not set the page exclusive, otherwise we can
3910 * map it writable without further checks and modify it
3911 * while still under writeback.
3912 *
3913 * For these problematic swap backends, simply drop the
3914 * exclusive marker: this is perfectly fine as we start
3915 * writeback only if we fully unmapped the page and
3916 * there are no unexpected references on the page after
3917 * unmapping succeeded. After fully unmapped, no
3918 * further GUP references (FOLL_GET and FOLL_PIN) can
3919 * appear, so dropping the exclusive marker and mapping
3920 * it only R/O is fine.
3921 */
3922 exclusive = false;
3923 }
3924 }
3925
8c7c6e34 3926 /*
c145e0b4
DH
3927 * Remove the swap entry and conditionally try to free up the swapcache.
3928 * We're already holding a reference on the page but haven't mapped it
3929 * yet.
8c7c6e34 3930 */
c145e0b4
DH
3931 swap_free(entry);
3932 if (should_try_to_free_swap(page, vma, vmf->flags))
3933 try_to_free_swap(page);
1da177e4 3934
bae473a4
KS
3935 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3936 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3937 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3938
3939 /*
1493a191
DH
3940 * Same logic as in do_wp_page(); however, optimize for pages that are
3941 * certainly not shared either because we just allocated them without
3942 * exposing them to the swapcache or because the swap entry indicates
3943 * exclusivity.
c145e0b4 3944 */
1493a191 3945 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
6c287605
DH
3946 if (vmf->flags & FAULT_FLAG_WRITE) {
3947 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3948 vmf->flags &= ~FAULT_FLAG_WRITE;
3949 ret |= VM_FAULT_WRITE;
3950 }
14f9135d 3951 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3952 }
1da177e4 3953 flush_icache_page(vma, page);
2994302b 3954 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3955 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3956 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3957 pte = pte_mkuffd_wp(pte);
3958 pte = pte_wrprotect(pte);
3959 }
2994302b 3960 vmf->orig_pte = pte;
0bcac06f
MK
3961
3962 /* ksm created a completely new copy */
3963 if (unlikely(page != swapcache && swapcache)) {
40f2bbf7 3964 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 3965 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f 3966 } else {
f1e2db12 3967 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3968 }
1da177e4 3969
6c287605 3970 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3971 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3972 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3973
c475a8ab 3974 unlock_page(page);
0bcac06f 3975 if (page != swapcache && swapcache) {
4969c119
AA
3976 /*
3977 * Hold the lock to avoid the swap entry to be reused
3978 * until we take the PT lock for the pte_same() check
3979 * (to avoid false positives from pte_same). For
3980 * further safety release the lock after the swap_free
3981 * so that the swap count won't change under a
3982 * parallel locked swapcache.
3983 */
3984 unlock_page(swapcache);
09cbfeaf 3985 put_page(swapcache);
4969c119 3986 }
c475a8ab 3987
82b0f8c3 3988 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3989 ret |= do_wp_page(vmf);
61469f1d
HD
3990 if (ret & VM_FAULT_ERROR)
3991 ret &= VM_FAULT_ERROR;
1da177e4
LT
3992 goto out;
3993 }
3994
3995 /* No need to invalidate - it was non-present before */
82b0f8c3 3996 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3997unlock:
82b0f8c3 3998 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3999out:
2799e775
ML
4000 if (si)
4001 put_swap_device(si);
1da177e4 4002 return ret;
b8107480 4003out_nomap:
82b0f8c3 4004 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4005out_page:
b8107480 4006 unlock_page(page);
4779cb31 4007out_release:
09cbfeaf 4008 put_page(page);
0bcac06f 4009 if (page != swapcache && swapcache) {
4969c119 4010 unlock_page(swapcache);
09cbfeaf 4011 put_page(swapcache);
4969c119 4012 }
2799e775
ML
4013 if (si)
4014 put_swap_device(si);
65500d23 4015 return ret;
1da177e4
LT
4016}
4017
4018/*
c1e8d7c6 4019 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4020 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4021 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4022 */
2b740303 4023static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4024{
82b0f8c3 4025 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4026 struct page *page;
2b740303 4027 vm_fault_t ret = 0;
1da177e4 4028 pte_t entry;
1da177e4 4029
6b7339f4
KS
4030 /* File mapping without ->vm_ops ? */
4031 if (vma->vm_flags & VM_SHARED)
4032 return VM_FAULT_SIGBUS;
4033
7267ec00
KS
4034 /*
4035 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4036 * pte_offset_map() on pmds where a huge pmd might be created
4037 * from a different thread.
4038 *
3e4e28c5 4039 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4040 * parallel threads are excluded by other means.
4041 *
3e4e28c5 4042 * Here we only have mmap_read_lock(mm).
7267ec00 4043 */
4cf58924 4044 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4045 return VM_FAULT_OOM;
4046
f9ce0be7 4047 /* See comment in handle_pte_fault() */
82b0f8c3 4048 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4049 return 0;
4050
11ac5524 4051 /* Use the zero-page for reads */
82b0f8c3 4052 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4053 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4054 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4055 vma->vm_page_prot));
82b0f8c3
JK
4056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057 vmf->address, &vmf->ptl);
7df67697
BM
4058 if (!pte_none(*vmf->pte)) {
4059 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4060 goto unlock;
7df67697 4061 }
6b31d595
MH
4062 ret = check_stable_address_space(vma->vm_mm);
4063 if (ret)
4064 goto unlock;
6b251fc9
AA
4065 /* Deliver the page fault to userland, check inside PT lock */
4066 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4067 pte_unmap_unlock(vmf->pte, vmf->ptl);
4068 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4069 }
a13ea5b7
HD
4070 goto setpte;
4071 }
4072
557ed1fa 4073 /* Allocate our own private page. */
557ed1fa
NP
4074 if (unlikely(anon_vma_prepare(vma)))
4075 goto oom;
82b0f8c3 4076 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4077 if (!page)
4078 goto oom;
eb3c24f3 4079
8f425e4e 4080 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4081 goto oom_free_page;
9d82c694 4082 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4083
52f37629
MK
4084 /*
4085 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4086 * preceding stores to the page contents become visible before
52f37629
MK
4087 * the set_pte_at() write.
4088 */
0ed361de 4089 __SetPageUptodate(page);
8f4e2101 4090
557ed1fa 4091 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4092 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4093 if (vma->vm_flags & VM_WRITE)
4094 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4095
82b0f8c3
JK
4096 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4097 &vmf->ptl);
7df67697
BM
4098 if (!pte_none(*vmf->pte)) {
4099 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 4100 goto release;
7df67697 4101 }
9ba69294 4102
6b31d595
MH
4103 ret = check_stable_address_space(vma->vm_mm);
4104 if (ret)
4105 goto release;
4106
6b251fc9
AA
4107 /* Deliver the page fault to userland, check inside PT lock */
4108 if (userfaultfd_missing(vma)) {
82b0f8c3 4109 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4110 put_page(page);
82b0f8c3 4111 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4112 }
4113
bae473a4 4114 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4115 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4116 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4117setpte:
82b0f8c3 4118 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4119
4120 /* No need to invalidate - it was non-present before */
82b0f8c3 4121 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4122unlock:
82b0f8c3 4123 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4124 return ret;
8f4e2101 4125release:
09cbfeaf 4126 put_page(page);
8f4e2101 4127 goto unlock;
8a9f3ccd 4128oom_free_page:
09cbfeaf 4129 put_page(page);
65500d23 4130oom:
1da177e4
LT
4131 return VM_FAULT_OOM;
4132}
4133
9a95f3cf 4134/*
c1e8d7c6 4135 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4136 * released depending on flags and vma->vm_ops->fault() return value.
