mm/rmap: pass rmap flags to hugepage_add_anon_rmap()
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
a9ee6cf5 94#ifndef CONFIG_NUMA
1da177e4 95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1 410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
03c4f204 437void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 438{
03c4f204 439 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 440
8ac1f832 441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 442 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
457 pmd_populate(mm, pmd, *pte);
458 *pte = NULL;
4b471e88 459 }
c4088ebd 460 spin_unlock(ptl);
03c4f204
QZ
461}
462
4cf58924 463int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 464{
4cf58924 465 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
466 if (!new)
467 return -ENOMEM;
468
03c4f204 469 pmd_install(mm, pmd, &new);
2f569afd
MS
470 if (new)
471 pte_free(mm, new);
1bb3630e 472 return 0;
1da177e4
LT
473}
474
4cf58924 475int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 476{
4cf58924 477 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
478 if (!new)
479 return -ENOMEM;
480
481 spin_lock(&init_mm.page_table_lock);
8ac1f832 482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 483 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 484 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 485 new = NULL;
4b471e88 486 }
1bb3630e 487 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
488 if (new)
489 pte_free_kernel(&init_mm, new);
1bb3630e 490 return 0;
1da177e4
LT
491}
492
d559db08
KH
493static inline void init_rss_vec(int *rss)
494{
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496}
497
498static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 499{
d559db08
KH
500 int i;
501
34e55232 502 if (current->mm == mm)
05af2e10 503 sync_mm_rss(mm);
d559db08
KH
504 for (i = 0; i < NR_MM_COUNTERS; i++)
505 if (rss[i])
506 add_mm_counter(mm, i, rss[i]);
ae859762
HD
507}
508
b5810039 509/*
6aab341e
LT
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
b5810039
NP
513 *
514 * The calling function must still handle the error.
515 */
3dc14741
HD
516static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
b5810039 518{
3dc14741 519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
524 pgoff_t index;
d936cf9b
HD
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
528
529 /*
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
532 */
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
535 nr_unshown++;
536 return;
537 }
538 if (nr_unshown) {
1170532b
JP
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 nr_unshown);
d936cf9b
HD
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
3dc14741
HD
547
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
550
1170532b
JP
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 current->comm,
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 554 if (page)
f0b791a3 555 dump_page(page, "bad pte");
6aa9b8b2 556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
559 vma->vm_file,
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
b5810039 563 dump_stack();
373d4d09 564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
565}
566
ee498ed7 567/*
7e675137 568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 569 *
7e675137
NP
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 573 *
7e675137
NP
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
577 * described below.
578 *
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 582 *
b379d790
JH
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
6aab341e
LT
587 *
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 *
7e675137
NP
590 * And for normal mappings this is false.
591 *
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
b379d790 596 *
b379d790 597 *
7e675137 598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
599 *
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
607 *
ee498ed7 608 */
25b2995a
CH
609struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 pte_t pte)
ee498ed7 611{
22b31eec 612 unsigned long pfn = pte_pfn(pte);
7e675137 613
00b3a331 614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 615 if (likely(!pte_special(pte)))
22b31eec 616 goto check_pfn;
667a0a06
DV
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 return NULL;
df6ad698
JG
621 if (is_zero_pfn(pfn))
622 return NULL;
e1fb4a08
DJ
623 if (pte_devmap(pte))
624 return NULL;
625
df6ad698 626 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
627 return NULL;
628 }
629
00b3a331 630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 631
b379d790
JH
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
634 if (!pfn_valid(pfn))
635 return NULL;
636 goto out;
637 } else {
7e675137
NP
638 unsigned long off;
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
640 if (pfn == vma->vm_pgoff + off)
641 return NULL;
642 if (!is_cow_mapping(vma->vm_flags))
643 return NULL;
644 }
6aab341e
LT
645 }
646
b38af472
HD
647 if (is_zero_pfn(pfn))
648 return NULL;
00b3a331 649
22b31eec
HD
650check_pfn:
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
653 return NULL;
654 }
6aab341e
LT
655
656 /*
7e675137 657 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 658 * eg. VDSO mappings can cause them to exist.
6aab341e 659 */
b379d790 660out:
6aab341e 661 return pfn_to_page(pfn);
ee498ed7
HD
662}
663
28093f9f
GS
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
665struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667{
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /*
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
674 */
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
677 if (!pfn_valid(pfn))
678 return NULL;
679 goto out;
680 } else {
681 unsigned long off;
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
684 return NULL;
685 if (!is_cow_mapping(vma->vm_flags))
686 return NULL;
687 }
688 }
689
e1fb4a08
DJ
690 if (pmd_devmap(pmd))
691 return NULL;
3cde287b 692 if (is_huge_zero_pmd(pmd))
28093f9f
GS
693 return NULL;
694 if (unlikely(pfn > highest_memmap_pfn))
695 return NULL;
696
697 /*
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
700 */
701out:
702 return pfn_to_page(pfn);
703}
704#endif
705
b756a3b5
AP
706static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
708 pte_t *ptep)
709{
710 pte_t pte;
711 swp_entry_t entry;
712
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
716
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
b756a3b5
AP
723 /*
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
726 */
727 if (PageAnon(page))
f1e2db12 728 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
729 else
730 /*
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
733 */
734 WARN_ON_ONCE(!PageAnon(page));
735
1eba86c0
PT
736 set_pte_at(vma->vm_mm, address, ptep, pte);
737
b756a3b5
AP
738 /*
739 * No need to invalidate - it was non-present before. However
740 * secondary CPUs may have mappings that need invalidating.
741 */
742 update_mmu_cache(vma, address, ptep);
743}
744
745/*
746 * Tries to restore an exclusive pte if the page lock can be acquired without
747 * sleeping.
748 */
749static int
750try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
751 unsigned long addr)
752{
753 swp_entry_t entry = pte_to_swp_entry(*src_pte);
754 struct page *page = pfn_swap_entry_to_page(entry);
755
756 if (trylock_page(page)) {
757 restore_exclusive_pte(vma, page, addr, src_pte);
758 unlock_page(page);
759 return 0;
760 }
761
762 return -EBUSY;
763}
764
1da177e4
LT
765/*
766 * copy one vm_area from one task to the other. Assumes the page tables
767 * already present in the new task to be cleared in the whole range
768 * covered by this vma.
1da177e4
LT
769 */
770
df3a57d1
LT
771static unsigned long
772copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
773 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
774 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 775{
8f34f1ea 776 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
777 pte_t pte = *src_pte;
778 struct page *page;
df3a57d1
LT
779 swp_entry_t entry = pte_to_swp_entry(pte);
780
781 if (likely(!non_swap_entry(entry))) {
782 if (swap_duplicate(entry) < 0)
9a5cc85c 783 return -EIO;
df3a57d1
LT
784
785 /* make sure dst_mm is on swapoff's mmlist. */
786 if (unlikely(list_empty(&dst_mm->mmlist))) {
787 spin_lock(&mmlist_lock);
788 if (list_empty(&dst_mm->mmlist))
789 list_add(&dst_mm->mmlist,
790 &src_mm->mmlist);
791 spin_unlock(&mmlist_lock);
792 }
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
af5cdaf8 795 page = pfn_swap_entry_to_page(entry);
1da177e4 796
df3a57d1 797 rss[mm_counter(page)]++;
5042db43 798
4dd845b5 799 if (is_writable_migration_entry(entry) &&
df3a57d1 800 is_cow_mapping(vm_flags)) {
5042db43 801 /*
df3a57d1
LT
802 * COW mappings require pages in both
803 * parent and child to be set to read.
5042db43 804 */
4dd845b5
AP
805 entry = make_readable_migration_entry(
806 swp_offset(entry));
df3a57d1
LT
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
813 }
814 } else if (is_device_private_entry(entry)) {
af5cdaf8 815 page = pfn_swap_entry_to_page(entry);
5042db43 816
df3a57d1
LT
817 /*
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
820 * respect.
821 *
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
825 */
826 get_page(page);
827 rss[mm_counter(page)]++;
fb3d824d
DH
828 /* Cannot fail as these pages cannot get pinned. */
829 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
830
831 /*
832 * We do not preserve soft-dirty information, because so
833 * far, checkpoint/restore is the only feature that
834 * requires that. And checkpoint/restore does not work
835 * when a device driver is involved (you cannot easily
836 * save and restore device driver state).
837 */
4dd845b5 838 if (is_writable_device_private_entry(entry) &&
df3a57d1 839 is_cow_mapping(vm_flags)) {
4dd845b5
AP
840 entry = make_readable_device_private_entry(
841 swp_offset(entry));
df3a57d1
LT
842 pte = swp_entry_to_pte(entry);
843 if (pte_swp_uffd_wp(*src_pte))
844 pte = pte_swp_mkuffd_wp(pte);
845 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 846 }
b756a3b5
AP
847 } else if (is_device_exclusive_entry(entry)) {
848 /*
849 * Make device exclusive entries present by restoring the
850 * original entry then copying as for a present pte. Device
851 * exclusive entries currently only support private writable
852 * (ie. COW) mappings.
853 */
854 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856 return -EBUSY;
857 return -ENOENT;
1da177e4 858 }
8f34f1ea
PX
859 if (!userfaultfd_wp(dst_vma))
860 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
861 set_pte_at(dst_mm, addr, dst_pte, pte);
862 return 0;
863}
864
70e806e4 865/*
b51ad4f8 866 * Copy a present and normal page.
70e806e4 867 *
b51ad4f8
DH
868 * NOTE! The usual case is that this isn't required;
869 * instead, the caller can just increase the page refcount
870 * and re-use the pte the traditional way.
70e806e4
PX
871 *
872 * And if we need a pre-allocated page but don't yet have
873 * one, return a negative error to let the preallocation
874 * code know so that it can do so outside the page table
875 * lock.
876 */
877static inline int
c78f4636
PX
878copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
879 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 880 struct page **prealloc, struct page *page)
70e806e4
PX
881{
882 struct page *new_page;
b51ad4f8 883 pte_t pte;
70e806e4 884
70e806e4
PX
885 new_page = *prealloc;
886 if (!new_page)
887 return -EAGAIN;
888
889 /*
890 * We have a prealloc page, all good! Take it
891 * over and copy the page & arm it.
892 */
893 *prealloc = NULL;
c78f4636 894 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 895 __SetPageUptodate(new_page);
c78f4636
PX
896 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
897 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
898 rss[mm_counter(new_page)]++;
899
900 /* All done, just insert the new page copy in the child */
c78f4636
PX
901 pte = mk_pte(new_page, dst_vma->vm_page_prot);
902 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
903 if (userfaultfd_pte_wp(dst_vma, *src_pte))
904 /* Uffd-wp needs to be delivered to dest pte as well */
905 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 906 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
907 return 0;
908}
909
910/*
911 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
912 * is required to copy this pte.
913 */
914static inline int
c78f4636
PX
915copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
917 struct page **prealloc)
df3a57d1 918{
c78f4636
PX
919 struct mm_struct *src_mm = src_vma->vm_mm;
920 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
921 pte_t pte = *src_pte;
922 struct page *page;
923
c78f4636 924 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 925 if (page && PageAnon(page)) {
b51ad4f8
DH
926 /*
927 * If this page may have been pinned by the parent process,
928 * copy the page immediately for the child so that we'll always
929 * guarantee the pinned page won't be randomly replaced in the
930 * future.
931 */
fb3d824d
DH
932 get_page(page);
933 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
934 /* Page maybe pinned, we have to copy. */
935 put_page(page);
936 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
937 addr, rss, prealloc, page);
938 }
939 rss[mm_counter(page)]++;
b51ad4f8 940 } else if (page) {
70e806e4 941 get_page(page);
fb3d824d 942 page_dup_file_rmap(page, false);
70e806e4
PX
943 rss[mm_counter(page)]++;
944 }
945
1da177e4
LT
946 /*
947 * If it's a COW mapping, write protect it both
948 * in the parent and the child
949 */
1b2de5d0 950 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 951 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 952 pte = pte_wrprotect(pte);
1da177e4
LT
953 }
954
955 /*
956 * If it's a shared mapping, mark it clean in
957 * the child
958 */
959 if (vm_flags & VM_SHARED)
960 pte = pte_mkclean(pte);
961 pte = pte_mkold(pte);
6aab341e 962
8f34f1ea 963 if (!userfaultfd_wp(dst_vma))
b569a176
PX
964 pte = pte_clear_uffd_wp(pte);
965
c78f4636 966 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
967 return 0;
968}
969
970static inline struct page *
971page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
972 unsigned long addr)
973{
974 struct page *new_page;
975
976 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
977 if (!new_page)
978 return NULL;
979
8f425e4e 980 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
981 put_page(new_page);
982 return NULL;
6aab341e 983 }
70e806e4 984 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 985
70e806e4 986 return new_page;
1da177e4
LT
987}
988
c78f4636
PX
989static int
990copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
991 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
992 unsigned long end)
1da177e4 993{
c78f4636
PX
994 struct mm_struct *dst_mm = dst_vma->vm_mm;
995 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 996 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 997 pte_t *src_pte, *dst_pte;
c74df32c 998 spinlock_t *src_ptl, *dst_ptl;
70e806e4 999 int progress, ret = 0;
d559db08 1000 int rss[NR_MM_COUNTERS];
570a335b 1001 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1002 struct page *prealloc = NULL;
1da177e4
LT
1003
1004again:
70e806e4 1005 progress = 0;
d559db08
KH
1006 init_rss_vec(rss);
1007
c74df32c 1008 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1009 if (!dst_pte) {
1010 ret = -ENOMEM;
1011 goto out;
1012 }
ece0e2b6 1013 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1014 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1015 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1016 orig_src_pte = src_pte;
1017 orig_dst_pte = dst_pte;
6606c3e0 1018 arch_enter_lazy_mmu_mode();
1da177e4 1019
1da177e4
LT
1020 do {
1021 /*
1022 * We are holding two locks at this point - either of them
1023 * could generate latencies in another task on another CPU.
1024 */
e040f218
HD
1025 if (progress >= 32) {
1026 progress = 0;
1027 if (need_resched() ||
95c354fe 1028 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1029 break;
1030 }
1da177e4
LT
1031 if (pte_none(*src_pte)) {
1032 progress++;
1033 continue;
1034 }
79a1971c 1035 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1036 ret = copy_nonpresent_pte(dst_mm, src_mm,
1037 dst_pte, src_pte,
1038 dst_vma, src_vma,
1039 addr, rss);
1040 if (ret == -EIO) {
1041 entry = pte_to_swp_entry(*src_pte);
79a1971c 1042 break;
b756a3b5
AP
1043 } else if (ret == -EBUSY) {
1044 break;
1045 } else if (!ret) {
1046 progress += 8;
1047 continue;
9a5cc85c 1048 }
b756a3b5
AP
1049
1050 /*
1051 * Device exclusive entry restored, continue by copying
1052 * the now present pte.
1053 */
1054 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1055 }
70e806e4 1056 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1057 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1058 addr, rss, &prealloc);
70e806e4
PX
1059 /*
1060 * If we need a pre-allocated page for this pte, drop the
1061 * locks, allocate, and try again.
1062 */
1063 if (unlikely(ret == -EAGAIN))
1064 break;
1065 if (unlikely(prealloc)) {
1066 /*
1067 * pre-alloc page cannot be reused by next time so as
1068 * to strictly follow mempolicy (e.g., alloc_page_vma()
1069 * will allocate page according to address). This
1070 * could only happen if one pinned pte changed.
1071 */
1072 put_page(prealloc);
1073 prealloc = NULL;
1074 }
1da177e4
LT
1075 progress += 8;
1076 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1077
6606c3e0 1078 arch_leave_lazy_mmu_mode();
c74df32c 1079 spin_unlock(src_ptl);
ece0e2b6 1080 pte_unmap(orig_src_pte);
d559db08 1081 add_mm_rss_vec(dst_mm, rss);
c36987e2 1082 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1083 cond_resched();
570a335b 1084
9a5cc85c
AP
1085 if (ret == -EIO) {
1086 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1087 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1088 ret = -ENOMEM;
1089 goto out;
1090 }
1091 entry.val = 0;
b756a3b5
AP
1092 } else if (ret == -EBUSY) {
1093 goto out;
9a5cc85c 1094 } else if (ret == -EAGAIN) {
c78f4636 1095 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1096 if (!prealloc)
570a335b 1097 return -ENOMEM;
9a5cc85c
AP
1098 } else if (ret) {
1099 VM_WARN_ON_ONCE(1);
570a335b 1100 }
9a5cc85c
AP
1101
1102 /* We've captured and resolved the error. Reset, try again. */
1103 ret = 0;
1104
1da177e4
LT
1105 if (addr != end)
1106 goto again;
70e806e4
PX
1107out:
1108 if (unlikely(prealloc))
1109 put_page(prealloc);
1110 return ret;
1da177e4
LT
1111}
1112
c78f4636
PX
1113static inline int
1114copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1115 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1116 unsigned long end)
1da177e4 1117{
c78f4636
PX
1118 struct mm_struct *dst_mm = dst_vma->vm_mm;
1119 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1120 pmd_t *src_pmd, *dst_pmd;
1121 unsigned long next;
1122
1123 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1124 if (!dst_pmd)
1125 return -ENOMEM;
1126 src_pmd = pmd_offset(src_pud, addr);
1127 do {
1128 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1129 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1130 || pmd_devmap(*src_pmd)) {
71e3aac0 1131 int err;
c78f4636 1132 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1133 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1134 addr, dst_vma, src_vma);
71e3aac0
AA
1135 if (err == -ENOMEM)
1136 return -ENOMEM;
1137 if (!err)
1138 continue;
1139 /* fall through */
1140 }
1da177e4
LT
1141 if (pmd_none_or_clear_bad(src_pmd))
1142 continue;
c78f4636
PX
1143 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1144 addr, next))
1da177e4
LT
1145 return -ENOMEM;
1146 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1147 return 0;
1148}
1149
c78f4636
PX
1150static inline int
1151copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1152 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1153 unsigned long end)
1da177e4 1154{
c78f4636
PX
1155 struct mm_struct *dst_mm = dst_vma->vm_mm;
1156 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1157 pud_t *src_pud, *dst_pud;
1158 unsigned long next;
1159
c2febafc 1160 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1161 if (!dst_pud)
1162 return -ENOMEM;
c2febafc 1163 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1164 do {
1165 next = pud_addr_end(addr, end);
a00cc7d9
MW
1166 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1167 int err;
1168
c78f4636 1169 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1170 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1171 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1172 if (err == -ENOMEM)
1173 return -ENOMEM;
1174 if (!err)
1175 continue;
1176 /* fall through */
1177 }
1da177e4
LT
1178 if (pud_none_or_clear_bad(src_pud))
1179 continue;
c78f4636
PX
1180 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1181 addr, next))
1da177e4
LT
1182 return -ENOMEM;
1183 } while (dst_pud++, src_pud++, addr = next, addr != end);
1184 return 0;
1185}
1186
c78f4636
PX
1187static inline int
1188copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1189 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1190 unsigned long end)
c2febafc 1191{
c78f4636 1192 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1193 p4d_t *src_p4d, *dst_p4d;
1194 unsigned long next;
1195
1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 if (!dst_p4d)
1198 return -ENOMEM;
1199 src_p4d = p4d_offset(src_pgd, addr);
1200 do {
1201 next = p4d_addr_end(addr, end);
1202 if (p4d_none_or_clear_bad(src_p4d))
1203 continue;
c78f4636
PX
1204 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1205 addr, next))
c2febafc
KS
1206 return -ENOMEM;
1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 return 0;
1209}
1210
c78f4636
PX
1211int
1212copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1213{
1214 pgd_t *src_pgd, *dst_pgd;
1215 unsigned long next;
c78f4636
PX
1216 unsigned long addr = src_vma->vm_start;
1217 unsigned long end = src_vma->vm_end;
1218 struct mm_struct *dst_mm = dst_vma->vm_mm;
1219 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1220 struct mmu_notifier_range range;
2ec74c3e 1221 bool is_cow;
cddb8a5c 1222 int ret;
1da177e4 1223
d992895b
NP
1224 /*
1225 * Don't copy ptes where a page fault will fill them correctly.
