mm: Remove return value of zap_vma_ptes()
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
26723911
PZ
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
9547d01b 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 401
ef549e13
MR
402/**
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
408 *
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
56236a59
MK
413 */
414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
416{
417 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 418 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
419}
420
421void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
423{
99baac21
MK
424 /*
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
430 */
431 bool force = mm_tlb_flush_nested(tlb->mm);
432
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
435}
436
1da177e4
LT
437/*
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
440 */
9e1b32ca
BH
441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
1da177e4 443{
2f569afd 444 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 445 pmd_clear(pmd);
9e1b32ca 446 pte_free_tlb(tlb, token, addr);
c4812909 447 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
448}
449
e0da382c
HD
450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
1da177e4
LT
453{
454 pmd_t *pmd;
455 unsigned long next;
e0da382c 456 unsigned long start;
1da177e4 457
e0da382c 458 start = addr;
1da177e4 459 pmd = pmd_offset(pud, addr);
1da177e4
LT
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
9e1b32ca 464 free_pte_range(tlb, pmd, addr);
1da177e4
LT
465 } while (pmd++, addr = next, addr != end);
466
e0da382c
HD
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
1da177e4 474 }
e0da382c
HD
475 if (end - 1 > ceiling - 1)
476 return;
477
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
9e1b32ca 480 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 481 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
482}
483
c2febafc 484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
1da177e4
LT
487{
488 pud_t *pud;
489 unsigned long next;
e0da382c 490 unsigned long start;
1da177e4 491
e0da382c 492 start = addr;
c2febafc 493 pud = pud_offset(p4d, addr);
1da177e4
LT
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
e0da382c 498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
499 } while (pud++, addr = next, addr != end);
500
c2febafc
KS
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
508 }
509 if (end - 1 > ceiling - 1)
510 return;
511
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
b4e98d9a 515 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
516}
517
518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
521{
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
525
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
534
e0da382c
HD
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
1da177e4 542 }
e0da382c
HD
543 if (end - 1 > ceiling - 1)
544 return;
545
c2febafc 546 p4d = p4d_offset(pgd, start);
e0da382c 547 pgd_clear(pgd);
c2febafc 548 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
549}
550
551/*
e0da382c 552 * This function frees user-level page tables of a process.
1da177e4 553 */
42b77728 554void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
1da177e4
LT
557{
558 pgd_t *pgd;
559 unsigned long next;
e0da382c
HD
560
561 /*
562 * The next few lines have given us lots of grief...
563 *
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
567 *
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
575 *
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
580 *
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
585 */
1da177e4 586
e0da382c
HD
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
592 }
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
597 }
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
07e32661
AK
602 /*
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
605 */
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 607 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
c2febafc 612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 613 } while (pgd++, addr = next, addr != end);
e0da382c
HD
614}
615
42b77728 616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 617 unsigned long floor, unsigned long ceiling)
e0da382c
HD
618{
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
622
8f4f8c16 623 /*
25d9e2d1 624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
8f4f8c16 626 */
5beb4930 627 unlink_anon_vmas(vma);
8f4f8c16
HD
628 unlink_file_vma(vma);
629
9da61aef 630 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 632 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
633 } else {
634 /*
635 * Optimization: gather nearby vmas into one call down
636 */
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 638 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
639 vma = next;
640 next = vma->vm_next;
5beb4930 641 unlink_anon_vmas(vma);
8f4f8c16 642 unlink_file_vma(vma);
3bf5ee95
HD
643 }
644 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 645 floor, next ? next->vm_start : ceiling);
3bf5ee95 646 }
e0da382c
HD
647 vma = next;
648 }
1da177e4
LT
649}
650
3ed3a4f0 651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 652{
c4088ebd 653 spinlock_t *ptl;
2f569afd 654 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
655 if (!new)
656 return -ENOMEM;
657
362a61ad
NP
658 /*
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
662 *
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
670 */
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
c4088ebd 673 ptl = pmd_lock(mm, pmd);
8ac1f832 674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 675 mm_inc_nr_ptes(mm);
1da177e4 676 pmd_populate(mm, pmd, new);
2f569afd 677 new = NULL;
4b471e88 678 }
c4088ebd 679 spin_unlock(ptl);
2f569afd
MS
680 if (new)
681 pte_free(mm, new);
1bb3630e 682 return 0;
1da177e4
LT
683}
684
1bb3630e 685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 686{
1bb3630e
HD
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
690
362a61ad
NP
691 smp_wmb(); /* See comment in __pte_alloc */
692
1bb3630e 693 spin_lock(&init_mm.page_table_lock);
8ac1f832 694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 695 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 696 new = NULL;
4b471e88 697 }
1bb3630e 698 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
699 if (new)
700 pte_free_kernel(&init_mm, new);
1bb3630e 701 return 0;
1da177e4
LT
702}
703
d559db08
KH
704static inline void init_rss_vec(int *rss)
705{
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707}
708
709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 710{
d559db08
KH
711 int i;
712
34e55232 713 if (current->mm == mm)
05af2e10 714 sync_mm_rss(mm);
d559db08
KH
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
ae859762
HD
718}
719
b5810039 720/*
6aab341e
LT
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
b5810039
NP
724 *
725 * The calling function must still handle the error.
726 */
3dc14741
HD
727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
b5810039 729{
3dc14741 730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
d936cf9b
HD
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
739
740 /*
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
743 */
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
748 }
749 if (nr_unshown) {
1170532b
JP
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
d936cf9b
HD
752 nr_unshown = 0;
753 }
754 nr_shown = 0;
755 }
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
3dc14741
HD
758
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
761
1170532b
JP
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 765 if (page)
f0b791a3 766 dump_page(page, "bad pte");
1170532b
JP
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
b5810039 774 dump_stack();
373d4d09 775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
776}
777
ee498ed7 778/*
7e675137 779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 780 *
7e675137
NP
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 784 *
7e675137
NP
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
789 *
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 793 *
b379d790
JH
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
6aab341e
LT
798 *
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 *
7e675137
NP
801 * And for normal mappings this is false.
802 *
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
b379d790 807 *
b379d790 808 *
7e675137 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
810 *
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
818 *
ee498ed7 819 */
7e675137
NP
820#ifdef __HAVE_ARCH_PTE_SPECIAL
821# define HAVE_PTE_SPECIAL 1
822#else
823# define HAVE_PTE_SPECIAL 0
824#endif
df6ad698
JG
825struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
826 pte_t pte, bool with_public_device)
ee498ed7 827{
22b31eec 828 unsigned long pfn = pte_pfn(pte);
7e675137
NP
829
830 if (HAVE_PTE_SPECIAL) {
b38af472 831 if (likely(!pte_special(pte)))
22b31eec 832 goto check_pfn;
667a0a06
DV
833 if (vma->vm_ops && vma->vm_ops->find_special_page)
834 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
835 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
836 return NULL;
df6ad698
JG
837 if (is_zero_pfn(pfn))
838 return NULL;
839
840 /*
841 * Device public pages are special pages (they are ZONE_DEVICE
842 * pages but different from persistent memory). They behave
843 * allmost like normal pages. The difference is that they are
844 * not on the lru and thus should never be involve with any-
845 * thing that involve lru manipulation (mlock, numa balancing,
846 * ...).
847 *
848 * This is why we still want to return NULL for such page from
849 * vm_normal_page() so that we do not have to special case all
850 * call site of vm_normal_page().
851 */
7d790d2d 852 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
853 struct page *page = pfn_to_page(pfn);
854
855 if (is_device_public_page(page)) {
856 if (with_public_device)
857 return page;
858 return NULL;
859 }
860 }
861 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
862 return NULL;
863 }
864
865 /* !HAVE_PTE_SPECIAL case follows: */
866
b379d790
JH
867 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
868 if (vma->vm_flags & VM_MIXEDMAP) {
869 if (!pfn_valid(pfn))
870 return NULL;
871 goto out;
872 } else {
7e675137
NP
873 unsigned long off;
874 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
875 if (pfn == vma->vm_pgoff + off)
876 return NULL;
877 if (!is_cow_mapping(vma->vm_flags))
878 return NULL;
879 }
6aab341e
LT
880 }
881
b38af472
HD
882 if (is_zero_pfn(pfn))
883 return NULL;
22b31eec
HD
884check_pfn:
885 if (unlikely(pfn > highest_memmap_pfn)) {
886 print_bad_pte(vma, addr, pte, NULL);
887 return NULL;
888 }
6aab341e
LT
889
890 /*
7e675137 891 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 892 * eg. VDSO mappings can cause them to exist.
6aab341e 893 */
b379d790 894out:
6aab341e 895 return pfn_to_page(pfn);
ee498ed7
HD
896}
897
28093f9f
GS
898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
899struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t pmd)
901{
902 unsigned long pfn = pmd_pfn(pmd);
903
904 /*
905 * There is no pmd_special() but there may be special pmds, e.g.
906 * in a direct-access (dax) mapping, so let's just replicate the
907 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
908 */
909 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
910 if (vma->vm_flags & VM_MIXEDMAP) {
911 if (!pfn_valid(pfn))
912 return NULL;
913 goto out;
914 } else {
915 unsigned long off;
916 off = (addr - vma->vm_start) >> PAGE_SHIFT;
917 if (pfn == vma->vm_pgoff + off)
918 return NULL;
919 if (!is_cow_mapping(vma->vm_flags))
920 return NULL;
921 }
922 }
923
924 if (is_zero_pfn(pfn))
925 return NULL;
926 if (unlikely(pfn > highest_memmap_pfn))
927 return NULL;
928
929 /*
930 * NOTE! We still have PageReserved() pages in the page tables.
931 * eg. VDSO mappings can cause them to exist.
932 */
933out:
934 return pfn_to_page(pfn);
935}
936#endif
937
1da177e4
LT
938/*
939 * copy one vm_area from one task to the other. Assumes the page tables
940 * already present in the new task to be cleared in the whole range
941 * covered by this vma.
1da177e4
LT
942 */
943
570a335b 944static inline unsigned long
1da177e4 945copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 946 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 947 unsigned long addr, int *rss)
1da177e4 948{
b5810039 949 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
950 pte_t pte = *src_pte;
951 struct page *page;
1da177e4
LT
952
953 /* pte contains position in swap or file, so copy. */
954 if (unlikely(!pte_present(pte))) {
0661a336
KS
955 swp_entry_t entry = pte_to_swp_entry(pte);
956
957 if (likely(!non_swap_entry(entry))) {
958 if (swap_duplicate(entry) < 0)
959 return entry.val;
960
961 /* make sure dst_mm is on swapoff's mmlist. */
962 if (unlikely(list_empty(&dst_mm->mmlist))) {
963 spin_lock(&mmlist_lock);
964 if (list_empty(&dst_mm->mmlist))
965 list_add(&dst_mm->mmlist,
966 &src_mm->mmlist);
967 spin_unlock(&mmlist_lock);
968 }
969 rss[MM_SWAPENTS]++;
970 } else if (is_migration_entry(entry)) {
971 page = migration_entry_to_page(entry);
972
eca56ff9 973 rss[mm_counter(page)]++;
0661a336
KS
974
975 if (is_write_migration_entry(entry) &&
976 is_cow_mapping(vm_flags)) {
977 /*
978 * COW mappings require pages in both
979 * parent and child to be set to read.
980 */
981 make_migration_entry_read(&entry);
982 pte = swp_entry_to_pte(entry);
983 if (pte_swp_soft_dirty(*src_pte))
984 pte = pte_swp_mksoft_dirty(pte);
985 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 986 }
5042db43
JG
987 } else if (is_device_private_entry(entry)) {
988 page = device_private_entry_to_page(entry);
989
990 /*
991 * Update rss count even for unaddressable pages, as
992 * they should treated just like normal pages in this
993 * respect.
994 *
995 * We will likely want to have some new rss counters
996 * for unaddressable pages, at some point. But for now
997 * keep things as they are.
998 */
999 get_page(page);
1000 rss[mm_counter(page)]++;
1001 page_dup_rmap(page, false);
1002
1003 /*
1004 * We do not preserve soft-dirty information, because so
1005 * far, checkpoint/restore is the only feature that
1006 * requires that. And checkpoint/restore does not work
1007 * when a device driver is involved (you cannot easily
1008 * save and restore device driver state).
1009 */
1010 if (is_write_device_private_entry(entry) &&
1011 is_cow_mapping(vm_flags)) {
1012 make_device_private_entry_read(&entry);
1013 pte = swp_entry_to_pte(entry);
1014 set_pte_at(src_mm, addr, src_pte, pte);
1015 }
1da177e4 1016 }
ae859762 1017 goto out_set_pte;
1da177e4
LT
1018 }
1019
1da177e4
LT
1020 /*
1021 * If it's a COW mapping, write protect it both
1022 * in the parent and the child
1023 */
67121172 1024 if (is_cow_mapping(vm_flags)) {
1da177e4 1025 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 1026 pte = pte_wrprotect(pte);
1da177e4
LT
1027 }
1028
1029 /*
1030 * If it's a shared mapping, mark it clean in
1031 * the child
1032 */
1033 if (vm_flags & VM_SHARED)
1034 pte = pte_mkclean(pte);
1035 pte = pte_mkold(pte);
6aab341e
LT
1036
1037 page = vm_normal_page(vma, addr, pte);
1038 if (page) {
1039 get_page(page);
53f9263b 1040 page_dup_rmap(page, false);
eca56ff9 1041 rss[mm_counter(page)]++;
df6ad698
JG
1042 } else if (pte_devmap(pte)) {
1043 page = pte_page(pte);
1044
1045 /*
1046 * Cache coherent device memory behave like regular page and
1047 * not like persistent memory page. For more informations see
1048 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1049 */
1050 if (is_device_public_page(page)) {
1051 get_page(page);
1052 page_dup_rmap(page, false);
1053 rss[mm_counter(page)]++;
1054 }
6aab341e 1055 }
ae859762
HD
1056
1057out_set_pte:
1058 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 1059 return 0;
1da177e4
LT
1060}
1061
21bda264 1062static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
1063 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1064 unsigned long addr, unsigned long end)
1da177e4 1065{
c36987e2 1066 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1067 pte_t *src_pte, *dst_pte;
c74df32c 1068 spinlock_t *src_ptl, *dst_ptl;
e040f218 1069 int progress = 0;
d559db08 1070 int rss[NR_MM_COUNTERS];
570a335b 1071 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1072
1073again:
d559db08
KH
1074 init_rss_vec(rss);
1075
c74df32c 1076 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1077 if (!dst_pte)
1078 return -ENOMEM;
ece0e2b6 1079 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1080 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1082 orig_src_pte = src_pte;
1083 orig_dst_pte = dst_pte;
6606c3e0 1084 arch_enter_lazy_mmu_mode();
1da177e4 1085
1da177e4
LT
1086 do {
1087 /*
1088 * We are holding two locks at this point - either of them
1089 * could generate latencies in another task on another CPU.