4137 * See filemap_fault() and __lock_page_retry().
4138 */
2b740303 4139static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4140{
82b0f8c3 4141 struct vm_area_struct *vma = vmf->vma;
2b740303 4142 vm_fault_t ret;
7eae74af 4143
63f3655f
MH
4144 /*
4145 * Preallocate pte before we take page_lock because this might lead to
4146 * deadlocks for memcg reclaim which waits for pages under writeback:
4147 * lock_page(A)
4148 * SetPageWriteback(A)
4149 * unlock_page(A)
4150 * lock_page(B)
4151 * lock_page(B)
d383807a 4152 * pte_alloc_one
63f3655f
MH
4153 * shrink_page_list
4154 * wait_on_page_writeback(A)
4155 * SetPageWriteback(B)
4156 * unlock_page(B)
4157 * # flush A, B to clear the writeback
4158 */
4159 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4161 if (!vmf->prealloc_pte)
4162 return VM_FAULT_OOM;
63f3655f
MH
4163 }
4164
11bac800 4165 ret = vma->vm_ops->fault(vmf);
3917048d 4166 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4167 VM_FAULT_DONE_COW)))
bc2466e4 4168 return ret;
7eae74af 4169
667240e0 4170 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4171 struct page *page = vmf->page;
e53ac737
RR
4172 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4173 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4174 if (page_mapped(page))
4175 unmap_mapping_pages(page_mapping(page),
4176 page->index, 1, false);
e53ac737 4177 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4178 if (invalidate_inode_page(page))
4179 poisonret = VM_FAULT_NOPAGE;
4180 unlock_page(page);
e53ac737 4181 }
3149c79f 4182 put_page(page);
936ca80d 4183 vmf->page = NULL;
e53ac737 4184 return poisonret;
7eae74af
KS
4185 }
4186
4187 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4188 lock_page(vmf->page);
7eae74af 4189 else
667240e0 4190 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4191
7eae74af
KS
4192 return ret;
4193}
4194
396bcc52 4195#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4196static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4197{
82b0f8c3 4198 struct vm_area_struct *vma = vmf->vma;
953c66c2 4199
82b0f8c3 4200 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4201 /*
4202 * We are going to consume the prealloc table,
4203 * count that as nr_ptes.
4204 */
c4812909 4205 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4206 vmf->prealloc_pte = NULL;
953c66c2
AK
4207}
4208
f9ce0be7 4209vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4210{
82b0f8c3
JK
4211 struct vm_area_struct *vma = vmf->vma;
4212 bool write = vmf->flags & FAULT_FLAG_WRITE;
4213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4214 pmd_t entry;
2b740303 4215 int i;
d01ac3c3 4216 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4217
4218 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4219 return ret;
10102459 4220
10102459 4221 page = compound_head(page);
d01ac3c3
MWO
4222 if (compound_order(page) != HPAGE_PMD_ORDER)
4223 return ret;
10102459 4224
eac96c3e
YS
4225 /*
4226 * Just backoff if any subpage of a THP is corrupted otherwise
4227 * the corrupted page may mapped by PMD silently to escape the
4228 * check. This kind of THP just can be PTE mapped. Access to
4229 * the corrupted subpage should trigger SIGBUS as expected.
4230 */
4231 if (unlikely(PageHasHWPoisoned(page)))
4232 return ret;
4233
953c66c2 4234 /*
f0953a1b 4235 * Archs like ppc64 need additional space to store information
953c66c2
AK
4236 * related to pte entry. Use the preallocated table for that.
4237 */
82b0f8c3 4238 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4240 if (!vmf->prealloc_pte)
953c66c2 4241 return VM_FAULT_OOM;
953c66c2
AK
4242 }
4243
82b0f8c3
JK
4244 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4245 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4246 goto out;
4247
4248 for (i = 0; i < HPAGE_PMD_NR; i++)
4249 flush_icache_page(vma, page + i);
4250
4251 entry = mk_huge_pmd(page, vma->vm_page_prot);
4252 if (write)
f55e1014 4253 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4254
fadae295 4255 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4256 page_add_file_rmap(page, vma, true);
4257
953c66c2
AK
4258 /*
4259 * deposit and withdraw with pmd lock held
4260 */
4261 if (arch_needs_pgtable_deposit())
82b0f8c3 4262 deposit_prealloc_pte(vmf);
10102459 4263
82b0f8c3 4264 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4265
82b0f8c3 4266 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4267
4268 /* fault is handled */
4269 ret = 0;
95ecedcd 4270 count_vm_event(THP_FILE_MAPPED);
10102459 4271out:
82b0f8c3 4272 spin_unlock(vmf->ptl);
10102459
KS
4273 return ret;
4274}
4275#else
f9ce0be7 4276vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4277{
f9ce0be7 4278 return VM_FAULT_FALLBACK;
10102459
KS
4279}
4280#endif
4281
9d3af4b4 4282void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4283{
82b0f8c3 4284 struct vm_area_struct *vma = vmf->vma;
9c28a205 4285 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4286 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4287 bool prefault = vmf->address != addr;
3bb97794 4288 pte_t entry;
7267ec00 4289
3bb97794
KS
4290 flush_icache_page(vma, page);
4291 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4292
4293 if (prefault && arch_wants_old_prefaulted_pte())
4294 entry = pte_mkold(entry);
50c25ee9
TB
4295 else
4296 entry = pte_sw_mkyoung(entry);
46bdb427 4297
3bb97794
KS
4298 if (write)
4299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4300 if (unlikely(uffd_wp))
4301 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4302 /* copy-on-write page */
4303 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4304 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4305 page_add_new_anon_rmap(page, vma, addr);
b518154e 4306 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4307 } else {
eca56ff9 4308 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4309 page_add_file_rmap(page, vma, false);
3bb97794 4310 }
9d3af4b4 4311 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4312}
4313
f46f2ade
PX
4314static bool vmf_pte_changed(struct vm_fault *vmf)
4315{
4316 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4317 return !pte_same(*vmf->pte, vmf->orig_pte);
4318
4319 return !pte_none(*vmf->pte);
4320}
4321
9118c0cb
JK
4322/**
4323 * finish_fault - finish page fault once we have prepared the page to fault
4324 *
4325 * @vmf: structure describing the fault
4326 *
4327 * This function handles all that is needed to finish a page fault once the
4328 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4329 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4330 * addition.
9118c0cb
JK
4331 *
4332 * The function expects the page to be locked and on success it consumes a
4333 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4334 *
4335 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4336 */
2b740303 4337vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4338{
f9ce0be7 4339 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4340 struct page *page;
f9ce0be7 4341 vm_fault_t ret;
9118c0cb
JK
4342
4343 /* Did we COW the page? */
f9ce0be7 4344 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4345 page = vmf->cow_page;
4346 else
4347 page = vmf->page;
6b31d595
MH
4348
4349 /*
4350 * check even for read faults because we might have lost our CoWed
4351 * page
4352 */
f9ce0be7
KS
4353 if (!(vma->vm_flags & VM_SHARED)) {
4354 ret = check_stable_address_space(vma->vm_mm);
4355 if (ret)
4356 return ret;
4357 }
4358
4359 if (pmd_none(*vmf->pmd)) {
4360 if (PageTransCompound(page)) {
4361 ret = do_set_pmd(vmf, page);
4362 if (ret != VM_FAULT_FALLBACK)
4363 return ret;
4364 }
4365
03c4f204
QZ
4366 if (vmf->prealloc_pte)
4367 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4368 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4369 return VM_FAULT_OOM;
4370 }
4371
4372 /* See comment in handle_pte_fault() */
4373 if (pmd_devmap_trans_unstable(vmf->pmd))
4374 return 0;
4375
4376 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4377 vmf->address, &vmf->ptl);
4378 ret = 0;
4379 /* Re-check under ptl */
f46f2ade 4380 if (likely(!vmf_pte_changed(vmf)))
9d3af4b4 4381 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4382 else
4383 ret = VM_FAULT_NOPAGE;
4384
4385 update_mmu_tlb(vma, vmf->address, vmf->pte);
4386 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4387 return ret;
4388}
4389
3a91053a
KS
4390static unsigned long fault_around_bytes __read_mostly =
4391 rounddown_pow_of_two(65536);
a9b0f861 4392
a9b0f861
KS
4393#ifdef CONFIG_DEBUG_FS
4394static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4395{
a9b0f861 4396 *val = fault_around_bytes;
1592eef0
KS
4397 return 0;
4398}
4399
b4903d6e 4400/*
da391d64
WK
4401 * fault_around_bytes must be rounded down to the nearest page order as it's
4402 * what do_fault_around() expects to see.
