hugetlb: do not update address in huge_pmd_unshare
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728 88#include "internal.h"
014bb1de 89#include "swap.h"
42b77728 90
af27d940 91#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 92#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
93#endif
94
a9ee6cf5 95#ifndef CONFIG_NUMA
1da177e4 96unsigned long max_mapnr;
1da177e4 97EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
98
99struct page *mem_map;
1da177e4
LT
100EXPORT_SYMBOL(mem_map);
101#endif
102
5c041f5d
PX
103static vm_fault_t do_fault(struct vm_fault *vmf);
104
1da177e4
LT
105/*
106 * A number of key systems in x86 including ioremap() rely on the assumption
107 * that high_memory defines the upper bound on direct map memory, then end
108 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
109 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
110 * and ZONE_HIGHMEM.
111 */
166f61b9 112void *high_memory;
1da177e4 113EXPORT_SYMBOL(high_memory);
1da177e4 114
32a93233
IM
115/*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121int randomize_va_space __read_mostly =
122#ifdef CONFIG_COMPAT_BRK
123 1;
124#else
125 2;
126#endif
a62eaf15 127
83d116c5
JH
128#ifndef arch_faults_on_old_pte
129static inline bool arch_faults_on_old_pte(void)
130{
131 /*
132 * Those arches which don't have hw access flag feature need to
133 * implement their own helper. By default, "true" means pagefault
134 * will be hit on old pte.
135 */
136 return true;
137}
138#endif
139
46bdb427
WD
140#ifndef arch_wants_old_prefaulted_pte
141static inline bool arch_wants_old_prefaulted_pte(void)
142{
143 /*
144 * Transitioning a PTE from 'old' to 'young' can be expensive on
145 * some architectures, even if it's performed in hardware. By
146 * default, "false" means prefaulted entries will be 'young'.
147 */
148 return false;
149}
150#endif
151
a62eaf15
AK
152static int __init disable_randmaps(char *s)
153{
154 randomize_va_space = 0;
9b41046c 155 return 1;
a62eaf15
AK
156}
157__setup("norandmaps", disable_randmaps);
158
62eede62 159unsigned long zero_pfn __read_mostly;
0b70068e
AB
160EXPORT_SYMBOL(zero_pfn);
161
166f61b9
TH
162unsigned long highest_memmap_pfn __read_mostly;
163
a13ea5b7
HD
164/*
165 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
166 */
167static int __init init_zero_pfn(void)
168{
169 zero_pfn = page_to_pfn(ZERO_PAGE(0));
170 return 0;
171}
e720e7d0 172early_initcall(init_zero_pfn);
a62eaf15 173
e4dcad20 174void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 175{
e4dcad20 176 trace_rss_stat(mm, member, count);
b3d1411b 177}
d559db08 178
34e55232
KH
179#if defined(SPLIT_RSS_COUNTING)
180
ea48cf78 181void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
182{
183 int i;
184
185 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
186 if (current->rss_stat.count[i]) {
187 add_mm_counter(mm, i, current->rss_stat.count[i]);
188 current->rss_stat.count[i] = 0;
34e55232
KH
189 }
190 }
05af2e10 191 current->rss_stat.events = 0;
34e55232
KH
192}
193
194static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
195{
196 struct task_struct *task = current;
197
198 if (likely(task->mm == mm))
199 task->rss_stat.count[member] += val;
200 else
201 add_mm_counter(mm, member, val);
202}
203#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
204#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
205
206/* sync counter once per 64 page faults */
207#define TASK_RSS_EVENTS_THRESH (64)
208static void check_sync_rss_stat(struct task_struct *task)
209{
210 if (unlikely(task != current))
211 return;
212 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 213 sync_mm_rss(task->mm);
34e55232 214}
9547d01b 215#else /* SPLIT_RSS_COUNTING */
34e55232
KH
216
217#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
218#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
219
220static void check_sync_rss_stat(struct task_struct *task)
221{
222}
223
9547d01b
PZ
224#endif /* SPLIT_RSS_COUNTING */
225
1da177e4
LT
226/*
227 * Note: this doesn't free the actual pages themselves. That
228 * has been handled earlier when unmapping all the memory regions.
229 */
9e1b32ca
BH
230static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
231 unsigned long addr)
1da177e4 232{
2f569afd 233 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 234 pmd_clear(pmd);
9e1b32ca 235 pte_free_tlb(tlb, token, addr);
c4812909 236 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
237}
238
e0da382c
HD
239static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
240 unsigned long addr, unsigned long end,
241 unsigned long floor, unsigned long ceiling)
1da177e4
LT
242{
243 pmd_t *pmd;
244 unsigned long next;
e0da382c 245 unsigned long start;
1da177e4 246
e0da382c 247 start = addr;
1da177e4 248 pmd = pmd_offset(pud, addr);
1da177e4
LT
249 do {
250 next = pmd_addr_end(addr, end);
251 if (pmd_none_or_clear_bad(pmd))
252 continue;
9e1b32ca 253 free_pte_range(tlb, pmd, addr);
1da177e4
LT
254 } while (pmd++, addr = next, addr != end);
255
e0da382c
HD
256 start &= PUD_MASK;
257 if (start < floor)
258 return;
259 if (ceiling) {
260 ceiling &= PUD_MASK;
261 if (!ceiling)
262 return;
1da177e4 263 }
e0da382c
HD
264 if (end - 1 > ceiling - 1)
265 return;
266
267 pmd = pmd_offset(pud, start);
268 pud_clear(pud);
9e1b32ca 269 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 270 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
271}
272
c2febafc 273static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
274 unsigned long addr, unsigned long end,
275 unsigned long floor, unsigned long ceiling)
1da177e4
LT
276{
277 pud_t *pud;
278 unsigned long next;
e0da382c 279 unsigned long start;
1da177e4 280
e0da382c 281 start = addr;
c2febafc 282 pud = pud_offset(p4d, addr);
1da177e4
LT
283 do {
284 next = pud_addr_end(addr, end);
285 if (pud_none_or_clear_bad(pud))
286 continue;
e0da382c 287 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
288 } while (pud++, addr = next, addr != end);
289
c2febafc
KS
290 start &= P4D_MASK;
291 if (start < floor)
292 return;
293 if (ceiling) {
294 ceiling &= P4D_MASK;
295 if (!ceiling)
296 return;
297 }
298 if (end - 1 > ceiling - 1)
299 return;
300
301 pud = pud_offset(p4d, start);
302 p4d_clear(p4d);
303 pud_free_tlb(tlb, pud, start);
b4e98d9a 304 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
305}
306
307static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
308 unsigned long addr, unsigned long end,
309 unsigned long floor, unsigned long ceiling)
310{
311 p4d_t *p4d;
312 unsigned long next;
313 unsigned long start;
314
315 start = addr;
316 p4d = p4d_offset(pgd, addr);
317 do {
318 next = p4d_addr_end(addr, end);
319 if (p4d_none_or_clear_bad(p4d))
320 continue;
321 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
322 } while (p4d++, addr = next, addr != end);
323
e0da382c
HD
324 start &= PGDIR_MASK;
325 if (start < floor)
326 return;
327 if (ceiling) {
328 ceiling &= PGDIR_MASK;
329 if (!ceiling)
330 return;
1da177e4 331 }
e0da382c
HD
332 if (end - 1 > ceiling - 1)
333 return;
334
c2febafc 335 p4d = p4d_offset(pgd, start);
e0da382c 336 pgd_clear(pgd);
c2febafc 337 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
338}
339
340/*
e0da382c 341 * This function frees user-level page tables of a process.
1da177e4 342 */
42b77728 343void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
1da177e4
LT
346{
347 pgd_t *pgd;
348 unsigned long next;
e0da382c
HD
349
350 /*
351 * The next few lines have given us lots of grief...
352 *
353 * Why are we testing PMD* at this top level? Because often
354 * there will be no work to do at all, and we'd prefer not to
355 * go all the way down to the bottom just to discover that.
356 *
357 * Why all these "- 1"s? Because 0 represents both the bottom
358 * of the address space and the top of it (using -1 for the
359 * top wouldn't help much: the masks would do the wrong thing).
360 * The rule is that addr 0 and floor 0 refer to the bottom of
361 * the address space, but end 0 and ceiling 0 refer to the top
362 * Comparisons need to use "end - 1" and "ceiling - 1" (though
363 * that end 0 case should be mythical).
364 *
365 * Wherever addr is brought up or ceiling brought down, we must
366 * be careful to reject "the opposite 0" before it confuses the
367 * subsequent tests. But what about where end is brought down
368 * by PMD_SIZE below? no, end can't go down to 0 there.
369 *
370 * Whereas we round start (addr) and ceiling down, by different
371 * masks at different levels, in order to test whether a table
372 * now has no other vmas using it, so can be freed, we don't
373 * bother to round floor or end up - the tests don't need that.
374 */
1da177e4 375
e0da382c
HD
376 addr &= PMD_MASK;
377 if (addr < floor) {
378 addr += PMD_SIZE;
379 if (!addr)
380 return;
381 }
382 if (ceiling) {
383 ceiling &= PMD_MASK;
384 if (!ceiling)
385 return;
386 }
387 if (end - 1 > ceiling - 1)
388 end -= PMD_SIZE;
389 if (addr > end - 1)
390 return;
07e32661
AK
391 /*
392 * We add page table cache pages with PAGE_SIZE,
393 * (see pte_free_tlb()), flush the tlb if we need
394 */
ed6a7935 395 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 396 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
397 do {
398 next = pgd_addr_end(addr, end);
399 if (pgd_none_or_clear_bad(pgd))
400 continue;
c2febafc 401 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 402 } while (pgd++, addr = next, addr != end);
e0da382c
HD
403}
404
42b77728 405void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 406 unsigned long floor, unsigned long ceiling)
e0da382c
HD
407{
408 while (vma) {
409 struct vm_area_struct *next = vma->vm_next;
410 unsigned long addr = vma->vm_start;
411
8f4f8c16 412 /*
25d9e2d1 413 * Hide vma from rmap and truncate_pagecache before freeing
414 * pgtables
8f4f8c16 415 */
5beb4930 416 unlink_anon_vmas(vma);
8f4f8c16
HD
417 unlink_file_vma(vma);
418
9da61aef 419 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 420 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 421 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
422 } else {
423 /*
424 * Optimization: gather nearby vmas into one call down
425 */
426 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 427 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
428 vma = next;
429 next = vma->vm_next;
5beb4930 430 unlink_anon_vmas(vma);
8f4f8c16 431 unlink_file_vma(vma);
3bf5ee95
HD
432 }
433 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 434 floor, next ? next->vm_start : ceiling);
3bf5ee95 435 }
e0da382c
HD
436 vma = next;
437 }
1da177e4
LT
438}
439
03c4f204 440void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 441{
03c4f204 442 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 443
8ac1f832 444 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 445 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
446 /*
447 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 * visible before the pte is made visible to other CPUs by being
449 * put into page tables.
450 *
451 * The other side of the story is the pointer chasing in the page
452 * table walking code (when walking the page table without locking;
453 * ie. most of the time). Fortunately, these data accesses consist
454 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 * being the notable exception) will already guarantee loads are
456 * seen in-order. See the alpha page table accessors for the
457 * smp_rmb() barriers in page table walking code.
458 */
459 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
460 pmd_populate(mm, pmd, *pte);
461 *pte = NULL;
4b471e88 462 }
c4088ebd 463 spin_unlock(ptl);
03c4f204
QZ
464}
465
4cf58924 466int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 467{
4cf58924 468 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
469 if (!new)
470 return -ENOMEM;
471
03c4f204 472 pmd_install(mm, pmd, &new);
2f569afd
MS
473 if (new)
474 pte_free(mm, new);
1bb3630e 475 return 0;
1da177e4
LT
476}
477
4cf58924 478int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 479{
4cf58924 480 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
481 if (!new)
482 return -ENOMEM;
483
484 spin_lock(&init_mm.page_table_lock);
8ac1f832 485 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 486 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 487 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 488 new = NULL;
4b471e88 489 }
1bb3630e 490 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
491 if (new)
492 pte_free_kernel(&init_mm, new);
1bb3630e 493 return 0;
1da177e4
LT
494}
495
d559db08
KH
496static inline void init_rss_vec(int *rss)
497{
498 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499}
500
501static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 502{
d559db08
KH
503 int i;
504
34e55232 505 if (current->mm == mm)
05af2e10 506 sync_mm_rss(mm);
d559db08
KH
507 for (i = 0; i < NR_MM_COUNTERS; i++)
508 if (rss[i])
509 add_mm_counter(mm, i, rss[i]);
ae859762
HD
510}
511
b5810039 512/*
6aab341e
LT
513 * This function is called to print an error when a bad pte
514 * is found. For example, we might have a PFN-mapped pte in
515 * a region that doesn't allow it.
b5810039
NP
516 *
517 * The calling function must still handle the error.
518 */
3dc14741
HD
519static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 pte_t pte, struct page *page)
b5810039 521{
3dc14741 522 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
523 p4d_t *p4d = p4d_offset(pgd, addr);
524 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
525 pmd_t *pmd = pmd_offset(pud, addr);
526 struct address_space *mapping;
527 pgoff_t index;
d936cf9b
HD
528 static unsigned long resume;
529 static unsigned long nr_shown;
530 static unsigned long nr_unshown;
531
532 /*
533 * Allow a burst of 60 reports, then keep quiet for that minute;
534 * or allow a steady drip of one report per second.
535 */
536 if (nr_shown == 60) {
537 if (time_before(jiffies, resume)) {
538 nr_unshown++;
539 return;
540 }
541 if (nr_unshown) {
1170532b
JP
542 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 nr_unshown);
d936cf9b
HD
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
3dc14741
HD
550
551 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 index = linear_page_index(vma, addr);
553
1170532b
JP
554 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
555 current->comm,
556 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 557 if (page)
f0b791a3 558 dump_page(page, "bad pte");
6aa9b8b2 559 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 560 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 561 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
562 vma->vm_file,
563 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 565 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 566 dump_stack();
373d4d09 567 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
568}
569
ee498ed7 570/*
7e675137 571 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 572 *
7e675137
NP
573 * "Special" mappings do not wish to be associated with a "struct page" (either
574 * it doesn't exist, or it exists but they don't want to touch it). In this
575 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 576 *
7e675137
NP
577 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578 * pte bit, in which case this function is trivial. Secondly, an architecture
579 * may not have a spare pte bit, which requires a more complicated scheme,
580 * described below.
581 *
582 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583 * special mapping (even if there are underlying and valid "struct pages").
584 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 585 *
b379d790
JH
586 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
588 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589 * mapping will always honor the rule
6aab341e
LT
590 *
591 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592 *
7e675137
NP
593 * And for normal mappings this is false.
594 *
595 * This restricts such mappings to be a linear translation from virtual address
596 * to pfn. To get around this restriction, we allow arbitrary mappings so long
597 * as the vma is not a COW mapping; in that case, we know that all ptes are
598 * special (because none can have been COWed).
b379d790 599 *
b379d790 600 *
7e675137 601 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
602 *
603 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604 * page" backing, however the difference is that _all_ pages with a struct
605 * page (that is, those where pfn_valid is true) are refcounted and considered
606 * normal pages by the VM. The disadvantage is that pages are refcounted
607 * (which can be slower and simply not an option for some PFNMAP users). The
608 * advantage is that we don't have to follow the strict linearity rule of
609 * PFNMAP mappings in order to support COWable mappings.
610 *
ee498ed7 611 */
25b2995a
CH
612struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 pte_t pte)
ee498ed7 614{
22b31eec 615 unsigned long pfn = pte_pfn(pte);
7e675137 616
00b3a331 617 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 618 if (likely(!pte_special(pte)))
22b31eec 619 goto check_pfn;
667a0a06
DV
620 if (vma->vm_ops && vma->vm_ops->find_special_page)
621 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
622 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 return NULL;
df6ad698
JG
624 if (is_zero_pfn(pfn))
625 return NULL;
e1fb4a08 626 if (pte_devmap(pte))
3218f871
AS
627 /*
628 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 * and will have refcounts incremented on their struct pages
630 * when they are inserted into PTEs, thus they are safe to
631 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 */
e1fb4a08
DJ
635 return NULL;
636
df6ad698 637 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
638 return NULL;
639 }
640
00b3a331 641 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 642
b379d790
JH
643 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 if (vma->vm_flags & VM_MIXEDMAP) {
645 if (!pfn_valid(pfn))
646 return NULL;
647 goto out;
648 } else {
7e675137
NP
649 unsigned long off;
650 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
651 if (pfn == vma->vm_pgoff + off)
652 return NULL;
653 if (!is_cow_mapping(vma->vm_flags))
654 return NULL;
655 }
6aab341e
LT
656 }
657
b38af472
HD
658 if (is_zero_pfn(pfn))
659 return NULL;
00b3a331 660
22b31eec
HD
661check_pfn:
662 if (unlikely(pfn > highest_memmap_pfn)) {
663 print_bad_pte(vma, addr, pte, NULL);
664 return NULL;
665 }
6aab341e
LT
666
667 /*
7e675137 668 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 669 * eg. VDSO mappings can cause them to exist.
6aab341e 670 */
b379d790 671out:
6aab341e 672 return pfn_to_page(pfn);
ee498ed7
HD
673}
674
28093f9f
GS
675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
676struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 pmd_t pmd)
678{
679 unsigned long pfn = pmd_pfn(pmd);
680
681 /*
682 * There is no pmd_special() but there may be special pmds, e.g.
683 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 684 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
685 */
686 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 if (vma->vm_flags & VM_MIXEDMAP) {
688 if (!pfn_valid(pfn))
689 return NULL;
690 goto out;
691 } else {
692 unsigned long off;
693 off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 if (pfn == vma->vm_pgoff + off)
695 return NULL;
696 if (!is_cow_mapping(vma->vm_flags))
697 return NULL;
698 }
699 }
700
e1fb4a08
DJ
701 if (pmd_devmap(pmd))
702 return NULL;
3cde287b 703 if (is_huge_zero_pmd(pmd))
28093f9f
GS
704 return NULL;
705 if (unlikely(pfn > highest_memmap_pfn))
706 return NULL;
707
708 /*
709 * NOTE! We still have PageReserved() pages in the page tables.
710 * eg. VDSO mappings can cause them to exist.
711 */
712out:
713 return pfn_to_page(pfn);
714}
715#endif
716
b756a3b5
AP
717static void restore_exclusive_pte(struct vm_area_struct *vma,
718 struct page *page, unsigned long address,
719 pte_t *ptep)
720{
721 pte_t pte;
722 swp_entry_t entry;
723
724 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 if (pte_swp_soft_dirty(*ptep))
726 pte = pte_mksoft_dirty(pte);
727
728 entry = pte_to_swp_entry(*ptep);
729 if (pte_swp_uffd_wp(*ptep))
730 pte = pte_mkuffd_wp(pte);
731 else if (is_writable_device_exclusive_entry(entry))
732 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733
6c287605
DH
734 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735
b756a3b5
AP
736 /*
737 * No need to take a page reference as one was already
738 * created when the swap entry was made.
739 */
740 if (PageAnon(page))
f1e2db12 741 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
742 else
743 /*
744 * Currently device exclusive access only supports anonymous
745 * memory so the entry shouldn't point to a filebacked page.
746 */
747 WARN_ON_ONCE(!PageAnon(page));
748
1eba86c0
PT
749 set_pte_at(vma->vm_mm, address, ptep, pte);
750
b756a3b5
AP
751 /*
752 * No need to invalidate - it was non-present before. However
753 * secondary CPUs may have mappings that need invalidating.
754 */
755 update_mmu_cache(vma, address, ptep);
756}
757
758/*
759 * Tries to restore an exclusive pte if the page lock can be acquired without
760 * sleeping.
761 */
762static int
763try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 unsigned long addr)
765{
766 swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 struct page *page = pfn_swap_entry_to_page(entry);
768
769 if (trylock_page(page)) {
770 restore_exclusive_pte(vma, page, addr, src_pte);
771 unlock_page(page);
772 return 0;
773 }
774
775 return -EBUSY;
776}
777
1da177e4
LT
778/*
779 * copy one vm_area from one task to the other. Assumes the page tables
780 * already present in the new task to be cleared in the whole range
781 * covered by this vma.
1da177e4
LT
782 */
783
df3a57d1
LT
784static unsigned long
785copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
786 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 788{
8f34f1ea 789 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
790 pte_t pte = *src_pte;
791 struct page *page;
df3a57d1
LT
792 swp_entry_t entry = pte_to_swp_entry(pte);
793
794 if (likely(!non_swap_entry(entry))) {
795 if (swap_duplicate(entry) < 0)
9a5cc85c 796 return -EIO;
df3a57d1
LT
797
798 /* make sure dst_mm is on swapoff's mmlist. */
799 if (unlikely(list_empty(&dst_mm->mmlist))) {
800 spin_lock(&mmlist_lock);
801 if (list_empty(&dst_mm->mmlist))
802 list_add(&dst_mm->mmlist,
803 &src_mm->mmlist);
804 spin_unlock(&mmlist_lock);
805 }
1493a191
DH
806 /* Mark the swap entry as shared. */
807 if (pte_swp_exclusive(*src_pte)) {
808 pte = pte_swp_clear_exclusive(*src_pte);
809 set_pte_at(src_mm, addr, src_pte, pte);
810 }
df3a57d1
LT
811 rss[MM_SWAPENTS]++;
812 } else if (is_migration_entry(entry)) {
af5cdaf8 813 page = pfn_swap_entry_to_page(entry);
1da177e4 814
df3a57d1 815 rss[mm_counter(page)]++;
5042db43 816
6c287605 817 if (!is_readable_migration_entry(entry) &&
df3a57d1 818 is_cow_mapping(vm_flags)) {
5042db43 819 /*
6c287605
DH
820 * COW mappings require pages in both parent and child
821 * to be set to read. A previously exclusive entry is
822 * now shared.
5042db43 823 */
4dd845b5
AP
824 entry = make_readable_migration_entry(
825 swp_offset(entry));
df3a57d1
LT
826 pte = swp_entry_to_pte(entry);
827 if (pte_swp_soft_dirty(*src_pte))
828 pte = pte_swp_mksoft_dirty(pte);
829 if (pte_swp_uffd_wp(*src_pte))
830 pte = pte_swp_mkuffd_wp(pte);
831 set_pte_at(src_mm, addr, src_pte, pte);
832 }
833 } else if (is_device_private_entry(entry)) {
af5cdaf8 834 page = pfn_swap_entry_to_page(entry);
5042db43 835
df3a57d1
LT
836 /*
837 * Update rss count even for unaddressable pages, as
838 * they should treated just like normal pages in this
839 * respect.
840 *
841 * We will likely want to have some new rss counters
842 * for unaddressable pages, at some point. But for now
843 * keep things as they are.