1226 * Fork becomes much lighter when there are big shared or private
1227 * readonly mappings. The tradeoff is that copy_page_range is more
1228 * efficient than faulting.
1229 */
c78f4636
PX
1230 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231 !src_vma->anon_vma)
0661a336 1232 return 0;
d992895b 1233
c78f4636
PX
1234 if (is_vm_hugetlb_page(src_vma))
1235 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1236
c78f4636 1237 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1238 /*
1239 * We do not free on error cases below as remove_vma
1240 * gets called on error from higher level routine
1241 */
c78f4636 1242 ret = track_pfn_copy(src_vma);
2ab64037 1243 if (ret)
1244 return ret;
1245 }
1246
cddb8a5c
AA
1247 /*
1248 * We need to invalidate the secondary MMU mappings only when
1249 * there could be a permission downgrade on the ptes of the
1250 * parent mm. And a permission downgrade will only happen if
1251 * is_cow_mapping() returns true.
1252 */
c78f4636 1253 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1254
1255 if (is_cow) {
7269f999 1256 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1257 0, src_vma, src_mm, addr, end);
ac46d4f3 1258 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1259 /*
1260 * Disabling preemption is not needed for the write side, as
1261 * the read side doesn't spin, but goes to the mmap_lock.
1262 *
1263 * Use the raw variant of the seqcount_t write API to avoid
1264 * lockdep complaining about preemptibility.
1265 */
1266 mmap_assert_write_locked(src_mm);
1267 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1268 }
cddb8a5c
AA
1269
1270 ret = 0;
1da177e4
LT
1271 dst_pgd = pgd_offset(dst_mm, addr);
1272 src_pgd = pgd_offset(src_mm, addr);
1273 do {
1274 next = pgd_addr_end(addr, end);
1275 if (pgd_none_or_clear_bad(src_pgd))
1276 continue;
c78f4636
PX
1277 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1278 addr, next))) {
cddb8a5c
AA
1279 ret = -ENOMEM;
1280 break;
1281 }
1da177e4 1282 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1283
57efa1fe
JG
1284 if (is_cow) {
1285 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1286 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1287 }
cddb8a5c 1288 return ret;
1da177e4
LT
1289}
1290
3506659e
MWO
1291/*
1292 * Parameter block passed down to zap_pte_range in exceptional cases.
1293 */
1294struct zap_details {
3506659e 1295 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1296 bool even_cows; /* Zap COWed private pages too? */
3506659e
MWO
1297};
1298
5abfd71d
PX
1299/* Whether we should zap all COWed (private) pages too */
1300static inline bool should_zap_cows(struct zap_details *details)
1301{
1302 /* By default, zap all pages */
1303 if (!details)
1304 return true;
1305
1306 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1307 return details->even_cows;
5abfd71d
PX
1308}
1309
2e148f1e 1310/* Decides whether we should zap this page with the page pointer specified */
254ab940 1311static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1312{
5abfd71d
PX
1313 /* If we can make a decision without *page.. */
1314 if (should_zap_cows(details))
254ab940 1315 return true;
5abfd71d
PX
1316
1317 /* E.g. the caller passes NULL for the case of a zero page */
1318 if (!page)
254ab940 1319 return true;
3506659e 1320
2e148f1e
PX
1321 /* Otherwise we should only zap non-anon pages */
1322 return !PageAnon(page);
3506659e
MWO
1323}
1324
51c6f666 1325static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1326 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1327 unsigned long addr, unsigned long end,
97a89413 1328 struct zap_details *details)
1da177e4 1329{
b5810039 1330 struct mm_struct *mm = tlb->mm;
d16dfc55 1331 int force_flush = 0;
d559db08 1332 int rss[NR_MM_COUNTERS];
97a89413 1333 spinlock_t *ptl;
5f1a1907 1334 pte_t *start_pte;
97a89413 1335 pte_t *pte;
8a5f14a2 1336 swp_entry_t entry;
d559db08 1337
ed6a7935 1338 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1339again:
e303297e 1340 init_rss_vec(rss);
5f1a1907
SR
1341 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1342 pte = start_pte;
3ea27719 1343 flush_tlb_batched_pending(mm);
6606c3e0 1344 arch_enter_lazy_mmu_mode();
1da177e4
LT
1345 do {
1346 pte_t ptent = *pte;
8018db85
PX
1347 struct page *page;
1348
166f61b9 1349 if (pte_none(ptent))
1da177e4 1350 continue;
6f5e6b9e 1351
7b167b68
MK
1352 if (need_resched())
1353 break;
1354
1da177e4 1355 if (pte_present(ptent)) {
25b2995a 1356 page = vm_normal_page(vma, addr, ptent);
254ab940 1357 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1358 continue;
b5810039 1359 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1360 tlb->fullmm);
1da177e4
LT
1361 tlb_remove_tlb_entry(tlb, pte, addr);
1362 if (unlikely(!page))
1363 continue;
eca56ff9
JM
1364
1365 if (!PageAnon(page)) {
1cf35d47
LT
1366 if (pte_dirty(ptent)) {
1367 force_flush = 1;
6237bcd9 1368 set_page_dirty(page);
1cf35d47 1369 }
4917e5d0 1370 if (pte_young(ptent) &&
64363aad 1371 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1372 mark_page_accessed(page);
6237bcd9 1373 }
eca56ff9 1374 rss[mm_counter(page)]--;
cea86fe2 1375 page_remove_rmap(page, vma, false);
3dc14741
HD
1376 if (unlikely(page_mapcount(page) < 0))
1377 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1378 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1379 force_flush = 1;
ce9ec37b 1380 addr += PAGE_SIZE;
d16dfc55 1381 break;
1cf35d47 1382 }
1da177e4
LT
1383 continue;
1384 }
5042db43
JG
1385
1386 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1387 if (is_device_private_entry(entry) ||
1388 is_device_exclusive_entry(entry)) {
8018db85 1389 page = pfn_swap_entry_to_page(entry);
254ab940 1390 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1391 continue;
5042db43 1392 rss[mm_counter(page)]--;
b756a3b5 1393 if (is_device_private_entry(entry))
cea86fe2 1394 page_remove_rmap(page, vma, false);
5042db43 1395 put_page(page);
8018db85 1396 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1397 /* Genuine swap entry, hence a private anon page */
1398 if (!should_zap_cows(details))
1399 continue;
8a5f14a2 1400 rss[MM_SWAPENTS]--;
8018db85
PX
1401 if (unlikely(!free_swap_and_cache(entry)))
1402 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1403 } else if (is_migration_entry(entry)) {
af5cdaf8 1404 page = pfn_swap_entry_to_page(entry);
254ab940 1405 if (!should_zap_page(details, page))
5abfd71d 1406 continue;
eca56ff9 1407 rss[mm_counter(page)]--;
5abfd71d
PX
1408 } else if (is_hwpoison_entry(entry)) {
1409 if (!should_zap_cows(details))
1410 continue;
1411 } else {
1412 /* We should have covered all the swap entry types */
1413 WARN_ON_ONCE(1);
b084d435 1414 }
9888a1ca 1415 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1416 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1417
d559db08 1418 add_mm_rss_vec(mm, rss);
6606c3e0 1419 arch_leave_lazy_mmu_mode();
51c6f666 1420
1cf35d47 1421 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1422 if (force_flush)
1cf35d47 1423 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1424 pte_unmap_unlock(start_pte, ptl);
1425
1426 /*
1427 * If we forced a TLB flush (either due to running out of
1428 * batch buffers or because we needed to flush dirty TLB
1429 * entries before releasing the ptl), free the batched
1430 * memory too. Restart if we didn't do everything.
1431 */
1432 if (force_flush) {
1433 force_flush = 0;
fa0aafb8 1434 tlb_flush_mmu(tlb);
7b167b68
MK
1435 }
1436
1437 if (addr != end) {
1438 cond_resched();
1439 goto again;
d16dfc55
PZ
1440 }
1441
51c6f666 1442 return addr;
1da177e4
LT
1443}
1444
51c6f666 1445static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1446 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1447 unsigned long addr, unsigned long end,
97a89413 1448 struct zap_details *details)
1da177e4
LT
1449{
1450 pmd_t *pmd;
1451 unsigned long next;
1452
1453 pmd = pmd_offset(pud, addr);
1454 do {
1455 next = pmd_addr_end(addr, end);
84c3fc4e 1456 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1457 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1458 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1459 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1460 goto next;
71e3aac0 1461 /* fall through */
3506659e
MWO
1462 } else if (details && details->single_folio &&
1463 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1464 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1465 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1466 /*
1467 * Take and drop THP pmd lock so that we cannot return
1468 * prematurely, while zap_huge_pmd() has cleared *pmd,
1469 * but not yet decremented compound_mapcount().
1470 */
1471 spin_unlock(ptl);
71e3aac0 1472 }
22061a1f 1473
1a5a9906
AA
1474 /*
1475 * Here there can be other concurrent MADV_DONTNEED or
1476 * trans huge page faults running, and if the pmd is
1477 * none or trans huge it can change under us. This is
c1e8d7c6 1478 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1479 * mode.
1480 */
1481 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1482 goto next;
97a89413 1483 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1484next:
97a89413
PZ
1485 cond_resched();
1486 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1487
1488 return addr;
1da177e4
LT
1489}
1490
51c6f666 1491static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1492 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1493 unsigned long addr, unsigned long end,
97a89413 1494 struct zap_details *details)
1da177e4
LT
1495{
1496 pud_t *pud;
1497 unsigned long next;
1498
c2febafc 1499 pud = pud_offset(p4d, addr);
1da177e4
LT
1500 do {
1501 next = pud_addr_end(addr, end);
a00cc7d9
MW
1502 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1503 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1504 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1505 split_huge_pud(vma, pud, addr);
1506 } else if (zap_huge_pud(tlb, vma, pud, addr))
1507 goto next;
1508 /* fall through */
1509 }
97a89413 1510 if (pud_none_or_clear_bad(pud))
1da177e4 1511 continue;
97a89413 1512 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1513next:
1514 cond_resched();
97a89413 1515 } while (pud++, addr = next, addr != end);
51c6f666
RH
1516
1517 return addr;
1da177e4
LT
1518}
1519
c2febafc
KS
1520static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1521 struct vm_area_struct *vma, pgd_t *pgd,
1522 unsigned long addr, unsigned long end,
1523 struct zap_details *details)
1524{
1525 p4d_t *p4d;
1526 unsigned long next;
1527
1528 p4d = p4d_offset(pgd, addr);
1529 do {
1530 next = p4d_addr_end(addr, end);
1531 if (p4d_none_or_clear_bad(p4d))
1532 continue;
1533 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1534 } while (p4d++, addr = next, addr != end);
1535
1536 return addr;
1537}
1538
aac45363 1539void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1540 struct vm_area_struct *vma,
1541 unsigned long addr, unsigned long end,
1542 struct zap_details *details)
1da177e4
LT
1543{
1544 pgd_t *pgd;
1545 unsigned long next;
1546
1da177e4
LT
1547 BUG_ON(addr >= end);
1548 tlb_start_vma(tlb, vma);
1549 pgd = pgd_offset(vma->vm_mm, addr);
1550 do {
1551 next = pgd_addr_end(addr, end);
97a89413 1552 if (pgd_none_or_clear_bad(pgd))
1da177e4 1553 continue;
c2febafc 1554 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1555 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1556 tlb_end_vma(tlb, vma);
1557}
51c6f666 1558
f5cc4eef
AV
1559
1560static void unmap_single_vma(struct mmu_gather *tlb,
1561 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1562 unsigned long end_addr,
f5cc4eef
AV
1563 struct zap_details *details)
1564{
1565 unsigned long start = max(vma->vm_start, start_addr);
1566 unsigned long end;
1567
1568 if (start >= vma->vm_end)
1569 return;
1570 end = min(vma->vm_end, end_addr);
1571 if (end <= vma->vm_start)
1572 return;
1573
cbc91f71
SD
1574 if (vma->vm_file)
1575 uprobe_munmap(vma, start, end);
1576
b3b9c293 1577 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1578 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1579
1580 if (start != end) {
1581 if (unlikely(is_vm_hugetlb_page(vma))) {
1582 /*
1583 * It is undesirable to test vma->vm_file as it
1584 * should be non-null for valid hugetlb area.
1585 * However, vm_file will be NULL in the error
7aa6b4ad 1586 * cleanup path of mmap_region. When
f5cc4eef 1587 * hugetlbfs ->mmap method fails,
7aa6b4ad 1588 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1589 * before calling this function to clean up.
1590 * Since no pte has actually been setup, it is
1591 * safe to do nothing in this case.
1592 */
24669e58 1593 if (vma->vm_file) {
83cde9e8 1594 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1595 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1596 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1597 }
f5cc4eef
AV
1598 } else
1599 unmap_page_range(tlb, vma, start, end, details);
1600 }
1da177e4
LT
1601}
1602
1da177e4
LT
1603/**
1604 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1605 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1606 * @vma: the starting vma
1607 * @start_addr: virtual address at which to start unmapping
1608 * @end_addr: virtual address at which to end unmapping
1da177e4 1609 *
508034a3 1610 * Unmap all pages in the vma list.
1da177e4 1611 *
1da177e4
LT
1612 * Only addresses between `start' and `end' will be unmapped.
1613 *
1614 * The VMA list must be sorted in ascending virtual address order.
1615 *
1616 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1617 * range after unmap_vmas() returns. So the only responsibility here is to
1618 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1619 * drops the lock and schedules.
1620 */
6e8bb019 1621void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1622 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1623 unsigned long end_addr)
1da177e4 1624{
ac46d4f3 1625 struct mmu_notifier_range range;
1da177e4 1626
6f4f13e8
JG
1627 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1628 start_addr, end_addr);
ac46d4f3 1629 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1630 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1631 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1632 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1633}
1634
1635/**
1636 * zap_page_range - remove user pages in a given range
1637 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1638 * @start: starting address of pages to zap
1da177e4 1639 * @size: number of bytes to zap
f5cc4eef
AV
1640 *
1641 * Caller must protect the VMA list
1da177e4 1642 */
7e027b14 1643void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1644 unsigned long size)
1da177e4 1645{
ac46d4f3 1646 struct mmu_notifier_range range;
d16dfc55 1647 struct mmu_gather tlb;
1da177e4 1648
1da177e4 1649 lru_add_drain();
7269f999 1650 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1651 start, start + size);
a72afd87 1652 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1653 update_hiwater_rss(vma->vm_mm);
1654 mmu_notifier_invalidate_range_start(&range);
1655 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1656 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1657 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1658 tlb_finish_mmu(&tlb);
1da177e4
LT
1659}
1660
f5cc4eef
AV
1661/**
1662 * zap_page_range_single - remove user pages in a given range
1663 * @vma: vm_area_struct holding the applicable pages
1664 * @address: starting address of pages to zap
1665 * @size: number of bytes to zap
8a5f14a2 1666 * @details: details of shared cache invalidation
f5cc4eef
AV
1667 *
1668 * The range must fit into one VMA.
1da177e4 1669 */
f5cc4eef 1670static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1671 unsigned long size, struct zap_details *details)
1672{
ac46d4f3 1673 struct mmu_notifier_range range;
d16dfc55 1674 struct mmu_gather tlb;
1da177e4 1675
1da177e4 1676 lru_add_drain();
7269f999 1677 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1678 address, address + size);
a72afd87 1679 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1680 update_hiwater_rss(vma->vm_mm);
1681 mmu_notifier_invalidate_range_start(&range);
1682 unmap_single_vma(&tlb, vma, address, range.end, details);
1683 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1684 tlb_finish_mmu(&tlb);
1da177e4
LT
1685}
1686
c627f9cc
JS
1687/**
1688 * zap_vma_ptes - remove ptes mapping the vma
1689 * @vma: vm_area_struct holding ptes to be zapped
1690 * @address: starting address of pages to zap
1691 * @size: number of bytes to zap
1692 *
1693 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1694 *
1695 * The entire address range must be fully contained within the vma.
1696 *
c627f9cc 1697 */
27d036e3 1698void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1699 unsigned long size)
1700{
88a35912 1701 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1702 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1703 return;
1704
f5cc4eef 1705 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1706}
1707EXPORT_SYMBOL_GPL(zap_vma_ptes);
1708
8cd3984d 1709static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1710{
c2febafc
KS
1711 pgd_t *pgd;
1712 p4d_t *p4d;
1713 pud_t *pud;
1714 pmd_t *pmd;
1715
1716 pgd = pgd_offset(mm, addr);
1717 p4d = p4d_alloc(mm, pgd, addr);
1718 if (!p4d)
1719 return NULL;
1720 pud = pud_alloc(mm, p4d, addr);
1721 if (!pud)
1722 return NULL;
1723 pmd = pmd_alloc(mm, pud, addr);
1724 if (!pmd)
1725 return NULL;
1726
1727 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1728 return pmd;
1729}
1730
1731pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1732 spinlock_t **ptl)
1733{
1734 pmd_t *pmd = walk_to_pmd(mm, addr);
1735
1736 if (!pmd)
1737 return NULL;
c2febafc 1738 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1739}
1740
8efd6f5b
AR
1741static int validate_page_before_insert(struct page *page)
1742{
1743 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1744 return -EINVAL;
1745 flush_dcache_page(page);
1746 return 0;
1747}
1748
cea86fe2 1749static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1750 unsigned long addr, struct page *page, pgprot_t prot)
1751{
1752 if (!pte_none(*pte))
1753 return -EBUSY;
1754 /* Ok, finally just insert the thing.. */
1755 get_page(page);
cea86fe2
HD
1756 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1757 page_add_file_rmap(page, vma, false);
1758 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1759 return 0;
1760}
1761
238f58d8
LT
1762/*
1763 * This is the old fallback for page remapping.
1764 *
1765 * For historical reasons, it only allows reserved pages. Only
1766 * old drivers should use this, and they needed to mark their
1767 * pages reserved for the old functions anyway.
1768 */
423bad60
NP
1769static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1770 struct page *page, pgprot_t prot)
238f58d8
LT
1771{
1772 int retval;
c9cfcddf 1773 pte_t *pte;
8a9f3ccd
BS
1774 spinlock_t *ptl;
1775
8efd6f5b
AR
1776 retval = validate_page_before_insert(page);
1777 if (retval)
5b4e655e 1778 goto out;
238f58d8 1779 retval = -ENOMEM;
cea86fe2 1780 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1781 if (!pte)
5b4e655e 1782 goto out;
cea86fe2 1783 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1784 pte_unmap_unlock(pte, ptl);
1785out:
1786 return retval;
1787}
1788
8cd3984d 1789#ifdef pte_index
cea86fe2 1790static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1791 unsigned long addr, struct page *page, pgprot_t prot)
1792{
1793 int err;
1794
1795 if (!page_count(page))
1796 return -EINVAL;
1797 err = validate_page_before_insert(page);
7f70c2a6
AR
1798 if (err)
1799 return err;
cea86fe2 1800 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1801}
1802
1803/* insert_pages() amortizes the cost of spinlock operations
1804 * when inserting pages in a loop. Arch *must* define pte_index.