b4903d6e 4403 */
a9b0f861 4404static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4405{
a9b0f861 4406 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4407 return -EINVAL;
b4903d6e
AR
4408 if (val > PAGE_SIZE)
4409 fault_around_bytes = rounddown_pow_of_two(val);
4410 else
4411 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4412 return 0;
4413}
0a1345f8 4414DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4415 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4416
4417static int __init fault_around_debugfs(void)
4418{
d9f7979c
GKH
4419 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4420 &fault_around_bytes_fops);
1592eef0
KS
4421 return 0;
4422}
4423late_initcall(fault_around_debugfs);
1592eef0 4424#endif
8c6e50b0 4425
1fdb412b
KS
4426/*
4427 * do_fault_around() tries to map few pages around the fault address. The hope
4428 * is that the pages will be needed soon and this will lower the number of
4429 * faults to handle.
4430 *
4431 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4432 * not ready to be mapped: not up-to-date, locked, etc.
4433 *
4434 * This function is called with the page table lock taken. In the split ptlock
4435 * case the page table lock only protects only those entries which belong to
4436 * the page table corresponding to the fault address.
4437 *
4438 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4439 * only once.
4440 *
da391d64
WK
4441 * fault_around_bytes defines how many bytes we'll try to map.
4442 * do_fault_around() expects it to be set to a power of two less than or equal
4443 * to PTRS_PER_PTE.
1fdb412b 4444 *
da391d64
WK
4445 * The virtual address of the area that we map is naturally aligned to
4446 * fault_around_bytes rounded down to the machine page size
4447 * (and therefore to page order). This way it's easier to guarantee
4448 * that we don't cross page table boundaries.
1fdb412b 4449 */
2b740303 4450static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4451{
82b0f8c3 4452 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4453 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4454 pgoff_t end_pgoff;
2b740303 4455 int off;
8c6e50b0 4456
4db0c3c2 4457 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4458 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4459
f9ce0be7
KS
4460 address = max(address & mask, vmf->vma->vm_start);
4461 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4462 start_pgoff -= off;
8c6e50b0
KS
4463
4464 /*
da391d64
WK
4465 * end_pgoff is either the end of the page table, the end of
4466 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4467 */
bae473a4 4468 end_pgoff = start_pgoff -
f9ce0be7 4469 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4470 PTRS_PER_PTE - 1;
82b0f8c3 4471 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4472 start_pgoff + nr_pages - 1);
8c6e50b0 4473
82b0f8c3 4474 if (pmd_none(*vmf->pmd)) {
4cf58924 4475 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4476 if (!vmf->prealloc_pte)
f9ce0be7 4477 return VM_FAULT_OOM;
8c6e50b0
KS
4478 }
4479
f9ce0be7 4480 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4481}
4482
9c28a205
PX
4483/* Return true if we should do read fault-around, false otherwise */
4484static inline bool should_fault_around(struct vm_fault *vmf)
4485{
4486 /* No ->map_pages? No way to fault around... */
4487 if (!vmf->vma->vm_ops->map_pages)
4488 return false;
4489
4490 if (uffd_disable_fault_around(vmf->vma))
4491 return false;
4492
4493 return fault_around_bytes >> PAGE_SHIFT > 1;
4494}
4495
2b740303 4496static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4497{
2b740303 4498 vm_fault_t ret = 0;
8c6e50b0
KS
4499
4500 /*
4501 * Let's call ->map_pages() first and use ->fault() as fallback
4502 * if page by the offset is not ready to be mapped (cold cache or
4503 * something).
4504 */
9c28a205
PX
4505 if (should_fault_around(vmf)) {
4506 ret = do_fault_around(vmf);
4507 if (ret)
4508 return ret;
8c6e50b0 4509 }
e655fb29 4510
936ca80d 4511 ret = __do_fault(vmf);
e655fb29
KS
4512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4513 return ret;
4514
9118c0cb 4515 ret |= finish_fault(vmf);
936ca80d 4516 unlock_page(vmf->page);
7267ec00 4517 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4518 put_page(vmf->page);
e655fb29
KS
4519 return ret;
4520}
4521
2b740303 4522static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4523{
82b0f8c3 4524 struct vm_area_struct *vma = vmf->vma;
2b740303 4525 vm_fault_t ret;
ec47c3b9
KS
4526
4527 if (unlikely(anon_vma_prepare(vma)))
4528 return VM_FAULT_OOM;
4529
936ca80d
JK
4530 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4531 if (!vmf->cow_page)
ec47c3b9
KS
4532 return VM_FAULT_OOM;
4533
8f425e4e
MWO
4534 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4535 GFP_KERNEL)) {
936ca80d 4536 put_page(vmf->cow_page);
ec47c3b9
KS
4537 return VM_FAULT_OOM;
4538 }
9d82c694 4539 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4540
936ca80d 4541 ret = __do_fault(vmf);
ec47c3b9
KS
4542 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4543 goto uncharge_out;
3917048d
JK
4544 if (ret & VM_FAULT_DONE_COW)
4545 return ret;
ec47c3b9 4546
b1aa812b 4547 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4548 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4549
9118c0cb 4550 ret |= finish_fault(vmf);
b1aa812b
JK
4551 unlock_page(vmf->page);
4552 put_page(vmf->page);
7267ec00
KS
4553 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 goto uncharge_out;
ec47c3b9
KS
4555 return ret;
4556uncharge_out:
936ca80d 4557 put_page(vmf->cow_page);
ec47c3b9
KS
4558 return ret;
4559}
4560
2b740303 4561static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4562{
82b0f8c3 4563 struct vm_area_struct *vma = vmf->vma;
2b740303 4564 vm_fault_t ret, tmp;
1d65f86d 4565
936ca80d 4566 ret = __do_fault(vmf);
7eae74af 4567 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4568 return ret;
1da177e4
LT
4569
4570 /*
f0c6d4d2
KS
4571 * Check if the backing address space wants to know that the page is
4572 * about to become writable
1da177e4 4573 */
fb09a464 4574 if (vma->vm_ops->page_mkwrite) {
936ca80d 4575 unlock_page(vmf->page);
38b8cb7f 4576 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4577 if (unlikely(!tmp ||
4578 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4579 put_page(vmf->page);
fb09a464 4580 return tmp;
4294621f 4581 }
fb09a464
KS
4582 }
4583
9118c0cb 4584 ret |= finish_fault(vmf);
7267ec00
KS
4585 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4586 VM_FAULT_RETRY))) {
936ca80d
JK
4587 unlock_page(vmf->page);
4588 put_page(vmf->page);
f0c6d4d2 4589 return ret;
1da177e4 4590 }
b827e496 4591
89b15332 4592 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4593 return ret;
54cb8821 4594}
d00806b1 4595
9a95f3cf 4596/*
c1e8d7c6 4597 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4598 * but allow concurrent faults).
c1e8d7c6 4599 * The mmap_lock may have been released depending on flags and our
9138e47e 4600 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4601 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4602 * by other thread calling munmap()).
