mm/demotion: update node_is_toptier to work with memory tiers
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
467b171a 69#include <linux/memory-tiers.h>
1592eef0 70#include <linux/debugfs.h>
6b251fc9 71#include <linux/userfaultfd_k.h>
bc2466e4 72#include <linux/dax.h>
6b31d595 73#include <linux/oom.h>
98fa15f3 74#include <linux/numa.h>
bce617ed
PX
75#include <linux/perf_event.h>
76#include <linux/ptrace.h>
e80d3909 77#include <linux/vmalloc.h>
33024536 78#include <linux/sched/sysctl.h>
1da177e4 79
b3d1411b
JFG
80#include <trace/events/kmem.h>
81
6952b61d 82#include <asm/io.h>
33a709b2 83#include <asm/mmu_context.h>
1da177e4 84#include <asm/pgalloc.h>
7c0f6ba6 85#include <linux/uaccess.h>
1da177e4
LT
86#include <asm/tlb.h>
87#include <asm/tlbflush.h>
1da177e4 88
e80d3909 89#include "pgalloc-track.h"
42b77728 90#include "internal.h"
014bb1de 91#include "swap.h"
42b77728 92
af27d940 93#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 94#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
95#endif
96
a9ee6cf5 97#ifndef CONFIG_NUMA
1da177e4 98unsigned long max_mapnr;
1da177e4 99EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
100
101struct page *mem_map;
1da177e4
LT
102EXPORT_SYMBOL(mem_map);
103#endif
104
5c041f5d
PX
105static vm_fault_t do_fault(struct vm_fault *vmf);
106
1da177e4
LT
107/*
108 * A number of key systems in x86 including ioremap() rely on the assumption
109 * that high_memory defines the upper bound on direct map memory, then end
110 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
111 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
112 * and ZONE_HIGHMEM.
113 */
166f61b9 114void *high_memory;
1da177e4 115EXPORT_SYMBOL(high_memory);
1da177e4 116
32a93233
IM
117/*
118 * Randomize the address space (stacks, mmaps, brk, etc.).
119 *
120 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121 * as ancient (libc5 based) binaries can segfault. )
122 */
123int randomize_va_space __read_mostly =
124#ifdef CONFIG_COMPAT_BRK
125 1;
126#else
127 2;
128#endif
a62eaf15 129
46bdb427
WD
130#ifndef arch_wants_old_prefaulted_pte
131static inline bool arch_wants_old_prefaulted_pte(void)
132{
133 /*
134 * Transitioning a PTE from 'old' to 'young' can be expensive on
135 * some architectures, even if it's performed in hardware. By
136 * default, "false" means prefaulted entries will be 'young'.
137 */
138 return false;
139}
140#endif
141
a62eaf15
AK
142static int __init disable_randmaps(char *s)
143{
144 randomize_va_space = 0;
9b41046c 145 return 1;
a62eaf15
AK
146}
147__setup("norandmaps", disable_randmaps);
148
62eede62 149unsigned long zero_pfn __read_mostly;
0b70068e
AB
150EXPORT_SYMBOL(zero_pfn);
151
166f61b9
TH
152unsigned long highest_memmap_pfn __read_mostly;
153
a13ea5b7
HD
154/*
155 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
156 */
157static int __init init_zero_pfn(void)
158{
159 zero_pfn = page_to_pfn(ZERO_PAGE(0));
160 return 0;
161}
e720e7d0 162early_initcall(init_zero_pfn);
a62eaf15 163
e4dcad20 164void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 165{
e4dcad20 166 trace_rss_stat(mm, member, count);
b3d1411b 167}
d559db08 168
34e55232
KH
169#if defined(SPLIT_RSS_COUNTING)
170
ea48cf78 171void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
172{
173 int i;
174
175 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
176 if (current->rss_stat.count[i]) {
177 add_mm_counter(mm, i, current->rss_stat.count[i]);
178 current->rss_stat.count[i] = 0;
34e55232
KH
179 }
180 }
05af2e10 181 current->rss_stat.events = 0;
34e55232
KH
182}
183
184static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
185{
186 struct task_struct *task = current;
187
188 if (likely(task->mm == mm))
189 task->rss_stat.count[member] += val;
190 else
191 add_mm_counter(mm, member, val);
192}
193#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
194#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
195
196/* sync counter once per 64 page faults */
197#define TASK_RSS_EVENTS_THRESH (64)
198static void check_sync_rss_stat(struct task_struct *task)
199{
200 if (unlikely(task != current))
201 return;
202 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 203 sync_mm_rss(task->mm);
34e55232 204}
9547d01b 205#else /* SPLIT_RSS_COUNTING */
34e55232
KH
206
207#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
208#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
209
210static void check_sync_rss_stat(struct task_struct *task)
211{
212}
213
9547d01b
PZ
214#endif /* SPLIT_RSS_COUNTING */
215
1da177e4
LT
216/*
217 * Note: this doesn't free the actual pages themselves. That
218 * has been handled earlier when unmapping all the memory regions.
219 */
9e1b32ca
BH
220static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
221 unsigned long addr)
1da177e4 222{
2f569afd 223 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 224 pmd_clear(pmd);
9e1b32ca 225 pte_free_tlb(tlb, token, addr);
c4812909 226 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
227}
228
e0da382c
HD
229static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
230 unsigned long addr, unsigned long end,
231 unsigned long floor, unsigned long ceiling)
1da177e4
LT
232{
233 pmd_t *pmd;
234 unsigned long next;
e0da382c 235 unsigned long start;
1da177e4 236
e0da382c 237 start = addr;
1da177e4 238 pmd = pmd_offset(pud, addr);
1da177e4
LT
239 do {
240 next = pmd_addr_end(addr, end);
241 if (pmd_none_or_clear_bad(pmd))
242 continue;
9e1b32ca 243 free_pte_range(tlb, pmd, addr);
1da177e4
LT
244 } while (pmd++, addr = next, addr != end);
245
e0da382c
HD
246 start &= PUD_MASK;
247 if (start < floor)
248 return;
249 if (ceiling) {
250 ceiling &= PUD_MASK;
251 if (!ceiling)
252 return;
1da177e4 253 }
e0da382c
HD
254 if (end - 1 > ceiling - 1)
255 return;
256
257 pmd = pmd_offset(pud, start);
258 pud_clear(pud);
9e1b32ca 259 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 260 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
261}
262
c2febafc 263static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
264 unsigned long addr, unsigned long end,
265 unsigned long floor, unsigned long ceiling)
1da177e4
LT
266{
267 pud_t *pud;
268 unsigned long next;
e0da382c 269 unsigned long start;
1da177e4 270
e0da382c 271 start = addr;
c2febafc 272 pud = pud_offset(p4d, addr);
1da177e4
LT
273 do {
274 next = pud_addr_end(addr, end);
275 if (pud_none_or_clear_bad(pud))
276 continue;
e0da382c 277 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
278 } while (pud++, addr = next, addr != end);
279
c2febafc
KS
280 start &= P4D_MASK;
281 if (start < floor)
282 return;
283 if (ceiling) {
284 ceiling &= P4D_MASK;
285 if (!ceiling)
286 return;
287 }
288 if (end - 1 > ceiling - 1)
289 return;
290
291 pud = pud_offset(p4d, start);
292 p4d_clear(p4d);
293 pud_free_tlb(tlb, pud, start);
b4e98d9a 294 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
295}
296
297static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
298 unsigned long addr, unsigned long end,
299 unsigned long floor, unsigned long ceiling)
300{
301 p4d_t *p4d;
302 unsigned long next;
303 unsigned long start;
304
305 start = addr;
306 p4d = p4d_offset(pgd, addr);
307 do {
308 next = p4d_addr_end(addr, end);
309 if (p4d_none_or_clear_bad(p4d))
310 continue;
311 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
312 } while (p4d++, addr = next, addr != end);
313
e0da382c
HD
314 start &= PGDIR_MASK;
315 if (start < floor)
316 return;
317 if (ceiling) {
318 ceiling &= PGDIR_MASK;
319 if (!ceiling)
320 return;
1da177e4 321 }
e0da382c
HD
322 if (end - 1 > ceiling - 1)
323 return;
324
c2febafc 325 p4d = p4d_offset(pgd, start);
e0da382c 326 pgd_clear(pgd);
c2febafc 327 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
328}
329
330/*
e0da382c 331 * This function frees user-level page tables of a process.
1da177e4 332 */
42b77728 333void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
334 unsigned long addr, unsigned long end,
335 unsigned long floor, unsigned long ceiling)
1da177e4
LT
336{
337 pgd_t *pgd;
338 unsigned long next;
e0da382c
HD
339
340 /*
341 * The next few lines have given us lots of grief...
342 *
343 * Why are we testing PMD* at this top level? Because often
344 * there will be no work to do at all, and we'd prefer not to
345 * go all the way down to the bottom just to discover that.
346 *
347 * Why all these "- 1"s? Because 0 represents both the bottom
348 * of the address space and the top of it (using -1 for the
349 * top wouldn't help much: the masks would do the wrong thing).
350 * The rule is that addr 0 and floor 0 refer to the bottom of
351 * the address space, but end 0 and ceiling 0 refer to the top
352 * Comparisons need to use "end - 1" and "ceiling - 1" (though
353 * that end 0 case should be mythical).
354 *
355 * Wherever addr is brought up or ceiling brought down, we must
356 * be careful to reject "the opposite 0" before it confuses the
357 * subsequent tests. But what about where end is brought down
358 * by PMD_SIZE below? no, end can't go down to 0 there.
359 *
360 * Whereas we round start (addr) and ceiling down, by different
361 * masks at different levels, in order to test whether a table
362 * now has no other vmas using it, so can be freed, we don't
363 * bother to round floor or end up - the tests don't need that.
364 */
1da177e4 365
e0da382c
HD
366 addr &= PMD_MASK;
367 if (addr < floor) {
368 addr += PMD_SIZE;
369 if (!addr)
370 return;
371 }
372 if (ceiling) {
373 ceiling &= PMD_MASK;
374 if (!ceiling)
375 return;
376 }
377 if (end - 1 > ceiling - 1)
378 end -= PMD_SIZE;
379 if (addr > end - 1)
380 return;
07e32661
AK
381 /*
382 * We add page table cache pages with PAGE_SIZE,
383 * (see pte_free_tlb()), flush the tlb if we need
384 */
ed6a7935 385 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 386 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
387 do {
388 next = pgd_addr_end(addr, end);
389 if (pgd_none_or_clear_bad(pgd))
390 continue;
c2febafc 391 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 392 } while (pgd++, addr = next, addr != end);
e0da382c
HD
393}
394
42b77728 395void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 396 unsigned long floor, unsigned long ceiling)
e0da382c
HD
397{
398 while (vma) {
399 struct vm_area_struct *next = vma->vm_next;
400 unsigned long addr = vma->vm_start;
401
8f4f8c16 402 /*
25d9e2d1 403 * Hide vma from rmap and truncate_pagecache before freeing
404 * pgtables
8f4f8c16 405 */
5beb4930 406 unlink_anon_vmas(vma);
8f4f8c16
HD
407 unlink_file_vma(vma);
408
9da61aef 409 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 410 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 411 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
412 } else {
413 /*
414 * Optimization: gather nearby vmas into one call down
415 */
416 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 417 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
418 vma = next;
419 next = vma->vm_next;
5beb4930 420 unlink_anon_vmas(vma);
8f4f8c16 421 unlink_file_vma(vma);
3bf5ee95
HD
422 }
423 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 424 floor, next ? next->vm_start : ceiling);
3bf5ee95 425 }
e0da382c
HD
426 vma = next;
427 }
1da177e4
LT
428}
429
03c4f204 430void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 431{
03c4f204 432 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 433
8ac1f832 434 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 435 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
436 /*
437 * Ensure all pte setup (eg. pte page lock and page clearing) are
438 * visible before the pte is made visible to other CPUs by being
439 * put into page tables.
440 *
441 * The other side of the story is the pointer chasing in the page
442 * table walking code (when walking the page table without locking;
443 * ie. most of the time). Fortunately, these data accesses consist
444 * of a chain of data-dependent loads, meaning most CPUs (alpha
445 * being the notable exception) will already guarantee loads are
446 * seen in-order. See the alpha page table accessors for the
447 * smp_rmb() barriers in page table walking code.
448 */
449 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
450 pmd_populate(mm, pmd, *pte);
451 *pte = NULL;
4b471e88 452 }
c4088ebd 453 spin_unlock(ptl);
03c4f204
QZ
454}
455
4cf58924 456int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 457{
4cf58924 458 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
459 if (!new)
460 return -ENOMEM;
461
03c4f204 462 pmd_install(mm, pmd, &new);
2f569afd
MS
463 if (new)
464 pte_free(mm, new);
1bb3630e 465 return 0;
1da177e4
LT
466}
467
4cf58924 468int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 469{
4cf58924 470 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
471 if (!new)
472 return -ENOMEM;
473
474 spin_lock(&init_mm.page_table_lock);
8ac1f832 475 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 476 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 477 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 478 new = NULL;
4b471e88 479 }
1bb3630e 480 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
481 if (new)
482 pte_free_kernel(&init_mm, new);
1bb3630e 483 return 0;
1da177e4
LT
484}
485
d559db08
KH
486static inline void init_rss_vec(int *rss)
487{
488 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
489}
490
491static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 492{
d559db08
KH
493 int i;
494
34e55232 495 if (current->mm == mm)
05af2e10 496 sync_mm_rss(mm);
d559db08
KH
497 for (i = 0; i < NR_MM_COUNTERS; i++)
498 if (rss[i])
499 add_mm_counter(mm, i, rss[i]);
ae859762
HD
500}
501
b5810039 502/*
6aab341e
LT
503 * This function is called to print an error when a bad pte
504 * is found. For example, we might have a PFN-mapped pte in
505 * a region that doesn't allow it.
b5810039
NP
506 *
507 * The calling function must still handle the error.
508 */
3dc14741
HD
509static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
510 pte_t pte, struct page *page)
b5810039 511{
3dc14741 512 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
513 p4d_t *p4d = p4d_offset(pgd, addr);
514 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
515 pmd_t *pmd = pmd_offset(pud, addr);
516 struct address_space *mapping;
517 pgoff_t index;
d936cf9b
HD
518 static unsigned long resume;
519 static unsigned long nr_shown;
520 static unsigned long nr_unshown;
521
522 /*
523 * Allow a burst of 60 reports, then keep quiet for that minute;
524 * or allow a steady drip of one report per second.
525 */
526 if (nr_shown == 60) {
527 if (time_before(jiffies, resume)) {
528 nr_unshown++;
529 return;
530 }
531 if (nr_unshown) {
1170532b
JP
532 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
533 nr_unshown);
d936cf9b
HD
534 nr_unshown = 0;
535 }
536 nr_shown = 0;
537 }
538 if (nr_shown++ == 0)
539 resume = jiffies + 60 * HZ;
3dc14741
HD
540
541 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
542 index = linear_page_index(vma, addr);
543
1170532b
JP
544 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
545 current->comm,
546 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 547 if (page)
f0b791a3 548 dump_page(page, "bad pte");
6aa9b8b2 549 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 550 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 551 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
552 vma->vm_file,
553 vma->vm_ops ? vma->vm_ops->fault : NULL,
554 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 555 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 556 dump_stack();
373d4d09 557 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
558}
559
ee498ed7 560/*
7e675137 561 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 562 *
7e675137
NP
563 * "Special" mappings do not wish to be associated with a "struct page" (either
564 * it doesn't exist, or it exists but they don't want to touch it). In this
565 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 566 *
7e675137
NP
567 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
568 * pte bit, in which case this function is trivial. Secondly, an architecture
569 * may not have a spare pte bit, which requires a more complicated scheme,
570 * described below.
571 *
572 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
573 * special mapping (even if there are underlying and valid "struct pages").
574 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 575 *
b379d790
JH
576 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
577 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
578 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
579 * mapping will always honor the rule
6aab341e
LT
580 *
581 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
582 *
7e675137
NP
583 * And for normal mappings this is false.
584 *
585 * This restricts such mappings to be a linear translation from virtual address
586 * to pfn. To get around this restriction, we allow arbitrary mappings so long
587 * as the vma is not a COW mapping; in that case, we know that all ptes are
588 * special (because none can have been COWed).
b379d790 589 *
b379d790 590 *
7e675137 591 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
592 *
593 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
594 * page" backing, however the difference is that _all_ pages with a struct
595 * page (that is, those where pfn_valid is true) are refcounted and considered
596 * normal pages by the VM. The disadvantage is that pages are refcounted
597 * (which can be slower and simply not an option for some PFNMAP users). The
598 * advantage is that we don't have to follow the strict linearity rule of
599 * PFNMAP mappings in order to support COWable mappings.
600 *
ee498ed7 601 */
25b2995a
CH
602struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 pte_t pte)
ee498ed7 604{
22b31eec 605 unsigned long pfn = pte_pfn(pte);
7e675137 606
00b3a331 607 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 608 if (likely(!pte_special(pte)))
22b31eec 609 goto check_pfn;
667a0a06
DV
610 if (vma->vm_ops && vma->vm_ops->find_special_page)
611 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
612 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
613 return NULL;
df6ad698
JG
614 if (is_zero_pfn(pfn))
615 return NULL;
e1fb4a08 616 if (pte_devmap(pte))
3218f871
AS
617 /*
618 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
619 * and will have refcounts incremented on their struct pages
620 * when they are inserted into PTEs, thus they are safe to
621 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
622 * do not have refcounts. Example of legacy ZONE_DEVICE is
623 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
624 */
e1fb4a08
DJ
625 return NULL;
626
df6ad698 627 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
628 return NULL;
629 }
630
00b3a331 631 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 632
b379d790
JH
633 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
634 if (vma->vm_flags & VM_MIXEDMAP) {
635 if (!pfn_valid(pfn))
636 return NULL;
637 goto out;
638 } else {
7e675137
NP
639 unsigned long off;
640 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
641 if (pfn == vma->vm_pgoff + off)
642 return NULL;
643 if (!is_cow_mapping(vma->vm_flags))
644 return NULL;
645 }
6aab341e
LT
646 }
647
b38af472
HD
648 if (is_zero_pfn(pfn))
649 return NULL;
00b3a331 650
22b31eec
HD
651check_pfn:
652 if (unlikely(pfn > highest_memmap_pfn)) {
653 print_bad_pte(vma, addr, pte, NULL);
654 return NULL;
655 }
6aab341e
LT
656
657 /*
7e675137 658 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 659 * eg. VDSO mappings can cause them to exist.
6aab341e 660 */
b379d790 661out:
6aab341e 662 return pfn_to_page(pfn);
ee498ed7
HD
663}
664
28093f9f
GS
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 pmd_t pmd)
668{
669 unsigned long pfn = pmd_pfn(pmd);
670
671 /*
672 * There is no pmd_special() but there may be special pmds, e.g.
673 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 674 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
675 */
676 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
677 if (vma->vm_flags & VM_MIXEDMAP) {
678 if (!pfn_valid(pfn))
679 return NULL;
680 goto out;
681 } else {
682 unsigned long off;
683 off = (addr - vma->vm_start) >> PAGE_SHIFT;
684 if (pfn == vma->vm_pgoff + off)
685 return NULL;
686 if (!is_cow_mapping(vma->vm_flags))
687 return NULL;
688 }
689 }
690
e1fb4a08
DJ
691 if (pmd_devmap(pmd))
692 return NULL;
3cde287b 693 if (is_huge_zero_pmd(pmd))
28093f9f
GS
694 return NULL;
695 if (unlikely(pfn > highest_memmap_pfn))
696 return NULL;
697
698 /*
699 * NOTE! We still have PageReserved() pages in the page tables.
700 * eg. VDSO mappings can cause them to exist.
701 */
702out:
703 return pfn_to_page(pfn);
704}
705#endif
706
b756a3b5
AP
707static void restore_exclusive_pte(struct vm_area_struct *vma,
708 struct page *page, unsigned long address,
709 pte_t *ptep)
710{
711 pte_t pte;
712 swp_entry_t entry;
713
714 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 if (pte_swp_soft_dirty(*ptep))
716 pte = pte_mksoft_dirty(pte);
717
718 entry = pte_to_swp_entry(*ptep);
719 if (pte_swp_uffd_wp(*ptep))
720 pte = pte_mkuffd_wp(pte);
721 else if (is_writable_device_exclusive_entry(entry))
722 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723
6c287605
DH
724 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725
b756a3b5
AP
726 /*
727 * No need to take a page reference as one was already
728 * created when the swap entry was made.
729 */
730 if (PageAnon(page))
f1e2db12 731 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
732 else
733 /*
734 * Currently device exclusive access only supports anonymous
735 * memory so the entry shouldn't point to a filebacked page.
736 */
4d8ff640 737 WARN_ON_ONCE(1);
b756a3b5 738
1eba86c0
PT
739 set_pte_at(vma->vm_mm, address, ptep, pte);
740
b756a3b5
AP
741 /*
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
744 */
745 update_mmu_cache(vma, address, ptep);
746}
747
748/*
749 * Tries to restore an exclusive pte if the page lock can be acquired without
750 * sleeping.
751 */
752static int
753try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 unsigned long addr)
755{
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
758
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
761 unlock_page(page);
762 return 0;
763 }
764
765 return -EBUSY;
766}
767
1da177e4
LT
768/*
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
1da177e4
LT
772 */
773
df3a57d1
LT
774static unsigned long
775copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 778{
8f34f1ea 779 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
780 pte_t pte = *src_pte;
781 struct page *page;
df3a57d1
LT
782 swp_entry_t entry = pte_to_swp_entry(pte);
783
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
9a5cc85c 786 return -EIO;
df3a57d1
LT
787
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
793 &src_mm->mmlist);
794 spin_unlock(&mmlist_lock);
795 }
1493a191
DH
796 /* Mark the swap entry as shared. */
797 if (pte_swp_exclusive(*src_pte)) {
798 pte = pte_swp_clear_exclusive(*src_pte);
799 set_pte_at(src_mm, addr, src_pte, pte);
800 }
df3a57d1
LT
801 rss[MM_SWAPENTS]++;
802 } else if (is_migration_entry(entry)) {
af5cdaf8 803 page = pfn_swap_entry_to_page(entry);
1da177e4 804
df3a57d1 805 rss[mm_counter(page)]++;
5042db43 806
6c287605 807 if (!is_readable_migration_entry(entry) &&
df3a57d1 808 is_cow_mapping(vm_flags)) {
5042db43 809 /*
6c287605
DH
810 * COW mappings require pages in both parent and child
811 * to be set to read. A previously exclusive entry is
812 * now shared.
5042db43 813 */
4dd845b5
AP
814 entry = make_readable_migration_entry(
815 swp_offset(entry));
df3a57d1
LT
816 pte = swp_entry_to_pte(entry);
817 if (pte_swp_soft_dirty(*src_pte))
818 pte = pte_swp_mksoft_dirty(pte);
819 if (pte_swp_uffd_wp(*src_pte))
820 pte = pte_swp_mkuffd_wp(pte);
821 set_pte_at(src_mm, addr, src_pte, pte);
822 }
823 } else if (is_device_private_entry(entry)) {
af5cdaf8 824 page = pfn_swap_entry_to_page(entry);
5042db43 825
df3a57d1
LT
826 /*
827 * Update rss count even for unaddressable pages, as
828 * they should treated just like normal pages in this
829 * respect.
