mm: remove odd HAVE_PTE_SPECIAL
[linux-block.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
5042db43 52#include <linux/memremap.h>
9a840895 53#include <linux/ksm.h>
1da177e4 54#include <linux/rmap.h>
b95f1b31 55#include <linux/export.h>
0ff92245 56#include <linux/delayacct.h>
1da177e4 57#include <linux/init.h>
01c8f1c4 58#include <linux/pfn_t.h>
edc79b2a 59#include <linux/writeback.h>
8a9f3ccd 60#include <linux/memcontrol.h>
cddb8a5c 61#include <linux/mmu_notifier.h>
3dc14741
HD
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
af27d940 83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
26723911
PZ
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
9547d01b 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 401
ef549e13
MR
402/**
403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
404 * @tlb: the mmu_gather structure to initialize
405 * @mm: the mm_struct of the target address space
406 * @start: start of the region that will be removed from the page-table
407 * @end: end of the region that will be removed from the page-table
408 *
409 * Called to initialize an (on-stack) mmu_gather structure for page-table
410 * tear-down from @mm. The @start and @end are set to 0 and -1
411 * respectively when @mm is without users and we're going to destroy
412 * the full address space (exit/execve).
56236a59
MK
413 */
414void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
415 unsigned long start, unsigned long end)
416{
417 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 418 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
419}
420
421void tlb_finish_mmu(struct mmu_gather *tlb,
422 unsigned long start, unsigned long end)
423{
99baac21
MK
424 /*
425 * If there are parallel threads are doing PTE changes on same range
426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
427 * flush by batching, a thread has stable TLB entry can fail to flush
428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
429 * forcefully if we detect parallel PTE batching threads.
430 */
431 bool force = mm_tlb_flush_nested(tlb->mm);
432
433 arch_tlb_finish_mmu(tlb, start, end, force);
434 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
435}
436
1da177e4
LT
437/*
438 * Note: this doesn't free the actual pages themselves. That
439 * has been handled earlier when unmapping all the memory regions.
440 */
9e1b32ca
BH
441static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
442 unsigned long addr)
1da177e4 443{
2f569afd 444 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 445 pmd_clear(pmd);
9e1b32ca 446 pte_free_tlb(tlb, token, addr);
c4812909 447 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
448}
449
e0da382c
HD
450static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
451 unsigned long addr, unsigned long end,
452 unsigned long floor, unsigned long ceiling)
1da177e4
LT
453{
454 pmd_t *pmd;
455 unsigned long next;
e0da382c 456 unsigned long start;
1da177e4 457
e0da382c 458 start = addr;
1da177e4 459 pmd = pmd_offset(pud, addr);
1da177e4
LT
460 do {
461 next = pmd_addr_end(addr, end);
462 if (pmd_none_or_clear_bad(pmd))
463 continue;
9e1b32ca 464 free_pte_range(tlb, pmd, addr);
1da177e4
LT
465 } while (pmd++, addr = next, addr != end);
466
e0da382c
HD
467 start &= PUD_MASK;
468 if (start < floor)
469 return;
470 if (ceiling) {
471 ceiling &= PUD_MASK;
472 if (!ceiling)
473 return;
1da177e4 474 }
e0da382c
HD
475 if (end - 1 > ceiling - 1)
476 return;
477
478 pmd = pmd_offset(pud, start);
479 pud_clear(pud);
9e1b32ca 480 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 481 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
482}
483
c2febafc 484static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
1da177e4
LT
487{
488 pud_t *pud;
489 unsigned long next;
e0da382c 490 unsigned long start;
1da177e4 491
e0da382c 492 start = addr;
c2febafc 493 pud = pud_offset(p4d, addr);
1da177e4
LT
494 do {
495 next = pud_addr_end(addr, end);
496 if (pud_none_or_clear_bad(pud))
497 continue;
e0da382c 498 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
499 } while (pud++, addr = next, addr != end);
500
c2febafc
KS
501 start &= P4D_MASK;
502 if (start < floor)
503 return;
504 if (ceiling) {
505 ceiling &= P4D_MASK;
506 if (!ceiling)
507 return;
508 }
509 if (end - 1 > ceiling - 1)
510 return;
511
512 pud = pud_offset(p4d, start);
513 p4d_clear(p4d);
514 pud_free_tlb(tlb, pud, start);
b4e98d9a 515 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
516}
517
518static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
519 unsigned long addr, unsigned long end,
520 unsigned long floor, unsigned long ceiling)
521{
522 p4d_t *p4d;
523 unsigned long next;
524 unsigned long start;
525
526 start = addr;
527 p4d = p4d_offset(pgd, addr);
528 do {
529 next = p4d_addr_end(addr, end);
530 if (p4d_none_or_clear_bad(p4d))
531 continue;
532 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
533 } while (p4d++, addr = next, addr != end);
534
e0da382c
HD
535 start &= PGDIR_MASK;
536 if (start < floor)
537 return;
538 if (ceiling) {
539 ceiling &= PGDIR_MASK;
540 if (!ceiling)
541 return;
1da177e4 542 }
e0da382c
HD
543 if (end - 1 > ceiling - 1)
544 return;
545
c2febafc 546 p4d = p4d_offset(pgd, start);
e0da382c 547 pgd_clear(pgd);
c2febafc 548 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
549}
550
551/*
e0da382c 552 * This function frees user-level page tables of a process.
1da177e4 553 */
42b77728 554void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
555 unsigned long addr, unsigned long end,
556 unsigned long floor, unsigned long ceiling)
1da177e4
LT
557{
558 pgd_t *pgd;
559 unsigned long next;
e0da382c
HD
560
561 /*
562 * The next few lines have given us lots of grief...
563 *
564 * Why are we testing PMD* at this top level? Because often
565 * there will be no work to do at all, and we'd prefer not to
566 * go all the way down to the bottom just to discover that.
567 *
568 * Why all these "- 1"s? Because 0 represents both the bottom
569 * of the address space and the top of it (using -1 for the
570 * top wouldn't help much: the masks would do the wrong thing).
571 * The rule is that addr 0 and floor 0 refer to the bottom of
572 * the address space, but end 0 and ceiling 0 refer to the top
573 * Comparisons need to use "end - 1" and "ceiling - 1" (though
574 * that end 0 case should be mythical).
575 *
576 * Wherever addr is brought up or ceiling brought down, we must
577 * be careful to reject "the opposite 0" before it confuses the
578 * subsequent tests. But what about where end is brought down
579 * by PMD_SIZE below? no, end can't go down to 0 there.
580 *
581 * Whereas we round start (addr) and ceiling down, by different
582 * masks at different levels, in order to test whether a table
583 * now has no other vmas using it, so can be freed, we don't
584 * bother to round floor or end up - the tests don't need that.
585 */
1da177e4 586
e0da382c
HD
587 addr &= PMD_MASK;
588 if (addr < floor) {
589 addr += PMD_SIZE;
590 if (!addr)
591 return;
592 }
593 if (ceiling) {
594 ceiling &= PMD_MASK;
595 if (!ceiling)
596 return;
597 }
598 if (end - 1 > ceiling - 1)
599 end -= PMD_SIZE;
600 if (addr > end - 1)
601 return;
07e32661
AK
602 /*
603 * We add page table cache pages with PAGE_SIZE,
604 * (see pte_free_tlb()), flush the tlb if we need
605 */
606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 607 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
608 do {
609 next = pgd_addr_end(addr, end);
610 if (pgd_none_or_clear_bad(pgd))
611 continue;
c2febafc 612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 613 } while (pgd++, addr = next, addr != end);
e0da382c
HD
614}
615
42b77728 616void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 617 unsigned long floor, unsigned long ceiling)
e0da382c
HD
618{
619 while (vma) {
620 struct vm_area_struct *next = vma->vm_next;
621 unsigned long addr = vma->vm_start;
622
8f4f8c16 623 /*
25d9e2d1 624 * Hide vma from rmap and truncate_pagecache before freeing
625 * pgtables
8f4f8c16 626 */
5beb4930 627 unlink_anon_vmas(vma);
8f4f8c16
HD
628 unlink_file_vma(vma);
629
9da61aef 630 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 632 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
633 } else {
634 /*
635 * Optimization: gather nearby vmas into one call down
636 */
637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 638 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
639 vma = next;
640 next = vma->vm_next;
5beb4930 641 unlink_anon_vmas(vma);
8f4f8c16 642 unlink_file_vma(vma);
3bf5ee95
HD
643 }
644 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 645 floor, next ? next->vm_start : ceiling);
3bf5ee95 646 }
e0da382c
HD
647 vma = next;
648 }
1da177e4
LT
649}
650
3ed3a4f0 651int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 652{
c4088ebd 653 spinlock_t *ptl;
2f569afd 654 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
655 if (!new)
656 return -ENOMEM;
657
362a61ad
NP
658 /*
659 * Ensure all pte setup (eg. pte page lock and page clearing) are
660 * visible before the pte is made visible to other CPUs by being
661 * put into page tables.
662 *
663 * The other side of the story is the pointer chasing in the page
664 * table walking code (when walking the page table without locking;
665 * ie. most of the time). Fortunately, these data accesses consist
666 * of a chain of data-dependent loads, meaning most CPUs (alpha
667 * being the notable exception) will already guarantee loads are
668 * seen in-order. See the alpha page table accessors for the
669 * smp_read_barrier_depends() barriers in page table walking code.
670 */
671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672
c4088ebd 673 ptl = pmd_lock(mm, pmd);
8ac1f832 674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 675 mm_inc_nr_ptes(mm);
1da177e4 676 pmd_populate(mm, pmd, new);
2f569afd 677 new = NULL;
4b471e88 678 }
c4088ebd 679 spin_unlock(ptl);
2f569afd
MS
680 if (new)
681 pte_free(mm, new);
1bb3630e 682 return 0;
1da177e4
LT
683}
684
1bb3630e 685int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 686{
1bb3630e
HD
687 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
688 if (!new)
689 return -ENOMEM;
690
362a61ad
NP
691 smp_wmb(); /* See comment in __pte_alloc */
692
1bb3630e 693 spin_lock(&init_mm.page_table_lock);
8ac1f832 694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 695 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 696 new = NULL;
4b471e88 697 }
1bb3630e 698 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
699 if (new)
700 pte_free_kernel(&init_mm, new);
1bb3630e 701 return 0;
1da177e4
LT
702}
703
d559db08
KH
704static inline void init_rss_vec(int *rss)
705{
706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
707}
708
709static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 710{
d559db08
KH
711 int i;
712
34e55232 713 if (current->mm == mm)
05af2e10 714 sync_mm_rss(mm);
d559db08
KH
715 for (i = 0; i < NR_MM_COUNTERS; i++)
716 if (rss[i])
717 add_mm_counter(mm, i, rss[i]);
ae859762
HD
718}
719
b5810039 720/*
6aab341e
LT
721 * This function is called to print an error when a bad pte
722 * is found. For example, we might have a PFN-mapped pte in
723 * a region that doesn't allow it.
b5810039
NP
724 *
725 * The calling function must still handle the error.
726 */
3dc14741
HD
727static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
728 pte_t pte, struct page *page)
b5810039 729{
3dc14741 730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
731 p4d_t *p4d = p4d_offset(pgd, addr);
732 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
733 pmd_t *pmd = pmd_offset(pud, addr);
734 struct address_space *mapping;
735 pgoff_t index;
d936cf9b
HD
736 static unsigned long resume;
737 static unsigned long nr_shown;
738 static unsigned long nr_unshown;
739
740 /*
741 * Allow a burst of 60 reports, then keep quiet for that minute;
742 * or allow a steady drip of one report per second.
743 */
744 if (nr_shown == 60) {
745 if (time_before(jiffies, resume)) {
746 nr_unshown++;
747 return;
748 }
749 if (nr_unshown) {
1170532b
JP
750 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
751 nr_unshown);
d936cf9b
HD
752 nr_unshown = 0;
753 }
754 nr_shown = 0;
755 }
756 if (nr_shown++ == 0)
757 resume = jiffies + 60 * HZ;
3dc14741
HD
758
759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
760 index = linear_page_index(vma, addr);
761
1170532b
JP
762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 current->comm,
764 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 765 if (page)
f0b791a3 766 dump_page(page, "bad pte");
1170532b
JP
767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
2682582a
KK
769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma->vm_file,
771 vma->vm_ops ? vma->vm_ops->fault : NULL,
772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
773 mapping ? mapping->a_ops->readpage : NULL);
b5810039 774 dump_stack();
373d4d09 775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
776}
777
ee498ed7 778/*
7e675137 779 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 780 *
7e675137
NP
781 * "Special" mappings do not wish to be associated with a "struct page" (either
782 * it doesn't exist, or it exists but they don't want to touch it). In this
783 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 784 *
7e675137
NP
785 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
786 * pte bit, in which case this function is trivial. Secondly, an architecture
787 * may not have a spare pte bit, which requires a more complicated scheme,
788 * described below.
789 *
790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
791 * special mapping (even if there are underlying and valid "struct pages").
792 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 793 *
b379d790
JH
794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
797 * mapping will always honor the rule
6aab341e
LT
798 *
799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 *
7e675137
NP
801 * And for normal mappings this is false.
802 *
803 * This restricts such mappings to be a linear translation from virtual address
804 * to pfn. To get around this restriction, we allow arbitrary mappings so long
805 * as the vma is not a COW mapping; in that case, we know that all ptes are
806 * special (because none can have been COWed).
b379d790 807 *
b379d790 808 *
7e675137 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
810 *
811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
812 * page" backing, however the difference is that _all_ pages with a struct
813 * page (that is, those where pfn_valid is true) are refcounted and considered
814 * normal pages by the VM. The disadvantage is that pages are refcounted
815 * (which can be slower and simply not an option for some PFNMAP users). The
816 * advantage is that we don't have to follow the strict linearity rule of
817 * PFNMAP mappings in order to support COWable mappings.