9a95f3cf 4603 */
2b740303 4604static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4605{
82b0f8c3 4606 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4607 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4608 vm_fault_t ret;
54cb8821 4609
ff09d7ec
AK
4610 /*
4611 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4612 */
4613 if (!vma->vm_ops->fault) {
4614 /*
4615 * If we find a migration pmd entry or a none pmd entry, which
4616 * should never happen, return SIGBUS
4617 */
4618 if (unlikely(!pmd_present(*vmf->pmd)))
4619 ret = VM_FAULT_SIGBUS;
4620 else {
4621 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4622 vmf->pmd,
4623 vmf->address,
4624 &vmf->ptl);
4625 /*
4626 * Make sure this is not a temporary clearing of pte
4627 * by holding ptl and checking again. A R/M/W update
4628 * of pte involves: take ptl, clearing the pte so that
4629 * we don't have concurrent modification by hardware
4630 * followed by an update.
4631 */
4632 if (unlikely(pte_none(*vmf->pte)))
4633 ret = VM_FAULT_SIGBUS;
4634 else
4635 ret = VM_FAULT_NOPAGE;
4636
4637 pte_unmap_unlock(vmf->pte, vmf->ptl);
4638 }
4639 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4640 ret = do_read_fault(vmf);
4641 else if (!(vma->vm_flags & VM_SHARED))
4642 ret = do_cow_fault(vmf);
4643 else
4644 ret = do_shared_fault(vmf);
4645
4646 /* preallocated pagetable is unused: free it */
4647 if (vmf->prealloc_pte) {
fc8efd2d 4648 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4649 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4650 }
4651 return ret;
54cb8821
NP
4652}
4653
f4c0d836
YS
4654int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4655 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4656{
4657 get_page(page);
4658
4659 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4660 if (page_nid == numa_node_id()) {
9532fec1 4661 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4662 *flags |= TNF_FAULT_LOCAL;
4663 }
9532fec1
MG
4664
4665 return mpol_misplaced(page, vma, addr);
4666}
4667
2b740303 4668static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4669{
82b0f8c3 4670 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4671 struct page *page = NULL;
98fa15f3 4672 int page_nid = NUMA_NO_NODE;
90572890 4673 int last_cpupid;
cbee9f88 4674 int target_nid;
04a86453 4675 pte_t pte, old_pte;
288bc549 4676 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4677 int flags = 0;
d10e63f2
MG
4678
4679 /*
166f61b9
TH
4680 * The "pte" at this point cannot be used safely without
4681 * validation through pte_unmap_same(). It's of NUMA type but
4682 * the pfn may be screwed if the read is non atomic.
166f61b9 4683 */
82b0f8c3
JK
4684 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4685 spin_lock(vmf->ptl);
cee216a6 4686 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4687 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4688 goto out;
4689 }
4690
b99a342d
HY
4691 /* Get the normal PTE */
4692 old_pte = ptep_get(vmf->pte);
04a86453 4693 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4694
82b0f8c3 4695 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4696 if (!page)
4697 goto out_map;
d10e63f2 4698
e81c4802 4699 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4700 if (PageCompound(page))
4701 goto out_map;
e81c4802 4702
6688cc05 4703 /*
bea66fbd
MG
4704 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4705 * much anyway since they can be in shared cache state. This misses
4706 * the case where a mapping is writable but the process never writes
4707 * to it but pte_write gets cleared during protection updates and
4708 * pte_dirty has unpredictable behaviour between PTE scan updates,
4709 * background writeback, dirty balancing and application behaviour.
6688cc05 4710 */
b99a342d 4711 if (!was_writable)
6688cc05
PZ
4712 flags |= TNF_NO_GROUP;
4713
dabe1d99
RR
4714 /*
4715 * Flag if the page is shared between multiple address spaces. This
4716 * is later used when determining whether to group tasks together
4717 */
4718 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4719 flags |= TNF_SHARED;
4720
90572890 4721 last_cpupid = page_cpupid_last(page);
8191acbd 4722 page_nid = page_to_nid(page);
82b0f8c3 4723 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4724 &flags);
98fa15f3 4725 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4726 put_page(page);
b99a342d 4727 goto out_map;
4daae3b4 4728 }
b99a342d 4729 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4730
4731 /* Migrate to the requested node */
bf90ac19 4732 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4733 page_nid = target_nid;
6688cc05 4734 flags |= TNF_MIGRATED;
b99a342d 4735 } else {
074c2381 4736 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4737 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4738 spin_lock(vmf->ptl);
4739 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4741 goto out;
4742 }
4743 goto out_map;
4744 }
4daae3b4
MG
4745
4746out:
98fa15f3 4747 if (page_nid != NUMA_NO_NODE)
6688cc05 4748 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4749 return 0;
b99a342d
HY
4750out_map:
4751 /*
4752 * Make it present again, depending on how arch implements
4753 * non-accessible ptes, some can allow access by kernel mode.
4754 */
4755 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4756 pte = pte_modify(old_pte, vma->vm_page_prot);
4757 pte = pte_mkyoung(pte);
4758 if (was_writable)
4759 pte = pte_mkwrite(pte);
4760 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4761 update_mmu_cache(vma, vmf->address, vmf->pte);
4762 pte_unmap_unlock(vmf->pte, vmf->ptl);
4763 goto out;
d10e63f2
MG
4764}
4765
2b740303 4766static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4767{
f4200391 4768 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4769 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4770 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4771 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4772 return VM_FAULT_FALLBACK;
4773}
4774
183f24aa 4775/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4776static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4777{
c89357e2
DH
4778 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4779
529b930b 4780 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4781 if (likely(!unshare) &&
4782 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4783 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4784 return do_huge_pmd_wp_page(vmf);
529b930b 4785 }
327e9fd4
THV
4786 if (vmf->vma->vm_ops->huge_fault) {
4787 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4788
4789 if (!(ret & VM_FAULT_FALLBACK))
4790 return ret;
4791 }
af9e4d5f 4792
327e9fd4 4793 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4794 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4795
b96375f7
MW
4796 return VM_FAULT_FALLBACK;
4797}
4798
2b740303 4799static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4800{
327e9fd4
THV
4801#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4802 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4803 /* No support for anonymous transparent PUD pages yet */
4804 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4805 goto split;
4806 if (vmf->vma->vm_ops->huge_fault) {
4807 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4808
4809 if (!(ret & VM_FAULT_FALLBACK))
4810 return ret;
4811 }
4812split:
4813 /* COW or write-notify not handled on PUD level: split pud.*/
4814 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4815#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4816 return VM_FAULT_FALLBACK;
4817}
4818
2b740303 4819static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4820{
4821#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4822 /* No support for anonymous transparent PUD pages yet */
4823 if (vma_is_anonymous(vmf->vma))
4824 return VM_FAULT_FALLBACK;
4825 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4826 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4827#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4828 return VM_FAULT_FALLBACK;
4829}
4830
1da177e4
LT
4831/*
4832 * These routines also need to handle stuff like marking pages dirty
4833 * and/or accessed for architectures that don't do it in hardware (most
4834 * RISC architectures). The early dirtying is also good on the i386.
4835 *
4836 * There is also a hook called "update_mmu_cache()" that architectures
4837 * with external mmu caches can use to update those (ie the Sparc or
4838 * PowerPC hashed page tables that act as extended TLBs).
4839 *
c1e8d7c6 4840 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4841 * concurrent faults).