1090 */
e040f218
HD
1091 if (progress >= 32) {
1092 progress = 0;
1093 if (need_resched() ||
95c354fe 1094 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1095 break;
1096 }
1da177e4
LT
1097 if (pte_none(*src_pte)) {
1098 progress++;
1099 continue;
1100 }
570a335b
HD
1101 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1102 vma, addr, rss);
1103 if (entry.val)
1104 break;
1da177e4
LT
1105 progress += 8;
1106 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1107
6606c3e0 1108 arch_leave_lazy_mmu_mode();
c74df32c 1109 spin_unlock(src_ptl);
ece0e2b6 1110 pte_unmap(orig_src_pte);
d559db08 1111 add_mm_rss_vec(dst_mm, rss);
c36987e2 1112 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1113 cond_resched();
570a335b
HD
1114
1115 if (entry.val) {
1116 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1117 return -ENOMEM;
1118 progress = 0;
1119 }
1da177e4
LT
1120 if (addr != end)
1121 goto again;
1122 return 0;
1123}
1124
1125static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1126 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1127 unsigned long addr, unsigned long end)
1128{
1129 pmd_t *src_pmd, *dst_pmd;
1130 unsigned long next;
1131
1132 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1133 if (!dst_pmd)
1134 return -ENOMEM;
1135 src_pmd = pmd_offset(src_pud, addr);
1136 do {
1137 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1138 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1139 || pmd_devmap(*src_pmd)) {
71e3aac0 1140 int err;
a00cc7d9 1141 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1142 err = copy_huge_pmd(dst_mm, src_mm,
1143 dst_pmd, src_pmd, addr, vma);
1144 if (err == -ENOMEM)
1145 return -ENOMEM;
1146 if (!err)
1147 continue;
1148 /* fall through */
1149 }
1da177e4
LT
1150 if (pmd_none_or_clear_bad(src_pmd))
1151 continue;
1152 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1153 vma, addr, next))
1154 return -ENOMEM;
1155 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1156 return 0;
1157}
1158
1159static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1160 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1161 unsigned long addr, unsigned long end)
1162{
1163 pud_t *src_pud, *dst_pud;
1164 unsigned long next;
1165
c2febafc 1166 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1167 if (!dst_pud)
1168 return -ENOMEM;
c2febafc 1169 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1170 do {
1171 next = pud_addr_end(addr, end);
a00cc7d9
MW
1172 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1173 int err;
1174
1175 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1176 err = copy_huge_pud(dst_mm, src_mm,
1177 dst_pud, src_pud, addr, vma);
1178 if (err == -ENOMEM)
1179 return -ENOMEM;
1180 if (!err)
1181 continue;
1182 /* fall through */
1183 }
1da177e4
LT
1184 if (pud_none_or_clear_bad(src_pud))
1185 continue;
1186 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1187 vma, addr, next))
1188 return -ENOMEM;
1189 } while (dst_pud++, src_pud++, addr = next, addr != end);
1190 return 0;
1191}
1192
c2febafc
KS
1193static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1194 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1195 unsigned long addr, unsigned long end)
1196{
1197 p4d_t *src_p4d, *dst_p4d;
1198 unsigned long next;
1199
1200 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1201 if (!dst_p4d)
1202 return -ENOMEM;
1203 src_p4d = p4d_offset(src_pgd, addr);
1204 do {
1205 next = p4d_addr_end(addr, end);
1206 if (p4d_none_or_clear_bad(src_p4d))
1207 continue;
1208 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1209 vma, addr, next))
1210 return -ENOMEM;
1211 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1212 return 0;
1213}
1214
1da177e4
LT
1215int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1216 struct vm_area_struct *vma)
1217{
1218 pgd_t *src_pgd, *dst_pgd;
1219 unsigned long next;
1220 unsigned long addr = vma->vm_start;
1221 unsigned long end = vma->vm_end;
2ec74c3e
SG
1222 unsigned long mmun_start; /* For mmu_notifiers */
1223 unsigned long mmun_end; /* For mmu_notifiers */
1224 bool is_cow;
cddb8a5c 1225 int ret;
1da177e4 1226
d992895b
NP
1227 /*
1228 * Don't copy ptes where a page fault will fill them correctly.
1229 * Fork becomes much lighter when there are big shared or private
1230 * readonly mappings. The tradeoff is that copy_page_range is more
1231 * efficient than faulting.
1232 */
0661a336
KS
1233 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1234 !vma->anon_vma)
1235 return 0;
d992895b 1236
1da177e4
LT
1237 if (is_vm_hugetlb_page(vma))
1238 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1239
b3b9c293 1240 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1241 /*
1242 * We do not free on error cases below as remove_vma
1243 * gets called on error from higher level routine
1244 */
5180da41 1245 ret = track_pfn_copy(vma);
2ab64037 1246 if (ret)
1247 return ret;
1248 }
1249
cddb8a5c
AA
1250 /*
1251 * We need to invalidate the secondary MMU mappings only when
1252 * there could be a permission downgrade on the ptes of the
1253 * parent mm. And a permission downgrade will only happen if
1254 * is_cow_mapping() returns true.
1255 */
2ec74c3e
SG
1256 is_cow = is_cow_mapping(vma->vm_flags);
1257 mmun_start = addr;
1258 mmun_end = end;
1259 if (is_cow)
1260 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1261 mmun_end);
cddb8a5c
AA
1262
1263 ret = 0;
1da177e4
LT
1264 dst_pgd = pgd_offset(dst_mm, addr);
1265 src_pgd = pgd_offset(src_mm, addr);
1266 do {
1267 next = pgd_addr_end(addr, end);
1268 if (pgd_none_or_clear_bad(src_pgd))
1269 continue;
c2febafc 1270 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1271 vma, addr, next))) {
1272 ret = -ENOMEM;
1273 break;
1274 }
1da177e4 1275 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1276
2ec74c3e
SG
1277 if (is_cow)
1278 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1279 return ret;
1da177e4
LT
1280}
1281
51c6f666 1282static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1283 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1284 unsigned long addr, unsigned long end,
97a89413 1285 struct zap_details *details)
1da177e4 1286{
b5810039 1287 struct mm_struct *mm = tlb->mm;
d16dfc55 1288 int force_flush = 0;
d559db08 1289 int rss[NR_MM_COUNTERS];
97a89413 1290 spinlock_t *ptl;
5f1a1907 1291 pte_t *start_pte;
97a89413 1292 pte_t *pte;
8a5f14a2 1293 swp_entry_t entry;
d559db08 1294
07e32661 1295 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1296again:
e303297e 1297 init_rss_vec(rss);
5f1a1907
SR
1298 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1299 pte = start_pte;
3ea27719 1300 flush_tlb_batched_pending(mm);
6606c3e0 1301 arch_enter_lazy_mmu_mode();
1da177e4
LT
1302 do {
1303 pte_t ptent = *pte;
166f61b9 1304 if (pte_none(ptent))
1da177e4 1305 continue;
6f5e6b9e 1306
1da177e4 1307 if (pte_present(ptent)) {
ee498ed7 1308 struct page *page;
51c6f666 1309
df6ad698 1310 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1311 if (unlikely(details) && page) {
1312 /*
1313 * unmap_shared_mapping_pages() wants to
1314 * invalidate cache without truncating:
1315 * unmap shared but keep private pages.
1316 */
1317 if (details->check_mapping &&
800d8c63 1318 details->check_mapping != page_rmapping(page))
1da177e4 1319 continue;
1da177e4 1320 }
b5810039 1321 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1322 tlb->fullmm);
1da177e4
LT
1323 tlb_remove_tlb_entry(tlb, pte, addr);
1324 if (unlikely(!page))
1325 continue;
eca56ff9
JM
1326
1327 if (!PageAnon(page)) {
1cf35d47
LT
1328 if (pte_dirty(ptent)) {
1329 force_flush = 1;
6237bcd9 1330 set_page_dirty(page);
1cf35d47 1331 }
4917e5d0 1332 if (pte_young(ptent) &&
64363aad 1333 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1334 mark_page_accessed(page);
6237bcd9 1335 }
eca56ff9 1336 rss[mm_counter(page)]--;
d281ee61 1337 page_remove_rmap(page, false);
3dc14741
HD
1338 if (unlikely(page_mapcount(page) < 0))
1339 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1340 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1341 force_flush = 1;
ce9ec37b 1342 addr += PAGE_SIZE;
d16dfc55 1343 break;
1cf35d47 1344 }
1da177e4
LT
1345 continue;
1346 }
5042db43
JG
1347
1348 entry = pte_to_swp_entry(ptent);
1349 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1350 struct page *page = device_private_entry_to_page(entry);
1351
1352 if (unlikely(details && details->check_mapping)) {
1353 /*
1354 * unmap_shared_mapping_pages() wants to
1355 * invalidate cache without truncating:
1356 * unmap shared but keep private pages.
1357 */
1358 if (details->check_mapping !=
1359 page_rmapping(page))
1360 continue;
1361 }
1362
1363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1364 rss[mm_counter(page)]--;
1365 page_remove_rmap(page, false);
1366 put_page(page);
1367 continue;
1368 }
1369
3e8715fd
KS
1370 /* If details->check_mapping, we leave swap entries. */
1371 if (unlikely(details))
1da177e4 1372 continue;
b084d435 1373
8a5f14a2
KS
1374 entry = pte_to_swp_entry(ptent);
1375 if (!non_swap_entry(entry))
1376 rss[MM_SWAPENTS]--;
1377 else if (is_migration_entry(entry)) {
1378 struct page *page;
9f9f1acd 1379
8a5f14a2 1380 page = migration_entry_to_page(entry);
eca56ff9 1381 rss[mm_counter(page)]--;
b084d435 1382 }
8a5f14a2
KS
1383 if (unlikely(!free_swap_and_cache(entry)))
1384 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1385 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1386 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1387
d559db08 1388 add_mm_rss_vec(mm, rss);
6606c3e0 1389 arch_leave_lazy_mmu_mode();
51c6f666 1390
1cf35d47 1391 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1392 if (force_flush)
1cf35d47 1393 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1394 pte_unmap_unlock(start_pte, ptl);
1395
1396 /*
1397 * If we forced a TLB flush (either due to running out of
1398 * batch buffers or because we needed to flush dirty TLB
1399 * entries before releasing the ptl), free the batched
1400 * memory too. Restart if we didn't do everything.
1401 */
1402 if (force_flush) {
1403 force_flush = 0;
1404 tlb_flush_mmu_free(tlb);
2b047252 1405 if (addr != end)
d16dfc55
PZ
1406 goto again;
1407 }
1408
51c6f666 1409 return addr;
1da177e4
LT
1410}
1411
51c6f666 1412static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1413 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1414 unsigned long addr, unsigned long end,
97a89413 1415 struct zap_details *details)
1da177e4
LT
1416{
1417 pmd_t *pmd;
1418 unsigned long next;
1419
1420 pmd = pmd_offset(pud, addr);
1421 do {
1422 next = pmd_addr_end(addr, end);
84c3fc4e 1423 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1424 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1425 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1426 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1427 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1428 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1429 goto next;
71e3aac0
AA
1430 /* fall through */
1431 }
1a5a9906
AA
1432 /*
1433 * Here there can be other concurrent MADV_DONTNEED or
1434 * trans huge page faults running, and if the pmd is
1435 * none or trans huge it can change under us. This is
1436 * because MADV_DONTNEED holds the mmap_sem in read
1437 * mode.
1438 */
1439 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1440 goto next;
97a89413 1441 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1442next:
97a89413
PZ
1443 cond_resched();
1444 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1445
1446 return addr;
1da177e4
LT
1447}
1448
51c6f666 1449static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1450 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1451 unsigned long addr, unsigned long end,
97a89413 1452 struct zap_details *details)
1da177e4
LT
1453{
1454 pud_t *pud;
1455 unsigned long next;
1456
c2febafc 1457 pud = pud_offset(p4d, addr);
1da177e4
LT
1458 do {
1459 next = pud_addr_end(addr, end);
a00cc7d9
MW
1460 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1461 if (next - addr != HPAGE_PUD_SIZE) {
1462 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1463 split_huge_pud(vma, pud, addr);
1464 } else if (zap_huge_pud(tlb, vma, pud, addr))
1465 goto next;
1466 /* fall through */
1467 }
97a89413 1468 if (pud_none_or_clear_bad(pud))
1da177e4 1469 continue;
97a89413 1470 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1471next:
1472 cond_resched();
97a89413 1473 } while (pud++, addr = next, addr != end);
51c6f666
RH
1474
1475 return addr;
1da177e4
LT
1476}
1477
c2febafc
KS
1478static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1479 struct vm_area_struct *vma, pgd_t *pgd,
1480 unsigned long addr, unsigned long end,
1481 struct zap_details *details)
1482{
1483 p4d_t *p4d;
1484 unsigned long next;
1485
1486 p4d = p4d_offset(pgd, addr);
1487 do {
1488 next = p4d_addr_end(addr, end);
1489 if (p4d_none_or_clear_bad(p4d))
1490 continue;
1491 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1492 } while (p4d++, addr = next, addr != end);
1493
1494 return addr;
1495}
1496
aac45363 1497void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1498 struct vm_area_struct *vma,
1499 unsigned long addr, unsigned long end,
1500 struct zap_details *details)
1da177e4
LT
1501{
1502 pgd_t *pgd;
1503 unsigned long next;
1504
1da177e4
LT
1505 BUG_ON(addr >= end);
1506 tlb_start_vma(tlb, vma);
1507 pgd = pgd_offset(vma->vm_mm, addr);
1508 do {
1509 next = pgd_addr_end(addr, end);
97a89413 1510 if (pgd_none_or_clear_bad(pgd))
1da177e4 1511 continue;
c2febafc 1512 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1513 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1514 tlb_end_vma(tlb, vma);
1515}
51c6f666 1516
f5cc4eef
AV
1517
1518static void unmap_single_vma(struct mmu_gather *tlb,
1519 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1520 unsigned long end_addr,
f5cc4eef
AV
1521 struct zap_details *details)
1522{
1523 unsigned long start = max(vma->vm_start, start_addr);
1524 unsigned long end;
1525
1526 if (start >= vma->vm_end)
1527 return;
1528 end = min(vma->vm_end, end_addr);
1529 if (end <= vma->vm_start)
1530 return;
1531
cbc91f71
SD
1532 if (vma->vm_file)
1533 uprobe_munmap(vma, start, end);
1534
b3b9c293 1535 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1536 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1537
1538 if (start != end) {
1539 if (unlikely(is_vm_hugetlb_page(vma))) {
1540 /*
1541 * It is undesirable to test vma->vm_file as it
1542 * should be non-null for valid hugetlb area.
1543 * However, vm_file will be NULL in the error
7aa6b4ad 1544 * cleanup path of mmap_region. When
f5cc4eef 1545 * hugetlbfs ->mmap method fails,
7aa6b4ad 1546 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1547 * before calling this function to clean up.
1548 * Since no pte has actually been setup, it is
1549 * safe to do nothing in this case.
1550 */
24669e58 1551 if (vma->vm_file) {
83cde9e8 1552 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1553 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1554 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1555 }
f5cc4eef
AV
1556 } else
1557 unmap_page_range(tlb, vma, start, end, details);
1558 }
1da177e4
LT
1559}
1560
1da177e4
LT
1561/**
1562 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1563 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1564 * @vma: the starting vma
1565 * @start_addr: virtual address at which to start unmapping
1566 * @end_addr: virtual address at which to end unmapping
1da177e4 1567 *
508034a3 1568 * Unmap all pages in the vma list.
1da177e4 1569 *
1da177e4
LT
1570 * Only addresses between `start' and `end' will be unmapped.
1571 *
1572 * The VMA list must be sorted in ascending virtual address order.
1573 *
1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1575 * range after unmap_vmas() returns. So the only responsibility here is to
1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1577 * drops the lock and schedules.
1578 */
6e8bb019 1579void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1580 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1581 unsigned long end_addr)
1da177e4 1582{
cddb8a5c 1583 struct mm_struct *mm = vma->vm_mm;
1da177e4 1584
cddb8a5c 1585 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1586 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1587 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1588 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1589}
1590
1591/**
1592 * zap_page_range - remove user pages in a given range
1593 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1594 * @start: starting address of pages to zap
1da177e4 1595 * @size: number of bytes to zap
f5cc4eef
AV
1596 *
1597 * Caller must protect the VMA list
1da177e4 1598 */
7e027b14 1599void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1600 unsigned long size)
1da177e4
LT
1601{
1602 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1603 struct mmu_gather tlb;
7e027b14 1604 unsigned long end = start + size;
1da177e4 1605
1da177e4 1606 lru_add_drain();
2b047252 1607 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1608 update_hiwater_rss(mm);
7e027b14 1609 mmu_notifier_invalidate_range_start(mm, start, end);
4647706e 1610 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
ecf1385d 1611 unmap_single_vma(&tlb, vma, start, end, NULL);
4647706e
MG
1612
1613 /*
1614 * zap_page_range does not specify whether mmap_sem should be
1615 * held for read or write. That allows parallel zap_page_range
1616 * operations to unmap a PTE and defer a flush meaning that
1617 * this call observes pte_none and fails to flush the TLB.
1618 * Rather than adding a complex API, ensure that no stale
1619 * TLB entries exist when this call returns.
1620 */
1621 flush_tlb_range(vma, start, end);
1622 }
1623
7e027b14
LT
1624 mmu_notifier_invalidate_range_end(mm, start, end);
1625 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1626}
1627
f5cc4eef
AV
1628/**
1629 * zap_page_range_single - remove user pages in a given range
1630 * @vma: vm_area_struct holding the applicable pages
1631 * @address: starting address of pages to zap
1632 * @size: number of bytes to zap
8a5f14a2 1633 * @details: details of shared cache invalidation
f5cc4eef
AV
1634 *
1635 * The range must fit into one VMA.
1da177e4 1636 */
f5cc4eef 1637static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1638 unsigned long size, struct zap_details *details)
1639{
1640 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1641 struct mmu_gather tlb;
1da177e4 1642 unsigned long end = address + size;
1da177e4 1643
1da177e4 1644 lru_add_drain();
2b047252 1645 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1646 update_hiwater_rss(mm);
f5cc4eef 1647 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1648 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1649 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1650 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1651}
1652
c627f9cc
JS
1653/**
1654 * zap_vma_ptes - remove ptes mapping the vma
1655 * @vma: vm_area_struct holding ptes to be zapped
1656 * @address: starting address of pages to zap
1657 * @size: number of bytes to zap
1658 *
1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1660 *
1661 * The entire address range must be fully contained within the vma.