844 */
845 get_page(page);
846 rss[mm_counter(page)]++;
fb3d824d
DH
847 /* Cannot fail as these pages cannot get pinned. */
848 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
849
850 /*
851 * We do not preserve soft-dirty information, because so
852 * far, checkpoint/restore is the only feature that
853 * requires that. And checkpoint/restore does not work
854 * when a device driver is involved (you cannot easily
855 * save and restore device driver state).
856 */
4dd845b5 857 if (is_writable_device_private_entry(entry) &&
df3a57d1 858 is_cow_mapping(vm_flags)) {
4dd845b5
AP
859 entry = make_readable_device_private_entry(
860 swp_offset(entry));
df3a57d1
LT
861 pte = swp_entry_to_pte(entry);
862 if (pte_swp_uffd_wp(*src_pte))
863 pte = pte_swp_mkuffd_wp(pte);
864 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 865 }
b756a3b5
AP
866 } else if (is_device_exclusive_entry(entry)) {
867 /*
868 * Make device exclusive entries present by restoring the
869 * original entry then copying as for a present pte. Device
870 * exclusive entries currently only support private writable
871 * (ie. COW) mappings.
872 */
873 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 return -EBUSY;
876 return -ENOENT;
c56d1b62
PX
877 } else if (is_pte_marker_entry(entry)) {
878 /*
879 * We're copying the pgtable should only because dst_vma has
880 * uffd-wp enabled, do sanity check.
881 */
882 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 set_pte_at(dst_mm, addr, dst_pte, pte);
884 return 0;
1da177e4 885 }
8f34f1ea
PX
886 if (!userfaultfd_wp(dst_vma))
887 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
888 set_pte_at(dst_mm, addr, dst_pte, pte);
889 return 0;
890}
891
70e806e4 892/*
b51ad4f8 893 * Copy a present and normal page.
70e806e4 894 *
b51ad4f8
DH
895 * NOTE! The usual case is that this isn't required;
896 * instead, the caller can just increase the page refcount
897 * and re-use the pte the traditional way.
70e806e4
PX
898 *
899 * And if we need a pre-allocated page but don't yet have
900 * one, return a negative error to let the preallocation
901 * code know so that it can do so outside the page table
902 * lock.
903 */
904static inline int
c78f4636
PX
905copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 907 struct page **prealloc, struct page *page)
70e806e4
PX
908{
909 struct page *new_page;
b51ad4f8 910 pte_t pte;
70e806e4 911
70e806e4
PX
912 new_page = *prealloc;
913 if (!new_page)
914 return -EAGAIN;
915
916 /*
917 * We have a prealloc page, all good! Take it
918 * over and copy the page & arm it.
919 */
920 *prealloc = NULL;
c78f4636 921 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 922 __SetPageUptodate(new_page);
40f2bbf7 923 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 924 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
925 rss[mm_counter(new_page)]++;
926
927 /* All done, just insert the new page copy in the child */
c78f4636
PX
928 pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
930 if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 /* Uffd-wp needs to be delivered to dest pte as well */
932 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 933 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
934 return 0;
935}
936
937/*
938 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
939 * is required to copy this pte.
940 */
941static inline int
c78f4636
PX
942copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 struct page **prealloc)
df3a57d1 945{
c78f4636
PX
946 struct mm_struct *src_mm = src_vma->vm_mm;
947 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
948 pte_t pte = *src_pte;
949 struct page *page;
950
c78f4636 951 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 952 if (page && PageAnon(page)) {
b51ad4f8
DH
953 /*
954 * If this page may have been pinned by the parent process,
955 * copy the page immediately for the child so that we'll always
956 * guarantee the pinned page won't be randomly replaced in the
957 * future.
958 */
70e806e4 959 get_page(page);
fb3d824d
DH
960 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 /* Page maybe pinned, we have to copy. */
962 put_page(page);
963 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 addr, rss, prealloc, page);
965 }
966 rss[mm_counter(page)]++;
b51ad4f8 967 } else if (page) {
70e806e4 968 get_page(page);
fb3d824d 969 page_dup_file_rmap(page, false);
70e806e4
PX
970 rss[mm_counter(page)]++;
971 }
972
1da177e4
LT
973 /*
974 * If it's a COW mapping, write protect it both
975 * in the parent and the child
976 */
1b2de5d0 977 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 978 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 979 pte = pte_wrprotect(pte);
1da177e4 980 }
6c287605 981 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
982
983 /*
984 * If it's a shared mapping, mark it clean in
985 * the child
986 */
987 if (vm_flags & VM_SHARED)
988 pte = pte_mkclean(pte);
989 pte = pte_mkold(pte);
6aab341e 990
8f34f1ea 991 if (!userfaultfd_wp(dst_vma))
b569a176
PX
992 pte = pte_clear_uffd_wp(pte);
993
c78f4636 994 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
995 return 0;
996}
997
998static inline struct page *
999page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 unsigned long addr)
1001{
1002 struct page *new_page;
1003
1004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 if (!new_page)
1006 return NULL;
1007
8f425e4e 1008 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
1009 put_page(new_page);
1010 return NULL;
6aab341e 1011 }
70e806e4 1012 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1013
70e806e4 1014 return new_page;
1da177e4
LT
1015}
1016
c78f4636
PX
1017static int
1018copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 unsigned long end)
1da177e4 1021{
c78f4636
PX
1022 struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1024 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1025 pte_t *src_pte, *dst_pte;
c74df32c 1026 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1027 int progress, ret = 0;
d559db08 1028 int rss[NR_MM_COUNTERS];
570a335b 1029 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1030 struct page *prealloc = NULL;
1da177e4
LT
1031
1032again:
70e806e4 1033 progress = 0;
d559db08
KH
1034 init_rss_vec(rss);
1035
c74df32c 1036 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1037 if (!dst_pte) {
1038 ret = -ENOMEM;
1039 goto out;
1040 }
ece0e2b6 1041 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1042 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1043 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1044 orig_src_pte = src_pte;
1045 orig_dst_pte = dst_pte;
6606c3e0 1046 arch_enter_lazy_mmu_mode();
1da177e4 1047
1da177e4
LT
1048 do {
1049 /*
1050 * We are holding two locks at this point - either of them
1051 * could generate latencies in another task on another CPU.
1052 */
e040f218
HD
1053 if (progress >= 32) {
1054 progress = 0;
1055 if (need_resched() ||
95c354fe 1056 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1057 break;
1058 }
1da177e4
LT
1059 if (pte_none(*src_pte)) {
1060 progress++;
1061 continue;
1062 }
79a1971c 1063 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1064 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 dst_pte, src_pte,
1066 dst_vma, src_vma,
1067 addr, rss);
1068 if (ret == -EIO) {
1069 entry = pte_to_swp_entry(*src_pte);
79a1971c 1070 break;
b756a3b5
AP
1071 } else if (ret == -EBUSY) {
1072 break;
1073 } else if (!ret) {
1074 progress += 8;
1075 continue;
9a5cc85c 1076 }
b756a3b5
AP
1077
1078 /*
1079 * Device exclusive entry restored, continue by copying
1080 * the now present pte.
1081 */
1082 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1083 }
70e806e4 1084 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 addr, rss, &prealloc);
70e806e4
PX
1087 /*
1088 * If we need a pre-allocated page for this pte, drop the
1089 * locks, allocate, and try again.
1090 */
1091 if (unlikely(ret == -EAGAIN))
1092 break;
1093 if (unlikely(prealloc)) {
1094 /*
1095 * pre-alloc page cannot be reused by next time so as
1096 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 * will allocate page according to address). This
1098 * could only happen if one pinned pte changed.
1099 */
1100 put_page(prealloc);
1101 prealloc = NULL;
1102 }
1da177e4
LT
1103 progress += 8;
1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1105
6606c3e0 1106 arch_leave_lazy_mmu_mode();
c74df32c 1107 spin_unlock(src_ptl);
ece0e2b6 1108 pte_unmap(orig_src_pte);
d559db08 1109 add_mm_rss_vec(dst_mm, rss);
c36987e2 1110 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1111 cond_resched();
570a335b 1112
9a5cc85c
AP
1113 if (ret == -EIO) {
1114 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1115 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 ret = -ENOMEM;
1117 goto out;
1118 }
1119 entry.val = 0;
b756a3b5
AP
1120 } else if (ret == -EBUSY) {
1121 goto out;
9a5cc85c 1122 } else if (ret == -EAGAIN) {
c78f4636 1123 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1124 if (!prealloc)
570a335b 1125 return -ENOMEM;
9a5cc85c
AP
1126 } else if (ret) {
1127 VM_WARN_ON_ONCE(1);
570a335b 1128 }
9a5cc85c
AP
1129
1130 /* We've captured and resolved the error. Reset, try again. */
1131 ret = 0;
1132
1da177e4
LT
1133 if (addr != end)
1134 goto again;
70e806e4
PX
1135out:
1136 if (unlikely(prealloc))
1137 put_page(prealloc);
1138 return ret;
1da177e4
LT
1139}
1140
c78f4636
PX
1141static inline int
1142copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 unsigned long end)
1da177e4 1145{
c78f4636
PX
1146 struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1148 pmd_t *src_pmd, *dst_pmd;
1149 unsigned long next;
1150
1151 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 if (!dst_pmd)
1153 return -ENOMEM;
1154 src_pmd = pmd_offset(src_pud, addr);
1155 do {
1156 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1157 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 || pmd_devmap(*src_pmd)) {
71e3aac0 1159 int err;
c78f4636 1160 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1161 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 addr, dst_vma, src_vma);
71e3aac0
AA
1163 if (err == -ENOMEM)
1164 return -ENOMEM;
1165 if (!err)
1166 continue;
1167 /* fall through */
1168 }
1da177e4
LT
1169 if (pmd_none_or_clear_bad(src_pmd))
1170 continue;
c78f4636
PX
1171 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 addr, next))
1da177e4
LT
1173 return -ENOMEM;
1174 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 return 0;
1176}
1177
c78f4636
PX
1178static inline int
1179copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 unsigned long end)
1da177e4 1182{
c78f4636
PX
1183 struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1185 pud_t *src_pud, *dst_pud;
1186 unsigned long next;
1187
c2febafc 1188 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1189 if (!dst_pud)
1190 return -ENOMEM;
c2febafc 1191 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1192 do {
1193 next = pud_addr_end(addr, end);
a00cc7d9
MW
1194 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 int err;
1196
c78f4636 1197 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1198 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1199 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1200 if (err == -ENOMEM)
1201 return -ENOMEM;
1202 if (!err)
1203 continue;
1204 /* fall through */
1205 }
1da177e4
LT
1206 if (pud_none_or_clear_bad(src_pud))
1207 continue;
c78f4636
PX
1208 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 addr, next))
1da177e4
LT
1210 return -ENOMEM;
1211 } while (dst_pud++, src_pud++, addr = next, addr != end);
1212 return 0;
1213}
1214
c78f4636
PX
1215static inline int
1216copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 unsigned long end)
c2febafc 1219{
c78f4636 1220 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1221 p4d_t *src_p4d, *dst_p4d;
1222 unsigned long next;
1223
1224 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 if (!dst_p4d)
1226 return -ENOMEM;
1227 src_p4d = p4d_offset(src_pgd, addr);
1228 do {
1229 next = p4d_addr_end(addr, end);
1230 if (p4d_none_or_clear_bad(src_p4d))
1231 continue;
c78f4636
PX
1232 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 addr, next))
c2febafc
KS
1234 return -ENOMEM;
1235 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 return 0;
1237}
1238
c56d1b62
PX
1239/*
1240 * Return true if the vma needs to copy the pgtable during this fork(). Return
1241 * false when we can speed up fork() by allowing lazy page faults later until
1242 * when the child accesses the memory range.
1243 */
bc70fbf2 1244static bool
c56d1b62
PX
1245vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246{
1247 /*
1248 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 * contains uffd-wp protection information, that's something we can't
1251 * retrieve from page cache, and skip copying will lose those info.
1252 */
1253 if (userfaultfd_wp(dst_vma))
1254 return true;
1255
1256 if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP))
1257 return true;
1258
1259 if (src_vma->anon_vma)
1260 return true;
1261
1262 /*
1263 * Don't copy ptes where a page fault will fill them correctly. Fork
1264 * becomes much lighter when there are big shared or private readonly
1265 * mappings. The tradeoff is that copy_page_range is more efficient
1266 * than faulting.
1267 */
1268 return false;
1269}
1270
c78f4636
PX
1271int
1272copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1273{
1274 pgd_t *src_pgd, *dst_pgd;
1275 unsigned long next;
c78f4636
PX
1276 unsigned long addr = src_vma->vm_start;
1277 unsigned long end = src_vma->vm_end;
1278 struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1280 struct mmu_notifier_range range;
2ec74c3e 1281 bool is_cow;
cddb8a5c 1282 int ret;
1da177e4 1283
c56d1b62 1284 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1285 return 0;
d992895b 1286
c78f4636 1287 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1288 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1289
c78f4636 1290 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1291 /*
1292 * We do not free on error cases below as remove_vma
1293 * gets called on error from higher level routine
1294 */
c78f4636 1295 ret = track_pfn_copy(src_vma);
2ab64037 1296 if (ret)
1297 return ret;
1298 }
1299
cddb8a5c
AA
1300 /*
1301 * We need to invalidate the secondary MMU mappings only when
1302 * there could be a permission downgrade on the ptes of the
1303 * parent mm. And a permission downgrade will only happen if
1304 * is_cow_mapping() returns true.
1305 */
c78f4636 1306 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1307
1308 if (is_cow) {
7269f999 1309 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1310 0, src_vma, src_mm, addr, end);
ac46d4f3 1311 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1312 /*
1313 * Disabling preemption is not needed for the write side, as
1314 * the read side doesn't spin, but goes to the mmap_lock.
1315 *
1316 * Use the raw variant of the seqcount_t write API to avoid
1317 * lockdep complaining about preemptibility.
1318 */
1319 mmap_assert_write_locked(src_mm);
1320 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1321 }
cddb8a5c
AA
1322
1323 ret = 0;
1da177e4
LT
1324 dst_pgd = pgd_offset(dst_mm, addr);
1325 src_pgd = pgd_offset(src_mm, addr);
1326 do {
1327 next = pgd_addr_end(addr, end);
1328 if (pgd_none_or_clear_bad(src_pgd))
1329 continue;
c78f4636
PX
1330 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 addr, next))) {
cddb8a5c
AA
1332 ret = -ENOMEM;
1333 break;
1334 }
1da177e4 1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1336
57efa1fe
JG
1337 if (is_cow) {
1338 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1339 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1340 }
cddb8a5c 1341 return ret;
1da177e4
LT
1342}
1343
3506659e
MWO
1344/*
1345 * Parameter block passed down to zap_pte_range in exceptional cases.
1346 */
1347struct zap_details {
3506659e 1348 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1349 bool even_cows; /* Zap COWed private pages too? */
999dad82 1350 zap_flags_t zap_flags; /* Extra flags for zapping */
3506659e
MWO
1351};
1352
5abfd71d
PX
1353/* Whether we should zap all COWed (private) pages too */
1354static inline bool should_zap_cows(struct zap_details *details)
1355{
1356 /* By default, zap all pages */
1357 if (!details)
1358 return true;
1359
1360 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1361 return details->even_cows;
5abfd71d
PX
1362}
1363
2e148f1e 1364/* Decides whether we should zap this page with the page pointer specified */
254ab940 1365static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1366{
5abfd71d
PX
1367 /* If we can make a decision without *page.. */
1368 if (should_zap_cows(details))
254ab940 1369 return true;
5abfd71d
PX
1370
1371 /* E.g. the caller passes NULL for the case of a zero page */
1372 if (!page)
254ab940 1373 return true;
3506659e 1374
2e148f1e
PX
1375 /* Otherwise we should only zap non-anon pages */
1376 return !PageAnon(page);
3506659e
MWO
1377}
1378
999dad82
PX
1379static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1380{
1381 if (!details)
1382 return false;
1383
1384 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1385}
1386
1387/*
1388 * This function makes sure that we'll replace the none pte with an uffd-wp
1389 * swap special pte marker when necessary. Must be with the pgtable lock held.
1390 */
1391static inline void
1392zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1393 unsigned long addr, pte_t *pte,
1394 struct zap_details *details, pte_t pteval)
1395{
1396 if (zap_drop_file_uffd_wp(details))
1397 return;
1398
1399 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1400}
1401
51c6f666 1402static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1403 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1404 unsigned long addr, unsigned long end,
97a89413 1405 struct zap_details *details)
1da177e4 1406{
b5810039 1407 struct mm_struct *mm = tlb->mm;
d16dfc55 1408 int force_flush = 0;
d559db08 1409 int rss[NR_MM_COUNTERS];
97a89413 1410 spinlock_t *ptl;
5f1a1907 1411 pte_t *start_pte;
97a89413 1412 pte_t *pte;
8a5f14a2 1413 swp_entry_t entry;
d559db08 1414
ed6a7935 1415 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1416again:
e303297e 1417 init_rss_vec(rss);
5f1a1907
SR
1418 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 pte = start_pte;
3ea27719 1420 flush_tlb_batched_pending(mm);
6606c3e0 1421 arch_enter_lazy_mmu_mode();
1da177e4
LT
1422 do {
1423 pte_t ptent = *pte;
8018db85
PX
1424 struct page *page;
1425
166f61b9 1426 if (pte_none(ptent))
1da177e4 1427 continue;
6f5e6b9e 1428
7b167b68
MK
1429 if (need_resched())
1430 break;
1431
1da177e4 1432 if (pte_present(ptent)) {
25b2995a 1433 page = vm_normal_page(vma, addr, ptent);
254ab940 1434 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1435 continue;
b5810039 1436 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1437 tlb->fullmm);
1da177e4 1438 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1439 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1440 ptent);
1da177e4
LT
1441 if (unlikely(!page))
1442 continue;
eca56ff9
JM
1443
1444 if (!PageAnon(page)) {
1cf35d47
LT
1445 if (pte_dirty(ptent)) {
1446 force_flush = 1;
6237bcd9 1447 set_page_dirty(page);
1cf35d47 1448 }
4917e5d0 1449 if (pte_young(ptent) &&
64363aad 1450 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1451 mark_page_accessed(page);
6237bcd9 1452 }
eca56ff9 1453 rss[mm_counter(page)]--;
cea86fe2 1454 page_remove_rmap(page, vma, false);
3dc14741
HD
1455 if (unlikely(page_mapcount(page) < 0))
1456 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1457 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1458 force_flush = 1;
ce9ec37b 1459 addr += PAGE_SIZE;
d16dfc55 1460 break;
1cf35d47 1461 }
1da177e4
LT
1462 continue;
1463 }
5042db43
JG
1464
1465 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1466 if (is_device_private_entry(entry) ||
1467 is_device_exclusive_entry(entry)) {
8018db85 1468 page = pfn_swap_entry_to_page(entry);
254ab940 1469 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1470 continue;
999dad82
PX
1471 /*
1472 * Both device private/exclusive mappings should only
1473 * work with anonymous page so far, so we don't need to
1474 * consider uffd-wp bit when zap. For more information,
1475 * see zap_install_uffd_wp_if_needed().
1476 */
1477 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1478 rss[mm_counter(page)]--;
b756a3b5 1479 if (is_device_private_entry(entry))
cea86fe2 1480 page_remove_rmap(page, vma, false);
5042db43 1481 put_page(page);
8018db85 1482 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1483 /* Genuine swap entry, hence a private anon page */
1484 if (!should_zap_cows(details))
1485 continue;
8a5f14a2 1486 rss[MM_SWAPENTS]--;
8018db85
PX
1487 if (unlikely(!free_swap_and_cache(entry)))
1488 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1489 } else if (is_migration_entry(entry)) {
af5cdaf8 1490 page = pfn_swap_entry_to_page(entry);
254ab940 1491 if (!should_zap_page(details, page))
5abfd71d 1492 continue;
eca56ff9 1493 rss[mm_counter(page)]--;
999dad82
PX
1494 } else if (pte_marker_entry_uffd_wp(entry)) {
1495 /* Only drop the uffd-wp marker if explicitly requested */
1496 if (!zap_drop_file_uffd_wp(details))
1497 continue;
9f186f9e
ML
1498 } else if (is_hwpoison_entry(entry) ||
1499 is_swapin_error_entry(entry)) {
5abfd71d
PX
1500 if (!should_zap_cows(details))
1501 continue;
1502 } else {
1503 /* We should have covered all the swap entry types */
1504 WARN_ON_ONCE(1);
b084d435 1505 }
9888a1ca 1506 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1507 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1508 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1509
d559db08 1510 add_mm_rss_vec(mm, rss);
6606c3e0 1511 arch_leave_lazy_mmu_mode();
51c6f666 1512
1cf35d47 1513 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1514 if (force_flush)
1cf35d47 1515 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1516 pte_unmap_unlock(start_pte, ptl);
1517
1518 /*
1519 * If we forced a TLB flush (either due to running out of
1520 * batch buffers or because we needed to flush dirty TLB
1521 * entries before releasing the ptl), free the batched
1522 * memory too. Restart if we didn't do everything.
1523 */
1524 if (force_flush) {
1525 force_flush = 0;
fa0aafb8 1526 tlb_flush_mmu(tlb);
7b167b68
MK
1527 }
1528
1529 if (addr != end) {
1530 cond_resched();
1531 goto again;
d16dfc55
PZ
1532 }
1533
51c6f666 1534 return addr;
1da177e4
LT
1535}
1536
51c6f666 1537static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1538 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1539 unsigned long addr, unsigned long end,
97a89413 1540 struct zap_details *details)
1da177e4
LT
1541{
1542 pmd_t *pmd;
1543 unsigned long next;
1544
1545 pmd = pmd_offset(pud, addr);
1546 do {
1547 next = pmd_addr_end(addr, end);
84c3fc4e 1548 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1549 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1550 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1551 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1552 goto next;
71e3aac0 1553 /* fall through */
3506659e
MWO
1554 } else if (details && details->single_folio &&
1555 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1556 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1557 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1558 /*
1559 * Take and drop THP pmd lock so that we cannot return
1560 * prematurely, while zap_huge_pmd() has cleared *pmd,
1561 * but not yet decremented compound_mapcount().
1562 */
1563 spin_unlock(ptl);
71e3aac0 1564 }
22061a1f 1565
1a5a9906
AA
1566 /*
1567 * Here there can be other concurrent MADV_DONTNEED or
1568 * trans huge page faults running, and if the pmd is
1569 * none or trans huge it can change under us. This is
c1e8d7c6 1570 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1571 * mode.