9a95f3cf 4842 *
c1e8d7c6 4843 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4844 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4845 */
2b740303 4846static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4847{
4848 pte_t entry;
4849
82b0f8c3 4850 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4851 /*
4852 * Leave __pte_alloc() until later: because vm_ops->fault may
4853 * want to allocate huge page, and if we expose page table
4854 * for an instant, it will be difficult to retract from
4855 * concurrent faults and from rmap lookups.
4856 */
82b0f8c3 4857 vmf->pte = NULL;
f46f2ade 4858 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4859 } else {
f9ce0be7
KS
4860 /*
4861 * If a huge pmd materialized under us just retry later. Use
4862 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4863 * of pmd_trans_huge() to ensure the pmd didn't become
4864 * pmd_trans_huge under us and then back to pmd_none, as a
4865 * result of MADV_DONTNEED running immediately after a huge pmd
4866 * fault in a different thread of this mm, in turn leading to a
4867 * misleading pmd_trans_huge() retval. All we have to ensure is
4868 * that it is a regular pmd that we can walk with
4869 * pte_offset_map() and we can do that through an atomic read
4870 * in C, which is what pmd_trans_unstable() provides.
4871 */
d0f0931d 4872 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4873 return 0;
4874 /*
4875 * A regular pmd is established and it can't morph into a huge
4876 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4877 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4878 * So now it's safe to run pte_offset_map().
4879 */
82b0f8c3 4880 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4881 vmf->orig_pte = *vmf->pte;
f46f2ade 4882 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4883
4884 /*
4885 * some architectures can have larger ptes than wordsize,
4886 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4887 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4888 * accesses. The code below just needs a consistent view
4889 * for the ifs and we later double check anyway with the
7267ec00
KS
4890 * ptl lock held. So here a barrier will do.
4891 */
4892 barrier();
2994302b 4893 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4894 pte_unmap(vmf->pte);
4895 vmf->pte = NULL;
65500d23 4896 }
1da177e4
LT
4897 }
4898
82b0f8c3
JK
4899 if (!vmf->pte) {
4900 if (vma_is_anonymous(vmf->vma))
4901 return do_anonymous_page(vmf);
7267ec00 4902 else
82b0f8c3 4903 return do_fault(vmf);
7267ec00
KS
4904 }
4905
2994302b
JK
4906 if (!pte_present(vmf->orig_pte))
4907 return do_swap_page(vmf);
7267ec00 4908
2994302b
JK
4909 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4910 return do_numa_page(vmf);
d10e63f2 4911
82b0f8c3
JK
4912 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4913 spin_lock(vmf->ptl);
2994302b 4914 entry = vmf->orig_pte;
7df67697
BM
4915 if (unlikely(!pte_same(*vmf->pte, entry))) {
4916 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4917 goto unlock;
7df67697 4918 }
c89357e2 4919 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4920 if (!pte_write(entry))
2994302b 4921 return do_wp_page(vmf);
c89357e2
DH
4922 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4923 entry = pte_mkdirty(entry);
1da177e4
LT
4924 }
4925 entry = pte_mkyoung(entry);
82b0f8c3
JK
4926 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4927 vmf->flags & FAULT_FLAG_WRITE)) {
4928 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4929 } else {
b7333b58
YS
4930 /* Skip spurious TLB flush for retried page fault */
4931 if (vmf->flags & FAULT_FLAG_TRIED)
4932 goto unlock;
1a44e149
AA
4933 /*
4934 * This is needed only for protection faults but the arch code
4935 * is not yet telling us if this is a protection fault or not.
4936 * This still avoids useless tlb flushes for .text page faults
4937 * with threads.
4938 */
82b0f8c3
JK
4939 if (vmf->flags & FAULT_FLAG_WRITE)
4940 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4941 }
8f4e2101 4942unlock:
82b0f8c3 4943 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4944 return 0;
1da177e4
LT
4945}
4946
4947/*
4948 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4949 *
c1e8d7c6 4950 * The mmap_lock may have been released depending on flags and our
9138e47e 4951 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4952 */
2b740303
SJ
4953static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4954 unsigned long address, unsigned int flags)
1da177e4 4955{
82b0f8c3 4956 struct vm_fault vmf = {
bae473a4 4957 .vma = vma,
1a29d85e 4958 .address = address & PAGE_MASK,
824ddc60 4959 .real_address = address,
bae473a4 4960 .flags = flags,
0721ec8b 4961 .pgoff = linear_page_index(vma, address),
667240e0 4962 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4963 };
dcddffd4 4964 struct mm_struct *mm = vma->vm_mm;
1da177e4 4965 pgd_t *pgd;
c2febafc 4966 p4d_t *p4d;
2b740303 4967 vm_fault_t ret;
1da177e4 4968
1da177e4 4969 pgd = pgd_offset(mm, address);
c2febafc
KS
4970 p4d = p4d_alloc(mm, pgd, address);
4971 if (!p4d)
4972 return VM_FAULT_OOM;
a00cc7d9 4973
c2febafc 4974 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4975 if (!vmf.pud)
c74df32c 4976 return VM_FAULT_OOM;
625110b5 4977retry_pud:
7635d9cb 4978 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4979 ret = create_huge_pud(&vmf);
4980 if (!(ret & VM_FAULT_FALLBACK))
4981 return ret;
4982 } else {
4983 pud_t orig_pud = *vmf.pud;
4984
4985 barrier();
4986 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4987
c89357e2
DH
4988 /*
4989 * TODO once we support anonymous PUDs: NUMA case and
4990 * FAULT_FLAG_UNSHARE handling.
4991 */
4992 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
4993 ret = wp_huge_pud(&vmf, orig_pud);
4994 if (!(ret & VM_FAULT_FALLBACK))
4995 return ret;
4996 } else {
4997 huge_pud_set_accessed(&vmf, orig_pud);
4998 return 0;
4999 }
5000 }
5001 }
5002
5003 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5004 if (!vmf.pmd)
c74df32c 5005 return VM_FAULT_OOM;
625110b5
TH
5006
5007 /* Huge pud page fault raced with pmd_alloc? */
5008 if (pud_trans_unstable(vmf.pud))
5009 goto retry_pud;
5010
7635d9cb 5011 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 5012 ret = create_huge_pmd(&vmf);
c0292554
KS
5013 if (!(ret & VM_FAULT_FALLBACK))
5014 return ret;
71e3aac0 5015 } else {
5db4f15c 5016 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5017
71e3aac0 5018 barrier();
5db4f15c 5019 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5020 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5021 !is_pmd_migration_entry(vmf.orig_pmd));
5022 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5023 pmd_migration_entry_wait(mm, vmf.pmd);
5024 return 0;
5025 }
5db4f15c
YS
5026 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5027 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5028 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5029
c89357e2
DH
5030 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5031 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5032 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5033 if (!(ret & VM_FAULT_FALLBACK))
5034 return ret;
a1dd450b 5035 } else {
5db4f15c 5036 huge_pmd_set_accessed(&vmf);
9845cbbd 5037 return 0;
1f1d06c3 5038 }
71e3aac0
AA
5039 }
5040 }
5041
82b0f8c3 5042 return handle_pte_fault(&vmf);
1da177e4
LT
5043}
5044
bce617ed 5045/**
f0953a1b 5046 * mm_account_fault - Do page fault accounting
bce617ed
PX
5047 *
5048 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5049 * of perf event counters, but we'll still do the per-task accounting to
5050 * the task who triggered this page fault.
5051 * @address: the faulted address.
5052 * @flags: the fault flags.
5053 * @ret: the fault retcode.
5054 *
f0953a1b 5055 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5056 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5057 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5058 * still be in per-arch page fault handlers at the entry of page fault.