818 *
ee498ed7 819 */
df6ad698
JG
820struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte, bool with_public_device)
ee498ed7 822{
22b31eec 823 unsigned long pfn = pte_pfn(pte);
7e675137 824
00b3a331 825 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 826 if (likely(!pte_special(pte)))
22b31eec 827 goto check_pfn;
667a0a06
DV
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
df6ad698
JG
832 if (is_zero_pfn(pfn))
833 return NULL;
834
835 /*
836 * Device public pages are special pages (they are ZONE_DEVICE
837 * pages but different from persistent memory). They behave
838 * allmost like normal pages. The difference is that they are
839 * not on the lru and thus should never be involve with any-
840 * thing that involve lru manipulation (mlock, numa balancing,
841 * ...).
842 *
843 * This is why we still want to return NULL for such page from
844 * vm_normal_page() so that we do not have to special case all
845 * call site of vm_normal_page().
846 */
7d790d2d 847 if (likely(pfn <= highest_memmap_pfn)) {
df6ad698
JG
848 struct page *page = pfn_to_page(pfn);
849
850 if (is_device_public_page(page)) {
851 if (with_public_device)
852 return page;
853 return NULL;
854 }
855 }
856 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
857 return NULL;
858 }
859
00b3a331 860 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 861
b379d790
JH
862 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
863 if (vma->vm_flags & VM_MIXEDMAP) {
864 if (!pfn_valid(pfn))
865 return NULL;
866 goto out;
867 } else {
7e675137
NP
868 unsigned long off;
869 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
870 if (pfn == vma->vm_pgoff + off)
871 return NULL;
872 if (!is_cow_mapping(vma->vm_flags))
873 return NULL;
874 }
6aab341e
LT
875 }
876
b38af472
HD
877 if (is_zero_pfn(pfn))
878 return NULL;
00b3a331 879
22b31eec
HD
880check_pfn:
881 if (unlikely(pfn > highest_memmap_pfn)) {
882 print_bad_pte(vma, addr, pte, NULL);
883 return NULL;
884 }
6aab341e
LT
885
886 /*
7e675137 887 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 888 * eg. VDSO mappings can cause them to exist.
6aab341e 889 */
b379d790 890out:
6aab341e 891 return pfn_to_page(pfn);
ee498ed7
HD
892}
893
28093f9f
GS
894#ifdef CONFIG_TRANSPARENT_HUGEPAGE
895struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
896 pmd_t pmd)
897{
898 unsigned long pfn = pmd_pfn(pmd);
899
900 /*
901 * There is no pmd_special() but there may be special pmds, e.g.
902 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 903 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
904 */
905 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
906 if (vma->vm_flags & VM_MIXEDMAP) {
907 if (!pfn_valid(pfn))
908 return NULL;
909 goto out;
910 } else {
911 unsigned long off;
912 off = (addr - vma->vm_start) >> PAGE_SHIFT;
913 if (pfn == vma->vm_pgoff + off)
914 return NULL;
915 if (!is_cow_mapping(vma->vm_flags))
916 return NULL;
917 }
918 }
919
920 if (is_zero_pfn(pfn))
921 return NULL;
922 if (unlikely(pfn > highest_memmap_pfn))
923 return NULL;
924
925 /*
926 * NOTE! We still have PageReserved() pages in the page tables.
927 * eg. VDSO mappings can cause them to exist.
928 */
929out:
930 return pfn_to_page(pfn);
931}
932#endif
933
1da177e4
LT
934/*
935 * copy one vm_area from one task to the other. Assumes the page tables
936 * already present in the new task to be cleared in the whole range
937 * covered by this vma.
1da177e4
LT
938 */
939
570a335b 940static inline unsigned long
1da177e4 941copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 942 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 943 unsigned long addr, int *rss)
1da177e4 944{
b5810039 945 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
946 pte_t pte = *src_pte;
947 struct page *page;
1da177e4
LT
948
949 /* pte contains position in swap or file, so copy. */
950 if (unlikely(!pte_present(pte))) {
0661a336
KS
951 swp_entry_t entry = pte_to_swp_entry(pte);
952
953 if (likely(!non_swap_entry(entry))) {
954 if (swap_duplicate(entry) < 0)
955 return entry.val;
956
957 /* make sure dst_mm is on swapoff's mmlist. */
958 if (unlikely(list_empty(&dst_mm->mmlist))) {
959 spin_lock(&mmlist_lock);
960 if (list_empty(&dst_mm->mmlist))
961 list_add(&dst_mm->mmlist,
962 &src_mm->mmlist);
963 spin_unlock(&mmlist_lock);
964 }
965 rss[MM_SWAPENTS]++;
966 } else if (is_migration_entry(entry)) {
967 page = migration_entry_to_page(entry);
968
eca56ff9 969 rss[mm_counter(page)]++;
0661a336
KS
970
971 if (is_write_migration_entry(entry) &&
972 is_cow_mapping(vm_flags)) {
973 /*
974 * COW mappings require pages in both
975 * parent and child to be set to read.
976 */
977 make_migration_entry_read(&entry);
978 pte = swp_entry_to_pte(entry);
979 if (pte_swp_soft_dirty(*src_pte))
980 pte = pte_swp_mksoft_dirty(pte);
981 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 982 }
5042db43
JG
983 } else if (is_device_private_entry(entry)) {
984 page = device_private_entry_to_page(entry);
985
986 /*
987 * Update rss count even for unaddressable pages, as
988 * they should treated just like normal pages in this
989 * respect.
990 *
991 * We will likely want to have some new rss counters
992 * for unaddressable pages, at some point. But for now
993 * keep things as they are.
994 */
995 get_page(page);
996 rss[mm_counter(page)]++;
997 page_dup_rmap(page, false);
998
999 /*
1000 * We do not preserve soft-dirty information, because so
1001 * far, checkpoint/restore is the only feature that
1002 * requires that. And checkpoint/restore does not work
1003 * when a device driver is involved (you cannot easily
1004 * save and restore device driver state).
1005 */
1006 if (is_write_device_private_entry(entry) &&
1007 is_cow_mapping(vm_flags)) {
1008 make_device_private_entry_read(&entry);
1009 pte = swp_entry_to_pte(entry);
1010 set_pte_at(src_mm, addr, src_pte, pte);
1011 }
1da177e4 1012 }
ae859762 1013 goto out_set_pte;
1da177e4
LT
1014 }
1015
1da177e4
LT
1016 /*
1017 * If it's a COW mapping, write protect it both
1018 * in the parent and the child
1019 */
67121172 1020 if (is_cow_mapping(vm_flags)) {
1da177e4 1021 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 1022 pte = pte_wrprotect(pte);
1da177e4
LT
1023 }
1024
1025 /*
1026 * If it's a shared mapping, mark it clean in
1027 * the child
1028 */
1029 if (vm_flags & VM_SHARED)
1030 pte = pte_mkclean(pte);
1031 pte = pte_mkold(pte);
6aab341e
LT
1032
1033 page = vm_normal_page(vma, addr, pte);
1034 if (page) {
1035 get_page(page);
53f9263b 1036 page_dup_rmap(page, false);
eca56ff9 1037 rss[mm_counter(page)]++;
df6ad698
JG
1038 } else if (pte_devmap(pte)) {
1039 page = pte_page(pte);
1040
1041 /*
1042 * Cache coherent device memory behave like regular page and
1043 * not like persistent memory page. For more informations see
1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1045 */
1046 if (is_device_public_page(page)) {
1047 get_page(page);
1048 page_dup_rmap(page, false);
1049 rss[mm_counter(page)]++;
1050 }
6aab341e 1051 }
ae859762
HD
1052
1053out_set_pte:
1054 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 1055 return 0;
1da177e4
LT
1056}
1057
21bda264 1058static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
1059 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1060 unsigned long addr, unsigned long end)
1da177e4 1061{
c36987e2 1062 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1063 pte_t *src_pte, *dst_pte;
c74df32c 1064 spinlock_t *src_ptl, *dst_ptl;
e040f218 1065 int progress = 0;
d559db08 1066 int rss[NR_MM_COUNTERS];
570a335b 1067 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1068
1069again:
d559db08
KH
1070 init_rss_vec(rss);
1071
c74df32c 1072 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1073 if (!dst_pte)
1074 return -ENOMEM;
ece0e2b6 1075 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1076 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1078 orig_src_pte = src_pte;
1079 orig_dst_pte = dst_pte;
6606c3e0 1080 arch_enter_lazy_mmu_mode();
1da177e4 1081
1da177e4
LT
1082 do {
1083 /*
1084 * We are holding two locks at this point - either of them
1085 * could generate latencies in another task on another CPU.
1086 */
e040f218
HD
1087 if (progress >= 32) {
1088 progress = 0;
1089 if (need_resched() ||
95c354fe 1090 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1091 break;
1092 }
1da177e4
LT
1093 if (pte_none(*src_pte)) {
1094 progress++;
1095 continue;
1096 }
570a335b
HD
1097 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1098 vma, addr, rss);
1099 if (entry.val)
1100 break;
1da177e4
LT
1101 progress += 8;
1102 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1103
6606c3e0 1104 arch_leave_lazy_mmu_mode();
c74df32c 1105 spin_unlock(src_ptl);
ece0e2b6 1106 pte_unmap(orig_src_pte);
d559db08 1107 add_mm_rss_vec(dst_mm, rss);
c36987e2 1108 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1109 cond_resched();
570a335b
HD
1110
1111 if (entry.val) {
1112 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1113 return -ENOMEM;
1114 progress = 0;
1115 }
1da177e4
LT
1116 if (addr != end)
1117 goto again;
1118 return 0;
1119}
1120
1121static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1122 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1123 unsigned long addr, unsigned long end)
1124{
1125 pmd_t *src_pmd, *dst_pmd;
1126 unsigned long next;
1127
1128 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1129 if (!dst_pmd)
1130 return -ENOMEM;
1131 src_pmd = pmd_offset(src_pud, addr);
1132 do {
1133 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1134 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1135 || pmd_devmap(*src_pmd)) {
71e3aac0 1136 int err;
a00cc7d9 1137 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1138 err = copy_huge_pmd(dst_mm, src_mm,
1139 dst_pmd, src_pmd, addr, vma);
1140 if (err == -ENOMEM)
1141 return -ENOMEM;
1142 if (!err)
1143 continue;
1144 /* fall through */
1145 }
1da177e4
LT
1146 if (pmd_none_or_clear_bad(src_pmd))
1147 continue;
1148 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1149 vma, addr, next))
1150 return -ENOMEM;
1151 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1152 return 0;
1153}
1154
1155static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1156 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1157 unsigned long addr, unsigned long end)
1158{
1159 pud_t *src_pud, *dst_pud;
1160 unsigned long next;
1161
c2febafc 1162 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1163 if (!dst_pud)
1164 return -ENOMEM;
c2febafc 1165 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1166 do {
1167 next = pud_addr_end(addr, end);
a00cc7d9
MW
1168 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1169 int err;
1170
1171 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1172 err = copy_huge_pud(dst_mm, src_mm,
1173 dst_pud, src_pud, addr, vma);
1174 if (err == -ENOMEM)
1175 return -ENOMEM;
1176 if (!err)
1177 continue;
1178 /* fall through */
1179 }
1da177e4
LT
1180 if (pud_none_or_clear_bad(src_pud))
1181 continue;
1182 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1183 vma, addr, next))
1184 return -ENOMEM;
1185 } while (dst_pud++, src_pud++, addr = next, addr != end);
1186 return 0;
1187}
1188
c2febafc
KS
1189static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1190 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1191 unsigned long addr, unsigned long end)
1192{
1193 p4d_t *src_p4d, *dst_p4d;
1194 unsigned long next;
1195
1196 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1197 if (!dst_p4d)
1198 return -ENOMEM;
1199 src_p4d = p4d_offset(src_pgd, addr);
1200 do {
1201 next = p4d_addr_end(addr, end);
1202 if (p4d_none_or_clear_bad(src_p4d))
1203 continue;
1204 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1205 vma, addr, next))
1206 return -ENOMEM;
1207 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1208 return 0;
1209}
1210
1da177e4
LT
1211int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1212 struct vm_area_struct *vma)
1213{
1214 pgd_t *src_pgd, *dst_pgd;
1215 unsigned long next;
1216 unsigned long addr = vma->vm_start;
1217 unsigned long end = vma->vm_end;
2ec74c3e
SG
1218 unsigned long mmun_start; /* For mmu_notifiers */
1219 unsigned long mmun_end; /* For mmu_notifiers */
1220 bool is_cow;
cddb8a5c 1221 int ret;
1da177e4 1222
d992895b
NP
1223 /*
1224 * Don't copy ptes where a page fault will fill them correctly.
1225 * Fork becomes much lighter when there are big shared or private
1226 * readonly mappings. The tradeoff is that copy_page_range is more
1227 * efficient than faulting.
1228 */
0661a336
KS
1229 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1230 !vma->anon_vma)
1231 return 0;
d992895b 1232
1da177e4
LT
1233 if (is_vm_hugetlb_page(vma))
1234 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1235
b3b9c293 1236 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1237 /*
1238 * We do not free on error cases below as remove_vma
1239 * gets called on error from higher level routine
1240 */
5180da41 1241 ret = track_pfn_copy(vma);
2ab64037 1242 if (ret)
1243 return ret;
1244 }
1245
cddb8a5c
AA
1246 /*
1247 * We need to invalidate the secondary MMU mappings only when
1248 * there could be a permission downgrade on the ptes of the
1249 * parent mm. And a permission downgrade will only happen if
1250 * is_cow_mapping() returns true.