1572 */
1573 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1574 goto next;
97a89413 1575 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1576next:
97a89413
PZ
1577 cond_resched();
1578 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1579
1580 return addr;
1da177e4
LT
1581}
1582
51c6f666 1583static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1584 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1585 unsigned long addr, unsigned long end,
97a89413 1586 struct zap_details *details)
1da177e4
LT
1587{
1588 pud_t *pud;
1589 unsigned long next;
1590
c2febafc 1591 pud = pud_offset(p4d, addr);
1da177e4
LT
1592 do {
1593 next = pud_addr_end(addr, end);
a00cc7d9
MW
1594 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1596 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1597 split_huge_pud(vma, pud, addr);
1598 } else if (zap_huge_pud(tlb, vma, pud, addr))
1599 goto next;
1600 /* fall through */
1601 }
97a89413 1602 if (pud_none_or_clear_bad(pud))
1da177e4 1603 continue;
97a89413 1604 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1605next:
1606 cond_resched();
97a89413 1607 } while (pud++, addr = next, addr != end);
51c6f666
RH
1608
1609 return addr;
1da177e4
LT
1610}
1611
c2febafc
KS
1612static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 struct vm_area_struct *vma, pgd_t *pgd,
1614 unsigned long addr, unsigned long end,
1615 struct zap_details *details)
1616{
1617 p4d_t *p4d;
1618 unsigned long next;
1619
1620 p4d = p4d_offset(pgd, addr);
1621 do {
1622 next = p4d_addr_end(addr, end);
1623 if (p4d_none_or_clear_bad(p4d))
1624 continue;
1625 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 } while (p4d++, addr = next, addr != end);
1627
1628 return addr;
1629}
1630
aac45363 1631void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1632 struct vm_area_struct *vma,
1633 unsigned long addr, unsigned long end,
1634 struct zap_details *details)
1da177e4
LT
1635{
1636 pgd_t *pgd;
1637 unsigned long next;
1638
1da177e4
LT
1639 BUG_ON(addr >= end);
1640 tlb_start_vma(tlb, vma);
1641 pgd = pgd_offset(vma->vm_mm, addr);
1642 do {
1643 next = pgd_addr_end(addr, end);
97a89413 1644 if (pgd_none_or_clear_bad(pgd))
1da177e4 1645 continue;
c2febafc 1646 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1647 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1648 tlb_end_vma(tlb, vma);
1649}
51c6f666 1650
f5cc4eef
AV
1651
1652static void unmap_single_vma(struct mmu_gather *tlb,
1653 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1654 unsigned long end_addr,
f5cc4eef
AV
1655 struct zap_details *details)
1656{
1657 unsigned long start = max(vma->vm_start, start_addr);
1658 unsigned long end;
1659
1660 if (start >= vma->vm_end)
1661 return;
1662 end = min(vma->vm_end, end_addr);
1663 if (end <= vma->vm_start)
1664 return;
1665
cbc91f71
SD
1666 if (vma->vm_file)
1667 uprobe_munmap(vma, start, end);
1668
b3b9c293 1669 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1670 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1671
1672 if (start != end) {
1673 if (unlikely(is_vm_hugetlb_page(vma))) {
1674 /*
1675 * It is undesirable to test vma->vm_file as it
1676 * should be non-null for valid hugetlb area.
1677 * However, vm_file will be NULL in the error
7aa6b4ad 1678 * cleanup path of mmap_region. When
f5cc4eef 1679 * hugetlbfs ->mmap method fails,
7aa6b4ad 1680 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1681 * before calling this function to clean up.
1682 * Since no pte has actually been setup, it is
1683 * safe to do nothing in this case.
1684 */
24669e58 1685 if (vma->vm_file) {
05e90bd0
PX
1686 zap_flags_t zap_flags = details ?
1687 details->zap_flags : 0;
83cde9e8 1688 i_mmap_lock_write(vma->vm_file->f_mapping);
05e90bd0
PX
1689 __unmap_hugepage_range_final(tlb, vma, start, end,
1690 NULL, zap_flags);
83cde9e8 1691 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1692 }
f5cc4eef
AV
1693 } else
1694 unmap_page_range(tlb, vma, start, end, details);
1695 }
1da177e4
LT
1696}
1697
1da177e4
LT
1698/**
1699 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1700 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1701 * @vma: the starting vma
1702 * @start_addr: virtual address at which to start unmapping
1703 * @end_addr: virtual address at which to end unmapping
1da177e4 1704 *
508034a3 1705 * Unmap all pages in the vma list.
1da177e4 1706 *
1da177e4
LT
1707 * Only addresses between `start' and `end' will be unmapped.
1708 *
1709 * The VMA list must be sorted in ascending virtual address order.
1710 *
1711 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712 * range after unmap_vmas() returns. So the only responsibility here is to
1713 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714 * drops the lock and schedules.
1715 */
6e8bb019 1716void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1717 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1718 unsigned long end_addr)
1da177e4 1719{
ac46d4f3 1720 struct mmu_notifier_range range;
999dad82
PX
1721 struct zap_details details = {
1722 .zap_flags = ZAP_FLAG_DROP_MARKER,
1723 /* Careful - we need to zap private pages too! */
1724 .even_cows = true,
1725 };
1da177e4 1726
6f4f13e8
JG
1727 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1728 start_addr, end_addr);
ac46d4f3 1729 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1730 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
999dad82 1731 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
ac46d4f3 1732 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1733}
1734
1735/**
1736 * zap_page_range - remove user pages in a given range
1737 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1738 * @start: starting address of pages to zap
1da177e4 1739 * @size: number of bytes to zap
f5cc4eef
AV
1740 *
1741 * Caller must protect the VMA list
1da177e4 1742 */
7e027b14 1743void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1744 unsigned long size)
1da177e4 1745{
ac46d4f3 1746 struct mmu_notifier_range range;
d16dfc55 1747 struct mmu_gather tlb;
1da177e4 1748
1da177e4 1749 lru_add_drain();
7269f999 1750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1751 start, start + size);
a72afd87 1752 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1753 update_hiwater_rss(vma->vm_mm);
1754 mmu_notifier_invalidate_range_start(&range);
1755 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1756 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1757 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1758 tlb_finish_mmu(&tlb);
1da177e4
LT
1759}
1760
f5cc4eef
AV
1761/**
1762 * zap_page_range_single - remove user pages in a given range
1763 * @vma: vm_area_struct holding the applicable pages
1764 * @address: starting address of pages to zap
1765 * @size: number of bytes to zap
8a5f14a2 1766 * @details: details of shared cache invalidation
f5cc4eef
AV
1767 *
1768 * The range must fit into one VMA.
1da177e4 1769 */
f5cc4eef 1770static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1771 unsigned long size, struct zap_details *details)
1772{
ac46d4f3 1773 struct mmu_notifier_range range;
d16dfc55 1774 struct mmu_gather tlb;
1da177e4 1775
1da177e4 1776 lru_add_drain();
7269f999 1777 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1778 address, address + size);
a72afd87 1779 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1780 update_hiwater_rss(vma->vm_mm);
1781 mmu_notifier_invalidate_range_start(&range);
1782 unmap_single_vma(&tlb, vma, address, range.end, details);
1783 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1784 tlb_finish_mmu(&tlb);
1da177e4
LT
1785}
1786
c627f9cc
JS
1787/**
1788 * zap_vma_ptes - remove ptes mapping the vma
1789 * @vma: vm_area_struct holding ptes to be zapped
1790 * @address: starting address of pages to zap
1791 * @size: number of bytes to zap
1792 *
1793 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1794 *
1795 * The entire address range must be fully contained within the vma.
1796 *
c627f9cc 1797 */
27d036e3 1798void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1799 unsigned long size)
1800{
88a35912 1801 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1802 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1803 return;
1804
f5cc4eef 1805 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1806}
1807EXPORT_SYMBOL_GPL(zap_vma_ptes);
1808
8cd3984d 1809static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1810{
c2febafc
KS
1811 pgd_t *pgd;
1812 p4d_t *p4d;
1813 pud_t *pud;
1814 pmd_t *pmd;
1815
1816 pgd = pgd_offset(mm, addr);
1817 p4d = p4d_alloc(mm, pgd, addr);
1818 if (!p4d)
1819 return NULL;
1820 pud = pud_alloc(mm, p4d, addr);
1821 if (!pud)
1822 return NULL;
1823 pmd = pmd_alloc(mm, pud, addr);
1824 if (!pmd)
1825 return NULL;
1826
1827 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1828 return pmd;
1829}
1830
1831pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1832 spinlock_t **ptl)
1833{
1834 pmd_t *pmd = walk_to_pmd(mm, addr);
1835
1836 if (!pmd)
1837 return NULL;
c2febafc 1838 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1839}
1840
8efd6f5b
AR
1841static int validate_page_before_insert(struct page *page)
1842{
1843 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1844 return -EINVAL;
1845 flush_dcache_page(page);
1846 return 0;
1847}
1848
cea86fe2 1849static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1850 unsigned long addr, struct page *page, pgprot_t prot)
1851{
1852 if (!pte_none(*pte))
1853 return -EBUSY;
1854 /* Ok, finally just insert the thing.. */
1855 get_page(page);
cea86fe2
HD
1856 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1857 page_add_file_rmap(page, vma, false);
1858 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1859 return 0;
1860}
1861
238f58d8
LT
1862/*
1863 * This is the old fallback for page remapping.
1864 *
1865 * For historical reasons, it only allows reserved pages. Only
1866 * old drivers should use this, and they needed to mark their
1867 * pages reserved for the old functions anyway.
1868 */
423bad60
NP
1869static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1870 struct page *page, pgprot_t prot)
238f58d8
LT
1871{
1872 int retval;
c9cfcddf 1873 pte_t *pte;
8a9f3ccd
BS
1874 spinlock_t *ptl;
1875
8efd6f5b
AR
1876 retval = validate_page_before_insert(page);
1877 if (retval)
5b4e655e 1878 goto out;
238f58d8 1879 retval = -ENOMEM;
cea86fe2 1880 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1881 if (!pte)
5b4e655e 1882 goto out;
cea86fe2 1883 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1884 pte_unmap_unlock(pte, ptl);
1885out:
1886 return retval;
1887}
1888
8cd3984d 1889#ifdef pte_index
cea86fe2 1890static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1891 unsigned long addr, struct page *page, pgprot_t prot)
1892{
1893 int err;
1894
1895 if (!page_count(page))
1896 return -EINVAL;
1897 err = validate_page_before_insert(page);
7f70c2a6
AR
1898 if (err)
1899 return err;
cea86fe2 1900 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1901}
1902
1903/* insert_pages() amortizes the cost of spinlock operations
1904 * when inserting pages in a loop. Arch *must* define pte_index.
1905 */
1906static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1907 struct page **pages, unsigned long *num, pgprot_t prot)
1908{
1909 pmd_t *pmd = NULL;
7f70c2a6
AR
1910 pte_t *start_pte, *pte;
1911 spinlock_t *pte_lock;
8cd3984d
AR
1912 struct mm_struct *const mm = vma->vm_mm;
1913 unsigned long curr_page_idx = 0;
1914 unsigned long remaining_pages_total = *num;
1915 unsigned long pages_to_write_in_pmd;
1916 int ret;
1917more:
1918 ret = -EFAULT;
1919 pmd = walk_to_pmd(mm, addr);
1920 if (!pmd)
1921 goto out;
1922
1923 pages_to_write_in_pmd = min_t(unsigned long,
1924 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1925
1926 /* Allocate the PTE if necessary; takes PMD lock once only. */
1927 ret = -ENOMEM;
1928 if (pte_alloc(mm, pmd))
1929 goto out;
8cd3984d
AR
1930
1931 while (pages_to_write_in_pmd) {
1932 int pte_idx = 0;
1933 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1934
7f70c2a6
AR
1935 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1936 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1937 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1938 addr, pages[curr_page_idx], prot);
1939 if (unlikely(err)) {
7f70c2a6 1940 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1941 ret = err;
1942 remaining_pages_total -= pte_idx;
1943 goto out;
1944 }
1945 addr += PAGE_SIZE;
1946 ++curr_page_idx;
1947 }
7f70c2a6 1948 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1949 pages_to_write_in_pmd -= batch_size;
1950 remaining_pages_total -= batch_size;
1951 }
1952 if (remaining_pages_total)
1953 goto more;
1954 ret = 0;
1955out:
1956 *num = remaining_pages_total;
1957 return ret;
1958}
1959#endif /* ifdef pte_index */
1960
1961/**
1962 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1963 * @vma: user vma to map to
1964 * @addr: target start user address of these pages
1965 * @pages: source kernel pages
1966 * @num: in: number of pages to map. out: number of pages that were *not*
1967 * mapped. (0 means all pages were successfully mapped).
1968 *
1969 * Preferred over vm_insert_page() when inserting multiple pages.
1970 *
1971 * In case of error, we may have mapped a subset of the provided
1972 * pages. It is the caller's responsibility to account for this case.
1973 *
1974 * The same restrictions apply as in vm_insert_page().
1975 */
1976int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1977 struct page **pages, unsigned long *num)
1978{
1979#ifdef pte_index
1980 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1981
1982 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1983 return -EFAULT;
1984 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1985 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1986 BUG_ON(vma->vm_flags & VM_PFNMAP);
1987 vma->vm_flags |= VM_MIXEDMAP;
1988 }
1989 /* Defer page refcount checking till we're about to map that page. */
1990 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1991#else
1992 unsigned long idx = 0, pgcount = *num;
45779b03 1993 int err = -EINVAL;
8cd3984d
AR
1994
1995 for (; idx < pgcount; ++idx) {
1996 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1997 if (err)
1998 break;
1999 }
2000 *num = pgcount - idx;
2001 return err;
2002#endif /* ifdef pte_index */
2003}
2004EXPORT_SYMBOL(vm_insert_pages);
2005
bfa5bf6d
REB
2006/**
2007 * vm_insert_page - insert single page into user vma
2008 * @vma: user vma to map to
2009 * @addr: target user address of this page
2010 * @page: source kernel page
2011 *
a145dd41
LT
2012 * This allows drivers to insert individual pages they've allocated
2013 * into a user vma.
2014 *
2015 * The page has to be a nice clean _individual_ kernel allocation.
2016 * If you allocate a compound page, you need to have marked it as
2017 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2018 * (see split_page()).
a145dd41
LT
2019 *
2020 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2021 * took an arbitrary page protection parameter. This doesn't allow
2022 * that. Your vma protection will have to be set up correctly, which
2023 * means that if you want a shared writable mapping, you'd better
2024 * ask for a shared writable mapping!
2025 *
2026 * The page does not need to be reserved.
4b6e1e37
KK
2027 *
2028 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2029 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2030 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2031 * function from other places, for example from page-fault handler.
a862f68a
MR
2032 *
2033 * Return: %0 on success, negative error code otherwise.
a145dd41 2034 */
423bad60
NP
2035int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2036 struct page *page)
a145dd41
LT
2037{
2038 if (addr < vma->vm_start || addr >= vma->vm_end)
2039 return -EFAULT;
2040 if (!page_count(page))
2041 return -EINVAL;
4b6e1e37 2042 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2043 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2044 BUG_ON(vma->vm_flags & VM_PFNMAP);
2045 vma->vm_flags |= VM_MIXEDMAP;
2046 }
423bad60 2047 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2048}
e3c3374f 2049EXPORT_SYMBOL(vm_insert_page);
a145dd41 2050
a667d745
SJ
2051/*
2052 * __vm_map_pages - maps range of kernel pages into user vma
2053 * @vma: user vma to map to
2054 * @pages: pointer to array of source kernel pages
2055 * @num: number of pages in page array
2056 * @offset: user's requested vm_pgoff
2057 *
2058 * This allows drivers to map range of kernel pages into a user vma.
2059 *
2060 * Return: 0 on success and error code otherwise.
2061 */
2062static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063 unsigned long num, unsigned long offset)
2064{
2065 unsigned long count = vma_pages(vma);
2066 unsigned long uaddr = vma->vm_start;
2067 int ret, i;
2068
2069 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2070 if (offset >= num)
a667d745
SJ
2071 return -ENXIO;
2072
2073 /* Fail if the user requested size exceeds available object size */
2074 if (count > num - offset)
2075 return -ENXIO;
2076
2077 for (i = 0; i < count; i++) {
2078 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2079 if (ret < 0)
2080 return ret;
2081 uaddr += PAGE_SIZE;
2082 }
2083
2084 return 0;
2085}
2086
2087/**
2088 * vm_map_pages - maps range of kernel pages starts with non zero offset
2089 * @vma: user vma to map to
2090 * @pages: pointer to array of source kernel pages
2091 * @num: number of pages in page array
2092 *
2093 * Maps an object consisting of @num pages, catering for the user's
2094 * requested vm_pgoff
2095 *
2096 * If we fail to insert any page into the vma, the function will return
2097 * immediately leaving any previously inserted pages present. Callers
2098 * from the mmap handler may immediately return the error as their caller
2099 * will destroy the vma, removing any successfully inserted pages. Other
2100 * callers should make their own arrangements for calling unmap_region().
2101 *
2102 * Context: Process context. Called by mmap handlers.
2103 * Return: 0 on success and error code otherwise.
2104 */
2105int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2106 unsigned long num)
2107{
2108 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2109}
2110EXPORT_SYMBOL(vm_map_pages);
2111
2112/**
2113 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2114 * @vma: user vma to map to
2115 * @pages: pointer to array of source kernel pages
2116 * @num: number of pages in page array
2117 *
2118 * Similar to vm_map_pages(), except that it explicitly sets the offset
2119 * to 0. This function is intended for the drivers that did not consider
2120 * vm_pgoff.
2121 *
2122 * Context: Process context. Called by mmap handlers.
2123 * Return: 0 on success and error code otherwise.
2124 */
2125int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2126 unsigned long num)
2127{
2128 return __vm_map_pages(vma, pages, num, 0);
2129}
2130EXPORT_SYMBOL(vm_map_pages_zero);
2131
9b5a8e00 2132static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2133 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2134{
2135 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2136 pte_t *pte, entry;
2137 spinlock_t *ptl;
2138
423bad60
NP
2139 pte = get_locked_pte(mm, addr, &ptl);
2140 if (!pte)
9b5a8e00 2141 return VM_FAULT_OOM;
b2770da6
RZ
2142 if (!pte_none(*pte)) {
2143 if (mkwrite) {
2144 /*
2145 * For read faults on private mappings the PFN passed
2146 * in may not match the PFN we have mapped if the
2147 * mapped PFN is a writeable COW page. In the mkwrite
2148 * case we are creating a writable PTE for a shared
f2c57d91
JK
2149 * mapping and we expect the PFNs to match. If they
2150 * don't match, we are likely racing with block
2151 * allocation and mapping invalidation so just skip the
2152 * update.
b2770da6 2153 */
f2c57d91
JK
2154 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2155 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2156 goto out_unlock;
f2c57d91 2157 }
cae85cb8
JK
2158 entry = pte_mkyoung(*pte);
2159 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2160 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2161 update_mmu_cache(vma, addr, pte);
2162 }
2163 goto out_unlock;
b2770da6 2164 }
423bad60
NP
2165
2166 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2167 if (pfn_t_devmap(pfn))
2168 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2169 else
2170 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2171
b2770da6
RZ
2172 if (mkwrite) {
2173 entry = pte_mkyoung(entry);
2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 }
2176
423bad60 2177 set_pte_at(mm, addr, pte, entry);
4b3073e1 2178 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2179
423bad60
NP
2180out_unlock:
2181 pte_unmap_unlock(pte, ptl);
9b5a8e00 2182 return VM_FAULT_NOPAGE;
423bad60
NP
2183}
2184
f5e6d1d5
MW
2185/**
2186 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2187 * @vma: user vma to map to
2188 * @addr: target user address of this page
2189 * @pfn: source kernel pfn
2190 * @pgprot: pgprot flags for the inserted page
2191 *
a1a0aea5 2192 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2193 * to override pgprot on a per-page basis.
2194 *
2195 * This only makes sense for IO mappings, and it makes no sense for
2196 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2197 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2198 * impractical.
2199 *
574c5b3d
TH
2200 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2201 * a value of @pgprot different from that of @vma->vm_page_prot.
2202 *
ae2b01f3 2203 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2204 * Return: vm_fault_t value.
2205 */
2206vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207 unsigned long pfn, pgprot_t pgprot)
2208{
6d958546
MW
2209 /*
2210 * Technically, architectures with pte_special can avoid all these
2211 * restrictions (same for remap_pfn_range). However we would like
2212 * consistency in testing and feature parity among all, so we should
2213 * try to keep these invariants in place for everybody.
2214 */
2215 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217 (VM_PFNMAP|VM_MIXEDMAP));
2218 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220
2221 if (addr < vma->vm_start || addr >= vma->vm_end)
2222 return VM_FAULT_SIGBUS;
2223
2224 if (!pfn_modify_allowed(pfn, pgprot))
2225 return VM_FAULT_SIGBUS;
2226
2227 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228
9b5a8e00 2229 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2230 false);
f5e6d1d5
MW
2231}
2232EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2233
ae2b01f3
MW
2234/**
2235 * vmf_insert_pfn - insert single pfn into user vma
2236 * @vma: user vma to map to
2237 * @addr: target user address of this page
2238 * @pfn: source kernel pfn
2239 *
2240 * Similar to vm_insert_page, this allows drivers to insert individual pages
2241 * they've allocated into a user vma. Same comments apply.
2242 *
2243 * This function should only be called from a vm_ops->fault handler, and
2244 * in that case the handler should return the result of this function.
2245 *
2246 * vma cannot be a COW mapping.
2247 *
2248 * As this is called only for pages that do not currently exist, we
2249 * do not need to flush old virtual caches or the TLB.
2250 *
2251 * Context: Process context. May allocate using %GFP_KERNEL.
2252 * Return: vm_fault_t value.
2253 */
2254vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255 unsigned long pfn)
2256{
2257 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258}
2259EXPORT_SYMBOL(vmf_insert_pfn);
2260
785a3fab
DW
2261static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262{
2263 /* these checks mirror the abort conditions in vm_normal_page */
2264 if (vma->vm_flags & VM_MIXEDMAP)
2265 return true;
2266 if (pfn_t_devmap(pfn))
2267 return true;
2268 if (pfn_t_special(pfn))
2269 return true;
2270 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 return true;
2272 return false;
2273}
2274
79f3aa5b 2275static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2276 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2277 bool mkwrite)
423bad60 2278{
79f3aa5b 2279 int err;
87744ab3 2280
785a3fab 2281 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2282
423bad60 2283 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2284 return VM_FAULT_SIGBUS;
308a047c
BP
2285
2286 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2287
42e4089c 2288 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2289 return VM_FAULT_SIGBUS;
42e4089c 2290
423bad60
NP
2291 /*
2292 * If we don't have pte special, then we have to use the pfn_valid()
2293 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2295 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2296 * without pte special, it would there be refcounted as a normal page.
423bad60 2297 */
00b3a331
LD
2298 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2300 struct page *page;
2301
03fc2da6
DW
2302 /*
2303 * At this point we are committed to insert_page()
2304 * regardless of whether the caller specified flags that
2305 * result in pfn_t_has_page() == false.