1662 *
c627f9cc 1663 */
27d036e3 1664void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1665 unsigned long size)
1666{
1667 if (address < vma->vm_start || address + size > vma->vm_end ||
1668 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1669 return;
1670
f5cc4eef 1671 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1672}
1673EXPORT_SYMBOL_GPL(zap_vma_ptes);
1674
25ca1d6c 1675pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1676 spinlock_t **ptl)
c9cfcddf 1677{
c2febafc
KS
1678 pgd_t *pgd;
1679 p4d_t *p4d;
1680 pud_t *pud;
1681 pmd_t *pmd;
1682
1683 pgd = pgd_offset(mm, addr);
1684 p4d = p4d_alloc(mm, pgd, addr);
1685 if (!p4d)
1686 return NULL;
1687 pud = pud_alloc(mm, p4d, addr);
1688 if (!pud)
1689 return NULL;
1690 pmd = pmd_alloc(mm, pud, addr);
1691 if (!pmd)
1692 return NULL;
1693
1694 VM_BUG_ON(pmd_trans_huge(*pmd));
1695 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1696}
1697
238f58d8
LT
1698/*
1699 * This is the old fallback for page remapping.
1700 *
1701 * For historical reasons, it only allows reserved pages. Only
1702 * old drivers should use this, and they needed to mark their
1703 * pages reserved for the old functions anyway.
1704 */
423bad60
NP
1705static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1706 struct page *page, pgprot_t prot)
238f58d8 1707{
423bad60 1708 struct mm_struct *mm = vma->vm_mm;
238f58d8 1709 int retval;
c9cfcddf 1710 pte_t *pte;
8a9f3ccd
BS
1711 spinlock_t *ptl;
1712
238f58d8 1713 retval = -EINVAL;
a145dd41 1714 if (PageAnon(page))
5b4e655e 1715 goto out;
238f58d8
LT
1716 retval = -ENOMEM;
1717 flush_dcache_page(page);
c9cfcddf 1718 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1719 if (!pte)
5b4e655e 1720 goto out;
238f58d8
LT
1721 retval = -EBUSY;
1722 if (!pte_none(*pte))
1723 goto out_unlock;
1724
1725 /* Ok, finally just insert the thing.. */
1726 get_page(page);
eca56ff9 1727 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1728 page_add_file_rmap(page, false);
238f58d8
LT
1729 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1730
1731 retval = 0;
8a9f3ccd
BS
1732 pte_unmap_unlock(pte, ptl);
1733 return retval;
238f58d8
LT
1734out_unlock:
1735 pte_unmap_unlock(pte, ptl);
1736out:
1737 return retval;
1738}
1739
bfa5bf6d
REB
1740/**
1741 * vm_insert_page - insert single page into user vma
1742 * @vma: user vma to map to
1743 * @addr: target user address of this page
1744 * @page: source kernel page
1745 *
a145dd41
LT
1746 * This allows drivers to insert individual pages they've allocated
1747 * into a user vma.
1748 *
1749 * The page has to be a nice clean _individual_ kernel allocation.
1750 * If you allocate a compound page, you need to have marked it as
1751 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1752 * (see split_page()).
a145dd41
LT
1753 *
1754 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1755 * took an arbitrary page protection parameter. This doesn't allow
1756 * that. Your vma protection will have to be set up correctly, which
1757 * means that if you want a shared writable mapping, you'd better
1758 * ask for a shared writable mapping!
1759 *
1760 * The page does not need to be reserved.
4b6e1e37
KK
1761 *
1762 * Usually this function is called from f_op->mmap() handler
1763 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1764 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1765 * function from other places, for example from page-fault handler.
a145dd41 1766 */
423bad60
NP
1767int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1768 struct page *page)
a145dd41
LT
1769{
1770 if (addr < vma->vm_start || addr >= vma->vm_end)
1771 return -EFAULT;
1772 if (!page_count(page))
1773 return -EINVAL;
4b6e1e37
KK
1774 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1775 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1776 BUG_ON(vma->vm_flags & VM_PFNMAP);
1777 vma->vm_flags |= VM_MIXEDMAP;
1778 }
423bad60 1779 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1780}
e3c3374f 1781EXPORT_SYMBOL(vm_insert_page);
a145dd41 1782
423bad60 1783static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1784 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1785{
1786 struct mm_struct *mm = vma->vm_mm;
1787 int retval;
1788 pte_t *pte, entry;
1789 spinlock_t *ptl;
1790
1791 retval = -ENOMEM;
1792 pte = get_locked_pte(mm, addr, &ptl);
1793 if (!pte)
1794 goto out;
1795 retval = -EBUSY;
b2770da6
RZ
1796 if (!pte_none(*pte)) {
1797 if (mkwrite) {
1798 /*
1799 * For read faults on private mappings the PFN passed
1800 * in may not match the PFN we have mapped if the
1801 * mapped PFN is a writeable COW page. In the mkwrite
1802 * case we are creating a writable PTE for a shared
1803 * mapping and we expect the PFNs to match.
1804 */
1805 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1806 goto out_unlock;
1807 entry = *pte;
1808 goto out_mkwrite;
1809 } else
1810 goto out_unlock;
1811 }
423bad60
NP
1812
1813 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1814 if (pfn_t_devmap(pfn))
1815 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1816 else
1817 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1818
1819out_mkwrite:
1820 if (mkwrite) {
1821 entry = pte_mkyoung(entry);
1822 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1823 }
1824
423bad60 1825 set_pte_at(mm, addr, pte, entry);
4b3073e1 1826 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1827
1828 retval = 0;
1829out_unlock:
1830 pte_unmap_unlock(pte, ptl);
1831out:
1832 return retval;
1833}
1834
e0dc0d8f
NP
1835/**
1836 * vm_insert_pfn - insert single pfn into user vma
1837 * @vma: user vma to map to
1838 * @addr: target user address of this page
1839 * @pfn: source kernel pfn
1840 *
c462f179 1841 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1842 * they've allocated into a user vma. Same comments apply.
1843 *
1844 * This function should only be called from a vm_ops->fault handler, and
1845 * in that case the handler should return NULL.
0d71d10a
NP
1846 *
1847 * vma cannot be a COW mapping.
1848 *
1849 * As this is called only for pages that do not currently exist, we
1850 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1851 */
1852int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1853 unsigned long pfn)
1745cbc5
AL
1854{
1855 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1856}
1857EXPORT_SYMBOL(vm_insert_pfn);
1858
1859/**
1860 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1861 * @vma: user vma to map to
1862 * @addr: target user address of this page
1863 * @pfn: source kernel pfn
1864 * @pgprot: pgprot flags for the inserted page
1865 *
1866 * This is exactly like vm_insert_pfn, except that it allows drivers to
1867 * to override pgprot on a per-page basis.
1868 *
1869 * This only makes sense for IO mappings, and it makes no sense for
1870 * cow mappings. In general, using multiple vmas is preferable;
1871 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1872 * impractical.
1873 */
1874int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1875 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1876{
2ab64037 1877 int ret;
7e675137
NP
1878 /*
1879 * Technically, architectures with pte_special can avoid all these
1880 * restrictions (same for remap_pfn_range). However we would like
1881 * consistency in testing and feature parity among all, so we should
1882 * try to keep these invariants in place for everybody.
1883 */
b379d790
JH
1884 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1885 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1886 (VM_PFNMAP|VM_MIXEDMAP));
1887 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1888 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1889
423bad60
NP
1890 if (addr < vma->vm_start || addr >= vma->vm_end)
1891 return -EFAULT;
308a047c
BP
1892
1893 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1894
b2770da6
RZ
1895 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1896 false);
2ab64037 1897
2ab64037 1898 return ret;
423bad60 1899}
1745cbc5 1900EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1901
785a3fab
DW
1902static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1903{
1904 /* these checks mirror the abort conditions in vm_normal_page */
1905 if (vma->vm_flags & VM_MIXEDMAP)
1906 return true;
1907 if (pfn_t_devmap(pfn))
1908 return true;
1909 if (pfn_t_special(pfn))
1910 return true;
1911 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1912 return true;
1913 return false;
1914}
1915
b2770da6
RZ
1916static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1917 pfn_t pfn, bool mkwrite)
423bad60 1918{
87744ab3
DW
1919 pgprot_t pgprot = vma->vm_page_prot;
1920
785a3fab 1921 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1922
423bad60
NP
1923 if (addr < vma->vm_start || addr >= vma->vm_end)
1924 return -EFAULT;
308a047c
BP
1925
1926 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1927
423bad60
NP
1928 /*
1929 * If we don't have pte special, then we have to use the pfn_valid()
1930 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1931 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1932 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1933 * without pte special, it would there be refcounted as a normal page.
423bad60 1934 */
03fc2da6 1935 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1936 struct page *page;
1937
03fc2da6
DW
1938 /*
1939 * At this point we are committed to insert_page()
1940 * regardless of whether the caller specified flags that
1941 * result in pfn_t_has_page() == false.
1942 */
1943 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1944 return insert_page(vma, addr, page, pgprot);
423bad60 1945 }
b2770da6
RZ
1946 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1947}
1948
1949int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1950 pfn_t pfn)
1951{
1952 return __vm_insert_mixed(vma, addr, pfn, false);
1953
e0dc0d8f 1954}
423bad60 1955EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1956
b2770da6
RZ
1957int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1958 pfn_t pfn)
1959{
1960 return __vm_insert_mixed(vma, addr, pfn, true);
1961}
1962EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1963
1da177e4
LT
1964/*
1965 * maps a range of physical memory into the requested pages. the old
1966 * mappings are removed. any references to nonexistent pages results
1967 * in null mappings (currently treated as "copy-on-access")
1968 */
1969static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1970 unsigned long addr, unsigned long end,
1971 unsigned long pfn, pgprot_t prot)
1972{
1973 pte_t *pte;
c74df32c 1974 spinlock_t *ptl;
1da177e4 1975
c74df32c 1976 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1977 if (!pte)
1978 return -ENOMEM;
6606c3e0 1979 arch_enter_lazy_mmu_mode();
1da177e4
LT
1980 do {
1981 BUG_ON(!pte_none(*pte));
7e675137 1982 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1983 pfn++;
1984 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1985 arch_leave_lazy_mmu_mode();
c74df32c 1986 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1987 return 0;
1988}
1989
1990static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1991 unsigned long addr, unsigned long end,
1992 unsigned long pfn, pgprot_t prot)
1993{
1994 pmd_t *pmd;
1995 unsigned long next;
1996
1997 pfn -= addr >> PAGE_SHIFT;
1998 pmd = pmd_alloc(mm, pud, addr);
1999 if (!pmd)
2000 return -ENOMEM;
f66055ab 2001 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2002 do {
2003 next = pmd_addr_end(addr, end);
2004 if (remap_pte_range(mm, pmd, addr, next,
2005 pfn + (addr >> PAGE_SHIFT), prot))
2006 return -ENOMEM;
2007 } while (pmd++, addr = next, addr != end);
2008 return 0;
2009}
2010
c2febafc 2011static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2012 unsigned long addr, unsigned long end,
2013 unsigned long pfn, pgprot_t prot)
2014{
2015 pud_t *pud;
2016 unsigned long next;
2017
2018 pfn -= addr >> PAGE_SHIFT;
c2febafc 2019 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2020 if (!pud)
2021 return -ENOMEM;
2022 do {
2023 next = pud_addr_end(addr, end);
2024 if (remap_pmd_range(mm, pud, addr, next,
2025 pfn + (addr >> PAGE_SHIFT), prot))
2026 return -ENOMEM;
2027 } while (pud++, addr = next, addr != end);
2028 return 0;
2029}
2030
c2febafc
KS
2031static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2032 unsigned long addr, unsigned long end,
2033 unsigned long pfn, pgprot_t prot)
2034{
2035 p4d_t *p4d;
2036 unsigned long next;
2037
2038 pfn -= addr >> PAGE_SHIFT;
2039 p4d = p4d_alloc(mm, pgd, addr);
2040 if (!p4d)
2041 return -ENOMEM;
2042 do {
2043 next = p4d_addr_end(addr, end);
2044 if (remap_pud_range(mm, p4d, addr, next,
2045 pfn + (addr >> PAGE_SHIFT), prot))
2046 return -ENOMEM;
2047 } while (p4d++, addr = next, addr != end);
2048 return 0;
2049}
2050
bfa5bf6d
REB
2051/**
2052 * remap_pfn_range - remap kernel memory to userspace
2053 * @vma: user vma to map to
2054 * @addr: target user address to start at
2055 * @pfn: physical address of kernel memory
2056 * @size: size of map area
2057 * @prot: page protection flags for this mapping
2058 *
2059 * Note: this is only safe if the mm semaphore is held when called.
2060 */
1da177e4
LT
2061int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2062 unsigned long pfn, unsigned long size, pgprot_t prot)
2063{
2064 pgd_t *pgd;
2065 unsigned long next;
2d15cab8 2066 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2067 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2068 unsigned long remap_pfn = pfn;
1da177e4
LT
2069 int err;
2070
2071 /*
2072 * Physically remapped pages are special. Tell the
2073 * rest of the world about it:
2074 * VM_IO tells people not to look at these pages
2075 * (accesses can have side effects).
6aab341e
LT
2076 * VM_PFNMAP tells the core MM that the base pages are just
2077 * raw PFN mappings, and do not have a "struct page" associated
2078 * with them.
314e51b9
KK
2079 * VM_DONTEXPAND
2080 * Disable vma merging and expanding with mremap().
2081 * VM_DONTDUMP
2082 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2083 *
2084 * There's a horrible special case to handle copy-on-write
2085 * behaviour that some programs depend on. We mark the "original"
2086 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2087 * See vm_normal_page() for details.
1da177e4 2088 */
b3b9c293
KK
2089 if (is_cow_mapping(vma->vm_flags)) {
2090 if (addr != vma->vm_start || end != vma->vm_end)
2091 return -EINVAL;
fb155c16 2092 vma->vm_pgoff = pfn;
b3b9c293
KK
2093 }
2094
d5957d2f 2095 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2096 if (err)
3c8bb73a 2097 return -EINVAL;
fb155c16 2098
314e51b9 2099 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2100
2101 BUG_ON(addr >= end);
2102 pfn -= addr >> PAGE_SHIFT;
2103 pgd = pgd_offset(mm, addr);
2104 flush_cache_range(vma, addr, end);
1da177e4
LT
2105 do {
2106 next = pgd_addr_end(addr, end);
c2febafc 2107 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2108 pfn + (addr >> PAGE_SHIFT), prot);
2109 if (err)
2110 break;
2111 } while (pgd++, addr = next, addr != end);
2ab64037 2112
2113 if (err)
d5957d2f 2114 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2115
1da177e4
LT
2116 return err;
2117}
2118EXPORT_SYMBOL(remap_pfn_range);
2119
b4cbb197
LT
2120/**
2121 * vm_iomap_memory - remap memory to userspace
2122 * @vma: user vma to map to
2123 * @start: start of area
2124 * @len: size of area
2125 *
2126 * This is a simplified io_remap_pfn_range() for common driver use. The
2127 * driver just needs to give us the physical memory range to be mapped,
2128 * we'll figure out the rest from the vma information.
2129 *
2130 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2131 * whatever write-combining details or similar.
2132 */
2133int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2134{
2135 unsigned long vm_len, pfn, pages;
2136
2137 /* Check that the physical memory area passed in looks valid */
2138 if (start + len < start)
2139 return -EINVAL;
2140 /*
2141 * You *really* shouldn't map things that aren't page-aligned,
2142 * but we've historically allowed it because IO memory might
2143 * just have smaller alignment.
2144 */
2145 len += start & ~PAGE_MASK;
2146 pfn = start >> PAGE_SHIFT;
2147 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2148 if (pfn + pages < pfn)
2149 return -EINVAL;
2150
2151 /* We start the mapping 'vm_pgoff' pages into the area */
2152 if (vma->vm_pgoff > pages)
2153 return -EINVAL;
2154 pfn += vma->vm_pgoff;
2155 pages -= vma->vm_pgoff;
2156
2157 /* Can we fit all of the mapping? */
2158 vm_len = vma->vm_end - vma->vm_start;
2159 if (vm_len >> PAGE_SHIFT > pages)
2160 return -EINVAL;
2161
2162 /* Ok, let it rip */
2163 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2164}
2165EXPORT_SYMBOL(vm_iomap_memory);
2166
aee16b3c
JF
2167static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2168 unsigned long addr, unsigned long end,
2169 pte_fn_t fn, void *data)
2170{
2171 pte_t *pte;
2172 int err;
2f569afd 2173 pgtable_t token;
94909914 2174 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2175
2176 pte = (mm == &init_mm) ?