1251 */
2ec74c3e
SG
1252 is_cow = is_cow_mapping(vma->vm_flags);
1253 mmun_start = addr;
1254 mmun_end = end;
1255 if (is_cow)
1256 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1257 mmun_end);
cddb8a5c
AA
1258
1259 ret = 0;
1da177e4
LT
1260 dst_pgd = pgd_offset(dst_mm, addr);
1261 src_pgd = pgd_offset(src_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(src_pgd))
1265 continue;
c2febafc 1266 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1267 vma, addr, next))) {
1268 ret = -ENOMEM;
1269 break;
1270 }
1da177e4 1271 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1272
2ec74c3e
SG
1273 if (is_cow)
1274 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1275 return ret;
1da177e4
LT
1276}
1277
51c6f666 1278static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1279 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1280 unsigned long addr, unsigned long end,
97a89413 1281 struct zap_details *details)
1da177e4 1282{
b5810039 1283 struct mm_struct *mm = tlb->mm;
d16dfc55 1284 int force_flush = 0;
d559db08 1285 int rss[NR_MM_COUNTERS];
97a89413 1286 spinlock_t *ptl;
5f1a1907 1287 pte_t *start_pte;
97a89413 1288 pte_t *pte;
8a5f14a2 1289 swp_entry_t entry;
d559db08 1290
07e32661 1291 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1292again:
e303297e 1293 init_rss_vec(rss);
5f1a1907
SR
1294 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1295 pte = start_pte;
3ea27719 1296 flush_tlb_batched_pending(mm);
6606c3e0 1297 arch_enter_lazy_mmu_mode();
1da177e4
LT
1298 do {
1299 pte_t ptent = *pte;
166f61b9 1300 if (pte_none(ptent))
1da177e4 1301 continue;
6f5e6b9e 1302
1da177e4 1303 if (pte_present(ptent)) {
ee498ed7 1304 struct page *page;
51c6f666 1305
df6ad698 1306 page = _vm_normal_page(vma, addr, ptent, true);
1da177e4
LT
1307 if (unlikely(details) && page) {
1308 /*
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1312 */
1313 if (details->check_mapping &&
800d8c63 1314 details->check_mapping != page_rmapping(page))
1da177e4 1315 continue;
1da177e4 1316 }
b5810039 1317 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1318 tlb->fullmm);
1da177e4
LT
1319 tlb_remove_tlb_entry(tlb, pte, addr);
1320 if (unlikely(!page))
1321 continue;
eca56ff9
JM
1322
1323 if (!PageAnon(page)) {
1cf35d47
LT
1324 if (pte_dirty(ptent)) {
1325 force_flush = 1;
6237bcd9 1326 set_page_dirty(page);
1cf35d47 1327 }
4917e5d0 1328 if (pte_young(ptent) &&
64363aad 1329 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1330 mark_page_accessed(page);
6237bcd9 1331 }
eca56ff9 1332 rss[mm_counter(page)]--;
d281ee61 1333 page_remove_rmap(page, false);
3dc14741
HD
1334 if (unlikely(page_mapcount(page) < 0))
1335 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1336 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1337 force_flush = 1;
ce9ec37b 1338 addr += PAGE_SIZE;
d16dfc55 1339 break;
1cf35d47 1340 }
1da177e4
LT
1341 continue;
1342 }
5042db43
JG
1343
1344 entry = pte_to_swp_entry(ptent);
1345 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1346 struct page *page = device_private_entry_to_page(entry);
1347
1348 if (unlikely(details && details->check_mapping)) {
1349 /*
1350 * unmap_shared_mapping_pages() wants to
1351 * invalidate cache without truncating:
1352 * unmap shared but keep private pages.
1353 */
1354 if (details->check_mapping !=
1355 page_rmapping(page))
1356 continue;
1357 }
1358
1359 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1360 rss[mm_counter(page)]--;
1361 page_remove_rmap(page, false);
1362 put_page(page);
1363 continue;
1364 }
1365
3e8715fd
KS
1366 /* If details->check_mapping, we leave swap entries. */
1367 if (unlikely(details))
1da177e4 1368 continue;
b084d435 1369
8a5f14a2
KS
1370 entry = pte_to_swp_entry(ptent);
1371 if (!non_swap_entry(entry))
1372 rss[MM_SWAPENTS]--;
1373 else if (is_migration_entry(entry)) {
1374 struct page *page;
9f9f1acd 1375
8a5f14a2 1376 page = migration_entry_to_page(entry);
eca56ff9 1377 rss[mm_counter(page)]--;
b084d435 1378 }
8a5f14a2
KS
1379 if (unlikely(!free_swap_and_cache(entry)))
1380 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1381 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1382 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1383
d559db08 1384 add_mm_rss_vec(mm, rss);
6606c3e0 1385 arch_leave_lazy_mmu_mode();
51c6f666 1386
1cf35d47 1387 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1388 if (force_flush)
1cf35d47 1389 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1390 pte_unmap_unlock(start_pte, ptl);
1391
1392 /*
1393 * If we forced a TLB flush (either due to running out of
1394 * batch buffers or because we needed to flush dirty TLB
1395 * entries before releasing the ptl), free the batched
1396 * memory too. Restart if we didn't do everything.
1397 */
1398 if (force_flush) {
1399 force_flush = 0;
1400 tlb_flush_mmu_free(tlb);
2b047252 1401 if (addr != end)
d16dfc55
PZ
1402 goto again;
1403 }
1404
51c6f666 1405 return addr;
1da177e4
LT
1406}
1407
51c6f666 1408static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1409 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1410 unsigned long addr, unsigned long end,
97a89413 1411 struct zap_details *details)
1da177e4
LT
1412{
1413 pmd_t *pmd;
1414 unsigned long next;
1415
1416 pmd = pmd_offset(pud, addr);
1417 do {
1418 next = pmd_addr_end(addr, end);
84c3fc4e 1419 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1420 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1421 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1422 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1423 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1424 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1425 goto next;
71e3aac0
AA
1426 /* fall through */
1427 }
1a5a9906
AA
1428 /*
1429 * Here there can be other concurrent MADV_DONTNEED or
1430 * trans huge page faults running, and if the pmd is
1431 * none or trans huge it can change under us. This is
1432 * because MADV_DONTNEED holds the mmap_sem in read
1433 * mode.
1434 */
1435 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1436 goto next;
97a89413 1437 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1438next:
97a89413
PZ
1439 cond_resched();
1440 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1441
1442 return addr;
1da177e4
LT
1443}
1444
51c6f666 1445static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1446 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1447 unsigned long addr, unsigned long end,
97a89413 1448 struct zap_details *details)
1da177e4
LT
1449{
1450 pud_t *pud;
1451 unsigned long next;
1452
c2febafc 1453 pud = pud_offset(p4d, addr);
1da177e4
LT
1454 do {
1455 next = pud_addr_end(addr, end);
a00cc7d9
MW
1456 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1457 if (next - addr != HPAGE_PUD_SIZE) {
1458 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1459 split_huge_pud(vma, pud, addr);
1460 } else if (zap_huge_pud(tlb, vma, pud, addr))
1461 goto next;
1462 /* fall through */
1463 }
97a89413 1464 if (pud_none_or_clear_bad(pud))
1da177e4 1465 continue;
97a89413 1466 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1467next:
1468 cond_resched();
97a89413 1469 } while (pud++, addr = next, addr != end);
51c6f666
RH
1470
1471 return addr;
1da177e4
LT
1472}
1473
c2febafc
KS
1474static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1475 struct vm_area_struct *vma, pgd_t *pgd,
1476 unsigned long addr, unsigned long end,
1477 struct zap_details *details)
1478{
1479 p4d_t *p4d;
1480 unsigned long next;
1481
1482 p4d = p4d_offset(pgd, addr);
1483 do {
1484 next = p4d_addr_end(addr, end);
1485 if (p4d_none_or_clear_bad(p4d))
1486 continue;
1487 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1488 } while (p4d++, addr = next, addr != end);
1489
1490 return addr;
1491}
1492
aac45363 1493void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1494 struct vm_area_struct *vma,
1495 unsigned long addr, unsigned long end,
1496 struct zap_details *details)
1da177e4
LT
1497{
1498 pgd_t *pgd;
1499 unsigned long next;
1500
1da177e4
LT
1501 BUG_ON(addr >= end);
1502 tlb_start_vma(tlb, vma);
1503 pgd = pgd_offset(vma->vm_mm, addr);
1504 do {
1505 next = pgd_addr_end(addr, end);
97a89413 1506 if (pgd_none_or_clear_bad(pgd))
1da177e4 1507 continue;
c2febafc 1508 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1509 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1510 tlb_end_vma(tlb, vma);
1511}
51c6f666 1512
f5cc4eef
AV
1513
1514static void unmap_single_vma(struct mmu_gather *tlb,
1515 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1516 unsigned long end_addr,
f5cc4eef
AV
1517 struct zap_details *details)
1518{
1519 unsigned long start = max(vma->vm_start, start_addr);
1520 unsigned long end;
1521
1522 if (start >= vma->vm_end)
1523 return;
1524 end = min(vma->vm_end, end_addr);
1525 if (end <= vma->vm_start)
1526 return;
1527
cbc91f71
SD
1528 if (vma->vm_file)
1529 uprobe_munmap(vma, start, end);
1530
b3b9c293 1531 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1532 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1533
1534 if (start != end) {
1535 if (unlikely(is_vm_hugetlb_page(vma))) {
1536 /*
1537 * It is undesirable to test vma->vm_file as it
1538 * should be non-null for valid hugetlb area.
1539 * However, vm_file will be NULL in the error
7aa6b4ad 1540 * cleanup path of mmap_region. When
f5cc4eef 1541 * hugetlbfs ->mmap method fails,
7aa6b4ad 1542 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1543 * before calling this function to clean up.
1544 * Since no pte has actually been setup, it is
1545 * safe to do nothing in this case.
1546 */
24669e58 1547 if (vma->vm_file) {
83cde9e8 1548 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1549 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1550 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1551 }
f5cc4eef
AV
1552 } else
1553 unmap_page_range(tlb, vma, start, end, details);
1554 }
1da177e4
LT
1555}
1556
1da177e4
LT
1557/**
1558 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1559 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1560 * @vma: the starting vma
1561 * @start_addr: virtual address at which to start unmapping
1562 * @end_addr: virtual address at which to end unmapping
1da177e4 1563 *
508034a3 1564 * Unmap all pages in the vma list.
1da177e4 1565 *
1da177e4
LT
1566 * Only addresses between `start' and `end' will be unmapped.
1567 *
1568 * The VMA list must be sorted in ascending virtual address order.
1569 *
1570 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571 * range after unmap_vmas() returns. So the only responsibility here is to
1572 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573 * drops the lock and schedules.
1574 */
6e8bb019 1575void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1576 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1577 unsigned long end_addr)
1da177e4 1578{
cddb8a5c 1579 struct mm_struct *mm = vma->vm_mm;
1da177e4 1580
cddb8a5c 1581 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1582 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1583 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1584 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1585}
1586
1587/**
1588 * zap_page_range - remove user pages in a given range
1589 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1590 * @start: starting address of pages to zap
1da177e4 1591 * @size: number of bytes to zap
f5cc4eef
AV
1592 *
1593 * Caller must protect the VMA list
1da177e4 1594 */
7e027b14 1595void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1596 unsigned long size)
1da177e4
LT
1597{
1598 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1599 struct mmu_gather tlb;
7e027b14 1600 unsigned long end = start + size;
1da177e4 1601
1da177e4 1602 lru_add_drain();
2b047252 1603 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1604 update_hiwater_rss(mm);
7e027b14 1605 mmu_notifier_invalidate_range_start(mm, start, end);
4647706e 1606 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
ecf1385d 1607 unmap_single_vma(&tlb, vma, start, end, NULL);
4647706e
MG
1608
1609 /*
1610 * zap_page_range does not specify whether mmap_sem should be
1611 * held for read or write. That allows parallel zap_page_range
1612 * operations to unmap a PTE and defer a flush meaning that
1613 * this call observes pte_none and fails to flush the TLB.
1614 * Rather than adding a complex API, ensure that no stale
1615 * TLB entries exist when this call returns.
1616 */
1617 flush_tlb_range(vma, start, end);
1618 }
1619
7e027b14
LT
1620 mmu_notifier_invalidate_range_end(mm, start, end);
1621 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1622}
1623
f5cc4eef
AV
1624/**
1625 * zap_page_range_single - remove user pages in a given range
1626 * @vma: vm_area_struct holding the applicable pages
1627 * @address: starting address of pages to zap
1628 * @size: number of bytes to zap
8a5f14a2 1629 * @details: details of shared cache invalidation
f5cc4eef
AV
1630 *
1631 * The range must fit into one VMA.
1da177e4 1632 */
f5cc4eef 1633static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1634 unsigned long size, struct zap_details *details)
1635{
1636 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1637 struct mmu_gather tlb;
1da177e4 1638 unsigned long end = address + size;
1da177e4 1639
1da177e4 1640 lru_add_drain();
2b047252 1641 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1642 update_hiwater_rss(mm);
f5cc4eef 1643 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1644 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1645 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1646 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1647}
1648
c627f9cc
JS
1649/**
1650 * zap_vma_ptes - remove ptes mapping the vma
1651 * @vma: vm_area_struct holding ptes to be zapped
1652 * @address: starting address of pages to zap
1653 * @size: number of bytes to zap
1654 *
1655 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1656 *
1657 * The entire address range must be fully contained within the vma.
1658 *
1659 * Returns 0 if successful.