2306 */
2307 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2308 err = insert_page(vma, addr, page, pgprot);
2309 } else {
9b5a8e00 2310 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2311 }
b2770da6 2312
5d747637
MW
2313 if (err == -ENOMEM)
2314 return VM_FAULT_OOM;
2315 if (err < 0 && err != -EBUSY)
2316 return VM_FAULT_SIGBUS;
2317
2318 return VM_FAULT_NOPAGE;
e0dc0d8f 2319}
79f3aa5b 2320
574c5b3d
TH
2321/**
2322 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2323 * @vma: user vma to map to
2324 * @addr: target user address of this page
2325 * @pfn: source kernel pfn
2326 * @pgprot: pgprot flags for the inserted page
2327 *
a1a0aea5 2328 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2329 * to override pgprot on a per-page basis.
2330 *
2331 * Typically this function should be used by drivers to set caching- and
2332 * encryption bits different than those of @vma->vm_page_prot, because
2333 * the caching- or encryption mode may not be known at mmap() time.
2334 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2335 * to set caching and encryption bits for those vmas (except for COW pages).
2336 * This is ensured by core vm only modifying these page table entries using
2337 * functions that don't touch caching- or encryption bits, using pte_modify()
2338 * if needed. (See for example mprotect()).
2339 * Also when new page-table entries are created, this is only done using the
2340 * fault() callback, and never using the value of vma->vm_page_prot,
2341 * except for page-table entries that point to anonymous pages as the result
2342 * of COW.
2343 *
2344 * Context: Process context. May allocate using %GFP_KERNEL.
2345 * Return: vm_fault_t value.
2346 */
2347vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2348 pfn_t pfn, pgprot_t pgprot)
2349{
2350 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2351}
5379e4dd 2352EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2353
79f3aa5b
MW
2354vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2355 pfn_t pfn)
2356{
574c5b3d 2357 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2358}
5d747637 2359EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2360
ab77dab4
SJ
2361/*
2362 * If the insertion of PTE failed because someone else already added a
2363 * different entry in the mean time, we treat that as success as we assume
2364 * the same entry was actually inserted.
2365 */
ab77dab4
SJ
2366vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2367 unsigned long addr, pfn_t pfn)
b2770da6 2368{
574c5b3d 2369 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2370}
ab77dab4 2371EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2372
1da177e4
LT
2373/*
2374 * maps a range of physical memory into the requested pages. the old
2375 * mappings are removed. any references to nonexistent pages results
2376 * in null mappings (currently treated as "copy-on-access")
2377 */
2378static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2379 unsigned long addr, unsigned long end,
2380 unsigned long pfn, pgprot_t prot)
2381{
90a3e375 2382 pte_t *pte, *mapped_pte;
c74df32c 2383 spinlock_t *ptl;
42e4089c 2384 int err = 0;
1da177e4 2385
90a3e375 2386 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2387 if (!pte)
2388 return -ENOMEM;
6606c3e0 2389 arch_enter_lazy_mmu_mode();
1da177e4
LT
2390 do {
2391 BUG_ON(!pte_none(*pte));
42e4089c
AK
2392 if (!pfn_modify_allowed(pfn, prot)) {
2393 err = -EACCES;
2394 break;
2395 }
7e675137 2396 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2397 pfn++;
2398 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2399 arch_leave_lazy_mmu_mode();
90a3e375 2400 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2401 return err;
1da177e4
LT
2402}
2403
2404static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2405 unsigned long addr, unsigned long end,
2406 unsigned long pfn, pgprot_t prot)
2407{
2408 pmd_t *pmd;
2409 unsigned long next;
42e4089c 2410 int err;
1da177e4
LT
2411
2412 pfn -= addr >> PAGE_SHIFT;
2413 pmd = pmd_alloc(mm, pud, addr);
2414 if (!pmd)
2415 return -ENOMEM;
f66055ab 2416 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2417 do {
2418 next = pmd_addr_end(addr, end);
42e4089c
AK
2419 err = remap_pte_range(mm, pmd, addr, next,
2420 pfn + (addr >> PAGE_SHIFT), prot);
2421 if (err)
2422 return err;
1da177e4
LT
2423 } while (pmd++, addr = next, addr != end);
2424 return 0;
2425}
2426
c2febafc 2427static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2428 unsigned long addr, unsigned long end,
2429 unsigned long pfn, pgprot_t prot)
2430{
2431 pud_t *pud;
2432 unsigned long next;
42e4089c 2433 int err;
1da177e4
LT
2434
2435 pfn -= addr >> PAGE_SHIFT;
c2febafc 2436 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2437 if (!pud)
2438 return -ENOMEM;
2439 do {
2440 next = pud_addr_end(addr, end);
42e4089c
AK
2441 err = remap_pmd_range(mm, pud, addr, next,
2442 pfn + (addr >> PAGE_SHIFT), prot);
2443 if (err)
2444 return err;
1da177e4
LT
2445 } while (pud++, addr = next, addr != end);
2446 return 0;
2447}
2448
c2febafc
KS
2449static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2450 unsigned long addr, unsigned long end,
2451 unsigned long pfn, pgprot_t prot)
2452{
2453 p4d_t *p4d;
2454 unsigned long next;
42e4089c 2455 int err;
c2febafc
KS
2456
2457 pfn -= addr >> PAGE_SHIFT;
2458 p4d = p4d_alloc(mm, pgd, addr);
2459 if (!p4d)
2460 return -ENOMEM;
2461 do {
2462 next = p4d_addr_end(addr, end);
42e4089c
AK
2463 err = remap_pud_range(mm, p4d, addr, next,
2464 pfn + (addr >> PAGE_SHIFT), prot);
2465 if (err)
2466 return err;
c2febafc
KS
2467 } while (p4d++, addr = next, addr != end);
2468 return 0;
2469}
2470
74ffa5a3
CH
2471/*
2472 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2473 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2474 */
74ffa5a3
CH
2475int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2476 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2477{
2478 pgd_t *pgd;
2479 unsigned long next;
2d15cab8 2480 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2481 struct mm_struct *mm = vma->vm_mm;
2482 int err;
2483
0c4123e3
AZ
2484 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2485 return -EINVAL;
2486
1da177e4
LT
2487 /*
2488 * Physically remapped pages are special. Tell the
2489 * rest of the world about it:
2490 * VM_IO tells people not to look at these pages
2491 * (accesses can have side effects).
6aab341e
LT
2492 * VM_PFNMAP tells the core MM that the base pages are just
2493 * raw PFN mappings, and do not have a "struct page" associated
2494 * with them.
314e51b9
KK
2495 * VM_DONTEXPAND
2496 * Disable vma merging and expanding with mremap().
2497 * VM_DONTDUMP
2498 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2499 *
2500 * There's a horrible special case to handle copy-on-write
2501 * behaviour that some programs depend on. We mark the "original"
2502 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2503 * See vm_normal_page() for details.
1da177e4 2504 */
b3b9c293
KK
2505 if (is_cow_mapping(vma->vm_flags)) {
2506 if (addr != vma->vm_start || end != vma->vm_end)
2507 return -EINVAL;
fb155c16 2508 vma->vm_pgoff = pfn;
b3b9c293
KK
2509 }
2510
314e51b9 2511 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2512
2513 BUG_ON(addr >= end);
2514 pfn -= addr >> PAGE_SHIFT;
2515 pgd = pgd_offset(mm, addr);
2516 flush_cache_range(vma, addr, end);
1da177e4
LT
2517 do {
2518 next = pgd_addr_end(addr, end);
c2febafc 2519 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2520 pfn + (addr >> PAGE_SHIFT), prot);
2521 if (err)
74ffa5a3 2522 return err;
1da177e4 2523 } while (pgd++, addr = next, addr != end);
2ab64037 2524
74ffa5a3
CH
2525 return 0;
2526}
2527
2528/**
2529 * remap_pfn_range - remap kernel memory to userspace
2530 * @vma: user vma to map to
2531 * @addr: target page aligned user address to start at
2532 * @pfn: page frame number of kernel physical memory address
2533 * @size: size of mapping area
2534 * @prot: page protection flags for this mapping
2535 *
2536 * Note: this is only safe if the mm semaphore is held when called.
2537 *
2538 * Return: %0 on success, negative error code otherwise.
2539 */
2540int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2541 unsigned long pfn, unsigned long size, pgprot_t prot)
2542{
2543 int err;
2544
2545 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2546 if (err)
74ffa5a3 2547 return -EINVAL;
2ab64037 2548
74ffa5a3
CH
2549 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2550 if (err)
2551 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2552 return err;
2553}
2554EXPORT_SYMBOL(remap_pfn_range);
2555
b4cbb197
LT
2556/**
2557 * vm_iomap_memory - remap memory to userspace
2558 * @vma: user vma to map to
abd69b9e 2559 * @start: start of the physical memory to be mapped
b4cbb197
LT
2560 * @len: size of area
2561 *
2562 * This is a simplified io_remap_pfn_range() for common driver use. The
2563 * driver just needs to give us the physical memory range to be mapped,
2564 * we'll figure out the rest from the vma information.
2565 *
2566 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2567 * whatever write-combining details or similar.
a862f68a
MR
2568 *
2569 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2570 */
2571int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2572{
2573 unsigned long vm_len, pfn, pages;
2574
2575 /* Check that the physical memory area passed in looks valid */
2576 if (start + len < start)
2577 return -EINVAL;
2578 /*
2579 * You *really* shouldn't map things that aren't page-aligned,
2580 * but we've historically allowed it because IO memory might
2581 * just have smaller alignment.
2582 */
2583 len += start & ~PAGE_MASK;
2584 pfn = start >> PAGE_SHIFT;
2585 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2586 if (pfn + pages < pfn)
2587 return -EINVAL;
2588
2589 /* We start the mapping 'vm_pgoff' pages into the area */
2590 if (vma->vm_pgoff > pages)
2591 return -EINVAL;
2592 pfn += vma->vm_pgoff;
2593 pages -= vma->vm_pgoff;
2594
2595 /* Can we fit all of the mapping? */
2596 vm_len = vma->vm_end - vma->vm_start;
2597 if (vm_len >> PAGE_SHIFT > pages)
2598 return -EINVAL;
2599
2600 /* Ok, let it rip */
2601 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2602}
2603EXPORT_SYMBOL(vm_iomap_memory);
2604
aee16b3c
JF
2605static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2606 unsigned long addr, unsigned long end,
e80d3909
JR
2607 pte_fn_t fn, void *data, bool create,
2608 pgtbl_mod_mask *mask)
aee16b3c 2609{
8abb50c7 2610 pte_t *pte, *mapped_pte;
be1db475 2611 int err = 0;
3f649ab7 2612 spinlock_t *ptl;
aee16b3c 2613
be1db475 2614 if (create) {
8abb50c7 2615 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2616 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2617 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2618 if (!pte)
2619 return -ENOMEM;
2620 } else {
8abb50c7 2621 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2622 pte_offset_kernel(pmd, addr) :
2623 pte_offset_map_lock(mm, pmd, addr, &ptl);
2624 }
aee16b3c
JF
2625
2626 BUG_ON(pmd_huge(*pmd));
2627
38e0edb1
JF
2628 arch_enter_lazy_mmu_mode();
2629
eeb4a05f
CH
2630 if (fn) {
2631 do {
2632 if (create || !pte_none(*pte)) {
2633 err = fn(pte++, addr, data);
2634 if (err)
2635 break;
2636 }
2637 } while (addr += PAGE_SIZE, addr != end);
2638 }
e80d3909 2639 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2640
38e0edb1
JF
2641 arch_leave_lazy_mmu_mode();
2642
aee16b3c 2643 if (mm != &init_mm)
8abb50c7 2644 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2645 return err;
2646}
2647
2648static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2649 unsigned long addr, unsigned long end,
e80d3909
JR
2650 pte_fn_t fn, void *data, bool create,
2651 pgtbl_mod_mask *mask)
aee16b3c
JF
2652{
2653 pmd_t *pmd;
2654 unsigned long next;
be1db475 2655 int err = 0;
aee16b3c 2656
ceb86879
AK
2657 BUG_ON(pud_huge(*pud));
2658
be1db475 2659 if (create) {
e80d3909 2660 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2661 if (!pmd)
2662 return -ENOMEM;
2663 } else {
2664 pmd = pmd_offset(pud, addr);
2665 }
aee16b3c
JF
2666 do {
2667 next = pmd_addr_end(addr, end);
0c95cba4
NP
2668 if (pmd_none(*pmd) && !create)
2669 continue;
2670 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2671 return -EINVAL;
2672 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2673 if (!create)
2674 continue;
2675 pmd_clear_bad(pmd);
be1db475 2676 }
0c95cba4
NP
2677 err = apply_to_pte_range(mm, pmd, addr, next,
2678 fn, data, create, mask);
2679 if (err)
2680 break;
aee16b3c 2681 } while (pmd++, addr = next, addr != end);
0c95cba4 2682
aee16b3c
JF
2683 return err;
2684}
2685
c2febafc 2686static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2687 unsigned long addr, unsigned long end,
e80d3909
JR
2688 pte_fn_t fn, void *data, bool create,
2689 pgtbl_mod_mask *mask)
aee16b3c
JF
2690{
2691 pud_t *pud;
2692 unsigned long next;
be1db475 2693 int err = 0;
aee16b3c 2694
be1db475 2695 if (create) {
e80d3909 2696 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2697 if (!pud)
2698 return -ENOMEM;
2699 } else {
2700 pud = pud_offset(p4d, addr);
2701 }
aee16b3c
JF
2702 do {
2703 next = pud_addr_end(addr, end);
0c95cba4
NP
2704 if (pud_none(*pud) && !create)
2705 continue;
2706 if (WARN_ON_ONCE(pud_leaf(*pud)))
2707 return -EINVAL;
2708 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2709 if (!create)
2710 continue;
2711 pud_clear_bad(pud);
be1db475 2712 }
0c95cba4
NP
2713 err = apply_to_pmd_range(mm, pud, addr, next,
2714 fn, data, create, mask);
2715 if (err)
2716 break;
aee16b3c 2717 } while (pud++, addr = next, addr != end);
0c95cba4 2718
aee16b3c
JF
2719 return err;
2720}
2721
c2febafc
KS
2722static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2723 unsigned long addr, unsigned long end,
e80d3909
JR
2724 pte_fn_t fn, void *data, bool create,
2725 pgtbl_mod_mask *mask)
c2febafc
KS
2726{
2727 p4d_t *p4d;
2728 unsigned long next;
be1db475 2729 int err = 0;
c2febafc 2730
be1db475 2731 if (create) {
e80d3909 2732 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2733 if (!p4d)
2734 return -ENOMEM;
2735 } else {
2736 p4d = p4d_offset(pgd, addr);
2737 }
c2febafc
KS
2738 do {
2739 next = p4d_addr_end(addr, end);
0c95cba4
NP
2740 if (p4d_none(*p4d) && !create)
2741 continue;
2742 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2743 return -EINVAL;
2744 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2745 if (!create)
2746 continue;
2747 p4d_clear_bad(p4d);
be1db475 2748 }
0c95cba4
NP
2749 err = apply_to_pud_range(mm, p4d, addr, next,
2750 fn, data, create, mask);
2751 if (err)
2752 break;
c2febafc 2753 } while (p4d++, addr = next, addr != end);
0c95cba4 2754
c2febafc
KS
2755 return err;
2756}
2757
be1db475
DA
2758static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2759 unsigned long size, pte_fn_t fn,
2760 void *data, bool create)
aee16b3c
JF
2761{
2762 pgd_t *pgd;
e80d3909 2763 unsigned long start = addr, next;
57250a5b 2764 unsigned long end = addr + size;
e80d3909 2765 pgtbl_mod_mask mask = 0;
be1db475 2766 int err = 0;
aee16b3c 2767
9cb65bc3
MP
2768 if (WARN_ON(addr >= end))
2769 return -EINVAL;
2770
aee16b3c
JF
2771 pgd = pgd_offset(mm, addr);
2772 do {
2773 next = pgd_addr_end(addr, end);
0c95cba4 2774 if (pgd_none(*pgd) && !create)
be1db475 2775 continue;
0c95cba4
NP
2776 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2777 return -EINVAL;
2778 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2779 if (!create)
2780 continue;
2781 pgd_clear_bad(pgd);
2782 }
2783 err = apply_to_p4d_range(mm, pgd, addr, next,
2784 fn, data, create, &mask);
aee16b3c
JF
2785 if (err)
2786 break;
2787 } while (pgd++, addr = next, addr != end);
57250a5b 2788
e80d3909
JR
2789 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2790 arch_sync_kernel_mappings(start, start + size);
2791
aee16b3c
JF
2792 return err;
2793}
be1db475
DA
2794
2795/*
2796 * Scan a region of virtual memory, filling in page tables as necessary
2797 * and calling a provided function on each leaf page table.
2798 */
2799int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2800 unsigned long size, pte_fn_t fn, void *data)
2801{
2802 return __apply_to_page_range(mm, addr, size, fn, data, true);
2803}
aee16b3c
JF
2804EXPORT_SYMBOL_GPL(apply_to_page_range);
2805
be1db475
DA
2806/*
2807 * Scan a region of virtual memory, calling a provided function on
2808 * each leaf page table where it exists.
2809 *
2810 * Unlike apply_to_page_range, this does _not_ fill in page tables
2811 * where they are absent.
2812 */
2813int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2814 unsigned long size, pte_fn_t fn, void *data)
2815{
2816 return __apply_to_page_range(mm, addr, size, fn, data, false);
2817}
2818EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2819
8f4e2101 2820/*
9b4bdd2f
KS
2821 * handle_pte_fault chooses page fault handler according to an entry which was
2822 * read non-atomically. Before making any commitment, on those architectures
2823 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2824 * parts, do_swap_page must check under lock before unmapping the pte and
2825 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2826 * and do_anonymous_page can safely check later on).
8f4e2101 2827 */
2ca99358 2828static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2829{
2830 int same = 1;
923717cb 2831#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2832 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2833 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2834 spin_lock(ptl);
2ca99358 2835 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2836 spin_unlock(ptl);
8f4e2101
HD
2837 }
2838#endif
2ca99358
PX
2839 pte_unmap(vmf->pte);
2840 vmf->pte = NULL;
8f4e2101
HD
2841 return same;
2842}
2843
c89357e2
DH
2844static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2845 struct vm_fault *vmf)
6aab341e 2846{
83d116c5
JH
2847 bool ret;
2848 void *kaddr;
2849 void __user *uaddr;
c3e5ea6e 2850 bool locked = false;
83d116c5
JH
2851 struct vm_area_struct *vma = vmf->vma;
2852 struct mm_struct *mm = vma->vm_mm;
2853 unsigned long addr = vmf->address;
2854
83d116c5
JH
2855 if (likely(src)) {
2856 copy_user_highpage(dst, src, addr, vma);
2857 return true;
2858 }
2859
6aab341e
LT
2860 /*
2861 * If the source page was a PFN mapping, we don't have
2862 * a "struct page" for it. We do a best-effort copy by
2863 * just copying from the original user address. If that
2864 * fails, we just zero-fill it. Live with it.
2865 */
83d116c5
JH
2866 kaddr = kmap_atomic(dst);
2867 uaddr = (void __user *)(addr & PAGE_MASK);
2868
2869 /*
2870 * On architectures with software "accessed" bits, we would
2871 * take a double page fault, so mark it accessed here.
2872 */
c3e5ea6e 2873 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2874 pte_t entry;
5d2a2dbb 2875
83d116c5 2876 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2877 locked = true;
83d116c5
JH
2878 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2879 /*
2880 * Other thread has already handled the fault
7df67697 2881 * and update local tlb only
83d116c5 2882 */
7df67697 2883 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2884 ret = false;
2885 goto pte_unlock;
2886 }
2887
2888 entry = pte_mkyoung(vmf->orig_pte);
2889 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2890 update_mmu_cache(vma, addr, vmf->pte);
2891 }
2892
2893 /*
2894 * This really shouldn't fail, because the page is there
2895 * in the page tables. But it might just be unreadable,
2896 * in which case we just give up and fill the result with
2897 * zeroes.
2898 */
2899 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2900 if (locked)
2901 goto warn;
2902
2903 /* Re-validate under PTL if the page is still mapped */
2904 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2905 locked = true;
2906 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2907 /* The PTE changed under us, update local tlb */
2908 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2909 ret = false;
2910 goto pte_unlock;
2911 }
2912
5d2a2dbb 2913 /*
985ba004 2914 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2915 * Try to copy again under PTL.
5d2a2dbb 2916 */
c3e5ea6e
KS
2917 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2918 /*
2919 * Give a warn in case there can be some obscure
2920 * use-case
2921 */
2922warn:
2923 WARN_ON_ONCE(1);
2924 clear_page(kaddr);
2925 }
83d116c5
JH
2926 }
2927
2928 ret = true;
2929
2930pte_unlock:
c3e5ea6e 2931 if (locked)
83d116c5
JH
2932 pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 kunmap_atomic(kaddr);
2934 flush_dcache_page(dst);
2935
2936 return ret;
6aab341e
LT
2937}
2938
c20cd45e
MH
2939static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2940{
2941 struct file *vm_file = vma->vm_file;
2942
2943 if (vm_file)
2944 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2945
2946 /*
2947 * Special mappings (e.g. VDSO) do not have any file so fake
2948 * a default GFP_KERNEL for them.
2949 */
2950 return GFP_KERNEL;
2951}
2952
fb09a464
KS
2953/*
2954 * Notify the address space that the page is about to become writable so that
2955 * it can prohibit this or wait for the page to get into an appropriate state.
2956 *
2957 * We do this without the lock held, so that it can sleep if it needs to.
2958 */
2b740303 2959static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2960{
2b740303 2961 vm_fault_t ret;
38b8cb7f
JK
2962 struct page *page = vmf->page;
2963 unsigned int old_flags = vmf->flags;
fb09a464 2964
38b8cb7f 2965 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2966
dc617f29
DW
2967 if (vmf->vma->vm_file &&
2968 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2969 return VM_FAULT_SIGBUS;
2970
11bac800 2971 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2972 /* Restore original flags so that caller is not surprised */
2973 vmf->flags = old_flags;
fb09a464
KS
2974 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2975 return ret;
2976 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2977 lock_page(page);
2978 if (!page->mapping) {
2979 unlock_page(page);
2980 return 0; /* retry */
2981 }
2982 ret |= VM_FAULT_LOCKED;
2983 } else
2984 VM_BUG_ON_PAGE(!PageLocked(page), page);
2985 return ret;
2986}
2987
97ba0c2b
JK
2988/*
2989 * Handle dirtying of a page in shared file mapping on a write fault.
2990 *
2991 * The function expects the page to be locked and unlocks it.
2992 */
89b15332 2993static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2994{
89b15332 2995 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2996 struct address_space *mapping;
89b15332 2997 struct page *page = vmf->page;
97ba0c2b
JK
2998 bool dirtied;
2999 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3000
3001 dirtied = set_page_dirty(page);
3002 VM_BUG_ON_PAGE(PageAnon(page), page);
3003 /*
3004 * Take a local copy of the address_space - page.mapping may be zeroed
3005 * by truncate after unlock_page(). The address_space itself remains
3006 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3007 * release semantics to prevent the compiler from undoing this copying.