2177 pte_alloc_kernel(pmd, addr) :
2178 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2179 if (!pte)
2180 return -ENOMEM;
2181
2182 BUG_ON(pmd_huge(*pmd));
2183
38e0edb1
JF
2184 arch_enter_lazy_mmu_mode();
2185
2f569afd 2186 token = pmd_pgtable(*pmd);
aee16b3c
JF
2187
2188 do {
c36987e2 2189 err = fn(pte++, token, addr, data);
aee16b3c
JF
2190 if (err)
2191 break;
c36987e2 2192 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2193
38e0edb1
JF
2194 arch_leave_lazy_mmu_mode();
2195
aee16b3c
JF
2196 if (mm != &init_mm)
2197 pte_unmap_unlock(pte-1, ptl);
2198 return err;
2199}
2200
2201static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2202 unsigned long addr, unsigned long end,
2203 pte_fn_t fn, void *data)
2204{
2205 pmd_t *pmd;
2206 unsigned long next;
2207 int err;
2208
ceb86879
AK
2209 BUG_ON(pud_huge(*pud));
2210
aee16b3c
JF
2211 pmd = pmd_alloc(mm, pud, addr);
2212 if (!pmd)
2213 return -ENOMEM;
2214 do {
2215 next = pmd_addr_end(addr, end);
2216 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2217 if (err)
2218 break;
2219 } while (pmd++, addr = next, addr != end);
2220 return err;
2221}
2222
c2febafc 2223static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2224 unsigned long addr, unsigned long end,
2225 pte_fn_t fn, void *data)
2226{
2227 pud_t *pud;
2228 unsigned long next;
2229 int err;
2230
c2febafc 2231 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2232 if (!pud)
2233 return -ENOMEM;
2234 do {
2235 next = pud_addr_end(addr, end);
2236 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2237 if (err)
2238 break;
2239 } while (pud++, addr = next, addr != end);
2240 return err;
2241}
2242
c2febafc
KS
2243static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2244 unsigned long addr, unsigned long end,
2245 pte_fn_t fn, void *data)
2246{
2247 p4d_t *p4d;
2248 unsigned long next;
2249 int err;
2250
2251 p4d = p4d_alloc(mm, pgd, addr);
2252 if (!p4d)
2253 return -ENOMEM;
2254 do {
2255 next = p4d_addr_end(addr, end);
2256 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2257 if (err)
2258 break;
2259 } while (p4d++, addr = next, addr != end);
2260 return err;
2261}
2262
aee16b3c
JF
2263/*
2264 * Scan a region of virtual memory, filling in page tables as necessary
2265 * and calling a provided function on each leaf page table.
2266 */
2267int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2268 unsigned long size, pte_fn_t fn, void *data)
2269{
2270 pgd_t *pgd;
2271 unsigned long next;
57250a5b 2272 unsigned long end = addr + size;
aee16b3c
JF
2273 int err;
2274
9cb65bc3
MP
2275 if (WARN_ON(addr >= end))
2276 return -EINVAL;
2277
aee16b3c
JF
2278 pgd = pgd_offset(mm, addr);
2279 do {
2280 next = pgd_addr_end(addr, end);
c2febafc 2281 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2282 if (err)
2283 break;
2284 } while (pgd++, addr = next, addr != end);
57250a5b 2285
aee16b3c
JF
2286 return err;
2287}
2288EXPORT_SYMBOL_GPL(apply_to_page_range);
2289
8f4e2101 2290/*
9b4bdd2f
KS
2291 * handle_pte_fault chooses page fault handler according to an entry which was
2292 * read non-atomically. Before making any commitment, on those architectures
2293 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2294 * parts, do_swap_page must check under lock before unmapping the pte and
2295 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2296 * and do_anonymous_page can safely check later on).
8f4e2101 2297 */
4c21e2f2 2298static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2299 pte_t *page_table, pte_t orig_pte)
2300{
2301 int same = 1;
2302#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2303 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2304 spinlock_t *ptl = pte_lockptr(mm, pmd);
2305 spin_lock(ptl);
8f4e2101 2306 same = pte_same(*page_table, orig_pte);
4c21e2f2 2307 spin_unlock(ptl);
8f4e2101
HD
2308 }
2309#endif
2310 pte_unmap(page_table);
2311 return same;
2312}
2313
9de455b2 2314static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2315{
0abdd7a8
DW
2316 debug_dma_assert_idle(src);
2317
6aab341e
LT
2318 /*
2319 * If the source page was a PFN mapping, we don't have
2320 * a "struct page" for it. We do a best-effort copy by
2321 * just copying from the original user address. If that
2322 * fails, we just zero-fill it. Live with it.
2323 */
2324 if (unlikely(!src)) {
9b04c5fe 2325 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2326 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2327
2328 /*
2329 * This really shouldn't fail, because the page is there
2330 * in the page tables. But it might just be unreadable,
2331 * in which case we just give up and fill the result with
2332 * zeroes.
2333 */
2334 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2335 clear_page(kaddr);
9b04c5fe 2336 kunmap_atomic(kaddr);
c4ec7b0d 2337 flush_dcache_page(dst);
0ed361de
NP
2338 } else
2339 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2340}
2341
c20cd45e
MH
2342static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2343{
2344 struct file *vm_file = vma->vm_file;
2345
2346 if (vm_file)
2347 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2348
2349 /*
2350 * Special mappings (e.g. VDSO) do not have any file so fake
2351 * a default GFP_KERNEL for them.
2352 */
2353 return GFP_KERNEL;
2354}
2355
fb09a464
KS
2356/*
2357 * Notify the address space that the page is about to become writable so that
2358 * it can prohibit this or wait for the page to get into an appropriate state.
2359 *
2360 * We do this without the lock held, so that it can sleep if it needs to.
2361 */
38b8cb7f 2362static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2363{
fb09a464 2364 int ret;
38b8cb7f
JK
2365 struct page *page = vmf->page;
2366 unsigned int old_flags = vmf->flags;
fb09a464 2367
38b8cb7f 2368 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2369
11bac800 2370 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2371 /* Restore original flags so that caller is not surprised */
2372 vmf->flags = old_flags;
fb09a464
KS
2373 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2374 return ret;
2375 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2376 lock_page(page);
2377 if (!page->mapping) {
2378 unlock_page(page);
2379 return 0; /* retry */
2380 }
2381 ret |= VM_FAULT_LOCKED;
2382 } else
2383 VM_BUG_ON_PAGE(!PageLocked(page), page);
2384 return ret;
2385}
2386
97ba0c2b
JK
2387/*
2388 * Handle dirtying of a page in shared file mapping on a write fault.
2389 *
2390 * The function expects the page to be locked and unlocks it.
2391 */
2392static void fault_dirty_shared_page(struct vm_area_struct *vma,
2393 struct page *page)
2394{
2395 struct address_space *mapping;
2396 bool dirtied;
2397 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2398
2399 dirtied = set_page_dirty(page);
2400 VM_BUG_ON_PAGE(PageAnon(page), page);
2401 /*
2402 * Take a local copy of the address_space - page.mapping may be zeroed
2403 * by truncate after unlock_page(). The address_space itself remains
2404 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2405 * release semantics to prevent the compiler from undoing this copying.
2406 */
2407 mapping = page_rmapping(page);
2408 unlock_page(page);
2409
2410 if ((dirtied || page_mkwrite) && mapping) {
2411 /*
2412 * Some device drivers do not set page.mapping
2413 * but still dirty their pages
2414 */
2415 balance_dirty_pages_ratelimited(mapping);
2416 }
2417
2418 if (!page_mkwrite)
2419 file_update_time(vma->vm_file);
2420}
2421
4e047f89
SR
2422/*
2423 * Handle write page faults for pages that can be reused in the current vma
2424 *
2425 * This can happen either due to the mapping being with the VM_SHARED flag,
2426 * or due to us being the last reference standing to the page. In either
2427 * case, all we need to do here is to mark the page as writable and update
2428 * any related book-keeping.
2429 */
997dd98d 2430static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2431 __releases(vmf->ptl)
4e047f89 2432{
82b0f8c3 2433 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2434 struct page *page = vmf->page;
4e047f89
SR
2435 pte_t entry;
2436 /*
2437 * Clear the pages cpupid information as the existing
2438 * information potentially belongs to a now completely
2439 * unrelated process.
2440 */
2441 if (page)
2442 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2443
2994302b
JK
2444 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2445 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2446 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2447 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2448 update_mmu_cache(vma, vmf->address, vmf->pte);
2449 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2450}
2451
2f38ab2c
SR
2452/*
2453 * Handle the case of a page which we actually need to copy to a new page.
2454 *
2455 * Called with mmap_sem locked and the old page referenced, but
2456 * without the ptl held.
2457 *
2458 * High level logic flow:
2459 *
2460 * - Allocate a page, copy the content of the old page to the new one.
2461 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2462 * - Take the PTL. If the pte changed, bail out and release the allocated page
2463 * - If the pte is still the way we remember it, update the page table and all
2464 * relevant references. This includes dropping the reference the page-table
2465 * held to the old page, as well as updating the rmap.
2466 * - In any case, unlock the PTL and drop the reference we took to the old page.
2467 */
a41b70d6 2468static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2469{
82b0f8c3 2470 struct vm_area_struct *vma = vmf->vma;
bae473a4 2471 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2472 struct page *old_page = vmf->page;
2f38ab2c 2473 struct page *new_page = NULL;
2f38ab2c
SR
2474 pte_t entry;
2475 int page_copied = 0;
82b0f8c3 2476 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2477 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2478 struct mem_cgroup *memcg;
2479
2480 if (unlikely(anon_vma_prepare(vma)))
2481 goto oom;
2482
2994302b 2483 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2484 new_page = alloc_zeroed_user_highpage_movable(vma,
2485 vmf->address);
2f38ab2c
SR
2486 if (!new_page)
2487 goto oom;
2488 } else {
bae473a4 2489 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2490 vmf->address);
2f38ab2c
SR
2491 if (!new_page)
2492 goto oom;
82b0f8c3 2493 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2494 }
2f38ab2c 2495
f627c2f5 2496 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2497 goto oom_free_new;
2498
eb3c24f3
MG
2499 __SetPageUptodate(new_page);
2500
2f38ab2c
SR
2501 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2502
2503 /*
2504 * Re-check the pte - we dropped the lock
2505 */
82b0f8c3 2506 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2507 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2508 if (old_page) {
2509 if (!PageAnon(old_page)) {
eca56ff9
JM
2510 dec_mm_counter_fast(mm,
2511 mm_counter_file(old_page));
2f38ab2c
SR
2512 inc_mm_counter_fast(mm, MM_ANONPAGES);
2513 }
2514 } else {
2515 inc_mm_counter_fast(mm, MM_ANONPAGES);
2516 }
2994302b 2517 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2518 entry = mk_pte(new_page, vma->vm_page_prot);
2519 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2520 /*
2521 * Clear the pte entry and flush it first, before updating the
2522 * pte with the new entry. This will avoid a race condition
2523 * seen in the presence of one thread doing SMC and another
2524 * thread doing COW.
2525 */
82b0f8c3
JK
2526 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2527 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2528 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2529 lru_cache_add_active_or_unevictable(new_page, vma);
2530 /*
2531 * We call the notify macro here because, when using secondary
2532 * mmu page tables (such as kvm shadow page tables), we want the
2533 * new page to be mapped directly into the secondary page table.
2534 */
82b0f8c3
JK
2535 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2536 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2537 if (old_page) {
2538 /*
2539 * Only after switching the pte to the new page may
2540 * we remove the mapcount here. Otherwise another
2541 * process may come and find the rmap count decremented
2542 * before the pte is switched to the new page, and
2543 * "reuse" the old page writing into it while our pte
2544 * here still points into it and can be read by other
2545 * threads.
2546 *
2547 * The critical issue is to order this
2548 * page_remove_rmap with the ptp_clear_flush above.
2549 * Those stores are ordered by (if nothing else,)
2550 * the barrier present in the atomic_add_negative
2551 * in page_remove_rmap.
2552 *
2553 * Then the TLB flush in ptep_clear_flush ensures that
2554 * no process can access the old page before the
2555 * decremented mapcount is visible. And the old page
2556 * cannot be reused until after the decremented
2557 * mapcount is visible. So transitively, TLBs to
2558 * old page will be flushed before it can be reused.
2559 */
d281ee61 2560 page_remove_rmap(old_page, false);
2f38ab2c
SR
2561 }
2562
2563 /* Free the old page.. */
2564 new_page = old_page;
2565 page_copied = 1;
2566 } else {
f627c2f5 2567 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2568 }
2569
2570 if (new_page)
09cbfeaf 2571 put_page(new_page);
2f38ab2c 2572
82b0f8c3 2573 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2574 /*
2575 * No need to double call mmu_notifier->invalidate_range() callback as
2576 * the above ptep_clear_flush_notify() did already call it.
2577 */
2578 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2579 if (old_page) {
2580 /*
2581 * Don't let another task, with possibly unlocked vma,
2582 * keep the mlocked page.
2583 */
2584 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2585 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2586 if (PageMlocked(old_page))
2587 munlock_vma_page(old_page);
2f38ab2c
SR
2588 unlock_page(old_page);
2589 }
09cbfeaf 2590 put_page(old_page);
2f38ab2c
SR
2591 }
2592 return page_copied ? VM_FAULT_WRITE : 0;
2593oom_free_new:
09cbfeaf 2594 put_page(new_page);
2f38ab2c
SR
2595oom:
2596 if (old_page)
09cbfeaf 2597 put_page(old_page);
2f38ab2c
SR
2598 return VM_FAULT_OOM;
2599}
2600
66a6197c
JK
2601/**
2602 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2603 * writeable once the page is prepared
2604 *
2605 * @vmf: structure describing the fault
2606 *
2607 * This function handles all that is needed to finish a write page fault in a
2608 * shared mapping due to PTE being read-only once the mapped page is prepared.
2609 * It handles locking of PTE and modifying it. The function returns
2610 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2611 * lock.
2612 *
2613 * The function expects the page to be locked or other protection against
2614 * concurrent faults / writeback (such as DAX radix tree locks).
2615 */
2616int finish_mkwrite_fault(struct vm_fault *vmf)
2617{
2618 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2619 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2620 &vmf->ptl);
2621 /*
2622 * We might have raced with another page fault while we released the
2623 * pte_offset_map_lock.
2624 */
2625 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2626 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2627 return VM_FAULT_NOPAGE;
66a6197c
JK
2628 }
2629 wp_page_reuse(vmf);
a19e2553 2630 return 0;
66a6197c
JK
2631}
2632
dd906184
BH
2633/*
2634 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2635 * mapping
2636 */
2994302b 2637static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2638{
82b0f8c3 2639 struct vm_area_struct *vma = vmf->vma;
bae473a4 2640
dd906184 2641 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2642 int ret;
2643
82b0f8c3 2644 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2645 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2646 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2647 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2648 return ret;
66a6197c 2649 return finish_mkwrite_fault(vmf);
dd906184 2650 }
997dd98d
JK
2651 wp_page_reuse(vmf);
2652 return VM_FAULT_WRITE;
dd906184
BH
2653}
2654
a41b70d6 2655static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2656 __releases(vmf->ptl)
93e478d4 2657{
82b0f8c3 2658 struct vm_area_struct *vma = vmf->vma;
93e478d4 2659
a41b70d6 2660 get_page(vmf->page);
93e478d4 2661
93e478d4
SR
2662 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2663 int tmp;
2664
82b0f8c3 2665 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2666 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2667 if (unlikely(!tmp || (tmp &
2668 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2669 put_page(vmf->page);
93e478d4
SR
2670 return tmp;
2671 }
66a6197c 2672 tmp = finish_mkwrite_fault(vmf);
a19e2553 2673 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2674 unlock_page(vmf->page);
a41b70d6 2675 put_page(vmf->page);
66a6197c 2676 return tmp;
93e478d4 2677 }
66a6197c
JK
2678 } else {
2679 wp_page_reuse(vmf);
997dd98d 2680 lock_page(vmf->page);
93e478d4 2681 }
997dd98d
JK
2682 fault_dirty_shared_page(vma, vmf->page);
2683 put_page(vmf->page);
93e478d4 2684
997dd98d 2685 return VM_FAULT_WRITE;
93e478d4
SR
2686}
2687
1da177e4
LT
2688/*
2689 * This routine handles present pages, when users try to write
2690 * to a shared page. It is done by copying the page to a new address
2691 * and decrementing the shared-page counter for the old page.