1805 */
1806static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1807 struct page **pages, unsigned long *num, pgprot_t prot)
1808{
1809 pmd_t *pmd = NULL;
7f70c2a6
AR
1810 pte_t *start_pte, *pte;
1811 spinlock_t *pte_lock;
8cd3984d
AR
1812 struct mm_struct *const mm = vma->vm_mm;
1813 unsigned long curr_page_idx = 0;
1814 unsigned long remaining_pages_total = *num;
1815 unsigned long pages_to_write_in_pmd;
1816 int ret;
1817more:
1818 ret = -EFAULT;
1819 pmd = walk_to_pmd(mm, addr);
1820 if (!pmd)
1821 goto out;
1822
1823 pages_to_write_in_pmd = min_t(unsigned long,
1824 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1825
1826 /* Allocate the PTE if necessary; takes PMD lock once only. */
1827 ret = -ENOMEM;
1828 if (pte_alloc(mm, pmd))
1829 goto out;
8cd3984d
AR
1830
1831 while (pages_to_write_in_pmd) {
1832 int pte_idx = 0;
1833 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1834
7f70c2a6
AR
1835 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1836 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1837 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1838 addr, pages[curr_page_idx], prot);
1839 if (unlikely(err)) {
7f70c2a6 1840 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1841 ret = err;
1842 remaining_pages_total -= pte_idx;
1843 goto out;
1844 }
1845 addr += PAGE_SIZE;
1846 ++curr_page_idx;
1847 }
7f70c2a6 1848 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1849 pages_to_write_in_pmd -= batch_size;
1850 remaining_pages_total -= batch_size;
1851 }
1852 if (remaining_pages_total)
1853 goto more;
1854 ret = 0;
1855out:
1856 *num = remaining_pages_total;
1857 return ret;
1858}
1859#endif /* ifdef pte_index */
1860
1861/**
1862 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1863 * @vma: user vma to map to
1864 * @addr: target start user address of these pages
1865 * @pages: source kernel pages
1866 * @num: in: number of pages to map. out: number of pages that were *not*
1867 * mapped. (0 means all pages were successfully mapped).
1868 *
1869 * Preferred over vm_insert_page() when inserting multiple pages.
1870 *
1871 * In case of error, we may have mapped a subset of the provided
1872 * pages. It is the caller's responsibility to account for this case.
1873 *
1874 * The same restrictions apply as in vm_insert_page().
1875 */
1876int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1877 struct page **pages, unsigned long *num)
1878{
1879#ifdef pte_index
1880 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1881
1882 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1883 return -EFAULT;
1884 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1885 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1886 BUG_ON(vma->vm_flags & VM_PFNMAP);
1887 vma->vm_flags |= VM_MIXEDMAP;
1888 }
1889 /* Defer page refcount checking till we're about to map that page. */
1890 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1891#else
1892 unsigned long idx = 0, pgcount = *num;
45779b03 1893 int err = -EINVAL;
8cd3984d
AR
1894
1895 for (; idx < pgcount; ++idx) {
1896 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1897 if (err)
1898 break;
1899 }
1900 *num = pgcount - idx;
1901 return err;
1902#endif /* ifdef pte_index */
1903}
1904EXPORT_SYMBOL(vm_insert_pages);
1905
bfa5bf6d
REB
1906/**
1907 * vm_insert_page - insert single page into user vma
1908 * @vma: user vma to map to
1909 * @addr: target user address of this page
1910 * @page: source kernel page
1911 *
a145dd41
LT
1912 * This allows drivers to insert individual pages they've allocated
1913 * into a user vma.
1914 *
1915 * The page has to be a nice clean _individual_ kernel allocation.
1916 * If you allocate a compound page, you need to have marked it as
1917 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1918 * (see split_page()).
a145dd41
LT
1919 *
1920 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1921 * took an arbitrary page protection parameter. This doesn't allow
1922 * that. Your vma protection will have to be set up correctly, which
1923 * means that if you want a shared writable mapping, you'd better
1924 * ask for a shared writable mapping!
1925 *
1926 * The page does not need to be reserved.
4b6e1e37
KK
1927 *
1928 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1929 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1930 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1931 * function from other places, for example from page-fault handler.
a862f68a
MR
1932 *
1933 * Return: %0 on success, negative error code otherwise.
a145dd41 1934 */
423bad60
NP
1935int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1936 struct page *page)
a145dd41
LT
1937{
1938 if (addr < vma->vm_start || addr >= vma->vm_end)
1939 return -EFAULT;
1940 if (!page_count(page))
1941 return -EINVAL;
4b6e1e37 1942 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1943 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1944 BUG_ON(vma->vm_flags & VM_PFNMAP);
1945 vma->vm_flags |= VM_MIXEDMAP;
1946 }
423bad60 1947 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1948}
e3c3374f 1949EXPORT_SYMBOL(vm_insert_page);
a145dd41 1950
a667d745
SJ
1951/*
1952 * __vm_map_pages - maps range of kernel pages into user vma
1953 * @vma: user vma to map to
1954 * @pages: pointer to array of source kernel pages
1955 * @num: number of pages in page array
1956 * @offset: user's requested vm_pgoff
1957 *
1958 * This allows drivers to map range of kernel pages into a user vma.
1959 *
1960 * Return: 0 on success and error code otherwise.
1961 */
1962static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1963 unsigned long num, unsigned long offset)
1964{
1965 unsigned long count = vma_pages(vma);
1966 unsigned long uaddr = vma->vm_start;
1967 int ret, i;
1968
1969 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1970 if (offset >= num)
a667d745
SJ
1971 return -ENXIO;
1972
1973 /* Fail if the user requested size exceeds available object size */
1974 if (count > num - offset)
1975 return -ENXIO;
1976
1977 for (i = 0; i < count; i++) {
1978 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1979 if (ret < 0)
1980 return ret;
1981 uaddr += PAGE_SIZE;
1982 }
1983
1984 return 0;
1985}
1986
1987/**
1988 * vm_map_pages - maps range of kernel pages starts with non zero offset
1989 * @vma: user vma to map to
1990 * @pages: pointer to array of source kernel pages
1991 * @num: number of pages in page array
1992 *
1993 * Maps an object consisting of @num pages, catering for the user's
1994 * requested vm_pgoff
1995 *
1996 * If we fail to insert any page into the vma, the function will return
1997 * immediately leaving any previously inserted pages present. Callers
1998 * from the mmap handler may immediately return the error as their caller
1999 * will destroy the vma, removing any successfully inserted pages. Other
2000 * callers should make their own arrangements for calling unmap_region().
2001 *
2002 * Context: Process context. Called by mmap handlers.
2003 * Return: 0 on success and error code otherwise.
2004 */
2005int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2006 unsigned long num)
2007{
2008 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2009}
2010EXPORT_SYMBOL(vm_map_pages);
2011
2012/**
2013 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2014 * @vma: user vma to map to
2015 * @pages: pointer to array of source kernel pages
2016 * @num: number of pages in page array
2017 *
2018 * Similar to vm_map_pages(), except that it explicitly sets the offset
2019 * to 0. This function is intended for the drivers that did not consider
2020 * vm_pgoff.
2021 *
2022 * Context: Process context. Called by mmap handlers.
2023 * Return: 0 on success and error code otherwise.
2024 */
2025int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2026 unsigned long num)
2027{
2028 return __vm_map_pages(vma, pages, num, 0);
2029}
2030EXPORT_SYMBOL(vm_map_pages_zero);
2031
9b5a8e00 2032static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2033 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2034{
2035 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2036 pte_t *pte, entry;
2037 spinlock_t *ptl;
2038
423bad60
NP
2039 pte = get_locked_pte(mm, addr, &ptl);
2040 if (!pte)
9b5a8e00 2041 return VM_FAULT_OOM;
b2770da6
RZ
2042 if (!pte_none(*pte)) {
2043 if (mkwrite) {
2044 /*
2045 * For read faults on private mappings the PFN passed
2046 * in may not match the PFN we have mapped if the
2047 * mapped PFN is a writeable COW page. In the mkwrite
2048 * case we are creating a writable PTE for a shared
f2c57d91
JK
2049 * mapping and we expect the PFNs to match. If they
2050 * don't match, we are likely racing with block
2051 * allocation and mapping invalidation so just skip the
2052 * update.
b2770da6 2053 */
f2c57d91
JK
2054 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2055 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2056 goto out_unlock;
f2c57d91 2057 }
cae85cb8
JK
2058 entry = pte_mkyoung(*pte);
2059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2061 update_mmu_cache(vma, addr, pte);
2062 }
2063 goto out_unlock;
b2770da6 2064 }
423bad60
NP
2065
2066 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2067 if (pfn_t_devmap(pfn))
2068 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2069 else
2070 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2071
b2770da6
RZ
2072 if (mkwrite) {
2073 entry = pte_mkyoung(entry);
2074 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075 }
2076
423bad60 2077 set_pte_at(mm, addr, pte, entry);
4b3073e1 2078 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2079
423bad60
NP
2080out_unlock:
2081 pte_unmap_unlock(pte, ptl);
9b5a8e00 2082 return VM_FAULT_NOPAGE;
423bad60
NP
2083}
2084
f5e6d1d5
MW
2085/**
2086 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2087 * @vma: user vma to map to
2088 * @addr: target user address of this page
2089 * @pfn: source kernel pfn
2090 * @pgprot: pgprot flags for the inserted page
2091 *
a1a0aea5 2092 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2093 * to override pgprot on a per-page basis.
2094 *
2095 * This only makes sense for IO mappings, and it makes no sense for
2096 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2097 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2098 * impractical.
2099 *
574c5b3d
TH
2100 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2101 * a value of @pgprot different from that of @vma->vm_page_prot.
2102 *
ae2b01f3 2103 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2104 * Return: vm_fault_t value.
2105 */
2106vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2107 unsigned long pfn, pgprot_t pgprot)
2108{
6d958546
MW
2109 /*
2110 * Technically, architectures with pte_special can avoid all these
2111 * restrictions (same for remap_pfn_range). However we would like
2112 * consistency in testing and feature parity among all, so we should
2113 * try to keep these invariants in place for everybody.
2114 */
2115 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2116 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2117 (VM_PFNMAP|VM_MIXEDMAP));
2118 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2119 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2120
2121 if (addr < vma->vm_start || addr >= vma->vm_end)
2122 return VM_FAULT_SIGBUS;
2123
2124 if (!pfn_modify_allowed(pfn, pgprot))
2125 return VM_FAULT_SIGBUS;
2126
2127 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2128
9b5a8e00 2129 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2130 false);
f5e6d1d5
MW
2131}
2132EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2133
ae2b01f3
MW
2134/**
2135 * vmf_insert_pfn - insert single pfn into user vma
2136 * @vma: user vma to map to
2137 * @addr: target user address of this page
2138 * @pfn: source kernel pfn
2139 *
2140 * Similar to vm_insert_page, this allows drivers to insert individual pages
2141 * they've allocated into a user vma. Same comments apply.
2142 *
2143 * This function should only be called from a vm_ops->fault handler, and
2144 * in that case the handler should return the result of this function.
2145 *
2146 * vma cannot be a COW mapping.
2147 *
2148 * As this is called only for pages that do not currently exist, we
2149 * do not need to flush old virtual caches or the TLB.
2150 *
2151 * Context: Process context. May allocate using %GFP_KERNEL.
2152 * Return: vm_fault_t value.
2153 */
2154vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 unsigned long pfn)
2156{
2157 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2158}
2159EXPORT_SYMBOL(vmf_insert_pfn);
2160
785a3fab
DW
2161static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2162{
2163 /* these checks mirror the abort conditions in vm_normal_page */
2164 if (vma->vm_flags & VM_MIXEDMAP)
2165 return true;
2166 if (pfn_t_devmap(pfn))
2167 return true;
2168 if (pfn_t_special(pfn))
2169 return true;
2170 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2171 return true;
2172 return false;
2173}
2174
79f3aa5b 2175static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2176 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2177 bool mkwrite)
423bad60 2178{
79f3aa5b 2179 int err;
87744ab3 2180
785a3fab 2181 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2182
423bad60 2183 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2184 return VM_FAULT_SIGBUS;
308a047c
BP
2185
2186 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2187
42e4089c 2188 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2189 return VM_FAULT_SIGBUS;
42e4089c 2190
423bad60
NP
2191 /*
2192 * If we don't have pte special, then we have to use the pfn_valid()
2193 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2194 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2195 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2196 * without pte special, it would there be refcounted as a normal page.
423bad60 2197 */
00b3a331
LD
2198 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2199 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2200 struct page *page;
2201
03fc2da6
DW
2202 /*
2203 * At this point we are committed to insert_page()
2204 * regardless of whether the caller specified flags that
2205 * result in pfn_t_has_page() == false.
2206 */
2207 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2208 err = insert_page(vma, addr, page, pgprot);
2209 } else {
9b5a8e00 2210 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2211 }
b2770da6 2212
5d747637
MW
2213 if (err == -ENOMEM)
2214 return VM_FAULT_OOM;
2215 if (err < 0 && err != -EBUSY)
2216 return VM_FAULT_SIGBUS;
2217
2218 return VM_FAULT_NOPAGE;
e0dc0d8f 2219}
79f3aa5b 2220
574c5b3d
TH
2221/**
2222 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2223 * @vma: user vma to map to
2224 * @addr: target user address of this page
2225 * @pfn: source kernel pfn
2226 * @pgprot: pgprot flags for the inserted page
2227 *
a1a0aea5 2228 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2229 * to override pgprot on a per-page basis.
2230 *
2231 * Typically this function should be used by drivers to set caching- and
2232 * encryption bits different than those of @vma->vm_page_prot, because
2233 * the caching- or encryption mode may not be known at mmap() time.
2234 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2235 * to set caching and encryption bits for those vmas (except for COW pages).
2236 * This is ensured by core vm only modifying these page table entries using
2237 * functions that don't touch caching- or encryption bits, using pte_modify()
2238 * if needed. (See for example mprotect()).
2239 * Also when new page-table entries are created, this is only done using the
2240 * fault() callback, and never using the value of vma->vm_page_prot,
2241 * except for page-table entries that point to anonymous pages as the result
2242 * of COW.
2243 *
2244 * Context: Process context. May allocate using %GFP_KERNEL.
2245 * Return: vm_fault_t value.
2246 */
2247vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2248 pfn_t pfn, pgprot_t pgprot)
2249{
2250 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2251}
5379e4dd 2252EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2253
79f3aa5b
MW
2254vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2255 pfn_t pfn)
2256{
574c5b3d 2257 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2258}
5d747637 2259EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2260
ab77dab4
SJ
2261/*
2262 * If the insertion of PTE failed because someone else already added a
2263 * different entry in the mean time, we treat that as success as we assume
2264 * the same entry was actually inserted.
2265 */
ab77dab4
SJ
2266vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2267 unsigned long addr, pfn_t pfn)
b2770da6 2268{
574c5b3d 2269 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2270}
ab77dab4 2271EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2272
1da177e4
LT
2273/*
2274 * maps a range of physical memory into the requested pages. the old
2275 * mappings are removed. any references to nonexistent pages results
2276 * in null mappings (currently treated as "copy-on-access")
2277 */
2278static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2279 unsigned long addr, unsigned long end,
2280 unsigned long pfn, pgprot_t prot)
2281{
90a3e375 2282 pte_t *pte, *mapped_pte;
c74df32c 2283 spinlock_t *ptl;
42e4089c 2284 int err = 0;
1da177e4 2285
90a3e375 2286 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2287 if (!pte)
2288 return -ENOMEM;
6606c3e0 2289 arch_enter_lazy_mmu_mode();
1da177e4
LT
2290 do {
2291 BUG_ON(!pte_none(*pte));
42e4089c
AK
2292 if (!pfn_modify_allowed(pfn, prot)) {
2293 err = -EACCES;
2294 break;
2295 }
7e675137 2296 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2297 pfn++;
2298 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2299 arch_leave_lazy_mmu_mode();
90a3e375 2300 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2301 return err;
1da177e4
LT
2302}
2303
2304static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2305 unsigned long addr, unsigned long end,
2306 unsigned long pfn, pgprot_t prot)
2307{
2308 pmd_t *pmd;
2309 unsigned long next;
42e4089c 2310 int err;
1da177e4
LT
2311
2312 pfn -= addr >> PAGE_SHIFT;
2313 pmd = pmd_alloc(mm, pud, addr);
2314 if (!pmd)
2315 return -ENOMEM;
f66055ab 2316 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2317 do {
2318 next = pmd_addr_end(addr, end);
42e4089c
AK
2319 err = remap_pte_range(mm, pmd, addr, next,
2320 pfn + (addr >> PAGE_SHIFT), prot);
2321 if (err)
2322 return err;
1da177e4
LT
2323 } while (pmd++, addr = next, addr != end);
2324 return 0;
2325}
2326
c2febafc 2327static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2328 unsigned long addr, unsigned long end,
2329 unsigned long pfn, pgprot_t prot)
2330{
2331 pud_t *pud;
2332 unsigned long next;
42e4089c 2333 int err;
1da177e4
LT
2334
2335 pfn -= addr >> PAGE_SHIFT;
c2febafc 2336 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2337 if (!pud)
2338 return -ENOMEM;
2339 do {
2340 next = pud_addr_end(addr, end);
42e4089c
AK
2341 err = remap_pmd_range(mm, pud, addr, next,
2342 pfn + (addr >> PAGE_SHIFT), prot);
2343 if (err)
2344 return err;
1da177e4
LT
2345 } while (pud++, addr = next, addr != end);
2346 return 0;
2347}
2348
c2febafc
KS
2349static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2350 unsigned long addr, unsigned long end,
2351 unsigned long pfn, pgprot_t prot)
2352{
2353 p4d_t *p4d;
2354 unsigned long next;
42e4089c 2355 int err;
c2febafc
KS
2356
2357 pfn -= addr >> PAGE_SHIFT;
2358 p4d = p4d_alloc(mm, pgd, addr);
2359 if (!p4d)
2360 return -ENOMEM;
2361 do {
2362 next = p4d_addr_end(addr, end);
42e4089c
AK
2363 err = remap_pud_range(mm, p4d, addr, next,
2364 pfn + (addr >> PAGE_SHIFT), prot);
2365 if (err)
2366 return err;
c2febafc
KS
2367 } while (p4d++, addr = next, addr != end);
2368 return 0;
2369}
2370
74ffa5a3
CH
2371/*
2372 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2373 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2374 */
74ffa5a3
CH
2375int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2376 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2377{
2378 pgd_t *pgd;
2379 unsigned long next;
2d15cab8 2380 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2381 struct mm_struct *mm = vma->vm_mm;
2382 int err;
2383
0c4123e3
AZ
2384 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2385 return -EINVAL;
2386
1da177e4
LT
2387 /*
2388 * Physically remapped pages are special. Tell the
2389 * rest of the world about it:
2390 * VM_IO tells people not to look at these pages
2391 * (accesses can have side effects).
6aab341e
LT
2392 * VM_PFNMAP tells the core MM that the base pages are just
2393 * raw PFN mappings, and do not have a "struct page" associated
2394 * with them.
314e51b9
KK
2395 * VM_DONTEXPAND
2396 * Disable vma merging and expanding with mremap().
2397 * VM_DONTDUMP
2398 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2399 *
2400 * There's a horrible special case to handle copy-on-write
2401 * behaviour that some programs depend on. We mark the "original"
2402 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2403 * See vm_normal_page() for details.
1da177e4 2404 */
b3b9c293
KK
2405 if (is_cow_mapping(vma->vm_flags)) {
2406 if (addr != vma->vm_start || end != vma->vm_end)
2407 return -EINVAL;
fb155c16 2408 vma->vm_pgoff = pfn;
b3b9c293
KK
2409 }
2410
314e51b9 2411 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2412
2413 BUG_ON(addr >= end);
2414 pfn -= addr >> PAGE_SHIFT;
2415 pgd = pgd_offset(mm, addr);
2416 flush_cache_range(vma, addr, end);
1da177e4
LT
2417 do {
2418 next = pgd_addr_end(addr, end);
c2febafc 2419 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2420 pfn + (addr >> PAGE_SHIFT), prot);
2421 if (err)
74ffa5a3 2422 return err;
1da177e4 2423 } while (pgd++, addr = next, addr != end);
2ab64037 2424
74ffa5a3
CH
2425 return 0;
2426}
2427
2428/**
2429 * remap_pfn_range - remap kernel memory to userspace
2430 * @vma: user vma to map to
2431 * @addr: target page aligned user address to start at
2432 * @pfn: page frame number of kernel physical memory address
2433 * @size: size of mapping area
2434 * @prot: page protection flags for this mapping
2435 *
2436 * Note: this is only safe if the mm semaphore is held when called.
2437 *
2438 * Return: %0 on success, negative error code otherwise.