3008 */
3009 mapping = page_rmapping(page);
3010 unlock_page(page);
3011
89b15332
JW
3012 if (!page_mkwrite)
3013 file_update_time(vma->vm_file);
3014
3015 /*
3016 * Throttle page dirtying rate down to writeback speed.
3017 *
3018 * mapping may be NULL here because some device drivers do not
3019 * set page.mapping but still dirty their pages
3020 *
c1e8d7c6 3021 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3022 * is pinning the mapping, as per above.
3023 */
97ba0c2b 3024 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3025 struct file *fpin;
3026
3027 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3028 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3029 if (fpin) {
3030 fput(fpin);
d9272525 3031 return VM_FAULT_COMPLETED;
89b15332 3032 }
97ba0c2b
JK
3033 }
3034
89b15332 3035 return 0;
97ba0c2b
JK
3036}
3037
4e047f89
SR
3038/*
3039 * Handle write page faults for pages that can be reused in the current vma
3040 *
3041 * This can happen either due to the mapping being with the VM_SHARED flag,
3042 * or due to us being the last reference standing to the page. In either
3043 * case, all we need to do here is to mark the page as writable and update
3044 * any related book-keeping.
3045 */
997dd98d 3046static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3047 __releases(vmf->ptl)
4e047f89 3048{
82b0f8c3 3049 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3050 struct page *page = vmf->page;
4e047f89 3051 pte_t entry;
6c287605 3052
c89357e2 3053 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605
DH
3054 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
3055
4e047f89
SR
3056 /*
3057 * Clear the pages cpupid information as the existing
3058 * information potentially belongs to a now completely
3059 * unrelated process.
3060 */
3061 if (page)
3062 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3063
2994302b
JK
3064 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3065 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3066 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3067 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3068 update_mmu_cache(vma, vmf->address, vmf->pte);
3069 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3070 count_vm_event(PGREUSE);
4e047f89
SR
3071}
3072
2f38ab2c 3073/*
c89357e2
DH
3074 * Handle the case of a page which we actually need to copy to a new page,
3075 * either due to COW or unsharing.
2f38ab2c 3076 *
c1e8d7c6 3077 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3078 * without the ptl held.
3079 *
3080 * High level logic flow:
3081 *
3082 * - Allocate a page, copy the content of the old page to the new one.
3083 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3084 * - Take the PTL. If the pte changed, bail out and release the allocated page
3085 * - If the pte is still the way we remember it, update the page table and all
3086 * relevant references. This includes dropping the reference the page-table
3087 * held to the old page, as well as updating the rmap.
3088 * - In any case, unlock the PTL and drop the reference we took to the old page.
3089 */
2b740303 3090static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3091{
c89357e2 3092 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3093 struct vm_area_struct *vma = vmf->vma;
bae473a4 3094 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3095 struct page *old_page = vmf->page;
2f38ab2c 3096 struct page *new_page = NULL;
2f38ab2c
SR
3097 pte_t entry;
3098 int page_copied = 0;
ac46d4f3 3099 struct mmu_notifier_range range;
2f38ab2c 3100
662ce1dc
YY
3101 delayacct_wpcopy_start();
3102
2f38ab2c
SR
3103 if (unlikely(anon_vma_prepare(vma)))
3104 goto oom;
3105
2994302b 3106 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3107 new_page = alloc_zeroed_user_highpage_movable(vma,
3108 vmf->address);
2f38ab2c
SR
3109 if (!new_page)
3110 goto oom;
3111 } else {
bae473a4 3112 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3113 vmf->address);
2f38ab2c
SR
3114 if (!new_page)
3115 goto oom;
83d116c5 3116
c89357e2 3117 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
83d116c5
JH
3118 /*
3119 * COW failed, if the fault was solved by other,
3120 * it's fine. If not, userspace would re-fault on
3121 * the same address and we will handle the fault
3122 * from the second attempt.
3123 */
3124 put_page(new_page);
3125 if (old_page)
3126 put_page(old_page);
662ce1dc
YY
3127
3128 delayacct_wpcopy_end();
83d116c5
JH
3129 return 0;
3130 }
2f38ab2c 3131 }
2f38ab2c 3132
8f425e4e 3133 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3134 goto oom_free_new;
9d82c694 3135 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3136
eb3c24f3
MG
3137 __SetPageUptodate(new_page);
3138
7269f999 3139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3140 vmf->address & PAGE_MASK,
ac46d4f3
JG
3141 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3142 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3143
3144 /*
3145 * Re-check the pte - we dropped the lock
3146 */
82b0f8c3 3147 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3148 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3149 if (old_page) {
3150 if (!PageAnon(old_page)) {
eca56ff9
JM
3151 dec_mm_counter_fast(mm,
3152 mm_counter_file(old_page));
2f38ab2c
SR
3153 inc_mm_counter_fast(mm, MM_ANONPAGES);
3154 }
3155 } else {
3156 inc_mm_counter_fast(mm, MM_ANONPAGES);
3157 }
2994302b 3158 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3159 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3160 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3161 if (unlikely(unshare)) {
3162 if (pte_soft_dirty(vmf->orig_pte))
3163 entry = pte_mksoft_dirty(entry);
3164 if (pte_uffd_wp(vmf->orig_pte))
3165 entry = pte_mkuffd_wp(entry);
3166 } else {
3167 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3168 }
111fe718 3169
2f38ab2c
SR
3170 /*
3171 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3172 * pte with the new entry, to keep TLBs on different CPUs in
3173 * sync. This code used to set the new PTE then flush TLBs, but
3174 * that left a window where the new PTE could be loaded into
3175 * some TLBs while the old PTE remains in others.
2f38ab2c 3176 */
82b0f8c3 3177 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3178 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3179 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3180 /*
3181 * We call the notify macro here because, when using secondary
3182 * mmu page tables (such as kvm shadow page tables), we want the
3183 * new page to be mapped directly into the secondary page table.
3184 */
c89357e2 3185 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3186 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3187 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3188 if (old_page) {
3189 /*
3190 * Only after switching the pte to the new page may
3191 * we remove the mapcount here. Otherwise another
3192 * process may come and find the rmap count decremented
3193 * before the pte is switched to the new page, and
3194 * "reuse" the old page writing into it while our pte
3195 * here still points into it and can be read by other
3196 * threads.
3197 *
3198 * The critical issue is to order this
3199 * page_remove_rmap with the ptp_clear_flush above.
3200 * Those stores are ordered by (if nothing else,)
3201 * the barrier present in the atomic_add_negative
3202 * in page_remove_rmap.
3203 *
3204 * Then the TLB flush in ptep_clear_flush ensures that
3205 * no process can access the old page before the
3206 * decremented mapcount is visible. And the old page
3207 * cannot be reused until after the decremented
3208 * mapcount is visible. So transitively, TLBs to
3209 * old page will be flushed before it can be reused.
3210 */
cea86fe2 3211 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3212 }
3213
3214 /* Free the old page.. */
3215 new_page = old_page;
3216 page_copied = 1;
3217 } else {
7df67697 3218 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3219 }
3220
3221 if (new_page)
09cbfeaf 3222 put_page(new_page);
2f38ab2c 3223
82b0f8c3 3224 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3225 /*
3226 * No need to double call mmu_notifier->invalidate_range() callback as
3227 * the above ptep_clear_flush_notify() did already call it.
3228 */
ac46d4f3 3229 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3230 if (old_page) {
f4c4a3f4
HY
3231 if (page_copied)
3232 free_swap_cache(old_page);
09cbfeaf 3233 put_page(old_page);
2f38ab2c 3234 }
662ce1dc
YY
3235
3236 delayacct_wpcopy_end();
c89357e2 3237 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3238oom_free_new:
09cbfeaf 3239 put_page(new_page);
2f38ab2c
SR
3240oom:
3241 if (old_page)
09cbfeaf 3242 put_page(old_page);
662ce1dc
YY
3243
3244 delayacct_wpcopy_end();
2f38ab2c
SR
3245 return VM_FAULT_OOM;
3246}
3247
66a6197c
JK
3248/**
3249 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3250 * writeable once the page is prepared
3251 *
3252 * @vmf: structure describing the fault
3253 *
3254 * This function handles all that is needed to finish a write page fault in a
3255 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3256 * It handles locking of PTE and modifying it.
66a6197c
JK
3257 *
3258 * The function expects the page to be locked or other protection against
3259 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3260 *
2797e79f 3261 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3262 * we acquired PTE lock.
66a6197c 3263 */
2b740303 3264vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3265{
3266 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3267 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3268 &vmf->ptl);
3269 /*
3270 * We might have raced with another page fault while we released the
3271 * pte_offset_map_lock.
3272 */
3273 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3274 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3275 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3276 return VM_FAULT_NOPAGE;
66a6197c
JK
3277 }
3278 wp_page_reuse(vmf);
a19e2553 3279 return 0;
66a6197c
JK
3280}
3281
dd906184
BH
3282/*
3283 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3284 * mapping
3285 */
2b740303 3286static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3287{
82b0f8c3 3288 struct vm_area_struct *vma = vmf->vma;
bae473a4 3289
dd906184 3290 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3291 vm_fault_t ret;
dd906184 3292
82b0f8c3 3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3294 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3295 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3296 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3297 return ret;
66a6197c 3298 return finish_mkwrite_fault(vmf);
dd906184 3299 }
997dd98d
JK
3300 wp_page_reuse(vmf);
3301 return VM_FAULT_WRITE;
dd906184
BH
3302}
3303
2b740303 3304static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3305 __releases(vmf->ptl)
93e478d4 3306{
82b0f8c3 3307 struct vm_area_struct *vma = vmf->vma;
89b15332 3308 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3309
a41b70d6 3310 get_page(vmf->page);
93e478d4 3311
93e478d4 3312 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3313 vm_fault_t tmp;
93e478d4 3314
82b0f8c3 3315 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3316 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3317 if (unlikely(!tmp || (tmp &
3318 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3319 put_page(vmf->page);
93e478d4
SR
3320 return tmp;
3321 }
66a6197c 3322 tmp = finish_mkwrite_fault(vmf);
a19e2553 3323 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3324 unlock_page(vmf->page);
a41b70d6 3325 put_page(vmf->page);
66a6197c 3326 return tmp;
93e478d4 3327 }
66a6197c
JK
3328 } else {
3329 wp_page_reuse(vmf);
997dd98d 3330 lock_page(vmf->page);
93e478d4 3331 }
89b15332 3332 ret |= fault_dirty_shared_page(vmf);
997dd98d 3333 put_page(vmf->page);
93e478d4 3334
89b15332 3335 return ret;
93e478d4
SR
3336}
3337
1da177e4 3338/*
c89357e2
DH
3339 * This routine handles present pages, when
3340 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3341 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3342 * (FAULT_FLAG_UNSHARE)
3343 *
3344 * It is done by copying the page to a new address and decrementing the
3345 * shared-page counter for the old page.
1da177e4 3346 *
1da177e4
LT
3347 * Note that this routine assumes that the protection checks have been
3348 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3349 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3350 * done any necessary COW.
1da177e4 3351 *
c89357e2
DH
3352 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3353 * though the page will change only once the write actually happens. This
3354 * avoids a few races, and potentially makes it more efficient.
1da177e4 3355 *
c1e8d7c6 3356 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3357 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3358 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3359 */
2b740303 3360static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3361 __releases(vmf->ptl)
1da177e4 3362{
c89357e2 3363 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3364 struct vm_area_struct *vma = vmf->vma;
1da177e4 3365
c89357e2
DH
3366 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3367 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3368
c89357e2
DH
3369 if (likely(!unshare)) {
3370 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3371 pte_unmap_unlock(vmf->pte, vmf->ptl);
3372 return handle_userfault(vmf, VM_UFFD_WP);
3373 }
3374
3375 /*
3376 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3377 * is flushed in this case before copying.
3378 */
3379 if (unlikely(userfaultfd_wp(vmf->vma) &&
3380 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3381 flush_tlb_page(vmf->vma, vmf->address);
3382 }
6ce64428 3383
a41b70d6
JK
3384 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3385 if (!vmf->page) {
c89357e2
DH
3386 if (unlikely(unshare)) {
3387 /* No anonymous page -> nothing to do. */
3388 pte_unmap_unlock(vmf->pte, vmf->ptl);
3389 return 0;
3390 }
3391
251b97f5 3392 /*
64e45507
PF
3393 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3394 * VM_PFNMAP VMA.
251b97f5
PZ
3395 *
3396 * We should not cow pages in a shared writeable mapping.
dd906184 3397 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3398 */
3399 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3400 (VM_WRITE|VM_SHARED))
2994302b 3401 return wp_pfn_shared(vmf);
2f38ab2c 3402
82b0f8c3 3403 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3404 return wp_page_copy(vmf);
251b97f5 3405 }
1da177e4 3406
d08b3851 3407 /*
ee6a6457
PZ
3408 * Take out anonymous pages first, anonymous shared vmas are
3409 * not dirty accountable.
d08b3851 3410 */
52d1e606 3411 if (PageAnon(vmf->page)) {
09854ba9
LT
3412 struct page *page = vmf->page;
3413
6c287605
DH
3414 /*
3415 * If the page is exclusive to this process we must reuse the
3416 * page without further checks.
3417 */
3418 if (PageAnonExclusive(page))
3419 goto reuse;
3420
53a05ad9
DH
3421 /*
3422 * We have to verify under page lock: these early checks are
3423 * just an optimization to avoid locking the page and freeing
3424 * the swapcache if there is little hope that we can reuse.
3425 *
3426 * PageKsm() doesn't necessarily raise the page refcount.
3427 */
d4c47097
DH
3428 if (PageKsm(page) || page_count(page) > 3)
3429 goto copy;
3430 if (!PageLRU(page))
3431 /*
3432 * Note: We cannot easily detect+handle references from
3433 * remote LRU pagevecs or references to PageLRU() pages.
3434 */
3435 lru_add_drain();
3436 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3437 goto copy;
3438 if (!trylock_page(page))
3439 goto copy;
53a05ad9
DH
3440 if (PageSwapCache(page))
3441 try_to_free_swap(page);
3442 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3443 unlock_page(page);
52d1e606 3444 goto copy;
b009c024 3445 }
09854ba9 3446 /*
53a05ad9
DH
3447 * Ok, we've got the only page reference from our mapping
3448 * and the page is locked, it's dark out, and we're wearing
3449 * sunglasses. Hit it.
09854ba9 3450 */
6c54dc6c 3451 page_move_anon_rmap(page, vma);
09854ba9 3452 unlock_page(page);
6c287605 3453reuse:
c89357e2
DH
3454 if (unlikely(unshare)) {
3455 pte_unmap_unlock(vmf->pte, vmf->ptl);
3456 return 0;
3457 }
be068f29 3458 wp_page_reuse(vmf);
09854ba9 3459 return VM_FAULT_WRITE;
c89357e2
DH
3460 } else if (unshare) {
3461 /* No anonymous page -> nothing to do. */
3462 pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 return 0;
ee6a6457 3464 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3465 (VM_WRITE|VM_SHARED))) {
a41b70d6 3466 return wp_page_shared(vmf);
1da177e4 3467 }
52d1e606 3468copy:
1da177e4
LT
3469 /*
3470 * Ok, we need to copy. Oh, well..
3471 */
a41b70d6 3472 get_page(vmf->page);
28766805 3473
82b0f8c3 3474 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3475#ifdef CONFIG_KSM
3476 if (PageKsm(vmf->page))
3477 count_vm_event(COW_KSM);
3478#endif
a41b70d6 3479 return wp_page_copy(vmf);
1da177e4
LT
3480}
3481
97a89413 3482static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3483 unsigned long start_addr, unsigned long end_addr,
3484 struct zap_details *details)
3485{
f5cc4eef 3486 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3487}
3488
f808c13f 3489static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3490 pgoff_t first_index,
3491 pgoff_t last_index,
1da177e4
LT
3492 struct zap_details *details)
3493{
3494 struct vm_area_struct *vma;
1da177e4
LT
3495 pgoff_t vba, vea, zba, zea;
3496
232a6a1c 3497 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3498 vba = vma->vm_pgoff;
d6e93217 3499 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3500 zba = max(first_index, vba);
3501 zea = min(last_index, vea);
1da177e4 3502
97a89413 3503 unmap_mapping_range_vma(vma,
1da177e4
LT
3504 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3505 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3506 details);
1da177e4
LT
3507 }
3508}
3509
22061a1f 3510/**
3506659e
MWO
3511 * unmap_mapping_folio() - Unmap single folio from processes.
3512 * @folio: The locked folio to be unmapped.
22061a1f 3513 *
3506659e 3514 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3515 * Typically, for efficiency, the range of nearby pages has already been
3516 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3517 * truncation or invalidation holds the lock on a folio, it may find that
3518 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3519 * to unmap it finally.
3520 */
3506659e 3521void unmap_mapping_folio(struct folio *folio)
22061a1f 3522{
3506659e 3523 struct address_space *mapping = folio->mapping;
22061a1f 3524 struct zap_details details = { };
232a6a1c
PX
3525 pgoff_t first_index;
3526 pgoff_t last_index;
22061a1f 3527
3506659e 3528 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3529
3506659e
MWO
3530 first_index = folio->index;
3531 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3532
2e148f1e 3533 details.even_cows = false;
3506659e 3534 details.single_folio = folio;
999dad82 3535 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3536
2c865995 3537 i_mmap_lock_read(mapping);
22061a1f 3538 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3539 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3540 last_index, &details);
2c865995 3541 i_mmap_unlock_read(mapping);
22061a1f
HD
3542}
3543
977fbdcd
MW
3544/**
3545 * unmap_mapping_pages() - Unmap pages from processes.
3546 * @mapping: The address space containing pages to be unmapped.
3547 * @start: Index of first page to be unmapped.
3548 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3549 * @even_cows: Whether to unmap even private COWed pages.
3550 *
3551 * Unmap the pages in this address space from any userspace process which
3552 * has them mmaped. Generally, you want to remove COWed pages as well when
3553 * a file is being truncated, but not when invalidating pages from the page
3554 * cache.
3555 */
3556void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3557 pgoff_t nr, bool even_cows)
3558{
3559 struct zap_details details = { };
232a6a1c
PX
3560 pgoff_t first_index = start;
3561 pgoff_t last_index = start + nr - 1;
977fbdcd 3562
2e148f1e 3563 details.even_cows = even_cows;
232a6a1c
PX
3564 if (last_index < first_index)
3565 last_index = ULONG_MAX;
977fbdcd 3566
2c865995 3567 i_mmap_lock_read(mapping);
977fbdcd 3568 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3569 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3570 last_index, &details);
2c865995 3571 i_mmap_unlock_read(mapping);
977fbdcd 3572}
6e0e99d5 3573EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3574
1da177e4 3575/**
8a5f14a2 3576 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3577 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3578 * file.
3579 *
3d41088f 3580 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3581 * @holebegin: byte in first page to unmap, relative to the start of
3582 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3583 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3584 * must keep the partial page. In contrast, we must get rid of
3585 * partial pages.
3586 * @holelen: size of prospective hole in bytes. This will be rounded
3587 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3588 * end of the file.
3589 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3590 * but 0 when invalidating pagecache, don't throw away private data.
3591 */
3592void unmap_mapping_range(struct address_space *mapping,
3593 loff_t const holebegin, loff_t const holelen, int even_cows)
3594{
1da177e4
LT
3595 pgoff_t hba = holebegin >> PAGE_SHIFT;
3596 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3597
3598 /* Check for overflow. */
3599 if (sizeof(holelen) > sizeof(hlen)) {
3600 long long holeend =
3601 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3602 if (holeend & ~(long long)ULONG_MAX)
3603 hlen = ULONG_MAX - hba + 1;
3604 }
3605
977fbdcd 3606 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3607}
3608EXPORT_SYMBOL(unmap_mapping_range);
3609
b756a3b5
AP
3610/*
3611 * Restore a potential device exclusive pte to a working pte entry
3612 */
3613static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3614{
3615 struct page *page = vmf->page;
3616 struct vm_area_struct *vma = vmf->vma;
3617 struct mmu_notifier_range range;
3618
3619 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3620 return VM_FAULT_RETRY;
3621 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3622 vma->vm_mm, vmf->address & PAGE_MASK,
3623 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3624 mmu_notifier_invalidate_range_start(&range);
3625
3626 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3627 &vmf->ptl);
3628 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3629 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3630
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632 unlock_page(page);
3633
3634 mmu_notifier_invalidate_range_end(&range);
3635 return 0;
3636}
3637
c145e0b4
DH
3638static inline bool should_try_to_free_swap(struct page *page,
3639 struct vm_area_struct *vma,
3640 unsigned int fault_flags)
3641{
3642 if (!PageSwapCache(page))
3643 return false;
3644 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3645 PageMlocked(page))
3646 return true;
3647 /*
3648 * If we want to map a page that's in the swapcache writable, we
3649 * have to detect via the refcount if we're really the exclusive
3650 * user. Try freeing the swapcache to get rid of the swapcache
3651 * reference only in case it's likely that we'll be the exlusive user.
3652 */
3653 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3654 page_count(page) == 2;
3655}
3656
9c28a205
PX
3657static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3658{
3659 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3660 vmf->address, &vmf->ptl);
3661 /*
3662 * Be careful so that we will only recover a special uffd-wp pte into a
3663 * none pte. Otherwise it means the pte could have changed, so retry.
3664 */
3665 if (is_pte_marker(*vmf->pte))
3666 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3667 pte_unmap_unlock(vmf->pte, vmf->ptl);
3668 return 0;
3669}
3670
3671/*
3672 * This is actually a page-missing access, but with uffd-wp special pte
3673 * installed. It means this pte was wr-protected before being unmapped.
3674 */
3675static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3676{
3677 /*
3678 * Just in case there're leftover special ptes even after the region
3679 * got unregistered - we can simply clear them. We can also do that
3680 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3681 * ranges, but it should be more efficient to be done lazily here.
3682 */
3683 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3684 return pte_marker_clear(vmf);
3685
3686 /* do_fault() can handle pte markers too like none pte */
3687 return do_fault(vmf);
3688}
3689
5c041f5d
PX
3690static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3691{
3692 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3693 unsigned long marker = pte_marker_get(entry);
3694
3695 /*
3696 * PTE markers should always be with file-backed memories, and the
3697 * marker should never be empty. If anything weird happened, the best
3698 * thing to do is to kill the process along with its mm.
3699 */
3700 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3701 return VM_FAULT_SIGBUS;
3702
9c28a205
PX
3703 if (pte_marker_entry_uffd_wp(entry))
3704 return pte_marker_handle_uffd_wp(vmf);
3705
3706 /* This is an unknown pte marker */
3707 return VM_FAULT_SIGBUS;
5c041f5d
PX
3708}
3709
1da177e4 3710/*
c1e8d7c6 3711 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3712 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3713 * We return with pte unmapped and unlocked.