2692 *
1da177e4
LT
2693 * Note that this routine assumes that the protection checks have been
2694 * done by the caller (the low-level page fault routine in most cases).
2695 * Thus we can safely just mark it writable once we've done any necessary
2696 * COW.
2697 *
2698 * We also mark the page dirty at this point even though the page will
2699 * change only once the write actually happens. This avoids a few races,
2700 * and potentially makes it more efficient.
2701 *
8f4e2101
HD
2702 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2703 * but allow concurrent faults), with pte both mapped and locked.
2704 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2705 */
2994302b 2706static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2707 __releases(vmf->ptl)
1da177e4 2708{
82b0f8c3 2709 struct vm_area_struct *vma = vmf->vma;
1da177e4 2710
a41b70d6
JK
2711 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2712 if (!vmf->page) {
251b97f5 2713 /*
64e45507
PF
2714 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2715 * VM_PFNMAP VMA.
251b97f5
PZ
2716 *
2717 * We should not cow pages in a shared writeable mapping.
dd906184 2718 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2719 */
2720 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2721 (VM_WRITE|VM_SHARED))
2994302b 2722 return wp_pfn_shared(vmf);
2f38ab2c 2723
82b0f8c3 2724 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2725 return wp_page_copy(vmf);
251b97f5 2726 }
1da177e4 2727
d08b3851 2728 /*
ee6a6457
PZ
2729 * Take out anonymous pages first, anonymous shared vmas are
2730 * not dirty accountable.
d08b3851 2731 */
a41b70d6 2732 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2733 int total_map_swapcount;
a41b70d6
JK
2734 if (!trylock_page(vmf->page)) {
2735 get_page(vmf->page);
82b0f8c3 2736 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2737 lock_page(vmf->page);
82b0f8c3
JK
2738 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2739 vmf->address, &vmf->ptl);
2994302b 2740 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2741 unlock_page(vmf->page);
82b0f8c3 2742 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2743 put_page(vmf->page);
28766805 2744 return 0;
ab967d86 2745 }
a41b70d6 2746 put_page(vmf->page);
ee6a6457 2747 }
ba3c4ce6
HY
2748 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2749 if (total_map_swapcount == 1) {
6d0a07ed
AA
2750 /*
2751 * The page is all ours. Move it to
2752 * our anon_vma so the rmap code will
2753 * not search our parent or siblings.
2754 * Protected against the rmap code by
2755 * the page lock.
2756 */
a41b70d6 2757 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2758 }
a41b70d6 2759 unlock_page(vmf->page);
997dd98d
JK
2760 wp_page_reuse(vmf);
2761 return VM_FAULT_WRITE;
b009c024 2762 }
a41b70d6 2763 unlock_page(vmf->page);
ee6a6457 2764 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2765 (VM_WRITE|VM_SHARED))) {
a41b70d6 2766 return wp_page_shared(vmf);
1da177e4 2767 }
1da177e4
LT
2768
2769 /*
2770 * Ok, we need to copy. Oh, well..
2771 */
a41b70d6 2772 get_page(vmf->page);
28766805 2773
82b0f8c3 2774 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2775 return wp_page_copy(vmf);
1da177e4
LT
2776}
2777
97a89413 2778static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2779 unsigned long start_addr, unsigned long end_addr,
2780 struct zap_details *details)
2781{
f5cc4eef 2782 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2783}
2784
f808c13f 2785static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2786 struct zap_details *details)
2787{
2788 struct vm_area_struct *vma;
1da177e4
LT
2789 pgoff_t vba, vea, zba, zea;
2790
6b2dbba8 2791 vma_interval_tree_foreach(vma, root,
1da177e4 2792 details->first_index, details->last_index) {
1da177e4
LT
2793
2794 vba = vma->vm_pgoff;
d6e93217 2795 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2796 zba = details->first_index;
2797 if (zba < vba)
2798 zba = vba;
2799 zea = details->last_index;
2800 if (zea > vea)
2801 zea = vea;
2802
97a89413 2803 unmap_mapping_range_vma(vma,
1da177e4
LT
2804 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2805 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2806 details);
1da177e4
LT
2807 }
2808}
2809
977fbdcd
MW
2810/**
2811 * unmap_mapping_pages() - Unmap pages from processes.
2812 * @mapping: The address space containing pages to be unmapped.
2813 * @start: Index of first page to be unmapped.
2814 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2815 * @even_cows: Whether to unmap even private COWed pages.
2816 *
2817 * Unmap the pages in this address space from any userspace process which
2818 * has them mmaped. Generally, you want to remove COWed pages as well when
2819 * a file is being truncated, but not when invalidating pages from the page
2820 * cache.
2821 */
2822void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2823 pgoff_t nr, bool even_cows)
2824{
2825 struct zap_details details = { };
2826
2827 details.check_mapping = even_cows ? NULL : mapping;
2828 details.first_index = start;
2829 details.last_index = start + nr - 1;
2830 if (details.last_index < details.first_index)
2831 details.last_index = ULONG_MAX;
2832
2833 i_mmap_lock_write(mapping);
2834 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2835 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2836 i_mmap_unlock_write(mapping);
2837}
2838
1da177e4 2839/**
8a5f14a2 2840 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2841 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2842 * file.
2843 *
3d41088f 2844 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2845 * @holebegin: byte in first page to unmap, relative to the start of
2846 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2847 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2848 * must keep the partial page. In contrast, we must get rid of
2849 * partial pages.
2850 * @holelen: size of prospective hole in bytes. This will be rounded
2851 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2852 * end of the file.
2853 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2854 * but 0 when invalidating pagecache, don't throw away private data.
2855 */
2856void unmap_mapping_range(struct address_space *mapping,
2857 loff_t const holebegin, loff_t const holelen, int even_cows)
2858{
1da177e4
LT
2859 pgoff_t hba = holebegin >> PAGE_SHIFT;
2860 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2861
2862 /* Check for overflow. */
2863 if (sizeof(holelen) > sizeof(hlen)) {
2864 long long holeend =
2865 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2866 if (holeend & ~(long long)ULONG_MAX)
2867 hlen = ULONG_MAX - hba + 1;
2868 }
2869
977fbdcd 2870 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2871}
2872EXPORT_SYMBOL(unmap_mapping_range);
2873
1da177e4 2874/*
8f4e2101
HD
2875 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2876 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2877 * We return with pte unmapped and unlocked.
2878 *
2879 * We return with the mmap_sem locked or unlocked in the same cases
2880 * as does filemap_fault().
1da177e4 2881 */
2994302b 2882int do_swap_page(struct vm_fault *vmf)
1da177e4 2883{
82b0f8c3 2884 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2885 struct page *page = NULL, *swapcache;
00501b53 2886 struct mem_cgroup *memcg;
65500d23 2887 swp_entry_t entry;
1da177e4 2888 pte_t pte;
d065bd81 2889 int locked;
ad8c2ee8 2890 int exclusive = 0;
83c54070 2891 int ret = 0;
1da177e4 2892
eaf649eb 2893 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2894 goto out;
65500d23 2895
2994302b 2896 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2897 if (unlikely(non_swap_entry(entry))) {
2898 if (is_migration_entry(entry)) {
82b0f8c3
JK
2899 migration_entry_wait(vma->vm_mm, vmf->pmd,
2900 vmf->address);
5042db43
JG
2901 } else if (is_device_private_entry(entry)) {
2902 /*
2903 * For un-addressable device memory we call the pgmap
2904 * fault handler callback. The callback must migrate
2905 * the page back to some CPU accessible page.
2906 */
2907 ret = device_private_entry_fault(vma, vmf->address, entry,
2908 vmf->flags, vmf->pmd);
d1737fdb
AK
2909 } else if (is_hwpoison_entry(entry)) {
2910 ret = VM_FAULT_HWPOISON;
2911 } else {
2994302b 2912 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2913 ret = VM_FAULT_SIGBUS;
d1737fdb 2914 }
0697212a
CL
2915 goto out;
2916 }
0bcac06f
MK
2917
2918
0ff92245 2919 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2920 page = lookup_swap_cache(entry, vma, vmf->address);
2921 swapcache = page;
f8020772 2922
1da177e4 2923 if (!page) {
0bcac06f
MK
2924 struct swap_info_struct *si = swp_swap_info(entry);
2925
aa8d22a1
MK
2926 if (si->flags & SWP_SYNCHRONOUS_IO &&
2927 __swap_count(si, entry) == 1) {
0bcac06f 2928 /* skip swapcache */
e9e9b7ec
MK
2929 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2930 vmf->address);
0bcac06f
MK
2931 if (page) {
2932 __SetPageLocked(page);
2933 __SetPageSwapBacked(page);
2934 set_page_private(page, entry.val);
2935 lru_cache_add_anon(page);
2936 swap_readpage(page, true);
2937 }
aa8d22a1 2938 } else {
e9e9b7ec
MK
2939 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2940 vmf);
aa8d22a1 2941 swapcache = page;
0bcac06f
MK
2942 }
2943
1da177e4
LT
2944 if (!page) {
2945 /*
8f4e2101
HD
2946 * Back out if somebody else faulted in this pte
2947 * while we released the pte lock.
1da177e4 2948 */
82b0f8c3
JK
2949 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2950 vmf->address, &vmf->ptl);
2994302b 2951 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2952 ret = VM_FAULT_OOM;
0ff92245 2953 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2954 goto unlock;
1da177e4
LT
2955 }
2956
2957 /* Had to read the page from swap area: Major fault */
2958 ret = VM_FAULT_MAJOR;
f8891e5e 2959 count_vm_event(PGMAJFAULT);
2262185c 2960 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2961 } else if (PageHWPoison(page)) {
71f72525
WF
2962 /*
2963 * hwpoisoned dirty swapcache pages are kept for killing
2964 * owner processes (which may be unknown at hwpoison time)
2965 */
d1737fdb
AK
2966 ret = VM_FAULT_HWPOISON;
2967 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2968 goto out_release;
1da177e4
LT
2969 }
2970
82b0f8c3 2971 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2972
073e587e 2973 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2974 if (!locked) {
2975 ret |= VM_FAULT_RETRY;
2976 goto out_release;
2977 }
073e587e 2978
4969c119 2979 /*
31c4a3d3
HD
2980 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2981 * release the swapcache from under us. The page pin, and pte_same
2982 * test below, are not enough to exclude that. Even if it is still
2983 * swapcache, we need to check that the page's swap has not changed.
4969c119 2984 */
0bcac06f
MK
2985 if (unlikely((!PageSwapCache(page) ||
2986 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2987 goto out_page;
2988
82b0f8c3 2989 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2990 if (unlikely(!page)) {
2991 ret = VM_FAULT_OOM;
2992 page = swapcache;
cbf86cfe 2993 goto out_page;
5ad64688
HD
2994 }
2995
bae473a4
KS
2996 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2997 &memcg, false)) {
8a9f3ccd 2998 ret = VM_FAULT_OOM;
bc43f75c 2999 goto out_page;
8a9f3ccd
BS
3000 }
3001
1da177e4 3002 /*
8f4e2101 3003 * Back out if somebody else already faulted in this pte.
1da177e4 3004 */
82b0f8c3
JK
3005 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3006 &vmf->ptl);
2994302b 3007 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3008 goto out_nomap;
b8107480
KK
3009
3010 if (unlikely(!PageUptodate(page))) {
3011 ret = VM_FAULT_SIGBUS;
3012 goto out_nomap;
1da177e4
LT
3013 }
3014
8c7c6e34
KH
3015 /*
3016 * The page isn't present yet, go ahead with the fault.
3017 *
3018 * Be careful about the sequence of operations here.
3019 * To get its accounting right, reuse_swap_page() must be called
3020 * while the page is counted on swap but not yet in mapcount i.e.
3021 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3022 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3023 */
1da177e4 3024
bae473a4
KS
3025 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3026 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3027 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3028 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3029 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3030 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3031 ret |= VM_FAULT_WRITE;
d281ee61 3032 exclusive = RMAP_EXCLUSIVE;
1da177e4 3033 }
1da177e4 3034 flush_icache_page(vma, page);
2994302b 3035 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3036 pte = pte_mksoft_dirty(pte);
82b0f8c3 3037 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3038 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3039 vmf->orig_pte = pte;
0bcac06f
MK
3040
3041 /* ksm created a completely new copy */
3042 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3043 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3044 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3045 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3046 } else {
3047 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3048 mem_cgroup_commit_charge(page, memcg, true, false);
3049 activate_page(page);
00501b53 3050 }
1da177e4 3051
c475a8ab 3052 swap_free(entry);
5ccc5aba
VD
3053 if (mem_cgroup_swap_full(page) ||
3054 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3055 try_to_free_swap(page);
c475a8ab 3056 unlock_page(page);
0bcac06f 3057 if (page != swapcache && swapcache) {
4969c119
AA
3058 /*
3059 * Hold the lock to avoid the swap entry to be reused
3060 * until we take the PT lock for the pte_same() check
3061 * (to avoid false positives from pte_same). For
3062 * further safety release the lock after the swap_free
3063 * so that the swap count won't change under a
3064 * parallel locked swapcache.
3065 */
3066 unlock_page(swapcache);
09cbfeaf 3067 put_page(swapcache);
4969c119 3068 }
c475a8ab 3069
82b0f8c3 3070 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3071 ret |= do_wp_page(vmf);
61469f1d
HD
3072 if (ret & VM_FAULT_ERROR)
3073 ret &= VM_FAULT_ERROR;
1da177e4
LT
3074 goto out;
3075 }
3076
3077 /* No need to invalidate - it was non-present before */
82b0f8c3 3078 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3079unlock:
82b0f8c3 3080 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3081out:
3082 return ret;
b8107480 3083out_nomap:
f627c2f5 3084 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3085 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3086out_page:
b8107480 3087 unlock_page(page);
4779cb31 3088out_release:
09cbfeaf 3089 put_page(page);
0bcac06f 3090 if (page != swapcache && swapcache) {
4969c119 3091 unlock_page(swapcache);
09cbfeaf 3092 put_page(swapcache);
4969c119 3093 }
65500d23 3094 return ret;
1da177e4
LT
3095}
3096
3097/*
8f4e2101
HD
3098 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3099 * but allow concurrent faults), and pte mapped but not yet locked.
3100 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3101 */
82b0f8c3 3102static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 3103{
82b0f8c3 3104 struct vm_area_struct *vma = vmf->vma;
00501b53 3105 struct mem_cgroup *memcg;
8f4e2101 3106 struct page *page;
6b31d595 3107 int ret = 0;
1da177e4 3108 pte_t entry;
1da177e4 3109
6b7339f4
KS
3110 /* File mapping without ->vm_ops ? */
3111 if (vma->vm_flags & VM_SHARED)
3112 return VM_FAULT_SIGBUS;
3113
7267ec00
KS
3114 /*
3115 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3116 * pte_offset_map() on pmds where a huge pmd might be created
3117 * from a different thread.
3118 *
3119 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3120 * parallel threads are excluded by other means.
3121 *
3122 * Here we only have down_read(mmap_sem).
3123 */
82b0f8c3 3124 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
3125 return VM_FAULT_OOM;
3126
3127 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3128 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3129 return 0;
3130
11ac5524 3131 /* Use the zero-page for reads */
82b0f8c3 3132 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3133 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3134 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3135 vma->vm_page_prot));
82b0f8c3
JK
3136 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3137 vmf->address, &vmf->ptl);
3138 if (!pte_none(*vmf->pte))
a13ea5b7 3139 goto unlock;
6b31d595
MH
3140 ret = check_stable_address_space(vma->vm_mm);
3141 if (ret)
3142 goto unlock;
6b251fc9
AA
3143 /* Deliver the page fault to userland, check inside PT lock */
3144 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3145 pte_unmap_unlock(vmf->pte, vmf->ptl);
3146 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3147 }
a13ea5b7
HD
3148 goto setpte;
3149 }
3150
557ed1fa 3151 /* Allocate our own private page. */
557ed1fa
NP
3152 if (unlikely(anon_vma_prepare(vma)))
3153 goto oom;
82b0f8c3 3154 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3155 if (!page)
3156 goto oom;
eb3c24f3 3157
bae473a4 3158 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
3159 goto oom_free_page;
3160
52f37629
MK
3161 /*
3162 * The memory barrier inside __SetPageUptodate makes sure that
3163 * preceeding stores to the page contents become visible before
3164 * the set_pte_at() write.