830 *
831 * We will likely want to have some new rss counters
832 * for unaddressable pages, at some point. But for now
833 * keep things as they are.
834 */
835 get_page(page);
836 rss[mm_counter(page)]++;
fb3d824d
DH
837 /* Cannot fail as these pages cannot get pinned. */
838 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
839
840 /*
841 * We do not preserve soft-dirty information, because so
842 * far, checkpoint/restore is the only feature that
843 * requires that. And checkpoint/restore does not work
844 * when a device driver is involved (you cannot easily
845 * save and restore device driver state).
846 */
4dd845b5 847 if (is_writable_device_private_entry(entry) &&
df3a57d1 848 is_cow_mapping(vm_flags)) {
4dd845b5
AP
849 entry = make_readable_device_private_entry(
850 swp_offset(entry));
df3a57d1
LT
851 pte = swp_entry_to_pte(entry);
852 if (pte_swp_uffd_wp(*src_pte))
853 pte = pte_swp_mkuffd_wp(pte);
854 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 855 }
b756a3b5
AP
856 } else if (is_device_exclusive_entry(entry)) {
857 /*
858 * Make device exclusive entries present by restoring the
859 * original entry then copying as for a present pte. Device
860 * exclusive entries currently only support private writable
861 * (ie. COW) mappings.
862 */
863 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
864 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
865 return -EBUSY;
866 return -ENOENT;
c56d1b62
PX
867 } else if (is_pte_marker_entry(entry)) {
868 /*
869 * We're copying the pgtable should only because dst_vma has
870 * uffd-wp enabled, do sanity check.
871 */
872 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
873 set_pte_at(dst_mm, addr, dst_pte, pte);
874 return 0;
1da177e4 875 }
8f34f1ea
PX
876 if (!userfaultfd_wp(dst_vma))
877 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
878 set_pte_at(dst_mm, addr, dst_pte, pte);
879 return 0;
880}
881
70e806e4 882/*
b51ad4f8 883 * Copy a present and normal page.
70e806e4 884 *
b51ad4f8
DH
885 * NOTE! The usual case is that this isn't required;
886 * instead, the caller can just increase the page refcount
887 * and re-use the pte the traditional way.
70e806e4
PX
888 *
889 * And if we need a pre-allocated page but don't yet have
890 * one, return a negative error to let the preallocation
891 * code know so that it can do so outside the page table
892 * lock.
893 */
894static inline int
c78f4636
PX
895copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 897 struct page **prealloc, struct page *page)
70e806e4
PX
898{
899 struct page *new_page;
b51ad4f8 900 pte_t pte;
70e806e4 901
70e806e4
PX
902 new_page = *prealloc;
903 if (!new_page)
904 return -EAGAIN;
905
906 /*
907 * We have a prealloc page, all good! Take it
908 * over and copy the page & arm it.
909 */
910 *prealloc = NULL;
c78f4636 911 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 912 __SetPageUptodate(new_page);
40f2bbf7 913 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 914 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
915 rss[mm_counter(new_page)]++;
916
917 /* All done, just insert the new page copy in the child */
c78f4636
PX
918 pte = mk_pte(new_page, dst_vma->vm_page_prot);
919 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
920 if (userfaultfd_pte_wp(dst_vma, *src_pte))
921 /* Uffd-wp needs to be delivered to dest pte as well */
922 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 923 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
924 return 0;
925}
926
927/*
928 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
929 * is required to copy this pte.
930 */
931static inline int
c78f4636
PX
932copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 struct page **prealloc)
df3a57d1 935{
c78f4636
PX
936 struct mm_struct *src_mm = src_vma->vm_mm;
937 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
938 pte_t pte = *src_pte;
939 struct page *page;
940
c78f4636 941 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 942 if (page && PageAnon(page)) {
b51ad4f8
DH
943 /*
944 * If this page may have been pinned by the parent process,
945 * copy the page immediately for the child so that we'll always
946 * guarantee the pinned page won't be randomly replaced in the
947 * future.
948 */
70e806e4 949 get_page(page);
fb3d824d
DH
950 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
951 /* Page maybe pinned, we have to copy. */
952 put_page(page);
953 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, page);
955 }
956 rss[mm_counter(page)]++;
b51ad4f8 957 } else if (page) {
70e806e4 958 get_page(page);
fb3d824d 959 page_dup_file_rmap(page, false);
70e806e4
PX
960 rss[mm_counter(page)]++;
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
1b2de5d0 967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4 970 }
6c287605 971 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
972
973 /*
974 * If it's a shared mapping, mark it clean in
975 * the child
976 */
977 if (vm_flags & VM_SHARED)
978 pte = pte_mkclean(pte);
979 pte = pte_mkold(pte);
6aab341e 980
8f34f1ea 981 if (!userfaultfd_wp(dst_vma))
b569a176
PX
982 pte = pte_clear_uffd_wp(pte);
983
c78f4636 984 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
985 return 0;
986}
987
988static inline struct page *
989page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
990 unsigned long addr)
991{
992 struct page *new_page;
993
994 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
995 if (!new_page)
996 return NULL;
997
8f425e4e 998 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
999 put_page(new_page);
1000 return NULL;
6aab341e 1001 }
70e806e4 1002 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1003
70e806e4 1004 return new_page;
1da177e4
LT
1005}
1006
c78f4636
PX
1007static int
1008copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1009 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1010 unsigned long end)
1da177e4 1011{
c78f4636
PX
1012 struct mm_struct *dst_mm = dst_vma->vm_mm;
1013 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1014 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1015 pte_t *src_pte, *dst_pte;
c74df32c 1016 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1017 int progress, ret = 0;
d559db08 1018 int rss[NR_MM_COUNTERS];
570a335b 1019 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1020 struct page *prealloc = NULL;
1da177e4
LT
1021
1022again:
70e806e4 1023 progress = 0;
d559db08
KH
1024 init_rss_vec(rss);
1025
c74df32c 1026 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1027 if (!dst_pte) {
1028 ret = -ENOMEM;
1029 goto out;
1030 }
ece0e2b6 1031 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1032 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1033 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1034 orig_src_pte = src_pte;
1035 orig_dst_pte = dst_pte;
6606c3e0 1036 arch_enter_lazy_mmu_mode();
1da177e4 1037
1da177e4
LT
1038 do {
1039 /*
1040 * We are holding two locks at this point - either of them
1041 * could generate latencies in another task on another CPU.
1042 */
e040f218
HD
1043 if (progress >= 32) {
1044 progress = 0;
1045 if (need_resched() ||
95c354fe 1046 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1047 break;
1048 }
1da177e4
LT
1049 if (pte_none(*src_pte)) {
1050 progress++;
1051 continue;
1052 }
79a1971c 1053 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1054 ret = copy_nonpresent_pte(dst_mm, src_mm,
1055 dst_pte, src_pte,
1056 dst_vma, src_vma,
1057 addr, rss);
1058 if (ret == -EIO) {
1059 entry = pte_to_swp_entry(*src_pte);
79a1971c 1060 break;
b756a3b5
AP
1061 } else if (ret == -EBUSY) {
1062 break;
1063 } else if (!ret) {
1064 progress += 8;
1065 continue;
9a5cc85c 1066 }
b756a3b5
AP
1067
1068 /*
1069 * Device exclusive entry restored, continue by copying
1070 * the now present pte.
1071 */
1072 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1073 }
70e806e4 1074 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1075 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1076 addr, rss, &prealloc);
70e806e4
PX
1077 /*
1078 * If we need a pre-allocated page for this pte, drop the
1079 * locks, allocate, and try again.
1080 */
1081 if (unlikely(ret == -EAGAIN))
1082 break;
1083 if (unlikely(prealloc)) {
1084 /*
1085 * pre-alloc page cannot be reused by next time so as
1086 * to strictly follow mempolicy (e.g., alloc_page_vma()
1087 * will allocate page according to address). This
1088 * could only happen if one pinned pte changed.
1089 */
1090 put_page(prealloc);
1091 prealloc = NULL;
1092 }
1da177e4
LT
1093 progress += 8;
1094 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1095
6606c3e0 1096 arch_leave_lazy_mmu_mode();
c74df32c 1097 spin_unlock(src_ptl);
ece0e2b6 1098 pte_unmap(orig_src_pte);
d559db08 1099 add_mm_rss_vec(dst_mm, rss);
c36987e2 1100 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1101 cond_resched();
570a335b 1102
9a5cc85c
AP
1103 if (ret == -EIO) {
1104 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1105 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1106 ret = -ENOMEM;
1107 goto out;
1108 }
1109 entry.val = 0;
b756a3b5
AP
1110 } else if (ret == -EBUSY) {
1111 goto out;
9a5cc85c 1112 } else if (ret == -EAGAIN) {
c78f4636 1113 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1114 if (!prealloc)
570a335b 1115 return -ENOMEM;
9a5cc85c
AP
1116 } else if (ret) {
1117 VM_WARN_ON_ONCE(1);
570a335b 1118 }
9a5cc85c
AP
1119
1120 /* We've captured and resolved the error. Reset, try again. */
1121 ret = 0;
1122
1da177e4
LT
1123 if (addr != end)
1124 goto again;
70e806e4
PX
1125out:
1126 if (unlikely(prealloc))
1127 put_page(prealloc);
1128 return ret;
1da177e4
LT
1129}
1130
c78f4636
PX
1131static inline int
1132copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1134 unsigned long end)
1da177e4 1135{
c78f4636
PX
1136 struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1138 pmd_t *src_pmd, *dst_pmd;
1139 unsigned long next;
1140
1141 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1142 if (!dst_pmd)
1143 return -ENOMEM;
1144 src_pmd = pmd_offset(src_pud, addr);
1145 do {
1146 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1147 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1148 || pmd_devmap(*src_pmd)) {
71e3aac0 1149 int err;
c78f4636 1150 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1151 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1152 addr, dst_vma, src_vma);
71e3aac0
AA
1153 if (err == -ENOMEM)
1154 return -ENOMEM;
1155 if (!err)
1156 continue;
1157 /* fall through */
1158 }
1da177e4
LT
1159 if (pmd_none_or_clear_bad(src_pmd))
1160 continue;
c78f4636
PX
1161 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1162 addr, next))
1da177e4
LT
1163 return -ENOMEM;
1164 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1165 return 0;
1166}
1167
c78f4636
PX
1168static inline int
1169copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1171 unsigned long end)
1da177e4 1172{
c78f4636
PX
1173 struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1175 pud_t *src_pud, *dst_pud;
1176 unsigned long next;
1177
c2febafc 1178 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1179 if (!dst_pud)
1180 return -ENOMEM;
c2febafc 1181 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1182 do {
1183 next = pud_addr_end(addr, end);
a00cc7d9
MW
1184 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1185 int err;
1186
c78f4636 1187 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1188 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1189 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1190 if (err == -ENOMEM)
1191 return -ENOMEM;
1192 if (!err)
1193 continue;
1194 /* fall through */
1195 }
1da177e4
LT
1196 if (pud_none_or_clear_bad(src_pud))
1197 continue;
c78f4636
PX
1198 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1199 addr, next))
1da177e4
LT
1200 return -ENOMEM;
1201 } while (dst_pud++, src_pud++, addr = next, addr != end);
1202 return 0;
1203}
1204
c78f4636
PX
1205static inline int
1206copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1207 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1208 unsigned long end)
c2febafc 1209{
c78f4636 1210 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1211 p4d_t *src_p4d, *dst_p4d;
1212 unsigned long next;
1213
1214 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1215 if (!dst_p4d)
1216 return -ENOMEM;
1217 src_p4d = p4d_offset(src_pgd, addr);
1218 do {
1219 next = p4d_addr_end(addr, end);
1220 if (p4d_none_or_clear_bad(src_p4d))
1221 continue;
c78f4636
PX
1222 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1223 addr, next))
c2febafc
KS
1224 return -ENOMEM;
1225 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1226 return 0;
1227}
1228
c56d1b62
PX
1229/*
1230 * Return true if the vma needs to copy the pgtable during this fork(). Return
1231 * false when we can speed up fork() by allowing lazy page faults later until
1232 * when the child accesses the memory range.
1233 */
bc70fbf2 1234static bool
c56d1b62
PX
1235vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1236{
1237 /*
1238 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1239 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1240 * contains uffd-wp protection information, that's something we can't
1241 * retrieve from page cache, and skip copying will lose those info.
1242 */
1243 if (userfaultfd_wp(dst_vma))
1244 return true;
1245
bcd51a3c 1246 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1247 return true;
1248
1249 if (src_vma->anon_vma)
1250 return true;
1251
1252 /*
1253 * Don't copy ptes where a page fault will fill them correctly. Fork
1254 * becomes much lighter when there are big shared or private readonly
1255 * mappings. The tradeoff is that copy_page_range is more efficient
1256 * than faulting.
1257 */
1258 return false;
1259}
1260
c78f4636
PX
1261int
1262copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1263{
1264 pgd_t *src_pgd, *dst_pgd;
1265 unsigned long next;
c78f4636
PX
1266 unsigned long addr = src_vma->vm_start;
1267 unsigned long end = src_vma->vm_end;
1268 struct mm_struct *dst_mm = dst_vma->vm_mm;
1269 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1270 struct mmu_notifier_range range;
2ec74c3e 1271 bool is_cow;
cddb8a5c 1272 int ret;
1da177e4 1273
c56d1b62 1274 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1275 return 0;
d992895b 1276
c78f4636 1277 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1278 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1279
c78f4636 1280 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1281 /*
1282 * We do not free on error cases below as remove_vma
1283 * gets called on error from higher level routine
1284 */
c78f4636 1285 ret = track_pfn_copy(src_vma);
2ab64037 1286 if (ret)
1287 return ret;
1288 }
1289
cddb8a5c
AA
1290 /*
1291 * We need to invalidate the secondary MMU mappings only when
1292 * there could be a permission downgrade on the ptes of the
1293 * parent mm. And a permission downgrade will only happen if
1294 * is_cow_mapping() returns true.
1295 */
c78f4636 1296 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1297
1298 if (is_cow) {
7269f999 1299 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1300 0, src_vma, src_mm, addr, end);
ac46d4f3 1301 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1302 /*
1303 * Disabling preemption is not needed for the write side, as
1304 * the read side doesn't spin, but goes to the mmap_lock.
1305 *
1306 * Use the raw variant of the seqcount_t write API to avoid
1307 * lockdep complaining about preemptibility.
1308 */
1309 mmap_assert_write_locked(src_mm);
1310 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1311 }
cddb8a5c
AA
1312
1313 ret = 0;
1da177e4
LT
1314 dst_pgd = pgd_offset(dst_mm, addr);
1315 src_pgd = pgd_offset(src_mm, addr);
1316 do {
1317 next = pgd_addr_end(addr, end);
1318 if (pgd_none_or_clear_bad(src_pgd))
1319 continue;
c78f4636
PX
1320 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1321 addr, next))) {
cddb8a5c
AA
1322 ret = -ENOMEM;
1323 break;
1324 }
1da177e4 1325 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1326
57efa1fe
JG
1327 if (is_cow) {
1328 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1329 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1330 }
cddb8a5c 1331 return ret;
1da177e4
LT
1332}
1333
3506659e
MWO
1334/*
1335 * Parameter block passed down to zap_pte_range in exceptional cases.
1336 */
1337struct zap_details {
3506659e 1338 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1339 bool even_cows; /* Zap COWed private pages too? */
999dad82 1340 zap_flags_t zap_flags; /* Extra flags for zapping */
3506659e
MWO
1341};
1342
5abfd71d
PX
1343/* Whether we should zap all COWed (private) pages too */
1344static inline bool should_zap_cows(struct zap_details *details)
1345{
1346 /* By default, zap all pages */
1347 if (!details)
1348 return true;
1349
1350 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1351 return details->even_cows;
5abfd71d
PX
1352}
1353
2e148f1e 1354/* Decides whether we should zap this page with the page pointer specified */
254ab940 1355static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1356{
5abfd71d
PX
1357 /* If we can make a decision without *page.. */
1358 if (should_zap_cows(details))
254ab940 1359 return true;
5abfd71d
PX
1360
1361 /* E.g. the caller passes NULL for the case of a zero page */
1362 if (!page)
254ab940 1363 return true;
3506659e 1364
2e148f1e
PX
1365 /* Otherwise we should only zap non-anon pages */
1366 return !PageAnon(page);
3506659e
MWO
1367}
1368
999dad82
PX
1369static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370{
1371 if (!details)
1372 return false;
1373
1374 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375}
1376
1377/*
1378 * This function makes sure that we'll replace the none pte with an uffd-wp
1379 * swap special pte marker when necessary. Must be with the pgtable lock held.
1380 */
1381static inline void
1382zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 unsigned long addr, pte_t *pte,
1384 struct zap_details *details, pte_t pteval)
1385{
1386 if (zap_drop_file_uffd_wp(details))
1387 return;
1388
1389 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1390}
1391
51c6f666 1392static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1393 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1394 unsigned long addr, unsigned long end,
97a89413 1395 struct zap_details *details)
1da177e4 1396{
b5810039 1397 struct mm_struct *mm = tlb->mm;
d16dfc55 1398 int force_flush = 0;
d559db08 1399 int rss[NR_MM_COUNTERS];
97a89413 1400 spinlock_t *ptl;
5f1a1907 1401 pte_t *start_pte;
97a89413 1402 pte_t *pte;
8a5f14a2 1403 swp_entry_t entry;
d559db08 1404
ed6a7935 1405 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1406again:
e303297e 1407 init_rss_vec(rss);
5f1a1907
SR
1408 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 pte = start_pte;
3ea27719 1410 flush_tlb_batched_pending(mm);
6606c3e0 1411 arch_enter_lazy_mmu_mode();
1da177e4
LT
1412 do {
1413 pte_t ptent = *pte;
8018db85
PX
1414 struct page *page;
1415
166f61b9 1416 if (pte_none(ptent))
1da177e4 1417 continue;
6f5e6b9e 1418
7b167b68
MK
1419 if (need_resched())
1420 break;
1421
1da177e4 1422 if (pte_present(ptent)) {
25b2995a 1423 page = vm_normal_page(vma, addr, ptent);
254ab940 1424 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1425 continue;
b5810039 1426 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1427 tlb->fullmm);
1da177e4 1428 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1429 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1430 ptent);
1da177e4
LT
1431 if (unlikely(!page))
1432 continue;
eca56ff9
JM
1433
1434 if (!PageAnon(page)) {
1cf35d47
LT
1435 if (pte_dirty(ptent)) {
1436 force_flush = 1;
6237bcd9 1437 set_page_dirty(page);
1cf35d47 1438 }
4917e5d0 1439 if (pte_young(ptent) &&
64363aad 1440 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1441 mark_page_accessed(page);
6237bcd9 1442 }
eca56ff9 1443 rss[mm_counter(page)]--;
cea86fe2 1444 page_remove_rmap(page, vma, false);
3dc14741
HD
1445 if (unlikely(page_mapcount(page) < 0))
1446 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1447 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1448 force_flush = 1;
ce9ec37b 1449 addr += PAGE_SIZE;
d16dfc55 1450 break;
1cf35d47 1451 }
1da177e4
LT
1452 continue;
1453 }
5042db43
JG
1454
1455 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1456 if (is_device_private_entry(entry) ||
1457 is_device_exclusive_entry(entry)) {
8018db85 1458 page = pfn_swap_entry_to_page(entry);
254ab940 1459 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1460 continue;
999dad82
PX
1461 /*
1462 * Both device private/exclusive mappings should only
1463 * work with anonymous page so far, so we don't need to
1464 * consider uffd-wp bit when zap. For more information,
1465 * see zap_install_uffd_wp_if_needed().
1466 */
1467 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1468 rss[mm_counter(page)]--;
b756a3b5 1469 if (is_device_private_entry(entry))
cea86fe2 1470 page_remove_rmap(page, vma, false);
5042db43 1471 put_page(page);
8018db85 1472 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1473 /* Genuine swap entry, hence a private anon page */
1474 if (!should_zap_cows(details))
1475 continue;
8a5f14a2 1476 rss[MM_SWAPENTS]--;
8018db85
PX
1477 if (unlikely(!free_swap_and_cache(entry)))
1478 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1479 } else if (is_migration_entry(entry)) {
af5cdaf8 1480 page = pfn_swap_entry_to_page(entry);
254ab940 1481 if (!should_zap_page(details, page))
5abfd71d 1482 continue;
eca56ff9 1483 rss[mm_counter(page)]--;
999dad82
PX
1484 } else if (pte_marker_entry_uffd_wp(entry)) {
1485 /* Only drop the uffd-wp marker if explicitly requested */
1486 if (!zap_drop_file_uffd_wp(details))
1487 continue;
9f186f9e
ML
1488 } else if (is_hwpoison_entry(entry) ||
1489 is_swapin_error_entry(entry)) {
5abfd71d
PX
1490 if (!should_zap_cows(details))
1491 continue;
1492 } else {
1493 /* We should have covered all the swap entry types */
1494 WARN_ON_ONCE(1);
b084d435 1495 }
9888a1ca 1496 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1497 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1498 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1499
d559db08 1500 add_mm_rss_vec(mm, rss);
6606c3e0 1501 arch_leave_lazy_mmu_mode();
51c6f666 1502
1cf35d47 1503 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1504 if (force_flush)
1cf35d47 1505 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1506 pte_unmap_unlock(start_pte, ptl);
1507
1508 /*
1509 * If we forced a TLB flush (either due to running out of
1510 * batch buffers or because we needed to flush dirty TLB
1511 * entries before releasing the ptl), free the batched
1512 * memory too. Restart if we didn't do everything.
1513 */
1514 if (force_flush) {
1515 force_flush = 0;
fa0aafb8 1516 tlb_flush_mmu(tlb);
7b167b68
MK
1517 }
1518
1519 if (addr != end) {
1520 cond_resched();
1521 goto again;
d16dfc55
PZ
1522 }
1523
51c6f666 1524 return addr;
1da177e4
LT
1525}
1526
51c6f666 1527static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1528 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1529 unsigned long addr, unsigned long end,
97a89413 1530 struct zap_details *details)
1da177e4
LT
1531{
1532 pmd_t *pmd;
1533 unsigned long next;
1534
1535 pmd = pmd_offset(pud, addr);
1536 do {
1537 next = pmd_addr_end(addr, end);
84c3fc4e 1538 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1539 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1540 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1541 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1542 goto next;
71e3aac0 1543 /* fall through */
3506659e
MWO
1544 } else if (details && details->single_folio &&
1545 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1546 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1547 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1548 /*
1549 * Take and drop THP pmd lock so that we cannot return
1550 * prematurely, while zap_huge_pmd() has cleared *pmd,
1551 * but not yet decremented compound_mapcount().