1660 */
1661int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1662 unsigned long size)
1663{
1664 if (address < vma->vm_start || address + size > vma->vm_end ||
1665 !(vma->vm_flags & VM_PFNMAP))
1666 return -1;
f5cc4eef 1667 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1668 return 0;
1669}
1670EXPORT_SYMBOL_GPL(zap_vma_ptes);
1671
25ca1d6c 1672pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1673 spinlock_t **ptl)
c9cfcddf 1674{
c2febafc
KS
1675 pgd_t *pgd;
1676 p4d_t *p4d;
1677 pud_t *pud;
1678 pmd_t *pmd;
1679
1680 pgd = pgd_offset(mm, addr);
1681 p4d = p4d_alloc(mm, pgd, addr);
1682 if (!p4d)
1683 return NULL;
1684 pud = pud_alloc(mm, p4d, addr);
1685 if (!pud)
1686 return NULL;
1687 pmd = pmd_alloc(mm, pud, addr);
1688 if (!pmd)
1689 return NULL;
1690
1691 VM_BUG_ON(pmd_trans_huge(*pmd));
1692 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1693}
1694
238f58d8
LT
1695/*
1696 * This is the old fallback for page remapping.
1697 *
1698 * For historical reasons, it only allows reserved pages. Only
1699 * old drivers should use this, and they needed to mark their
1700 * pages reserved for the old functions anyway.
1701 */
423bad60
NP
1702static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1703 struct page *page, pgprot_t prot)
238f58d8 1704{
423bad60 1705 struct mm_struct *mm = vma->vm_mm;
238f58d8 1706 int retval;
c9cfcddf 1707 pte_t *pte;
8a9f3ccd
BS
1708 spinlock_t *ptl;
1709
238f58d8 1710 retval = -EINVAL;
a145dd41 1711 if (PageAnon(page))
5b4e655e 1712 goto out;
238f58d8
LT
1713 retval = -ENOMEM;
1714 flush_dcache_page(page);
c9cfcddf 1715 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1716 if (!pte)
5b4e655e 1717 goto out;
238f58d8
LT
1718 retval = -EBUSY;
1719 if (!pte_none(*pte))
1720 goto out_unlock;
1721
1722 /* Ok, finally just insert the thing.. */
1723 get_page(page);
eca56ff9 1724 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1725 page_add_file_rmap(page, false);
238f58d8
LT
1726 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1727
1728 retval = 0;
8a9f3ccd
BS
1729 pte_unmap_unlock(pte, ptl);
1730 return retval;
238f58d8
LT
1731out_unlock:
1732 pte_unmap_unlock(pte, ptl);
1733out:
1734 return retval;
1735}
1736
bfa5bf6d
REB
1737/**
1738 * vm_insert_page - insert single page into user vma
1739 * @vma: user vma to map to
1740 * @addr: target user address of this page
1741 * @page: source kernel page
1742 *
a145dd41
LT
1743 * This allows drivers to insert individual pages they've allocated
1744 * into a user vma.
1745 *
1746 * The page has to be a nice clean _individual_ kernel allocation.
1747 * If you allocate a compound page, you need to have marked it as
1748 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1749 * (see split_page()).
a145dd41
LT
1750 *
1751 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1752 * took an arbitrary page protection parameter. This doesn't allow
1753 * that. Your vma protection will have to be set up correctly, which
1754 * means that if you want a shared writable mapping, you'd better
1755 * ask for a shared writable mapping!
1756 *
1757 * The page does not need to be reserved.
4b6e1e37
KK
1758 *
1759 * Usually this function is called from f_op->mmap() handler
1760 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1761 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1762 * function from other places, for example from page-fault handler.
a145dd41 1763 */
423bad60
NP
1764int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1765 struct page *page)
a145dd41
LT
1766{
1767 if (addr < vma->vm_start || addr >= vma->vm_end)
1768 return -EFAULT;
1769 if (!page_count(page))
1770 return -EINVAL;
4b6e1e37
KK
1771 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1772 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1773 BUG_ON(vma->vm_flags & VM_PFNMAP);
1774 vma->vm_flags |= VM_MIXEDMAP;
1775 }
423bad60 1776 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1777}
e3c3374f 1778EXPORT_SYMBOL(vm_insert_page);
a145dd41 1779
423bad60 1780static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1781 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1782{
1783 struct mm_struct *mm = vma->vm_mm;
1784 int retval;
1785 pte_t *pte, entry;
1786 spinlock_t *ptl;
1787
1788 retval = -ENOMEM;
1789 pte = get_locked_pte(mm, addr, &ptl);
1790 if (!pte)
1791 goto out;
1792 retval = -EBUSY;
b2770da6
RZ
1793 if (!pte_none(*pte)) {
1794 if (mkwrite) {
1795 /*
1796 * For read faults on private mappings the PFN passed
1797 * in may not match the PFN we have mapped if the
1798 * mapped PFN is a writeable COW page. In the mkwrite
1799 * case we are creating a writable PTE for a shared
1800 * mapping and we expect the PFNs to match.
1801 */
1802 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1803 goto out_unlock;
1804 entry = *pte;
1805 goto out_mkwrite;
1806 } else
1807 goto out_unlock;
1808 }
423bad60
NP
1809
1810 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1811 if (pfn_t_devmap(pfn))
1812 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1813 else
1814 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6
RZ
1815
1816out_mkwrite:
1817 if (mkwrite) {
1818 entry = pte_mkyoung(entry);
1819 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1820 }
1821
423bad60 1822 set_pte_at(mm, addr, pte, entry);
4b3073e1 1823 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1824
1825 retval = 0;
1826out_unlock:
1827 pte_unmap_unlock(pte, ptl);
1828out:
1829 return retval;
1830}
1831
e0dc0d8f
NP
1832/**
1833 * vm_insert_pfn - insert single pfn into user vma
1834 * @vma: user vma to map to
1835 * @addr: target user address of this page
1836 * @pfn: source kernel pfn
1837 *
c462f179 1838 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1839 * they've allocated into a user vma. Same comments apply.
1840 *
1841 * This function should only be called from a vm_ops->fault handler, and
1842 * in that case the handler should return NULL.
0d71d10a
NP
1843 *
1844 * vma cannot be a COW mapping.
1845 *
1846 * As this is called only for pages that do not currently exist, we
1847 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1848 */
1849int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1850 unsigned long pfn)
1745cbc5
AL
1851{
1852 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1853}
1854EXPORT_SYMBOL(vm_insert_pfn);
1855
1856/**
1857 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1858 * @vma: user vma to map to
1859 * @addr: target user address of this page
1860 * @pfn: source kernel pfn
1861 * @pgprot: pgprot flags for the inserted page
1862 *
1863 * This is exactly like vm_insert_pfn, except that it allows drivers to
1864 * to override pgprot on a per-page basis.
1865 *
1866 * This only makes sense for IO mappings, and it makes no sense for
1867 * cow mappings. In general, using multiple vmas is preferable;
1868 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1869 * impractical.
1870 */
1871int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1872 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1873{
2ab64037 1874 int ret;
7e675137
NP
1875 /*
1876 * Technically, architectures with pte_special can avoid all these
1877 * restrictions (same for remap_pfn_range). However we would like
1878 * consistency in testing and feature parity among all, so we should
1879 * try to keep these invariants in place for everybody.
1880 */
b379d790
JH
1881 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1882 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1883 (VM_PFNMAP|VM_MIXEDMAP));
1884 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1885 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1886
423bad60
NP
1887 if (addr < vma->vm_start || addr >= vma->vm_end)
1888 return -EFAULT;
308a047c
BP
1889
1890 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1891
b2770da6
RZ
1892 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1893 false);
2ab64037 1894
2ab64037 1895 return ret;
423bad60 1896}
1745cbc5 1897EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1898
785a3fab
DW
1899static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1900{
1901 /* these checks mirror the abort conditions in vm_normal_page */
1902 if (vma->vm_flags & VM_MIXEDMAP)
1903 return true;
1904 if (pfn_t_devmap(pfn))
1905 return true;
1906 if (pfn_t_special(pfn))
1907 return true;
1908 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1909 return true;
1910 return false;
1911}
1912
b2770da6
RZ
1913static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1914 pfn_t pfn, bool mkwrite)
423bad60 1915{
87744ab3
DW
1916 pgprot_t pgprot = vma->vm_page_prot;
1917
785a3fab 1918 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1919
423bad60
NP
1920 if (addr < vma->vm_start || addr >= vma->vm_end)
1921 return -EFAULT;
308a047c
BP
1922
1923 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1924
423bad60
NP
1925 /*
1926 * If we don't have pte special, then we have to use the pfn_valid()
1927 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1928 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1929 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1930 * without pte special, it would there be refcounted as a normal page.
423bad60 1931 */
00b3a331
LD
1932 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1933 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1934 struct page *page;
1935
03fc2da6
DW
1936 /*
1937 * At this point we are committed to insert_page()
1938 * regardless of whether the caller specified flags that
1939 * result in pfn_t_has_page() == false.
1940 */
1941 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1942 return insert_page(vma, addr, page, pgprot);
423bad60 1943 }
b2770da6
RZ
1944 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1945}
1946
1947int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1948 pfn_t pfn)
1949{
1950 return __vm_insert_mixed(vma, addr, pfn, false);
1951
e0dc0d8f 1952}
423bad60 1953EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1954
ab77dab4
SJ
1955/*
1956 * If the insertion of PTE failed because someone else already added a
1957 * different entry in the mean time, we treat that as success as we assume
1958 * the same entry was actually inserted.
1959 */
1960
1961vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1962 unsigned long addr, pfn_t pfn)
b2770da6 1963{
ab77dab4
SJ
1964 int err;
1965
1966 err = __vm_insert_mixed(vma, addr, pfn, true);
1967 if (err == -ENOMEM)
1968 return VM_FAULT_OOM;
1969 if (err < 0 && err != -EBUSY)
1970 return VM_FAULT_SIGBUS;
1971 return VM_FAULT_NOPAGE;
b2770da6 1972}
ab77dab4 1973EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1974
1da177e4
LT
1975/*
1976 * maps a range of physical memory into the requested pages. the old
1977 * mappings are removed. any references to nonexistent pages results
1978 * in null mappings (currently treated as "copy-on-access")
1979 */
1980static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1981 unsigned long addr, unsigned long end,
1982 unsigned long pfn, pgprot_t prot)
1983{
1984 pte_t *pte;
c74df32c 1985 spinlock_t *ptl;
1da177e4 1986
c74df32c 1987 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1988 if (!pte)
1989 return -ENOMEM;
6606c3e0 1990 arch_enter_lazy_mmu_mode();
1da177e4
LT
1991 do {
1992 BUG_ON(!pte_none(*pte));
7e675137 1993 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1994 pfn++;
1995 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1996 arch_leave_lazy_mmu_mode();
c74df32c 1997 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1998 return 0;
1999}
2000
2001static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2002 unsigned long addr, unsigned long end,
2003 unsigned long pfn, pgprot_t prot)
2004{
2005 pmd_t *pmd;
2006 unsigned long next;
2007
2008 pfn -= addr >> PAGE_SHIFT;
2009 pmd = pmd_alloc(mm, pud, addr);
2010 if (!pmd)
2011 return -ENOMEM;
f66055ab 2012 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2013 do {
2014 next = pmd_addr_end(addr, end);
2015 if (remap_pte_range(mm, pmd, addr, next,
2016 pfn + (addr >> PAGE_SHIFT), prot))
2017 return -ENOMEM;
2018 } while (pmd++, addr = next, addr != end);
2019 return 0;
2020}
2021
c2febafc 2022static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2023 unsigned long addr, unsigned long end,
2024 unsigned long pfn, pgprot_t prot)
2025{
2026 pud_t *pud;
2027 unsigned long next;
2028
2029 pfn -= addr >> PAGE_SHIFT;
c2febafc 2030 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2031 if (!pud)
2032 return -ENOMEM;
2033 do {
2034 next = pud_addr_end(addr, end);
2035 if (remap_pmd_range(mm, pud, addr, next,
2036 pfn + (addr >> PAGE_SHIFT), prot))
2037 return -ENOMEM;
2038 } while (pud++, addr = next, addr != end);
2039 return 0;
2040}
2041
c2febafc
KS
2042static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2043 unsigned long addr, unsigned long end,
2044 unsigned long pfn, pgprot_t prot)
2045{
2046 p4d_t *p4d;
2047 unsigned long next;
2048
2049 pfn -= addr >> PAGE_SHIFT;
2050 p4d = p4d_alloc(mm, pgd, addr);
2051 if (!p4d)
2052 return -ENOMEM;
2053 do {
2054 next = p4d_addr_end(addr, end);
2055 if (remap_pud_range(mm, p4d, addr, next,
2056 pfn + (addr >> PAGE_SHIFT), prot))
2057 return -ENOMEM;
2058 } while (p4d++, addr = next, addr != end);
2059 return 0;
2060}
2061
bfa5bf6d
REB
2062/**
2063 * remap_pfn_range - remap kernel memory to userspace
2064 * @vma: user vma to map to
2065 * @addr: target user address to start at
2066 * @pfn: physical address of kernel memory
2067 * @size: size of map area
2068 * @prot: page protection flags for this mapping
2069 *
2070 * Note: this is only safe if the mm semaphore is held when called.
2071 */
1da177e4
LT
2072int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2073 unsigned long pfn, unsigned long size, pgprot_t prot)
2074{
2075 pgd_t *pgd;
2076 unsigned long next;
2d15cab8 2077 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2078 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2079 unsigned long remap_pfn = pfn;
1da177e4
LT
2080 int err;
2081
2082 /*
2083 * Physically remapped pages are special. Tell the
2084 * rest of the world about it:
2085 * VM_IO tells people not to look at these pages
2086 * (accesses can have side effects).
6aab341e
LT
2087 * VM_PFNMAP tells the core MM that the base pages are just
2088 * raw PFN mappings, and do not have a "struct page" associated
2089 * with them.
314e51b9
KK
2090 * VM_DONTEXPAND
2091 * Disable vma merging and expanding with mremap().
2092 * VM_DONTDUMP
2093 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2094 *
2095 * There's a horrible special case to handle copy-on-write
2096 * behaviour that some programs depend on. We mark the "original"
2097 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2098 * See vm_normal_page() for details.