5059 */
5060static inline void mm_account_fault(struct pt_regs *regs,
5061 unsigned long address, unsigned int flags,
5062 vm_fault_t ret)
5063{
5064 bool major;
5065
5066 /*
5067 * We don't do accounting for some specific faults:
5068 *
5069 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5070 * includes arch_vma_access_permitted() failing before reaching here.
5071 * So this is not a "this many hardware page faults" counter. We
5072 * should use the hw profiling for that.
5073 *
5074 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5075 * once they're completed.
5076 */
5077 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5078 return;
5079
5080 /*
5081 * We define the fault as a major fault when the final successful fault
5082 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5083 * handle it immediately previously).
5084 */
5085 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5086
a2beb5f1
PX
5087 if (major)
5088 current->maj_flt++;
5089 else
5090 current->min_flt++;
5091
bce617ed 5092 /*
a2beb5f1
PX
5093 * If the fault is done for GUP, regs will be NULL. We only do the
5094 * accounting for the per thread fault counters who triggered the
5095 * fault, and we skip the perf event updates.
bce617ed
PX
5096 */
5097 if (!regs)
5098 return;
5099
a2beb5f1 5100 if (major)
bce617ed 5101 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5102 else
bce617ed 5103 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5104}
5105
9a95f3cf
PC
5106/*
5107 * By the time we get here, we already hold the mm semaphore
5108 *
c1e8d7c6 5109 * The mmap_lock may have been released depending on flags and our
9138e47e 5110 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5111 */
2b740303 5112vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5113 unsigned int flags, struct pt_regs *regs)
519e5247 5114{
2b740303 5115 vm_fault_t ret;
519e5247
JW
5116
5117 __set_current_state(TASK_RUNNING);
5118
5119 count_vm_event(PGFAULT);
2262185c 5120 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
5121
5122 /* do counter updates before entering really critical section. */
5123 check_sync_rss_stat(current);
5124
de0c799b
LD
5125 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5126 flags & FAULT_FLAG_INSTRUCTION,
5127 flags & FAULT_FLAG_REMOTE))
5128 return VM_FAULT_SIGSEGV;
5129
519e5247
JW
5130 /*
5131 * Enable the memcg OOM handling for faults triggered in user
5132 * space. Kernel faults are handled more gracefully.
5133 */
5134 if (flags & FAULT_FLAG_USER)
29ef680a 5135 mem_cgroup_enter_user_fault();
519e5247 5136
bae473a4
KS
5137 if (unlikely(is_vm_hugetlb_page(vma)))
5138 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5139 else
5140 ret = __handle_mm_fault(vma, address, flags);
519e5247 5141
49426420 5142 if (flags & FAULT_FLAG_USER) {
29ef680a 5143 mem_cgroup_exit_user_fault();
166f61b9
TH
5144 /*
5145 * The task may have entered a memcg OOM situation but
5146 * if the allocation error was handled gracefully (no
5147 * VM_FAULT_OOM), there is no need to kill anything.
5148 * Just clean up the OOM state peacefully.
5149 */
5150 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5151 mem_cgroup_oom_synchronize(false);
49426420 5152 }
3812c8c8 5153
bce617ed
PX
5154 mm_account_fault(regs, address, flags, ret);
5155
519e5247
JW
5156 return ret;
5157}
e1d6d01a 5158EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5159
90eceff1
KS
5160#ifndef __PAGETABLE_P4D_FOLDED
5161/*
5162 * Allocate p4d page table.
5163 * We've already handled the fast-path in-line.
5164 */
5165int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5166{
5167 p4d_t *new = p4d_alloc_one(mm, address);
5168 if (!new)
5169 return -ENOMEM;
5170
90eceff1 5171 spin_lock(&mm->page_table_lock);
ed33b5a6 5172 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5173 p4d_free(mm, new);
ed33b5a6
QZ
5174 } else {
5175 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5176 pgd_populate(mm, pgd, new);
ed33b5a6 5177 }
90eceff1
KS
5178 spin_unlock(&mm->page_table_lock);
5179 return 0;
5180}
5181#endif /* __PAGETABLE_P4D_FOLDED */
5182
1da177e4
LT
5183#ifndef __PAGETABLE_PUD_FOLDED
5184/*
5185 * Allocate page upper directory.
872fec16 5186 * We've already handled the fast-path in-line.
1da177e4 5187 */
c2febafc 5188int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5189{
c74df32c
HD
5190 pud_t *new = pud_alloc_one(mm, address);
5191 if (!new)
1bb3630e 5192 return -ENOMEM;
1da177e4 5193
872fec16 5194 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5195 if (!p4d_present(*p4d)) {
5196 mm_inc_nr_puds(mm);
ed33b5a6 5197 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5198 p4d_populate(mm, p4d, new);
b4e98d9a 5199 } else /* Another has populated it */
5e541973 5200 pud_free(mm, new);
c74df32c 5201 spin_unlock(&mm->page_table_lock);
1bb3630e 5202 return 0;
1da177e4
LT
5203}
5204#endif /* __PAGETABLE_PUD_FOLDED */
5205
5206#ifndef __PAGETABLE_PMD_FOLDED
5207/*
5208 * Allocate page middle directory.
872fec16 5209 * We've already handled the fast-path in-line.
1da177e4 5210 */
1bb3630e 5211int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5212{
a00cc7d9 5213 spinlock_t *ptl;
c74df32c
HD
5214 pmd_t *new = pmd_alloc_one(mm, address);
5215 if (!new)
1bb3630e 5216 return -ENOMEM;
1da177e4 5217
a00cc7d9 5218 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5219 if (!pud_present(*pud)) {
5220 mm_inc_nr_pmds(mm);
ed33b5a6 5221 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5222 pud_populate(mm, pud, new);
ed33b5a6 5223 } else { /* Another has populated it */
5e541973 5224 pmd_free(mm, new);
ed33b5a6 5225 }
a00cc7d9 5226 spin_unlock(ptl);
1bb3630e 5227 return 0;
e0f39591 5228}
1da177e4
LT
5229#endif /* __PAGETABLE_PMD_FOLDED */
5230
0e5e64c0
MS
5231/**
5232 * follow_pte - look up PTE at a user virtual address
5233 * @mm: the mm_struct of the target address space
5234 * @address: user virtual address
5235 * @ptepp: location to store found PTE
5236 * @ptlp: location to store the lock for the PTE
5237 *
5238 * On a successful return, the pointer to the PTE is stored in @ptepp;
5239 * the corresponding lock is taken and its location is stored in @ptlp.
5240 * The contents of the PTE are only stable until @ptlp is released;
5241 * any further use, if any, must be protected against invalidation
5242 * with MMU notifiers.
5243 *
5244 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5245 * should be taken for read.
5246 *
5247 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5248 * it is not a good general-purpose API.
5249 *
5250 * Return: zero on success, -ve otherwise.
5251 */
5252int follow_pte(struct mm_struct *mm, unsigned long address,
5253 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5254{
5255 pgd_t *pgd;
c2febafc 5256 p4d_t *p4d;
f8ad0f49
JW
5257 pud_t *pud;
5258 pmd_t *pmd;
5259 pte_t *ptep;
5260
5261 pgd = pgd_offset(mm, address);
5262 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5263 goto out;
5264
c2febafc
KS
5265 p4d = p4d_offset(pgd, address);
5266 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5267 goto out;
5268
5269 pud = pud_offset(p4d, address);
f8ad0f49
JW
5270 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5271 goto out;
5272
5273 pmd = pmd_offset(pud, address);
f66055ab 5274 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5275
09796395 5276 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5277 goto out;
5278
5279 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5280 if (!pte_present(*ptep))
5281 goto unlock;
5282 *ptepp = ptep;
5283 return 0;
5284unlock:
5285 pte_unmap_unlock(ptep, *ptlp);
5286out:
5287 return -EINVAL;
5288}
9fd6dad1
PB
5289EXPORT_SYMBOL_GPL(follow_pte);
5290
3b6748e2
JW
5291/**
5292 * follow_pfn - look up PFN at a user virtual address
5293 * @vma: memory mapping
5294 * @address: user virtual address
5295 * @pfn: location to store found PFN
5296 *
5297 * Only IO mappings and raw PFN mappings are allowed.