1552 */
1553 spin_unlock(ptl);
71e3aac0 1554 }
22061a1f 1555
1a5a9906
AA
1556 /*
1557 * Here there can be other concurrent MADV_DONTNEED or
1558 * trans huge page faults running, and if the pmd is
1559 * none or trans huge it can change under us. This is
c1e8d7c6 1560 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1561 * mode.
1562 */
1563 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1564 goto next;
97a89413 1565 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1566next:
97a89413
PZ
1567 cond_resched();
1568 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1569
1570 return addr;
1da177e4
LT
1571}
1572
51c6f666 1573static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1574 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1575 unsigned long addr, unsigned long end,
97a89413 1576 struct zap_details *details)
1da177e4
LT
1577{
1578 pud_t *pud;
1579 unsigned long next;
1580
c2febafc 1581 pud = pud_offset(p4d, addr);
1da177e4
LT
1582 do {
1583 next = pud_addr_end(addr, end);
a00cc7d9
MW
1584 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1585 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1586 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1587 split_huge_pud(vma, pud, addr);
1588 } else if (zap_huge_pud(tlb, vma, pud, addr))
1589 goto next;
1590 /* fall through */
1591 }
97a89413 1592 if (pud_none_or_clear_bad(pud))
1da177e4 1593 continue;
97a89413 1594 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1595next:
1596 cond_resched();
97a89413 1597 } while (pud++, addr = next, addr != end);
51c6f666
RH
1598
1599 return addr;
1da177e4
LT
1600}
1601
c2febafc
KS
1602static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1603 struct vm_area_struct *vma, pgd_t *pgd,
1604 unsigned long addr, unsigned long end,
1605 struct zap_details *details)
1606{
1607 p4d_t *p4d;
1608 unsigned long next;
1609
1610 p4d = p4d_offset(pgd, addr);
1611 do {
1612 next = p4d_addr_end(addr, end);
1613 if (p4d_none_or_clear_bad(p4d))
1614 continue;
1615 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1616 } while (p4d++, addr = next, addr != end);
1617
1618 return addr;
1619}
1620
aac45363 1621void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1622 struct vm_area_struct *vma,
1623 unsigned long addr, unsigned long end,
1624 struct zap_details *details)
1da177e4
LT
1625{
1626 pgd_t *pgd;
1627 unsigned long next;
1628
1da177e4
LT
1629 BUG_ON(addr >= end);
1630 tlb_start_vma(tlb, vma);
1631 pgd = pgd_offset(vma->vm_mm, addr);
1632 do {
1633 next = pgd_addr_end(addr, end);
97a89413 1634 if (pgd_none_or_clear_bad(pgd))
1da177e4 1635 continue;
c2febafc 1636 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1637 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1638 tlb_end_vma(tlb, vma);
1639}
51c6f666 1640
f5cc4eef
AV
1641
1642static void unmap_single_vma(struct mmu_gather *tlb,
1643 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1644 unsigned long end_addr,
f5cc4eef
AV
1645 struct zap_details *details)
1646{
1647 unsigned long start = max(vma->vm_start, start_addr);
1648 unsigned long end;
1649
1650 if (start >= vma->vm_end)
1651 return;
1652 end = min(vma->vm_end, end_addr);
1653 if (end <= vma->vm_start)
1654 return;
1655
cbc91f71
SD
1656 if (vma->vm_file)
1657 uprobe_munmap(vma, start, end);
1658
b3b9c293 1659 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1660 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1661
1662 if (start != end) {
1663 if (unlikely(is_vm_hugetlb_page(vma))) {
1664 /*
1665 * It is undesirable to test vma->vm_file as it
1666 * should be non-null for valid hugetlb area.
1667 * However, vm_file will be NULL in the error
7aa6b4ad 1668 * cleanup path of mmap_region. When
f5cc4eef 1669 * hugetlbfs ->mmap method fails,
7aa6b4ad 1670 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1671 * before calling this function to clean up.
1672 * Since no pte has actually been setup, it is
1673 * safe to do nothing in this case.
1674 */
24669e58 1675 if (vma->vm_file) {
05e90bd0
PX
1676 zap_flags_t zap_flags = details ?
1677 details->zap_flags : 0;
83cde9e8 1678 i_mmap_lock_write(vma->vm_file->f_mapping);
05e90bd0
PX
1679 __unmap_hugepage_range_final(tlb, vma, start, end,
1680 NULL, zap_flags);
83cde9e8 1681 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1682 }
f5cc4eef
AV
1683 } else
1684 unmap_page_range(tlb, vma, start, end, details);
1685 }
1da177e4
LT
1686}
1687
1da177e4
LT
1688/**
1689 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1690 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1691 * @vma: the starting vma
1692 * @start_addr: virtual address at which to start unmapping
1693 * @end_addr: virtual address at which to end unmapping
1da177e4 1694 *
508034a3 1695 * Unmap all pages in the vma list.
1da177e4 1696 *
1da177e4
LT
1697 * Only addresses between `start' and `end' will be unmapped.
1698 *
1699 * The VMA list must be sorted in ascending virtual address order.
1700 *
1701 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1702 * range after unmap_vmas() returns. So the only responsibility here is to
1703 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1704 * drops the lock and schedules.
1705 */
6e8bb019 1706void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1707 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1708 unsigned long end_addr)
1da177e4 1709{
ac46d4f3 1710 struct mmu_notifier_range range;
999dad82
PX
1711 struct zap_details details = {
1712 .zap_flags = ZAP_FLAG_DROP_MARKER,
1713 /* Careful - we need to zap private pages too! */
1714 .even_cows = true,
1715 };
1da177e4 1716
6f4f13e8
JG
1717 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1718 start_addr, end_addr);
ac46d4f3 1719 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1720 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
999dad82 1721 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
ac46d4f3 1722 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1723}
1724
1725/**
1726 * zap_page_range - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1728 * @start: starting address of pages to zap
1da177e4 1729 * @size: number of bytes to zap
f5cc4eef
AV
1730 *
1731 * Caller must protect the VMA list
1da177e4 1732 */
7e027b14 1733void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1734 unsigned long size)
1da177e4 1735{
ac46d4f3 1736 struct mmu_notifier_range range;
d16dfc55 1737 struct mmu_gather tlb;
1da177e4 1738
1da177e4 1739 lru_add_drain();
7269f999 1740 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1741 start, start + size);
a72afd87 1742 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1743 update_hiwater_rss(vma->vm_mm);
1744 mmu_notifier_invalidate_range_start(&range);
1745 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1746 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1747 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1748 tlb_finish_mmu(&tlb);
1da177e4
LT
1749}
1750
f5cc4eef
AV
1751/**
1752 * zap_page_range_single - remove user pages in a given range
1753 * @vma: vm_area_struct holding the applicable pages
1754 * @address: starting address of pages to zap
1755 * @size: number of bytes to zap
8a5f14a2 1756 * @details: details of shared cache invalidation
f5cc4eef
AV
1757 *
1758 * The range must fit into one VMA.
1da177e4 1759 */
f5cc4eef 1760static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1761 unsigned long size, struct zap_details *details)
1762{
ac46d4f3 1763 struct mmu_notifier_range range;
d16dfc55 1764 struct mmu_gather tlb;
1da177e4 1765
1da177e4 1766 lru_add_drain();
7269f999 1767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1768 address, address + size);
a72afd87 1769 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1770 update_hiwater_rss(vma->vm_mm);
1771 mmu_notifier_invalidate_range_start(&range);
1772 unmap_single_vma(&tlb, vma, address, range.end, details);
1773 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1774 tlb_finish_mmu(&tlb);
1da177e4
LT
1775}
1776
c627f9cc
JS
1777/**
1778 * zap_vma_ptes - remove ptes mapping the vma
1779 * @vma: vm_area_struct holding ptes to be zapped
1780 * @address: starting address of pages to zap
1781 * @size: number of bytes to zap
1782 *
1783 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1784 *
1785 * The entire address range must be fully contained within the vma.
1786 *
c627f9cc 1787 */
27d036e3 1788void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1789 unsigned long size)
1790{
88a35912 1791 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1792 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1793 return;
1794
f5cc4eef 1795 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1796}
1797EXPORT_SYMBOL_GPL(zap_vma_ptes);
1798
8cd3984d 1799static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1800{
c2febafc
KS
1801 pgd_t *pgd;
1802 p4d_t *p4d;
1803 pud_t *pud;
1804 pmd_t *pmd;
1805
1806 pgd = pgd_offset(mm, addr);
1807 p4d = p4d_alloc(mm, pgd, addr);
1808 if (!p4d)
1809 return NULL;
1810 pud = pud_alloc(mm, p4d, addr);
1811 if (!pud)
1812 return NULL;
1813 pmd = pmd_alloc(mm, pud, addr);
1814 if (!pmd)
1815 return NULL;
1816
1817 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1818 return pmd;
1819}
1820
1821pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1822 spinlock_t **ptl)
1823{
1824 pmd_t *pmd = walk_to_pmd(mm, addr);
1825
1826 if (!pmd)
1827 return NULL;
c2febafc 1828 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1829}
1830
8efd6f5b
AR
1831static int validate_page_before_insert(struct page *page)
1832{
1833 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1834 return -EINVAL;
1835 flush_dcache_page(page);
1836 return 0;
1837}
1838
cea86fe2 1839static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1840 unsigned long addr, struct page *page, pgprot_t prot)
1841{
1842 if (!pte_none(*pte))
1843 return -EBUSY;
1844 /* Ok, finally just insert the thing.. */
1845 get_page(page);
cea86fe2
HD
1846 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1847 page_add_file_rmap(page, vma, false);
1848 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1849 return 0;
1850}
1851
238f58d8
LT
1852/*
1853 * This is the old fallback for page remapping.
1854 *
1855 * For historical reasons, it only allows reserved pages. Only
1856 * old drivers should use this, and they needed to mark their
1857 * pages reserved for the old functions anyway.
1858 */
423bad60
NP
1859static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1860 struct page *page, pgprot_t prot)
238f58d8
LT
1861{
1862 int retval;
c9cfcddf 1863 pte_t *pte;
8a9f3ccd
BS
1864 spinlock_t *ptl;
1865
8efd6f5b
AR
1866 retval = validate_page_before_insert(page);
1867 if (retval)
5b4e655e 1868 goto out;
238f58d8 1869 retval = -ENOMEM;
cea86fe2 1870 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1871 if (!pte)
5b4e655e 1872 goto out;
cea86fe2 1873 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1874 pte_unmap_unlock(pte, ptl);
1875out:
1876 return retval;
1877}
1878
8cd3984d 1879#ifdef pte_index
cea86fe2 1880static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1881 unsigned long addr, struct page *page, pgprot_t prot)
1882{
1883 int err;
1884
1885 if (!page_count(page))
1886 return -EINVAL;
1887 err = validate_page_before_insert(page);
7f70c2a6
AR
1888 if (err)
1889 return err;
cea86fe2 1890 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1891}
1892
1893/* insert_pages() amortizes the cost of spinlock operations
1894 * when inserting pages in a loop. Arch *must* define pte_index.
1895 */
1896static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1897 struct page **pages, unsigned long *num, pgprot_t prot)
1898{
1899 pmd_t *pmd = NULL;
7f70c2a6
AR
1900 pte_t *start_pte, *pte;
1901 spinlock_t *pte_lock;
8cd3984d
AR
1902 struct mm_struct *const mm = vma->vm_mm;
1903 unsigned long curr_page_idx = 0;
1904 unsigned long remaining_pages_total = *num;
1905 unsigned long pages_to_write_in_pmd;
1906 int ret;
1907more:
1908 ret = -EFAULT;
1909 pmd = walk_to_pmd(mm, addr);
1910 if (!pmd)
1911 goto out;
1912
1913 pages_to_write_in_pmd = min_t(unsigned long,
1914 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1915
1916 /* Allocate the PTE if necessary; takes PMD lock once only. */
1917 ret = -ENOMEM;
1918 if (pte_alloc(mm, pmd))
1919 goto out;
8cd3984d
AR
1920
1921 while (pages_to_write_in_pmd) {
1922 int pte_idx = 0;
1923 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1924
7f70c2a6
AR
1925 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1926 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1927 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1928 addr, pages[curr_page_idx], prot);
1929 if (unlikely(err)) {
7f70c2a6 1930 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1931 ret = err;
1932 remaining_pages_total -= pte_idx;
1933 goto out;
1934 }
1935 addr += PAGE_SIZE;
1936 ++curr_page_idx;
1937 }
7f70c2a6 1938 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1939 pages_to_write_in_pmd -= batch_size;
1940 remaining_pages_total -= batch_size;
1941 }
1942 if (remaining_pages_total)
1943 goto more;
1944 ret = 0;
1945out:
1946 *num = remaining_pages_total;
1947 return ret;
1948}
1949#endif /* ifdef pte_index */
1950
1951/**
1952 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1953 * @vma: user vma to map to
1954 * @addr: target start user address of these pages
1955 * @pages: source kernel pages
1956 * @num: in: number of pages to map. out: number of pages that were *not*
1957 * mapped. (0 means all pages were successfully mapped).
1958 *
1959 * Preferred over vm_insert_page() when inserting multiple pages.
1960 *
1961 * In case of error, we may have mapped a subset of the provided
1962 * pages. It is the caller's responsibility to account for this case.
1963 *
1964 * The same restrictions apply as in vm_insert_page().
1965 */
1966int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1967 struct page **pages, unsigned long *num)
1968{
1969#ifdef pte_index
1970 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1971
1972 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1973 return -EFAULT;
1974 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1975 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1976 BUG_ON(vma->vm_flags & VM_PFNMAP);
1977 vma->vm_flags |= VM_MIXEDMAP;
1978 }
1979 /* Defer page refcount checking till we're about to map that page. */
1980 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1981#else
1982 unsigned long idx = 0, pgcount = *num;
45779b03 1983 int err = -EINVAL;
8cd3984d
AR
1984
1985 for (; idx < pgcount; ++idx) {
1986 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1987 if (err)
1988 break;
1989 }
1990 *num = pgcount - idx;
1991 return err;
1992#endif /* ifdef pte_index */
1993}
1994EXPORT_SYMBOL(vm_insert_pages);
1995
bfa5bf6d
REB
1996/**
1997 * vm_insert_page - insert single page into user vma
1998 * @vma: user vma to map to
1999 * @addr: target user address of this page
2000 * @page: source kernel page
2001 *
a145dd41
LT
2002 * This allows drivers to insert individual pages they've allocated
2003 * into a user vma.
2004 *
2005 * The page has to be a nice clean _individual_ kernel allocation.
2006 * If you allocate a compound page, you need to have marked it as
2007 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2008 * (see split_page()).
a145dd41
LT
2009 *
2010 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2011 * took an arbitrary page protection parameter. This doesn't allow
2012 * that. Your vma protection will have to be set up correctly, which
2013 * means that if you want a shared writable mapping, you'd better
2014 * ask for a shared writable mapping!
2015 *
2016 * The page does not need to be reserved.
4b6e1e37
KK
2017 *
2018 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2019 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2020 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2021 * function from other places, for example from page-fault handler.
a862f68a
MR
2022 *
2023 * Return: %0 on success, negative error code otherwise.
a145dd41 2024 */
423bad60
NP
2025int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 struct page *page)
a145dd41
LT
2027{
2028 if (addr < vma->vm_start || addr >= vma->vm_end)
2029 return -EFAULT;
2030 if (!page_count(page))
2031 return -EINVAL;
4b6e1e37 2032 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2033 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2034 BUG_ON(vma->vm_flags & VM_PFNMAP);
2035 vma->vm_flags |= VM_MIXEDMAP;
2036 }
423bad60 2037 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2038}
e3c3374f 2039EXPORT_SYMBOL(vm_insert_page);
a145dd41 2040
a667d745
SJ
2041/*
2042 * __vm_map_pages - maps range of kernel pages into user vma
2043 * @vma: user vma to map to
2044 * @pages: pointer to array of source kernel pages
2045 * @num: number of pages in page array
2046 * @offset: user's requested vm_pgoff
2047 *
2048 * This allows drivers to map range of kernel pages into a user vma.
2049 *
2050 * Return: 0 on success and error code otherwise.
2051 */
2052static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2053 unsigned long num, unsigned long offset)
2054{
2055 unsigned long count = vma_pages(vma);
2056 unsigned long uaddr = vma->vm_start;
2057 int ret, i;
2058
2059 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2060 if (offset >= num)
a667d745
SJ
2061 return -ENXIO;
2062
2063 /* Fail if the user requested size exceeds available object size */
2064 if (count > num - offset)
2065 return -ENXIO;
2066
2067 for (i = 0; i < count; i++) {
2068 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2069 if (ret < 0)
2070 return ret;
2071 uaddr += PAGE_SIZE;
2072 }
2073
2074 return 0;
2075}
2076
2077/**
2078 * vm_map_pages - maps range of kernel pages starts with non zero offset
2079 * @vma: user vma to map to
2080 * @pages: pointer to array of source kernel pages
2081 * @num: number of pages in page array
2082 *
2083 * Maps an object consisting of @num pages, catering for the user's
2084 * requested vm_pgoff
2085 *
2086 * If we fail to insert any page into the vma, the function will return
2087 * immediately leaving any previously inserted pages present. Callers
2088 * from the mmap handler may immediately return the error as their caller
2089 * will destroy the vma, removing any successfully inserted pages. Other
2090 * callers should make their own arrangements for calling unmap_region().
2091 *
2092 * Context: Process context. Called by mmap handlers.
2093 * Return: 0 on success and error code otherwise.
2094 */
2095int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2096 unsigned long num)
2097{
2098 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2099}
2100EXPORT_SYMBOL(vm_map_pages);
2101
2102/**
2103 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2104 * @vma: user vma to map to
2105 * @pages: pointer to array of source kernel pages
2106 * @num: number of pages in page array
2107 *
2108 * Similar to vm_map_pages(), except that it explicitly sets the offset
2109 * to 0. This function is intended for the drivers that did not consider
2110 * vm_pgoff.
2111 *
2112 * Context: Process context. Called by mmap handlers.
2113 * Return: 0 on success and error code otherwise.
2114 */
2115int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2116 unsigned long num)
2117{
2118 return __vm_map_pages(vma, pages, num, 0);
2119}
2120EXPORT_SYMBOL(vm_map_pages_zero);
2121
9b5a8e00 2122static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2123 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2124{
2125 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2126 pte_t *pte, entry;
2127 spinlock_t *ptl;
2128
423bad60
NP
2129 pte = get_locked_pte(mm, addr, &ptl);
2130 if (!pte)
9b5a8e00 2131 return VM_FAULT_OOM;
b2770da6
RZ
2132 if (!pte_none(*pte)) {
2133 if (mkwrite) {
2134 /*
2135 * For read faults on private mappings the PFN passed
2136 * in may not match the PFN we have mapped if the
2137 * mapped PFN is a writeable COW page. In the mkwrite
2138 * case we are creating a writable PTE for a shared
f2c57d91
JK
2139 * mapping and we expect the PFNs to match. If they
2140 * don't match, we are likely racing with block
2141 * allocation and mapping invalidation so just skip the
2142 * update.
b2770da6 2143 */
f2c57d91
JK
2144 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2145 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2146 goto out_unlock;
f2c57d91 2147 }
cae85cb8
JK
2148 entry = pte_mkyoung(*pte);
2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151 update_mmu_cache(vma, addr, pte);
2152 }
2153 goto out_unlock;
b2770da6 2154 }
423bad60
NP
2155
2156 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2157 if (pfn_t_devmap(pfn))
2158 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159 else
2160 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2161
b2770da6
RZ
2162 if (mkwrite) {
2163 entry = pte_mkyoung(entry);
2164 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 }
2166
423bad60 2167 set_pte_at(mm, addr, pte, entry);
4b3073e1 2168 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2169
423bad60
NP
2170out_unlock:
2171 pte_unmap_unlock(pte, ptl);
9b5a8e00 2172 return VM_FAULT_NOPAGE;
423bad60
NP
2173}
2174
f5e6d1d5
MW
2175/**
2176 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177 * @vma: user vma to map to
2178 * @addr: target user address of this page
2179 * @pfn: source kernel pfn
2180 * @pgprot: pgprot flags for the inserted page
2181 *
a1a0aea5 2182 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2183 * to override pgprot on a per-page basis.
2184 *
2185 * This only makes sense for IO mappings, and it makes no sense for
2186 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2187 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2188 * impractical.
2189 *
574c5b3d
TH
2190 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2191 * a value of @pgprot different from that of @vma->vm_page_prot.
2192 *
ae2b01f3 2193 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2194 * Return: vm_fault_t value.
2195 */
2196vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2197 unsigned long pfn, pgprot_t pgprot)
2198{
6d958546
MW
2199 /*
2200 * Technically, architectures with pte_special can avoid all these
2201 * restrictions (same for remap_pfn_range). However we would like
2202 * consistency in testing and feature parity among all, so we should
2203 * try to keep these invariants in place for everybody.
2204 */
2205 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2206 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2207 (VM_PFNMAP|VM_MIXEDMAP));
2208 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2209 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2210
2211 if (addr < vma->vm_start || addr >= vma->vm_end)
2212 return VM_FAULT_SIGBUS;
2213
2214 if (!pfn_modify_allowed(pfn, pgprot))
2215 return VM_FAULT_SIGBUS;
2216
2217 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2218
9b5a8e00 2219 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2220 false);
f5e6d1d5
MW
2221}
2222EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2223
ae2b01f3
MW
2224/**
2225 * vmf_insert_pfn - insert single pfn into user vma
2226 * @vma: user vma to map to
2227 * @addr: target user address of this page
2228 * @pfn: source kernel pfn
2229 *
2230 * Similar to vm_insert_page, this allows drivers to insert individual pages
2231 * they've allocated into a user vma. Same comments apply.
2232 *
2233 * This function should only be called from a vm_ops->fault handler, and
2234 * in that case the handler should return the result of this function.
2235 *
2236 * vma cannot be a COW mapping.
2237 *
2238 * As this is called only for pages that do not currently exist, we
2239 * do not need to flush old virtual caches or the TLB.
2240 *
2241 * Context: Process context. May allocate using %GFP_KERNEL.
2242 * Return: vm_fault_t value.
2243 */
2244vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2245 unsigned long pfn)
2246{
2247 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2248}
2249EXPORT_SYMBOL(vmf_insert_pfn);
2250
785a3fab
DW
2251static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2252{
2253 /* these checks mirror the abort conditions in vm_normal_page */
2254 if (vma->vm_flags & VM_MIXEDMAP)
2255 return true;
2256 if (pfn_t_devmap(pfn))
2257 return true;
2258 if (pfn_t_special(pfn))
2259 return true;
2260 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2261 return true;
2262 return false;
2263}
2264
79f3aa5b 2265static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2266 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2267 bool mkwrite)
423bad60 2268{
79f3aa5b 2269 int err;
87744ab3 2270
785a3fab 2271 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2272
423bad60 2273 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2274 return VM_FAULT_SIGBUS;
308a047c
BP
2275
2276 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2277
42e4089c 2278 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2279 return VM_FAULT_SIGBUS;
42e4089c 2280
423bad60
NP
2281 /*
2282 * If we don't have pte special, then we have to use the pfn_valid()
2283 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2285 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2286 * without pte special, it would there be refcounted as a normal page.