1da177e4 2099 */
b3b9c293
KK
2100 if (is_cow_mapping(vma->vm_flags)) {
2101 if (addr != vma->vm_start || end != vma->vm_end)
2102 return -EINVAL;
fb155c16 2103 vma->vm_pgoff = pfn;
b3b9c293
KK
2104 }
2105
d5957d2f 2106 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2107 if (err)
3c8bb73a 2108 return -EINVAL;
fb155c16 2109
314e51b9 2110 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2111
2112 BUG_ON(addr >= end);
2113 pfn -= addr >> PAGE_SHIFT;
2114 pgd = pgd_offset(mm, addr);
2115 flush_cache_range(vma, addr, end);
1da177e4
LT
2116 do {
2117 next = pgd_addr_end(addr, end);
c2febafc 2118 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2119 pfn + (addr >> PAGE_SHIFT), prot);
2120 if (err)
2121 break;
2122 } while (pgd++, addr = next, addr != end);
2ab64037 2123
2124 if (err)
d5957d2f 2125 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2126
1da177e4
LT
2127 return err;
2128}
2129EXPORT_SYMBOL(remap_pfn_range);
2130
b4cbb197
LT
2131/**
2132 * vm_iomap_memory - remap memory to userspace
2133 * @vma: user vma to map to
2134 * @start: start of area
2135 * @len: size of area
2136 *
2137 * This is a simplified io_remap_pfn_range() for common driver use. The
2138 * driver just needs to give us the physical memory range to be mapped,
2139 * we'll figure out the rest from the vma information.
2140 *
2141 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2142 * whatever write-combining details or similar.
2143 */
2144int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2145{
2146 unsigned long vm_len, pfn, pages;
2147
2148 /* Check that the physical memory area passed in looks valid */
2149 if (start + len < start)
2150 return -EINVAL;
2151 /*
2152 * You *really* shouldn't map things that aren't page-aligned,
2153 * but we've historically allowed it because IO memory might
2154 * just have smaller alignment.
2155 */
2156 len += start & ~PAGE_MASK;
2157 pfn = start >> PAGE_SHIFT;
2158 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2159 if (pfn + pages < pfn)
2160 return -EINVAL;
2161
2162 /* We start the mapping 'vm_pgoff' pages into the area */
2163 if (vma->vm_pgoff > pages)
2164 return -EINVAL;
2165 pfn += vma->vm_pgoff;
2166 pages -= vma->vm_pgoff;
2167
2168 /* Can we fit all of the mapping? */
2169 vm_len = vma->vm_end - vma->vm_start;
2170 if (vm_len >> PAGE_SHIFT > pages)
2171 return -EINVAL;
2172
2173 /* Ok, let it rip */
2174 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2175}
2176EXPORT_SYMBOL(vm_iomap_memory);
2177
aee16b3c
JF
2178static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2179 unsigned long addr, unsigned long end,
2180 pte_fn_t fn, void *data)
2181{
2182 pte_t *pte;
2183 int err;
2f569afd 2184 pgtable_t token;
94909914 2185 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2186
2187 pte = (mm == &init_mm) ?
2188 pte_alloc_kernel(pmd, addr) :
2189 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2190 if (!pte)
2191 return -ENOMEM;
2192
2193 BUG_ON(pmd_huge(*pmd));
2194
38e0edb1
JF
2195 arch_enter_lazy_mmu_mode();
2196
2f569afd 2197 token = pmd_pgtable(*pmd);
aee16b3c
JF
2198
2199 do {
c36987e2 2200 err = fn(pte++, token, addr, data);
aee16b3c
JF
2201 if (err)
2202 break;
c36987e2 2203 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2204
38e0edb1
JF
2205 arch_leave_lazy_mmu_mode();
2206
aee16b3c
JF
2207 if (mm != &init_mm)
2208 pte_unmap_unlock(pte-1, ptl);
2209 return err;
2210}
2211
2212static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2213 unsigned long addr, unsigned long end,
2214 pte_fn_t fn, void *data)
2215{
2216 pmd_t *pmd;
2217 unsigned long next;
2218 int err;
2219
ceb86879
AK
2220 BUG_ON(pud_huge(*pud));
2221
aee16b3c
JF
2222 pmd = pmd_alloc(mm, pud, addr);
2223 if (!pmd)
2224 return -ENOMEM;
2225 do {
2226 next = pmd_addr_end(addr, end);
2227 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2228 if (err)
2229 break;
2230 } while (pmd++, addr = next, addr != end);
2231 return err;
2232}
2233
c2febafc 2234static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2235 unsigned long addr, unsigned long end,
2236 pte_fn_t fn, void *data)
2237{
2238 pud_t *pud;
2239 unsigned long next;
2240 int err;
2241
c2febafc 2242 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2243 if (!pud)
2244 return -ENOMEM;
2245 do {
2246 next = pud_addr_end(addr, end);
2247 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2248 if (err)
2249 break;
2250 } while (pud++, addr = next, addr != end);
2251 return err;
2252}
2253
c2febafc
KS
2254static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2255 unsigned long addr, unsigned long end,
2256 pte_fn_t fn, void *data)
2257{
2258 p4d_t *p4d;
2259 unsigned long next;
2260 int err;
2261
2262 p4d = p4d_alloc(mm, pgd, addr);
2263 if (!p4d)
2264 return -ENOMEM;
2265 do {
2266 next = p4d_addr_end(addr, end);
2267 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2268 if (err)
2269 break;
2270 } while (p4d++, addr = next, addr != end);
2271 return err;
2272}
2273
aee16b3c
JF
2274/*
2275 * Scan a region of virtual memory, filling in page tables as necessary
2276 * and calling a provided function on each leaf page table.
2277 */
2278int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2279 unsigned long size, pte_fn_t fn, void *data)
2280{
2281 pgd_t *pgd;
2282 unsigned long next;
57250a5b 2283 unsigned long end = addr + size;
aee16b3c
JF
2284 int err;
2285
9cb65bc3
MP
2286 if (WARN_ON(addr >= end))
2287 return -EINVAL;
2288
aee16b3c
JF
2289 pgd = pgd_offset(mm, addr);
2290 do {
2291 next = pgd_addr_end(addr, end);
c2febafc 2292 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2293 if (err)
2294 break;
2295 } while (pgd++, addr = next, addr != end);
57250a5b 2296
aee16b3c
JF
2297 return err;
2298}
2299EXPORT_SYMBOL_GPL(apply_to_page_range);
2300
8f4e2101 2301/*
9b4bdd2f
KS
2302 * handle_pte_fault chooses page fault handler according to an entry which was
2303 * read non-atomically. Before making any commitment, on those architectures
2304 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2305 * parts, do_swap_page must check under lock before unmapping the pte and
2306 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2307 * and do_anonymous_page can safely check later on).
8f4e2101 2308 */
4c21e2f2 2309static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2310 pte_t *page_table, pte_t orig_pte)
2311{
2312 int same = 1;
2313#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2314 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2315 spinlock_t *ptl = pte_lockptr(mm, pmd);
2316 spin_lock(ptl);
8f4e2101 2317 same = pte_same(*page_table, orig_pte);
4c21e2f2 2318 spin_unlock(ptl);
8f4e2101
HD
2319 }
2320#endif
2321 pte_unmap(page_table);
2322 return same;
2323}
2324
9de455b2 2325static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2326{
0abdd7a8
DW
2327 debug_dma_assert_idle(src);
2328
6aab341e
LT
2329 /*
2330 * If the source page was a PFN mapping, we don't have
2331 * a "struct page" for it. We do a best-effort copy by
2332 * just copying from the original user address. If that
2333 * fails, we just zero-fill it. Live with it.
2334 */
2335 if (unlikely(!src)) {
9b04c5fe 2336 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2337 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2338
2339 /*
2340 * This really shouldn't fail, because the page is there
2341 * in the page tables. But it might just be unreadable,
2342 * in which case we just give up and fill the result with
2343 * zeroes.
2344 */
2345 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2346 clear_page(kaddr);
9b04c5fe 2347 kunmap_atomic(kaddr);
c4ec7b0d 2348 flush_dcache_page(dst);
0ed361de
NP
2349 } else
2350 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2351}
2352
c20cd45e
MH
2353static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2354{
2355 struct file *vm_file = vma->vm_file;
2356
2357 if (vm_file)
2358 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2359
2360 /*
2361 * Special mappings (e.g. VDSO) do not have any file so fake
2362 * a default GFP_KERNEL for them.
2363 */
2364 return GFP_KERNEL;
2365}
2366
fb09a464
KS
2367/*
2368 * Notify the address space that the page is about to become writable so that
2369 * it can prohibit this or wait for the page to get into an appropriate state.
2370 *
2371 * We do this without the lock held, so that it can sleep if it needs to.
2372 */
38b8cb7f 2373static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2374{
fb09a464 2375 int ret;
38b8cb7f
JK
2376 struct page *page = vmf->page;
2377 unsigned int old_flags = vmf->flags;
fb09a464 2378
38b8cb7f 2379 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2380
11bac800 2381 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2382 /* Restore original flags so that caller is not surprised */
2383 vmf->flags = old_flags;
fb09a464
KS
2384 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2385 return ret;
2386 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2387 lock_page(page);
2388 if (!page->mapping) {
2389 unlock_page(page);
2390 return 0; /* retry */
2391 }
2392 ret |= VM_FAULT_LOCKED;
2393 } else
2394 VM_BUG_ON_PAGE(!PageLocked(page), page);
2395 return ret;
2396}
2397
97ba0c2b
JK
2398/*
2399 * Handle dirtying of a page in shared file mapping on a write fault.
2400 *
2401 * The function expects the page to be locked and unlocks it.
2402 */
2403static void fault_dirty_shared_page(struct vm_area_struct *vma,
2404 struct page *page)
2405{
2406 struct address_space *mapping;
2407 bool dirtied;
2408 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2409
2410 dirtied = set_page_dirty(page);
2411 VM_BUG_ON_PAGE(PageAnon(page), page);
2412 /*
2413 * Take a local copy of the address_space - page.mapping may be zeroed
2414 * by truncate after unlock_page(). The address_space itself remains
2415 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2416 * release semantics to prevent the compiler from undoing this copying.
2417 */
2418 mapping = page_rmapping(page);
2419 unlock_page(page);
2420
2421 if ((dirtied || page_mkwrite) && mapping) {
2422 /*
2423 * Some device drivers do not set page.mapping
2424 * but still dirty their pages
2425 */
2426 balance_dirty_pages_ratelimited(mapping);
2427 }
2428
2429 if (!page_mkwrite)
2430 file_update_time(vma->vm_file);
2431}
2432
4e047f89
SR
2433/*
2434 * Handle write page faults for pages that can be reused in the current vma
2435 *
2436 * This can happen either due to the mapping being with the VM_SHARED flag,
2437 * or due to us being the last reference standing to the page. In either
2438 * case, all we need to do here is to mark the page as writable and update
2439 * any related book-keeping.
2440 */
997dd98d 2441static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2442 __releases(vmf->ptl)
4e047f89 2443{
82b0f8c3 2444 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2445 struct page *page = vmf->page;
4e047f89
SR
2446 pte_t entry;
2447 /*
2448 * Clear the pages cpupid information as the existing
2449 * information potentially belongs to a now completely
2450 * unrelated process.
2451 */
2452 if (page)
2453 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2454
2994302b
JK
2455 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2456 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2457 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2458 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2459 update_mmu_cache(vma, vmf->address, vmf->pte);
2460 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2461}
2462
2f38ab2c
SR
2463/*
2464 * Handle the case of a page which we actually need to copy to a new page.
2465 *
2466 * Called with mmap_sem locked and the old page referenced, but
2467 * without the ptl held.
2468 *
2469 * High level logic flow:
2470 *
2471 * - Allocate a page, copy the content of the old page to the new one.
2472 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2473 * - Take the PTL. If the pte changed, bail out and release the allocated page
2474 * - If the pte is still the way we remember it, update the page table and all
2475 * relevant references. This includes dropping the reference the page-table
2476 * held to the old page, as well as updating the rmap.
2477 * - In any case, unlock the PTL and drop the reference we took to the old page.
2478 */
a41b70d6 2479static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2480{
82b0f8c3 2481 struct vm_area_struct *vma = vmf->vma;
bae473a4 2482 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2483 struct page *old_page = vmf->page;
2f38ab2c 2484 struct page *new_page = NULL;
2f38ab2c
SR
2485 pte_t entry;
2486 int page_copied = 0;
82b0f8c3 2487 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2488 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2489 struct mem_cgroup *memcg;
2490
2491 if (unlikely(anon_vma_prepare(vma)))
2492 goto oom;
2493
2994302b 2494 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2495 new_page = alloc_zeroed_user_highpage_movable(vma,
2496 vmf->address);
2f38ab2c
SR
2497 if (!new_page)
2498 goto oom;
2499 } else {
bae473a4 2500 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2501 vmf->address);
2f38ab2c
SR
2502 if (!new_page)
2503 goto oom;
82b0f8c3 2504 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2505 }
2f38ab2c 2506
f627c2f5 2507 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2508 goto oom_free_new;
2509
eb3c24f3
MG
2510 __SetPageUptodate(new_page);
2511
2f38ab2c
SR
2512 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2513
2514 /*
2515 * Re-check the pte - we dropped the lock
2516 */
82b0f8c3 2517 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2518 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2519 if (old_page) {
2520 if (!PageAnon(old_page)) {
eca56ff9
JM
2521 dec_mm_counter_fast(mm,
2522 mm_counter_file(old_page));
2f38ab2c
SR
2523 inc_mm_counter_fast(mm, MM_ANONPAGES);
2524 }
2525 } else {
2526 inc_mm_counter_fast(mm, MM_ANONPAGES);
2527 }
2994302b 2528 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2529 entry = mk_pte(new_page, vma->vm_page_prot);
2530 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2531 /*
2532 * Clear the pte entry and flush it first, before updating the
2533 * pte with the new entry. This will avoid a race condition
2534 * seen in the presence of one thread doing SMC and another
2535 * thread doing COW.