2439 */
2440int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2441 unsigned long pfn, unsigned long size, pgprot_t prot)
2442{
2443 int err;
2444
2445 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2446 if (err)
74ffa5a3 2447 return -EINVAL;
2ab64037 2448
74ffa5a3
CH
2449 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2450 if (err)
2451 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2452 return err;
2453}
2454EXPORT_SYMBOL(remap_pfn_range);
2455
b4cbb197
LT
2456/**
2457 * vm_iomap_memory - remap memory to userspace
2458 * @vma: user vma to map to
abd69b9e 2459 * @start: start of the physical memory to be mapped
b4cbb197
LT
2460 * @len: size of area
2461 *
2462 * This is a simplified io_remap_pfn_range() for common driver use. The
2463 * driver just needs to give us the physical memory range to be mapped,
2464 * we'll figure out the rest from the vma information.
2465 *
2466 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2467 * whatever write-combining details or similar.
a862f68a
MR
2468 *
2469 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2470 */
2471int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2472{
2473 unsigned long vm_len, pfn, pages;
2474
2475 /* Check that the physical memory area passed in looks valid */
2476 if (start + len < start)
2477 return -EINVAL;
2478 /*
2479 * You *really* shouldn't map things that aren't page-aligned,
2480 * but we've historically allowed it because IO memory might
2481 * just have smaller alignment.
2482 */
2483 len += start & ~PAGE_MASK;
2484 pfn = start >> PAGE_SHIFT;
2485 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2486 if (pfn + pages < pfn)
2487 return -EINVAL;
2488
2489 /* We start the mapping 'vm_pgoff' pages into the area */
2490 if (vma->vm_pgoff > pages)
2491 return -EINVAL;
2492 pfn += vma->vm_pgoff;
2493 pages -= vma->vm_pgoff;
2494
2495 /* Can we fit all of the mapping? */
2496 vm_len = vma->vm_end - vma->vm_start;
2497 if (vm_len >> PAGE_SHIFT > pages)
2498 return -EINVAL;
2499
2500 /* Ok, let it rip */
2501 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2502}
2503EXPORT_SYMBOL(vm_iomap_memory);
2504
aee16b3c
JF
2505static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2506 unsigned long addr, unsigned long end,
e80d3909
JR
2507 pte_fn_t fn, void *data, bool create,
2508 pgtbl_mod_mask *mask)
aee16b3c 2509{
8abb50c7 2510 pte_t *pte, *mapped_pte;
be1db475 2511 int err = 0;
3f649ab7 2512 spinlock_t *ptl;
aee16b3c 2513
be1db475 2514 if (create) {
8abb50c7 2515 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2516 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2517 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2518 if (!pte)
2519 return -ENOMEM;
2520 } else {
8abb50c7 2521 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2522 pte_offset_kernel(pmd, addr) :
2523 pte_offset_map_lock(mm, pmd, addr, &ptl);
2524 }
aee16b3c
JF
2525
2526 BUG_ON(pmd_huge(*pmd));
2527
38e0edb1
JF
2528 arch_enter_lazy_mmu_mode();
2529
eeb4a05f
CH
2530 if (fn) {
2531 do {
2532 if (create || !pte_none(*pte)) {
2533 err = fn(pte++, addr, data);
2534 if (err)
2535 break;
2536 }
2537 } while (addr += PAGE_SIZE, addr != end);
2538 }
e80d3909 2539 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2540
38e0edb1
JF
2541 arch_leave_lazy_mmu_mode();
2542
aee16b3c 2543 if (mm != &init_mm)
8abb50c7 2544 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2545 return err;
2546}
2547
2548static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2549 unsigned long addr, unsigned long end,
e80d3909
JR
2550 pte_fn_t fn, void *data, bool create,
2551 pgtbl_mod_mask *mask)
aee16b3c
JF
2552{
2553 pmd_t *pmd;
2554 unsigned long next;
be1db475 2555 int err = 0;
aee16b3c 2556
ceb86879
AK
2557 BUG_ON(pud_huge(*pud));
2558
be1db475 2559 if (create) {
e80d3909 2560 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2561 if (!pmd)
2562 return -ENOMEM;
2563 } else {
2564 pmd = pmd_offset(pud, addr);
2565 }
aee16b3c
JF
2566 do {
2567 next = pmd_addr_end(addr, end);
0c95cba4
NP
2568 if (pmd_none(*pmd) && !create)
2569 continue;
2570 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2571 return -EINVAL;
2572 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2573 if (!create)
2574 continue;
2575 pmd_clear_bad(pmd);
be1db475 2576 }
0c95cba4
NP
2577 err = apply_to_pte_range(mm, pmd, addr, next,
2578 fn, data, create, mask);
2579 if (err)
2580 break;
aee16b3c 2581 } while (pmd++, addr = next, addr != end);
0c95cba4 2582
aee16b3c
JF
2583 return err;
2584}
2585
c2febafc 2586static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2587 unsigned long addr, unsigned long end,
e80d3909
JR
2588 pte_fn_t fn, void *data, bool create,
2589 pgtbl_mod_mask *mask)
aee16b3c
JF
2590{
2591 pud_t *pud;
2592 unsigned long next;
be1db475 2593 int err = 0;
aee16b3c 2594
be1db475 2595 if (create) {
e80d3909 2596 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2597 if (!pud)
2598 return -ENOMEM;
2599 } else {
2600 pud = pud_offset(p4d, addr);
2601 }
aee16b3c
JF
2602 do {
2603 next = pud_addr_end(addr, end);
0c95cba4
NP
2604 if (pud_none(*pud) && !create)
2605 continue;
2606 if (WARN_ON_ONCE(pud_leaf(*pud)))
2607 return -EINVAL;
2608 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2609 if (!create)
2610 continue;
2611 pud_clear_bad(pud);
be1db475 2612 }
0c95cba4
NP
2613 err = apply_to_pmd_range(mm, pud, addr, next,
2614 fn, data, create, mask);
2615 if (err)
2616 break;
aee16b3c 2617 } while (pud++, addr = next, addr != end);
0c95cba4 2618
aee16b3c
JF
2619 return err;
2620}
2621
c2febafc
KS
2622static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2623 unsigned long addr, unsigned long end,
e80d3909
JR
2624 pte_fn_t fn, void *data, bool create,
2625 pgtbl_mod_mask *mask)
c2febafc
KS
2626{
2627 p4d_t *p4d;
2628 unsigned long next;
be1db475 2629 int err = 0;
c2febafc 2630
be1db475 2631 if (create) {
e80d3909 2632 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2633 if (!p4d)
2634 return -ENOMEM;
2635 } else {
2636 p4d = p4d_offset(pgd, addr);
2637 }
c2febafc
KS
2638 do {
2639 next = p4d_addr_end(addr, end);
0c95cba4
NP
2640 if (p4d_none(*p4d) && !create)
2641 continue;
2642 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2643 return -EINVAL;
2644 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2645 if (!create)
2646 continue;
2647 p4d_clear_bad(p4d);
be1db475 2648 }
0c95cba4
NP
2649 err = apply_to_pud_range(mm, p4d, addr, next,
2650 fn, data, create, mask);
2651 if (err)
2652 break;
c2febafc 2653 } while (p4d++, addr = next, addr != end);
0c95cba4 2654
c2febafc
KS
2655 return err;
2656}
2657
be1db475
DA
2658static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2659 unsigned long size, pte_fn_t fn,
2660 void *data, bool create)
aee16b3c
JF
2661{
2662 pgd_t *pgd;
e80d3909 2663 unsigned long start = addr, next;
57250a5b 2664 unsigned long end = addr + size;
e80d3909 2665 pgtbl_mod_mask mask = 0;
be1db475 2666 int err = 0;
aee16b3c 2667
9cb65bc3
MP
2668 if (WARN_ON(addr >= end))
2669 return -EINVAL;
2670
aee16b3c
JF
2671 pgd = pgd_offset(mm, addr);
2672 do {
2673 next = pgd_addr_end(addr, end);
0c95cba4 2674 if (pgd_none(*pgd) && !create)
be1db475 2675 continue;
0c95cba4
NP
2676 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2677 return -EINVAL;
2678 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2679 if (!create)
2680 continue;
2681 pgd_clear_bad(pgd);
2682 }
2683 err = apply_to_p4d_range(mm, pgd, addr, next,
2684 fn, data, create, &mask);
aee16b3c
JF
2685 if (err)
2686 break;
2687 } while (pgd++, addr = next, addr != end);
57250a5b 2688
e80d3909
JR
2689 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2690 arch_sync_kernel_mappings(start, start + size);
2691
aee16b3c
JF
2692 return err;
2693}
be1db475
DA
2694
2695/*
2696 * Scan a region of virtual memory, filling in page tables as necessary
2697 * and calling a provided function on each leaf page table.
2698 */
2699int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2700 unsigned long size, pte_fn_t fn, void *data)
2701{
2702 return __apply_to_page_range(mm, addr, size, fn, data, true);
2703}
aee16b3c
JF
2704EXPORT_SYMBOL_GPL(apply_to_page_range);
2705
be1db475
DA
2706/*
2707 * Scan a region of virtual memory, calling a provided function on
2708 * each leaf page table where it exists.
2709 *
2710 * Unlike apply_to_page_range, this does _not_ fill in page tables
2711 * where they are absent.
2712 */
2713int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2714 unsigned long size, pte_fn_t fn, void *data)
2715{
2716 return __apply_to_page_range(mm, addr, size, fn, data, false);
2717}
2718EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2719
8f4e2101 2720/*
9b4bdd2f
KS
2721 * handle_pte_fault chooses page fault handler according to an entry which was
2722 * read non-atomically. Before making any commitment, on those architectures
2723 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2724 * parts, do_swap_page must check under lock before unmapping the pte and
2725 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2726 * and do_anonymous_page can safely check later on).
8f4e2101 2727 */
2ca99358 2728static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2729{
2730 int same = 1;
923717cb 2731#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2732 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2733 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2734 spin_lock(ptl);
2ca99358 2735 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2736 spin_unlock(ptl);
8f4e2101
HD
2737 }
2738#endif
2ca99358
PX
2739 pte_unmap(vmf->pte);
2740 vmf->pte = NULL;
8f4e2101
HD
2741 return same;
2742}
2743
83d116c5
JH
2744static inline bool cow_user_page(struct page *dst, struct page *src,
2745 struct vm_fault *vmf)
6aab341e 2746{
83d116c5
JH
2747 bool ret;
2748 void *kaddr;
2749 void __user *uaddr;
c3e5ea6e 2750 bool locked = false;
83d116c5
JH
2751 struct vm_area_struct *vma = vmf->vma;
2752 struct mm_struct *mm = vma->vm_mm;
2753 unsigned long addr = vmf->address;
2754
83d116c5
JH
2755 if (likely(src)) {
2756 copy_user_highpage(dst, src, addr, vma);
2757 return true;
2758 }
2759
6aab341e
LT
2760 /*
2761 * If the source page was a PFN mapping, we don't have
2762 * a "struct page" for it. We do a best-effort copy by
2763 * just copying from the original user address. If that
2764 * fails, we just zero-fill it. Live with it.
2765 */
83d116c5
JH
2766 kaddr = kmap_atomic(dst);
2767 uaddr = (void __user *)(addr & PAGE_MASK);
2768
2769 /*
2770 * On architectures with software "accessed" bits, we would
2771 * take a double page fault, so mark it accessed here.
2772 */
c3e5ea6e 2773 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2774 pte_t entry;
5d2a2dbb 2775
83d116c5 2776 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2777 locked = true;
83d116c5
JH
2778 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2779 /*
2780 * Other thread has already handled the fault
7df67697 2781 * and update local tlb only
83d116c5 2782 */
7df67697 2783 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2784 ret = false;
2785 goto pte_unlock;
2786 }
2787
2788 entry = pte_mkyoung(vmf->orig_pte);
2789 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2790 update_mmu_cache(vma, addr, vmf->pte);
2791 }
2792
2793 /*
2794 * This really shouldn't fail, because the page is there
2795 * in the page tables. But it might just be unreadable,
2796 * in which case we just give up and fill the result with
2797 * zeroes.
2798 */
2799 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2800 if (locked)
2801 goto warn;
2802
2803 /* Re-validate under PTL if the page is still mapped */
2804 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2805 locked = true;
2806 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2807 /* The PTE changed under us, update local tlb */
2808 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2809 ret = false;
2810 goto pte_unlock;
2811 }
2812
5d2a2dbb 2813 /*
985ba004 2814 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2815 * Try to copy again under PTL.
5d2a2dbb 2816 */
c3e5ea6e
KS
2817 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2818 /*
2819 * Give a warn in case there can be some obscure
2820 * use-case
2821 */
2822warn:
2823 WARN_ON_ONCE(1);
2824 clear_page(kaddr);
2825 }
83d116c5
JH
2826 }
2827
2828 ret = true;
2829
2830pte_unlock:
c3e5ea6e 2831 if (locked)
83d116c5
JH
2832 pte_unmap_unlock(vmf->pte, vmf->ptl);
2833 kunmap_atomic(kaddr);
2834 flush_dcache_page(dst);
2835
2836 return ret;
6aab341e
LT
2837}
2838
c20cd45e
MH
2839static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2840{
2841 struct file *vm_file = vma->vm_file;
2842
2843 if (vm_file)
2844 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2845
2846 /*
2847 * Special mappings (e.g. VDSO) do not have any file so fake
2848 * a default GFP_KERNEL for them.
2849 */
2850 return GFP_KERNEL;
2851}
2852
fb09a464
KS
2853/*
2854 * Notify the address space that the page is about to become writable so that
2855 * it can prohibit this or wait for the page to get into an appropriate state.
2856 *
2857 * We do this without the lock held, so that it can sleep if it needs to.
2858 */
2b740303 2859static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2860{
2b740303 2861 vm_fault_t ret;
38b8cb7f
JK
2862 struct page *page = vmf->page;
2863 unsigned int old_flags = vmf->flags;
fb09a464 2864
38b8cb7f 2865 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2866
dc617f29
DW
2867 if (vmf->vma->vm_file &&
2868 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2869 return VM_FAULT_SIGBUS;
2870
11bac800 2871 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2872 /* Restore original flags so that caller is not surprised */
2873 vmf->flags = old_flags;
fb09a464
KS
2874 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2875 return ret;
2876 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2877 lock_page(page);
2878 if (!page->mapping) {
2879 unlock_page(page);
2880 return 0; /* retry */
2881 }
2882 ret |= VM_FAULT_LOCKED;
2883 } else
2884 VM_BUG_ON_PAGE(!PageLocked(page), page);
2885 return ret;
2886}
2887
97ba0c2b
JK
2888/*
2889 * Handle dirtying of a page in shared file mapping on a write fault.
2890 *
2891 * The function expects the page to be locked and unlocks it.
2892 */
89b15332 2893static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2894{
89b15332 2895 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2896 struct address_space *mapping;
89b15332 2897 struct page *page = vmf->page;
97ba0c2b
JK
2898 bool dirtied;
2899 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2900
2901 dirtied = set_page_dirty(page);
2902 VM_BUG_ON_PAGE(PageAnon(page), page);
2903 /*
2904 * Take a local copy of the address_space - page.mapping may be zeroed
2905 * by truncate after unlock_page(). The address_space itself remains
2906 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2907 * release semantics to prevent the compiler from undoing this copying.
2908 */
2909 mapping = page_rmapping(page);
2910 unlock_page(page);
2911
89b15332
JW
2912 if (!page_mkwrite)
2913 file_update_time(vma->vm_file);
2914
2915 /*
2916 * Throttle page dirtying rate down to writeback speed.
2917 *
2918 * mapping may be NULL here because some device drivers do not
2919 * set page.mapping but still dirty their pages
2920 *
c1e8d7c6 2921 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2922 * is pinning the mapping, as per above.
2923 */
97ba0c2b 2924 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2925 struct file *fpin;
2926
2927 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2928 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2929 if (fpin) {
2930 fput(fpin);
2931 return VM_FAULT_RETRY;
2932 }
97ba0c2b
JK
2933 }
2934
89b15332 2935 return 0;
97ba0c2b
JK
2936}
2937
4e047f89
SR
2938/*
2939 * Handle write page faults for pages that can be reused in the current vma
2940 *
2941 * This can happen either due to the mapping being with the VM_SHARED flag,
2942 * or due to us being the last reference standing to the page. In either
2943 * case, all we need to do here is to mark the page as writable and update
2944 * any related book-keeping.
2945 */
997dd98d 2946static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2947 __releases(vmf->ptl)
4e047f89 2948{
82b0f8c3 2949 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2950 struct page *page = vmf->page;
4e047f89
SR
2951 pte_t entry;
2952 /*
2953 * Clear the pages cpupid information as the existing
2954 * information potentially belongs to a now completely
2955 * unrelated process.
2956 */
2957 if (page)
2958 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2959
2994302b
JK
2960 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2961 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2962 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2963 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2964 update_mmu_cache(vma, vmf->address, vmf->pte);
2965 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2966 count_vm_event(PGREUSE);
4e047f89
SR
2967}
2968
2f38ab2c
SR
2969/*
2970 * Handle the case of a page which we actually need to copy to a new page.
2971 *
c1e8d7c6 2972 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2973 * without the ptl held.
2974 *
2975 * High level logic flow:
2976 *
2977 * - Allocate a page, copy the content of the old page to the new one.
2978 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2979 * - Take the PTL. If the pte changed, bail out and release the allocated page
2980 * - If the pte is still the way we remember it, update the page table and all
2981 * relevant references. This includes dropping the reference the page-table
2982 * held to the old page, as well as updating the rmap.
2983 * - In any case, unlock the PTL and drop the reference we took to the old page.
2984 */
2b740303 2985static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2986{
82b0f8c3 2987 struct vm_area_struct *vma = vmf->vma;
bae473a4 2988 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2989 struct page *old_page = vmf->page;
2f38ab2c 2990 struct page *new_page = NULL;
2f38ab2c
SR
2991 pte_t entry;
2992 int page_copied = 0;
ac46d4f3 2993 struct mmu_notifier_range range;
2f38ab2c
SR
2994
2995 if (unlikely(anon_vma_prepare(vma)))
2996 goto oom;
2997
2994302b 2998 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2999 new_page = alloc_zeroed_user_highpage_movable(vma,
3000 vmf->address);
2f38ab2c
SR
3001 if (!new_page)
3002 goto oom;
3003 } else {
bae473a4 3004 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3005 vmf->address);
2f38ab2c
SR
3006 if (!new_page)
3007 goto oom;
83d116c5
JH
3008
3009 if (!cow_user_page(new_page, old_page, vmf)) {
3010 /*
3011 * COW failed, if the fault was solved by other,
3012 * it's fine. If not, userspace would re-fault on
3013 * the same address and we will handle the fault
3014 * from the second attempt.
3015 */
3016 put_page(new_page);
3017 if (old_page)
3018 put_page(old_page);
3019 return 0;
3020 }
2f38ab2c 3021 }
2f38ab2c 3022
8f425e4e 3023 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3024 goto oom_free_new;
9d82c694 3025 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3026
eb3c24f3
MG
3027 __SetPageUptodate(new_page);
3028
7269f999 3029 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3030 vmf->address & PAGE_MASK,
ac46d4f3
JG
3031 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3032 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3033
3034 /*
3035 * Re-check the pte - we dropped the lock
3036 */
82b0f8c3 3037 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3038 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3039 if (old_page) {
3040 if (!PageAnon(old_page)) {
eca56ff9
JM
3041 dec_mm_counter_fast(mm,
3042 mm_counter_file(old_page));
2f38ab2c
SR
3043 inc_mm_counter_fast(mm, MM_ANONPAGES);
3044 }
3045 } else {
3046 inc_mm_counter_fast(mm, MM_ANONPAGES);
3047 }
2994302b 3048 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3049 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3050 entry = pte_sw_mkyoung(entry);
2f38ab2c 3051 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3052
2f38ab2c
SR
3053 /*
3054 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3055 * pte with the new entry, to keep TLBs on different CPUs in
3056 * sync. This code used to set the new PTE then flush TLBs, but
3057 * that left a window where the new PTE could be loaded into
3058 * some TLBs while the old PTE remains in others.