423bad60 2287 */
00b3a331
LD
2288 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2289 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2290 struct page *page;
2291
03fc2da6
DW
2292 /*
2293 * At this point we are committed to insert_page()
2294 * regardless of whether the caller specified flags that
2295 * result in pfn_t_has_page() == false.
2296 */
2297 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2298 err = insert_page(vma, addr, page, pgprot);
2299 } else {
9b5a8e00 2300 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2301 }
b2770da6 2302
5d747637
MW
2303 if (err == -ENOMEM)
2304 return VM_FAULT_OOM;
2305 if (err < 0 && err != -EBUSY)
2306 return VM_FAULT_SIGBUS;
2307
2308 return VM_FAULT_NOPAGE;
e0dc0d8f 2309}
79f3aa5b 2310
574c5b3d
TH
2311/**
2312 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2313 * @vma: user vma to map to
2314 * @addr: target user address of this page
2315 * @pfn: source kernel pfn
2316 * @pgprot: pgprot flags for the inserted page
2317 *
a1a0aea5 2318 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2319 * to override pgprot on a per-page basis.
2320 *
2321 * Typically this function should be used by drivers to set caching- and
2322 * encryption bits different than those of @vma->vm_page_prot, because
2323 * the caching- or encryption mode may not be known at mmap() time.
2324 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2325 * to set caching and encryption bits for those vmas (except for COW pages).
2326 * This is ensured by core vm only modifying these page table entries using
2327 * functions that don't touch caching- or encryption bits, using pte_modify()
2328 * if needed. (See for example mprotect()).
2329 * Also when new page-table entries are created, this is only done using the
2330 * fault() callback, and never using the value of vma->vm_page_prot,
2331 * except for page-table entries that point to anonymous pages as the result
2332 * of COW.
2333 *
2334 * Context: Process context. May allocate using %GFP_KERNEL.
2335 * Return: vm_fault_t value.
2336 */
2337vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2338 pfn_t pfn, pgprot_t pgprot)
2339{
2340 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2341}
5379e4dd 2342EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2343
79f3aa5b
MW
2344vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2345 pfn_t pfn)
2346{
574c5b3d 2347 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2348}
5d747637 2349EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2350
ab77dab4
SJ
2351/*
2352 * If the insertion of PTE failed because someone else already added a
2353 * different entry in the mean time, we treat that as success as we assume
2354 * the same entry was actually inserted.
2355 */
ab77dab4
SJ
2356vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2357 unsigned long addr, pfn_t pfn)
b2770da6 2358{
574c5b3d 2359 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2360}
ab77dab4 2361EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2362
1da177e4
LT
2363/*
2364 * maps a range of physical memory into the requested pages. the old
2365 * mappings are removed. any references to nonexistent pages results
2366 * in null mappings (currently treated as "copy-on-access")
2367 */
2368static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2369 unsigned long addr, unsigned long end,
2370 unsigned long pfn, pgprot_t prot)
2371{
90a3e375 2372 pte_t *pte, *mapped_pte;
c74df32c 2373 spinlock_t *ptl;
42e4089c 2374 int err = 0;
1da177e4 2375
90a3e375 2376 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2377 if (!pte)
2378 return -ENOMEM;
6606c3e0 2379 arch_enter_lazy_mmu_mode();
1da177e4
LT
2380 do {
2381 BUG_ON(!pte_none(*pte));
42e4089c
AK
2382 if (!pfn_modify_allowed(pfn, prot)) {
2383 err = -EACCES;
2384 break;
2385 }
7e675137 2386 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2387 pfn++;
2388 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2389 arch_leave_lazy_mmu_mode();
90a3e375 2390 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2391 return err;
1da177e4
LT
2392}
2393
2394static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2395 unsigned long addr, unsigned long end,
2396 unsigned long pfn, pgprot_t prot)
2397{
2398 pmd_t *pmd;
2399 unsigned long next;
42e4089c 2400 int err;
1da177e4
LT
2401
2402 pfn -= addr >> PAGE_SHIFT;
2403 pmd = pmd_alloc(mm, pud, addr);
2404 if (!pmd)
2405 return -ENOMEM;
f66055ab 2406 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2407 do {
2408 next = pmd_addr_end(addr, end);
42e4089c
AK
2409 err = remap_pte_range(mm, pmd, addr, next,
2410 pfn + (addr >> PAGE_SHIFT), prot);
2411 if (err)
2412 return err;
1da177e4
LT
2413 } while (pmd++, addr = next, addr != end);
2414 return 0;
2415}
2416
c2febafc 2417static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2418 unsigned long addr, unsigned long end,
2419 unsigned long pfn, pgprot_t prot)
2420{
2421 pud_t *pud;
2422 unsigned long next;
42e4089c 2423 int err;
1da177e4
LT
2424
2425 pfn -= addr >> PAGE_SHIFT;
c2febafc 2426 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2427 if (!pud)
2428 return -ENOMEM;
2429 do {
2430 next = pud_addr_end(addr, end);
42e4089c
AK
2431 err = remap_pmd_range(mm, pud, addr, next,
2432 pfn + (addr >> PAGE_SHIFT), prot);
2433 if (err)
2434 return err;
1da177e4
LT
2435 } while (pud++, addr = next, addr != end);
2436 return 0;
2437}
2438
c2febafc
KS
2439static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2440 unsigned long addr, unsigned long end,
2441 unsigned long pfn, pgprot_t prot)
2442{
2443 p4d_t *p4d;
2444 unsigned long next;
42e4089c 2445 int err;
c2febafc
KS
2446
2447 pfn -= addr >> PAGE_SHIFT;
2448 p4d = p4d_alloc(mm, pgd, addr);
2449 if (!p4d)
2450 return -ENOMEM;
2451 do {
2452 next = p4d_addr_end(addr, end);
42e4089c
AK
2453 err = remap_pud_range(mm, p4d, addr, next,
2454 pfn + (addr >> PAGE_SHIFT), prot);
2455 if (err)
2456 return err;
c2febafc
KS
2457 } while (p4d++, addr = next, addr != end);
2458 return 0;
2459}
2460
74ffa5a3
CH
2461/*
2462 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2463 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2464 */
74ffa5a3
CH
2465int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2466 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2467{
2468 pgd_t *pgd;
2469 unsigned long next;
2d15cab8 2470 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2471 struct mm_struct *mm = vma->vm_mm;
2472 int err;
2473
0c4123e3
AZ
2474 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2475 return -EINVAL;
2476
1da177e4
LT
2477 /*
2478 * Physically remapped pages are special. Tell the
2479 * rest of the world about it:
2480 * VM_IO tells people not to look at these pages
2481 * (accesses can have side effects).
6aab341e
LT
2482 * VM_PFNMAP tells the core MM that the base pages are just
2483 * raw PFN mappings, and do not have a "struct page" associated
2484 * with them.
314e51b9
KK
2485 * VM_DONTEXPAND
2486 * Disable vma merging and expanding with mremap().
2487 * VM_DONTDUMP
2488 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2489 *
2490 * There's a horrible special case to handle copy-on-write
2491 * behaviour that some programs depend on. We mark the "original"
2492 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2493 * See vm_normal_page() for details.
1da177e4 2494 */
b3b9c293
KK
2495 if (is_cow_mapping(vma->vm_flags)) {
2496 if (addr != vma->vm_start || end != vma->vm_end)
2497 return -EINVAL;
fb155c16 2498 vma->vm_pgoff = pfn;
b3b9c293
KK
2499 }
2500
314e51b9 2501 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2502
2503 BUG_ON(addr >= end);
2504 pfn -= addr >> PAGE_SHIFT;
2505 pgd = pgd_offset(mm, addr);
2506 flush_cache_range(vma, addr, end);
1da177e4
LT
2507 do {
2508 next = pgd_addr_end(addr, end);
c2febafc 2509 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2510 pfn + (addr >> PAGE_SHIFT), prot);
2511 if (err)
74ffa5a3 2512 return err;
1da177e4 2513 } while (pgd++, addr = next, addr != end);
2ab64037 2514
74ffa5a3
CH
2515 return 0;
2516}
2517
2518/**
2519 * remap_pfn_range - remap kernel memory to userspace
2520 * @vma: user vma to map to
2521 * @addr: target page aligned user address to start at
2522 * @pfn: page frame number of kernel physical memory address
2523 * @size: size of mapping area
2524 * @prot: page protection flags for this mapping
2525 *
2526 * Note: this is only safe if the mm semaphore is held when called.
2527 *
2528 * Return: %0 on success, negative error code otherwise.
2529 */
2530int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2531 unsigned long pfn, unsigned long size, pgprot_t prot)
2532{
2533 int err;
2534
2535 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2536 if (err)
74ffa5a3 2537 return -EINVAL;
2ab64037 2538
74ffa5a3
CH
2539 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2540 if (err)
2541 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2542 return err;
2543}
2544EXPORT_SYMBOL(remap_pfn_range);
2545
b4cbb197
LT
2546/**
2547 * vm_iomap_memory - remap memory to userspace
2548 * @vma: user vma to map to
abd69b9e 2549 * @start: start of the physical memory to be mapped
b4cbb197
LT
2550 * @len: size of area
2551 *
2552 * This is a simplified io_remap_pfn_range() for common driver use. The
2553 * driver just needs to give us the physical memory range to be mapped,
2554 * we'll figure out the rest from the vma information.
2555 *
2556 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2557 * whatever write-combining details or similar.
a862f68a
MR
2558 *
2559 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2560 */
2561int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2562{
2563 unsigned long vm_len, pfn, pages;
2564
2565 /* Check that the physical memory area passed in looks valid */
2566 if (start + len < start)
2567 return -EINVAL;
2568 /*
2569 * You *really* shouldn't map things that aren't page-aligned,
2570 * but we've historically allowed it because IO memory might
2571 * just have smaller alignment.
2572 */
2573 len += start & ~PAGE_MASK;
2574 pfn = start >> PAGE_SHIFT;
2575 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2576 if (pfn + pages < pfn)
2577 return -EINVAL;
2578
2579 /* We start the mapping 'vm_pgoff' pages into the area */
2580 if (vma->vm_pgoff > pages)
2581 return -EINVAL;
2582 pfn += vma->vm_pgoff;
2583 pages -= vma->vm_pgoff;
2584
2585 /* Can we fit all of the mapping? */
2586 vm_len = vma->vm_end - vma->vm_start;
2587 if (vm_len >> PAGE_SHIFT > pages)
2588 return -EINVAL;
2589
2590 /* Ok, let it rip */
2591 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2592}
2593EXPORT_SYMBOL(vm_iomap_memory);
2594
aee16b3c
JF
2595static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2596 unsigned long addr, unsigned long end,
e80d3909
JR
2597 pte_fn_t fn, void *data, bool create,
2598 pgtbl_mod_mask *mask)
aee16b3c 2599{
8abb50c7 2600 pte_t *pte, *mapped_pte;
be1db475 2601 int err = 0;
3f649ab7 2602 spinlock_t *ptl;
aee16b3c 2603
be1db475 2604 if (create) {
8abb50c7 2605 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2606 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2607 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2608 if (!pte)
2609 return -ENOMEM;
2610 } else {
8abb50c7 2611 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2612 pte_offset_kernel(pmd, addr) :
2613 pte_offset_map_lock(mm, pmd, addr, &ptl);
2614 }
aee16b3c
JF
2615
2616 BUG_ON(pmd_huge(*pmd));
2617
38e0edb1
JF
2618 arch_enter_lazy_mmu_mode();
2619
eeb4a05f
CH
2620 if (fn) {
2621 do {
2622 if (create || !pte_none(*pte)) {
2623 err = fn(pte++, addr, data);
2624 if (err)
2625 break;
2626 }
2627 } while (addr += PAGE_SIZE, addr != end);
2628 }
e80d3909 2629 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2630
38e0edb1
JF
2631 arch_leave_lazy_mmu_mode();
2632
aee16b3c 2633 if (mm != &init_mm)
8abb50c7 2634 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2635 return err;
2636}
2637
2638static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2639 unsigned long addr, unsigned long end,
e80d3909
JR
2640 pte_fn_t fn, void *data, bool create,
2641 pgtbl_mod_mask *mask)
aee16b3c
JF
2642{
2643 pmd_t *pmd;
2644 unsigned long next;
be1db475 2645 int err = 0;
aee16b3c 2646
ceb86879
AK
2647 BUG_ON(pud_huge(*pud));
2648
be1db475 2649 if (create) {
e80d3909 2650 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2651 if (!pmd)
2652 return -ENOMEM;
2653 } else {
2654 pmd = pmd_offset(pud, addr);
2655 }
aee16b3c
JF
2656 do {
2657 next = pmd_addr_end(addr, end);
0c95cba4
NP
2658 if (pmd_none(*pmd) && !create)
2659 continue;
2660 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2661 return -EINVAL;
2662 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2663 if (!create)
2664 continue;
2665 pmd_clear_bad(pmd);
be1db475 2666 }
0c95cba4
NP
2667 err = apply_to_pte_range(mm, pmd, addr, next,
2668 fn, data, create, mask);
2669 if (err)
2670 break;
aee16b3c 2671 } while (pmd++, addr = next, addr != end);
0c95cba4 2672
aee16b3c
JF
2673 return err;
2674}
2675
c2febafc 2676static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2677 unsigned long addr, unsigned long end,
e80d3909
JR
2678 pte_fn_t fn, void *data, bool create,
2679 pgtbl_mod_mask *mask)
aee16b3c
JF
2680{
2681 pud_t *pud;
2682 unsigned long next;
be1db475 2683 int err = 0;
aee16b3c 2684
be1db475 2685 if (create) {
e80d3909 2686 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2687 if (!pud)
2688 return -ENOMEM;
2689 } else {
2690 pud = pud_offset(p4d, addr);
2691 }
aee16b3c
JF
2692 do {
2693 next = pud_addr_end(addr, end);
0c95cba4
NP
2694 if (pud_none(*pud) && !create)
2695 continue;
2696 if (WARN_ON_ONCE(pud_leaf(*pud)))
2697 return -EINVAL;
2698 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2699 if (!create)
2700 continue;
2701 pud_clear_bad(pud);
be1db475 2702 }
0c95cba4
NP
2703 err = apply_to_pmd_range(mm, pud, addr, next,
2704 fn, data, create, mask);
2705 if (err)
2706 break;
aee16b3c 2707 } while (pud++, addr = next, addr != end);
0c95cba4 2708
aee16b3c
JF
2709 return err;
2710}
2711
c2febafc
KS
2712static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2713 unsigned long addr, unsigned long end,
e80d3909
JR
2714 pte_fn_t fn, void *data, bool create,
2715 pgtbl_mod_mask *mask)
c2febafc
KS
2716{
2717 p4d_t *p4d;
2718 unsigned long next;
be1db475 2719 int err = 0;
c2febafc 2720
be1db475 2721 if (create) {
e80d3909 2722 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2723 if (!p4d)
2724 return -ENOMEM;
2725 } else {
2726 p4d = p4d_offset(pgd, addr);
2727 }
c2febafc
KS
2728 do {
2729 next = p4d_addr_end(addr, end);
0c95cba4
NP
2730 if (p4d_none(*p4d) && !create)
2731 continue;
2732 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2733 return -EINVAL;
2734 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2735 if (!create)
2736 continue;
2737 p4d_clear_bad(p4d);
be1db475 2738 }
0c95cba4
NP
2739 err = apply_to_pud_range(mm, p4d, addr, next,
2740 fn, data, create, mask);
2741 if (err)
2742 break;
c2febafc 2743 } while (p4d++, addr = next, addr != end);
0c95cba4 2744
c2febafc
KS
2745 return err;
2746}
2747
be1db475
DA
2748static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2749 unsigned long size, pte_fn_t fn,
2750 void *data, bool create)
aee16b3c
JF
2751{
2752 pgd_t *pgd;
e80d3909 2753 unsigned long start = addr, next;
57250a5b 2754 unsigned long end = addr + size;
e80d3909 2755 pgtbl_mod_mask mask = 0;
be1db475 2756 int err = 0;
aee16b3c 2757
9cb65bc3
MP
2758 if (WARN_ON(addr >= end))
2759 return -EINVAL;
2760
aee16b3c
JF
2761 pgd = pgd_offset(mm, addr);
2762 do {
2763 next = pgd_addr_end(addr, end);
0c95cba4 2764 if (pgd_none(*pgd) && !create)
be1db475 2765 continue;
0c95cba4
NP
2766 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2767 return -EINVAL;
2768 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2769 if (!create)
2770 continue;
2771 pgd_clear_bad(pgd);
2772 }
2773 err = apply_to_p4d_range(mm, pgd, addr, next,
2774 fn, data, create, &mask);
aee16b3c
JF
2775 if (err)
2776 break;
2777 } while (pgd++, addr = next, addr != end);
57250a5b 2778
e80d3909
JR
2779 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2780 arch_sync_kernel_mappings(start, start + size);
2781
aee16b3c
JF
2782 return err;
2783}
be1db475
DA
2784
2785/*
2786 * Scan a region of virtual memory, filling in page tables as necessary
2787 * and calling a provided function on each leaf page table.
2788 */
2789int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2790 unsigned long size, pte_fn_t fn, void *data)
2791{
2792 return __apply_to_page_range(mm, addr, size, fn, data, true);
2793}
aee16b3c
JF
2794EXPORT_SYMBOL_GPL(apply_to_page_range);
2795
be1db475
DA
2796/*
2797 * Scan a region of virtual memory, calling a provided function on
2798 * each leaf page table where it exists.
2799 *
2800 * Unlike apply_to_page_range, this does _not_ fill in page tables
2801 * where they are absent.
2802 */
2803int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2804 unsigned long size, pte_fn_t fn, void *data)
2805{
2806 return __apply_to_page_range(mm, addr, size, fn, data, false);
2807}
2808EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2809
8f4e2101 2810/*
9b4bdd2f
KS
2811 * handle_pte_fault chooses page fault handler according to an entry which was
2812 * read non-atomically. Before making any commitment, on those architectures
2813 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2814 * parts, do_swap_page must check under lock before unmapping the pte and
2815 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2816 * and do_anonymous_page can safely check later on).
8f4e2101 2817 */
2ca99358 2818static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2819{
2820 int same = 1;
923717cb 2821#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2822 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2823 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2824 spin_lock(ptl);
2ca99358 2825 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2826 spin_unlock(ptl);
8f4e2101
HD
2827 }
2828#endif
2ca99358
PX
2829 pte_unmap(vmf->pte);
2830 vmf->pte = NULL;
8f4e2101
HD
2831 return same;
2832}
2833
c89357e2
DH
2834static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2835 struct vm_fault *vmf)
6aab341e 2836{
83d116c5
JH
2837 bool ret;
2838 void *kaddr;
2839 void __user *uaddr;
c3e5ea6e 2840 bool locked = false;
83d116c5
JH
2841 struct vm_area_struct *vma = vmf->vma;
2842 struct mm_struct *mm = vma->vm_mm;
2843 unsigned long addr = vmf->address;
2844
83d116c5
JH
2845 if (likely(src)) {
2846 copy_user_highpage(dst, src, addr, vma);
2847 return true;
2848 }
2849
6aab341e
LT
2850 /*
2851 * If the source page was a PFN mapping, we don't have
2852 * a "struct page" for it. We do a best-effort copy by
2853 * just copying from the original user address. If that
2854 * fails, we just zero-fill it. Live with it.
2855 */
83d116c5
JH
2856 kaddr = kmap_atomic(dst);
2857 uaddr = (void __user *)(addr & PAGE_MASK);
2858
2859 /*
2860 * On architectures with software "accessed" bits, we would
2861 * take a double page fault, so mark it accessed here.
2862 */
e1fd09e3 2863 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2864 pte_t entry;
5d2a2dbb 2865
83d116c5 2866 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2867 locked = true;
83d116c5
JH
2868 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2869 /*
2870 * Other thread has already handled the fault
7df67697 2871 * and update local tlb only
83d116c5 2872 */
7df67697 2873 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2874 ret = false;
2875 goto pte_unlock;
2876 }
2877
2878 entry = pte_mkyoung(vmf->orig_pte);
2879 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2880 update_mmu_cache(vma, addr, vmf->pte);
2881 }
2882
2883 /*
2884 * This really shouldn't fail, because the page is there
2885 * in the page tables. But it might just be unreadable,
2886 * in which case we just give up and fill the result with
2887 * zeroes.
2888 */
2889 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2890 if (locked)
2891 goto warn;
2892
2893 /* Re-validate under PTL if the page is still mapped */
2894 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2895 locked = true;
2896 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2897 /* The PTE changed under us, update local tlb */
2898 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2899 ret = false;
2900 goto pte_unlock;
2901 }
2902
5d2a2dbb 2903 /*
985ba004 2904 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2905 * Try to copy again under PTL.
5d2a2dbb 2906 */
c3e5ea6e
KS
2907 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2908 /*
2909 * Give a warn in case there can be some obscure
2910 * use-case
2911 */
2912warn:
2913 WARN_ON_ONCE(1);
2914 clear_page(kaddr);
2915 }
83d116c5
JH
2916 }
2917
2918 ret = true;
2919
2920pte_unlock:
c3e5ea6e 2921 if (locked)
83d116c5
JH
2922 pte_unmap_unlock(vmf->pte, vmf->ptl);
2923 kunmap_atomic(kaddr);
2924 flush_dcache_page(dst);
2925
2926 return ret;
6aab341e
LT
2927}
2928
c20cd45e
MH
2929static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2930{
2931 struct file *vm_file = vma->vm_file;
2932
2933 if (vm_file)
2934 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2935
2936 /*
2937 * Special mappings (e.g. VDSO) do not have any file so fake
2938 * a default GFP_KERNEL for them.
2939 */
2940 return GFP_KERNEL;
2941}
2942
fb09a464
KS
2943/*
2944 * Notify the address space that the page is about to become writable so that
2945 * it can prohibit this or wait for the page to get into an appropriate state.
2946 *
2947 * We do this without the lock held, so that it can sleep if it needs to.
2948 */
2b740303 2949static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2950{
2b740303 2951 vm_fault_t ret;
38b8cb7f
JK
2952 struct page *page = vmf->page;
2953 unsigned int old_flags = vmf->flags;
fb09a464 2954
38b8cb7f 2955 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2956
dc617f29
DW
2957 if (vmf->vma->vm_file &&
2958 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2959 return VM_FAULT_SIGBUS;
2960
11bac800 2961 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2962 /* Restore original flags so that caller is not surprised */
2963 vmf->flags = old_flags;
fb09a464
KS
2964 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2965 return ret;
2966 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2967 lock_page(page);
2968 if (!page->mapping) {
2969 unlock_page(page);
2970 return 0; /* retry */
2971 }
2972 ret |= VM_FAULT_LOCKED;
2973 } else
2974 VM_BUG_ON_PAGE(!PageLocked(page), page);
2975 return ret;
2976}
2977
97ba0c2b
JK
2978/*
2979 * Handle dirtying of a page in shared file mapping on a write fault.
2980 *
2981 * The function expects the page to be locked and unlocks it.