3714 *
c1e8d7c6 3715 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3716 * as does filemap_fault().
1da177e4 3717 */
2b740303 3718vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3719{
82b0f8c3 3720 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3721 struct page *page = NULL, *swapcache;
2799e775 3722 struct swap_info_struct *si = NULL;
14f9135d 3723 rmap_t rmap_flags = RMAP_NONE;
1493a191 3724 bool exclusive = false;
65500d23 3725 swp_entry_t entry;
1da177e4 3726 pte_t pte;
d065bd81 3727 int locked;
2b740303 3728 vm_fault_t ret = 0;
aae466b0 3729 void *shadow = NULL;
1da177e4 3730
2ca99358 3731 if (!pte_unmap_same(vmf))
8f4e2101 3732 goto out;
65500d23 3733
2994302b 3734 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3735 if (unlikely(non_swap_entry(entry))) {
3736 if (is_migration_entry(entry)) {
82b0f8c3
JK
3737 migration_entry_wait(vma->vm_mm, vmf->pmd,
3738 vmf->address);
b756a3b5
AP
3739 } else if (is_device_exclusive_entry(entry)) {
3740 vmf->page = pfn_swap_entry_to_page(entry);
3741 ret = remove_device_exclusive_entry(vmf);
5042db43 3742 } else if (is_device_private_entry(entry)) {
af5cdaf8 3743 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3744 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3745 } else if (is_hwpoison_entry(entry)) {
3746 ret = VM_FAULT_HWPOISON;
9f186f9e
ML
3747 } else if (is_swapin_error_entry(entry)) {
3748 ret = VM_FAULT_SIGBUS;
5c041f5d
PX
3749 } else if (is_pte_marker_entry(entry)) {
3750 ret = handle_pte_marker(vmf);
d1737fdb 3751 } else {
2994302b 3752 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3753 ret = VM_FAULT_SIGBUS;
d1737fdb 3754 }
0697212a
CL
3755 goto out;
3756 }
0bcac06f 3757
2799e775
ML
3758 /* Prevent swapoff from happening to us. */
3759 si = get_swap_device(entry);
3760 if (unlikely(!si))
3761 goto out;
0bcac06f 3762
eaf649eb
MK
3763 page = lookup_swap_cache(entry, vma, vmf->address);
3764 swapcache = page;
f8020772 3765
1da177e4 3766 if (!page) {
a449bf58
QC
3767 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3768 __swap_count(entry) == 1) {
0bcac06f 3769 /* skip swapcache */
e9e9b7ec
MK
3770 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3771 vmf->address);
0bcac06f
MK
3772 if (page) {
3773 __SetPageLocked(page);
3774 __SetPageSwapBacked(page);
4c6355b2 3775
0add0c77
SB
3776 if (mem_cgroup_swapin_charge_page(page,
3777 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3778 ret = VM_FAULT_OOM;
4c6355b2 3779 goto out_page;
545b1b07 3780 }
0add0c77 3781 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3782
aae466b0
JK
3783 shadow = get_shadow_from_swap_cache(entry);
3784 if (shadow)
0995d7e5
MWO
3785 workingset_refault(page_folio(page),
3786 shadow);
0076f029 3787
6058eaec 3788 lru_cache_add(page);
0add0c77
SB
3789
3790 /* To provide entry to swap_readpage() */
3791 set_page_private(page, entry.val);
5169b844 3792 swap_readpage(page, true, NULL);
0add0c77 3793 set_page_private(page, 0);
0bcac06f 3794 }
aa8d22a1 3795 } else {
e9e9b7ec
MK
3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 vmf);
aa8d22a1 3798 swapcache = page;
0bcac06f
MK
3799 }
3800
1da177e4
LT
3801 if (!page) {
3802 /*
8f4e2101
HD
3803 * Back out if somebody else faulted in this pte
3804 * while we released the pte lock.
1da177e4 3805 */
82b0f8c3
JK
3806 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3807 vmf->address, &vmf->ptl);
2994302b 3808 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3809 ret = VM_FAULT_OOM;
65500d23 3810 goto unlock;
1da177e4
LT
3811 }
3812
3813 /* Had to read the page from swap area: Major fault */
3814 ret = VM_FAULT_MAJOR;
f8891e5e 3815 count_vm_event(PGMAJFAULT);
2262185c 3816 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3817 } else if (PageHWPoison(page)) {
71f72525
WF
3818 /*
3819 * hwpoisoned dirty swapcache pages are kept for killing
3820 * owner processes (which may be unknown at hwpoison time)
3821 */
d1737fdb 3822 ret = VM_FAULT_HWPOISON;
4779cb31 3823 goto out_release;
1da177e4
LT
3824 }
3825
82b0f8c3 3826 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3827
d065bd81
ML
3828 if (!locked) {
3829 ret |= VM_FAULT_RETRY;
3830 goto out_release;
3831 }
073e587e 3832
84d60fdd
DH
3833 if (swapcache) {
3834 /*
3835 * Make sure try_to_free_swap or swapoff did not release the
3836 * swapcache from under us. The page pin, and pte_same test
3837 * below, are not enough to exclude that. Even if it is still
3838 * swapcache, we need to check that the page's swap has not
3839 * changed.
3840 */
3841 if (unlikely(!PageSwapCache(page) ||
3842 page_private(page) != entry.val))
3843 goto out_page;
3844
3845 /*
3846 * KSM sometimes has to copy on read faults, for example, if
3847 * page->index of !PageKSM() pages would be nonlinear inside the
3848 * anon VMA -- PageKSM() is lost on actual swapout.
3849 */
3850 page = ksm_might_need_to_copy(page, vma, vmf->address);
3851 if (unlikely(!page)) {
3852 ret = VM_FAULT_OOM;
3853 page = swapcache;
3854 goto out_page;
3855 }
c145e0b4
DH
3856
3857 /*
3858 * If we want to map a page that's in the swapcache writable, we
3859 * have to detect via the refcount if we're really the exclusive
3860 * owner. Try removing the extra reference from the local LRU
3861 * pagevecs if required.
3862 */
3863 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3864 !PageKsm(page) && !PageLRU(page))
3865 lru_add_drain();
5ad64688
HD
3866 }
3867
9d82c694 3868 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3869
1da177e4 3870 /*
8f4e2101 3871 * Back out if somebody else already faulted in this pte.
1da177e4 3872 */
82b0f8c3
JK
3873 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3874 &vmf->ptl);
2994302b 3875 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3876 goto out_nomap;
b8107480
KK
3877
3878 if (unlikely(!PageUptodate(page))) {
3879 ret = VM_FAULT_SIGBUS;
3880 goto out_nomap;
1da177e4
LT
3881 }
3882
78fbe906
DH
3883 /*
3884 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3885 * must never point at an anonymous page in the swapcache that is
3886 * PG_anon_exclusive. Sanity check that this holds and especially, that
3887 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3888 * check after taking the PT lock and making sure that nobody
3889 * concurrently faulted in this page and set PG_anon_exclusive.
3890 */
3891 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3892 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3893
1493a191
DH
3894 /*
3895 * Check under PT lock (to protect against concurrent fork() sharing
3896 * the swap entry concurrently) for certainly exclusive pages.
3897 */
3898 if (!PageKsm(page)) {
3899 /*
3900 * Note that pte_swp_exclusive() == false for architectures
3901 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3902 */
3903 exclusive = pte_swp_exclusive(vmf->orig_pte);
3904 if (page != swapcache) {
3905 /*
3906 * We have a fresh page that is not exposed to the
3907 * swapcache -> certainly exclusive.
3908 */
3909 exclusive = true;
3910 } else if (exclusive && PageWriteback(page) &&
eacde327 3911 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3912 /*
3913 * This is tricky: not all swap backends support
3914 * concurrent page modifications while under writeback.
3915 *
3916 * So if we stumble over such a page in the swapcache
3917 * we must not set the page exclusive, otherwise we can
3918 * map it writable without further checks and modify it
3919 * while still under writeback.
3920 *
3921 * For these problematic swap backends, simply drop the
3922 * exclusive marker: this is perfectly fine as we start
3923 * writeback only if we fully unmapped the page and
3924 * there are no unexpected references on the page after
3925 * unmapping succeeded. After fully unmapped, no
3926 * further GUP references (FOLL_GET and FOLL_PIN) can
3927 * appear, so dropping the exclusive marker and mapping
3928 * it only R/O is fine.
3929 */
3930 exclusive = false;
3931 }
3932 }
3933
8c7c6e34 3934 /*
c145e0b4
DH
3935 * Remove the swap entry and conditionally try to free up the swapcache.
3936 * We're already holding a reference on the page but haven't mapped it
3937 * yet.
8c7c6e34 3938 */
c145e0b4
DH
3939 swap_free(entry);
3940 if (should_try_to_free_swap(page, vma, vmf->flags))
3941 try_to_free_swap(page);
1da177e4 3942
bae473a4
KS
3943 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3944 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3945 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3946
3947 /*
1493a191
DH
3948 * Same logic as in do_wp_page(); however, optimize for pages that are
3949 * certainly not shared either because we just allocated them without
3950 * exposing them to the swapcache or because the swap entry indicates
3951 * exclusivity.
c145e0b4 3952 */
1493a191 3953 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
6c287605
DH
3954 if (vmf->flags & FAULT_FLAG_WRITE) {
3955 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3956 vmf->flags &= ~FAULT_FLAG_WRITE;
3957 ret |= VM_FAULT_WRITE;
3958 }
14f9135d 3959 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3960 }
1da177e4 3961 flush_icache_page(vma, page);
2994302b 3962 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3963 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3964 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3965 pte = pte_mkuffd_wp(pte);
3966 pte = pte_wrprotect(pte);
3967 }
2994302b 3968 vmf->orig_pte = pte;
0bcac06f
MK
3969
3970 /* ksm created a completely new copy */
3971 if (unlikely(page != swapcache && swapcache)) {
40f2bbf7 3972 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 3973 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f 3974 } else {
f1e2db12 3975 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3976 }
1da177e4 3977
6c287605 3978 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
c475a8ab 3982 unlock_page(page);
0bcac06f 3983 if (page != swapcache && swapcache) {
4969c119
AA
3984 /*
3985 * Hold the lock to avoid the swap entry to be reused
3986 * until we take the PT lock for the pte_same() check
3987 * (to avoid false positives from pte_same). For
3988 * further safety release the lock after the swap_free
3989 * so that the swap count won't change under a
3990 * parallel locked swapcache.
3991 */
3992 unlock_page(swapcache);
09cbfeaf 3993 put_page(swapcache);
4969c119 3994 }
c475a8ab 3995
82b0f8c3 3996 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3997 ret |= do_wp_page(vmf);
61469f1d
HD
3998 if (ret & VM_FAULT_ERROR)
3999 ret &= VM_FAULT_ERROR;
1da177e4
LT
4000 goto out;
4001 }
4002
4003 /* No need to invalidate - it was non-present before */
82b0f8c3 4004 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4005unlock:
82b0f8c3 4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4007out:
2799e775
ML
4008 if (si)
4009 put_swap_device(si);
1da177e4 4010 return ret;
b8107480 4011out_nomap:
82b0f8c3 4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4013out_page:
b8107480 4014 unlock_page(page);
4779cb31 4015out_release:
09cbfeaf 4016 put_page(page);
0bcac06f 4017 if (page != swapcache && swapcache) {
4969c119 4018 unlock_page(swapcache);
09cbfeaf 4019 put_page(swapcache);
4969c119 4020 }
2799e775
ML
4021 if (si)
4022 put_swap_device(si);
65500d23 4023 return ret;
1da177e4
LT
4024}
4025
4026/*
c1e8d7c6 4027 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4028 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4029 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4030 */
2b740303 4031static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4032{
82b0f8c3 4033 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4034 struct page *page;
2b740303 4035 vm_fault_t ret = 0;
1da177e4 4036 pte_t entry;
1da177e4 4037
6b7339f4
KS
4038 /* File mapping without ->vm_ops ? */
4039 if (vma->vm_flags & VM_SHARED)
4040 return VM_FAULT_SIGBUS;
4041
7267ec00
KS
4042 /*
4043 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4044 * pte_offset_map() on pmds where a huge pmd might be created
4045 * from a different thread.
4046 *
3e4e28c5 4047 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4048 * parallel threads are excluded by other means.
4049 *
3e4e28c5 4050 * Here we only have mmap_read_lock(mm).
7267ec00 4051 */
4cf58924 4052 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4053 return VM_FAULT_OOM;
4054
f9ce0be7 4055 /* See comment in handle_pte_fault() */
82b0f8c3 4056 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4057 return 0;
4058
11ac5524 4059 /* Use the zero-page for reads */
82b0f8c3 4060 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4061 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4062 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4063 vma->vm_page_prot));
82b0f8c3
JK
4064 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4065 vmf->address, &vmf->ptl);
7df67697
BM
4066 if (!pte_none(*vmf->pte)) {
4067 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4068 goto unlock;
7df67697 4069 }
6b31d595
MH
4070 ret = check_stable_address_space(vma->vm_mm);
4071 if (ret)
4072 goto unlock;
6b251fc9
AA
4073 /* Deliver the page fault to userland, check inside PT lock */
4074 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4075 pte_unmap_unlock(vmf->pte, vmf->ptl);
4076 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4077 }
a13ea5b7
HD
4078 goto setpte;
4079 }
4080
557ed1fa 4081 /* Allocate our own private page. */
557ed1fa
NP
4082 if (unlikely(anon_vma_prepare(vma)))
4083 goto oom;
82b0f8c3 4084 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4085 if (!page)
4086 goto oom;
eb3c24f3 4087
8f425e4e 4088 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4089 goto oom_free_page;
9d82c694 4090 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4091
52f37629
MK
4092 /*
4093 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4094 * preceding stores to the page contents become visible before
52f37629
MK
4095 * the set_pte_at() write.
4096 */
0ed361de 4097 __SetPageUptodate(page);
8f4e2101 4098
557ed1fa 4099 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4100 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4101 if (vma->vm_flags & VM_WRITE)
4102 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4103
82b0f8c3
JK
4104 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4105 &vmf->ptl);
7df67697
BM
4106 if (!pte_none(*vmf->pte)) {
4107 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 4108 goto release;
7df67697 4109 }
9ba69294 4110
6b31d595
MH
4111 ret = check_stable_address_space(vma->vm_mm);
4112 if (ret)
4113 goto release;
4114
6b251fc9
AA
4115 /* Deliver the page fault to userland, check inside PT lock */
4116 if (userfaultfd_missing(vma)) {
82b0f8c3 4117 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4118 put_page(page);
82b0f8c3 4119 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4120 }
4121
bae473a4 4122 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4123 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4124 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4125setpte:
82b0f8c3 4126 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4127
4128 /* No need to invalidate - it was non-present before */
82b0f8c3 4129 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4130unlock:
82b0f8c3 4131 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4132 return ret;
8f4e2101 4133release:
09cbfeaf 4134 put_page(page);
8f4e2101 4135 goto unlock;
8a9f3ccd 4136oom_free_page:
09cbfeaf 4137 put_page(page);
65500d23 4138oom:
1da177e4
LT
4139 return VM_FAULT_OOM;
4140}
4141
9a95f3cf 4142/*
c1e8d7c6 4143 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4144 * released depending on flags and vma->vm_ops->fault() return value.
4145 * See filemap_fault() and __lock_page_retry().
4146 */
2b740303 4147static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4148{
82b0f8c3 4149 struct vm_area_struct *vma = vmf->vma;
2b740303 4150 vm_fault_t ret;
7eae74af 4151
63f3655f
MH
4152 /*
4153 * Preallocate pte before we take page_lock because this might lead to
4154 * deadlocks for memcg reclaim which waits for pages under writeback:
4155 * lock_page(A)
4156 * SetPageWriteback(A)
4157 * unlock_page(A)
4158 * lock_page(B)
4159 * lock_page(B)
d383807a 4160 * pte_alloc_one
63f3655f
MH
4161 * shrink_page_list
4162 * wait_on_page_writeback(A)
4163 * SetPageWriteback(B)
4164 * unlock_page(B)
4165 * # flush A, B to clear the writeback
4166 */
4167 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4168 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4169 if (!vmf->prealloc_pte)
4170 return VM_FAULT_OOM;
63f3655f
MH
4171 }
4172
11bac800 4173 ret = vma->vm_ops->fault(vmf);
3917048d 4174 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4175 VM_FAULT_DONE_COW)))
bc2466e4 4176 return ret;
7eae74af 4177
667240e0 4178 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4179 struct page *page = vmf->page;
e53ac737
RR
4180 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4181 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4182 if (page_mapped(page))
4183 unmap_mapping_pages(page_mapping(page),
4184 page->index, 1, false);
e53ac737 4185 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4186 if (invalidate_inode_page(page))
4187 poisonret = VM_FAULT_NOPAGE;
4188 unlock_page(page);
e53ac737 4189 }
3149c79f 4190 put_page(page);
936ca80d 4191 vmf->page = NULL;
e53ac737 4192 return poisonret;
7eae74af
KS
4193 }
4194
4195 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4196 lock_page(vmf->page);
7eae74af 4197 else
667240e0 4198 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4199
7eae74af
KS
4200 return ret;
4201}
4202
396bcc52 4203#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4204static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4205{
82b0f8c3 4206 struct vm_area_struct *vma = vmf->vma;
953c66c2 4207
82b0f8c3 4208 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4209 /*
4210 * We are going to consume the prealloc table,
4211 * count that as nr_ptes.
4212 */
c4812909 4213 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4214 vmf->prealloc_pte = NULL;
953c66c2
AK
4215}
4216
f9ce0be7 4217vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4218{
82b0f8c3
JK
4219 struct vm_area_struct *vma = vmf->vma;
4220 bool write = vmf->flags & FAULT_FLAG_WRITE;
4221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4222 pmd_t entry;
2b740303 4223 int i;
d01ac3c3 4224 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4225
4226 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4227 return ret;
10102459 4228
10102459 4229 page = compound_head(page);
d01ac3c3
MWO
4230 if (compound_order(page) != HPAGE_PMD_ORDER)
4231 return ret;
10102459 4232
eac96c3e
YS
4233 /*
4234 * Just backoff if any subpage of a THP is corrupted otherwise
4235 * the corrupted page may mapped by PMD silently to escape the
4236 * check. This kind of THP just can be PTE mapped. Access to
4237 * the corrupted subpage should trigger SIGBUS as expected.
4238 */
4239 if (unlikely(PageHasHWPoisoned(page)))
4240 return ret;
4241
953c66c2 4242 /*
f0953a1b 4243 * Archs like ppc64 need additional space to store information
953c66c2
AK
4244 * related to pte entry. Use the preallocated table for that.
4245 */
82b0f8c3 4246 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4247 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4248 if (!vmf->prealloc_pte)
953c66c2 4249 return VM_FAULT_OOM;
953c66c2
AK
4250 }
4251
82b0f8c3
JK
4252 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4253 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4254 goto out;
4255
4256 for (i = 0; i < HPAGE_PMD_NR; i++)
4257 flush_icache_page(vma, page + i);
4258
4259 entry = mk_huge_pmd(page, vma->vm_page_prot);
4260 if (write)
f55e1014 4261 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4262
fadae295 4263 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4264 page_add_file_rmap(page, vma, true);
4265
953c66c2
AK
4266 /*
4267 * deposit and withdraw with pmd lock held
4268 */
4269 if (arch_needs_pgtable_deposit())
82b0f8c3 4270 deposit_prealloc_pte(vmf);
10102459 4271
82b0f8c3 4272 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4273
82b0f8c3 4274 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4275
4276 /* fault is handled */
4277 ret = 0;
95ecedcd 4278 count_vm_event(THP_FILE_MAPPED);
10102459 4279out:
82b0f8c3 4280 spin_unlock(vmf->ptl);
10102459
KS
4281 return ret;
4282}
4283#else
f9ce0be7 4284vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4285{
f9ce0be7 4286 return VM_FAULT_FALLBACK;
10102459
KS
4287}
4288#endif
4289
9d3af4b4 4290void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4291{
82b0f8c3 4292 struct vm_area_struct *vma = vmf->vma;
9c28a205 4293 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4294 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4295 bool prefault = vmf->address != addr;
3bb97794 4296 pte_t entry;
7267ec00 4297
3bb97794
KS
4298 flush_icache_page(vma, page);
4299 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4300
4301 if (prefault && arch_wants_old_prefaulted_pte())
4302 entry = pte_mkold(entry);
50c25ee9
TB
4303 else
4304 entry = pte_sw_mkyoung(entry);
46bdb427 4305
3bb97794
KS
4306 if (write)
4307 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4308 if (unlikely(uffd_wp))
4309 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4310 /* copy-on-write page */
4311 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4312 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4313 page_add_new_anon_rmap(page, vma, addr);
b518154e 4314 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4315 } else {
eca56ff9 4316 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4317 page_add_file_rmap(page, vma, false);
3bb97794 4318 }
9d3af4b4 4319 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4320}
4321
f46f2ade
PX
4322static bool vmf_pte_changed(struct vm_fault *vmf)
4323{
4324 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4325 return !pte_same(*vmf->pte, vmf->orig_pte);
4326
4327 return !pte_none(*vmf->pte);
4328}
4329
9118c0cb
JK
4330/**
4331 * finish_fault - finish page fault once we have prepared the page to fault
4332 *
4333 * @vmf: structure describing the fault
4334 *
4335 * This function handles all that is needed to finish a page fault once the
4336 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4337 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4338 * addition.