3165 */
0ed361de 3166 __SetPageUptodate(page);
8f4e2101 3167
557ed1fa 3168 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3169 if (vma->vm_flags & VM_WRITE)
3170 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3171
82b0f8c3
JK
3172 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3173 &vmf->ptl);
3174 if (!pte_none(*vmf->pte))
557ed1fa 3175 goto release;
9ba69294 3176
6b31d595
MH
3177 ret = check_stable_address_space(vma->vm_mm);
3178 if (ret)
3179 goto release;
3180
6b251fc9
AA
3181 /* Deliver the page fault to userland, check inside PT lock */
3182 if (userfaultfd_missing(vma)) {
82b0f8c3 3183 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3184 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3185 put_page(page);
82b0f8c3 3186 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3187 }
3188
bae473a4 3189 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3190 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3191 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3192 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3193setpte:
82b0f8c3 3194 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3195
3196 /* No need to invalidate - it was non-present before */
82b0f8c3 3197 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3198unlock:
82b0f8c3 3199 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3200 return ret;
8f4e2101 3201release:
f627c2f5 3202 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3203 put_page(page);
8f4e2101 3204 goto unlock;
8a9f3ccd 3205oom_free_page:
09cbfeaf 3206 put_page(page);
65500d23 3207oom:
1da177e4
LT
3208 return VM_FAULT_OOM;
3209}
3210
9a95f3cf
PC
3211/*
3212 * The mmap_sem must have been held on entry, and may have been
3213 * released depending on flags and vma->vm_ops->fault() return value.
3214 * See filemap_fault() and __lock_page_retry().
3215 */
936ca80d 3216static int __do_fault(struct vm_fault *vmf)
7eae74af 3217{
82b0f8c3 3218 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3219 int ret;
3220
11bac800 3221 ret = vma->vm_ops->fault(vmf);
3917048d 3222 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3223 VM_FAULT_DONE_COW)))
bc2466e4 3224 return ret;
7eae74af 3225
667240e0 3226 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3227 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3228 unlock_page(vmf->page);
3229 put_page(vmf->page);
936ca80d 3230 vmf->page = NULL;
7eae74af
KS
3231 return VM_FAULT_HWPOISON;
3232 }
3233
3234 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3235 lock_page(vmf->page);
7eae74af 3236 else
667240e0 3237 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3238
7eae74af
KS
3239 return ret;
3240}
3241
d0f0931d
RZ
3242/*
3243 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3244 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3245 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3246 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3247 */
3248static int pmd_devmap_trans_unstable(pmd_t *pmd)
3249{
3250 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3251}
3252
82b0f8c3 3253static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3254{
82b0f8c3 3255 struct vm_area_struct *vma = vmf->vma;
7267ec00 3256
82b0f8c3 3257 if (!pmd_none(*vmf->pmd))
7267ec00 3258 goto map_pte;
82b0f8c3
JK
3259 if (vmf->prealloc_pte) {
3260 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3261 if (unlikely(!pmd_none(*vmf->pmd))) {
3262 spin_unlock(vmf->ptl);
7267ec00
KS
3263 goto map_pte;
3264 }
3265
c4812909 3266 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3267 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3268 spin_unlock(vmf->ptl);
7f2b6ce8 3269 vmf->prealloc_pte = NULL;
82b0f8c3 3270 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3271 return VM_FAULT_OOM;
3272 }
3273map_pte:
3274 /*
3275 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3276 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3277 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3278 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3279 * running immediately after a huge pmd fault in a different thread of
3280 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3281 * All we have to ensure is that it is a regular pmd that we can walk
3282 * with pte_offset_map() and we can do that through an atomic read in
3283 * C, which is what pmd_trans_unstable() provides.
7267ec00 3284 */
d0f0931d 3285 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3286 return VM_FAULT_NOPAGE;
3287
d0f0931d
RZ
3288 /*
3289 * At this point we know that our vmf->pmd points to a page of ptes
3290 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3291 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3292 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3293 * be valid and we will re-check to make sure the vmf->pte isn't
3294 * pte_none() under vmf->ptl protection when we return to
3295 * alloc_set_pte().
3296 */
82b0f8c3
JK
3297 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3298 &vmf->ptl);
7267ec00
KS
3299 return 0;
3300}
3301
e496cf3d 3302#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3303
3304#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3305static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3306 unsigned long haddr)
3307{
3308 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3309 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3310 return false;
3311 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3312 return false;
3313 return true;
3314}
3315
82b0f8c3 3316static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3317{
82b0f8c3 3318 struct vm_area_struct *vma = vmf->vma;
953c66c2 3319
82b0f8c3 3320 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3321 /*
3322 * We are going to consume the prealloc table,
3323 * count that as nr_ptes.
3324 */
c4812909 3325 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3326 vmf->prealloc_pte = NULL;
953c66c2
AK
3327}
3328
82b0f8c3 3329static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3330{
82b0f8c3
JK
3331 struct vm_area_struct *vma = vmf->vma;
3332 bool write = vmf->flags & FAULT_FLAG_WRITE;
3333 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3334 pmd_t entry;
3335 int i, ret;
3336
3337 if (!transhuge_vma_suitable(vma, haddr))
3338 return VM_FAULT_FALLBACK;
3339
3340 ret = VM_FAULT_FALLBACK;
3341 page = compound_head(page);
3342
953c66c2
AK
3343 /*
3344 * Archs like ppc64 need additonal space to store information
3345 * related to pte entry. Use the preallocated table for that.
3346 */
82b0f8c3
JK
3347 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3348 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3349 if (!vmf->prealloc_pte)
953c66c2
AK
3350 return VM_FAULT_OOM;
3351 smp_wmb(); /* See comment in __pte_alloc() */
3352 }
3353
82b0f8c3
JK
3354 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3355 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3356 goto out;
3357
3358 for (i = 0; i < HPAGE_PMD_NR; i++)
3359 flush_icache_page(vma, page + i);
3360
3361 entry = mk_huge_pmd(page, vma->vm_page_prot);
3362 if (write)
f55e1014 3363 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459
KS
3364
3365 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3366 page_add_file_rmap(page, true);
953c66c2
AK
3367 /*
3368 * deposit and withdraw with pmd lock held
3369 */
3370 if (arch_needs_pgtable_deposit())
82b0f8c3 3371 deposit_prealloc_pte(vmf);
10102459 3372
82b0f8c3 3373 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3374
82b0f8c3 3375 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3376
3377 /* fault is handled */
3378 ret = 0;
95ecedcd 3379 count_vm_event(THP_FILE_MAPPED);
10102459 3380out:
82b0f8c3 3381 spin_unlock(vmf->ptl);
10102459
KS
3382 return ret;
3383}
3384#else
82b0f8c3 3385static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3386{
3387 BUILD_BUG();
3388 return 0;
3389}
3390#endif
3391
8c6e50b0 3392/**
7267ec00
KS
3393 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3394 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3395 *
82b0f8c3 3396 * @vmf: fault environment
7267ec00 3397 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3398 * @page: page to map
8c6e50b0 3399 *
82b0f8c3
JK
3400 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3401 * return.
8c6e50b0
KS
3402 *
3403 * Target users are page handler itself and implementations of
3404 * vm_ops->map_pages.
3405 */
82b0f8c3 3406int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3407 struct page *page)
3bb97794 3408{
82b0f8c3
JK
3409 struct vm_area_struct *vma = vmf->vma;
3410 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3411 pte_t entry;
10102459
KS
3412 int ret;
3413
82b0f8c3 3414 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3415 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3416 /* THP on COW? */
3417 VM_BUG_ON_PAGE(memcg, page);
3418
82b0f8c3 3419 ret = do_set_pmd(vmf, page);
10102459 3420 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3421 return ret;
10102459 3422 }
3bb97794 3423
82b0f8c3
JK
3424 if (!vmf->pte) {
3425 ret = pte_alloc_one_map(vmf);
7267ec00 3426 if (ret)
b0b9b3df 3427 return ret;
7267ec00
KS
3428 }
3429
3430 /* Re-check under ptl */
b0b9b3df
HD
3431 if (unlikely(!pte_none(*vmf->pte)))
3432 return VM_FAULT_NOPAGE;
7267ec00 3433
3bb97794
KS
3434 flush_icache_page(vma, page);
3435 entry = mk_pte(page, vma->vm_page_prot);
3436 if (write)
3437 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3438 /* copy-on-write page */
3439 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3440 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3441 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3442 mem_cgroup_commit_charge(page, memcg, false, false);
3443 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3444 } else {
eca56ff9 3445 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3446 page_add_file_rmap(page, false);
3bb97794 3447 }
82b0f8c3 3448 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3449
3450 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3451 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3452
b0b9b3df 3453 return 0;
3bb97794
KS
3454}
3455
9118c0cb
JK
3456
3457/**
3458 * finish_fault - finish page fault once we have prepared the page to fault
3459 *
3460 * @vmf: structure describing the fault
3461 *
3462 * This function handles all that is needed to finish a page fault once the
3463 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3464 * given page, adds reverse page mapping, handles memcg charges and LRU
3465 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3466 * error.
3467 *
3468 * The function expects the page to be locked and on success it consumes a
3469 * reference of a page being mapped (for the PTE which maps it).
3470 */
3471int finish_fault(struct vm_fault *vmf)
3472{
3473 struct page *page;
6b31d595 3474 int ret = 0;
9118c0cb
JK
3475
3476 /* Did we COW the page? */
3477 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3478 !(vmf->vma->vm_flags & VM_SHARED))
3479 page = vmf->cow_page;
3480 else
3481 page = vmf->page;
6b31d595
MH
3482
3483 /*
3484 * check even for read faults because we might have lost our CoWed
3485 * page
3486 */
3487 if (!(vmf->vma->vm_flags & VM_SHARED))
3488 ret = check_stable_address_space(vmf->vma->vm_mm);
3489 if (!ret)
3490 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3491 if (vmf->pte)
3492 pte_unmap_unlock(vmf->pte, vmf->ptl);
3493 return ret;
3494}
3495
3a91053a
KS
3496static unsigned long fault_around_bytes __read_mostly =
3497 rounddown_pow_of_two(65536);
a9b0f861 3498
a9b0f861
KS
3499#ifdef CONFIG_DEBUG_FS
3500static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3501{
a9b0f861 3502 *val = fault_around_bytes;
1592eef0
KS
3503 return 0;
3504}
3505
b4903d6e 3506/*
da391d64
WK
3507 * fault_around_bytes must be rounded down to the nearest page order as it's
3508 * what do_fault_around() expects to see.
b4903d6e 3509 */
a9b0f861 3510static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3511{
a9b0f861 3512 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3513 return -EINVAL;
b4903d6e
AR
3514 if (val > PAGE_SIZE)
3515 fault_around_bytes = rounddown_pow_of_two(val);
3516 else
3517 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3518 return 0;
3519}
0a1345f8 3520DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3521 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3522
3523static int __init fault_around_debugfs(void)
3524{
3525 void *ret;
3526
0a1345f8 3527 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3528 &fault_around_bytes_fops);
1592eef0 3529 if (!ret)
a9b0f861 3530 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3531 return 0;
3532}
3533late_initcall(fault_around_debugfs);
1592eef0 3534#endif
8c6e50b0 3535
1fdb412b
KS
3536/*
3537 * do_fault_around() tries to map few pages around the fault address. The hope
3538 * is that the pages will be needed soon and this will lower the number of
3539 * faults to handle.
3540 *
3541 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3542 * not ready to be mapped: not up-to-date, locked, etc.
3543 *
3544 * This function is called with the page table lock taken. In the split ptlock
3545 * case the page table lock only protects only those entries which belong to
3546 * the page table corresponding to the fault address.
3547 *
3548 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3549 * only once.
3550 *
da391d64
WK
3551 * fault_around_bytes defines how many bytes we'll try to map.
3552 * do_fault_around() expects it to be set to a power of two less than or equal
3553 * to PTRS_PER_PTE.
1fdb412b 3554 *
da391d64
WK
3555 * The virtual address of the area that we map is naturally aligned to
3556 * fault_around_bytes rounded down to the machine page size
3557 * (and therefore to page order). This way it's easier to guarantee
3558 * that we don't cross page table boundaries.
1fdb412b 3559 */
0721ec8b 3560static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3561{
82b0f8c3 3562 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3563 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3564 pgoff_t end_pgoff;
7267ec00 3565 int off, ret = 0;
8c6e50b0 3566
4db0c3c2 3567 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3568 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3569
82b0f8c3
JK
3570 vmf->address = max(address & mask, vmf->vma->vm_start);
3571 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3572 start_pgoff -= off;
8c6e50b0
KS
3573
3574 /*
da391d64
WK
3575 * end_pgoff is either the end of the page table, the end of
3576 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3577 */
bae473a4 3578 end_pgoff = start_pgoff -
82b0f8c3 3579 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3580 PTRS_PER_PTE - 1;
82b0f8c3 3581 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3582 start_pgoff + nr_pages - 1);
8c6e50b0 3583
82b0f8c3
JK
3584 if (pmd_none(*vmf->pmd)) {
3585 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3586 vmf->address);
3587 if (!vmf->prealloc_pte)
c5f88bd2 3588 goto out;
7267ec00 3589 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3590 }
3591
82b0f8c3 3592 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3593
7267ec00 3594 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3595 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3596 ret = VM_FAULT_NOPAGE;
3597 goto out;
3598 }
3599
3600 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3601 if (!vmf->pte)
7267ec00
KS
3602 goto out;
3603
3604 /* check if the page fault is solved */
82b0f8c3
JK
3605 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3606 if (!pte_none(*vmf->pte))
7267ec00 3607 ret = VM_FAULT_NOPAGE;
82b0f8c3 3608 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3609out:
82b0f8c3
JK
3610 vmf->address = address;
3611 vmf->pte = NULL;
7267ec00 3612 return ret;
8c6e50b0
KS
3613}
3614
0721ec8b 3615static int do_read_fault(struct vm_fault *vmf)
e655fb29 3616{
82b0f8c3 3617 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3618 int ret = 0;
3619
3620 /*
3621 * Let's call ->map_pages() first and use ->fault() as fallback
3622 * if page by the offset is not ready to be mapped (cold cache or
3623 * something).
3624 */
9b4bdd2f 3625 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3626 ret = do_fault_around(vmf);
7267ec00
KS
3627 if (ret)
3628 return ret;
8c6e50b0 3629 }
e655fb29 3630
936ca80d 3631 ret = __do_fault(vmf);
e655fb29
KS
3632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3633 return ret;
3634
9118c0cb 3635 ret |= finish_fault(vmf);
936ca80d 3636 unlock_page(vmf->page);
7267ec00 3637 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3638 put_page(vmf->page);
e655fb29
KS
3639 return ret;
3640}
3641
0721ec8b 3642static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3643{
82b0f8c3 3644 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3645 int ret;
3646
3647 if (unlikely(anon_vma_prepare(vma)))
3648 return VM_FAULT_OOM;
3649
936ca80d
JK
3650 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3651 if (!vmf->cow_page)
ec47c3b9
KS
3652 return VM_FAULT_OOM;
3653
936ca80d 3654 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3655 &vmf->memcg, false)) {
936ca80d 3656 put_page(vmf->cow_page);
ec47c3b9
KS
3657 return VM_FAULT_OOM;
3658 }
3659
936ca80d 3660 ret = __do_fault(vmf);
ec47c3b9
KS
3661 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3662 goto uncharge_out;
3917048d
JK
3663 if (ret & VM_FAULT_DONE_COW)
3664 return ret;
ec47c3b9 3665
b1aa812b 3666 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3667 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3668
9118c0cb 3669 ret |= finish_fault(vmf);
b1aa812b
JK
3670 unlock_page(vmf->page);
3671 put_page(vmf->page);
7267ec00
KS
3672 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3673 goto uncharge_out;
ec47c3b9
KS
3674 return ret;
3675uncharge_out:
3917048d 3676 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3677 put_page(vmf->cow_page);
ec47c3b9
KS
3678 return ret;
3679}
3680
0721ec8b 3681static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3682{
82b0f8c3 3683 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3684 int ret, tmp;
1d65f86d 3685
936ca80d 3686 ret = __do_fault(vmf);
7eae74af 3687 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3688 return ret;
1da177e4
LT
3689
3690 /*
f0c6d4d2
KS
3691 * Check if the backing address space wants to know that the page is
3692 * about to become writable
1da177e4 3693 */
fb09a464 3694 if (vma->vm_ops->page_mkwrite) {
936ca80d 3695 unlock_page(vmf->page);
38b8cb7f 3696 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3697 if (unlikely(!tmp ||
3698 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3699 put_page(vmf->page);
fb09a464 3700 return tmp;
4294621f 3701 }
fb09a464
KS
3702 }
3703
9118c0cb 3704 ret |= finish_fault(vmf);
7267ec00
KS
3705 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3706 VM_FAULT_RETRY))) {
936ca80d
JK
3707 unlock_page(vmf->page);
3708 put_page(vmf->page);
f0c6d4d2 3709 return ret;
1da177e4 3710 }
b827e496 3711
97ba0c2b 3712 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3713 return ret;
54cb8821 3714}
d00806b1 3715
9a95f3cf
PC
3716/*
3717 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3718 * but allow concurrent faults).