2f38ab2c 3059 */
82b0f8c3
JK
3060 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3061 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3062 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3063 /*
3064 * We call the notify macro here because, when using secondary
3065 * mmu page tables (such as kvm shadow page tables), we want the
3066 * new page to be mapped directly into the secondary page table.
3067 */
82b0f8c3
JK
3068 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3069 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3070 if (old_page) {
3071 /*
3072 * Only after switching the pte to the new page may
3073 * we remove the mapcount here. Otherwise another
3074 * process may come and find the rmap count decremented
3075 * before the pte is switched to the new page, and
3076 * "reuse" the old page writing into it while our pte
3077 * here still points into it and can be read by other
3078 * threads.
3079 *
3080 * The critical issue is to order this
3081 * page_remove_rmap with the ptp_clear_flush above.
3082 * Those stores are ordered by (if nothing else,)
3083 * the barrier present in the atomic_add_negative
3084 * in page_remove_rmap.
3085 *
3086 * Then the TLB flush in ptep_clear_flush ensures that
3087 * no process can access the old page before the
3088 * decremented mapcount is visible. And the old page
3089 * cannot be reused until after the decremented
3090 * mapcount is visible. So transitively, TLBs to
3091 * old page will be flushed before it can be reused.
3092 */
cea86fe2 3093 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3094 }
3095
3096 /* Free the old page.. */
3097 new_page = old_page;
3098 page_copied = 1;
3099 } else {
7df67697 3100 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3101 }
3102
3103 if (new_page)
09cbfeaf 3104 put_page(new_page);
2f38ab2c 3105
82b0f8c3 3106 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3107 /*
3108 * No need to double call mmu_notifier->invalidate_range() callback as
3109 * the above ptep_clear_flush_notify() did already call it.
3110 */
ac46d4f3 3111 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3112 if (old_page) {
f4c4a3f4
HY
3113 if (page_copied)
3114 free_swap_cache(old_page);
09cbfeaf 3115 put_page(old_page);
2f38ab2c
SR
3116 }
3117 return page_copied ? VM_FAULT_WRITE : 0;
3118oom_free_new:
09cbfeaf 3119 put_page(new_page);
2f38ab2c
SR
3120oom:
3121 if (old_page)
09cbfeaf 3122 put_page(old_page);
2f38ab2c
SR
3123 return VM_FAULT_OOM;
3124}
3125
66a6197c
JK
3126/**
3127 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3128 * writeable once the page is prepared
3129 *
3130 * @vmf: structure describing the fault
3131 *
3132 * This function handles all that is needed to finish a write page fault in a
3133 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3134 * It handles locking of PTE and modifying it.
66a6197c
JK
3135 *
3136 * The function expects the page to be locked or other protection against
3137 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3138 *
2797e79f 3139 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3140 * we acquired PTE lock.
66a6197c 3141 */
2b740303 3142vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3143{
3144 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3145 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3146 &vmf->ptl);
3147 /*
3148 * We might have raced with another page fault while we released the
3149 * pte_offset_map_lock.
3150 */
3151 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3152 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3153 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3154 return VM_FAULT_NOPAGE;
66a6197c
JK
3155 }
3156 wp_page_reuse(vmf);
a19e2553 3157 return 0;
66a6197c
JK
3158}
3159
dd906184
BH
3160/*
3161 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3162 * mapping
3163 */
2b740303 3164static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3165{
82b0f8c3 3166 struct vm_area_struct *vma = vmf->vma;
bae473a4 3167
dd906184 3168 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3169 vm_fault_t ret;
dd906184 3170
82b0f8c3 3171 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3172 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3173 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3174 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3175 return ret;
66a6197c 3176 return finish_mkwrite_fault(vmf);
dd906184 3177 }
997dd98d
JK
3178 wp_page_reuse(vmf);
3179 return VM_FAULT_WRITE;
dd906184
BH
3180}
3181
2b740303 3182static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3183 __releases(vmf->ptl)
93e478d4 3184{
82b0f8c3 3185 struct vm_area_struct *vma = vmf->vma;
89b15332 3186 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3187
a41b70d6 3188 get_page(vmf->page);
93e478d4 3189
93e478d4 3190 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3191 vm_fault_t tmp;
93e478d4 3192
82b0f8c3 3193 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3194 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3195 if (unlikely(!tmp || (tmp &
3196 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3197 put_page(vmf->page);
93e478d4
SR
3198 return tmp;
3199 }
66a6197c 3200 tmp = finish_mkwrite_fault(vmf);
a19e2553 3201 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3202 unlock_page(vmf->page);
a41b70d6 3203 put_page(vmf->page);
66a6197c 3204 return tmp;
93e478d4 3205 }
66a6197c
JK
3206 } else {
3207 wp_page_reuse(vmf);
997dd98d 3208 lock_page(vmf->page);
93e478d4 3209 }
89b15332 3210 ret |= fault_dirty_shared_page(vmf);
997dd98d 3211 put_page(vmf->page);
93e478d4 3212
89b15332 3213 return ret;
93e478d4
SR
3214}
3215
1da177e4
LT
3216/*
3217 * This routine handles present pages, when users try to write
3218 * to a shared page. It is done by copying the page to a new address
3219 * and decrementing the shared-page counter for the old page.
3220 *
1da177e4
LT
3221 * Note that this routine assumes that the protection checks have been
3222 * done by the caller (the low-level page fault routine in most cases).
3223 * Thus we can safely just mark it writable once we've done any necessary
3224 * COW.
3225 *
3226 * We also mark the page dirty at this point even though the page will
3227 * change only once the write actually happens. This avoids a few races,
3228 * and potentially makes it more efficient.
3229 *
c1e8d7c6 3230 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3231 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3232 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3233 */
2b740303 3234static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3235 __releases(vmf->ptl)
1da177e4 3236{
82b0f8c3 3237 struct vm_area_struct *vma = vmf->vma;
1da177e4 3238
292924b2 3239 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3240 pte_unmap_unlock(vmf->pte, vmf->ptl);
3241 return handle_userfault(vmf, VM_UFFD_WP);
3242 }
3243
6ce64428
NA
3244 /*
3245 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3246 * is flushed in this case before copying.
3247 */
3248 if (unlikely(userfaultfd_wp(vmf->vma) &&
3249 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3250 flush_tlb_page(vmf->vma, vmf->address);
3251
a41b70d6
JK
3252 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3253 if (!vmf->page) {
251b97f5 3254 /*
64e45507
PF
3255 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3256 * VM_PFNMAP VMA.
251b97f5
PZ
3257 *
3258 * We should not cow pages in a shared writeable mapping.
dd906184 3259 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3260 */
3261 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3262 (VM_WRITE|VM_SHARED))
2994302b 3263 return wp_pfn_shared(vmf);
2f38ab2c 3264
82b0f8c3 3265 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3266 return wp_page_copy(vmf);
251b97f5 3267 }
1da177e4 3268
d08b3851 3269 /*
ee6a6457
PZ
3270 * Take out anonymous pages first, anonymous shared vmas are
3271 * not dirty accountable.
d08b3851 3272 */
52d1e606 3273 if (PageAnon(vmf->page)) {
09854ba9
LT
3274 struct page *page = vmf->page;
3275
53a05ad9
DH
3276 /*
3277 * We have to verify under page lock: these early checks are
3278 * just an optimization to avoid locking the page and freeing
3279 * the swapcache if there is little hope that we can reuse.
3280 *
3281 * PageKsm() doesn't necessarily raise the page refcount.
3282 */
d4c47097
DH
3283 if (PageKsm(page) || page_count(page) > 3)
3284 goto copy;
3285 if (!PageLRU(page))
3286 /*
3287 * Note: We cannot easily detect+handle references from
3288 * remote LRU pagevecs or references to PageLRU() pages.
3289 */
3290 lru_add_drain();
3291 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3292 goto copy;
3293 if (!trylock_page(page))
3294 goto copy;
53a05ad9
DH
3295 if (PageSwapCache(page))
3296 try_to_free_swap(page);
3297 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3298 unlock_page(page);
52d1e606 3299 goto copy;
b009c024 3300 }
09854ba9 3301 /*
53a05ad9
DH
3302 * Ok, we've got the only page reference from our mapping
3303 * and the page is locked, it's dark out, and we're wearing
3304 * sunglasses. Hit it.
09854ba9 3305 */
09854ba9 3306 unlock_page(page);
be068f29 3307 wp_page_reuse(vmf);
09854ba9 3308 return VM_FAULT_WRITE;
ee6a6457 3309 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3310 (VM_WRITE|VM_SHARED))) {
a41b70d6 3311 return wp_page_shared(vmf);
1da177e4 3312 }
52d1e606 3313copy:
1da177e4
LT
3314 /*
3315 * Ok, we need to copy. Oh, well..
3316 */
a41b70d6 3317 get_page(vmf->page);
28766805 3318
82b0f8c3 3319 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3320#ifdef CONFIG_KSM
3321 if (PageKsm(vmf->page))
3322 count_vm_event(COW_KSM);
3323#endif
a41b70d6 3324 return wp_page_copy(vmf);
1da177e4
LT
3325}
3326
97a89413 3327static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3328 unsigned long start_addr, unsigned long end_addr,
3329 struct zap_details *details)
3330{
f5cc4eef 3331 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3332}
3333
f808c13f 3334static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3335 pgoff_t first_index,
3336 pgoff_t last_index,
1da177e4
LT
3337 struct zap_details *details)
3338{
3339 struct vm_area_struct *vma;
1da177e4
LT
3340 pgoff_t vba, vea, zba, zea;
3341
232a6a1c 3342 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3343 vba = vma->vm_pgoff;
d6e93217 3344 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3345 zba = max(first_index, vba);
3346 zea = min(last_index, vea);
1da177e4 3347
97a89413 3348 unmap_mapping_range_vma(vma,
1da177e4
LT
3349 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3350 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3351 details);
1da177e4
LT
3352 }
3353}
3354
22061a1f 3355/**
3506659e
MWO
3356 * unmap_mapping_folio() - Unmap single folio from processes.
3357 * @folio: The locked folio to be unmapped.
22061a1f 3358 *
3506659e 3359 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3360 * Typically, for efficiency, the range of nearby pages has already been
3361 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3362 * truncation or invalidation holds the lock on a folio, it may find that
3363 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3364 * to unmap it finally.
3365 */
3506659e 3366void unmap_mapping_folio(struct folio *folio)
22061a1f 3367{
3506659e 3368 struct address_space *mapping = folio->mapping;
22061a1f 3369 struct zap_details details = { };
232a6a1c
PX
3370 pgoff_t first_index;
3371 pgoff_t last_index;
22061a1f 3372
3506659e 3373 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3374
3506659e
MWO
3375 first_index = folio->index;
3376 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3377
2e148f1e 3378 details.even_cows = false;
3506659e 3379 details.single_folio = folio;
22061a1f 3380
2c865995 3381 i_mmap_lock_read(mapping);
22061a1f 3382 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3383 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3384 last_index, &details);
2c865995 3385 i_mmap_unlock_read(mapping);
22061a1f
HD
3386}
3387
977fbdcd
MW
3388/**
3389 * unmap_mapping_pages() - Unmap pages from processes.
3390 * @mapping: The address space containing pages to be unmapped.
3391 * @start: Index of first page to be unmapped.
3392 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3393 * @even_cows: Whether to unmap even private COWed pages.
3394 *
3395 * Unmap the pages in this address space from any userspace process which
3396 * has them mmaped. Generally, you want to remove COWed pages as well when
3397 * a file is being truncated, but not when invalidating pages from the page
3398 * cache.
3399 */
3400void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3401 pgoff_t nr, bool even_cows)
3402{
3403 struct zap_details details = { };
232a6a1c
PX
3404 pgoff_t first_index = start;
3405 pgoff_t last_index = start + nr - 1;
977fbdcd 3406
2e148f1e 3407 details.even_cows = even_cows;
232a6a1c
PX
3408 if (last_index < first_index)
3409 last_index = ULONG_MAX;
977fbdcd 3410
2c865995 3411 i_mmap_lock_read(mapping);
977fbdcd 3412 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3413 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3414 last_index, &details);
2c865995 3415 i_mmap_unlock_read(mapping);
977fbdcd 3416}
6e0e99d5 3417EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3418
1da177e4 3419/**
8a5f14a2 3420 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3421 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3422 * file.
3423 *
3d41088f 3424 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3425 * @holebegin: byte in first page to unmap, relative to the start of
3426 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3427 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3428 * must keep the partial page. In contrast, we must get rid of
3429 * partial pages.
3430 * @holelen: size of prospective hole in bytes. This will be rounded
3431 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3432 * end of the file.
3433 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3434 * but 0 when invalidating pagecache, don't throw away private data.
3435 */
3436void unmap_mapping_range(struct address_space *mapping,
3437 loff_t const holebegin, loff_t const holelen, int even_cows)
3438{
1da177e4
LT
3439 pgoff_t hba = holebegin >> PAGE_SHIFT;
3440 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3441
3442 /* Check for overflow. */
3443 if (sizeof(holelen) > sizeof(hlen)) {
3444 long long holeend =
3445 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3446 if (holeend & ~(long long)ULONG_MAX)
3447 hlen = ULONG_MAX - hba + 1;
3448 }
3449
977fbdcd 3450 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3451}
3452EXPORT_SYMBOL(unmap_mapping_range);
3453
b756a3b5
AP
3454/*
3455 * Restore a potential device exclusive pte to a working pte entry
3456 */
3457static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3458{
3459 struct page *page = vmf->page;
3460 struct vm_area_struct *vma = vmf->vma;
3461 struct mmu_notifier_range range;
3462
3463 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3464 return VM_FAULT_RETRY;
3465 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3466 vma->vm_mm, vmf->address & PAGE_MASK,
3467 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3468 mmu_notifier_invalidate_range_start(&range);
3469
3470 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3471 &vmf->ptl);
3472 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3473 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3474
3475 pte_unmap_unlock(vmf->pte, vmf->ptl);
3476 unlock_page(page);
3477
3478 mmu_notifier_invalidate_range_end(&range);
3479 return 0;
3480}
3481
c145e0b4
DH
3482static inline bool should_try_to_free_swap(struct page *page,
3483 struct vm_area_struct *vma,
3484 unsigned int fault_flags)
3485{
3486 if (!PageSwapCache(page))
3487 return false;
3488 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3489 PageMlocked(page))
3490 return true;
3491 /*
3492 * If we want to map a page that's in the swapcache writable, we
3493 * have to detect via the refcount if we're really the exclusive
3494 * user. Try freeing the swapcache to get rid of the swapcache
3495 * reference only in case it's likely that we'll be the exlusive user.
3496 */
3497 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3498 page_count(page) == 2;
3499}
3500
1da177e4 3501/*
c1e8d7c6 3502 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3503 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3504 * We return with pte unmapped and unlocked.
3505 *
c1e8d7c6 3506 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3507 * as does filemap_fault().
1da177e4 3508 */
2b740303 3509vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3510{
82b0f8c3 3511 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3512 struct page *page = NULL, *swapcache;
2799e775 3513 struct swap_info_struct *si = NULL;
14f9135d 3514 rmap_t rmap_flags = RMAP_NONE;
65500d23 3515 swp_entry_t entry;
1da177e4 3516 pte_t pte;
d065bd81 3517 int locked;
2b740303 3518 vm_fault_t ret = 0;
aae466b0 3519 void *shadow = NULL;
1da177e4 3520
2ca99358 3521 if (!pte_unmap_same(vmf))
8f4e2101 3522 goto out;
65500d23 3523
2994302b 3524 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3525 if (unlikely(non_swap_entry(entry))) {
3526 if (is_migration_entry(entry)) {
82b0f8c3
JK
3527 migration_entry_wait(vma->vm_mm, vmf->pmd,
3528 vmf->address);
b756a3b5
AP
3529 } else if (is_device_exclusive_entry(entry)) {
3530 vmf->page = pfn_swap_entry_to_page(entry);
3531 ret = remove_device_exclusive_entry(vmf);
5042db43 3532 } else if (is_device_private_entry(entry)) {
af5cdaf8 3533 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3534 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3535 } else if (is_hwpoison_entry(entry)) {
3536 ret = VM_FAULT_HWPOISON;
3537 } else {
2994302b 3538 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3539 ret = VM_FAULT_SIGBUS;
d1737fdb 3540 }
0697212a
CL
3541 goto out;
3542 }
0bcac06f 3543
2799e775
ML
3544 /* Prevent swapoff from happening to us. */
3545 si = get_swap_device(entry);
3546 if (unlikely(!si))
3547 goto out;
0bcac06f 3548
eaf649eb
MK
3549 page = lookup_swap_cache(entry, vma, vmf->address);
3550 swapcache = page;
f8020772 3551
1da177e4 3552 if (!page) {
a449bf58
QC
3553 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3554 __swap_count(entry) == 1) {
0bcac06f 3555 /* skip swapcache */
e9e9b7ec
MK
3556 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3557 vmf->address);
0bcac06f
MK
3558 if (page) {
3559 __SetPageLocked(page);
3560 __SetPageSwapBacked(page);
4c6355b2 3561
0add0c77
SB
3562 if (mem_cgroup_swapin_charge_page(page,
3563 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3564 ret = VM_FAULT_OOM;
4c6355b2 3565 goto out_page;
545b1b07 3566 }
0add0c77 3567 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3568
aae466b0
JK
3569 shadow = get_shadow_from_swap_cache(entry);
3570 if (shadow)
0995d7e5
MWO
3571 workingset_refault(page_folio(page),
3572 shadow);
0076f029 3573
6058eaec 3574 lru_cache_add(page);
0add0c77
SB
3575
3576 /* To provide entry to swap_readpage() */
3577 set_page_private(page, entry.val);
0bcac06f 3578 swap_readpage(page, true);
0add0c77 3579 set_page_private(page, 0);
0bcac06f 3580 }
aa8d22a1 3581 } else {
e9e9b7ec
MK
3582 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3583 vmf);
aa8d22a1 3584 swapcache = page;
0bcac06f
MK
3585 }
3586
1da177e4
LT
3587 if (!page) {
3588 /*
8f4e2101
HD
3589 * Back out if somebody else faulted in this pte
3590 * while we released the pte lock.
1da177e4 3591 */
82b0f8c3
JK
3592 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3593 vmf->address, &vmf->ptl);
2994302b 3594 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3595 ret = VM_FAULT_OOM;
65500d23 3596 goto unlock;
1da177e4
LT
3597 }
3598
3599 /* Had to read the page from swap area: Major fault */
3600 ret = VM_FAULT_MAJOR;
f8891e5e 3601 count_vm_event(PGMAJFAULT);
2262185c 3602 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3603 } else if (PageHWPoison(page)) {
71f72525
WF
3604 /*
3605 * hwpoisoned dirty swapcache pages are kept for killing
3606 * owner processes (which may be unknown at hwpoison time)
3607 */
d1737fdb 3608 ret = VM_FAULT_HWPOISON;
4779cb31 3609 goto out_release;
1da177e4
LT
3610 }
3611
82b0f8c3 3612 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3613
d065bd81
ML
3614 if (!locked) {
3615 ret |= VM_FAULT_RETRY;
3616 goto out_release;
3617 }
073e587e 3618
84d60fdd
DH
3619 if (swapcache) {
3620 /*
3621 * Make sure try_to_free_swap or swapoff did not release the
3622 * swapcache from under us. The page pin, and pte_same test
3623 * below, are not enough to exclude that. Even if it is still
3624 * swapcache, we need to check that the page's swap has not
3625 * changed.
3626 */
3627 if (unlikely(!PageSwapCache(page) ||
3628 page_private(page) != entry.val))
3629 goto out_page;
3630
3631 /*
3632 * KSM sometimes has to copy on read faults, for example, if
3633 * page->index of !PageKSM() pages would be nonlinear inside the
3634 * anon VMA -- PageKSM() is lost on actual swapout.