9118c0cb
JK
4339 *
4340 * The function expects the page to be locked and on success it consumes a
4341 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4342 *
4343 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4344 */
2b740303 4345vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4346{
f9ce0be7 4347 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4348 struct page *page;
f9ce0be7 4349 vm_fault_t ret;
9118c0cb
JK
4350
4351 /* Did we COW the page? */
f9ce0be7 4352 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4353 page = vmf->cow_page;
4354 else
4355 page = vmf->page;
6b31d595
MH
4356
4357 /*
4358 * check even for read faults because we might have lost our CoWed
4359 * page
4360 */
f9ce0be7
KS
4361 if (!(vma->vm_flags & VM_SHARED)) {
4362 ret = check_stable_address_space(vma->vm_mm);
4363 if (ret)
4364 return ret;
4365 }
4366
4367 if (pmd_none(*vmf->pmd)) {
4368 if (PageTransCompound(page)) {
4369 ret = do_set_pmd(vmf, page);
4370 if (ret != VM_FAULT_FALLBACK)
4371 return ret;
4372 }
4373
03c4f204
QZ
4374 if (vmf->prealloc_pte)
4375 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4376 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4377 return VM_FAULT_OOM;
4378 }
4379
4380 /* See comment in handle_pte_fault() */
4381 if (pmd_devmap_trans_unstable(vmf->pmd))
4382 return 0;
4383
4384 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4385 vmf->address, &vmf->ptl);
4386 ret = 0;
4387 /* Re-check under ptl */
f46f2ade 4388 if (likely(!vmf_pte_changed(vmf)))
9d3af4b4 4389 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4390 else
4391 ret = VM_FAULT_NOPAGE;
4392
4393 update_mmu_tlb(vma, vmf->address, vmf->pte);
4394 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4395 return ret;
4396}
4397
3a91053a
KS
4398static unsigned long fault_around_bytes __read_mostly =
4399 rounddown_pow_of_two(65536);
a9b0f861 4400
a9b0f861
KS
4401#ifdef CONFIG_DEBUG_FS
4402static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4403{
a9b0f861 4404 *val = fault_around_bytes;
1592eef0
KS
4405 return 0;
4406}
4407
b4903d6e 4408/*
da391d64
WK
4409 * fault_around_bytes must be rounded down to the nearest page order as it's
4410 * what do_fault_around() expects to see.
b4903d6e 4411 */
a9b0f861 4412static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4413{
a9b0f861 4414 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4415 return -EINVAL;
b4903d6e
AR
4416 if (val > PAGE_SIZE)
4417 fault_around_bytes = rounddown_pow_of_two(val);
4418 else
4419 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4420 return 0;
4421}
0a1345f8 4422DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4423 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4424
4425static int __init fault_around_debugfs(void)
4426{
d9f7979c
GKH
4427 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4428 &fault_around_bytes_fops);
1592eef0
KS
4429 return 0;
4430}
4431late_initcall(fault_around_debugfs);
1592eef0 4432#endif
8c6e50b0 4433
1fdb412b
KS
4434/*
4435 * do_fault_around() tries to map few pages around the fault address. The hope
4436 * is that the pages will be needed soon and this will lower the number of
4437 * faults to handle.
4438 *
4439 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4440 * not ready to be mapped: not up-to-date, locked, etc.
4441 *
4442 * This function is called with the page table lock taken. In the split ptlock
4443 * case the page table lock only protects only those entries which belong to
4444 * the page table corresponding to the fault address.
4445 *
4446 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4447 * only once.
4448 *
da391d64
WK
4449 * fault_around_bytes defines how many bytes we'll try to map.
4450 * do_fault_around() expects it to be set to a power of two less than or equal
4451 * to PTRS_PER_PTE.
1fdb412b 4452 *
da391d64
WK
4453 * The virtual address of the area that we map is naturally aligned to
4454 * fault_around_bytes rounded down to the machine page size
4455 * (and therefore to page order). This way it's easier to guarantee
4456 * that we don't cross page table boundaries.
1fdb412b 4457 */
2b740303 4458static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4459{
82b0f8c3 4460 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4461 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4462 pgoff_t end_pgoff;
2b740303 4463 int off;
8c6e50b0 4464
4db0c3c2 4465 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4466 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4467
f9ce0be7
KS
4468 address = max(address & mask, vmf->vma->vm_start);
4469 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4470 start_pgoff -= off;
8c6e50b0
KS
4471
4472 /*
da391d64
WK
4473 * end_pgoff is either the end of the page table, the end of
4474 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4475 */
bae473a4 4476 end_pgoff = start_pgoff -
f9ce0be7 4477 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4478 PTRS_PER_PTE - 1;
82b0f8c3 4479 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4480 start_pgoff + nr_pages - 1);
8c6e50b0 4481
82b0f8c3 4482 if (pmd_none(*vmf->pmd)) {
4cf58924 4483 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4484 if (!vmf->prealloc_pte)
f9ce0be7 4485 return VM_FAULT_OOM;
8c6e50b0
KS
4486 }
4487
f9ce0be7 4488 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4489}
4490
9c28a205
PX
4491/* Return true if we should do read fault-around, false otherwise */
4492static inline bool should_fault_around(struct vm_fault *vmf)
4493{
4494 /* No ->map_pages? No way to fault around... */
4495 if (!vmf->vma->vm_ops->map_pages)
4496 return false;
4497
4498 if (uffd_disable_fault_around(vmf->vma))
4499 return false;
4500
4501 return fault_around_bytes >> PAGE_SHIFT > 1;
4502}
4503
2b740303 4504static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4505{
2b740303 4506 vm_fault_t ret = 0;
8c6e50b0
KS
4507
4508 /*
4509 * Let's call ->map_pages() first and use ->fault() as fallback
4510 * if page by the offset is not ready to be mapped (cold cache or
4511 * something).
4512 */
9c28a205
PX
4513 if (should_fault_around(vmf)) {
4514 ret = do_fault_around(vmf);
4515 if (ret)
4516 return ret;
8c6e50b0 4517 }
e655fb29 4518
936ca80d 4519 ret = __do_fault(vmf);
e655fb29
KS
4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 return ret;
4522
9118c0cb 4523 ret |= finish_fault(vmf);
936ca80d 4524 unlock_page(vmf->page);
7267ec00 4525 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4526 put_page(vmf->page);
e655fb29
KS
4527 return ret;
4528}
4529
2b740303 4530static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4531{
82b0f8c3 4532 struct vm_area_struct *vma = vmf->vma;
2b740303 4533 vm_fault_t ret;
ec47c3b9
KS
4534
4535 if (unlikely(anon_vma_prepare(vma)))
4536 return VM_FAULT_OOM;
4537
936ca80d
JK
4538 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4539 if (!vmf->cow_page)
ec47c3b9
KS
4540 return VM_FAULT_OOM;
4541
8f425e4e
MWO
4542 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4543 GFP_KERNEL)) {
936ca80d 4544 put_page(vmf->cow_page);
ec47c3b9
KS
4545 return VM_FAULT_OOM;
4546 }
9d82c694 4547 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4548
936ca80d 4549 ret = __do_fault(vmf);
ec47c3b9
KS
4550 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4551 goto uncharge_out;
3917048d
JK
4552 if (ret & VM_FAULT_DONE_COW)
4553 return ret;
ec47c3b9 4554
b1aa812b 4555 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4556 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4557
9118c0cb 4558 ret |= finish_fault(vmf);
b1aa812b
JK
4559 unlock_page(vmf->page);
4560 put_page(vmf->page);
7267ec00
KS
4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 goto uncharge_out;
ec47c3b9
KS
4563 return ret;
4564uncharge_out:
936ca80d 4565 put_page(vmf->cow_page);
ec47c3b9
KS
4566 return ret;
4567}
4568
2b740303 4569static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4570{
82b0f8c3 4571 struct vm_area_struct *vma = vmf->vma;
2b740303 4572 vm_fault_t ret, tmp;
1d65f86d 4573
936ca80d 4574 ret = __do_fault(vmf);
7eae74af 4575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4576 return ret;
1da177e4
LT
4577
4578 /*
f0c6d4d2
KS
4579 * Check if the backing address space wants to know that the page is
4580 * about to become writable
1da177e4 4581 */
fb09a464 4582 if (vma->vm_ops->page_mkwrite) {
936ca80d 4583 unlock_page(vmf->page);
38b8cb7f 4584 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4585 if (unlikely(!tmp ||
4586 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4587 put_page(vmf->page);
fb09a464 4588 return tmp;
4294621f 4589 }
fb09a464
KS
4590 }
4591
9118c0cb 4592 ret |= finish_fault(vmf);
7267ec00
KS
4593 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4594 VM_FAULT_RETRY))) {
936ca80d
JK
4595 unlock_page(vmf->page);
4596 put_page(vmf->page);
f0c6d4d2 4597 return ret;
1da177e4 4598 }
b827e496 4599
89b15332 4600 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4601 return ret;
54cb8821 4602}
d00806b1 4603
9a95f3cf 4604/*
c1e8d7c6 4605 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4606 * but allow concurrent faults).
c1e8d7c6 4607 * The mmap_lock may have been released depending on flags and our
9138e47e 4608 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4609 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4610 * by other thread calling munmap()).
9a95f3cf 4611 */
2b740303 4612static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4613{
82b0f8c3 4614 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4615 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4616 vm_fault_t ret;
54cb8821 4617
ff09d7ec
AK
4618 /*
4619 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4620 */
4621 if (!vma->vm_ops->fault) {
4622 /*
4623 * If we find a migration pmd entry or a none pmd entry, which
4624 * should never happen, return SIGBUS
4625 */
4626 if (unlikely(!pmd_present(*vmf->pmd)))
4627 ret = VM_FAULT_SIGBUS;
4628 else {
4629 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4630 vmf->pmd,
4631 vmf->address,
4632 &vmf->ptl);
4633 /*
4634 * Make sure this is not a temporary clearing of pte
4635 * by holding ptl and checking again. A R/M/W update
4636 * of pte involves: take ptl, clearing the pte so that
4637 * we don't have concurrent modification by hardware
4638 * followed by an update.
4639 */
4640 if (unlikely(pte_none(*vmf->pte)))
4641 ret = VM_FAULT_SIGBUS;
4642 else
4643 ret = VM_FAULT_NOPAGE;
4644
4645 pte_unmap_unlock(vmf->pte, vmf->ptl);
4646 }
4647 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4648 ret = do_read_fault(vmf);
4649 else if (!(vma->vm_flags & VM_SHARED))
4650 ret = do_cow_fault(vmf);
4651 else
4652 ret = do_shared_fault(vmf);
4653
4654 /* preallocated pagetable is unused: free it */
4655 if (vmf->prealloc_pte) {
fc8efd2d 4656 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4657 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4658 }
4659 return ret;
54cb8821
NP
4660}
4661
f4c0d836
YS
4662int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4663 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4664{
4665 get_page(page);
4666
4667 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4668 if (page_nid == numa_node_id()) {
9532fec1 4669 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4670 *flags |= TNF_FAULT_LOCAL;
4671 }
9532fec1
MG
4672
4673 return mpol_misplaced(page, vma, addr);
4674}
4675
2b740303 4676static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4677{
82b0f8c3 4678 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4679 struct page *page = NULL;
98fa15f3 4680 int page_nid = NUMA_NO_NODE;
90572890 4681 int last_cpupid;
cbee9f88 4682 int target_nid;
04a86453 4683 pte_t pte, old_pte;
288bc549 4684 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4685 int flags = 0;
d10e63f2
MG
4686
4687 /*
166f61b9
TH
4688 * The "pte" at this point cannot be used safely without
4689 * validation through pte_unmap_same(). It's of NUMA type but
4690 * the pfn may be screwed if the read is non atomic.
166f61b9 4691 */
82b0f8c3
JK
4692 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4693 spin_lock(vmf->ptl);
cee216a6 4694 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4695 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4696 goto out;
4697 }
4698
b99a342d
HY
4699 /* Get the normal PTE */
4700 old_pte = ptep_get(vmf->pte);
04a86453 4701 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4702
82b0f8c3 4703 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4704 if (!page || is_zone_device_page(page))
b99a342d 4705 goto out_map;
d10e63f2 4706
e81c4802 4707 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4708 if (PageCompound(page))
4709 goto out_map;
e81c4802 4710
6688cc05 4711 /*
bea66fbd
MG
4712 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4713 * much anyway since they can be in shared cache state. This misses
4714 * the case where a mapping is writable but the process never writes
4715 * to it but pte_write gets cleared during protection updates and
4716 * pte_dirty has unpredictable behaviour between PTE scan updates,
4717 * background writeback, dirty balancing and application behaviour.
6688cc05 4718 */
b99a342d 4719 if (!was_writable)
6688cc05
PZ
4720 flags |= TNF_NO_GROUP;
4721
dabe1d99
RR
4722 /*
4723 * Flag if the page is shared between multiple address spaces. This
4724 * is later used when determining whether to group tasks together
4725 */
4726 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4727 flags |= TNF_SHARED;
4728
90572890 4729 last_cpupid = page_cpupid_last(page);
8191acbd 4730 page_nid = page_to_nid(page);
82b0f8c3 4731 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4732 &flags);
98fa15f3 4733 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4734 put_page(page);
b99a342d 4735 goto out_map;
4daae3b4 4736 }
b99a342d 4737 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4738
4739 /* Migrate to the requested node */
bf90ac19 4740 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4741 page_nid = target_nid;
6688cc05 4742 flags |= TNF_MIGRATED;
b99a342d 4743 } else {
074c2381 4744 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4745 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4746 spin_lock(vmf->ptl);
4747 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4748 pte_unmap_unlock(vmf->pte, vmf->ptl);
4749 goto out;
4750 }
4751 goto out_map;
4752 }
4daae3b4
MG
4753
4754out:
98fa15f3 4755 if (page_nid != NUMA_NO_NODE)
6688cc05 4756 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4757 return 0;
b99a342d
HY
4758out_map:
4759 /*
4760 * Make it present again, depending on how arch implements
4761 * non-accessible ptes, some can allow access by kernel mode.
4762 */
4763 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4764 pte = pte_modify(old_pte, vma->vm_page_prot);
4765 pte = pte_mkyoung(pte);
4766 if (was_writable)
4767 pte = pte_mkwrite(pte);
4768 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4769 update_mmu_cache(vma, vmf->address, vmf->pte);
4770 pte_unmap_unlock(vmf->pte, vmf->ptl);
4771 goto out;
d10e63f2
MG
4772}
4773
2b740303 4774static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4775{
f4200391 4776 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4777 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4778 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4779 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4780 return VM_FAULT_FALLBACK;
4781}
4782
183f24aa 4783/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4784static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4785{
c89357e2
DH
4786 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4787
529b930b 4788 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4789 if (likely(!unshare) &&
4790 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4791 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4792 return do_huge_pmd_wp_page(vmf);
529b930b 4793 }
327e9fd4
THV
4794 if (vmf->vma->vm_ops->huge_fault) {
4795 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4796
4797 if (!(ret & VM_FAULT_FALLBACK))
4798 return ret;
4799 }
af9e4d5f 4800
327e9fd4 4801 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4802 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4803
b96375f7
MW
4804 return VM_FAULT_FALLBACK;
4805}
4806
2b740303 4807static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4808{
327e9fd4
THV
4809#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4810 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4811 /* No support for anonymous transparent PUD pages yet */
4812 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4813 goto split;
4814 if (vmf->vma->vm_ops->huge_fault) {
4815 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4816
4817 if (!(ret & VM_FAULT_FALLBACK))
4818 return ret;
4819 }
4820split:
4821 /* COW or write-notify not handled on PUD level: split pud.*/
4822 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4823#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4824 return VM_FAULT_FALLBACK;
4825}
4826
2b740303 4827static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4828{
4829#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4830 /* No support for anonymous transparent PUD pages yet */
4831 if (vma_is_anonymous(vmf->vma))
4832 return VM_FAULT_FALLBACK;
4833 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4834 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4835#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4836 return VM_FAULT_FALLBACK;
4837}
4838
1da177e4
LT
4839/*
4840 * These routines also need to handle stuff like marking pages dirty
4841 * and/or accessed for architectures that don't do it in hardware (most
4842 * RISC architectures). The early dirtying is also good on the i386.
4843 *
4844 * There is also a hook called "update_mmu_cache()" that architectures
4845 * with external mmu caches can use to update those (ie the Sparc or
4846 * PowerPC hashed page tables that act as extended TLBs).
4847 *
c1e8d7c6 4848 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4849 * concurrent faults).
9a95f3cf 4850 *
c1e8d7c6 4851 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4852 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4853 */
2b740303 4854static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4855{
4856 pte_t entry;
4857
82b0f8c3 4858 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4859 /*
4860 * Leave __pte_alloc() until later: because vm_ops->fault may
4861 * want to allocate huge page, and if we expose page table
4862 * for an instant, it will be difficult to retract from
4863 * concurrent faults and from rmap lookups.
4864 */
82b0f8c3 4865 vmf->pte = NULL;
f46f2ade 4866 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4867 } else {
f9ce0be7
KS
4868 /*
4869 * If a huge pmd materialized under us just retry later. Use
4870 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4871 * of pmd_trans_huge() to ensure the pmd didn't become
4872 * pmd_trans_huge under us and then back to pmd_none, as a
4873 * result of MADV_DONTNEED running immediately after a huge pmd
4874 * fault in a different thread of this mm, in turn leading to a
4875 * misleading pmd_trans_huge() retval. All we have to ensure is
4876 * that it is a regular pmd that we can walk with
4877 * pte_offset_map() and we can do that through an atomic read
4878 * in C, which is what pmd_trans_unstable() provides.
4879 */
d0f0931d 4880 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4881 return 0;
4882 /*
4883 * A regular pmd is established and it can't morph into a huge
4884 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4885 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4886 * So now it's safe to run pte_offset_map().
4887 */
82b0f8c3 4888 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4889 vmf->orig_pte = *vmf->pte;
f46f2ade 4890 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4891
4892 /*
4893 * some architectures can have larger ptes than wordsize,
4894 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4895 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4896 * accesses. The code below just needs a consistent view
4897 * for the ifs and we later double check anyway with the
7267ec00
KS
4898 * ptl lock held. So here a barrier will do.
4899 */
4900 barrier();
2994302b 4901 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4902 pte_unmap(vmf->pte);
4903 vmf->pte = NULL;
65500d23 4904 }
1da177e4
LT
4905 }
4906
82b0f8c3
JK
4907 if (!vmf->pte) {
4908 if (vma_is_anonymous(vmf->vma))
4909 return do_anonymous_page(vmf);
7267ec00 4910 else
82b0f8c3 4911 return do_fault(vmf);
7267ec00
KS
4912 }
4913
2994302b
JK
4914 if (!pte_present(vmf->orig_pte))
4915 return do_swap_page(vmf);
7267ec00 4916
2994302b
JK
4917 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4918 return do_numa_page(vmf);
d10e63f2 4919
82b0f8c3
JK
4920 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4921 spin_lock(vmf->ptl);
2994302b 4922 entry = vmf->orig_pte;
7df67697
BM
4923 if (unlikely(!pte_same(*vmf->pte, entry))) {
4924 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4925 goto unlock;
7df67697 4926 }
c89357e2 4927 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4928 if (!pte_write(entry))
2994302b 4929 return do_wp_page(vmf);
c89357e2
DH
4930 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4931 entry = pte_mkdirty(entry);
1da177e4
LT
4932 }
4933 entry = pte_mkyoung(entry);
82b0f8c3
JK
4934 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4935 vmf->flags & FAULT_FLAG_WRITE)) {
4936 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4937 } else {
b7333b58
YS
4938 /* Skip spurious TLB flush for retried page fault */
4939 if (vmf->flags & FAULT_FLAG_TRIED)
4940 goto unlock;
1a44e149
AA
4941 /*
4942 * This is needed only for protection faults but the arch code
4943 * is not yet telling us if this is a protection fault or not.
4944 * This still avoids useless tlb flushes for .text page faults
4945 * with threads.
4946 */
82b0f8c3
JK
4947 if (vmf->flags & FAULT_FLAG_WRITE)
4948 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4949 }
8f4e2101 4950unlock:
82b0f8c3 4951 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4952 return 0;
1da177e4
LT
4953}
4954
4955/*
4956 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4957 *
c1e8d7c6 4958 * The mmap_lock may have been released depending on flags and our
9138e47e 4959 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4960 */
2b740303
SJ
4961static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4962 unsigned long address, unsigned int flags)
1da177e4 4963{
82b0f8c3 4964 struct vm_fault vmf = {
bae473a4 4965 .vma = vma,
1a29d85e 4966 .address = address & PAGE_MASK,
824ddc60 4967 .real_address = address,
bae473a4 4968 .flags = flags,
0721ec8b 4969 .pgoff = linear_page_index(vma, address),
667240e0 4970 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4971 };
dcddffd4 4972 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4973 unsigned long vm_flags = vma->vm_flags;
1da177e4 4974 pgd_t *pgd;
c2febafc 4975 p4d_t *p4d;
2b740303 4976 vm_fault_t ret;
1da177e4 4977
1da177e4 4978 pgd = pgd_offset(mm, address);
c2febafc
KS
4979 p4d = p4d_alloc(mm, pgd, address);
4980 if (!p4d)
4981 return VM_FAULT_OOM;
a00cc7d9 4982
c2febafc 4983 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4984 if (!vmf.pud)
c74df32c 4985 return VM_FAULT_OOM;
625110b5 4986retry_pud:
7da4e2cb
YS
4987 if (pud_none(*vmf.pud) &&
4988 hugepage_vma_check(vma, vm_flags, false, true)) {
a00cc7d9
MW
4989 ret = create_huge_pud(&vmf);
4990 if (!(ret & VM_FAULT_FALLBACK))
4991 return ret;
4992 } else {
4993 pud_t orig_pud = *vmf.pud;
4994
4995 barrier();
4996 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4997
c89357e2
DH
4998 /*
4999 * TODO once we support anonymous PUDs: NUMA case and
5000 * FAULT_FLAG_UNSHARE handling.
5001 */
5002 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5003 ret = wp_huge_pud(&vmf, orig_pud);
5004 if (!(ret & VM_FAULT_FALLBACK))
5005 return ret;
5006 } else {
5007 huge_pud_set_accessed(&vmf, orig_pud);
5008 return 0;
5009 }
5010 }
5011 }
5012
5013 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5014 if (!vmf.pmd)
c74df32c 5015 return VM_FAULT_OOM;
625110b5
TH
5016
5017 /* Huge pud page fault raced with pmd_alloc? */
5018 if (pud_trans_unstable(vmf.pud))
5019 goto retry_pud;
5020
7da4e2cb
YS
5021 if (pmd_none(*vmf.pmd) &&
5022 hugepage_vma_check(vma, vm_flags, false, true)) {
a2d58167 5023 ret = create_huge_pmd(&vmf);
c0292554
KS
5024 if (!(ret & VM_FAULT_FALLBACK))
5025 return ret;
71e3aac0 5026 } else {
5db4f15c 5027 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5028
71e3aac0 5029 barrier();
5db4f15c 5030 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5031 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5032 !is_pmd_migration_entry(vmf.orig_pmd));
5033 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5034 pmd_migration_entry_wait(mm, vmf.pmd);
5035 return 0;
5036 }
5db4f15c
YS
5037 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5038 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5039 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5040
c89357e2
DH
5041 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5042 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5043 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5044 if (!(ret & VM_FAULT_FALLBACK))
5045 return ret;
a1dd450b 5046 } else {
5db4f15c 5047 huge_pmd_set_accessed(&vmf);
9845cbbd 5048 return 0;
1f1d06c3 5049 }
71e3aac0
AA
5050 }
5051 }
5052
82b0f8c3 5053 return handle_pte_fault(&vmf);
1da177e4
LT
5054}
5055
bce617ed 5056/**
f0953a1b 5057 * mm_account_fault - Do page fault accounting
bce617ed
PX
5058 *
5059 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5060 * of perf event counters, but we'll still do the per-task accounting to
5061 * the task who triggered this page fault.
5062 * @address: the faulted address.
5063 * @flags: the fault flags.