2536 */
82b0f8c3
JK
2537 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2538 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2539 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2540 lru_cache_add_active_or_unevictable(new_page, vma);
2541 /*
2542 * We call the notify macro here because, when using secondary
2543 * mmu page tables (such as kvm shadow page tables), we want the
2544 * new page to be mapped directly into the secondary page table.
2545 */
82b0f8c3
JK
2546 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2547 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2548 if (old_page) {
2549 /*
2550 * Only after switching the pte to the new page may
2551 * we remove the mapcount here. Otherwise another
2552 * process may come and find the rmap count decremented
2553 * before the pte is switched to the new page, and
2554 * "reuse" the old page writing into it while our pte
2555 * here still points into it and can be read by other
2556 * threads.
2557 *
2558 * The critical issue is to order this
2559 * page_remove_rmap with the ptp_clear_flush above.
2560 * Those stores are ordered by (if nothing else,)
2561 * the barrier present in the atomic_add_negative
2562 * in page_remove_rmap.
2563 *
2564 * Then the TLB flush in ptep_clear_flush ensures that
2565 * no process can access the old page before the
2566 * decremented mapcount is visible. And the old page
2567 * cannot be reused until after the decremented
2568 * mapcount is visible. So transitively, TLBs to
2569 * old page will be flushed before it can be reused.
2570 */
d281ee61 2571 page_remove_rmap(old_page, false);
2f38ab2c
SR
2572 }
2573
2574 /* Free the old page.. */
2575 new_page = old_page;
2576 page_copied = 1;
2577 } else {
f627c2f5 2578 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2579 }
2580
2581 if (new_page)
09cbfeaf 2582 put_page(new_page);
2f38ab2c 2583
82b0f8c3 2584 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2585 /*
2586 * No need to double call mmu_notifier->invalidate_range() callback as
2587 * the above ptep_clear_flush_notify() did already call it.
2588 */
2589 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2f38ab2c
SR
2590 if (old_page) {
2591 /*
2592 * Don't let another task, with possibly unlocked vma,
2593 * keep the mlocked page.
2594 */
2595 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2596 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2597 if (PageMlocked(old_page))
2598 munlock_vma_page(old_page);
2f38ab2c
SR
2599 unlock_page(old_page);
2600 }
09cbfeaf 2601 put_page(old_page);
2f38ab2c
SR
2602 }
2603 return page_copied ? VM_FAULT_WRITE : 0;
2604oom_free_new:
09cbfeaf 2605 put_page(new_page);
2f38ab2c
SR
2606oom:
2607 if (old_page)
09cbfeaf 2608 put_page(old_page);
2f38ab2c
SR
2609 return VM_FAULT_OOM;
2610}
2611
66a6197c
JK
2612/**
2613 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2614 * writeable once the page is prepared
2615 *
2616 * @vmf: structure describing the fault
2617 *
2618 * This function handles all that is needed to finish a write page fault in a
2619 * shared mapping due to PTE being read-only once the mapped page is prepared.
2620 * It handles locking of PTE and modifying it. The function returns
2621 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2622 * lock.
2623 *
2624 * The function expects the page to be locked or other protection against
2625 * concurrent faults / writeback (such as DAX radix tree locks).
2626 */
2627int finish_mkwrite_fault(struct vm_fault *vmf)
2628{
2629 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2630 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2631 &vmf->ptl);
2632 /*
2633 * We might have raced with another page fault while we released the
2634 * pte_offset_map_lock.
2635 */
2636 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2637 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2638 return VM_FAULT_NOPAGE;
66a6197c
JK
2639 }
2640 wp_page_reuse(vmf);
a19e2553 2641 return 0;
66a6197c
JK
2642}
2643
dd906184
BH
2644/*
2645 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2646 * mapping
2647 */
2994302b 2648static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2649{
82b0f8c3 2650 struct vm_area_struct *vma = vmf->vma;
bae473a4 2651
dd906184 2652 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2653 int ret;
2654
82b0f8c3 2655 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2656 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2657 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2658 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2659 return ret;
66a6197c 2660 return finish_mkwrite_fault(vmf);
dd906184 2661 }
997dd98d
JK
2662 wp_page_reuse(vmf);
2663 return VM_FAULT_WRITE;
dd906184
BH
2664}
2665
a41b70d6 2666static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2667 __releases(vmf->ptl)
93e478d4 2668{
82b0f8c3 2669 struct vm_area_struct *vma = vmf->vma;
93e478d4 2670
a41b70d6 2671 get_page(vmf->page);
93e478d4 2672
93e478d4
SR
2673 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2674 int tmp;
2675
82b0f8c3 2676 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2677 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2678 if (unlikely(!tmp || (tmp &
2679 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2680 put_page(vmf->page);
93e478d4
SR
2681 return tmp;
2682 }
66a6197c 2683 tmp = finish_mkwrite_fault(vmf);
a19e2553 2684 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2685 unlock_page(vmf->page);
a41b70d6 2686 put_page(vmf->page);
66a6197c 2687 return tmp;
93e478d4 2688 }
66a6197c
JK
2689 } else {
2690 wp_page_reuse(vmf);
997dd98d 2691 lock_page(vmf->page);
93e478d4 2692 }
997dd98d
JK
2693 fault_dirty_shared_page(vma, vmf->page);
2694 put_page(vmf->page);
93e478d4 2695
997dd98d 2696 return VM_FAULT_WRITE;
93e478d4
SR
2697}
2698
1da177e4
LT
2699/*
2700 * This routine handles present pages, when users try to write
2701 * to a shared page. It is done by copying the page to a new address
2702 * and decrementing the shared-page counter for the old page.
2703 *
1da177e4
LT
2704 * Note that this routine assumes that the protection checks have been
2705 * done by the caller (the low-level page fault routine in most cases).
2706 * Thus we can safely just mark it writable once we've done any necessary
2707 * COW.
2708 *
2709 * We also mark the page dirty at this point even though the page will
2710 * change only once the write actually happens. This avoids a few races,
2711 * and potentially makes it more efficient.
2712 *
8f4e2101
HD
2713 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2714 * but allow concurrent faults), with pte both mapped and locked.
2715 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2716 */
2994302b 2717static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2718 __releases(vmf->ptl)
1da177e4 2719{
82b0f8c3 2720 struct vm_area_struct *vma = vmf->vma;
1da177e4 2721
a41b70d6
JK
2722 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2723 if (!vmf->page) {
251b97f5 2724 /*
64e45507
PF
2725 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2726 * VM_PFNMAP VMA.
251b97f5
PZ
2727 *
2728 * We should not cow pages in a shared writeable mapping.
dd906184 2729 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2730 */
2731 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2732 (VM_WRITE|VM_SHARED))
2994302b 2733 return wp_pfn_shared(vmf);
2f38ab2c 2734
82b0f8c3 2735 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2736 return wp_page_copy(vmf);
251b97f5 2737 }
1da177e4 2738
d08b3851 2739 /*
ee6a6457
PZ
2740 * Take out anonymous pages first, anonymous shared vmas are
2741 * not dirty accountable.
d08b3851 2742 */
a41b70d6 2743 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
ba3c4ce6 2744 int total_map_swapcount;
a41b70d6
JK
2745 if (!trylock_page(vmf->page)) {
2746 get_page(vmf->page);
82b0f8c3 2747 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2748 lock_page(vmf->page);
82b0f8c3
JK
2749 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2750 vmf->address, &vmf->ptl);
2994302b 2751 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2752 unlock_page(vmf->page);
82b0f8c3 2753 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2754 put_page(vmf->page);
28766805 2755 return 0;
ab967d86 2756 }
a41b70d6 2757 put_page(vmf->page);
ee6a6457 2758 }
ba3c4ce6
HY
2759 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2760 if (total_map_swapcount == 1) {
6d0a07ed
AA
2761 /*
2762 * The page is all ours. Move it to
2763 * our anon_vma so the rmap code will
2764 * not search our parent or siblings.
2765 * Protected against the rmap code by
2766 * the page lock.
2767 */
a41b70d6 2768 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2769 }
a41b70d6 2770 unlock_page(vmf->page);
997dd98d
JK
2771 wp_page_reuse(vmf);
2772 return VM_FAULT_WRITE;
b009c024 2773 }
a41b70d6 2774 unlock_page(vmf->page);
ee6a6457 2775 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2776 (VM_WRITE|VM_SHARED))) {
a41b70d6 2777 return wp_page_shared(vmf);
1da177e4 2778 }
1da177e4
LT
2779
2780 /*
2781 * Ok, we need to copy. Oh, well..
2782 */
a41b70d6 2783 get_page(vmf->page);
28766805 2784
82b0f8c3 2785 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2786 return wp_page_copy(vmf);
1da177e4
LT
2787}
2788
97a89413 2789static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2790 unsigned long start_addr, unsigned long end_addr,
2791 struct zap_details *details)
2792{
f5cc4eef 2793 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2794}
2795
f808c13f 2796static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2797 struct zap_details *details)
2798{
2799 struct vm_area_struct *vma;
1da177e4
LT
2800 pgoff_t vba, vea, zba, zea;
2801
6b2dbba8 2802 vma_interval_tree_foreach(vma, root,
1da177e4 2803 details->first_index, details->last_index) {
1da177e4
LT
2804
2805 vba = vma->vm_pgoff;
d6e93217 2806 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2807 zba = details->first_index;
2808 if (zba < vba)
2809 zba = vba;
2810 zea = details->last_index;
2811 if (zea > vea)
2812 zea = vea;
2813
97a89413 2814 unmap_mapping_range_vma(vma,
1da177e4
LT
2815 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2816 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2817 details);
1da177e4
LT
2818 }
2819}
2820
977fbdcd
MW
2821/**
2822 * unmap_mapping_pages() - Unmap pages from processes.
2823 * @mapping: The address space containing pages to be unmapped.
2824 * @start: Index of first page to be unmapped.
2825 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2826 * @even_cows: Whether to unmap even private COWed pages.
2827 *
2828 * Unmap the pages in this address space from any userspace process which
2829 * has them mmaped. Generally, you want to remove COWed pages as well when
2830 * a file is being truncated, but not when invalidating pages from the page
2831 * cache.
2832 */
2833void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2834 pgoff_t nr, bool even_cows)
2835{
2836 struct zap_details details = { };
2837
2838 details.check_mapping = even_cows ? NULL : mapping;
2839 details.first_index = start;
2840 details.last_index = start + nr - 1;
2841 if (details.last_index < details.first_index)
2842 details.last_index = ULONG_MAX;
2843
2844 i_mmap_lock_write(mapping);
2845 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2846 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2847 i_mmap_unlock_write(mapping);
2848}
2849
1da177e4 2850/**
8a5f14a2 2851 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2852 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2853 * file.
2854 *
3d41088f 2855 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2856 * @holebegin: byte in first page to unmap, relative to the start of
2857 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2858 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2859 * must keep the partial page. In contrast, we must get rid of
2860 * partial pages.
2861 * @holelen: size of prospective hole in bytes. This will be rounded
2862 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2863 * end of the file.
2864 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2865 * but 0 when invalidating pagecache, don't throw away private data.
2866 */
2867void unmap_mapping_range(struct address_space *mapping,
2868 loff_t const holebegin, loff_t const holelen, int even_cows)
2869{
1da177e4
LT
2870 pgoff_t hba = holebegin >> PAGE_SHIFT;
2871 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2872
2873 /* Check for overflow. */
2874 if (sizeof(holelen) > sizeof(hlen)) {
2875 long long holeend =
2876 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2877 if (holeend & ~(long long)ULONG_MAX)
2878 hlen = ULONG_MAX - hba + 1;
2879 }
2880
977fbdcd 2881 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2882}
2883EXPORT_SYMBOL(unmap_mapping_range);
2884
1da177e4 2885/*
8f4e2101
HD
2886 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2887 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2888 * We return with pte unmapped and unlocked.
2889 *
2890 * We return with the mmap_sem locked or unlocked in the same cases
2891 * as does filemap_fault().
1da177e4 2892 */
2994302b 2893int do_swap_page(struct vm_fault *vmf)
1da177e4 2894{
82b0f8c3 2895 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2896 struct page *page = NULL, *swapcache;
00501b53 2897 struct mem_cgroup *memcg;
65500d23 2898 swp_entry_t entry;
1da177e4 2899 pte_t pte;
d065bd81 2900 int locked;
ad8c2ee8 2901 int exclusive = 0;
83c54070 2902 int ret = 0;
1da177e4 2903
eaf649eb 2904 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2905 goto out;
65500d23 2906
2994302b 2907 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2908 if (unlikely(non_swap_entry(entry))) {
2909 if (is_migration_entry(entry)) {
82b0f8c3
JK
2910 migration_entry_wait(vma->vm_mm, vmf->pmd,
2911 vmf->address);
5042db43
JG
2912 } else if (is_device_private_entry(entry)) {
2913 /*
2914 * For un-addressable device memory we call the pgmap
2915 * fault handler callback. The callback must migrate
2916 * the page back to some CPU accessible page.