2982 */
89b15332 2983static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2984{
89b15332 2985 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2986 struct address_space *mapping;
89b15332 2987 struct page *page = vmf->page;
97ba0c2b
JK
2988 bool dirtied;
2989 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2990
2991 dirtied = set_page_dirty(page);
2992 VM_BUG_ON_PAGE(PageAnon(page), page);
2993 /*
2994 * Take a local copy of the address_space - page.mapping may be zeroed
2995 * by truncate after unlock_page(). The address_space itself remains
2996 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2997 * release semantics to prevent the compiler from undoing this copying.
2998 */
2999 mapping = page_rmapping(page);
3000 unlock_page(page);
3001
89b15332
JW
3002 if (!page_mkwrite)
3003 file_update_time(vma->vm_file);
3004
3005 /*
3006 * Throttle page dirtying rate down to writeback speed.
3007 *
3008 * mapping may be NULL here because some device drivers do not
3009 * set page.mapping but still dirty their pages
3010 *
c1e8d7c6 3011 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3012 * is pinning the mapping, as per above.
3013 */
97ba0c2b 3014 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3015 struct file *fpin;
3016
3017 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3018 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3019 if (fpin) {
3020 fput(fpin);
d9272525 3021 return VM_FAULT_COMPLETED;
89b15332 3022 }
97ba0c2b
JK
3023 }
3024
89b15332 3025 return 0;
97ba0c2b
JK
3026}
3027
4e047f89
SR
3028/*
3029 * Handle write page faults for pages that can be reused in the current vma
3030 *
3031 * This can happen either due to the mapping being with the VM_SHARED flag,
3032 * or due to us being the last reference standing to the page. In either
3033 * case, all we need to do here is to mark the page as writable and update
3034 * any related book-keeping.
3035 */
997dd98d 3036static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3037 __releases(vmf->ptl)
4e047f89 3038{
82b0f8c3 3039 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3040 struct page *page = vmf->page;
4e047f89 3041 pte_t entry;
6c287605 3042
c89357e2 3043 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3044 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3045
4e047f89
SR
3046 /*
3047 * Clear the pages cpupid information as the existing
3048 * information potentially belongs to a now completely
3049 * unrelated process.
3050 */
3051 if (page)
3052 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3053
2994302b
JK
3054 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3055 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3056 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3057 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3058 update_mmu_cache(vma, vmf->address, vmf->pte);
3059 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3060 count_vm_event(PGREUSE);
4e047f89
SR
3061}
3062
2f38ab2c 3063/*
c89357e2
DH
3064 * Handle the case of a page which we actually need to copy to a new page,
3065 * either due to COW or unsharing.
2f38ab2c 3066 *
c1e8d7c6 3067 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3068 * without the ptl held.
3069 *
3070 * High level logic flow:
3071 *
3072 * - Allocate a page, copy the content of the old page to the new one.
3073 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3074 * - Take the PTL. If the pte changed, bail out and release the allocated page
3075 * - If the pte is still the way we remember it, update the page table and all
3076 * relevant references. This includes dropping the reference the page-table
3077 * held to the old page, as well as updating the rmap.
3078 * - In any case, unlock the PTL and drop the reference we took to the old page.
3079 */
2b740303 3080static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3081{
c89357e2 3082 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3083 struct vm_area_struct *vma = vmf->vma;
bae473a4 3084 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3085 struct page *old_page = vmf->page;
2f38ab2c 3086 struct page *new_page = NULL;
2f38ab2c
SR
3087 pte_t entry;
3088 int page_copied = 0;
ac46d4f3 3089 struct mmu_notifier_range range;
2f38ab2c 3090
662ce1dc
YY
3091 delayacct_wpcopy_start();
3092
2f38ab2c
SR
3093 if (unlikely(anon_vma_prepare(vma)))
3094 goto oom;
3095
2994302b 3096 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3097 new_page = alloc_zeroed_user_highpage_movable(vma,
3098 vmf->address);
2f38ab2c
SR
3099 if (!new_page)
3100 goto oom;
3101 } else {
bae473a4 3102 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3103 vmf->address);
2f38ab2c
SR
3104 if (!new_page)
3105 goto oom;
83d116c5 3106
c89357e2 3107 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
83d116c5
JH
3108 /*
3109 * COW failed, if the fault was solved by other,
3110 * it's fine. If not, userspace would re-fault on
3111 * the same address and we will handle the fault
3112 * from the second attempt.
3113 */
3114 put_page(new_page);
3115 if (old_page)
3116 put_page(old_page);
662ce1dc
YY
3117
3118 delayacct_wpcopy_end();
83d116c5
JH
3119 return 0;
3120 }
2f38ab2c 3121 }
2f38ab2c 3122
8f425e4e 3123 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3124 goto oom_free_new;
9d82c694 3125 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3126
eb3c24f3
MG
3127 __SetPageUptodate(new_page);
3128
7269f999 3129 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3130 vmf->address & PAGE_MASK,
ac46d4f3
JG
3131 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3132 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3133
3134 /*
3135 * Re-check the pte - we dropped the lock
3136 */
82b0f8c3 3137 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3138 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3139 if (old_page) {
3140 if (!PageAnon(old_page)) {
eca56ff9
JM
3141 dec_mm_counter_fast(mm,
3142 mm_counter_file(old_page));
2f38ab2c
SR
3143 inc_mm_counter_fast(mm, MM_ANONPAGES);
3144 }
3145 } else {
3146 inc_mm_counter_fast(mm, MM_ANONPAGES);
3147 }
2994302b 3148 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3149 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3150 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3151 if (unlikely(unshare)) {
3152 if (pte_soft_dirty(vmf->orig_pte))
3153 entry = pte_mksoft_dirty(entry);
3154 if (pte_uffd_wp(vmf->orig_pte))
3155 entry = pte_mkuffd_wp(entry);
3156 } else {
3157 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3158 }
111fe718 3159
2f38ab2c
SR
3160 /*
3161 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3162 * pte with the new entry, to keep TLBs on different CPUs in
3163 * sync. This code used to set the new PTE then flush TLBs, but
3164 * that left a window where the new PTE could be loaded into
3165 * some TLBs while the old PTE remains in others.
2f38ab2c 3166 */
82b0f8c3 3167 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3168 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3169 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3170 /*
3171 * We call the notify macro here because, when using secondary
3172 * mmu page tables (such as kvm shadow page tables), we want the
3173 * new page to be mapped directly into the secondary page table.
3174 */
c89357e2 3175 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3176 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3177 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3178 if (old_page) {
3179 /*
3180 * Only after switching the pte to the new page may
3181 * we remove the mapcount here. Otherwise another
3182 * process may come and find the rmap count decremented
3183 * before the pte is switched to the new page, and
3184 * "reuse" the old page writing into it while our pte
3185 * here still points into it and can be read by other
3186 * threads.
3187 *
3188 * The critical issue is to order this
3189 * page_remove_rmap with the ptp_clear_flush above.
3190 * Those stores are ordered by (if nothing else,)
3191 * the barrier present in the atomic_add_negative
3192 * in page_remove_rmap.
3193 *
3194 * Then the TLB flush in ptep_clear_flush ensures that
3195 * no process can access the old page before the
3196 * decremented mapcount is visible. And the old page
3197 * cannot be reused until after the decremented
3198 * mapcount is visible. So transitively, TLBs to
3199 * old page will be flushed before it can be reused.
3200 */
cea86fe2 3201 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3202 }
3203
3204 /* Free the old page.. */
3205 new_page = old_page;
3206 page_copied = 1;
3207 } else {
7df67697 3208 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3209 }
3210
3211 if (new_page)
09cbfeaf 3212 put_page(new_page);
2f38ab2c 3213
82b0f8c3 3214 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3215 /*
3216 * No need to double call mmu_notifier->invalidate_range() callback as
3217 * the above ptep_clear_flush_notify() did already call it.
3218 */
ac46d4f3 3219 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3220 if (old_page) {
f4c4a3f4
HY
3221 if (page_copied)
3222 free_swap_cache(old_page);
09cbfeaf 3223 put_page(old_page);
2f38ab2c 3224 }
662ce1dc
YY
3225
3226 delayacct_wpcopy_end();
c89357e2 3227 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3228oom_free_new:
09cbfeaf 3229 put_page(new_page);
2f38ab2c
SR
3230oom:
3231 if (old_page)
09cbfeaf 3232 put_page(old_page);
662ce1dc
YY
3233
3234 delayacct_wpcopy_end();
2f38ab2c
SR
3235 return VM_FAULT_OOM;
3236}
3237
66a6197c
JK
3238/**
3239 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3240 * writeable once the page is prepared
3241 *
3242 * @vmf: structure describing the fault
3243 *
3244 * This function handles all that is needed to finish a write page fault in a
3245 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3246 * It handles locking of PTE and modifying it.
66a6197c
JK
3247 *
3248 * The function expects the page to be locked or other protection against
3249 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3250 *
2797e79f 3251 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3252 * we acquired PTE lock.
66a6197c 3253 */
2b740303 3254vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3255{
3256 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3257 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3258 &vmf->ptl);
3259 /*
3260 * We might have raced with another page fault while we released the
3261 * pte_offset_map_lock.
3262 */
3263 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3264 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3265 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3266 return VM_FAULT_NOPAGE;
66a6197c
JK
3267 }
3268 wp_page_reuse(vmf);
a19e2553 3269 return 0;
66a6197c
JK
3270}
3271
dd906184
BH
3272/*
3273 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3274 * mapping
3275 */
2b740303 3276static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3277{
82b0f8c3 3278 struct vm_area_struct *vma = vmf->vma;
bae473a4 3279
dd906184 3280 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3281 vm_fault_t ret;
dd906184 3282
82b0f8c3 3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3284 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3285 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3286 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3287 return ret;
66a6197c 3288 return finish_mkwrite_fault(vmf);
dd906184 3289 }
997dd98d
JK
3290 wp_page_reuse(vmf);
3291 return VM_FAULT_WRITE;
dd906184
BH
3292}
3293
2b740303 3294static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3295 __releases(vmf->ptl)
93e478d4 3296{
82b0f8c3 3297 struct vm_area_struct *vma = vmf->vma;
89b15332 3298 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3299
a41b70d6 3300 get_page(vmf->page);
93e478d4 3301
93e478d4 3302 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3303 vm_fault_t tmp;
93e478d4 3304
82b0f8c3 3305 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3306 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3307 if (unlikely(!tmp || (tmp &
3308 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3309 put_page(vmf->page);
93e478d4
SR
3310 return tmp;
3311 }
66a6197c 3312 tmp = finish_mkwrite_fault(vmf);
a19e2553 3313 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3314 unlock_page(vmf->page);
a41b70d6 3315 put_page(vmf->page);
66a6197c 3316 return tmp;
93e478d4 3317 }
66a6197c
JK
3318 } else {
3319 wp_page_reuse(vmf);
997dd98d 3320 lock_page(vmf->page);
93e478d4 3321 }
89b15332 3322 ret |= fault_dirty_shared_page(vmf);
997dd98d 3323 put_page(vmf->page);
93e478d4 3324
89b15332 3325 return ret;
93e478d4
SR
3326}
3327
1da177e4 3328/*
c89357e2
DH
3329 * This routine handles present pages, when
3330 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3331 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3332 * (FAULT_FLAG_UNSHARE)
3333 *
3334 * It is done by copying the page to a new address and decrementing the
3335 * shared-page counter for the old page.
1da177e4 3336 *
1da177e4
LT
3337 * Note that this routine assumes that the protection checks have been
3338 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3339 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3340 * done any necessary COW.
1da177e4 3341 *
c89357e2
DH
3342 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3343 * though the page will change only once the write actually happens. This
3344 * avoids a few races, and potentially makes it more efficient.
1da177e4 3345 *
c1e8d7c6 3346 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3347 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3348 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3349 */
2b740303 3350static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3351 __releases(vmf->ptl)
1da177e4 3352{
c89357e2 3353 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3354 struct vm_area_struct *vma = vmf->vma;
1da177e4 3355
c89357e2
DH
3356 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3357 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3358
c89357e2
DH
3359 if (likely(!unshare)) {
3360 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3361 pte_unmap_unlock(vmf->pte, vmf->ptl);
3362 return handle_userfault(vmf, VM_UFFD_WP);
3363 }
3364
3365 /*
3366 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3367 * is flushed in this case before copying.
3368 */
3369 if (unlikely(userfaultfd_wp(vmf->vma) &&
3370 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3371 flush_tlb_page(vmf->vma, vmf->address);
3372 }
6ce64428 3373
a41b70d6
JK
3374 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3375 if (!vmf->page) {
c89357e2
DH
3376 if (unlikely(unshare)) {
3377 /* No anonymous page -> nothing to do. */
3378 pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 return 0;
3380 }
3381
251b97f5 3382 /*
64e45507
PF
3383 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3384 * VM_PFNMAP VMA.
251b97f5
PZ
3385 *
3386 * We should not cow pages in a shared writeable mapping.
dd906184 3387 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3388 */
3389 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3390 (VM_WRITE|VM_SHARED))
2994302b 3391 return wp_pfn_shared(vmf);
2f38ab2c 3392
82b0f8c3 3393 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3394 return wp_page_copy(vmf);
251b97f5 3395 }
1da177e4 3396
d08b3851 3397 /*
ee6a6457
PZ
3398 * Take out anonymous pages first, anonymous shared vmas are
3399 * not dirty accountable.
d08b3851 3400 */
52d1e606 3401 if (PageAnon(vmf->page)) {
09854ba9
LT
3402 struct page *page = vmf->page;
3403
6c287605
DH
3404 /*
3405 * If the page is exclusive to this process we must reuse the
3406 * page without further checks.
3407 */
3408 if (PageAnonExclusive(page))
3409 goto reuse;
3410
53a05ad9
DH
3411 /*
3412 * We have to verify under page lock: these early checks are
3413 * just an optimization to avoid locking the page and freeing
3414 * the swapcache if there is little hope that we can reuse.
3415 *
3416 * PageKsm() doesn't necessarily raise the page refcount.
3417 */
d4c47097
DH
3418 if (PageKsm(page) || page_count(page) > 3)
3419 goto copy;
3420 if (!PageLRU(page))
3421 /*
3422 * Note: We cannot easily detect+handle references from
3423 * remote LRU pagevecs or references to PageLRU() pages.
3424 */
3425 lru_add_drain();
3426 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3427 goto copy;
3428 if (!trylock_page(page))
3429 goto copy;
53a05ad9
DH
3430 if (PageSwapCache(page))
3431 try_to_free_swap(page);
3432 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3433 unlock_page(page);
52d1e606 3434 goto copy;
b009c024 3435 }
09854ba9 3436 /*
53a05ad9
DH
3437 * Ok, we've got the only page reference from our mapping
3438 * and the page is locked, it's dark out, and we're wearing
3439 * sunglasses. Hit it.
09854ba9 3440 */
6c54dc6c 3441 page_move_anon_rmap(page, vma);
09854ba9 3442 unlock_page(page);
6c287605 3443reuse:
c89357e2
DH
3444 if (unlikely(unshare)) {
3445 pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 return 0;
3447 }
be068f29 3448 wp_page_reuse(vmf);
09854ba9 3449 return VM_FAULT_WRITE;
c89357e2
DH
3450 } else if (unshare) {
3451 /* No anonymous page -> nothing to do. */
3452 pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 return 0;
ee6a6457 3454 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3455 (VM_WRITE|VM_SHARED))) {
a41b70d6 3456 return wp_page_shared(vmf);
1da177e4 3457 }
52d1e606 3458copy:
1da177e4
LT
3459 /*
3460 * Ok, we need to copy. Oh, well..
3461 */
a41b70d6 3462 get_page(vmf->page);
28766805 3463
82b0f8c3 3464 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3465#ifdef CONFIG_KSM
3466 if (PageKsm(vmf->page))
3467 count_vm_event(COW_KSM);
3468#endif
a41b70d6 3469 return wp_page_copy(vmf);
1da177e4
LT
3470}
3471
97a89413 3472static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3473 unsigned long start_addr, unsigned long end_addr,
3474 struct zap_details *details)
3475{
f5cc4eef 3476 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3477}
3478
f808c13f 3479static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3480 pgoff_t first_index,
3481 pgoff_t last_index,
1da177e4
LT
3482 struct zap_details *details)
3483{
3484 struct vm_area_struct *vma;
1da177e4
LT
3485 pgoff_t vba, vea, zba, zea;
3486
232a6a1c 3487 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3488 vba = vma->vm_pgoff;
d6e93217 3489 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3490 zba = max(first_index, vba);
3491 zea = min(last_index, vea);
1da177e4 3492
97a89413 3493 unmap_mapping_range_vma(vma,
1da177e4
LT
3494 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3495 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3496 details);
1da177e4
LT
3497 }
3498}
3499
22061a1f 3500/**
3506659e
MWO
3501 * unmap_mapping_folio() - Unmap single folio from processes.
3502 * @folio: The locked folio to be unmapped.
22061a1f 3503 *
3506659e 3504 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3505 * Typically, for efficiency, the range of nearby pages has already been
3506 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3507 * truncation or invalidation holds the lock on a folio, it may find that
3508 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3509 * to unmap it finally.
3510 */
3506659e 3511void unmap_mapping_folio(struct folio *folio)
22061a1f 3512{
3506659e 3513 struct address_space *mapping = folio->mapping;
22061a1f 3514 struct zap_details details = { };
232a6a1c
PX
3515 pgoff_t first_index;
3516 pgoff_t last_index;
22061a1f 3517
3506659e 3518 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3519
3506659e
MWO
3520 first_index = folio->index;
3521 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3522
2e148f1e 3523 details.even_cows = false;
3506659e 3524 details.single_folio = folio;
999dad82 3525 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3526
2c865995 3527 i_mmap_lock_read(mapping);
22061a1f 3528 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3529 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3530 last_index, &details);
2c865995 3531 i_mmap_unlock_read(mapping);
22061a1f
HD
3532}
3533
977fbdcd
MW
3534/**
3535 * unmap_mapping_pages() - Unmap pages from processes.
3536 * @mapping: The address space containing pages to be unmapped.
3537 * @start: Index of first page to be unmapped.
3538 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3539 * @even_cows: Whether to unmap even private COWed pages.
3540 *
3541 * Unmap the pages in this address space from any userspace process which
3542 * has them mmaped. Generally, you want to remove COWed pages as well when
3543 * a file is being truncated, but not when invalidating pages from the page
3544 * cache.
3545 */
3546void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3547 pgoff_t nr, bool even_cows)
3548{
3549 struct zap_details details = { };
232a6a1c
PX
3550 pgoff_t first_index = start;
3551 pgoff_t last_index = start + nr - 1;
977fbdcd 3552
2e148f1e 3553 details.even_cows = even_cows;
232a6a1c
PX
3554 if (last_index < first_index)
3555 last_index = ULONG_MAX;
977fbdcd 3556
2c865995 3557 i_mmap_lock_read(mapping);
977fbdcd 3558 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3559 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3560 last_index, &details);
2c865995 3561 i_mmap_unlock_read(mapping);
977fbdcd 3562}
6e0e99d5 3563EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3564
1da177e4 3565/**
8a5f14a2 3566 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3567 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3568 * file.
3569 *
3d41088f 3570 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3571 * @holebegin: byte in first page to unmap, relative to the start of
3572 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3573 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3574 * must keep the partial page. In contrast, we must get rid of
3575 * partial pages.
3576 * @holelen: size of prospective hole in bytes. This will be rounded
3577 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3578 * end of the file.
3579 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3580 * but 0 when invalidating pagecache, don't throw away private data.
3581 */
3582void unmap_mapping_range(struct address_space *mapping,
3583 loff_t const holebegin, loff_t const holelen, int even_cows)
3584{
1da177e4
LT
3585 pgoff_t hba = holebegin >> PAGE_SHIFT;
3586 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3587
3588 /* Check for overflow. */
3589 if (sizeof(holelen) > sizeof(hlen)) {
3590 long long holeend =
3591 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3592 if (holeend & ~(long long)ULONG_MAX)
3593 hlen = ULONG_MAX - hba + 1;
3594 }
3595
977fbdcd 3596 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3597}
3598EXPORT_SYMBOL(unmap_mapping_range);
3599
b756a3b5
AP
3600/*
3601 * Restore a potential device exclusive pte to a working pte entry
3602 */
3603static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3604{
3605 struct page *page = vmf->page;
3606 struct vm_area_struct *vma = vmf->vma;
3607 struct mmu_notifier_range range;
3608
3609 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3610 return VM_FAULT_RETRY;
3611 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3612 vma->vm_mm, vmf->address & PAGE_MASK,
3613 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3614 mmu_notifier_invalidate_range_start(&range);
3615
3616 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3617 &vmf->ptl);
3618 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3619 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3620
3621 pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 unlock_page(page);
3623
3624 mmu_notifier_invalidate_range_end(&range);
3625 return 0;
3626}
3627
c145e0b4
DH
3628static inline bool should_try_to_free_swap(struct page *page,
3629 struct vm_area_struct *vma,
3630 unsigned int fault_flags)
3631{
3632 if (!PageSwapCache(page))
3633 return false;
3634 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3635 PageMlocked(page))
3636 return true;
3637 /*
3638 * If we want to map a page that's in the swapcache writable, we
3639 * have to detect via the refcount if we're really the exclusive
3640 * user. Try freeing the swapcache to get rid of the swapcache
3641 * reference only in case it's likely that we'll be the exlusive user.
3642 */
3643 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3644 page_count(page) == 2;
3645}
3646
9c28a205
PX
3647static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3648{
3649 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3650 vmf->address, &vmf->ptl);
3651 /*
3652 * Be careful so that we will only recover a special uffd-wp pte into a
3653 * none pte. Otherwise it means the pte could have changed, so retry.
3654 */
3655 if (is_pte_marker(*vmf->pte))
3656 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3657 pte_unmap_unlock(vmf->pte, vmf->ptl);
3658 return 0;
3659}
3660
3661/*
3662 * This is actually a page-missing access, but with uffd-wp special pte
3663 * installed. It means this pte was wr-protected before being unmapped.
3664 */
3665static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3666{
3667 /*
3668 * Just in case there're leftover special ptes even after the region
3669 * got unregistered - we can simply clear them. We can also do that
3670 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3671 * ranges, but it should be more efficient to be done lazily here.
3672 */
3673 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3674 return pte_marker_clear(vmf);
3675
3676 /* do_fault() can handle pte markers too like none pte */
3677 return do_fault(vmf);
3678}
3679
5c041f5d
PX
3680static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3681{
3682 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3683 unsigned long marker = pte_marker_get(entry);
3684
3685 /*
3686 * PTE markers should always be with file-backed memories, and the
3687 * marker should never be empty. If anything weird happened, the best
3688 * thing to do is to kill the process along with its mm.
3689 */
3690 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3691 return VM_FAULT_SIGBUS;
3692
9c28a205
PX
3693 if (pte_marker_entry_uffd_wp(entry))
3694 return pte_marker_handle_uffd_wp(vmf);
3695
3696 /* This is an unknown pte marker */
3697 return VM_FAULT_SIGBUS;
5c041f5d
PX
3698}
3699
1da177e4 3700/*
c1e8d7c6 3701 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3702 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3703 * We return with pte unmapped and unlocked.