3635 */
3636 page = ksm_might_need_to_copy(page, vma, vmf->address);
3637 if (unlikely(!page)) {
3638 ret = VM_FAULT_OOM;
3639 page = swapcache;
3640 goto out_page;
3641 }
c145e0b4
DH
3642
3643 /*
3644 * If we want to map a page that's in the swapcache writable, we
3645 * have to detect via the refcount if we're really the exclusive
3646 * owner. Try removing the extra reference from the local LRU
3647 * pagevecs if required.
3648 */
3649 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3650 !PageKsm(page) && !PageLRU(page))
3651 lru_add_drain();
5ad64688
HD
3652 }
3653
9d82c694 3654 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3655
1da177e4 3656 /*
8f4e2101 3657 * Back out if somebody else already faulted in this pte.
1da177e4 3658 */
82b0f8c3
JK
3659 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3660 &vmf->ptl);
2994302b 3661 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3662 goto out_nomap;
b8107480
KK
3663
3664 if (unlikely(!PageUptodate(page))) {
3665 ret = VM_FAULT_SIGBUS;
3666 goto out_nomap;
1da177e4
LT
3667 }
3668
8c7c6e34 3669 /*
c145e0b4
DH
3670 * Remove the swap entry and conditionally try to free up the swapcache.
3671 * We're already holding a reference on the page but haven't mapped it
3672 * yet.
8c7c6e34 3673 */
c145e0b4
DH
3674 swap_free(entry);
3675 if (should_try_to_free_swap(page, vma, vmf->flags))
3676 try_to_free_swap(page);
1da177e4 3677
bae473a4
KS
3678 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3679 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3680 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3681
3682 /*
3683 * Same logic as in do_wp_page(); however, optimize for fresh pages
3684 * that are certainly not shared because we just allocated them without
3685 * exposing them to the swapcache.
3686 */
3687 if ((vmf->flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3688 (page != swapcache || page_count(page) == 1)) {
1da177e4 3689 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3690 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3691 ret |= VM_FAULT_WRITE;
14f9135d 3692 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3693 }
1da177e4 3694 flush_icache_page(vma, page);
2994302b 3695 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3696 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3697 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3698 pte = pte_mkuffd_wp(pte);
3699 pte = pte_wrprotect(pte);
3700 }
2994302b 3701 vmf->orig_pte = pte;
0bcac06f
MK
3702
3703 /* ksm created a completely new copy */
3704 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3705 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3706 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f 3707 } else {
f1e2db12 3708 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3709 }
1da177e4 3710
1eba86c0
PT
3711 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3712 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3713
c475a8ab 3714 unlock_page(page);
0bcac06f 3715 if (page != swapcache && swapcache) {
4969c119
AA
3716 /*
3717 * Hold the lock to avoid the swap entry to be reused
3718 * until we take the PT lock for the pte_same() check
3719 * (to avoid false positives from pte_same). For
3720 * further safety release the lock after the swap_free
3721 * so that the swap count won't change under a
3722 * parallel locked swapcache.
3723 */
3724 unlock_page(swapcache);
09cbfeaf 3725 put_page(swapcache);
4969c119 3726 }
c475a8ab 3727
82b0f8c3 3728 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3729 ret |= do_wp_page(vmf);
61469f1d
HD
3730 if (ret & VM_FAULT_ERROR)
3731 ret &= VM_FAULT_ERROR;
1da177e4
LT
3732 goto out;
3733 }
3734
3735 /* No need to invalidate - it was non-present before */
82b0f8c3 3736 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3737unlock:
82b0f8c3 3738 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3739out:
2799e775
ML
3740 if (si)
3741 put_swap_device(si);
1da177e4 3742 return ret;
b8107480 3743out_nomap:
82b0f8c3 3744 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3745out_page:
b8107480 3746 unlock_page(page);
4779cb31 3747out_release:
09cbfeaf 3748 put_page(page);
0bcac06f 3749 if (page != swapcache && swapcache) {
4969c119 3750 unlock_page(swapcache);
09cbfeaf 3751 put_page(swapcache);
4969c119 3752 }
2799e775
ML
3753 if (si)
3754 put_swap_device(si);
65500d23 3755 return ret;
1da177e4
LT
3756}
3757
3758/*
c1e8d7c6 3759 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3760 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3761 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3762 */
2b740303 3763static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3764{
82b0f8c3 3765 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3766 struct page *page;
2b740303 3767 vm_fault_t ret = 0;
1da177e4 3768 pte_t entry;
1da177e4 3769
6b7339f4
KS
3770 /* File mapping without ->vm_ops ? */
3771 if (vma->vm_flags & VM_SHARED)
3772 return VM_FAULT_SIGBUS;
3773
7267ec00
KS
3774 /*
3775 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3776 * pte_offset_map() on pmds where a huge pmd might be created
3777 * from a different thread.
3778 *
3e4e28c5 3779 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3780 * parallel threads are excluded by other means.
3781 *
3e4e28c5 3782 * Here we only have mmap_read_lock(mm).
7267ec00 3783 */
4cf58924 3784 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3785 return VM_FAULT_OOM;
3786
f9ce0be7 3787 /* See comment in handle_pte_fault() */
82b0f8c3 3788 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3789 return 0;
3790
11ac5524 3791 /* Use the zero-page for reads */
82b0f8c3 3792 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3793 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3794 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3795 vma->vm_page_prot));
82b0f8c3
JK
3796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797 vmf->address, &vmf->ptl);
7df67697
BM
3798 if (!pte_none(*vmf->pte)) {
3799 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3800 goto unlock;
7df67697 3801 }
6b31d595
MH
3802 ret = check_stable_address_space(vma->vm_mm);
3803 if (ret)
3804 goto unlock;
6b251fc9
AA
3805 /* Deliver the page fault to userland, check inside PT lock */
3806 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3807 pte_unmap_unlock(vmf->pte, vmf->ptl);
3808 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3809 }
a13ea5b7
HD
3810 goto setpte;
3811 }
3812
557ed1fa 3813 /* Allocate our own private page. */
557ed1fa
NP
3814 if (unlikely(anon_vma_prepare(vma)))
3815 goto oom;
82b0f8c3 3816 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3817 if (!page)
3818 goto oom;
eb3c24f3 3819
8f425e4e 3820 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 3821 goto oom_free_page;
9d82c694 3822 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3823
52f37629
MK
3824 /*
3825 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3826 * preceding stores to the page contents become visible before
52f37629
MK
3827 * the set_pte_at() write.
3828 */
0ed361de 3829 __SetPageUptodate(page);
8f4e2101 3830
557ed1fa 3831 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3832 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3833 if (vma->vm_flags & VM_WRITE)
3834 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3835
82b0f8c3
JK
3836 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3837 &vmf->ptl);
7df67697
BM
3838 if (!pte_none(*vmf->pte)) {
3839 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3840 goto release;
7df67697 3841 }
9ba69294 3842
6b31d595
MH
3843 ret = check_stable_address_space(vma->vm_mm);
3844 if (ret)
3845 goto release;
3846
6b251fc9
AA
3847 /* Deliver the page fault to userland, check inside PT lock */
3848 if (userfaultfd_missing(vma)) {
82b0f8c3 3849 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3850 put_page(page);
82b0f8c3 3851 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3852 }
3853
bae473a4 3854 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3855 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3856 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3857setpte:
82b0f8c3 3858 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3859
3860 /* No need to invalidate - it was non-present before */
82b0f8c3 3861 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3862unlock:
82b0f8c3 3863 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3864 return ret;
8f4e2101 3865release:
09cbfeaf 3866 put_page(page);
8f4e2101 3867 goto unlock;
8a9f3ccd 3868oom_free_page:
09cbfeaf 3869 put_page(page);
65500d23 3870oom:
1da177e4
LT
3871 return VM_FAULT_OOM;
3872}
3873
9a95f3cf 3874/*
c1e8d7c6 3875 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3876 * released depending on flags and vma->vm_ops->fault() return value.
3877 * See filemap_fault() and __lock_page_retry().
3878 */
2b740303 3879static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3880{
82b0f8c3 3881 struct vm_area_struct *vma = vmf->vma;
2b740303 3882 vm_fault_t ret;
7eae74af 3883
63f3655f
MH
3884 /*
3885 * Preallocate pte before we take page_lock because this might lead to
3886 * deadlocks for memcg reclaim which waits for pages under writeback:
3887 * lock_page(A)
3888 * SetPageWriteback(A)
3889 * unlock_page(A)
3890 * lock_page(B)
3891 * lock_page(B)
d383807a 3892 * pte_alloc_one
63f3655f
MH
3893 * shrink_page_list
3894 * wait_on_page_writeback(A)
3895 * SetPageWriteback(B)
3896 * unlock_page(B)
3897 * # flush A, B to clear the writeback
3898 */
3899 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3900 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3901 if (!vmf->prealloc_pte)
3902 return VM_FAULT_OOM;
63f3655f
MH
3903 }
3904
11bac800 3905 ret = vma->vm_ops->fault(vmf);
3917048d 3906 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3907 VM_FAULT_DONE_COW)))
bc2466e4 3908 return ret;
7eae74af 3909
667240e0 3910 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 3911 struct page *page = vmf->page;
e53ac737
RR
3912 vm_fault_t poisonret = VM_FAULT_HWPOISON;
3913 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
3914 if (page_mapped(page))
3915 unmap_mapping_pages(page_mapping(page),
3916 page->index, 1, false);
e53ac737 3917 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
3918 if (invalidate_inode_page(page))
3919 poisonret = VM_FAULT_NOPAGE;
3920 unlock_page(page);
e53ac737 3921 }
3149c79f 3922 put_page(page);
936ca80d 3923 vmf->page = NULL;
e53ac737 3924 return poisonret;
7eae74af
KS
3925 }
3926
3927 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3928 lock_page(vmf->page);
7eae74af 3929 else
667240e0 3930 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3931
7eae74af
KS
3932 return ret;
3933}
3934
396bcc52 3935#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3936static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3937{
82b0f8c3 3938 struct vm_area_struct *vma = vmf->vma;
953c66c2 3939
82b0f8c3 3940 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3941 /*
3942 * We are going to consume the prealloc table,
3943 * count that as nr_ptes.
3944 */
c4812909 3945 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3946 vmf->prealloc_pte = NULL;
953c66c2
AK
3947}
3948
f9ce0be7 3949vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3950{
82b0f8c3
JK
3951 struct vm_area_struct *vma = vmf->vma;
3952 bool write = vmf->flags & FAULT_FLAG_WRITE;
3953 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3954 pmd_t entry;
2b740303 3955 int i;
d01ac3c3 3956 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3957
3958 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3959 return ret;
10102459 3960
10102459 3961 page = compound_head(page);
d01ac3c3
MWO
3962 if (compound_order(page) != HPAGE_PMD_ORDER)
3963 return ret;
10102459 3964
eac96c3e
YS
3965 /*
3966 * Just backoff if any subpage of a THP is corrupted otherwise
3967 * the corrupted page may mapped by PMD silently to escape the
3968 * check. This kind of THP just can be PTE mapped. Access to
3969 * the corrupted subpage should trigger SIGBUS as expected.
3970 */
3971 if (unlikely(PageHasHWPoisoned(page)))
3972 return ret;
3973
953c66c2 3974 /*
f0953a1b 3975 * Archs like ppc64 need additional space to store information
953c66c2
AK
3976 * related to pte entry. Use the preallocated table for that.
3977 */
82b0f8c3 3978 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3979 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3980 if (!vmf->prealloc_pte)
953c66c2 3981 return VM_FAULT_OOM;
953c66c2
AK
3982 }
3983
82b0f8c3
JK
3984 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3985 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3986 goto out;
3987
3988 for (i = 0; i < HPAGE_PMD_NR; i++)
3989 flush_icache_page(vma, page + i);
3990
3991 entry = mk_huge_pmd(page, vma->vm_page_prot);
3992 if (write)
f55e1014 3993 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3994
fadae295 3995 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
3996 page_add_file_rmap(page, vma, true);
3997
953c66c2
AK
3998 /*
3999 * deposit and withdraw with pmd lock held
4000 */
4001 if (arch_needs_pgtable_deposit())
82b0f8c3 4002 deposit_prealloc_pte(vmf);
10102459 4003
82b0f8c3 4004 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4005
82b0f8c3 4006 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4007
4008 /* fault is handled */
4009 ret = 0;
95ecedcd 4010 count_vm_event(THP_FILE_MAPPED);
10102459 4011out:
82b0f8c3 4012 spin_unlock(vmf->ptl);
10102459
KS
4013 return ret;
4014}
4015#else
f9ce0be7 4016vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4017{
f9ce0be7 4018 return VM_FAULT_FALLBACK;
10102459
KS
4019}
4020#endif
4021
9d3af4b4 4022void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4023{
82b0f8c3
JK
4024 struct vm_area_struct *vma = vmf->vma;
4025 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4026 bool prefault = vmf->address != addr;
3bb97794 4027 pte_t entry;
7267ec00 4028
3bb97794
KS
4029 flush_icache_page(vma, page);
4030 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4031
4032 if (prefault && arch_wants_old_prefaulted_pte())
4033 entry = pte_mkold(entry);
50c25ee9
TB
4034 else
4035 entry = pte_sw_mkyoung(entry);
46bdb427 4036
3bb97794
KS
4037 if (write)
4038 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
4039 /* copy-on-write page */
4040 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4041 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 4042 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 4043 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4044 } else {
eca56ff9 4045 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4046 page_add_file_rmap(page, vma, false);
3bb97794 4047 }
9d3af4b4 4048 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4049}
4050
9118c0cb
JK
4051/**
4052 * finish_fault - finish page fault once we have prepared the page to fault
4053 *
4054 * @vmf: structure describing the fault
4055 *
4056 * This function handles all that is needed to finish a page fault once the
4057 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4058 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4059 * addition.
9118c0cb
JK
4060 *
4061 * The function expects the page to be locked and on success it consumes a
4062 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4063 *
4064 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4065 */
2b740303 4066vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4067{
f9ce0be7 4068 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4069 struct page *page;
f9ce0be7 4070 vm_fault_t ret;
9118c0cb
JK
4071
4072 /* Did we COW the page? */
f9ce0be7 4073 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4074 page = vmf->cow_page;
4075 else
4076 page = vmf->page;
6b31d595
MH
4077
4078 /*
4079 * check even for read faults because we might have lost our CoWed
4080 * page
4081 */
f9ce0be7
KS
4082 if (!(vma->vm_flags & VM_SHARED)) {
4083 ret = check_stable_address_space(vma->vm_mm);
4084 if (ret)
4085 return ret;
4086 }
4087
4088 if (pmd_none(*vmf->pmd)) {
4089 if (PageTransCompound(page)) {
4090 ret = do_set_pmd(vmf, page);
4091 if (ret != VM_FAULT_FALLBACK)
4092 return ret;
4093 }
4094
03c4f204
QZ
4095 if (vmf->prealloc_pte)
4096 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4097 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4098 return VM_FAULT_OOM;
4099 }
4100
4101 /* See comment in handle_pte_fault() */
4102 if (pmd_devmap_trans_unstable(vmf->pmd))
4103 return 0;
4104
4105 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4106 vmf->address, &vmf->ptl);
4107 ret = 0;
4108 /* Re-check under ptl */
4109 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4110 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4111 else
4112 ret = VM_FAULT_NOPAGE;
4113
4114 update_mmu_tlb(vma, vmf->address, vmf->pte);
4115 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4116 return ret;
4117}
4118
3a91053a
KS
4119static unsigned long fault_around_bytes __read_mostly =
4120 rounddown_pow_of_two(65536);
a9b0f861 4121
a9b0f861
KS
4122#ifdef CONFIG_DEBUG_FS
4123static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4124{
a9b0f861 4125 *val = fault_around_bytes;
1592eef0
KS
4126 return 0;
4127}
4128
b4903d6e 4129/*
da391d64
WK
4130 * fault_around_bytes must be rounded down to the nearest page order as it's
4131 * what do_fault_around() expects to see.
b4903d6e 4132 */
a9b0f861 4133static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4134{
a9b0f861 4135 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4136 return -EINVAL;
b4903d6e
AR
4137 if (val > PAGE_SIZE)
4138 fault_around_bytes = rounddown_pow_of_two(val);
4139 else
4140 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4141 return 0;
4142}
0a1345f8 4143DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4144 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4145
4146static int __init fault_around_debugfs(void)
4147{
d9f7979c
GKH
4148 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4149 &fault_around_bytes_fops);
1592eef0
KS
4150 return 0;
4151}
4152late_initcall(fault_around_debugfs);
1592eef0 4153#endif
8c6e50b0 4154
1fdb412b
KS
4155/*
4156 * do_fault_around() tries to map few pages around the fault address. The hope
4157 * is that the pages will be needed soon and this will lower the number of
4158 * faults to handle.
4159 *
4160 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4161 * not ready to be mapped: not up-to-date, locked, etc.
4162 *
4163 * This function is called with the page table lock taken. In the split ptlock
4164 * case the page table lock only protects only those entries which belong to
4165 * the page table corresponding to the fault address.
4166 *
4167 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4168 * only once.
4169 *
da391d64
WK
4170 * fault_around_bytes defines how many bytes we'll try to map.
4171 * do_fault_around() expects it to be set to a power of two less than or equal
4172 * to PTRS_PER_PTE.
1fdb412b 4173 *
da391d64
WK
4174 * The virtual address of the area that we map is naturally aligned to
4175 * fault_around_bytes rounded down to the machine page size
4176 * (and therefore to page order). This way it's easier to guarantee
4177 * that we don't cross page table boundaries.
1fdb412b 4178 */
2b740303 4179static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4180{
82b0f8c3 4181 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4182 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4183 pgoff_t end_pgoff;
2b740303 4184 int off;
8c6e50b0 4185
4db0c3c2 4186 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4187 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4188
f9ce0be7
KS
4189 address = max(address & mask, vmf->vma->vm_start);
4190 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4191 start_pgoff -= off;
8c6e50b0
KS
4192
4193 /*
da391d64
WK
4194 * end_pgoff is either the end of the page table, the end of
4195 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4196 */
bae473a4 4197 end_pgoff = start_pgoff -
f9ce0be7 4198 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4199 PTRS_PER_PTE - 1;
82b0f8c3 4200 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4201 start_pgoff + nr_pages - 1);
8c6e50b0 4202
82b0f8c3 4203 if (pmd_none(*vmf->pmd)) {
4cf58924 4204 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4205 if (!vmf->prealloc_pte)
f9ce0be7 4206 return VM_FAULT_OOM;
8c6e50b0
KS
4207 }
4208
f9ce0be7 4209 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4210}
4211
2b740303 4212static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4213{
82b0f8c3 4214 struct vm_area_struct *vma = vmf->vma;
2b740303 4215 vm_fault_t ret = 0;
8c6e50b0
KS
4216
4217 /*
4218 * Let's call ->map_pages() first and use ->fault() as fallback
4219 * if page by the offset is not ready to be mapped (cold cache or
4220 * something).