2917 */
2918 ret = device_private_entry_fault(vma, vmf->address, entry,
2919 vmf->flags, vmf->pmd);
d1737fdb
AK
2920 } else if (is_hwpoison_entry(entry)) {
2921 ret = VM_FAULT_HWPOISON;
2922 } else {
2994302b 2923 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2924 ret = VM_FAULT_SIGBUS;
d1737fdb 2925 }
0697212a
CL
2926 goto out;
2927 }
0bcac06f
MK
2928
2929
0ff92245 2930 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2931 page = lookup_swap_cache(entry, vma, vmf->address);
2932 swapcache = page;
f8020772 2933
1da177e4 2934 if (!page) {
0bcac06f
MK
2935 struct swap_info_struct *si = swp_swap_info(entry);
2936
aa8d22a1
MK
2937 if (si->flags & SWP_SYNCHRONOUS_IO &&
2938 __swap_count(si, entry) == 1) {
0bcac06f 2939 /* skip swapcache */
e9e9b7ec
MK
2940 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2941 vmf->address);
0bcac06f
MK
2942 if (page) {
2943 __SetPageLocked(page);
2944 __SetPageSwapBacked(page);
2945 set_page_private(page, entry.val);
2946 lru_cache_add_anon(page);
2947 swap_readpage(page, true);
2948 }
aa8d22a1 2949 } else {
e9e9b7ec
MK
2950 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2951 vmf);
aa8d22a1 2952 swapcache = page;
0bcac06f
MK
2953 }
2954
1da177e4
LT
2955 if (!page) {
2956 /*
8f4e2101
HD
2957 * Back out if somebody else faulted in this pte
2958 * while we released the pte lock.
1da177e4 2959 */
82b0f8c3
JK
2960 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2961 vmf->address, &vmf->ptl);
2994302b 2962 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2963 ret = VM_FAULT_OOM;
0ff92245 2964 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2965 goto unlock;
1da177e4
LT
2966 }
2967
2968 /* Had to read the page from swap area: Major fault */
2969 ret = VM_FAULT_MAJOR;
f8891e5e 2970 count_vm_event(PGMAJFAULT);
2262185c 2971 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2972 } else if (PageHWPoison(page)) {
71f72525
WF
2973 /*
2974 * hwpoisoned dirty swapcache pages are kept for killing
2975 * owner processes (which may be unknown at hwpoison time)
2976 */
d1737fdb
AK
2977 ret = VM_FAULT_HWPOISON;
2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2979 goto out_release;
1da177e4
LT
2980 }
2981
82b0f8c3 2982 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2983
073e587e 2984 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2985 if (!locked) {
2986 ret |= VM_FAULT_RETRY;
2987 goto out_release;
2988 }
073e587e 2989
4969c119 2990 /*
31c4a3d3
HD
2991 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2992 * release the swapcache from under us. The page pin, and pte_same
2993 * test below, are not enough to exclude that. Even if it is still
2994 * swapcache, we need to check that the page's swap has not changed.
4969c119 2995 */
0bcac06f
MK
2996 if (unlikely((!PageSwapCache(page) ||
2997 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2998 goto out_page;
2999
82b0f8c3 3000 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3001 if (unlikely(!page)) {
3002 ret = VM_FAULT_OOM;
3003 page = swapcache;
cbf86cfe 3004 goto out_page;
5ad64688
HD
3005 }
3006
bae473a4
KS
3007 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3008 &memcg, false)) {
8a9f3ccd 3009 ret = VM_FAULT_OOM;
bc43f75c 3010 goto out_page;
8a9f3ccd
BS
3011 }
3012
1da177e4 3013 /*
8f4e2101 3014 * Back out if somebody else already faulted in this pte.
1da177e4 3015 */
82b0f8c3
JK
3016 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3017 &vmf->ptl);
2994302b 3018 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3019 goto out_nomap;
b8107480
KK
3020
3021 if (unlikely(!PageUptodate(page))) {
3022 ret = VM_FAULT_SIGBUS;
3023 goto out_nomap;
1da177e4
LT
3024 }
3025
8c7c6e34
KH
3026 /*
3027 * The page isn't present yet, go ahead with the fault.
3028 *
3029 * Be careful about the sequence of operations here.
3030 * To get its accounting right, reuse_swap_page() must be called
3031 * while the page is counted on swap but not yet in mapcount i.e.
3032 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3033 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3034 */
1da177e4 3035
bae473a4
KS
3036 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3037 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3038 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3039 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3040 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3041 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3042 ret |= VM_FAULT_WRITE;
d281ee61 3043 exclusive = RMAP_EXCLUSIVE;
1da177e4 3044 }
1da177e4 3045 flush_icache_page(vma, page);
2994302b 3046 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3047 pte = pte_mksoft_dirty(pte);
82b0f8c3 3048 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3049 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3050 vmf->orig_pte = pte;
0bcac06f
MK
3051
3052 /* ksm created a completely new copy */
3053 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3054 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3055 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3056 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
3057 } else {
3058 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3059 mem_cgroup_commit_charge(page, memcg, true, false);
3060 activate_page(page);
00501b53 3061 }
1da177e4 3062
c475a8ab 3063 swap_free(entry);
5ccc5aba
VD
3064 if (mem_cgroup_swap_full(page) ||
3065 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3066 try_to_free_swap(page);
c475a8ab 3067 unlock_page(page);
0bcac06f 3068 if (page != swapcache && swapcache) {
4969c119
AA
3069 /*
3070 * Hold the lock to avoid the swap entry to be reused
3071 * until we take the PT lock for the pte_same() check
3072 * (to avoid false positives from pte_same). For
3073 * further safety release the lock after the swap_free
3074 * so that the swap count won't change under a
3075 * parallel locked swapcache.
3076 */
3077 unlock_page(swapcache);
09cbfeaf 3078 put_page(swapcache);
4969c119 3079 }
c475a8ab 3080
82b0f8c3 3081 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3082 ret |= do_wp_page(vmf);
61469f1d
HD
3083 if (ret & VM_FAULT_ERROR)
3084 ret &= VM_FAULT_ERROR;
1da177e4
LT
3085 goto out;
3086 }
3087
3088 /* No need to invalidate - it was non-present before */
82b0f8c3 3089 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3090unlock:
82b0f8c3 3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3092out:
3093 return ret;
b8107480 3094out_nomap:
f627c2f5 3095 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3096 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3097out_page:
b8107480 3098 unlock_page(page);
4779cb31 3099out_release:
09cbfeaf 3100 put_page(page);
0bcac06f 3101 if (page != swapcache && swapcache) {
4969c119 3102 unlock_page(swapcache);
09cbfeaf 3103 put_page(swapcache);
4969c119 3104 }
65500d23 3105 return ret;
1da177e4
LT
3106}
3107
3108/*
8f4e2101
HD
3109 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3110 * but allow concurrent faults), and pte mapped but not yet locked.
3111 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3112 */
82b0f8c3 3113static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 3114{
82b0f8c3 3115 struct vm_area_struct *vma = vmf->vma;
00501b53 3116 struct mem_cgroup *memcg;
8f4e2101 3117 struct page *page;
6b31d595 3118 int ret = 0;
1da177e4 3119 pte_t entry;
1da177e4 3120
6b7339f4
KS
3121 /* File mapping without ->vm_ops ? */
3122 if (vma->vm_flags & VM_SHARED)
3123 return VM_FAULT_SIGBUS;
3124
7267ec00
KS
3125 /*
3126 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3127 * pte_offset_map() on pmds where a huge pmd might be created
3128 * from a different thread.
3129 *
3130 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3131 * parallel threads are excluded by other means.
3132 *
3133 * Here we only have down_read(mmap_sem).
3134 */
82b0f8c3 3135 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
3136 return VM_FAULT_OOM;
3137
3138 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3139 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3140 return 0;
3141
11ac5524 3142 /* Use the zero-page for reads */
82b0f8c3 3143 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3144 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3145 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3146 vma->vm_page_prot));
82b0f8c3
JK
3147 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3148 vmf->address, &vmf->ptl);
3149 if (!pte_none(*vmf->pte))
a13ea5b7 3150 goto unlock;
6b31d595
MH
3151 ret = check_stable_address_space(vma->vm_mm);
3152 if (ret)
3153 goto unlock;
6b251fc9
AA
3154 /* Deliver the page fault to userland, check inside PT lock */
3155 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3156 pte_unmap_unlock(vmf->pte, vmf->ptl);
3157 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3158 }
a13ea5b7
HD
3159 goto setpte;
3160 }
3161
557ed1fa 3162 /* Allocate our own private page. */
557ed1fa
NP
3163 if (unlikely(anon_vma_prepare(vma)))
3164 goto oom;
82b0f8c3 3165 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3166 if (!page)
3167 goto oom;
eb3c24f3 3168
bae473a4 3169 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
3170 goto oom_free_page;
3171
52f37629
MK
3172 /*
3173 * The memory barrier inside __SetPageUptodate makes sure that
3174 * preceeding stores to the page contents become visible before
3175 * the set_pte_at() write.
3176 */
0ed361de 3177 __SetPageUptodate(page);
8f4e2101 3178
557ed1fa 3179 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3180 if (vma->vm_flags & VM_WRITE)
3181 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3182
82b0f8c3
JK
3183 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3184 &vmf->ptl);
3185 if (!pte_none(*vmf->pte))
557ed1fa 3186 goto release;
9ba69294 3187
6b31d595
MH
3188 ret = check_stable_address_space(vma->vm_mm);
3189 if (ret)
3190 goto release;
3191
6b251fc9
AA
3192 /* Deliver the page fault to userland, check inside PT lock */
3193 if (userfaultfd_missing(vma)) {
82b0f8c3 3194 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3195 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3196 put_page(page);
82b0f8c3 3197 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3198 }
3199
bae473a4 3200 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3201 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3202 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3203 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3204setpte:
82b0f8c3 3205 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3206
3207 /* No need to invalidate - it was non-present before */
82b0f8c3 3208 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3209unlock:
82b0f8c3 3210 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3211 return ret;
8f4e2101 3212release:
f627c2f5 3213 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3214 put_page(page);
8f4e2101 3215 goto unlock;
8a9f3ccd 3216oom_free_page:
09cbfeaf 3217 put_page(page);
65500d23 3218oom:
1da177e4
LT
3219 return VM_FAULT_OOM;
3220}
3221
9a95f3cf
PC
3222/*
3223 * The mmap_sem must have been held on entry, and may have been
3224 * released depending on flags and vma->vm_ops->fault() return value.
3225 * See filemap_fault() and __lock_page_retry().
3226 */
936ca80d 3227static int __do_fault(struct vm_fault *vmf)
7eae74af 3228{
82b0f8c3 3229 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3230 int ret;
3231
11bac800 3232 ret = vma->vm_ops->fault(vmf);
3917048d 3233 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3234 VM_FAULT_DONE_COW)))
bc2466e4 3235 return ret;
7eae74af 3236
667240e0 3237 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3238 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3239 unlock_page(vmf->page);
3240 put_page(vmf->page);
936ca80d 3241 vmf->page = NULL;
7eae74af
KS
3242 return VM_FAULT_HWPOISON;
3243 }
3244
3245 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3246 lock_page(vmf->page);
7eae74af 3247 else
667240e0 3248 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3249
7eae74af
KS
3250 return ret;
3251}
3252
d0f0931d
RZ
3253/*
3254 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3255 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3256 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3257 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3258 */
3259static int pmd_devmap_trans_unstable(pmd_t *pmd)
3260{
3261 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3262}
3263
82b0f8c3 3264static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3265{
82b0f8c3 3266 struct vm_area_struct *vma = vmf->vma;
7267ec00 3267
82b0f8c3 3268 if (!pmd_none(*vmf->pmd))
7267ec00 3269 goto map_pte;
82b0f8c3
JK
3270 if (vmf->prealloc_pte) {
3271 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3272 if (unlikely(!pmd_none(*vmf->pmd))) {
3273 spin_unlock(vmf->ptl);
7267ec00
KS
3274 goto map_pte;
3275 }
3276
c4812909 3277 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3278 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3279 spin_unlock(vmf->ptl);
7f2b6ce8 3280 vmf->prealloc_pte = NULL;
82b0f8c3 3281 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3282 return VM_FAULT_OOM;
3283 }
3284map_pte:
3285 /*
3286 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3287 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3288 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3289 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3290 * running immediately after a huge pmd fault in a different thread of
3291 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3292 * All we have to ensure is that it is a regular pmd that we can walk
3293 * with pte_offset_map() and we can do that through an atomic read in
3294 * C, which is what pmd_trans_unstable() provides.
7267ec00 3295 */
d0f0931d 3296 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3297 return VM_FAULT_NOPAGE;
3298
d0f0931d
RZ
3299 /*
3300 * At this point we know that our vmf->pmd points to a page of ptes
3301 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3302 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3303 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3304 * be valid and we will re-check to make sure the vmf->pte isn't
3305 * pte_none() under vmf->ptl protection when we return to
3306 * alloc_set_pte().
3307 */
82b0f8c3
JK
3308 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3309 &vmf->ptl);
7267ec00
KS
3310 return 0;
3311}
3312
e496cf3d 3313#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3314
3315#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3316static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3317 unsigned long haddr)
3318{
3319 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3320 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3321 return false;
3322 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3323 return false;
3324 return true;
3325}
3326
82b0f8c3 3327static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3328{
82b0f8c3 3329 struct vm_area_struct *vma = vmf->vma;
953c66c2 3330
82b0f8c3 3331 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3332 /*
3333 * We are going to consume the prealloc table,
3334 * count that as nr_ptes.
3335 */
c4812909 3336 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3337 vmf->prealloc_pte = NULL;
953c66c2
AK
3338}
3339
82b0f8c3 3340static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3341{
82b0f8c3
JK
3342 struct vm_area_struct *vma = vmf->vma;
3343 bool write = vmf->flags & FAULT_FLAG_WRITE;
3344 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3345 pmd_t entry;
3346 int i, ret;
3347
3348 if (!transhuge_vma_suitable(vma, haddr))
3349 return VM_FAULT_FALLBACK;
3350
3351 ret = VM_FAULT_FALLBACK;
3352 page = compound_head(page);
3353
953c66c2
AK
3354 /*
3355 * Archs like ppc64 need additonal space to store information
3356 * related to pte entry. Use the preallocated table for that.