3704 *
c1e8d7c6 3705 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3706 * as does filemap_fault().
1da177e4 3707 */
2b740303 3708vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3709{
82b0f8c3 3710 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3711 struct page *page = NULL, *swapcache;
2799e775 3712 struct swap_info_struct *si = NULL;
14f9135d 3713 rmap_t rmap_flags = RMAP_NONE;
1493a191 3714 bool exclusive = false;
65500d23 3715 swp_entry_t entry;
1da177e4 3716 pte_t pte;
d065bd81 3717 int locked;
2b740303 3718 vm_fault_t ret = 0;
aae466b0 3719 void *shadow = NULL;
1da177e4 3720
2ca99358 3721 if (!pte_unmap_same(vmf))
8f4e2101 3722 goto out;
65500d23 3723
2994302b 3724 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3725 if (unlikely(non_swap_entry(entry))) {
3726 if (is_migration_entry(entry)) {
82b0f8c3
JK
3727 migration_entry_wait(vma->vm_mm, vmf->pmd,
3728 vmf->address);
b756a3b5
AP
3729 } else if (is_device_exclusive_entry(entry)) {
3730 vmf->page = pfn_swap_entry_to_page(entry);
3731 ret = remove_device_exclusive_entry(vmf);
5042db43 3732 } else if (is_device_private_entry(entry)) {
af5cdaf8 3733 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3734 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3735 } else if (is_hwpoison_entry(entry)) {
3736 ret = VM_FAULT_HWPOISON;
9f186f9e
ML
3737 } else if (is_swapin_error_entry(entry)) {
3738 ret = VM_FAULT_SIGBUS;
5c041f5d
PX
3739 } else if (is_pte_marker_entry(entry)) {
3740 ret = handle_pte_marker(vmf);
d1737fdb 3741 } else {
2994302b 3742 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3743 ret = VM_FAULT_SIGBUS;
d1737fdb 3744 }
0697212a
CL
3745 goto out;
3746 }
0bcac06f 3747
2799e775
ML
3748 /* Prevent swapoff from happening to us. */
3749 si = get_swap_device(entry);
3750 if (unlikely(!si))
3751 goto out;
0bcac06f 3752
eaf649eb
MK
3753 page = lookup_swap_cache(entry, vma, vmf->address);
3754 swapcache = page;
f8020772 3755
1da177e4 3756 if (!page) {
a449bf58
QC
3757 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3758 __swap_count(entry) == 1) {
0bcac06f 3759 /* skip swapcache */
e9e9b7ec
MK
3760 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3761 vmf->address);
0bcac06f
MK
3762 if (page) {
3763 __SetPageLocked(page);
3764 __SetPageSwapBacked(page);
4c6355b2 3765
0add0c77
SB
3766 if (mem_cgroup_swapin_charge_page(page,
3767 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3768 ret = VM_FAULT_OOM;
4c6355b2 3769 goto out_page;
545b1b07 3770 }
0add0c77 3771 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3772
aae466b0
JK
3773 shadow = get_shadow_from_swap_cache(entry);
3774 if (shadow)
0995d7e5
MWO
3775 workingset_refault(page_folio(page),
3776 shadow);
0076f029 3777
6058eaec 3778 lru_cache_add(page);
0add0c77
SB
3779
3780 /* To provide entry to swap_readpage() */
3781 set_page_private(page, entry.val);
5169b844 3782 swap_readpage(page, true, NULL);
0add0c77 3783 set_page_private(page, 0);
0bcac06f 3784 }
aa8d22a1 3785 } else {
e9e9b7ec
MK
3786 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3787 vmf);
aa8d22a1 3788 swapcache = page;
0bcac06f
MK
3789 }
3790
1da177e4
LT
3791 if (!page) {
3792 /*
8f4e2101
HD
3793 * Back out if somebody else faulted in this pte
3794 * while we released the pte lock.
1da177e4 3795 */
82b0f8c3
JK
3796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797 vmf->address, &vmf->ptl);
2994302b 3798 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3799 ret = VM_FAULT_OOM;
65500d23 3800 goto unlock;
1da177e4
LT
3801 }
3802
3803 /* Had to read the page from swap area: Major fault */
3804 ret = VM_FAULT_MAJOR;
f8891e5e 3805 count_vm_event(PGMAJFAULT);
2262185c 3806 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3807 } else if (PageHWPoison(page)) {
71f72525
WF
3808 /*
3809 * hwpoisoned dirty swapcache pages are kept for killing
3810 * owner processes (which may be unknown at hwpoison time)
3811 */
d1737fdb 3812 ret = VM_FAULT_HWPOISON;
4779cb31 3813 goto out_release;
1da177e4
LT
3814 }
3815
82b0f8c3 3816 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3817
d065bd81
ML
3818 if (!locked) {
3819 ret |= VM_FAULT_RETRY;
3820 goto out_release;
3821 }
073e587e 3822
84d60fdd
DH
3823 if (swapcache) {
3824 /*
3825 * Make sure try_to_free_swap or swapoff did not release the
3826 * swapcache from under us. The page pin, and pte_same test
3827 * below, are not enough to exclude that. Even if it is still
3828 * swapcache, we need to check that the page's swap has not
3829 * changed.
3830 */
3831 if (unlikely(!PageSwapCache(page) ||
3832 page_private(page) != entry.val))
3833 goto out_page;
3834
3835 /*
3836 * KSM sometimes has to copy on read faults, for example, if
3837 * page->index of !PageKSM() pages would be nonlinear inside the
3838 * anon VMA -- PageKSM() is lost on actual swapout.
3839 */
3840 page = ksm_might_need_to_copy(page, vma, vmf->address);
3841 if (unlikely(!page)) {
3842 ret = VM_FAULT_OOM;
3843 page = swapcache;
3844 goto out_page;
3845 }
c145e0b4
DH
3846
3847 /*
3848 * If we want to map a page that's in the swapcache writable, we
3849 * have to detect via the refcount if we're really the exclusive
3850 * owner. Try removing the extra reference from the local LRU
3851 * pagevecs if required.
3852 */
3853 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3854 !PageKsm(page) && !PageLRU(page))
3855 lru_add_drain();
5ad64688
HD
3856 }
3857
9d82c694 3858 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3859
1da177e4 3860 /*
8f4e2101 3861 * Back out if somebody else already faulted in this pte.
1da177e4 3862 */
82b0f8c3
JK
3863 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3864 &vmf->ptl);
2994302b 3865 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3866 goto out_nomap;
b8107480
KK
3867
3868 if (unlikely(!PageUptodate(page))) {
3869 ret = VM_FAULT_SIGBUS;
3870 goto out_nomap;
1da177e4
LT
3871 }
3872
78fbe906
DH
3873 /*
3874 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3875 * must never point at an anonymous page in the swapcache that is
3876 * PG_anon_exclusive. Sanity check that this holds and especially, that
3877 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3878 * check after taking the PT lock and making sure that nobody
3879 * concurrently faulted in this page and set PG_anon_exclusive.
3880 */
3881 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3882 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3883
1493a191
DH
3884 /*
3885 * Check under PT lock (to protect against concurrent fork() sharing
3886 * the swap entry concurrently) for certainly exclusive pages.
3887 */
3888 if (!PageKsm(page)) {
3889 /*
3890 * Note that pte_swp_exclusive() == false for architectures
3891 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3892 */
3893 exclusive = pte_swp_exclusive(vmf->orig_pte);
3894 if (page != swapcache) {
3895 /*
3896 * We have a fresh page that is not exposed to the
3897 * swapcache -> certainly exclusive.
3898 */
3899 exclusive = true;
3900 } else if (exclusive && PageWriteback(page) &&
eacde327 3901 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3902 /*
3903 * This is tricky: not all swap backends support
3904 * concurrent page modifications while under writeback.
3905 *
3906 * So if we stumble over such a page in the swapcache
3907 * we must not set the page exclusive, otherwise we can
3908 * map it writable without further checks and modify it
3909 * while still under writeback.
3910 *
3911 * For these problematic swap backends, simply drop the
3912 * exclusive marker: this is perfectly fine as we start
3913 * writeback only if we fully unmapped the page and
3914 * there are no unexpected references on the page after
3915 * unmapping succeeded. After fully unmapped, no
3916 * further GUP references (FOLL_GET and FOLL_PIN) can
3917 * appear, so dropping the exclusive marker and mapping
3918 * it only R/O is fine.
3919 */
3920 exclusive = false;
3921 }
3922 }
3923
8c7c6e34 3924 /*
c145e0b4
DH
3925 * Remove the swap entry and conditionally try to free up the swapcache.
3926 * We're already holding a reference on the page but haven't mapped it
3927 * yet.
8c7c6e34 3928 */
c145e0b4
DH
3929 swap_free(entry);
3930 if (should_try_to_free_swap(page, vma, vmf->flags))
3931 try_to_free_swap(page);
1da177e4 3932
bae473a4
KS
3933 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3934 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3935 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3936
3937 /*
1493a191
DH
3938 * Same logic as in do_wp_page(); however, optimize for pages that are
3939 * certainly not shared either because we just allocated them without
3940 * exposing them to the swapcache or because the swap entry indicates
3941 * exclusivity.
c145e0b4 3942 */
1493a191 3943 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
6c287605
DH
3944 if (vmf->flags & FAULT_FLAG_WRITE) {
3945 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3946 vmf->flags &= ~FAULT_FLAG_WRITE;
3947 ret |= VM_FAULT_WRITE;
3948 }
14f9135d 3949 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3950 }
1da177e4 3951 flush_icache_page(vma, page);
2994302b 3952 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3953 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3954 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3955 pte = pte_mkuffd_wp(pte);
3956 pte = pte_wrprotect(pte);
3957 }
2994302b 3958 vmf->orig_pte = pte;
0bcac06f
MK
3959
3960 /* ksm created a completely new copy */
3961 if (unlikely(page != swapcache && swapcache)) {
40f2bbf7 3962 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 3963 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f 3964 } else {
f1e2db12 3965 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3966 }
1da177e4 3967
6c287605 3968 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3969 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971
c475a8ab 3972 unlock_page(page);
0bcac06f 3973 if (page != swapcache && swapcache) {
4969c119
AA
3974 /*
3975 * Hold the lock to avoid the swap entry to be reused
3976 * until we take the PT lock for the pte_same() check
3977 * (to avoid false positives from pte_same). For
3978 * further safety release the lock after the swap_free
3979 * so that the swap count won't change under a
3980 * parallel locked swapcache.
3981 */
3982 unlock_page(swapcache);
09cbfeaf 3983 put_page(swapcache);
4969c119 3984 }
c475a8ab 3985
82b0f8c3 3986 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3987 ret |= do_wp_page(vmf);
61469f1d
HD
3988 if (ret & VM_FAULT_ERROR)
3989 ret &= VM_FAULT_ERROR;
1da177e4
LT
3990 goto out;
3991 }
3992
3993 /* No need to invalidate - it was non-present before */
82b0f8c3 3994 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3995unlock:
82b0f8c3 3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3997out:
2799e775
ML
3998 if (si)
3999 put_swap_device(si);
1da177e4 4000 return ret;
b8107480 4001out_nomap:
82b0f8c3 4002 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4003out_page:
b8107480 4004 unlock_page(page);
4779cb31 4005out_release:
09cbfeaf 4006 put_page(page);
0bcac06f 4007 if (page != swapcache && swapcache) {
4969c119 4008 unlock_page(swapcache);
09cbfeaf 4009 put_page(swapcache);
4969c119 4010 }
2799e775
ML
4011 if (si)
4012 put_swap_device(si);
65500d23 4013 return ret;
1da177e4
LT
4014}
4015
4016/*
c1e8d7c6 4017 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4018 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4019 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4020 */
2b740303 4021static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4022{
82b0f8c3 4023 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4024 struct page *page;
2b740303 4025 vm_fault_t ret = 0;
1da177e4 4026 pte_t entry;
1da177e4 4027
6b7339f4
KS
4028 /* File mapping without ->vm_ops ? */
4029 if (vma->vm_flags & VM_SHARED)
4030 return VM_FAULT_SIGBUS;
4031
7267ec00
KS
4032 /*
4033 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4034 * pte_offset_map() on pmds where a huge pmd might be created
4035 * from a different thread.
4036 *
3e4e28c5 4037 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4038 * parallel threads are excluded by other means.
4039 *
3e4e28c5 4040 * Here we only have mmap_read_lock(mm).
7267ec00 4041 */
4cf58924 4042 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4043 return VM_FAULT_OOM;
4044
f9ce0be7 4045 /* See comment in handle_pte_fault() */
82b0f8c3 4046 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4047 return 0;
4048
11ac5524 4049 /* Use the zero-page for reads */
82b0f8c3 4050 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4051 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4052 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4053 vma->vm_page_prot));
82b0f8c3
JK
4054 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055 vmf->address, &vmf->ptl);
7df67697
BM
4056 if (!pte_none(*vmf->pte)) {
4057 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4058 goto unlock;
7df67697 4059 }
6b31d595
MH
4060 ret = check_stable_address_space(vma->vm_mm);
4061 if (ret)
4062 goto unlock;
6b251fc9
AA
4063 /* Deliver the page fault to userland, check inside PT lock */
4064 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4065 pte_unmap_unlock(vmf->pte, vmf->ptl);
4066 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4067 }
a13ea5b7
HD
4068 goto setpte;
4069 }
4070
557ed1fa 4071 /* Allocate our own private page. */
557ed1fa
NP
4072 if (unlikely(anon_vma_prepare(vma)))
4073 goto oom;
82b0f8c3 4074 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4075 if (!page)
4076 goto oom;
eb3c24f3 4077
8f425e4e 4078 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4079 goto oom_free_page;
9d82c694 4080 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4081
52f37629
MK
4082 /*
4083 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4084 * preceding stores to the page contents become visible before
52f37629
MK
4085 * the set_pte_at() write.
4086 */
0ed361de 4087 __SetPageUptodate(page);
8f4e2101 4088
557ed1fa 4089 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4090 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4091 if (vma->vm_flags & VM_WRITE)
4092 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4093
82b0f8c3
JK
4094 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095 &vmf->ptl);
7df67697
BM
4096 if (!pte_none(*vmf->pte)) {
4097 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 4098 goto release;
7df67697 4099 }
9ba69294 4100
6b31d595
MH
4101 ret = check_stable_address_space(vma->vm_mm);
4102 if (ret)
4103 goto release;
4104
6b251fc9
AA
4105 /* Deliver the page fault to userland, check inside PT lock */
4106 if (userfaultfd_missing(vma)) {
82b0f8c3 4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4108 put_page(page);
82b0f8c3 4109 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4110 }
4111
bae473a4 4112 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4113 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4114 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4115setpte:
82b0f8c3 4116 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4117
4118 /* No need to invalidate - it was non-present before */
82b0f8c3 4119 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4120unlock:
82b0f8c3 4121 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4122 return ret;
8f4e2101 4123release:
09cbfeaf 4124 put_page(page);
8f4e2101 4125 goto unlock;
8a9f3ccd 4126oom_free_page:
09cbfeaf 4127 put_page(page);
65500d23 4128oom:
1da177e4
LT
4129 return VM_FAULT_OOM;
4130}
4131
9a95f3cf 4132/*
c1e8d7c6 4133 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4134 * released depending on flags and vma->vm_ops->fault() return value.
4135 * See filemap_fault() and __lock_page_retry().
4136 */
2b740303 4137static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4138{
82b0f8c3 4139 struct vm_area_struct *vma = vmf->vma;
2b740303 4140 vm_fault_t ret;
7eae74af 4141
63f3655f
MH
4142 /*
4143 * Preallocate pte before we take page_lock because this might lead to
4144 * deadlocks for memcg reclaim which waits for pages under writeback:
4145 * lock_page(A)
4146 * SetPageWriteback(A)
4147 * unlock_page(A)
4148 * lock_page(B)
4149 * lock_page(B)
d383807a 4150 * pte_alloc_one
63f3655f
MH
4151 * shrink_page_list
4152 * wait_on_page_writeback(A)
4153 * SetPageWriteback(B)
4154 * unlock_page(B)
4155 * # flush A, B to clear the writeback
4156 */
4157 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4158 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4159 if (!vmf->prealloc_pte)
4160 return VM_FAULT_OOM;
63f3655f
MH
4161 }
4162
11bac800 4163 ret = vma->vm_ops->fault(vmf);
3917048d 4164 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4165 VM_FAULT_DONE_COW)))
bc2466e4 4166 return ret;
7eae74af 4167
667240e0 4168 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4169 struct page *page = vmf->page;
e53ac737
RR
4170 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4172 if (page_mapped(page))
4173 unmap_mapping_pages(page_mapping(page),
4174 page->index, 1, false);
e53ac737 4175 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4176 if (invalidate_inode_page(page))
4177 poisonret = VM_FAULT_NOPAGE;
4178 unlock_page(page);
e53ac737 4179 }
3149c79f 4180 put_page(page);
936ca80d 4181 vmf->page = NULL;
e53ac737 4182 return poisonret;
7eae74af
KS
4183 }
4184
4185 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4186 lock_page(vmf->page);
7eae74af 4187 else
667240e0 4188 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4189
7eae74af
KS
4190 return ret;
4191}
4192
396bcc52 4193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4194static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4195{
82b0f8c3 4196 struct vm_area_struct *vma = vmf->vma;
953c66c2 4197
82b0f8c3 4198 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4199 /*
4200 * We are going to consume the prealloc table,
4201 * count that as nr_ptes.
4202 */
c4812909 4203 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4204 vmf->prealloc_pte = NULL;
953c66c2
AK
4205}
4206
f9ce0be7 4207vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4208{
82b0f8c3
JK
4209 struct vm_area_struct *vma = vmf->vma;
4210 bool write = vmf->flags & FAULT_FLAG_WRITE;
4211 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4212 pmd_t entry;
2b740303 4213 int i;
d01ac3c3 4214 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4215
4216 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4217 return ret;
10102459 4218
10102459 4219 page = compound_head(page);
d01ac3c3
MWO
4220 if (compound_order(page) != HPAGE_PMD_ORDER)
4221 return ret;
10102459 4222
eac96c3e
YS
4223 /*
4224 * Just backoff if any subpage of a THP is corrupted otherwise
4225 * the corrupted page may mapped by PMD silently to escape the
4226 * check. This kind of THP just can be PTE mapped. Access to
4227 * the corrupted subpage should trigger SIGBUS as expected.
4228 */
4229 if (unlikely(PageHasHWPoisoned(page)))
4230 return ret;
4231
953c66c2 4232 /*
f0953a1b 4233 * Archs like ppc64 need additional space to store information
953c66c2
AK
4234 * related to pte entry. Use the preallocated table for that.
4235 */
82b0f8c3 4236 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4237 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4238 if (!vmf->prealloc_pte)
953c66c2 4239 return VM_FAULT_OOM;
953c66c2
AK
4240 }
4241
82b0f8c3
JK
4242 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4244 goto out;
4245
4246 for (i = 0; i < HPAGE_PMD_NR; i++)
4247 flush_icache_page(vma, page + i);
4248
4249 entry = mk_huge_pmd(page, vma->vm_page_prot);
4250 if (write)
f55e1014 4251 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4252
fadae295 4253 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4254 page_add_file_rmap(page, vma, true);
4255
953c66c2
AK
4256 /*
4257 * deposit and withdraw with pmd lock held
4258 */
4259 if (arch_needs_pgtable_deposit())
82b0f8c3 4260 deposit_prealloc_pte(vmf);
10102459 4261
82b0f8c3 4262 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4263
82b0f8c3 4264 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4265
4266 /* fault is handled */
4267 ret = 0;
95ecedcd 4268 count_vm_event(THP_FILE_MAPPED);
10102459 4269out:
82b0f8c3 4270 spin_unlock(vmf->ptl);
10102459
KS
4271 return ret;
4272}
4273#else
f9ce0be7 4274vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4275{
f9ce0be7 4276 return VM_FAULT_FALLBACK;
10102459
KS
4277}
4278#endif
4279
9d3af4b4 4280void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4281{
82b0f8c3 4282 struct vm_area_struct *vma = vmf->vma;
9c28a205 4283 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4284 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4285 bool prefault = vmf->address != addr;
3bb97794 4286 pte_t entry;
7267ec00 4287
3bb97794
KS
4288 flush_icache_page(vma, page);
4289 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4290
4291 if (prefault && arch_wants_old_prefaulted_pte())
4292 entry = pte_mkold(entry);
50c25ee9
TB
4293 else
4294 entry = pte_sw_mkyoung(entry);
46bdb427 4295
3bb97794
KS
4296 if (write)
4297 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4298 if (unlikely(uffd_wp))
4299 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4300 /* copy-on-write page */
4301 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4302 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4303 page_add_new_anon_rmap(page, vma, addr);
b518154e 4304 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4305 } else {
eca56ff9 4306 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4307 page_add_file_rmap(page, vma, false);
3bb97794 4308 }
9d3af4b4 4309 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4310}
4311
f46f2ade
PX
4312static bool vmf_pte_changed(struct vm_fault *vmf)
4313{
4314 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315 return !pte_same(*vmf->pte, vmf->orig_pte);
4316
4317 return !pte_none(*vmf->pte);
4318}
4319
9118c0cb
JK
4320/**
4321 * finish_fault - finish page fault once we have prepared the page to fault
4322 *
4323 * @vmf: structure describing the fault
4324 *
4325 * This function handles all that is needed to finish a page fault once the
4326 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4328 * addition.
9118c0cb
JK
4329 *
4330 * The function expects the page to be locked and on success it consumes a
4331 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4332 *
4333 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4334 */
2b740303 4335vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4336{
f9ce0be7 4337 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4338 struct page *page;
f9ce0be7 4339 vm_fault_t ret;
9118c0cb
JK
4340
4341 /* Did we COW the page? */
f9ce0be7 4342 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4343 page = vmf->cow_page;
4344 else
4345 page = vmf->page;
6b31d595
MH
4346
4347 /*
4348 * check even for read faults because we might have lost our CoWed
4349 * page
4350 */
f9ce0be7
KS
4351 if (!(vma->vm_flags & VM_SHARED)) {
4352 ret = check_stable_address_space(vma->vm_mm);
4353 if (ret)
4354 return ret;
4355 }
4356
4357 if (pmd_none(*vmf->pmd)) {
4358 if (PageTransCompound(page)) {
4359 ret = do_set_pmd(vmf, page);
4360 if (ret != VM_FAULT_FALLBACK)
4361 return ret;
4362 }
4363
03c4f204
QZ
4364 if (vmf->prealloc_pte)
4365 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4367 return VM_FAULT_OOM;
4368 }
4369
3fe2895c
JB
4370 /*
4371 * See comment in handle_pte_fault() for how this scenario happens, we
4372 * need to return NOPAGE so that we drop this page.