5064 * @ret: the fault retcode.
5065 *
f0953a1b 5066 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5067 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5068 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5069 * still be in per-arch page fault handlers at the entry of page fault.
5070 */
5071static inline void mm_account_fault(struct pt_regs *regs,
5072 unsigned long address, unsigned int flags,
5073 vm_fault_t ret)
5074{
5075 bool major;
5076
5077 /*
5078 * We don't do accounting for some specific faults:
5079 *
5080 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5081 * includes arch_vma_access_permitted() failing before reaching here.
5082 * So this is not a "this many hardware page faults" counter. We
5083 * should use the hw profiling for that.
5084 *
5085 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5086 * once they're completed.
5087 */
5088 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5089 return;
5090
5091 /*
5092 * We define the fault as a major fault when the final successful fault
5093 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5094 * handle it immediately previously).
5095 */
5096 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5097
a2beb5f1
PX
5098 if (major)
5099 current->maj_flt++;
5100 else
5101 current->min_flt++;
5102
bce617ed 5103 /*
a2beb5f1
PX
5104 * If the fault is done for GUP, regs will be NULL. We only do the
5105 * accounting for the per thread fault counters who triggered the
5106 * fault, and we skip the perf event updates.
bce617ed
PX
5107 */
5108 if (!regs)
5109 return;
5110
a2beb5f1 5111 if (major)
bce617ed 5112 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5113 else
bce617ed 5114 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5115}
5116
9a95f3cf
PC
5117/*
5118 * By the time we get here, we already hold the mm semaphore
5119 *
c1e8d7c6 5120 * The mmap_lock may have been released depending on flags and our
9138e47e 5121 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5122 */
2b740303 5123vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5124 unsigned int flags, struct pt_regs *regs)
519e5247 5125{
2b740303 5126 vm_fault_t ret;
519e5247
JW
5127
5128 __set_current_state(TASK_RUNNING);
5129
5130 count_vm_event(PGFAULT);
2262185c 5131 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
5132
5133 /* do counter updates before entering really critical section. */
5134 check_sync_rss_stat(current);
5135
de0c799b
LD
5136 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5137 flags & FAULT_FLAG_INSTRUCTION,
5138 flags & FAULT_FLAG_REMOTE))
5139 return VM_FAULT_SIGSEGV;
5140
519e5247
JW
5141 /*
5142 * Enable the memcg OOM handling for faults triggered in user
5143 * space. Kernel faults are handled more gracefully.
5144 */
5145 if (flags & FAULT_FLAG_USER)
29ef680a 5146 mem_cgroup_enter_user_fault();
519e5247 5147
bae473a4
KS
5148 if (unlikely(is_vm_hugetlb_page(vma)))
5149 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5150 else
5151 ret = __handle_mm_fault(vma, address, flags);
519e5247 5152
49426420 5153 if (flags & FAULT_FLAG_USER) {
29ef680a 5154 mem_cgroup_exit_user_fault();
166f61b9
TH
5155 /*
5156 * The task may have entered a memcg OOM situation but
5157 * if the allocation error was handled gracefully (no
5158 * VM_FAULT_OOM), there is no need to kill anything.
5159 * Just clean up the OOM state peacefully.
5160 */
5161 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5162 mem_cgroup_oom_synchronize(false);
49426420 5163 }
3812c8c8 5164
bce617ed
PX
5165 mm_account_fault(regs, address, flags, ret);
5166
519e5247
JW
5167 return ret;
5168}
e1d6d01a 5169EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5170
90eceff1
KS
5171#ifndef __PAGETABLE_P4D_FOLDED
5172/*
5173 * Allocate p4d page table.
5174 * We've already handled the fast-path in-line.
5175 */
5176int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5177{
5178 p4d_t *new = p4d_alloc_one(mm, address);
5179 if (!new)
5180 return -ENOMEM;
5181
90eceff1 5182 spin_lock(&mm->page_table_lock);
ed33b5a6 5183 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5184 p4d_free(mm, new);
ed33b5a6
QZ
5185 } else {
5186 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5187 pgd_populate(mm, pgd, new);
ed33b5a6 5188 }
90eceff1
KS
5189 spin_unlock(&mm->page_table_lock);
5190 return 0;
5191}
5192#endif /* __PAGETABLE_P4D_FOLDED */
5193
1da177e4
LT
5194#ifndef __PAGETABLE_PUD_FOLDED
5195/*
5196 * Allocate page upper directory.
872fec16 5197 * We've already handled the fast-path in-line.
1da177e4 5198 */
c2febafc 5199int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5200{
c74df32c
HD
5201 pud_t *new = pud_alloc_one(mm, address);
5202 if (!new)
1bb3630e 5203 return -ENOMEM;
1da177e4 5204
872fec16 5205 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5206 if (!p4d_present(*p4d)) {
5207 mm_inc_nr_puds(mm);
ed33b5a6 5208 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5209 p4d_populate(mm, p4d, new);
b4e98d9a 5210 } else /* Another has populated it */
5e541973 5211 pud_free(mm, new);
c74df32c 5212 spin_unlock(&mm->page_table_lock);
1bb3630e 5213 return 0;
1da177e4
LT
5214}
5215#endif /* __PAGETABLE_PUD_FOLDED */
5216
5217#ifndef __PAGETABLE_PMD_FOLDED
5218/*
5219 * Allocate page middle directory.
872fec16 5220 * We've already handled the fast-path in-line.
1da177e4 5221 */
1bb3630e 5222int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5223{
a00cc7d9 5224 spinlock_t *ptl;
c74df32c
HD
5225 pmd_t *new = pmd_alloc_one(mm, address);
5226 if (!new)
1bb3630e 5227 return -ENOMEM;
1da177e4 5228
a00cc7d9 5229 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5230 if (!pud_present(*pud)) {
5231 mm_inc_nr_pmds(mm);
ed33b5a6 5232 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5233 pud_populate(mm, pud, new);
ed33b5a6 5234 } else { /* Another has populated it */
5e541973 5235 pmd_free(mm, new);
ed33b5a6 5236 }
a00cc7d9 5237 spin_unlock(ptl);
1bb3630e 5238 return 0;
e0f39591 5239}
1da177e4
LT
5240#endif /* __PAGETABLE_PMD_FOLDED */
5241
0e5e64c0
MS
5242/**
5243 * follow_pte - look up PTE at a user virtual address
5244 * @mm: the mm_struct of the target address space
5245 * @address: user virtual address
5246 * @ptepp: location to store found PTE
5247 * @ptlp: location to store the lock for the PTE
5248 *
5249 * On a successful return, the pointer to the PTE is stored in @ptepp;
5250 * the corresponding lock is taken and its location is stored in @ptlp.
5251 * The contents of the PTE are only stable until @ptlp is released;
5252 * any further use, if any, must be protected against invalidation
5253 * with MMU notifiers.
5254 *
5255 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5256 * should be taken for read.
5257 *
5258 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5259 * it is not a good general-purpose API.
5260 *
5261 * Return: zero on success, -ve otherwise.
5262 */
5263int follow_pte(struct mm_struct *mm, unsigned long address,
5264 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5265{
5266 pgd_t *pgd;
c2febafc 5267 p4d_t *p4d;
f8ad0f49
JW
5268 pud_t *pud;
5269 pmd_t *pmd;
5270 pte_t *ptep;
5271
5272 pgd = pgd_offset(mm, address);
5273 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5274 goto out;
5275
c2febafc
KS
5276 p4d = p4d_offset(pgd, address);
5277 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5278 goto out;
5279
5280 pud = pud_offset(p4d, address);
f8ad0f49
JW
5281 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5282 goto out;
5283
5284 pmd = pmd_offset(pud, address);
f66055ab 5285 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5286
09796395 5287 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5288 goto out;
5289
5290 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5291 if (!pte_present(*ptep))
5292 goto unlock;
5293 *ptepp = ptep;
5294 return 0;
5295unlock:
5296 pte_unmap_unlock(ptep, *ptlp);
5297out:
5298 return -EINVAL;
5299}
9fd6dad1
PB
5300EXPORT_SYMBOL_GPL(follow_pte);
5301
3b6748e2
JW
5302/**
5303 * follow_pfn - look up PFN at a user virtual address
5304 * @vma: memory mapping
5305 * @address: user virtual address
5306 * @pfn: location to store found PFN
5307 *
5308 * Only IO mappings and raw PFN mappings are allowed.
5309 *
9fd6dad1
PB
5310 * This function does not allow the caller to read the permissions
5311 * of the PTE. Do not use it.
5312 *
a862f68a 5313 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5314 */
5315int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5316 unsigned long *pfn)
5317{
5318 int ret = -EINVAL;
5319 spinlock_t *ptl;
5320 pte_t *ptep;
5321
5322 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5323 return ret;
5324
9fd6dad1 5325 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5326 if (ret)
5327 return ret;
5328 *pfn = pte_pfn(*ptep);
5329 pte_unmap_unlock(ptep, ptl);
5330 return 0;
5331}
5332EXPORT_SYMBOL(follow_pfn);
5333
28b2ee20 5334#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5335int follow_phys(struct vm_area_struct *vma,
5336 unsigned long address, unsigned int flags,
5337 unsigned long *prot, resource_size_t *phys)
28b2ee20 5338{
03668a4d 5339 int ret = -EINVAL;
28b2ee20
RR
5340 pte_t *ptep, pte;
5341 spinlock_t *ptl;
28b2ee20 5342
d87fe660 5343 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5344 goto out;
28b2ee20 5345
9fd6dad1 5346 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5347 goto out;
28b2ee20 5348 pte = *ptep;
03668a4d 5349
f6f37321 5350 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5351 goto unlock;
28b2ee20
RR
5352
5353 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5354 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5355
03668a4d 5356 ret = 0;
28b2ee20
RR
5357unlock:
5358 pte_unmap_unlock(ptep, ptl);
5359out:
d87fe660 5360 return ret;
28b2ee20
RR
5361}
5362
96667f8a
DV
5363/**
5364 * generic_access_phys - generic implementation for iomem mmap access
5365 * @vma: the vma to access
f0953a1b 5366 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5367 * @buf: buffer to read/write
5368 * @len: length of transfer
5369 * @write: set to FOLL_WRITE when writing, otherwise reading
5370 *
5371 * This is a generic implementation for &vm_operations_struct.access for an
5372 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5373 * not page based.
5374 */
28b2ee20
RR
5375int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5376 void *buf, int len, int write)
5377{
5378 resource_size_t phys_addr;
5379 unsigned long prot = 0;
2bc7273b 5380 void __iomem *maddr;
96667f8a
DV
5381 pte_t *ptep, pte;
5382 spinlock_t *ptl;
5383 int offset = offset_in_page(addr);
5384 int ret = -EINVAL;
5385
5386 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5387 return -EINVAL;
5388
5389retry:
e913a8cd 5390 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5391 return -EINVAL;
5392 pte = *ptep;
5393 pte_unmap_unlock(ptep, ptl);
28b2ee20 5394
96667f8a
DV
5395 prot = pgprot_val(pte_pgprot(pte));
5396 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5397
5398 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5399 return -EINVAL;
5400
9cb12d7b 5401 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5402 if (!maddr)
5403 return -ENOMEM;
5404
e913a8cd 5405 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5406 goto out_unmap;
5407
5408 if (!pte_same(pte, *ptep)) {
5409 pte_unmap_unlock(ptep, ptl);
5410 iounmap(maddr);
5411
5412 goto retry;
5413 }
5414
28b2ee20
RR
5415 if (write)
5416 memcpy_toio(maddr + offset, buf, len);
5417 else
5418 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5419 ret = len;
5420 pte_unmap_unlock(ptep, ptl);
5421out_unmap:
28b2ee20
RR
5422 iounmap(maddr);
5423
96667f8a 5424 return ret;
28b2ee20 5425}
5a73633e 5426EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5427#endif
5428
0ec76a11 5429/*
d3f5ffca 5430 * Access another process' address space as given in mm.
0ec76a11 5431 */
d3f5ffca
JH
5432int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5433 int len, unsigned int gup_flags)
0ec76a11 5434{
0ec76a11 5435 struct vm_area_struct *vma;
0ec76a11 5436 void *old_buf = buf;
442486ec 5437 int write = gup_flags & FOLL_WRITE;
0ec76a11 5438
d8ed45c5 5439 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5440 return 0;
5441
183ff22b 5442 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5443 while (len) {
5444 int bytes, ret, offset;
5445 void *maddr;
28b2ee20 5446 struct page *page = NULL;
0ec76a11 5447
64019a2e 5448 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5449 gup_flags, &page, &vma, NULL);
28b2ee20 5450 if (ret <= 0) {
dbffcd03
RR
5451#ifndef CONFIG_HAVE_IOREMAP_PROT
5452 break;
5453#else
28b2ee20
RR
5454 /*
5455 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5456 * we can access using slightly different code.
5457 */
3e418f98
LH
5458 vma = vma_lookup(mm, addr);
5459 if (!vma)
28b2ee20
RR
5460 break;
5461 if (vma->vm_ops && vma->vm_ops->access)
5462 ret = vma->vm_ops->access(vma, addr, buf,
5463 len, write);
5464 if (ret <= 0)
28b2ee20
RR
5465 break;
5466 bytes = ret;
dbffcd03 5467#endif
0ec76a11 5468 } else {
28b2ee20
RR
5469 bytes = len;
5470 offset = addr & (PAGE_SIZE-1);
5471 if (bytes > PAGE_SIZE-offset)
5472 bytes = PAGE_SIZE-offset;
5473
5474 maddr = kmap(page);
5475 if (write) {
5476 copy_to_user_page(vma, page, addr,
5477 maddr + offset, buf, bytes);
5478 set_page_dirty_lock(page);
5479 } else {
5480 copy_from_user_page(vma, page, addr,
5481 buf, maddr + offset, bytes);
5482 }
5483 kunmap(page);
09cbfeaf 5484 put_page(page);
0ec76a11 5485 }
0ec76a11
DH
5486 len -= bytes;
5487 buf += bytes;
5488 addr += bytes;
5489 }
d8ed45c5 5490 mmap_read_unlock(mm);
0ec76a11
DH
5491
5492 return buf - old_buf;
5493}
03252919 5494
5ddd36b9 5495/**
ae91dbfc 5496 * access_remote_vm - access another process' address space
5ddd36b9
SW
5497 * @mm: the mm_struct of the target address space
5498 * @addr: start address to access
5499 * @buf: source or destination buffer
5500 * @len: number of bytes to transfer
6347e8d5 5501 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5502 *
5503 * The caller must hold a reference on @mm.
a862f68a
MR
5504 *
5505 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5506 */
5507int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5508 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5509{
d3f5ffca 5510 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5511}
5512
206cb636
SW
5513/*
5514 * Access another process' address space.
5515 * Source/target buffer must be kernel space,
5516 * Do not walk the page table directly, use get_user_pages
5517 */
5518int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5519 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5520{
5521 struct mm_struct *mm;
5522 int ret;
5523
5524 mm = get_task_mm(tsk);
5525 if (!mm)
5526 return 0;
5527
d3f5ffca 5528 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5529
206cb636
SW
5530 mmput(mm);
5531
5532 return ret;
5533}
fcd35857 5534EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5535
03252919
AK
5536/*
5537 * Print the name of a VMA.
5538 */
5539void print_vma_addr(char *prefix, unsigned long ip)
5540{
5541 struct mm_struct *mm = current->mm;
5542 struct vm_area_struct *vma;
5543
e8bff74a 5544 /*
0a7f682d 5545 * we might be running from an atomic context so we cannot sleep
e8bff74a 5546 */
d8ed45c5 5547 if (!mmap_read_trylock(mm))
e8bff74a
IM
5548 return;
5549
03252919
AK
5550 vma = find_vma(mm, ip);
5551 if (vma && vma->vm_file) {
5552 struct file *f = vma->vm_file;
0a7f682d 5553 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5554 if (buf) {
2fbc57c5 5555 char *p;
03252919 5556
9bf39ab2 5557 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5558 if (IS_ERR(p))
5559 p = "?";
2fbc57c5 5560 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5561 vma->vm_start,
5562 vma->vm_end - vma->vm_start);
5563 free_page((unsigned long)buf);
5564 }
5565 }
d8ed45c5 5566 mmap_read_unlock(mm);
03252919 5567}
3ee1afa3 5568
662bbcb2 5569#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5570void __might_fault(const char *file, int line)
3ee1afa3 5571{
9ec23531 5572 if (pagefault_disabled())
662bbcb2 5573 return;
42a38756 5574 __might_sleep(file, line);
9ec23531 5575#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5576 if (current->mm)
da1c55f1 5577 might_lock_read(&current->mm->mmap_lock);
9ec23531 5578#endif
3ee1afa3 5579}
9ec23531 5580EXPORT_SYMBOL(__might_fault);
3ee1afa3 5581#endif
47ad8475
AA
5582
5583#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5584/*
5585 * Process all subpages of the specified huge page with the specified
5586 * operation. The target subpage will be processed last to keep its
5587 * cache lines hot.
5588 */
5589static inline void process_huge_page(
5590 unsigned long addr_hint, unsigned int pages_per_huge_page,
5591 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5592 void *arg)
47ad8475 5593{
c79b57e4
HY
5594 int i, n, base, l;
5595 unsigned long addr = addr_hint &
5596 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5597
c6ddfb6c 5598 /* Process target subpage last to keep its cache lines hot */
47ad8475 5599 might_sleep();
c79b57e4
HY
5600 n = (addr_hint - addr) / PAGE_SIZE;
5601 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5602 /* If target subpage in first half of huge page */
c79b57e4
HY
5603 base = 0;
5604 l = n;
c6ddfb6c 5605 /* Process subpages at the end of huge page */
c79b57e4
HY
5606 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5607 cond_resched();
c6ddfb6c 5608 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5609 }
5610 } else {
c6ddfb6c 5611 /* If target subpage in second half of huge page */
c79b57e4
HY
5612 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5613 l = pages_per_huge_page - n;
c6ddfb6c 5614 /* Process subpages at the begin of huge page */
c79b57e4
HY
5615 for (i = 0; i < base; i++) {
5616 cond_resched();
c6ddfb6c 5617 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5618 }
5619 }
5620 /*
c6ddfb6c
HY
5621 * Process remaining subpages in left-right-left-right pattern
5622 * towards the target subpage
c79b57e4
HY
5623 */
5624 for (i = 0; i < l; i++) {
5625 int left_idx = base + i;
5626 int right_idx = base + 2 * l - 1 - i;
5627
5628 cond_resched();
c6ddfb6c 5629 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5630 cond_resched();
c6ddfb6c 5631 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5632 }
5633}
5634
c6ddfb6c
HY
5635static void clear_gigantic_page(struct page *page,
5636 unsigned long addr,
5637 unsigned int pages_per_huge_page)
5638{
5639 int i;
5640 struct page *p = page;
5641
5642 might_sleep();
5643 for (i = 0; i < pages_per_huge_page;
5644 i++, p = mem_map_next(p, page, i)) {
5645 cond_resched();
5646 clear_user_highpage(p, addr + i * PAGE_SIZE);
5647 }
5648}
5649
5650static void clear_subpage(unsigned long addr, int idx, void *arg)
5651{
5652 struct page *page = arg;
5653
5654 clear_user_highpage(page + idx, addr);
5655}
5656
5657void clear_huge_page(struct page *page,
5658 unsigned long addr_hint, unsigned int pages_per_huge_page)
5659{
5660 unsigned long addr = addr_hint &
5661 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5662
5663 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5664 clear_gigantic_page(page, addr, pages_per_huge_page);
5665 return;
5666 }
5667
5668 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5669}
5670
47ad8475
AA
5671static void copy_user_gigantic_page(struct page *dst, struct page *src,
5672 unsigned long addr,
5673 struct vm_area_struct *vma,
5674 unsigned int pages_per_huge_page)
5675{
5676 int i;
5677 struct page *dst_base = dst;
5678 struct page *src_base = src;
5679
5680 for (i = 0; i < pages_per_huge_page; ) {
5681 cond_resched();
5682 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5683
5684 i++;
5685 dst = mem_map_next(dst, dst_base, i);
5686 src = mem_map_next(src, src_base, i);
5687 }
5688}
5689
c9f4cd71
HY
5690struct copy_subpage_arg {
5691 struct page *dst;
5692 struct page *src;
5693 struct vm_area_struct *vma;
5694};
5695
5696static void copy_subpage(unsigned long addr, int idx, void *arg)
5697{
5698 struct copy_subpage_arg *copy_arg = arg;
5699
5700 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5701 addr, copy_arg->vma);
5702}
5703
47ad8475 5704void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5705 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5706 unsigned int pages_per_huge_page)
5707{
c9f4cd71
HY
5708 unsigned long addr = addr_hint &
5709 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5710 struct copy_subpage_arg arg = {
5711 .dst = dst,
5712 .src = src,
5713 .vma = vma,
5714 };
47ad8475
AA
5715
5716 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5717 copy_user_gigantic_page(dst, src, addr, vma,
5718 pages_per_huge_page);
5719 return;
5720 }
5721
c9f4cd71 5722 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5723}
fa4d75c1
MK
5724
5725long copy_huge_page_from_user(struct page *dst_page,
5726 const void __user *usr_src,
810a56b9
MK
5727 unsigned int pages_per_huge_page,
5728 bool allow_pagefault)
fa4d75c1 5729{
fa4d75c1
MK
5730 void *page_kaddr;
5731 unsigned long i, rc = 0;
5732 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5733 struct page *subpage = dst_page;
fa4d75c1 5734
3272cfc2
MK
5735 for (i = 0; i < pages_per_huge_page;
5736 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5737 if (allow_pagefault)
3272cfc2 5738 page_kaddr = kmap(subpage);
810a56b9 5739 else
3272cfc2 5740 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5741 rc = copy_from_user(page_kaddr,
b063e374 5742 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5743 if (allow_pagefault)
3272cfc2 5744 kunmap(subpage);
810a56b9
MK
5745 else
5746 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5747
5748 ret_val -= (PAGE_SIZE - rc);
5749 if (rc)
5750 break;
5751
e763243c
MS
5752 flush_dcache_page(subpage);
5753
fa4d75c1
MK
5754 cond_resched();
5755 }
5756 return ret_val;
5757}
47ad8475 5758#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5759
40b64acd 5760#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5761
5762static struct kmem_cache *page_ptl_cachep;
5763
5764void __init ptlock_cache_init(void)
5765{
5766 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5767 SLAB_PANIC, NULL);
5768}
5769
539edb58 5770bool ptlock_alloc(struct page *page)
49076ec2
KS
5771{
5772 spinlock_t *ptl;
5773
b35f1819 5774 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5775 if (!ptl)
5776 return false;
539edb58 5777 page->ptl = ptl;
49076ec2
KS
5778 return true;
5779}
5780
539edb58 5781void ptlock_free(struct page *page)
49076ec2 5782{
b35f1819 5783 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5784}
5785#endif