4221 */
9b4bdd2f 4222 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4223 if (likely(!userfaultfd_minor(vmf->vma))) {
4224 ret = do_fault_around(vmf);
4225 if (ret)
4226 return ret;
4227 }
8c6e50b0 4228 }
e655fb29 4229
936ca80d 4230 ret = __do_fault(vmf);
e655fb29
KS
4231 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4232 return ret;
4233
9118c0cb 4234 ret |= finish_fault(vmf);
936ca80d 4235 unlock_page(vmf->page);
7267ec00 4236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4237 put_page(vmf->page);
e655fb29
KS
4238 return ret;
4239}
4240
2b740303 4241static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4242{
82b0f8c3 4243 struct vm_area_struct *vma = vmf->vma;
2b740303 4244 vm_fault_t ret;
ec47c3b9
KS
4245
4246 if (unlikely(anon_vma_prepare(vma)))
4247 return VM_FAULT_OOM;
4248
936ca80d
JK
4249 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4250 if (!vmf->cow_page)
ec47c3b9
KS
4251 return VM_FAULT_OOM;
4252
8f425e4e
MWO
4253 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4254 GFP_KERNEL)) {
936ca80d 4255 put_page(vmf->cow_page);
ec47c3b9
KS
4256 return VM_FAULT_OOM;
4257 }
9d82c694 4258 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4259
936ca80d 4260 ret = __do_fault(vmf);
ec47c3b9
KS
4261 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4262 goto uncharge_out;
3917048d
JK
4263 if (ret & VM_FAULT_DONE_COW)
4264 return ret;
ec47c3b9 4265
b1aa812b 4266 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4267 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4268
9118c0cb 4269 ret |= finish_fault(vmf);
b1aa812b
JK
4270 unlock_page(vmf->page);
4271 put_page(vmf->page);
7267ec00
KS
4272 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4273 goto uncharge_out;
ec47c3b9
KS
4274 return ret;
4275uncharge_out:
936ca80d 4276 put_page(vmf->cow_page);
ec47c3b9
KS
4277 return ret;
4278}
4279
2b740303 4280static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4281{
82b0f8c3 4282 struct vm_area_struct *vma = vmf->vma;
2b740303 4283 vm_fault_t ret, tmp;
1d65f86d 4284
936ca80d 4285 ret = __do_fault(vmf);
7eae74af 4286 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4287 return ret;
1da177e4
LT
4288
4289 /*
f0c6d4d2
KS
4290 * Check if the backing address space wants to know that the page is
4291 * about to become writable
1da177e4 4292 */
fb09a464 4293 if (vma->vm_ops->page_mkwrite) {
936ca80d 4294 unlock_page(vmf->page);
38b8cb7f 4295 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4296 if (unlikely(!tmp ||
4297 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4298 put_page(vmf->page);
fb09a464 4299 return tmp;
4294621f 4300 }
fb09a464
KS
4301 }
4302
9118c0cb 4303 ret |= finish_fault(vmf);
7267ec00
KS
4304 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4305 VM_FAULT_RETRY))) {
936ca80d
JK
4306 unlock_page(vmf->page);
4307 put_page(vmf->page);
f0c6d4d2 4308 return ret;
1da177e4 4309 }
b827e496 4310
89b15332 4311 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4312 return ret;
54cb8821 4313}
d00806b1 4314
9a95f3cf 4315/*
c1e8d7c6 4316 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4317 * but allow concurrent faults).
c1e8d7c6 4318 * The mmap_lock may have been released depending on flags and our
9138e47e 4319 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4320 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4321 * by other thread calling munmap()).
9a95f3cf 4322 */
2b740303 4323static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4324{
82b0f8c3 4325 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4326 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4327 vm_fault_t ret;
54cb8821 4328
ff09d7ec
AK
4329 /*
4330 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4331 */
4332 if (!vma->vm_ops->fault) {
4333 /*
4334 * If we find a migration pmd entry or a none pmd entry, which
4335 * should never happen, return SIGBUS
4336 */
4337 if (unlikely(!pmd_present(*vmf->pmd)))
4338 ret = VM_FAULT_SIGBUS;
4339 else {
4340 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4341 vmf->pmd,
4342 vmf->address,
4343 &vmf->ptl);
4344 /*
4345 * Make sure this is not a temporary clearing of pte
4346 * by holding ptl and checking again. A R/M/W update
4347 * of pte involves: take ptl, clearing the pte so that
4348 * we don't have concurrent modification by hardware
4349 * followed by an update.
4350 */
4351 if (unlikely(pte_none(*vmf->pte)))
4352 ret = VM_FAULT_SIGBUS;
4353 else
4354 ret = VM_FAULT_NOPAGE;
4355
4356 pte_unmap_unlock(vmf->pte, vmf->ptl);
4357 }
4358 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4359 ret = do_read_fault(vmf);
4360 else if (!(vma->vm_flags & VM_SHARED))
4361 ret = do_cow_fault(vmf);
4362 else
4363 ret = do_shared_fault(vmf);
4364
4365 /* preallocated pagetable is unused: free it */
4366 if (vmf->prealloc_pte) {
fc8efd2d 4367 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4368 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4369 }
4370 return ret;
54cb8821
NP
4371}
4372
f4c0d836
YS
4373int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4374 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4375{
4376 get_page(page);
4377
4378 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4379 if (page_nid == numa_node_id()) {
9532fec1 4380 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4381 *flags |= TNF_FAULT_LOCAL;
4382 }
9532fec1
MG
4383
4384 return mpol_misplaced(page, vma, addr);
4385}
4386
2b740303 4387static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4388{
82b0f8c3 4389 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4390 struct page *page = NULL;
98fa15f3 4391 int page_nid = NUMA_NO_NODE;
90572890 4392 int last_cpupid;
cbee9f88 4393 int target_nid;
04a86453 4394 pte_t pte, old_pte;
288bc549 4395 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4396 int flags = 0;
d10e63f2
MG
4397
4398 /*
166f61b9
TH
4399 * The "pte" at this point cannot be used safely without
4400 * validation through pte_unmap_same(). It's of NUMA type but
4401 * the pfn may be screwed if the read is non atomic.
166f61b9 4402 */
82b0f8c3
JK
4403 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4404 spin_lock(vmf->ptl);
cee216a6 4405 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4407 goto out;
4408 }
4409
b99a342d
HY
4410 /* Get the normal PTE */
4411 old_pte = ptep_get(vmf->pte);
04a86453 4412 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4413
82b0f8c3 4414 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4415 if (!page)
4416 goto out_map;
d10e63f2 4417
e81c4802 4418 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4419 if (PageCompound(page))
4420 goto out_map;
e81c4802 4421
6688cc05 4422 /*
bea66fbd
MG
4423 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4424 * much anyway since they can be in shared cache state. This misses
4425 * the case where a mapping is writable but the process never writes
4426 * to it but pte_write gets cleared during protection updates and
4427 * pte_dirty has unpredictable behaviour between PTE scan updates,
4428 * background writeback, dirty balancing and application behaviour.
6688cc05 4429 */
b99a342d 4430 if (!was_writable)
6688cc05
PZ
4431 flags |= TNF_NO_GROUP;
4432
dabe1d99
RR
4433 /*
4434 * Flag if the page is shared between multiple address spaces. This
4435 * is later used when determining whether to group tasks together
4436 */
4437 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4438 flags |= TNF_SHARED;
4439
90572890 4440 last_cpupid = page_cpupid_last(page);
8191acbd 4441 page_nid = page_to_nid(page);
82b0f8c3 4442 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4443 &flags);
98fa15f3 4444 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4445 put_page(page);
b99a342d 4446 goto out_map;
4daae3b4 4447 }
b99a342d 4448 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4449
4450 /* Migrate to the requested node */
bf90ac19 4451 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4452 page_nid = target_nid;
6688cc05 4453 flags |= TNF_MIGRATED;
b99a342d 4454 } else {
074c2381 4455 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4456 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4457 spin_lock(vmf->ptl);
4458 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4459 pte_unmap_unlock(vmf->pte, vmf->ptl);
4460 goto out;
4461 }
4462 goto out_map;
4463 }
4daae3b4
MG
4464
4465out:
98fa15f3 4466 if (page_nid != NUMA_NO_NODE)
6688cc05 4467 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4468 return 0;
b99a342d
HY
4469out_map:
4470 /*
4471 * Make it present again, depending on how arch implements
4472 * non-accessible ptes, some can allow access by kernel mode.
4473 */
4474 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4475 pte = pte_modify(old_pte, vma->vm_page_prot);
4476 pte = pte_mkyoung(pte);
4477 if (was_writable)
4478 pte = pte_mkwrite(pte);
4479 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4480 update_mmu_cache(vma, vmf->address, vmf->pte);
4481 pte_unmap_unlock(vmf->pte, vmf->ptl);
4482 goto out;
d10e63f2
MG
4483}
4484
2b740303 4485static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4486{
f4200391 4487 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4488 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4489 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4490 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4491 return VM_FAULT_FALLBACK;
4492}
4493
183f24aa 4494/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4495static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4496{
529b930b 4497 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4498 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4499 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4500 return do_huge_pmd_wp_page(vmf);
529b930b 4501 }
327e9fd4
THV
4502 if (vmf->vma->vm_ops->huge_fault) {
4503 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4504
4505 if (!(ret & VM_FAULT_FALLBACK))
4506 return ret;
4507 }
af9e4d5f 4508
327e9fd4 4509 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4510 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4511
b96375f7
MW
4512 return VM_FAULT_FALLBACK;
4513}
4514
2b740303 4515static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4516{
327e9fd4
THV
4517#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4518 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4519 /* No support for anonymous transparent PUD pages yet */
4520 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4521 goto split;
4522 if (vmf->vma->vm_ops->huge_fault) {
4523 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4524
4525 if (!(ret & VM_FAULT_FALLBACK))
4526 return ret;
4527 }
4528split:
4529 /* COW or write-notify not handled on PUD level: split pud.*/
4530 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4531#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4532 return VM_FAULT_FALLBACK;
4533}
4534
2b740303 4535static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4536{
4537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4538 /* No support for anonymous transparent PUD pages yet */
4539 if (vma_is_anonymous(vmf->vma))
4540 return VM_FAULT_FALLBACK;
4541 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4542 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4543#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4544 return VM_FAULT_FALLBACK;
4545}
4546
1da177e4
LT
4547/*
4548 * These routines also need to handle stuff like marking pages dirty
4549 * and/or accessed for architectures that don't do it in hardware (most
4550 * RISC architectures). The early dirtying is also good on the i386.
4551 *
4552 * There is also a hook called "update_mmu_cache()" that architectures
4553 * with external mmu caches can use to update those (ie the Sparc or
4554 * PowerPC hashed page tables that act as extended TLBs).
4555 *
c1e8d7c6 4556 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4557 * concurrent faults).
9a95f3cf 4558 *
c1e8d7c6 4559 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4560 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4561 */
2b740303 4562static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4563{
4564 pte_t entry;
4565
82b0f8c3 4566 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4567 /*
4568 * Leave __pte_alloc() until later: because vm_ops->fault may
4569 * want to allocate huge page, and if we expose page table
4570 * for an instant, it will be difficult to retract from
4571 * concurrent faults and from rmap lookups.
4572 */
82b0f8c3 4573 vmf->pte = NULL;
7267ec00 4574 } else {
f9ce0be7
KS
4575 /*
4576 * If a huge pmd materialized under us just retry later. Use
4577 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4578 * of pmd_trans_huge() to ensure the pmd didn't become
4579 * pmd_trans_huge under us and then back to pmd_none, as a
4580 * result of MADV_DONTNEED running immediately after a huge pmd
4581 * fault in a different thread of this mm, in turn leading to a
4582 * misleading pmd_trans_huge() retval. All we have to ensure is
4583 * that it is a regular pmd that we can walk with
4584 * pte_offset_map() and we can do that through an atomic read
4585 * in C, which is what pmd_trans_unstable() provides.
4586 */
d0f0931d 4587 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4588 return 0;
4589 /*
4590 * A regular pmd is established and it can't morph into a huge
4591 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4592 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4593 * So now it's safe to run pte_offset_map().
4594 */
82b0f8c3 4595 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4596 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4597
4598 /*
4599 * some architectures can have larger ptes than wordsize,
4600 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4601 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4602 * accesses. The code below just needs a consistent view
4603 * for the ifs and we later double check anyway with the
7267ec00
KS
4604 * ptl lock held. So here a barrier will do.
4605 */
4606 barrier();
2994302b 4607 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4608 pte_unmap(vmf->pte);
4609 vmf->pte = NULL;
65500d23 4610 }
1da177e4
LT
4611 }
4612
82b0f8c3
JK
4613 if (!vmf->pte) {
4614 if (vma_is_anonymous(vmf->vma))
4615 return do_anonymous_page(vmf);
7267ec00 4616 else
82b0f8c3 4617 return do_fault(vmf);
7267ec00
KS
4618 }
4619
2994302b
JK
4620 if (!pte_present(vmf->orig_pte))
4621 return do_swap_page(vmf);
7267ec00 4622
2994302b
JK
4623 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4624 return do_numa_page(vmf);
d10e63f2 4625
82b0f8c3
JK
4626 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4627 spin_lock(vmf->ptl);
2994302b 4628 entry = vmf->orig_pte;
7df67697
BM
4629 if (unlikely(!pte_same(*vmf->pte, entry))) {
4630 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4631 goto unlock;
7df67697 4632 }
82b0f8c3 4633 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4634 if (!pte_write(entry))
2994302b 4635 return do_wp_page(vmf);
1da177e4
LT
4636 entry = pte_mkdirty(entry);
4637 }
4638 entry = pte_mkyoung(entry);
82b0f8c3
JK
4639 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4640 vmf->flags & FAULT_FLAG_WRITE)) {
4641 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4642 } else {
b7333b58
YS
4643 /* Skip spurious TLB flush for retried page fault */
4644 if (vmf->flags & FAULT_FLAG_TRIED)
4645 goto unlock;
1a44e149
AA
4646 /*
4647 * This is needed only for protection faults but the arch code
4648 * is not yet telling us if this is a protection fault or not.
4649 * This still avoids useless tlb flushes for .text page faults
4650 * with threads.
4651 */
82b0f8c3
JK
4652 if (vmf->flags & FAULT_FLAG_WRITE)
4653 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4654 }
8f4e2101 4655unlock:
82b0f8c3 4656 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4657 return 0;
1da177e4
LT
4658}
4659
4660/*
4661 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4662 *
c1e8d7c6 4663 * The mmap_lock may have been released depending on flags and our
9138e47e 4664 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4665 */
2b740303
SJ
4666static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4667 unsigned long address, unsigned int flags)
1da177e4 4668{
82b0f8c3 4669 struct vm_fault vmf = {
bae473a4 4670 .vma = vma,
1a29d85e 4671 .address = address & PAGE_MASK,
824ddc60 4672 .real_address = address,
bae473a4 4673 .flags = flags,
0721ec8b 4674 .pgoff = linear_page_index(vma, address),
667240e0 4675 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4676 };
fde26bed 4677 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4678 struct mm_struct *mm = vma->vm_mm;
1da177e4 4679 pgd_t *pgd;
c2febafc 4680 p4d_t *p4d;
2b740303 4681 vm_fault_t ret;
1da177e4 4682
1da177e4 4683 pgd = pgd_offset(mm, address);
c2febafc
KS
4684 p4d = p4d_alloc(mm, pgd, address);
4685 if (!p4d)
4686 return VM_FAULT_OOM;
a00cc7d9 4687
c2febafc 4688 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4689 if (!vmf.pud)
c74df32c 4690 return VM_FAULT_OOM;
625110b5 4691retry_pud:
7635d9cb 4692 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4693 ret = create_huge_pud(&vmf);
4694 if (!(ret & VM_FAULT_FALLBACK))
4695 return ret;
4696 } else {
4697 pud_t orig_pud = *vmf.pud;
4698
4699 barrier();
4700 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4701
a00cc7d9
MW
4702 /* NUMA case for anonymous PUDs would go here */
4703
f6f37321 4704 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4705 ret = wp_huge_pud(&vmf, orig_pud);
4706 if (!(ret & VM_FAULT_FALLBACK))
4707 return ret;
4708 } else {
4709 huge_pud_set_accessed(&vmf, orig_pud);
4710 return 0;
4711 }
4712 }
4713 }
4714
4715 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4716 if (!vmf.pmd)
c74df32c 4717 return VM_FAULT_OOM;
625110b5
TH
4718
4719 /* Huge pud page fault raced with pmd_alloc? */
4720 if (pud_trans_unstable(vmf.pud))
4721 goto retry_pud;
4722
7635d9cb 4723 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4724 ret = create_huge_pmd(&vmf);
c0292554
KS
4725 if (!(ret & VM_FAULT_FALLBACK))
4726 return ret;
71e3aac0 4727 } else {
5db4f15c 4728 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4729
71e3aac0 4730 barrier();
5db4f15c 4731 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4732 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4733 !is_pmd_migration_entry(vmf.orig_pmd));
4734 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4735 pmd_migration_entry_wait(mm, vmf.pmd);
4736 return 0;
4737 }
5db4f15c
YS
4738 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4739 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4740 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4741
5db4f15c
YS
4742 if (dirty && !pmd_write(vmf.orig_pmd)) {
4743 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4744 if (!(ret & VM_FAULT_FALLBACK))
4745 return ret;
a1dd450b 4746 } else {
5db4f15c 4747 huge_pmd_set_accessed(&vmf);
9845cbbd 4748 return 0;
1f1d06c3 4749 }
71e3aac0
AA
4750 }
4751 }
4752
82b0f8c3 4753 return handle_pte_fault(&vmf);
1da177e4
LT
4754}
4755
bce617ed 4756/**
f0953a1b 4757 * mm_account_fault - Do page fault accounting
bce617ed
PX
4758 *
4759 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4760 * of perf event counters, but we'll still do the per-task accounting to
4761 * the task who triggered this page fault.
4762 * @address: the faulted address.
4763 * @flags: the fault flags.
4764 * @ret: the fault retcode.
4765 *
f0953a1b 4766 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4767 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4768 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4769 * still be in per-arch page fault handlers at the entry of page fault.
4770 */
4771static inline void mm_account_fault(struct pt_regs *regs,
4772 unsigned long address, unsigned int flags,
4773 vm_fault_t ret)
4774{
4775 bool major;
4776
4777 /*
4778 * We don't do accounting for some specific faults:
4779 *
4780 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4781 * includes arch_vma_access_permitted() failing before reaching here.
4782 * So this is not a "this many hardware page faults" counter. We
4783 * should use the hw profiling for that.
4784 *
4785 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4786 * once they're completed.
4787 */
4788 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4789 return;
4790
4791 /*
4792 * We define the fault as a major fault when the final successful fault
4793 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4794 * handle it immediately previously).
4795 */
4796 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4797
a2beb5f1
PX
4798 if (major)
4799 current->maj_flt++;
4800 else
4801 current->min_flt++;
4802
bce617ed 4803 /*
a2beb5f1
PX
4804 * If the fault is done for GUP, regs will be NULL. We only do the
4805 * accounting for the per thread fault counters who triggered the
4806 * fault, and we skip the perf event updates.
bce617ed
PX
4807 */
4808 if (!regs)
4809 return;
4810
a2beb5f1 4811 if (major)
bce617ed 4812 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4813 else
bce617ed 4814 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4815}
4816
9a95f3cf
PC
4817/*
4818 * By the time we get here, we already hold the mm semaphore
4819 *
c1e8d7c6 4820 * The mmap_lock may have been released depending on flags and our
9138e47e 4821 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 4822 */
2b740303 4823vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4824 unsigned int flags, struct pt_regs *regs)
519e5247 4825{
2b740303 4826 vm_fault_t ret;
519e5247
JW
4827
4828 __set_current_state(TASK_RUNNING);
4829
4830 count_vm_event(PGFAULT);
2262185c 4831 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4832
4833 /* do counter updates before entering really critical section. */
4834 check_sync_rss_stat(current);
4835
de0c799b
LD
4836 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4837 flags & FAULT_FLAG_INSTRUCTION,
4838 flags & FAULT_FLAG_REMOTE))
4839 return VM_FAULT_SIGSEGV;
4840
519e5247
JW
4841 /*
4842 * Enable the memcg OOM handling for faults triggered in user
4843 * space. Kernel faults are handled more gracefully.
4844 */
4845 if (flags & FAULT_FLAG_USER)
29ef680a 4846 mem_cgroup_enter_user_fault();
519e5247 4847
bae473a4
KS
4848 if (unlikely(is_vm_hugetlb_page(vma)))
4849 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4850 else
4851 ret = __handle_mm_fault(vma, address, flags);
519e5247 4852
49426420 4853 if (flags & FAULT_FLAG_USER) {
29ef680a 4854 mem_cgroup_exit_user_fault();
166f61b9
TH
4855 /*
4856 * The task may have entered a memcg OOM situation but
4857 * if the allocation error was handled gracefully (no
4858 * VM_FAULT_OOM), there is no need to kill anything.