3719 * The mmap_sem may have been released depending on flags and our
3720 * return value. See filemap_fault() and __lock_page_or_retry().
3721 */
82b0f8c3 3722static int do_fault(struct vm_fault *vmf)
54cb8821 3723{
82b0f8c3 3724 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3725 int ret;
54cb8821 3726
6b7339f4
KS
3727 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3728 if (!vma->vm_ops->fault)
b0b9b3df
HD
3729 ret = VM_FAULT_SIGBUS;
3730 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3731 ret = do_read_fault(vmf);
3732 else if (!(vma->vm_flags & VM_SHARED))
3733 ret = do_cow_fault(vmf);
3734 else
3735 ret = do_shared_fault(vmf);
3736
3737 /* preallocated pagetable is unused: free it */
3738 if (vmf->prealloc_pte) {
3739 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3740 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3741 }
3742 return ret;
54cb8821
NP
3743}
3744
b19a9939 3745static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3746 unsigned long addr, int page_nid,
3747 int *flags)
9532fec1
MG
3748{
3749 get_page(page);
3750
3751 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3752 if (page_nid == numa_node_id()) {
9532fec1 3753 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3754 *flags |= TNF_FAULT_LOCAL;
3755 }
9532fec1
MG
3756
3757 return mpol_misplaced(page, vma, addr);
3758}
3759
2994302b 3760static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3761{
82b0f8c3 3762 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3763 struct page *page = NULL;
8191acbd 3764 int page_nid = -1;
90572890 3765 int last_cpupid;
cbee9f88 3766 int target_nid;
b8593bfd 3767 bool migrated = false;
cee216a6 3768 pte_t pte;
288bc549 3769 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3770 int flags = 0;
d10e63f2
MG
3771
3772 /*
166f61b9
TH
3773 * The "pte" at this point cannot be used safely without
3774 * validation through pte_unmap_same(). It's of NUMA type but
3775 * the pfn may be screwed if the read is non atomic.
166f61b9 3776 */
82b0f8c3
JK
3777 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3778 spin_lock(vmf->ptl);
cee216a6 3779 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3781 goto out;
3782 }
3783
cee216a6
AK
3784 /*
3785 * Make it present again, Depending on how arch implementes non
3786 * accessible ptes, some can allow access by kernel mode.
3787 */
3788 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3789 pte = pte_modify(pte, vma->vm_page_prot);
3790 pte = pte_mkyoung(pte);
b191f9b1
MG
3791 if (was_writable)
3792 pte = pte_mkwrite(pte);
cee216a6 3793 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3794 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3795
82b0f8c3 3796 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3797 if (!page) {
82b0f8c3 3798 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3799 return 0;
3800 }
3801
e81c4802
KS
3802 /* TODO: handle PTE-mapped THP */
3803 if (PageCompound(page)) {
82b0f8c3 3804 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3805 return 0;
3806 }
3807
6688cc05 3808 /*
bea66fbd
MG
3809 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3810 * much anyway since they can be in shared cache state. This misses
3811 * the case where a mapping is writable but the process never writes
3812 * to it but pte_write gets cleared during protection updates and
3813 * pte_dirty has unpredictable behaviour between PTE scan updates,
3814 * background writeback, dirty balancing and application behaviour.
6688cc05 3815 */
d59dc7bc 3816 if (!pte_write(pte))
6688cc05
PZ
3817 flags |= TNF_NO_GROUP;
3818
dabe1d99
RR
3819 /*
3820 * Flag if the page is shared between multiple address spaces. This
3821 * is later used when determining whether to group tasks together
3822 */
3823 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3824 flags |= TNF_SHARED;
3825
90572890 3826 last_cpupid = page_cpupid_last(page);
8191acbd 3827 page_nid = page_to_nid(page);
82b0f8c3 3828 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3829 &flags);
82b0f8c3 3830 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3831 if (target_nid == -1) {
4daae3b4
MG
3832 put_page(page);
3833 goto out;
3834 }
3835
3836 /* Migrate to the requested node */
1bc115d8 3837 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3838 if (migrated) {
8191acbd 3839 page_nid = target_nid;
6688cc05 3840 flags |= TNF_MIGRATED;
074c2381
MG
3841 } else
3842 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3843
3844out:
8191acbd 3845 if (page_nid != -1)
6688cc05 3846 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3847 return 0;
3848}
3849
91a90140 3850static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3851{
f4200391 3852 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3853 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3854 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3855 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3856 return VM_FAULT_FALLBACK;
3857}
3858
183f24aa
GU
3859/* `inline' is required to avoid gcc 4.1.2 build error */
3860static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3861{
82b0f8c3
JK
3862 if (vma_is_anonymous(vmf->vma))
3863 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3864 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3865 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3866
3867 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3868 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3869 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3870
b96375f7
MW
3871 return VM_FAULT_FALLBACK;
3872}
3873
38e08854
LS
3874static inline bool vma_is_accessible(struct vm_area_struct *vma)
3875{
3876 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3877}
3878
a00cc7d9
MW
3879static int create_huge_pud(struct vm_fault *vmf)
3880{
3881#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3882 /* No support for anonymous transparent PUD pages yet */
3883 if (vma_is_anonymous(vmf->vma))
3884 return VM_FAULT_FALLBACK;
3885 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3886 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3887#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3888 return VM_FAULT_FALLBACK;
3889}
3890
3891static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3892{
3893#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3894 /* No support for anonymous transparent PUD pages yet */
3895 if (vma_is_anonymous(vmf->vma))
3896 return VM_FAULT_FALLBACK;
3897 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3898 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3899#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3900 return VM_FAULT_FALLBACK;
3901}
3902
1da177e4
LT
3903/*
3904 * These routines also need to handle stuff like marking pages dirty
3905 * and/or accessed for architectures that don't do it in hardware (most
3906 * RISC architectures). The early dirtying is also good on the i386.
3907 *
3908 * There is also a hook called "update_mmu_cache()" that architectures
3909 * with external mmu caches can use to update those (ie the Sparc or
3910 * PowerPC hashed page tables that act as extended TLBs).
3911 *
7267ec00
KS
3912 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3913 * concurrent faults).
9a95f3cf 3914 *
7267ec00
KS
3915 * The mmap_sem may have been released depending on flags and our return value.
3916 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3917 */
82b0f8c3 3918static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3919{
3920 pte_t entry;
3921
82b0f8c3 3922 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3923 /*
3924 * Leave __pte_alloc() until later: because vm_ops->fault may
3925 * want to allocate huge page, and if we expose page table
3926 * for an instant, it will be difficult to retract from
3927 * concurrent faults and from rmap lookups.
3928 */
82b0f8c3 3929 vmf->pte = NULL;
7267ec00
KS
3930 } else {
3931 /* See comment in pte_alloc_one_map() */
d0f0931d 3932 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3933 return 0;
3934 /*
3935 * A regular pmd is established and it can't morph into a huge
3936 * pmd from under us anymore at this point because we hold the
3937 * mmap_sem read mode and khugepaged takes it in write mode.
3938 * So now it's safe to run pte_offset_map().
3939 */
82b0f8c3 3940 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3941 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3942
3943 /*
3944 * some architectures can have larger ptes than wordsize,
3945 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3946 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3947 * accesses. The code below just needs a consistent view
3948 * for the ifs and we later double check anyway with the
7267ec00
KS
3949 * ptl lock held. So here a barrier will do.
3950 */
3951 barrier();
2994302b 3952 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3953 pte_unmap(vmf->pte);
3954 vmf->pte = NULL;
65500d23 3955 }
1da177e4
LT
3956 }
3957
82b0f8c3
JK
3958 if (!vmf->pte) {
3959 if (vma_is_anonymous(vmf->vma))
3960 return do_anonymous_page(vmf);
7267ec00 3961 else
82b0f8c3 3962 return do_fault(vmf);
7267ec00
KS
3963 }
3964
2994302b
JK
3965 if (!pte_present(vmf->orig_pte))
3966 return do_swap_page(vmf);
7267ec00 3967
2994302b
JK
3968 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3969 return do_numa_page(vmf);
d10e63f2 3970
82b0f8c3
JK
3971 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3972 spin_lock(vmf->ptl);
2994302b 3973 entry = vmf->orig_pte;
82b0f8c3 3974 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3975 goto unlock;
82b0f8c3 3976 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3977 if (!pte_write(entry))
2994302b 3978 return do_wp_page(vmf);
1da177e4
LT
3979 entry = pte_mkdirty(entry);
3980 }
3981 entry = pte_mkyoung(entry);
82b0f8c3
JK
3982 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3983 vmf->flags & FAULT_FLAG_WRITE)) {
3984 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3985 } else {
3986 /*
3987 * This is needed only for protection faults but the arch code
3988 * is not yet telling us if this is a protection fault or not.
3989 * This still avoids useless tlb flushes for .text page faults
3990 * with threads.
3991 */
82b0f8c3
JK
3992 if (vmf->flags & FAULT_FLAG_WRITE)
3993 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3994 }
8f4e2101 3995unlock:
82b0f8c3 3996 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3997 return 0;
1da177e4
LT
3998}
3999
4000/*
4001 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4002 *
4003 * The mmap_sem may have been released depending on flags and our
4004 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4005 */
dcddffd4
KS
4006static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4007 unsigned int flags)
1da177e4 4008{
82b0f8c3 4009 struct vm_fault vmf = {
bae473a4 4010 .vma = vma,
1a29d85e 4011 .address = address & PAGE_MASK,
bae473a4 4012 .flags = flags,
0721ec8b 4013 .pgoff = linear_page_index(vma, address),
667240e0 4014 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4015 };
fde26bed 4016 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4017 struct mm_struct *mm = vma->vm_mm;
1da177e4 4018 pgd_t *pgd;
c2febafc 4019 p4d_t *p4d;
a2d58167 4020 int ret;
1da177e4 4021
1da177e4 4022 pgd = pgd_offset(mm, address);
c2febafc
KS
4023 p4d = p4d_alloc(mm, pgd, address);
4024 if (!p4d)
4025 return VM_FAULT_OOM;
a00cc7d9 4026
c2febafc 4027 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4028 if (!vmf.pud)
c74df32c 4029 return VM_FAULT_OOM;
a00cc7d9 4030 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4031 ret = create_huge_pud(&vmf);
4032 if (!(ret & VM_FAULT_FALLBACK))
4033 return ret;
4034 } else {
4035 pud_t orig_pud = *vmf.pud;
4036
4037 barrier();
4038 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4039
a00cc7d9
MW
4040 /* NUMA case for anonymous PUDs would go here */
4041
f6f37321 4042 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4043 ret = wp_huge_pud(&vmf, orig_pud);
4044 if (!(ret & VM_FAULT_FALLBACK))
4045 return ret;
4046 } else {
4047 huge_pud_set_accessed(&vmf, orig_pud);
4048 return 0;
4049 }
4050 }
4051 }
4052
4053 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4054 if (!vmf.pmd)
c74df32c 4055 return VM_FAULT_OOM;
82b0f8c3 4056 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 4057 ret = create_huge_pmd(&vmf);
c0292554
KS
4058 if (!(ret & VM_FAULT_FALLBACK))
4059 return ret;
71e3aac0 4060 } else {
82b0f8c3 4061 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4062
71e3aac0 4063 barrier();
84c3fc4e
ZY
4064 if (unlikely(is_swap_pmd(orig_pmd))) {
4065 VM_BUG_ON(thp_migration_supported() &&
4066 !is_pmd_migration_entry(orig_pmd));
4067 if (is_pmd_migration_entry(orig_pmd))
4068 pmd_migration_entry_wait(mm, vmf.pmd);
4069 return 0;
4070 }
5c7fb56e 4071 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4072 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4073 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4074
f6f37321 4075 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4076 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4077 if (!(ret & VM_FAULT_FALLBACK))
4078 return ret;
a1dd450b 4079 } else {
82b0f8c3 4080 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4081 return 0;
1f1d06c3 4082 }
71e3aac0
AA
4083 }
4084 }
4085
82b0f8c3 4086 return handle_pte_fault(&vmf);
1da177e4
LT
4087}
4088
9a95f3cf
PC
4089/*
4090 * By the time we get here, we already hold the mm semaphore
4091 *
4092 * The mmap_sem may have been released depending on flags and our
4093 * return value. See filemap_fault() and __lock_page_or_retry().
4094 */
dcddffd4
KS
4095int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4096 unsigned int flags)
519e5247
JW
4097{
4098 int ret;
4099
4100 __set_current_state(TASK_RUNNING);
4101
4102 count_vm_event(PGFAULT);
2262185c 4103 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4104
4105 /* do counter updates before entering really critical section. */
4106 check_sync_rss_stat(current);
4107
de0c799b
LD
4108 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4109 flags & FAULT_FLAG_INSTRUCTION,
4110 flags & FAULT_FLAG_REMOTE))
4111 return VM_FAULT_SIGSEGV;
4112
519e5247
JW
4113 /*
4114 * Enable the memcg OOM handling for faults triggered in user
4115 * space. Kernel faults are handled more gracefully.
4116 */
4117 if (flags & FAULT_FLAG_USER)
49426420 4118 mem_cgroup_oom_enable();
519e5247 4119
bae473a4
KS
4120 if (unlikely(is_vm_hugetlb_page(vma)))
4121 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4122 else
4123 ret = __handle_mm_fault(vma, address, flags);
519e5247 4124
49426420
JW
4125 if (flags & FAULT_FLAG_USER) {
4126 mem_cgroup_oom_disable();
166f61b9
TH
4127 /*
4128 * The task may have entered a memcg OOM situation but
4129 * if the allocation error was handled gracefully (no
4130 * VM_FAULT_OOM), there is no need to kill anything.
4131 * Just clean up the OOM state peacefully.
4132 */
4133 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4134 mem_cgroup_oom_synchronize(false);
49426420 4135 }
3812c8c8 4136
519e5247
JW
4137 return ret;
4138}
e1d6d01a 4139EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4140
90eceff1
KS
4141#ifndef __PAGETABLE_P4D_FOLDED
4142/*
4143 * Allocate p4d page table.
4144 * We've already handled the fast-path in-line.
4145 */
4146int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4147{
4148 p4d_t *new = p4d_alloc_one(mm, address);
4149 if (!new)
4150 return -ENOMEM;
4151
4152 smp_wmb(); /* See comment in __pte_alloc */
4153
4154 spin_lock(&mm->page_table_lock);
4155 if (pgd_present(*pgd)) /* Another has populated it */
4156 p4d_free(mm, new);
4157 else
4158 pgd_populate(mm, pgd, new);
4159 spin_unlock(&mm->page_table_lock);
4160 return 0;
4161}
4162#endif /* __PAGETABLE_P4D_FOLDED */
4163
1da177e4
LT
4164#ifndef __PAGETABLE_PUD_FOLDED
4165/*
4166 * Allocate page upper directory.
872fec16 4167 * We've already handled the fast-path in-line.
1da177e4 4168 */
c2febafc 4169int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4170{
c74df32c
HD
4171 pud_t *new = pud_alloc_one(mm, address);
4172 if (!new)
1bb3630e 4173 return -ENOMEM;
1da177e4 4174
362a61ad
NP
4175 smp_wmb(); /* See comment in __pte_alloc */
4176
872fec16 4177 spin_lock(&mm->page_table_lock);
c2febafc 4178#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4179 if (!p4d_present(*p4d)) {
4180 mm_inc_nr_puds(mm);
c2febafc 4181 p4d_populate(mm, p4d, new);
b4e98d9a 4182 } else /* Another has populated it */
5e541973 4183 pud_free(mm, new);
b4e98d9a
KS
4184#else
4185 if (!pgd_present(*p4d)) {
4186 mm_inc_nr_puds(mm);
c2febafc 4187 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4188 } else /* Another has populated it */
4189 pud_free(mm, new);
c2febafc 4190#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4191 spin_unlock(&mm->page_table_lock);
1bb3630e 4192 return 0;
1da177e4
LT
4193}
4194#endif /* __PAGETABLE_PUD_FOLDED */
4195
4196#ifndef __PAGETABLE_PMD_FOLDED
4197/*
4198 * Allocate page middle directory.