4373 */
f9ce0be7 4374 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4375 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4376
4377 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378 vmf->address, &vmf->ptl);
70427f6e 4379
f9ce0be7 4380 /* Re-check under ptl */
70427f6e 4381 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4382 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4383
4384 /* no need to invalidate: a not-present page won't be cached */
4385 update_mmu_cache(vma, vmf->address, vmf->pte);
4386
4387 ret = 0;
4388 } else {
4389 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4390 ret = VM_FAULT_NOPAGE;
70427f6e 4391 }
f9ce0be7 4392
f9ce0be7 4393 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4394 return ret;
4395}
4396
3a91053a
KS
4397static unsigned long fault_around_bytes __read_mostly =
4398 rounddown_pow_of_two(65536);
a9b0f861 4399
a9b0f861
KS
4400#ifdef CONFIG_DEBUG_FS
4401static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4402{
a9b0f861 4403 *val = fault_around_bytes;
1592eef0
KS
4404 return 0;
4405}
4406
b4903d6e 4407/*
da391d64
WK
4408 * fault_around_bytes must be rounded down to the nearest page order as it's
4409 * what do_fault_around() expects to see.
b4903d6e 4410 */
a9b0f861 4411static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4412{
a9b0f861 4413 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4414 return -EINVAL;
b4903d6e
AR
4415 if (val > PAGE_SIZE)
4416 fault_around_bytes = rounddown_pow_of_two(val);
4417 else
4418 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4419 return 0;
4420}
0a1345f8 4421DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4422 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4423
4424static int __init fault_around_debugfs(void)
4425{
d9f7979c
GKH
4426 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427 &fault_around_bytes_fops);
1592eef0
KS
4428 return 0;
4429}
4430late_initcall(fault_around_debugfs);
1592eef0 4431#endif
8c6e50b0 4432
1fdb412b
KS
4433/*
4434 * do_fault_around() tries to map few pages around the fault address. The hope
4435 * is that the pages will be needed soon and this will lower the number of
4436 * faults to handle.
4437 *
4438 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439 * not ready to be mapped: not up-to-date, locked, etc.
4440 *
1fdb412b
KS
4441 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442 * only once.
4443 *
da391d64
WK
4444 * fault_around_bytes defines how many bytes we'll try to map.
4445 * do_fault_around() expects it to be set to a power of two less than or equal
4446 * to PTRS_PER_PTE.
1fdb412b 4447 *
da391d64
WK
4448 * The virtual address of the area that we map is naturally aligned to
4449 * fault_around_bytes rounded down to the machine page size
4450 * (and therefore to page order). This way it's easier to guarantee
4451 * that we don't cross page table boundaries.
1fdb412b 4452 */
2b740303 4453static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4454{
82b0f8c3 4455 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4456 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4457 pgoff_t end_pgoff;
2b740303 4458 int off;
8c6e50b0 4459
4db0c3c2 4460 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4461 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462
f9ce0be7
KS
4463 address = max(address & mask, vmf->vma->vm_start);
4464 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4465 start_pgoff -= off;
8c6e50b0
KS
4466
4467 /*
da391d64
WK
4468 * end_pgoff is either the end of the page table, the end of
4469 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4470 */
bae473a4 4471 end_pgoff = start_pgoff -
f9ce0be7 4472 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4473 PTRS_PER_PTE - 1;
82b0f8c3 4474 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4475 start_pgoff + nr_pages - 1);
8c6e50b0 4476
82b0f8c3 4477 if (pmd_none(*vmf->pmd)) {
4cf58924 4478 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4479 if (!vmf->prealloc_pte)
f9ce0be7 4480 return VM_FAULT_OOM;
8c6e50b0
KS
4481 }
4482
f9ce0be7 4483 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4484}
4485
9c28a205
PX
4486/* Return true if we should do read fault-around, false otherwise */
4487static inline bool should_fault_around(struct vm_fault *vmf)
4488{
4489 /* No ->map_pages? No way to fault around... */
4490 if (!vmf->vma->vm_ops->map_pages)
4491 return false;
4492
4493 if (uffd_disable_fault_around(vmf->vma))
4494 return false;
4495
4496 return fault_around_bytes >> PAGE_SHIFT > 1;
4497}
4498
2b740303 4499static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4500{
2b740303 4501 vm_fault_t ret = 0;
8c6e50b0
KS
4502
4503 /*
4504 * Let's call ->map_pages() first and use ->fault() as fallback
4505 * if page by the offset is not ready to be mapped (cold cache or
4506 * something).
4507 */
9c28a205
PX
4508 if (should_fault_around(vmf)) {
4509 ret = do_fault_around(vmf);
4510 if (ret)
4511 return ret;
8c6e50b0 4512 }
e655fb29 4513
936ca80d 4514 ret = __do_fault(vmf);
e655fb29
KS
4515 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 return ret;
4517
9118c0cb 4518 ret |= finish_fault(vmf);
936ca80d 4519 unlock_page(vmf->page);
7267ec00 4520 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4521 put_page(vmf->page);
e655fb29
KS
4522 return ret;
4523}
4524
2b740303 4525static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4526{
82b0f8c3 4527 struct vm_area_struct *vma = vmf->vma;
2b740303 4528 vm_fault_t ret;
ec47c3b9
KS
4529
4530 if (unlikely(anon_vma_prepare(vma)))
4531 return VM_FAULT_OOM;
4532
936ca80d
JK
4533 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534 if (!vmf->cow_page)
ec47c3b9
KS
4535 return VM_FAULT_OOM;
4536
8f425e4e
MWO
4537 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538 GFP_KERNEL)) {
936ca80d 4539 put_page(vmf->cow_page);
ec47c3b9
KS
4540 return VM_FAULT_OOM;
4541 }
9d82c694 4542 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4543
936ca80d 4544 ret = __do_fault(vmf);
ec47c3b9
KS
4545 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 goto uncharge_out;
3917048d
JK
4547 if (ret & VM_FAULT_DONE_COW)
4548 return ret;
ec47c3b9 4549
b1aa812b 4550 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4551 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4552
9118c0cb 4553 ret |= finish_fault(vmf);
b1aa812b
JK
4554 unlock_page(vmf->page);
4555 put_page(vmf->page);
7267ec00
KS
4556 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 goto uncharge_out;
ec47c3b9
KS
4558 return ret;
4559uncharge_out:
936ca80d 4560 put_page(vmf->cow_page);
ec47c3b9
KS
4561 return ret;
4562}
4563
2b740303 4564static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4565{
82b0f8c3 4566 struct vm_area_struct *vma = vmf->vma;
2b740303 4567 vm_fault_t ret, tmp;
1d65f86d 4568
936ca80d 4569 ret = __do_fault(vmf);
7eae74af 4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4571 return ret;
1da177e4
LT
4572
4573 /*
f0c6d4d2
KS
4574 * Check if the backing address space wants to know that the page is
4575 * about to become writable
1da177e4 4576 */
fb09a464 4577 if (vma->vm_ops->page_mkwrite) {
936ca80d 4578 unlock_page(vmf->page);
38b8cb7f 4579 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4580 if (unlikely(!tmp ||
4581 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4582 put_page(vmf->page);
fb09a464 4583 return tmp;
4294621f 4584 }
fb09a464
KS
4585 }
4586
9118c0cb 4587 ret |= finish_fault(vmf);
7267ec00
KS
4588 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589 VM_FAULT_RETRY))) {
936ca80d
JK
4590 unlock_page(vmf->page);
4591 put_page(vmf->page);
f0c6d4d2 4592 return ret;
1da177e4 4593 }
b827e496 4594
89b15332 4595 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4596 return ret;
54cb8821 4597}
d00806b1 4598
9a95f3cf 4599/*
c1e8d7c6 4600 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4601 * but allow concurrent faults).
c1e8d7c6 4602 * The mmap_lock may have been released depending on flags and our
9138e47e 4603 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4604 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4605 * by other thread calling munmap()).
9a95f3cf 4606 */
2b740303 4607static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4608{
82b0f8c3 4609 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4610 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4611 vm_fault_t ret;
54cb8821 4612
ff09d7ec
AK
4613 /*
4614 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615 */
4616 if (!vma->vm_ops->fault) {
4617 /*
4618 * If we find a migration pmd entry or a none pmd entry, which
4619 * should never happen, return SIGBUS
4620 */
4621 if (unlikely(!pmd_present(*vmf->pmd)))
4622 ret = VM_FAULT_SIGBUS;
4623 else {
4624 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625 vmf->pmd,
4626 vmf->address,
4627 &vmf->ptl);
4628 /*
4629 * Make sure this is not a temporary clearing of pte
4630 * by holding ptl and checking again. A R/M/W update
4631 * of pte involves: take ptl, clearing the pte so that
4632 * we don't have concurrent modification by hardware
4633 * followed by an update.
4634 */
4635 if (unlikely(pte_none(*vmf->pte)))
4636 ret = VM_FAULT_SIGBUS;
4637 else
4638 ret = VM_FAULT_NOPAGE;
4639
4640 pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 }
4642 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4643 ret = do_read_fault(vmf);
4644 else if (!(vma->vm_flags & VM_SHARED))
4645 ret = do_cow_fault(vmf);
4646 else
4647 ret = do_shared_fault(vmf);
4648
4649 /* preallocated pagetable is unused: free it */
4650 if (vmf->prealloc_pte) {
fc8efd2d 4651 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4652 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4653 }
4654 return ret;
54cb8821
NP
4655}
4656
f4c0d836
YS
4657int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4659{
4660 get_page(page);
4661
4662 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4663 if (page_nid == numa_node_id()) {
9532fec1 4664 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4665 *flags |= TNF_FAULT_LOCAL;
4666 }
9532fec1
MG
4667
4668 return mpol_misplaced(page, vma, addr);
4669}
4670
2b740303 4671static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4672{
82b0f8c3 4673 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4674 struct page *page = NULL;
98fa15f3 4675 int page_nid = NUMA_NO_NODE;
90572890 4676 int last_cpupid;
cbee9f88 4677 int target_nid;
04a86453 4678 pte_t pte, old_pte;
288bc549 4679 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4680 int flags = 0;
d10e63f2
MG
4681
4682 /*
166f61b9
TH
4683 * The "pte" at this point cannot be used safely without
4684 * validation through pte_unmap_same(). It's of NUMA type but
4685 * the pfn may be screwed if the read is non atomic.
166f61b9 4686 */
82b0f8c3
JK
4687 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688 spin_lock(vmf->ptl);
cee216a6 4689 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4690 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4691 goto out;
4692 }
4693
b99a342d
HY
4694 /* Get the normal PTE */
4695 old_pte = ptep_get(vmf->pte);
04a86453 4696 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4697
82b0f8c3 4698 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4699 if (!page || is_zone_device_page(page))
b99a342d 4700 goto out_map;
d10e63f2 4701
e81c4802 4702 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4703 if (PageCompound(page))
4704 goto out_map;
e81c4802 4705
6688cc05 4706 /*
bea66fbd
MG
4707 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4708 * much anyway since they can be in shared cache state. This misses
4709 * the case where a mapping is writable but the process never writes
4710 * to it but pte_write gets cleared during protection updates and
4711 * pte_dirty has unpredictable behaviour between PTE scan updates,
4712 * background writeback, dirty balancing and application behaviour.
6688cc05 4713 */
b99a342d 4714 if (!was_writable)
6688cc05
PZ
4715 flags |= TNF_NO_GROUP;
4716
dabe1d99
RR
4717 /*
4718 * Flag if the page is shared between multiple address spaces. This
4719 * is later used when determining whether to group tasks together
4720 */
4721 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4722 flags |= TNF_SHARED;
4723
8191acbd 4724 page_nid = page_to_nid(page);
33024536
HY
4725 /*
4726 * For memory tiering mode, cpupid of slow memory page is used
4727 * to record page access time. So use default value.
4728 */
4729 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4730 !node_is_toptier(page_nid))
4731 last_cpupid = (-1 & LAST_CPUPID_MASK);
4732 else
4733 last_cpupid = page_cpupid_last(page);
82b0f8c3 4734 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4735 &flags);
98fa15f3 4736 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4737 put_page(page);
b99a342d 4738 goto out_map;
4daae3b4 4739 }
b99a342d 4740 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4741
4742 /* Migrate to the requested node */
bf90ac19 4743 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4744 page_nid = target_nid;
6688cc05 4745 flags |= TNF_MIGRATED;
b99a342d 4746 } else {
074c2381 4747 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4748 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4749 spin_lock(vmf->ptl);
4750 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4751 pte_unmap_unlock(vmf->pte, vmf->ptl);
4752 goto out;
4753 }
4754 goto out_map;
4755 }
4daae3b4
MG
4756
4757out:
98fa15f3 4758 if (page_nid != NUMA_NO_NODE)
6688cc05 4759 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4760 return 0;
b99a342d
HY
4761out_map:
4762 /*
4763 * Make it present again, depending on how arch implements
4764 * non-accessible ptes, some can allow access by kernel mode.
4765 */
4766 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4767 pte = pte_modify(old_pte, vma->vm_page_prot);
4768 pte = pte_mkyoung(pte);
4769 if (was_writable)
4770 pte = pte_mkwrite(pte);
4771 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4772 update_mmu_cache(vma, vmf->address, vmf->pte);
4773 pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 goto out;
d10e63f2
MG
4775}
4776
2b740303 4777static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4778{
f4200391 4779 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4780 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4781 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4782 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4783 return VM_FAULT_FALLBACK;
4784}
4785
183f24aa 4786/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4787static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4788{
c89357e2
DH
4789 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4790
529b930b 4791 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4792 if (likely(!unshare) &&
4793 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4794 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4795 return do_huge_pmd_wp_page(vmf);
529b930b 4796 }
327e9fd4
THV
4797 if (vmf->vma->vm_ops->huge_fault) {
4798 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4799
4800 if (!(ret & VM_FAULT_FALLBACK))
4801 return ret;
4802 }
af9e4d5f 4803
327e9fd4 4804 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4805 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4806
b96375f7
MW
4807 return VM_FAULT_FALLBACK;
4808}
4809
2b740303 4810static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4811{
14c99d65
GJ
4812#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4813 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4814 /* No support for anonymous transparent PUD pages yet */
4815 if (vma_is_anonymous(vmf->vma))
4816 return VM_FAULT_FALLBACK;
4817 if (vmf->vma->vm_ops->huge_fault)
4818 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4819#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4820 return VM_FAULT_FALLBACK;
4821}
4822
4823static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4824{
327e9fd4
THV
4825#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4826 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4827 /* No support for anonymous transparent PUD pages yet */
4828 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4829 goto split;
4830 if (vmf->vma->vm_ops->huge_fault) {
4831 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832
4833 if (!(ret & VM_FAULT_FALLBACK))
4834 return ret;
4835 }
4836split:
4837 /* COW or write-notify not handled on PUD level: split pud.*/
4838 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4839#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4840 return VM_FAULT_FALLBACK;
4841}
4842
1da177e4
LT
4843/*
4844 * These routines also need to handle stuff like marking pages dirty
4845 * and/or accessed for architectures that don't do it in hardware (most
4846 * RISC architectures). The early dirtying is also good on the i386.
4847 *
4848 * There is also a hook called "update_mmu_cache()" that architectures
4849 * with external mmu caches can use to update those (ie the Sparc or
4850 * PowerPC hashed page tables that act as extended TLBs).
4851 *
c1e8d7c6 4852 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4853 * concurrent faults).
9a95f3cf 4854 *
c1e8d7c6 4855 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4856 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4857 */
2b740303 4858static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4859{
4860 pte_t entry;
4861
82b0f8c3 4862 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4863 /*
4864 * Leave __pte_alloc() until later: because vm_ops->fault may
4865 * want to allocate huge page, and if we expose page table
4866 * for an instant, it will be difficult to retract from
4867 * concurrent faults and from rmap lookups.
4868 */
82b0f8c3 4869 vmf->pte = NULL;
f46f2ade 4870 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4871 } else {
f9ce0be7
KS
4872 /*
4873 * If a huge pmd materialized under us just retry later. Use
4874 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4875 * of pmd_trans_huge() to ensure the pmd didn't become
4876 * pmd_trans_huge under us and then back to pmd_none, as a
4877 * result of MADV_DONTNEED running immediately after a huge pmd
4878 * fault in a different thread of this mm, in turn leading to a
4879 * misleading pmd_trans_huge() retval. All we have to ensure is
4880 * that it is a regular pmd that we can walk with
4881 * pte_offset_map() and we can do that through an atomic read
4882 * in C, which is what pmd_trans_unstable() provides.
4883 */
d0f0931d 4884 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4885 return 0;
4886 /*
4887 * A regular pmd is established and it can't morph into a huge
4888 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4889 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4890 * So now it's safe to run pte_offset_map().
4891 */
82b0f8c3 4892 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4893 vmf->orig_pte = *vmf->pte;
f46f2ade 4894 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4895
4896 /*
4897 * some architectures can have larger ptes than wordsize,
4898 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4899 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4900 * accesses. The code below just needs a consistent view
4901 * for the ifs and we later double check anyway with the
7267ec00
KS
4902 * ptl lock held. So here a barrier will do.
4903 */
4904 barrier();
2994302b 4905 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4906 pte_unmap(vmf->pte);
4907 vmf->pte = NULL;
65500d23 4908 }
1da177e4
LT
4909 }
4910
82b0f8c3
JK
4911 if (!vmf->pte) {
4912 if (vma_is_anonymous(vmf->vma))
4913 return do_anonymous_page(vmf);
7267ec00 4914 else
82b0f8c3 4915 return do_fault(vmf);
7267ec00
KS
4916 }
4917
2994302b
JK
4918 if (!pte_present(vmf->orig_pte))
4919 return do_swap_page(vmf);
7267ec00 4920
2994302b
JK
4921 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4922 return do_numa_page(vmf);
d10e63f2 4923
82b0f8c3
JK
4924 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4925 spin_lock(vmf->ptl);
2994302b 4926 entry = vmf->orig_pte;
7df67697
BM
4927 if (unlikely(!pte_same(*vmf->pte, entry))) {
4928 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4929 goto unlock;
7df67697 4930 }
c89357e2 4931 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4932 if (!pte_write(entry))
2994302b 4933 return do_wp_page(vmf);
c89357e2
DH
4934 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4935 entry = pte_mkdirty(entry);
1da177e4
LT
4936 }
4937 entry = pte_mkyoung(entry);
82b0f8c3
JK
4938 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4939 vmf->flags & FAULT_FLAG_WRITE)) {
4940 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4941 } else {
b7333b58
YS
4942 /* Skip spurious TLB flush for retried page fault */
4943 if (vmf->flags & FAULT_FLAG_TRIED)
4944 goto unlock;
1a44e149
AA
4945 /*
4946 * This is needed only for protection faults but the arch code
4947 * is not yet telling us if this is a protection fault or not.
4948 * This still avoids useless tlb flushes for .text page faults
4949 * with threads.
4950 */
82b0f8c3
JK
4951 if (vmf->flags & FAULT_FLAG_WRITE)
4952 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4953 }
8f4e2101 4954unlock:
82b0f8c3 4955 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4956 return 0;
1da177e4
LT
4957}
4958
4959/*
4960 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4961 *
c1e8d7c6 4962 * The mmap_lock may have been released depending on flags and our
9138e47e 4963 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4964 */
2b740303
SJ
4965static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4966 unsigned long address, unsigned int flags)
1da177e4 4967{
82b0f8c3 4968 struct vm_fault vmf = {
bae473a4 4969 .vma = vma,
1a29d85e 4970 .address = address & PAGE_MASK,
824ddc60 4971 .real_address = address,
bae473a4 4972 .flags = flags,
0721ec8b 4973 .pgoff = linear_page_index(vma, address),
667240e0 4974 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4975 };
dcddffd4 4976 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 4977 unsigned long vm_flags = vma->vm_flags;
1da177e4 4978 pgd_t *pgd;
c2febafc 4979 p4d_t *p4d;
2b740303 4980 vm_fault_t ret;
1da177e4 4981
1da177e4 4982 pgd = pgd_offset(mm, address);
c2febafc
KS
4983 p4d = p4d_alloc(mm, pgd, address);
4984 if (!p4d)
4985 return VM_FAULT_OOM;
a00cc7d9 4986
c2febafc 4987 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4988 if (!vmf.pud)
c74df32c 4989 return VM_FAULT_OOM;
625110b5 4990retry_pud:
7da4e2cb 4991 if (pud_none(*vmf.pud) &&
a7f4e6e4 4992 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
4993 ret = create_huge_pud(&vmf);
4994 if (!(ret & VM_FAULT_FALLBACK))
4995 return ret;
4996 } else {
4997 pud_t orig_pud = *vmf.pud;
4998
4999 barrier();
5000 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5001
c89357e2
DH
5002 /*
5003 * TODO once we support anonymous PUDs: NUMA case and
5004 * FAULT_FLAG_UNSHARE handling.
5005 */
5006 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5007 ret = wp_huge_pud(&vmf, orig_pud);
5008 if (!(ret & VM_FAULT_FALLBACK))
5009 return ret;
5010 } else {
5011 huge_pud_set_accessed(&vmf, orig_pud);
5012 return 0;
5013 }
5014 }
5015 }
5016
5017 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5018 if (!vmf.pmd)
c74df32c 5019 return VM_FAULT_OOM;
625110b5
TH
5020
5021 /* Huge pud page fault raced with pmd_alloc? */
5022 if (pud_trans_unstable(vmf.pud))
5023 goto retry_pud;
5024
7da4e2cb 5025 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5026 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5027 ret = create_huge_pmd(&vmf);
c0292554
KS
5028 if (!(ret & VM_FAULT_FALLBACK))
5029 return ret;
71e3aac0 5030 } else {
5db4f15c 5031 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5032
71e3aac0 5033 barrier();
5db4f15c 5034 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5035 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5036 !is_pmd_migration_entry(vmf.orig_pmd));
5037 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5038 pmd_migration_entry_wait(mm, vmf.pmd);
5039 return 0;
5040 }
5db4f15c
YS
5041 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5042 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5043 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5044
c89357e2
DH
5045 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5046 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5047 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5048 if (!(ret & VM_FAULT_FALLBACK))
5049 return ret;
a1dd450b 5050 } else {
5db4f15c 5051 huge_pmd_set_accessed(&vmf);
9845cbbd 5052 return 0;
1f1d06c3 5053 }
71e3aac0
AA
5054 }
5055 }
5056
82b0f8c3 5057 return handle_pte_fault(&vmf);
1da177e4
LT
5058}
5059
bce617ed 5060/**
f0953a1b 5061 * mm_account_fault - Do page fault accounting
bce617ed
PX
5062 *
5063 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5064 * of perf event counters, but we'll still do the per-task accounting to
5065 * the task who triggered this page fault.
5066 * @address: the faulted address.
5067 * @flags: the fault flags.
5068 * @ret: the fault retcode.
5069 *
f0953a1b 5070 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5071 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5072 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5073 * still be in per-arch page fault handlers at the entry of page fault.
5074 */
5075static inline void mm_account_fault(struct pt_regs *regs,
5076 unsigned long address, unsigned int flags,
5077 vm_fault_t ret)
5078{
5079 bool major;
5080
5081 /*
5082 * We don't do accounting for some specific faults:
5083 *
5084 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5085 * includes arch_vma_access_permitted() failing before reaching here.