4859 * Just clean up the OOM state peacefully.
4860 */
4861 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4862 mem_cgroup_oom_synchronize(false);
49426420 4863 }
3812c8c8 4864
bce617ed
PX
4865 mm_account_fault(regs, address, flags, ret);
4866
519e5247
JW
4867 return ret;
4868}
e1d6d01a 4869EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4870
90eceff1
KS
4871#ifndef __PAGETABLE_P4D_FOLDED
4872/*
4873 * Allocate p4d page table.
4874 * We've already handled the fast-path in-line.
4875 */
4876int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4877{
4878 p4d_t *new = p4d_alloc_one(mm, address);
4879 if (!new)
4880 return -ENOMEM;
4881
90eceff1 4882 spin_lock(&mm->page_table_lock);
ed33b5a6 4883 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 4884 p4d_free(mm, new);
ed33b5a6
QZ
4885 } else {
4886 smp_wmb(); /* See comment in pmd_install() */
90eceff1 4887 pgd_populate(mm, pgd, new);
ed33b5a6 4888 }
90eceff1
KS
4889 spin_unlock(&mm->page_table_lock);
4890 return 0;
4891}
4892#endif /* __PAGETABLE_P4D_FOLDED */
4893
1da177e4
LT
4894#ifndef __PAGETABLE_PUD_FOLDED
4895/*
4896 * Allocate page upper directory.
872fec16 4897 * We've already handled the fast-path in-line.
1da177e4 4898 */
c2febafc 4899int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4900{
c74df32c
HD
4901 pud_t *new = pud_alloc_one(mm, address);
4902 if (!new)
1bb3630e 4903 return -ENOMEM;
1da177e4 4904
872fec16 4905 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4906 if (!p4d_present(*p4d)) {
4907 mm_inc_nr_puds(mm);
ed33b5a6 4908 smp_wmb(); /* See comment in pmd_install() */
c2febafc 4909 p4d_populate(mm, p4d, new);
b4e98d9a 4910 } else /* Another has populated it */
5e541973 4911 pud_free(mm, new);
c74df32c 4912 spin_unlock(&mm->page_table_lock);
1bb3630e 4913 return 0;
1da177e4
LT
4914}
4915#endif /* __PAGETABLE_PUD_FOLDED */
4916
4917#ifndef __PAGETABLE_PMD_FOLDED
4918/*
4919 * Allocate page middle directory.
872fec16 4920 * We've already handled the fast-path in-line.
1da177e4 4921 */
1bb3630e 4922int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4923{
a00cc7d9 4924 spinlock_t *ptl;
c74df32c
HD
4925 pmd_t *new = pmd_alloc_one(mm, address);
4926 if (!new)
1bb3630e 4927 return -ENOMEM;
1da177e4 4928
a00cc7d9 4929 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4930 if (!pud_present(*pud)) {
4931 mm_inc_nr_pmds(mm);
ed33b5a6 4932 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 4933 pud_populate(mm, pud, new);
ed33b5a6 4934 } else { /* Another has populated it */
5e541973 4935 pmd_free(mm, new);
ed33b5a6 4936 }
a00cc7d9 4937 spin_unlock(ptl);
1bb3630e 4938 return 0;
e0f39591 4939}
1da177e4
LT
4940#endif /* __PAGETABLE_PMD_FOLDED */
4941
0e5e64c0
MS
4942/**
4943 * follow_pte - look up PTE at a user virtual address
4944 * @mm: the mm_struct of the target address space
4945 * @address: user virtual address
4946 * @ptepp: location to store found PTE
4947 * @ptlp: location to store the lock for the PTE
4948 *
4949 * On a successful return, the pointer to the PTE is stored in @ptepp;
4950 * the corresponding lock is taken and its location is stored in @ptlp.
4951 * The contents of the PTE are only stable until @ptlp is released;
4952 * any further use, if any, must be protected against invalidation
4953 * with MMU notifiers.
4954 *
4955 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4956 * should be taken for read.
4957 *
4958 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4959 * it is not a good general-purpose API.
4960 *
4961 * Return: zero on success, -ve otherwise.
4962 */
4963int follow_pte(struct mm_struct *mm, unsigned long address,
4964 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
4965{
4966 pgd_t *pgd;
c2febafc 4967 p4d_t *p4d;
f8ad0f49
JW
4968 pud_t *pud;
4969 pmd_t *pmd;
4970 pte_t *ptep;
4971
4972 pgd = pgd_offset(mm, address);
4973 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4974 goto out;
4975
c2febafc
KS
4976 p4d = p4d_offset(pgd, address);
4977 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4978 goto out;
4979
4980 pud = pud_offset(p4d, address);
f8ad0f49
JW
4981 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4982 goto out;
4983
4984 pmd = pmd_offset(pud, address);
f66055ab 4985 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4986
09796395 4987 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4988 goto out;
4989
4990 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4991 if (!pte_present(*ptep))
4992 goto unlock;
4993 *ptepp = ptep;
4994 return 0;
4995unlock:
4996 pte_unmap_unlock(ptep, *ptlp);
4997out:
4998 return -EINVAL;
4999}
9fd6dad1
PB
5000EXPORT_SYMBOL_GPL(follow_pte);
5001
3b6748e2
JW
5002/**
5003 * follow_pfn - look up PFN at a user virtual address
5004 * @vma: memory mapping
5005 * @address: user virtual address
5006 * @pfn: location to store found PFN
5007 *
5008 * Only IO mappings and raw PFN mappings are allowed.
5009 *
9fd6dad1
PB
5010 * This function does not allow the caller to read the permissions
5011 * of the PTE. Do not use it.
5012 *
a862f68a 5013 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5014 */
5015int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5016 unsigned long *pfn)
5017{
5018 int ret = -EINVAL;
5019 spinlock_t *ptl;
5020 pte_t *ptep;
5021
5022 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5023 return ret;
5024
9fd6dad1 5025 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5026 if (ret)
5027 return ret;
5028 *pfn = pte_pfn(*ptep);
5029 pte_unmap_unlock(ptep, ptl);
5030 return 0;
5031}
5032EXPORT_SYMBOL(follow_pfn);
5033
28b2ee20 5034#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5035int follow_phys(struct vm_area_struct *vma,
5036 unsigned long address, unsigned int flags,
5037 unsigned long *prot, resource_size_t *phys)
28b2ee20 5038{
03668a4d 5039 int ret = -EINVAL;
28b2ee20
RR
5040 pte_t *ptep, pte;
5041 spinlock_t *ptl;
28b2ee20 5042
d87fe660 5043 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5044 goto out;
28b2ee20 5045
9fd6dad1 5046 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5047 goto out;
28b2ee20 5048 pte = *ptep;
03668a4d 5049
f6f37321 5050 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5051 goto unlock;
28b2ee20
RR
5052
5053 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5054 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5055
03668a4d 5056 ret = 0;
28b2ee20
RR
5057unlock:
5058 pte_unmap_unlock(ptep, ptl);
5059out:
d87fe660 5060 return ret;
28b2ee20
RR
5061}
5062
96667f8a
DV
5063/**
5064 * generic_access_phys - generic implementation for iomem mmap access
5065 * @vma: the vma to access
f0953a1b 5066 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5067 * @buf: buffer to read/write
5068 * @len: length of transfer
5069 * @write: set to FOLL_WRITE when writing, otherwise reading
5070 *
5071 * This is a generic implementation for &vm_operations_struct.access for an
5072 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5073 * not page based.
5074 */
28b2ee20
RR
5075int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5076 void *buf, int len, int write)
5077{
5078 resource_size_t phys_addr;
5079 unsigned long prot = 0;
2bc7273b 5080 void __iomem *maddr;
96667f8a
DV
5081 pte_t *ptep, pte;
5082 spinlock_t *ptl;
5083 int offset = offset_in_page(addr);
5084 int ret = -EINVAL;
5085
5086 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5087 return -EINVAL;
5088
5089retry:
e913a8cd 5090 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5091 return -EINVAL;
5092 pte = *ptep;
5093 pte_unmap_unlock(ptep, ptl);
28b2ee20 5094
96667f8a
DV
5095 prot = pgprot_val(pte_pgprot(pte));
5096 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5097
5098 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5099 return -EINVAL;
5100
9cb12d7b 5101 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5102 if (!maddr)
5103 return -ENOMEM;
5104
e913a8cd 5105 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5106 goto out_unmap;
5107
5108 if (!pte_same(pte, *ptep)) {
5109 pte_unmap_unlock(ptep, ptl);
5110 iounmap(maddr);
5111
5112 goto retry;
5113 }
5114
28b2ee20
RR
5115 if (write)
5116 memcpy_toio(maddr + offset, buf, len);
5117 else
5118 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5119 ret = len;
5120 pte_unmap_unlock(ptep, ptl);
5121out_unmap:
28b2ee20
RR
5122 iounmap(maddr);
5123
96667f8a 5124 return ret;
28b2ee20 5125}
5a73633e 5126EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5127#endif
5128
0ec76a11 5129/*
d3f5ffca 5130 * Access another process' address space as given in mm.
0ec76a11 5131 */
d3f5ffca
JH
5132int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5133 int len, unsigned int gup_flags)
0ec76a11 5134{
0ec76a11 5135 struct vm_area_struct *vma;
0ec76a11 5136 void *old_buf = buf;
442486ec 5137 int write = gup_flags & FOLL_WRITE;
0ec76a11 5138
d8ed45c5 5139 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5140 return 0;
5141
183ff22b 5142 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5143 while (len) {
5144 int bytes, ret, offset;
5145 void *maddr;
28b2ee20 5146 struct page *page = NULL;
0ec76a11 5147
64019a2e 5148 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5149 gup_flags, &page, &vma, NULL);
28b2ee20 5150 if (ret <= 0) {
dbffcd03
RR
5151#ifndef CONFIG_HAVE_IOREMAP_PROT
5152 break;
5153#else
28b2ee20
RR
5154 /*
5155 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5156 * we can access using slightly different code.
5157 */
3e418f98
LH
5158 vma = vma_lookup(mm, addr);
5159 if (!vma)
28b2ee20
RR
5160 break;
5161 if (vma->vm_ops && vma->vm_ops->access)
5162 ret = vma->vm_ops->access(vma, addr, buf,
5163 len, write);
5164 if (ret <= 0)
28b2ee20
RR
5165 break;
5166 bytes = ret;
dbffcd03 5167#endif
0ec76a11 5168 } else {
28b2ee20
RR
5169 bytes = len;
5170 offset = addr & (PAGE_SIZE-1);
5171 if (bytes > PAGE_SIZE-offset)
5172 bytes = PAGE_SIZE-offset;
5173
5174 maddr = kmap(page);
5175 if (write) {
5176 copy_to_user_page(vma, page, addr,
5177 maddr + offset, buf, bytes);
5178 set_page_dirty_lock(page);
5179 } else {
5180 copy_from_user_page(vma, page, addr,
5181 buf, maddr + offset, bytes);
5182 }
5183 kunmap(page);
09cbfeaf 5184 put_page(page);
0ec76a11 5185 }
0ec76a11
DH
5186 len -= bytes;
5187 buf += bytes;
5188 addr += bytes;
5189 }
d8ed45c5 5190 mmap_read_unlock(mm);
0ec76a11
DH
5191
5192 return buf - old_buf;
5193}
03252919 5194
5ddd36b9 5195/**
ae91dbfc 5196 * access_remote_vm - access another process' address space
5ddd36b9
SW
5197 * @mm: the mm_struct of the target address space
5198 * @addr: start address to access
5199 * @buf: source or destination buffer
5200 * @len: number of bytes to transfer
6347e8d5 5201 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5202 *
5203 * The caller must hold a reference on @mm.
a862f68a
MR
5204 *
5205 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5206 */
5207int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5208 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5209{
d3f5ffca 5210 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5211}
5212
206cb636
SW
5213/*
5214 * Access another process' address space.
5215 * Source/target buffer must be kernel space,
5216 * Do not walk the page table directly, use get_user_pages
5217 */
5218int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5219 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5220{
5221 struct mm_struct *mm;
5222 int ret;
5223
5224 mm = get_task_mm(tsk);
5225 if (!mm)
5226 return 0;
5227
d3f5ffca 5228 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5229
206cb636
SW
5230 mmput(mm);
5231
5232 return ret;
5233}
fcd35857 5234EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5235
03252919
AK
5236/*
5237 * Print the name of a VMA.
5238 */
5239void print_vma_addr(char *prefix, unsigned long ip)
5240{
5241 struct mm_struct *mm = current->mm;
5242 struct vm_area_struct *vma;
5243
e8bff74a 5244 /*
0a7f682d 5245 * we might be running from an atomic context so we cannot sleep
e8bff74a 5246 */
d8ed45c5 5247 if (!mmap_read_trylock(mm))
e8bff74a
IM
5248 return;
5249
03252919
AK
5250 vma = find_vma(mm, ip);
5251 if (vma && vma->vm_file) {
5252 struct file *f = vma->vm_file;
0a7f682d 5253 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5254 if (buf) {
2fbc57c5 5255 char *p;
03252919 5256
9bf39ab2 5257 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5258 if (IS_ERR(p))
5259 p = "?";
2fbc57c5 5260 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5261 vma->vm_start,
5262 vma->vm_end - vma->vm_start);
5263 free_page((unsigned long)buf);
5264 }
5265 }
d8ed45c5 5266 mmap_read_unlock(mm);
03252919 5267}
3ee1afa3 5268
662bbcb2 5269#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5270void __might_fault(const char *file, int line)
3ee1afa3 5271{
9ec23531 5272 if (pagefault_disabled())
662bbcb2 5273 return;
42a38756 5274 __might_sleep(file, line);
9ec23531 5275#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5276 if (current->mm)
da1c55f1 5277 might_lock_read(&current->mm->mmap_lock);
9ec23531 5278#endif
3ee1afa3 5279}
9ec23531 5280EXPORT_SYMBOL(__might_fault);
3ee1afa3 5281#endif
47ad8475
AA
5282
5283#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5284/*
5285 * Process all subpages of the specified huge page with the specified
5286 * operation. The target subpage will be processed last to keep its
5287 * cache lines hot.
5288 */
5289static inline void process_huge_page(
5290 unsigned long addr_hint, unsigned int pages_per_huge_page,
5291 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5292 void *arg)
47ad8475 5293{
c79b57e4
HY
5294 int i, n, base, l;
5295 unsigned long addr = addr_hint &
5296 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5297
c6ddfb6c 5298 /* Process target subpage last to keep its cache lines hot */
47ad8475 5299 might_sleep();
c79b57e4
HY
5300 n = (addr_hint - addr) / PAGE_SIZE;
5301 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5302 /* If target subpage in first half of huge page */
c79b57e4
HY
5303 base = 0;
5304 l = n;
c6ddfb6c 5305 /* Process subpages at the end of huge page */
c79b57e4
HY
5306 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5307 cond_resched();
c6ddfb6c 5308 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5309 }
5310 } else {
c6ddfb6c 5311 /* If target subpage in second half of huge page */
c79b57e4
HY
5312 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5313 l = pages_per_huge_page - n;
c6ddfb6c 5314 /* Process subpages at the begin of huge page */
c79b57e4
HY
5315 for (i = 0; i < base; i++) {
5316 cond_resched();
c6ddfb6c 5317 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5318 }
5319 }
5320 /*
c6ddfb6c
HY
5321 * Process remaining subpages in left-right-left-right pattern
5322 * towards the target subpage
c79b57e4
HY
5323 */
5324 for (i = 0; i < l; i++) {
5325 int left_idx = base + i;
5326 int right_idx = base + 2 * l - 1 - i;
5327
5328 cond_resched();
c6ddfb6c 5329 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5330 cond_resched();
c6ddfb6c 5331 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5332 }
5333}
5334
c6ddfb6c
HY
5335static void clear_gigantic_page(struct page *page,
5336 unsigned long addr,
5337 unsigned int pages_per_huge_page)
5338{
5339 int i;
5340 struct page *p = page;
5341
5342 might_sleep();
5343 for (i = 0; i < pages_per_huge_page;
5344 i++, p = mem_map_next(p, page, i)) {
5345 cond_resched();
5346 clear_user_highpage(p, addr + i * PAGE_SIZE);
5347 }
5348}
5349
5350static void clear_subpage(unsigned long addr, int idx, void *arg)
5351{
5352 struct page *page = arg;
5353
5354 clear_user_highpage(page + idx, addr);
5355}
5356
5357void clear_huge_page(struct page *page,
5358 unsigned long addr_hint, unsigned int pages_per_huge_page)
5359{
5360 unsigned long addr = addr_hint &
5361 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5362
5363 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5364 clear_gigantic_page(page, addr, pages_per_huge_page);
5365 return;
5366 }
5367
5368 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5369}
5370
47ad8475
AA
5371static void copy_user_gigantic_page(struct page *dst, struct page *src,
5372 unsigned long addr,
5373 struct vm_area_struct *vma,
5374 unsigned int pages_per_huge_page)
5375{
5376 int i;
5377 struct page *dst_base = dst;
5378 struct page *src_base = src;
5379
5380 for (i = 0; i < pages_per_huge_page; ) {
5381 cond_resched();
5382 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5383
5384 i++;
5385 dst = mem_map_next(dst, dst_base, i);
5386 src = mem_map_next(src, src_base, i);
5387 }
5388}
5389
c9f4cd71
HY
5390struct copy_subpage_arg {
5391 struct page *dst;
5392 struct page *src;
5393 struct vm_area_struct *vma;
5394};
5395
5396static void copy_subpage(unsigned long addr, int idx, void *arg)
5397{
5398 struct copy_subpage_arg *copy_arg = arg;
5399
5400 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5401 addr, copy_arg->vma);
5402}
5403
47ad8475 5404void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5405 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5406 unsigned int pages_per_huge_page)
5407{
c9f4cd71
HY
5408 unsigned long addr = addr_hint &
5409 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5410 struct copy_subpage_arg arg = {
5411 .dst = dst,
5412 .src = src,
5413 .vma = vma,
5414 };
47ad8475
AA
5415
5416 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5417 copy_user_gigantic_page(dst, src, addr, vma,
5418 pages_per_huge_page);
5419 return;
5420 }
5421
c9f4cd71 5422 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5423}
fa4d75c1
MK
5424
5425long copy_huge_page_from_user(struct page *dst_page,
5426 const void __user *usr_src,
810a56b9
MK
5427 unsigned int pages_per_huge_page,
5428 bool allow_pagefault)
fa4d75c1 5429{
fa4d75c1
MK
5430 void *page_kaddr;
5431 unsigned long i, rc = 0;
5432 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5433 struct page *subpage = dst_page;
fa4d75c1 5434
3272cfc2
MK
5435 for (i = 0; i < pages_per_huge_page;
5436 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5437 if (allow_pagefault)
3272cfc2 5438 page_kaddr = kmap(subpage);
810a56b9 5439 else
3272cfc2 5440 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5441 rc = copy_from_user(page_kaddr,
b063e374 5442 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5443 if (allow_pagefault)
3272cfc2 5444 kunmap(subpage);
810a56b9
MK
5445 else
5446 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5447
5448 ret_val -= (PAGE_SIZE - rc);
5449 if (rc)
5450 break;
5451
e763243c
MS
5452 flush_dcache_page(subpage);
5453
fa4d75c1
MK
5454 cond_resched();
5455 }
5456 return ret_val;
5457}
47ad8475 5458#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5459
40b64acd 5460#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5461
5462static struct kmem_cache *page_ptl_cachep;
5463
5464void __init ptlock_cache_init(void)
5465{
5466 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5467 SLAB_PANIC, NULL);
5468}
5469
539edb58 5470bool ptlock_alloc(struct page *page)
49076ec2
KS
5471{
5472 spinlock_t *ptl;
5473
b35f1819 5474 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5475 if (!ptl)
5476 return false;
539edb58 5477 page->ptl = ptl;
49076ec2
KS
5478 return true;
5479}
5480
539edb58 5481void ptlock_free(struct page *page)
49076ec2 5482{
b35f1819 5483 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5484}
5485#endif