872fec16 4199 * We've already handled the fast-path in-line.
1da177e4 4200 */
1bb3630e 4201int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4202{
a00cc7d9 4203 spinlock_t *ptl;
c74df32c
HD
4204 pmd_t *new = pmd_alloc_one(mm, address);
4205 if (!new)
1bb3630e 4206 return -ENOMEM;
1da177e4 4207
362a61ad
NP
4208 smp_wmb(); /* See comment in __pte_alloc */
4209
a00cc7d9 4210 ptl = pud_lock(mm, pud);
1da177e4 4211#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4212 if (!pud_present(*pud)) {
4213 mm_inc_nr_pmds(mm);
1bb3630e 4214 pud_populate(mm, pud, new);
dc6c9a35 4215 } else /* Another has populated it */
5e541973 4216 pmd_free(mm, new);
dc6c9a35
KS
4217#else
4218 if (!pgd_present(*pud)) {
4219 mm_inc_nr_pmds(mm);
1bb3630e 4220 pgd_populate(mm, pud, new);
dc6c9a35
KS
4221 } else /* Another has populated it */
4222 pmd_free(mm, new);
1da177e4 4223#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4224 spin_unlock(ptl);
1bb3630e 4225 return 0;
e0f39591 4226}
1da177e4
LT
4227#endif /* __PAGETABLE_PMD_FOLDED */
4228
09796395 4229static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4230 unsigned long *start, unsigned long *end,
4231 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4232{
4233 pgd_t *pgd;
c2febafc 4234 p4d_t *p4d;
f8ad0f49
JW
4235 pud_t *pud;
4236 pmd_t *pmd;
4237 pte_t *ptep;
4238
4239 pgd = pgd_offset(mm, address);
4240 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4241 goto out;
4242
c2febafc
KS
4243 p4d = p4d_offset(pgd, address);
4244 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4245 goto out;
4246
4247 pud = pud_offset(p4d, address);
f8ad0f49
JW
4248 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4249 goto out;
4250
4251 pmd = pmd_offset(pud, address);
f66055ab 4252 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4253
09796395
RZ
4254 if (pmd_huge(*pmd)) {
4255 if (!pmdpp)
4256 goto out;
4257
a4d1a885
JG
4258 if (start && end) {
4259 *start = address & PMD_MASK;
4260 *end = *start + PMD_SIZE;
4261 mmu_notifier_invalidate_range_start(mm, *start, *end);
4262 }
09796395
RZ
4263 *ptlp = pmd_lock(mm, pmd);
4264 if (pmd_huge(*pmd)) {
4265 *pmdpp = pmd;
4266 return 0;
4267 }
4268 spin_unlock(*ptlp);
a4d1a885
JG
4269 if (start && end)
4270 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4271 }
4272
4273 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4274 goto out;
4275
a4d1a885
JG
4276 if (start && end) {
4277 *start = address & PAGE_MASK;
4278 *end = *start + PAGE_SIZE;
4279 mmu_notifier_invalidate_range_start(mm, *start, *end);
4280 }
f8ad0f49 4281 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4282 if (!pte_present(*ptep))
4283 goto unlock;
4284 *ptepp = ptep;
4285 return 0;
4286unlock:
4287 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4288 if (start && end)
4289 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4290out:
4291 return -EINVAL;
4292}
4293
f729c8c9
RZ
4294static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4295 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4296{
4297 int res;
4298
4299 /* (void) is needed to make gcc happy */
4300 (void) __cond_lock(*ptlp,
a4d1a885
JG
4301 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4302 ptepp, NULL, ptlp)));
09796395
RZ
4303 return res;
4304}
4305
4306int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4307 unsigned long *start, unsigned long *end,
09796395
RZ
4308 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4309{
4310 int res;
4311
4312 /* (void) is needed to make gcc happy */
4313 (void) __cond_lock(*ptlp,
a4d1a885
JG
4314 !(res = __follow_pte_pmd(mm, address, start, end,
4315 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4316 return res;
4317}
09796395 4318EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4319
3b6748e2
JW
4320/**
4321 * follow_pfn - look up PFN at a user virtual address
4322 * @vma: memory mapping
4323 * @address: user virtual address
4324 * @pfn: location to store found PFN
4325 *
4326 * Only IO mappings and raw PFN mappings are allowed.
4327 *
4328 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4329 */
4330int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4331 unsigned long *pfn)
4332{
4333 int ret = -EINVAL;
4334 spinlock_t *ptl;
4335 pte_t *ptep;
4336
4337 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4338 return ret;
4339
4340 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4341 if (ret)
4342 return ret;
4343 *pfn = pte_pfn(*ptep);
4344 pte_unmap_unlock(ptep, ptl);
4345 return 0;
4346}
4347EXPORT_SYMBOL(follow_pfn);
4348
28b2ee20 4349#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4350int follow_phys(struct vm_area_struct *vma,
4351 unsigned long address, unsigned int flags,
4352 unsigned long *prot, resource_size_t *phys)
28b2ee20 4353{
03668a4d 4354 int ret = -EINVAL;
28b2ee20
RR
4355 pte_t *ptep, pte;
4356 spinlock_t *ptl;
28b2ee20 4357
d87fe660 4358 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359 goto out;
28b2ee20 4360
03668a4d 4361 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4362 goto out;
28b2ee20 4363 pte = *ptep;
03668a4d 4364
f6f37321 4365 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4366 goto unlock;
28b2ee20
RR
4367
4368 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4369 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4370
03668a4d 4371 ret = 0;
28b2ee20
RR
4372unlock:
4373 pte_unmap_unlock(ptep, ptl);
4374out:
d87fe660 4375 return ret;
28b2ee20
RR
4376}
4377
4378int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4379 void *buf, int len, int write)
4380{
4381 resource_size_t phys_addr;
4382 unsigned long prot = 0;
2bc7273b 4383 void __iomem *maddr;
28b2ee20
RR
4384 int offset = addr & (PAGE_SIZE-1);
4385
d87fe660 4386 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4387 return -EINVAL;
4388
9cb12d7b 4389 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4390 if (write)
4391 memcpy_toio(maddr + offset, buf, len);
4392 else
4393 memcpy_fromio(buf, maddr + offset, len);
4394 iounmap(maddr);
4395
4396 return len;
4397}
5a73633e 4398EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4399#endif
4400
0ec76a11 4401/*
206cb636
SW
4402 * Access another process' address space as given in mm. If non-NULL, use the
4403 * given task for page fault accounting.
0ec76a11 4404 */
84d77d3f 4405int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4406 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4407{
0ec76a11 4408 struct vm_area_struct *vma;
0ec76a11 4409 void *old_buf = buf;
442486ec 4410 int write = gup_flags & FOLL_WRITE;
0ec76a11 4411
0ec76a11 4412 down_read(&mm->mmap_sem);
183ff22b 4413 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4414 while (len) {
4415 int bytes, ret, offset;
4416 void *maddr;
28b2ee20 4417 struct page *page = NULL;
0ec76a11 4418
1e987790 4419 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4420 gup_flags, &page, &vma, NULL);
28b2ee20 4421 if (ret <= 0) {
dbffcd03
RR
4422#ifndef CONFIG_HAVE_IOREMAP_PROT
4423 break;
4424#else
28b2ee20
RR
4425 /*
4426 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4427 * we can access using slightly different code.
4428 */
28b2ee20 4429 vma = find_vma(mm, addr);
fe936dfc 4430 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4431 break;
4432 if (vma->vm_ops && vma->vm_ops->access)
4433 ret = vma->vm_ops->access(vma, addr, buf,
4434 len, write);
4435 if (ret <= 0)
28b2ee20
RR
4436 break;
4437 bytes = ret;
dbffcd03 4438#endif
0ec76a11 4439 } else {
28b2ee20
RR
4440 bytes = len;
4441 offset = addr & (PAGE_SIZE-1);
4442 if (bytes > PAGE_SIZE-offset)
4443 bytes = PAGE_SIZE-offset;
4444
4445 maddr = kmap(page);
4446 if (write) {
4447 copy_to_user_page(vma, page, addr,
4448 maddr + offset, buf, bytes);
4449 set_page_dirty_lock(page);
4450 } else {
4451 copy_from_user_page(vma, page, addr,
4452 buf, maddr + offset, bytes);
4453 }
4454 kunmap(page);
09cbfeaf 4455 put_page(page);
0ec76a11 4456 }
0ec76a11
DH
4457 len -= bytes;
4458 buf += bytes;
4459 addr += bytes;
4460 }
4461 up_read(&mm->mmap_sem);
0ec76a11
DH
4462
4463 return buf - old_buf;
4464}
03252919 4465
5ddd36b9 4466/**
ae91dbfc 4467 * access_remote_vm - access another process' address space
5ddd36b9
SW
4468 * @mm: the mm_struct of the target address space
4469 * @addr: start address to access
4470 * @buf: source or destination buffer
4471 * @len: number of bytes to transfer
6347e8d5 4472 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4473 *
4474 * The caller must hold a reference on @mm.
4475 */
4476int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4477 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4478{
6347e8d5 4479 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4480}
4481
206cb636
SW
4482/*
4483 * Access another process' address space.
4484 * Source/target buffer must be kernel space,
4485 * Do not walk the page table directly, use get_user_pages
4486 */
4487int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4488 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4489{
4490 struct mm_struct *mm;
4491 int ret;
4492
4493 mm = get_task_mm(tsk);
4494 if (!mm)
4495 return 0;
4496
f307ab6d 4497 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4498
206cb636
SW
4499 mmput(mm);
4500
4501 return ret;
4502}
fcd35857 4503EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4504
03252919
AK
4505/*
4506 * Print the name of a VMA.
4507 */
4508void print_vma_addr(char *prefix, unsigned long ip)
4509{
4510 struct mm_struct *mm = current->mm;
4511 struct vm_area_struct *vma;
4512
e8bff74a 4513 /*
0a7f682d 4514 * we might be running from an atomic context so we cannot sleep
e8bff74a 4515 */
0a7f682d 4516 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4517 return;
4518
03252919
AK
4519 vma = find_vma(mm, ip);
4520 if (vma && vma->vm_file) {
4521 struct file *f = vma->vm_file;
0a7f682d 4522 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4523 if (buf) {
2fbc57c5 4524 char *p;
03252919 4525
9bf39ab2 4526 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4527 if (IS_ERR(p))
4528 p = "?";
2fbc57c5 4529 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4530 vma->vm_start,
4531 vma->vm_end - vma->vm_start);
4532 free_page((unsigned long)buf);
4533 }
4534 }
51a07e50 4535 up_read(&mm->mmap_sem);
03252919 4536}
3ee1afa3 4537
662bbcb2 4538#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4539void __might_fault(const char *file, int line)
3ee1afa3 4540{
95156f00
PZ
4541 /*
4542 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4543 * holding the mmap_sem, this is safe because kernel memory doesn't
4544 * get paged out, therefore we'll never actually fault, and the
4545 * below annotations will generate false positives.
4546 */
db68ce10 4547 if (uaccess_kernel())
95156f00 4548 return;
9ec23531 4549 if (pagefault_disabled())
662bbcb2 4550 return;
9ec23531
DH
4551 __might_sleep(file, line, 0);
4552#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4553 if (current->mm)
3ee1afa3 4554 might_lock_read(&current->mm->mmap_sem);
9ec23531 4555#endif
3ee1afa3 4556}
9ec23531 4557EXPORT_SYMBOL(__might_fault);
3ee1afa3 4558#endif
47ad8475
AA
4559
4560#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4561static void clear_gigantic_page(struct page *page,
4562 unsigned long addr,
4563 unsigned int pages_per_huge_page)
4564{
4565 int i;
4566 struct page *p = page;
4567
4568 might_sleep();
4569 for (i = 0; i < pages_per_huge_page;
4570 i++, p = mem_map_next(p, page, i)) {
4571 cond_resched();
4572 clear_user_highpage(p, addr + i * PAGE_SIZE);
4573 }
4574}
4575void clear_huge_page(struct page *page,
c79b57e4 4576 unsigned long addr_hint, unsigned int pages_per_huge_page)
47ad8475 4577{
c79b57e4
HY
4578 int i, n, base, l;
4579 unsigned long addr = addr_hint &
4580 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475
AA
4581
4582 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4583 clear_gigantic_page(page, addr, pages_per_huge_page);
4584 return;
4585 }
4586
c79b57e4 4587 /* Clear sub-page to access last to keep its cache lines hot */
47ad8475 4588 might_sleep();
c79b57e4
HY
4589 n = (addr_hint - addr) / PAGE_SIZE;
4590 if (2 * n <= pages_per_huge_page) {
4591 /* If sub-page to access in first half of huge page */
4592 base = 0;
4593 l = n;
4594 /* Clear sub-pages at the end of huge page */
4595 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4596 cond_resched();
4597 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4598 }
4599 } else {
4600 /* If sub-page to access in second half of huge page */
4601 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4602 l = pages_per_huge_page - n;
4603 /* Clear sub-pages at the begin of huge page */
4604 for (i = 0; i < base; i++) {
4605 cond_resched();
4606 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4607 }
4608 }
4609 /*
4610 * Clear remaining sub-pages in left-right-left-right pattern
4611 * towards the sub-page to access
4612 */
4613 for (i = 0; i < l; i++) {
4614 int left_idx = base + i;
4615 int right_idx = base + 2 * l - 1 - i;
4616
4617 cond_resched();
4618 clear_user_highpage(page + left_idx,
4619 addr + left_idx * PAGE_SIZE);
47ad8475 4620 cond_resched();
c79b57e4
HY
4621 clear_user_highpage(page + right_idx,
4622 addr + right_idx * PAGE_SIZE);
47ad8475
AA
4623 }
4624}
4625
4626static void copy_user_gigantic_page(struct page *dst, struct page *src,
4627 unsigned long addr,
4628 struct vm_area_struct *vma,
4629 unsigned int pages_per_huge_page)
4630{
4631 int i;
4632 struct page *dst_base = dst;
4633 struct page *src_base = src;
4634
4635 for (i = 0; i < pages_per_huge_page; ) {
4636 cond_resched();
4637 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4638
4639 i++;
4640 dst = mem_map_next(dst, dst_base, i);
4641 src = mem_map_next(src, src_base, i);
4642 }
4643}
4644
4645void copy_user_huge_page(struct page *dst, struct page *src,
4646 unsigned long addr, struct vm_area_struct *vma,
4647 unsigned int pages_per_huge_page)
4648{
4649 int i;
4650
4651 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4652 copy_user_gigantic_page(dst, src, addr, vma,
4653 pages_per_huge_page);
4654 return;
4655 }
4656
4657 might_sleep();
4658 for (i = 0; i < pages_per_huge_page; i++) {
4659 cond_resched();
4660 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4661 }
4662}
fa4d75c1
MK
4663
4664long copy_huge_page_from_user(struct page *dst_page,
4665 const void __user *usr_src,
810a56b9
MK
4666 unsigned int pages_per_huge_page,
4667 bool allow_pagefault)
fa4d75c1
MK
4668{
4669 void *src = (void *)usr_src;
4670 void *page_kaddr;
4671 unsigned long i, rc = 0;
4672 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4673
4674 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4675 if (allow_pagefault)
4676 page_kaddr = kmap(dst_page + i);
4677 else
4678 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4679 rc = copy_from_user(page_kaddr,
4680 (const void __user *)(src + i * PAGE_SIZE),
4681 PAGE_SIZE);
810a56b9
MK
4682 if (allow_pagefault)
4683 kunmap(dst_page + i);
4684 else
4685 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4686
4687 ret_val -= (PAGE_SIZE - rc);
4688 if (rc)
4689 break;
4690
4691 cond_resched();
4692 }
4693 return ret_val;
4694}
47ad8475 4695#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4696
40b64acd 4697#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4698
4699static struct kmem_cache *page_ptl_cachep;
4700
4701void __init ptlock_cache_init(void)
4702{
4703 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4704 SLAB_PANIC, NULL);
4705}
4706
539edb58 4707bool ptlock_alloc(struct page *page)
49076ec2
KS
4708{
4709 spinlock_t *ptl;
4710
b35f1819 4711 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4712 if (!ptl)
4713 return false;
539edb58 4714 page->ptl = ptl;
49076ec2
KS
4715 return true;
4716}
4717
539edb58 4718void ptlock_free(struct page *page)
49076ec2 4719{
b35f1819 4720 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4721}
4722#endif