5298 *
9fd6dad1
PB
5299 * This function does not allow the caller to read the permissions
5300 * of the PTE. Do not use it.
5301 *
a862f68a 5302 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5303 */
5304int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5305 unsigned long *pfn)
5306{
5307 int ret = -EINVAL;
5308 spinlock_t *ptl;
5309 pte_t *ptep;
5310
5311 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5312 return ret;
5313
9fd6dad1 5314 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5315 if (ret)
5316 return ret;
5317 *pfn = pte_pfn(*ptep);
5318 pte_unmap_unlock(ptep, ptl);
5319 return 0;
5320}
5321EXPORT_SYMBOL(follow_pfn);
5322
28b2ee20 5323#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5324int follow_phys(struct vm_area_struct *vma,
5325 unsigned long address, unsigned int flags,
5326 unsigned long *prot, resource_size_t *phys)
28b2ee20 5327{
03668a4d 5328 int ret = -EINVAL;
28b2ee20
RR
5329 pte_t *ptep, pte;
5330 spinlock_t *ptl;
28b2ee20 5331
d87fe660 5332 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5333 goto out;
28b2ee20 5334
9fd6dad1 5335 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5336 goto out;
28b2ee20 5337 pte = *ptep;
03668a4d 5338
f6f37321 5339 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5340 goto unlock;
28b2ee20
RR
5341
5342 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5343 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5344
03668a4d 5345 ret = 0;
28b2ee20
RR
5346unlock:
5347 pte_unmap_unlock(ptep, ptl);
5348out:
d87fe660 5349 return ret;
28b2ee20
RR
5350}
5351
96667f8a
DV
5352/**
5353 * generic_access_phys - generic implementation for iomem mmap access
5354 * @vma: the vma to access
f0953a1b 5355 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5356 * @buf: buffer to read/write
5357 * @len: length of transfer
5358 * @write: set to FOLL_WRITE when writing, otherwise reading
5359 *
5360 * This is a generic implementation for &vm_operations_struct.access for an
5361 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5362 * not page based.
5363 */
28b2ee20
RR
5364int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5365 void *buf, int len, int write)
5366{
5367 resource_size_t phys_addr;
5368 unsigned long prot = 0;
2bc7273b 5369 void __iomem *maddr;
96667f8a
DV
5370 pte_t *ptep, pte;
5371 spinlock_t *ptl;
5372 int offset = offset_in_page(addr);
5373 int ret = -EINVAL;
5374
5375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5376 return -EINVAL;
5377
5378retry:
e913a8cd 5379 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5380 return -EINVAL;
5381 pte = *ptep;
5382 pte_unmap_unlock(ptep, ptl);
28b2ee20 5383
96667f8a
DV
5384 prot = pgprot_val(pte_pgprot(pte));
5385 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5386
5387 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5388 return -EINVAL;
5389
9cb12d7b 5390 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5391 if (!maddr)
5392 return -ENOMEM;
5393
e913a8cd 5394 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5395 goto out_unmap;
5396
5397 if (!pte_same(pte, *ptep)) {
5398 pte_unmap_unlock(ptep, ptl);
5399 iounmap(maddr);
5400
5401 goto retry;
5402 }
5403
28b2ee20
RR
5404 if (write)
5405 memcpy_toio(maddr + offset, buf, len);
5406 else
5407 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5408 ret = len;
5409 pte_unmap_unlock(ptep, ptl);
5410out_unmap:
28b2ee20
RR
5411 iounmap(maddr);
5412
96667f8a 5413 return ret;
28b2ee20 5414}
5a73633e 5415EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5416#endif
5417
0ec76a11 5418/*
d3f5ffca 5419 * Access another process' address space as given in mm.
0ec76a11 5420 */
d3f5ffca
JH
5421int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5422 int len, unsigned int gup_flags)
0ec76a11 5423{
0ec76a11 5424 struct vm_area_struct *vma;
0ec76a11 5425 void *old_buf = buf;
442486ec 5426 int write = gup_flags & FOLL_WRITE;
0ec76a11 5427
d8ed45c5 5428 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5429 return 0;
5430
183ff22b 5431 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5432 while (len) {
5433 int bytes, ret, offset;
5434 void *maddr;
28b2ee20 5435 struct page *page = NULL;
0ec76a11 5436
64019a2e 5437 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5438 gup_flags, &page, &vma, NULL);
28b2ee20 5439 if (ret <= 0) {
dbffcd03
RR
5440#ifndef CONFIG_HAVE_IOREMAP_PROT
5441 break;
5442#else
28b2ee20
RR
5443 /*
5444 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5445 * we can access using slightly different code.
5446 */
3e418f98
LH
5447 vma = vma_lookup(mm, addr);
5448 if (!vma)
28b2ee20
RR
5449 break;
5450 if (vma->vm_ops && vma->vm_ops->access)
5451 ret = vma->vm_ops->access(vma, addr, buf,
5452 len, write);
5453 if (ret <= 0)
28b2ee20
RR
5454 break;
5455 bytes = ret;
dbffcd03 5456#endif
0ec76a11 5457 } else {
28b2ee20
RR
5458 bytes = len;
5459 offset = addr & (PAGE_SIZE-1);
5460 if (bytes > PAGE_SIZE-offset)
5461 bytes = PAGE_SIZE-offset;
5462
5463 maddr = kmap(page);
5464 if (write) {
5465 copy_to_user_page(vma, page, addr,
5466 maddr + offset, buf, bytes);
5467 set_page_dirty_lock(page);
5468 } else {
5469 copy_from_user_page(vma, page, addr,
5470 buf, maddr + offset, bytes);
5471 }
5472 kunmap(page);
09cbfeaf 5473 put_page(page);
0ec76a11 5474 }
0ec76a11
DH
5475 len -= bytes;
5476 buf += bytes;
5477 addr += bytes;
5478 }
d8ed45c5 5479 mmap_read_unlock(mm);
0ec76a11
DH
5480
5481 return buf - old_buf;
5482}
03252919 5483
5ddd36b9 5484/**
ae91dbfc 5485 * access_remote_vm - access another process' address space
5ddd36b9
SW
5486 * @mm: the mm_struct of the target address space
5487 * @addr: start address to access
5488 * @buf: source or destination buffer
5489 * @len: number of bytes to transfer
6347e8d5 5490 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5491 *
5492 * The caller must hold a reference on @mm.
a862f68a
MR
5493 *
5494 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5495 */
5496int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5497 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5498{
d3f5ffca 5499 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5500}
5501
206cb636
SW
5502/*
5503 * Access another process' address space.
5504 * Source/target buffer must be kernel space,
5505 * Do not walk the page table directly, use get_user_pages
5506 */
5507int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5508 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5509{
5510 struct mm_struct *mm;
5511 int ret;
5512
5513 mm = get_task_mm(tsk);
5514 if (!mm)
5515 return 0;
5516
d3f5ffca 5517 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5518
206cb636
SW
5519 mmput(mm);
5520
5521 return ret;
5522}
fcd35857 5523EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5524
03252919
AK
5525/*
5526 * Print the name of a VMA.