5086 * So this is not a "this many hardware page faults" counter. We
5087 * should use the hw profiling for that.
5088 *
5089 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5090 * once they're completed.
5091 */
5092 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5093 return;
5094
5095 /*
5096 * We define the fault as a major fault when the final successful fault
5097 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5098 * handle it immediately previously).
5099 */
5100 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5101
a2beb5f1
PX
5102 if (major)
5103 current->maj_flt++;
5104 else
5105 current->min_flt++;
5106
bce617ed 5107 /*
a2beb5f1
PX
5108 * If the fault is done for GUP, regs will be NULL. We only do the
5109 * accounting for the per thread fault counters who triggered the
5110 * fault, and we skip the perf event updates.
bce617ed
PX
5111 */
5112 if (!regs)
5113 return;
5114
a2beb5f1 5115 if (major)
bce617ed 5116 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5117 else
bce617ed 5118 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5119}
5120
ec1c86b2
YZ
5121#ifdef CONFIG_LRU_GEN
5122static void lru_gen_enter_fault(struct vm_area_struct *vma)
5123{
5124 /* the LRU algorithm doesn't apply to sequential or random reads */
5125 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5126}
5127
5128static void lru_gen_exit_fault(void)
5129{
5130 current->in_lru_fault = false;
5131}
5132#else
5133static void lru_gen_enter_fault(struct vm_area_struct *vma)
5134{
5135}
5136
5137static void lru_gen_exit_fault(void)
5138{
5139}
5140#endif /* CONFIG_LRU_GEN */
5141
9a95f3cf
PC
5142/*
5143 * By the time we get here, we already hold the mm semaphore
5144 *
c1e8d7c6 5145 * The mmap_lock may have been released depending on flags and our
9138e47e 5146 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5147 */
2b740303 5148vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5149 unsigned int flags, struct pt_regs *regs)
519e5247 5150{
2b740303 5151 vm_fault_t ret;
519e5247
JW
5152
5153 __set_current_state(TASK_RUNNING);
5154
5155 count_vm_event(PGFAULT);
2262185c 5156 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
5157
5158 /* do counter updates before entering really critical section. */
5159 check_sync_rss_stat(current);
5160
de0c799b
LD
5161 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5162 flags & FAULT_FLAG_INSTRUCTION,
5163 flags & FAULT_FLAG_REMOTE))
5164 return VM_FAULT_SIGSEGV;
5165
519e5247
JW
5166 /*
5167 * Enable the memcg OOM handling for faults triggered in user
5168 * space. Kernel faults are handled more gracefully.
5169 */
5170 if (flags & FAULT_FLAG_USER)
29ef680a 5171 mem_cgroup_enter_user_fault();
519e5247 5172
ec1c86b2
YZ
5173 lru_gen_enter_fault(vma);
5174
bae473a4
KS
5175 if (unlikely(is_vm_hugetlb_page(vma)))
5176 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5177 else
5178 ret = __handle_mm_fault(vma, address, flags);
519e5247 5179
ec1c86b2
YZ
5180 lru_gen_exit_fault();
5181
49426420 5182 if (flags & FAULT_FLAG_USER) {
29ef680a 5183 mem_cgroup_exit_user_fault();
166f61b9
TH
5184 /*
5185 * The task may have entered a memcg OOM situation but
5186 * if the allocation error was handled gracefully (no
5187 * VM_FAULT_OOM), there is no need to kill anything.
5188 * Just clean up the OOM state peacefully.
5189 */
5190 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5191 mem_cgroup_oom_synchronize(false);
49426420 5192 }
3812c8c8 5193
bce617ed
PX
5194 mm_account_fault(regs, address, flags, ret);
5195
519e5247
JW
5196 return ret;
5197}
e1d6d01a 5198EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5199
90eceff1
KS
5200#ifndef __PAGETABLE_P4D_FOLDED
5201/*
5202 * Allocate p4d page table.
5203 * We've already handled the fast-path in-line.
5204 */
5205int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5206{
5207 p4d_t *new = p4d_alloc_one(mm, address);
5208 if (!new)
5209 return -ENOMEM;
5210
90eceff1 5211 spin_lock(&mm->page_table_lock);
ed33b5a6 5212 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5213 p4d_free(mm, new);
ed33b5a6
QZ
5214 } else {
5215 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5216 pgd_populate(mm, pgd, new);
ed33b5a6 5217 }
90eceff1
KS
5218 spin_unlock(&mm->page_table_lock);
5219 return 0;
5220}
5221#endif /* __PAGETABLE_P4D_FOLDED */
5222
1da177e4
LT
5223#ifndef __PAGETABLE_PUD_FOLDED
5224/*
5225 * Allocate page upper directory.
872fec16 5226 * We've already handled the fast-path in-line.
1da177e4 5227 */
c2febafc 5228int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5229{
c74df32c
HD
5230 pud_t *new = pud_alloc_one(mm, address);
5231 if (!new)
1bb3630e 5232 return -ENOMEM;
1da177e4 5233
872fec16 5234 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5235 if (!p4d_present(*p4d)) {
5236 mm_inc_nr_puds(mm);
ed33b5a6 5237 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5238 p4d_populate(mm, p4d, new);
b4e98d9a 5239 } else /* Another has populated it */
5e541973 5240 pud_free(mm, new);
c74df32c 5241 spin_unlock(&mm->page_table_lock);
1bb3630e 5242 return 0;
1da177e4
LT
5243}
5244#endif /* __PAGETABLE_PUD_FOLDED */
5245
5246#ifndef __PAGETABLE_PMD_FOLDED
5247/*
5248 * Allocate page middle directory.
872fec16 5249 * We've already handled the fast-path in-line.
1da177e4 5250 */
1bb3630e 5251int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5252{
a00cc7d9 5253 spinlock_t *ptl;
c74df32c
HD
5254 pmd_t *new = pmd_alloc_one(mm, address);
5255 if (!new)
1bb3630e 5256 return -ENOMEM;
1da177e4 5257
a00cc7d9 5258 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5259 if (!pud_present(*pud)) {
5260 mm_inc_nr_pmds(mm);
ed33b5a6 5261 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5262 pud_populate(mm, pud, new);
ed33b5a6 5263 } else { /* Another has populated it */
5e541973 5264 pmd_free(mm, new);
ed33b5a6 5265 }
a00cc7d9 5266 spin_unlock(ptl);
1bb3630e 5267 return 0;
e0f39591 5268}
1da177e4
LT
5269#endif /* __PAGETABLE_PMD_FOLDED */
5270
0e5e64c0
MS
5271/**
5272 * follow_pte - look up PTE at a user virtual address
5273 * @mm: the mm_struct of the target address space
5274 * @address: user virtual address
5275 * @ptepp: location to store found PTE
5276 * @ptlp: location to store the lock for the PTE
5277 *
5278 * On a successful return, the pointer to the PTE is stored in @ptepp;
5279 * the corresponding lock is taken and its location is stored in @ptlp.
5280 * The contents of the PTE are only stable until @ptlp is released;
5281 * any further use, if any, must be protected against invalidation
5282 * with MMU notifiers.
5283 *
5284 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5285 * should be taken for read.
5286 *
5287 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5288 * it is not a good general-purpose API.
5289 *
5290 * Return: zero on success, -ve otherwise.
5291 */
5292int follow_pte(struct mm_struct *mm, unsigned long address,
5293 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5294{
5295 pgd_t *pgd;
c2febafc 5296 p4d_t *p4d;
f8ad0f49
JW
5297 pud_t *pud;
5298 pmd_t *pmd;
5299 pte_t *ptep;
5300
5301 pgd = pgd_offset(mm, address);
5302 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5303 goto out;
5304
c2febafc
KS
5305 p4d = p4d_offset(pgd, address);
5306 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5307 goto out;
5308
5309 pud = pud_offset(p4d, address);
f8ad0f49
JW
5310 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5311 goto out;
5312
5313 pmd = pmd_offset(pud, address);
f66055ab 5314 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5315
09796395 5316 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5317 goto out;
5318
5319 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5320 if (!pte_present(*ptep))
5321 goto unlock;
5322 *ptepp = ptep;
5323 return 0;
5324unlock:
5325 pte_unmap_unlock(ptep, *ptlp);
5326out:
5327 return -EINVAL;
5328}
9fd6dad1
PB
5329EXPORT_SYMBOL_GPL(follow_pte);
5330
3b6748e2
JW
5331/**
5332 * follow_pfn - look up PFN at a user virtual address
5333 * @vma: memory mapping
5334 * @address: user virtual address
5335 * @pfn: location to store found PFN
5336 *
5337 * Only IO mappings and raw PFN mappings are allowed.
5338 *
9fd6dad1
PB
5339 * This function does not allow the caller to read the permissions
5340 * of the PTE. Do not use it.
5341 *
a862f68a 5342 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5343 */
5344int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5345 unsigned long *pfn)
5346{
5347 int ret = -EINVAL;
5348 spinlock_t *ptl;
5349 pte_t *ptep;
5350
5351 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5352 return ret;
5353
9fd6dad1 5354 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5355 if (ret)
5356 return ret;
5357 *pfn = pte_pfn(*ptep);
5358 pte_unmap_unlock(ptep, ptl);
5359 return 0;
5360}
5361EXPORT_SYMBOL(follow_pfn);
5362
28b2ee20 5363#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5364int follow_phys(struct vm_area_struct *vma,
5365 unsigned long address, unsigned int flags,
5366 unsigned long *prot, resource_size_t *phys)
28b2ee20 5367{
03668a4d 5368 int ret = -EINVAL;
28b2ee20
RR
5369 pte_t *ptep, pte;
5370 spinlock_t *ptl;
28b2ee20 5371
d87fe660 5372 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5373 goto out;
28b2ee20 5374
9fd6dad1 5375 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5376 goto out;
28b2ee20 5377 pte = *ptep;
03668a4d 5378
f6f37321 5379 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5380 goto unlock;
28b2ee20
RR
5381
5382 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5383 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5384
03668a4d 5385 ret = 0;
28b2ee20
RR
5386unlock:
5387 pte_unmap_unlock(ptep, ptl);
5388out:
d87fe660 5389 return ret;
28b2ee20
RR
5390}
5391
96667f8a
DV
5392/**
5393 * generic_access_phys - generic implementation for iomem mmap access
5394 * @vma: the vma to access
f0953a1b 5395 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5396 * @buf: buffer to read/write
5397 * @len: length of transfer
5398 * @write: set to FOLL_WRITE when writing, otherwise reading
5399 *
5400 * This is a generic implementation for &vm_operations_struct.access for an
5401 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5402 * not page based.
5403 */
28b2ee20
RR
5404int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5405 void *buf, int len, int write)
5406{
5407 resource_size_t phys_addr;
5408 unsigned long prot = 0;
2bc7273b 5409 void __iomem *maddr;
96667f8a
DV
5410 pte_t *ptep, pte;
5411 spinlock_t *ptl;
5412 int offset = offset_in_page(addr);
5413 int ret = -EINVAL;
5414
5415 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5416 return -EINVAL;
5417
5418retry:
e913a8cd 5419 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5420 return -EINVAL;
5421 pte = *ptep;
5422 pte_unmap_unlock(ptep, ptl);
28b2ee20 5423
96667f8a
DV
5424 prot = pgprot_val(pte_pgprot(pte));
5425 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5426
5427 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5428 return -EINVAL;
5429
9cb12d7b 5430 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5431 if (!maddr)
5432 return -ENOMEM;
5433
e913a8cd 5434 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5435 goto out_unmap;
5436
5437 if (!pte_same(pte, *ptep)) {
5438 pte_unmap_unlock(ptep, ptl);
5439 iounmap(maddr);
5440
5441 goto retry;
5442 }
5443
28b2ee20
RR
5444 if (write)
5445 memcpy_toio(maddr + offset, buf, len);
5446 else
5447 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5448 ret = len;
5449 pte_unmap_unlock(ptep, ptl);
5450out_unmap:
28b2ee20
RR
5451 iounmap(maddr);
5452
96667f8a 5453 return ret;
28b2ee20 5454}
5a73633e 5455EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5456#endif
5457
0ec76a11 5458/*
d3f5ffca 5459 * Access another process' address space as given in mm.
0ec76a11 5460 */
d3f5ffca
JH
5461int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5462 int len, unsigned int gup_flags)
0ec76a11 5463{
0ec76a11 5464 struct vm_area_struct *vma;
0ec76a11 5465 void *old_buf = buf;
442486ec 5466 int write = gup_flags & FOLL_WRITE;
0ec76a11 5467
d8ed45c5 5468 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5469 return 0;
5470
183ff22b 5471 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5472 while (len) {
5473 int bytes, ret, offset;
5474 void *maddr;
28b2ee20 5475 struct page *page = NULL;
0ec76a11 5476
64019a2e 5477 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5478 gup_flags, &page, &vma, NULL);
28b2ee20 5479 if (ret <= 0) {
dbffcd03
RR
5480#ifndef CONFIG_HAVE_IOREMAP_PROT
5481 break;
5482#else
28b2ee20
RR
5483 /*
5484 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5485 * we can access using slightly different code.
5486 */
3e418f98
LH
5487 vma = vma_lookup(mm, addr);
5488 if (!vma)
28b2ee20
RR
5489 break;
5490 if (vma->vm_ops && vma->vm_ops->access)
5491 ret = vma->vm_ops->access(vma, addr, buf,
5492 len, write);
5493 if (ret <= 0)
28b2ee20
RR
5494 break;
5495 bytes = ret;
dbffcd03 5496#endif
0ec76a11 5497 } else {
28b2ee20
RR
5498 bytes = len;
5499 offset = addr & (PAGE_SIZE-1);
5500 if (bytes > PAGE_SIZE-offset)
5501 bytes = PAGE_SIZE-offset;
5502
5503 maddr = kmap(page);
5504 if (write) {
5505 copy_to_user_page(vma, page, addr,
5506 maddr + offset, buf, bytes);
5507 set_page_dirty_lock(page);
5508 } else {
5509 copy_from_user_page(vma, page, addr,
5510 buf, maddr + offset, bytes);
5511 }
5512 kunmap(page);
09cbfeaf 5513 put_page(page);
0ec76a11 5514 }
0ec76a11
DH
5515 len -= bytes;
5516 buf += bytes;
5517 addr += bytes;
5518 }
d8ed45c5 5519 mmap_read_unlock(mm);
0ec76a11
DH
5520
5521 return buf - old_buf;
5522}
03252919 5523
5ddd36b9 5524/**
ae91dbfc 5525 * access_remote_vm - access another process' address space
5ddd36b9
SW
5526 * @mm: the mm_struct of the target address space
5527 * @addr: start address to access
5528 * @buf: source or destination buffer
5529 * @len: number of bytes to transfer
6347e8d5 5530 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5531 *
5532 * The caller must hold a reference on @mm.
a862f68a
MR
5533 *
5534 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5535 */
5536int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5537 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5538{
d3f5ffca 5539 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5540}
5541
206cb636
SW
5542/*
5543 * Access another process' address space.
5544 * Source/target buffer must be kernel space,
5545 * Do not walk the page table directly, use get_user_pages
5546 */
5547int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5548 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5549{
5550 struct mm_struct *mm;
5551 int ret;
5552
5553 mm = get_task_mm(tsk);
5554 if (!mm)
5555 return 0;
5556
d3f5ffca 5557 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5558
206cb636
SW
5559 mmput(mm);
5560
5561 return ret;
5562}
fcd35857 5563EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5564
03252919
AK
5565/*
5566 * Print the name of a VMA.
5567 */
5568void print_vma_addr(char *prefix, unsigned long ip)
5569{
5570 struct mm_struct *mm = current->mm;
5571 struct vm_area_struct *vma;
5572
e8bff74a 5573 /*
0a7f682d 5574 * we might be running from an atomic context so we cannot sleep
e8bff74a 5575 */
d8ed45c5 5576 if (!mmap_read_trylock(mm))
e8bff74a
IM
5577 return;
5578
03252919
AK
5579 vma = find_vma(mm, ip);
5580 if (vma && vma->vm_file) {
5581 struct file *f = vma->vm_file;
0a7f682d 5582 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5583 if (buf) {
2fbc57c5 5584 char *p;
03252919 5585
9bf39ab2 5586 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5587 if (IS_ERR(p))
5588 p = "?";
2fbc57c5 5589 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5590 vma->vm_start,
5591 vma->vm_end - vma->vm_start);
5592 free_page((unsigned long)buf);
5593 }
5594 }
d8ed45c5 5595 mmap_read_unlock(mm);
03252919 5596}
3ee1afa3 5597
662bbcb2 5598#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5599void __might_fault(const char *file, int line)
3ee1afa3 5600{
9ec23531 5601 if (pagefault_disabled())
662bbcb2 5602 return;
42a38756 5603 __might_sleep(file, line);
9ec23531 5604#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5605 if (current->mm)
da1c55f1 5606 might_lock_read(&current->mm->mmap_lock);
9ec23531 5607#endif
3ee1afa3 5608}
9ec23531 5609EXPORT_SYMBOL(__might_fault);
3ee1afa3 5610#endif
47ad8475
AA
5611
5612#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5613/*
5614 * Process all subpages of the specified huge page with the specified
5615 * operation. The target subpage will be processed last to keep its
5616 * cache lines hot.
5617 */
5618static inline void process_huge_page(
5619 unsigned long addr_hint, unsigned int pages_per_huge_page,
5620 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5621 void *arg)
47ad8475 5622{
c79b57e4
HY
5623 int i, n, base, l;
5624 unsigned long addr = addr_hint &
5625 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5626
c6ddfb6c 5627 /* Process target subpage last to keep its cache lines hot */
47ad8475 5628 might_sleep();
c79b57e4
HY
5629 n = (addr_hint - addr) / PAGE_SIZE;
5630 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5631 /* If target subpage in first half of huge page */
c79b57e4
HY
5632 base = 0;
5633 l = n;
c6ddfb6c 5634 /* Process subpages at the end of huge page */
c79b57e4
HY
5635 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5636 cond_resched();
c6ddfb6c 5637 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5638 }
5639 } else {
c6ddfb6c 5640 /* If target subpage in second half of huge page */
c79b57e4
HY
5641 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5642 l = pages_per_huge_page - n;
c6ddfb6c 5643 /* Process subpages at the begin of huge page */
c79b57e4
HY
5644 for (i = 0; i < base; i++) {
5645 cond_resched();
c6ddfb6c 5646 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5647 }
5648 }
5649 /*
c6ddfb6c
HY
5650 * Process remaining subpages in left-right-left-right pattern
5651 * towards the target subpage
c79b57e4
HY
5652 */
5653 for (i = 0; i < l; i++) {
5654 int left_idx = base + i;
5655 int right_idx = base + 2 * l - 1 - i;
5656
5657 cond_resched();
c6ddfb6c 5658 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5659 cond_resched();
c6ddfb6c 5660 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5661 }
5662}
5663
c6ddfb6c
HY
5664static void clear_gigantic_page(struct page *page,
5665 unsigned long addr,
5666 unsigned int pages_per_huge_page)
5667{
5668 int i;
5669 struct page *p = page;
5670
5671 might_sleep();
5672 for (i = 0; i < pages_per_huge_page;
5673 i++, p = mem_map_next(p, page, i)) {
5674 cond_resched();
5675 clear_user_highpage(p, addr + i * PAGE_SIZE);
5676 }
5677}
5678
5679static void clear_subpage(unsigned long addr, int idx, void *arg)
5680{
5681 struct page *page = arg;
5682
5683 clear_user_highpage(page + idx, addr);
5684}
5685
5686void clear_huge_page(struct page *page,
5687 unsigned long addr_hint, unsigned int pages_per_huge_page)
5688{
5689 unsigned long addr = addr_hint &
5690 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5691
5692 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5693 clear_gigantic_page(page, addr, pages_per_huge_page);
5694 return;
5695 }
5696
5697 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5698}
5699
47ad8475
AA
5700static void copy_user_gigantic_page(struct page *dst, struct page *src,
5701 unsigned long addr,
5702 struct vm_area_struct *vma,
5703 unsigned int pages_per_huge_page)
5704{
5705 int i;
5706 struct page *dst_base = dst;
5707 struct page *src_base = src;
5708
5709 for (i = 0; i < pages_per_huge_page; ) {
5710 cond_resched();
5711 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5712
5713 i++;
5714 dst = mem_map_next(dst, dst_base, i);
5715 src = mem_map_next(src, src_base, i);
5716 }
5717}
5718
c9f4cd71
HY
5719struct copy_subpage_arg {
5720 struct page *dst;
5721 struct page *src;
5722 struct vm_area_struct *vma;
5723};
5724
5725static void copy_subpage(unsigned long addr, int idx, void *arg)
5726{
5727 struct copy_subpage_arg *copy_arg = arg;
5728
5729 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5730 addr, copy_arg->vma);
5731}
5732
47ad8475 5733void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5734 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5735 unsigned int pages_per_huge_page)
5736{
c9f4cd71
HY
5737 unsigned long addr = addr_hint &
5738 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5739 struct copy_subpage_arg arg = {
5740 .dst = dst,
5741 .src = src,
5742 .vma = vma,
5743 };
47ad8475
AA
5744
5745 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5746 copy_user_gigantic_page(dst, src, addr, vma,
5747 pages_per_huge_page);
5748 return;
5749 }
5750
c9f4cd71 5751 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5752}
fa4d75c1
MK
5753
5754long copy_huge_page_from_user(struct page *dst_page,
5755 const void __user *usr_src,
810a56b9
MK
5756 unsigned int pages_per_huge_page,
5757 bool allow_pagefault)
fa4d75c1 5758{
fa4d75c1
MK
5759 void *page_kaddr;
5760 unsigned long i, rc = 0;
5761 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5762 struct page *subpage = dst_page;
fa4d75c1 5763
3272cfc2
MK
5764 for (i = 0; i < pages_per_huge_page;
5765 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5766 if (allow_pagefault)
3272cfc2 5767 page_kaddr = kmap(subpage);
810a56b9 5768 else
3272cfc2 5769 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5770 rc = copy_from_user(page_kaddr,
b063e374 5771 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5772 if (allow_pagefault)
3272cfc2 5773 kunmap(subpage);
810a56b9
MK
5774 else
5775 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5776
5777 ret_val -= (PAGE_SIZE - rc);
5778 if (rc)
5779 break;
5780
e763243c
MS
5781 flush_dcache_page(subpage);
5782
fa4d75c1
MK
5783 cond_resched();
5784 }
5785 return ret_val;
5786}
47ad8475 5787#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5788
40b64acd 5789#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5790
5791static struct kmem_cache *page_ptl_cachep;
5792
5793void __init ptlock_cache_init(void)
5794{
5795 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5796 SLAB_PANIC, NULL);
5797}
5798
539edb58 5799bool ptlock_alloc(struct page *page)
49076ec2
KS
5800{
5801 spinlock_t *ptl;
5802
b35f1819 5803 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5804 if (!ptl)
5805 return false;
539edb58 5806 page->ptl = ptl;
49076ec2
KS
5807 return true;
5808}
5809
539edb58 5810void ptlock_free(struct page *page)
49076ec2 5811{
b35f1819 5812 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5813}
5814#endif