5527 */
5528void print_vma_addr(char *prefix, unsigned long ip)
5529{
5530 struct mm_struct *mm = current->mm;
5531 struct vm_area_struct *vma;
5532
e8bff74a 5533 /*
0a7f682d 5534 * we might be running from an atomic context so we cannot sleep
e8bff74a 5535 */
d8ed45c5 5536 if (!mmap_read_trylock(mm))
e8bff74a
IM
5537 return;
5538
03252919
AK
5539 vma = find_vma(mm, ip);
5540 if (vma && vma->vm_file) {
5541 struct file *f = vma->vm_file;
0a7f682d 5542 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5543 if (buf) {
2fbc57c5 5544 char *p;
03252919 5545
9bf39ab2 5546 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5547 if (IS_ERR(p))
5548 p = "?";
2fbc57c5 5549 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5550 vma->vm_start,
5551 vma->vm_end - vma->vm_start);
5552 free_page((unsigned long)buf);
5553 }
5554 }
d8ed45c5 5555 mmap_read_unlock(mm);
03252919 5556}
3ee1afa3 5557
662bbcb2 5558#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5559void __might_fault(const char *file, int line)
3ee1afa3 5560{
9ec23531 5561 if (pagefault_disabled())
662bbcb2 5562 return;
42a38756 5563 __might_sleep(file, line);
9ec23531 5564#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5565 if (current->mm)
da1c55f1 5566 might_lock_read(&current->mm->mmap_lock);
9ec23531 5567#endif
3ee1afa3 5568}
9ec23531 5569EXPORT_SYMBOL(__might_fault);
3ee1afa3 5570#endif
47ad8475
AA
5571
5572#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5573/*
5574 * Process all subpages of the specified huge page with the specified
5575 * operation. The target subpage will be processed last to keep its
5576 * cache lines hot.
5577 */
5578static inline void process_huge_page(
5579 unsigned long addr_hint, unsigned int pages_per_huge_page,
5580 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5581 void *arg)
47ad8475 5582{
c79b57e4
HY
5583 int i, n, base, l;
5584 unsigned long addr = addr_hint &
5585 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5586
c6ddfb6c 5587 /* Process target subpage last to keep its cache lines hot */
47ad8475 5588 might_sleep();
c79b57e4
HY
5589 n = (addr_hint - addr) / PAGE_SIZE;
5590 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5591 /* If target subpage in first half of huge page */
c79b57e4
HY
5592 base = 0;
5593 l = n;
c6ddfb6c 5594 /* Process subpages at the end of huge page */
c79b57e4
HY
5595 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5596 cond_resched();
c6ddfb6c 5597 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5598 }
5599 } else {
c6ddfb6c 5600 /* If target subpage in second half of huge page */
c79b57e4
HY
5601 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5602 l = pages_per_huge_page - n;
c6ddfb6c 5603 /* Process subpages at the begin of huge page */
c79b57e4
HY
5604 for (i = 0; i < base; i++) {
5605 cond_resched();
c6ddfb6c 5606 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5607 }
5608 }
5609 /*
c6ddfb6c
HY
5610 * Process remaining subpages in left-right-left-right pattern
5611 * towards the target subpage
c79b57e4
HY
5612 */
5613 for (i = 0; i < l; i++) {
5614 int left_idx = base + i;
5615 int right_idx = base + 2 * l - 1 - i;
5616
5617 cond_resched();
c6ddfb6c 5618 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5619 cond_resched();
c6ddfb6c 5620 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5621 }
5622}
5623
c6ddfb6c
HY
5624static void clear_gigantic_page(struct page *page,
5625 unsigned long addr,
5626 unsigned int pages_per_huge_page)
5627{
5628 int i;
5629 struct page *p = page;
5630
5631 might_sleep();
5632 for (i = 0; i < pages_per_huge_page;
5633 i++, p = mem_map_next(p, page, i)) {
5634 cond_resched();
5635 clear_user_highpage(p, addr + i * PAGE_SIZE);
5636 }
5637}
5638
5639static void clear_subpage(unsigned long addr, int idx, void *arg)
5640{
5641 struct page *page = arg;
5642
5643 clear_user_highpage(page + idx, addr);
5644}
5645
5646void clear_huge_page(struct page *page,
5647 unsigned long addr_hint, unsigned int pages_per_huge_page)
5648{
5649 unsigned long addr = addr_hint &
5650 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5651
5652 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5653 clear_gigantic_page(page, addr, pages_per_huge_page);
5654 return;
5655 }
5656
5657 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5658}
5659
47ad8475
AA
5660static void copy_user_gigantic_page(struct page *dst, struct page *src,
5661 unsigned long addr,
5662 struct vm_area_struct *vma,
5663 unsigned int pages_per_huge_page)
5664{
5665 int i;
5666 struct page *dst_base = dst;
5667 struct page *src_base = src;
5668
5669 for (i = 0; i < pages_per_huge_page; ) {
5670 cond_resched();
5671 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5672
5673 i++;
5674 dst = mem_map_next(dst, dst_base, i);
5675 src = mem_map_next(src, src_base, i);
5676 }
5677}
5678
c9f4cd71
HY
5679struct copy_subpage_arg {
5680 struct page *dst;
5681 struct page *src;
5682 struct vm_area_struct *vma;
5683};
5684
5685static void copy_subpage(unsigned long addr, int idx, void *arg)
5686{
5687 struct copy_subpage_arg *copy_arg = arg;
5688
5689 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5690 addr, copy_arg->vma);
5691}
5692
47ad8475 5693void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5694 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5695 unsigned int pages_per_huge_page)
5696{
c9f4cd71
HY
5697 unsigned long addr = addr_hint &
5698 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5699 struct copy_subpage_arg arg = {
5700 .dst = dst,
5701 .src = src,
5702 .vma = vma,
5703 };
47ad8475
AA
5704
5705 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5706 copy_user_gigantic_page(dst, src, addr, vma,
5707 pages_per_huge_page);
5708 return;
5709 }
5710
c9f4cd71 5711 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5712}
fa4d75c1
MK
5713
5714long copy_huge_page_from_user(struct page *dst_page,
5715 const void __user *usr_src,
810a56b9
MK
5716 unsigned int pages_per_huge_page,
5717 bool allow_pagefault)
fa4d75c1 5718{
fa4d75c1
MK
5719 void *page_kaddr;
5720 unsigned long i, rc = 0;
5721 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5722 struct page *subpage = dst_page;
fa4d75c1 5723
3272cfc2
MK
5724 for (i = 0; i < pages_per_huge_page;
5725 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5726 if (allow_pagefault)
3272cfc2 5727 page_kaddr = kmap(subpage);
810a56b9 5728 else
3272cfc2 5729 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5730 rc = copy_from_user(page_kaddr,
b063e374 5731 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5732 if (allow_pagefault)
3272cfc2 5733 kunmap(subpage);
810a56b9
MK
5734 else
5735 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5736
5737 ret_val -= (PAGE_SIZE - rc);
5738 if (rc)
5739 break;
5740
e763243c
MS
5741 flush_dcache_page(subpage);
5742
fa4d75c1
MK
5743 cond_resched();
5744 }
5745 return ret_val;
5746}
47ad8475 5747#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5748
40b64acd 5749#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5750
5751static struct kmem_cache *page_ptl_cachep;
5752
5753void __init ptlock_cache_init(void)
5754{
5755 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5756 SLAB_PANIC, NULL);
5757}
5758
539edb58 5759bool ptlock_alloc(struct page *page)
49076ec2
KS
5760{
5761 spinlock_t *ptl;
5762
b35f1819 5763 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5764 if (!ptl)
5765 return false;
539edb58 5766 page->ptl = ptl;
49076ec2
KS
5767 return true;
5768}
5769
539edb58 5770void ptlock_free(struct page *page)
49076ec2 5771{
b35f1819 5772 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5773}
5774#endif