3357 */
82b0f8c3
JK
3358 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3359 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3360 if (!vmf->prealloc_pte)
953c66c2
AK
3361 return VM_FAULT_OOM;
3362 smp_wmb(); /* See comment in __pte_alloc() */
3363 }
3364
82b0f8c3
JK
3365 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3366 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3367 goto out;
3368
3369 for (i = 0; i < HPAGE_PMD_NR; i++)
3370 flush_icache_page(vma, page + i);
3371
3372 entry = mk_huge_pmd(page, vma->vm_page_prot);
3373 if (write)
f55e1014 3374 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459
KS
3375
3376 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3377 page_add_file_rmap(page, true);
953c66c2
AK
3378 /*
3379 * deposit and withdraw with pmd lock held
3380 */
3381 if (arch_needs_pgtable_deposit())
82b0f8c3 3382 deposit_prealloc_pte(vmf);
10102459 3383
82b0f8c3 3384 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3385
82b0f8c3 3386 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3387
3388 /* fault is handled */
3389 ret = 0;
95ecedcd 3390 count_vm_event(THP_FILE_MAPPED);
10102459 3391out:
82b0f8c3 3392 spin_unlock(vmf->ptl);
10102459
KS
3393 return ret;
3394}
3395#else
82b0f8c3 3396static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3397{
3398 BUILD_BUG();
3399 return 0;
3400}
3401#endif
3402
8c6e50b0 3403/**
7267ec00
KS
3404 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3405 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3406 *
82b0f8c3 3407 * @vmf: fault environment
7267ec00 3408 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3409 * @page: page to map
8c6e50b0 3410 *
82b0f8c3
JK
3411 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3412 * return.
8c6e50b0
KS
3413 *
3414 * Target users are page handler itself and implementations of
3415 * vm_ops->map_pages.
3416 */
82b0f8c3 3417int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3418 struct page *page)
3bb97794 3419{
82b0f8c3
JK
3420 struct vm_area_struct *vma = vmf->vma;
3421 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3422 pte_t entry;
10102459
KS
3423 int ret;
3424
82b0f8c3 3425 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3426 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3427 /* THP on COW? */
3428 VM_BUG_ON_PAGE(memcg, page);
3429
82b0f8c3 3430 ret = do_set_pmd(vmf, page);
10102459 3431 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3432 return ret;
10102459 3433 }
3bb97794 3434
82b0f8c3
JK
3435 if (!vmf->pte) {
3436 ret = pte_alloc_one_map(vmf);
7267ec00 3437 if (ret)
b0b9b3df 3438 return ret;
7267ec00
KS
3439 }
3440
3441 /* Re-check under ptl */
b0b9b3df
HD
3442 if (unlikely(!pte_none(*vmf->pte)))
3443 return VM_FAULT_NOPAGE;
7267ec00 3444
3bb97794
KS
3445 flush_icache_page(vma, page);
3446 entry = mk_pte(page, vma->vm_page_prot);
3447 if (write)
3448 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3449 /* copy-on-write page */
3450 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3451 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3452 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3453 mem_cgroup_commit_charge(page, memcg, false, false);
3454 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3455 } else {
eca56ff9 3456 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3457 page_add_file_rmap(page, false);
3bb97794 3458 }
82b0f8c3 3459 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3460
3461 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3462 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3463
b0b9b3df 3464 return 0;
3bb97794
KS
3465}
3466
9118c0cb
JK
3467
3468/**
3469 * finish_fault - finish page fault once we have prepared the page to fault
3470 *
3471 * @vmf: structure describing the fault
3472 *
3473 * This function handles all that is needed to finish a page fault once the
3474 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3475 * given page, adds reverse page mapping, handles memcg charges and LRU
3476 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3477 * error.
3478 *
3479 * The function expects the page to be locked and on success it consumes a
3480 * reference of a page being mapped (for the PTE which maps it).
3481 */
3482int finish_fault(struct vm_fault *vmf)
3483{
3484 struct page *page;
6b31d595 3485 int ret = 0;
9118c0cb
JK
3486
3487 /* Did we COW the page? */
3488 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3489 !(vmf->vma->vm_flags & VM_SHARED))
3490 page = vmf->cow_page;
3491 else
3492 page = vmf->page;
6b31d595
MH
3493
3494 /*
3495 * check even for read faults because we might have lost our CoWed
3496 * page
3497 */
3498 if (!(vmf->vma->vm_flags & VM_SHARED))
3499 ret = check_stable_address_space(vmf->vma->vm_mm);
3500 if (!ret)
3501 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3502 if (vmf->pte)
3503 pte_unmap_unlock(vmf->pte, vmf->ptl);
3504 return ret;
3505}
3506
3a91053a
KS
3507static unsigned long fault_around_bytes __read_mostly =
3508 rounddown_pow_of_two(65536);
a9b0f861 3509
a9b0f861
KS
3510#ifdef CONFIG_DEBUG_FS
3511static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3512{
a9b0f861 3513 *val = fault_around_bytes;
1592eef0
KS
3514 return 0;
3515}
3516
b4903d6e 3517/*
da391d64
WK
3518 * fault_around_bytes must be rounded down to the nearest page order as it's
3519 * what do_fault_around() expects to see.
b4903d6e 3520 */
a9b0f861 3521static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3522{
a9b0f861 3523 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3524 return -EINVAL;
b4903d6e
AR
3525 if (val > PAGE_SIZE)
3526 fault_around_bytes = rounddown_pow_of_two(val);
3527 else
3528 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3529 return 0;
3530}
0a1345f8 3531DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3532 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3533
3534static int __init fault_around_debugfs(void)
3535{
3536 void *ret;
3537
0a1345f8 3538 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3539 &fault_around_bytes_fops);
1592eef0 3540 if (!ret)
a9b0f861 3541 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3542 return 0;
3543}
3544late_initcall(fault_around_debugfs);
1592eef0 3545#endif
8c6e50b0 3546
1fdb412b
KS
3547/*
3548 * do_fault_around() tries to map few pages around the fault address. The hope
3549 * is that the pages will be needed soon and this will lower the number of
3550 * faults to handle.
3551 *
3552 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3553 * not ready to be mapped: not up-to-date, locked, etc.
3554 *
3555 * This function is called with the page table lock taken. In the split ptlock
3556 * case the page table lock only protects only those entries which belong to
3557 * the page table corresponding to the fault address.
3558 *
3559 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3560 * only once.
3561 *
da391d64
WK
3562 * fault_around_bytes defines how many bytes we'll try to map.
3563 * do_fault_around() expects it to be set to a power of two less than or equal
3564 * to PTRS_PER_PTE.
1fdb412b 3565 *
da391d64
WK
3566 * The virtual address of the area that we map is naturally aligned to
3567 * fault_around_bytes rounded down to the machine page size
3568 * (and therefore to page order). This way it's easier to guarantee
3569 * that we don't cross page table boundaries.
1fdb412b 3570 */
0721ec8b 3571static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3572{
82b0f8c3 3573 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3574 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3575 pgoff_t end_pgoff;
7267ec00 3576 int off, ret = 0;
8c6e50b0 3577
4db0c3c2 3578 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3579 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3580
82b0f8c3
JK
3581 vmf->address = max(address & mask, vmf->vma->vm_start);
3582 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3583 start_pgoff -= off;
8c6e50b0
KS
3584
3585 /*
da391d64
WK
3586 * end_pgoff is either the end of the page table, the end of
3587 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3588 */
bae473a4 3589 end_pgoff = start_pgoff -
82b0f8c3 3590 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3591 PTRS_PER_PTE - 1;
82b0f8c3 3592 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3593 start_pgoff + nr_pages - 1);
8c6e50b0 3594
82b0f8c3
JK
3595 if (pmd_none(*vmf->pmd)) {
3596 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3597 vmf->address);
3598 if (!vmf->prealloc_pte)
c5f88bd2 3599 goto out;
7267ec00 3600 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3601 }
3602
82b0f8c3 3603 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3604
7267ec00 3605 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3606 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3607 ret = VM_FAULT_NOPAGE;
3608 goto out;
3609 }
3610
3611 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3612 if (!vmf->pte)
7267ec00
KS
3613 goto out;
3614
3615 /* check if the page fault is solved */
82b0f8c3
JK
3616 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3617 if (!pte_none(*vmf->pte))
7267ec00 3618 ret = VM_FAULT_NOPAGE;
82b0f8c3 3619 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3620out:
82b0f8c3
JK
3621 vmf->address = address;
3622 vmf->pte = NULL;
7267ec00 3623 return ret;
8c6e50b0
KS
3624}
3625
0721ec8b 3626static int do_read_fault(struct vm_fault *vmf)
e655fb29 3627{
82b0f8c3 3628 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3629 int ret = 0;
3630
3631 /*
3632 * Let's call ->map_pages() first and use ->fault() as fallback
3633 * if page by the offset is not ready to be mapped (cold cache or
3634 * something).
3635 */
9b4bdd2f 3636 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3637 ret = do_fault_around(vmf);
7267ec00
KS
3638 if (ret)
3639 return ret;
8c6e50b0 3640 }
e655fb29 3641
936ca80d 3642 ret = __do_fault(vmf);
e655fb29
KS
3643 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3644 return ret;
3645
9118c0cb 3646 ret |= finish_fault(vmf);
936ca80d 3647 unlock_page(vmf->page);
7267ec00 3648 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3649 put_page(vmf->page);
e655fb29
KS
3650 return ret;
3651}
3652
0721ec8b 3653static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3654{
82b0f8c3 3655 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3656 int ret;
3657
3658 if (unlikely(anon_vma_prepare(vma)))
3659 return VM_FAULT_OOM;
3660
936ca80d
JK
3661 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3662 if (!vmf->cow_page)
ec47c3b9
KS
3663 return VM_FAULT_OOM;
3664
936ca80d 3665 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3666 &vmf->memcg, false)) {
936ca80d 3667 put_page(vmf->cow_page);
ec47c3b9
KS
3668 return VM_FAULT_OOM;
3669 }
3670
936ca80d 3671 ret = __do_fault(vmf);
ec47c3b9
KS
3672 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3673 goto uncharge_out;
3917048d
JK
3674 if (ret & VM_FAULT_DONE_COW)
3675 return ret;
ec47c3b9 3676
b1aa812b 3677 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3678 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3679
9118c0cb 3680 ret |= finish_fault(vmf);
b1aa812b
JK
3681 unlock_page(vmf->page);
3682 put_page(vmf->page);
7267ec00
KS
3683 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3684 goto uncharge_out;
ec47c3b9
KS
3685 return ret;
3686uncharge_out:
3917048d 3687 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3688 put_page(vmf->cow_page);
ec47c3b9
KS
3689 return ret;
3690}
3691
0721ec8b 3692static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3693{
82b0f8c3 3694 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3695 int ret, tmp;
1d65f86d 3696
936ca80d 3697 ret = __do_fault(vmf);
7eae74af 3698 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3699 return ret;
1da177e4
LT
3700
3701 /*
f0c6d4d2
KS
3702 * Check if the backing address space wants to know that the page is
3703 * about to become writable
1da177e4 3704 */
fb09a464 3705 if (vma->vm_ops->page_mkwrite) {
936ca80d 3706 unlock_page(vmf->page);
38b8cb7f 3707 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3708 if (unlikely(!tmp ||
3709 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3710 put_page(vmf->page);
fb09a464 3711 return tmp;
4294621f 3712 }
fb09a464
KS
3713 }
3714
9118c0cb 3715 ret |= finish_fault(vmf);
7267ec00
KS
3716 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3717 VM_FAULT_RETRY))) {
936ca80d
JK
3718 unlock_page(vmf->page);
3719 put_page(vmf->page);
f0c6d4d2 3720 return ret;
1da177e4 3721 }
b827e496 3722
97ba0c2b 3723 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3724 return ret;
54cb8821 3725}
d00806b1 3726
9a95f3cf
PC
3727/*
3728 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3729 * but allow concurrent faults).
3730 * The mmap_sem may have been released depending on flags and our
3731 * return value. See filemap_fault() and __lock_page_or_retry().
3732 */
82b0f8c3 3733static int do_fault(struct vm_fault *vmf)
54cb8821 3734{
82b0f8c3 3735 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3736 int ret;
54cb8821 3737
6b7339f4
KS
3738 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3739 if (!vma->vm_ops->fault)
b0b9b3df
HD
3740 ret = VM_FAULT_SIGBUS;
3741 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3742 ret = do_read_fault(vmf);
3743 else if (!(vma->vm_flags & VM_SHARED))
3744 ret = do_cow_fault(vmf);
3745 else
3746 ret = do_shared_fault(vmf);
3747
3748 /* preallocated pagetable is unused: free it */
3749 if (vmf->prealloc_pte) {
3750 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3751 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3752 }
3753 return ret;
54cb8821
NP
3754}
3755
b19a9939 3756static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3757 unsigned long addr, int page_nid,
3758 int *flags)
9532fec1
MG
3759{
3760 get_page(page);
3761
3762 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3763 if (page_nid == numa_node_id()) {
9532fec1 3764 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3765 *flags |= TNF_FAULT_LOCAL;
3766 }
9532fec1
MG
3767
3768 return mpol_misplaced(page, vma, addr);
3769}
3770
2994302b 3771static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3772{
82b0f8c3 3773 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3774 struct page *page = NULL;
8191acbd 3775 int page_nid = -1;
90572890 3776 int last_cpupid;
cbee9f88 3777 int target_nid;
b8593bfd 3778 bool migrated = false;
cee216a6 3779 pte_t pte;
288bc549 3780 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3781 int flags = 0;
d10e63f2
MG
3782
3783 /*
166f61b9
TH
3784 * The "pte" at this point cannot be used safely without
3785 * validation through pte_unmap_same(). It's of NUMA type but
3786 * the pfn may be screwed if the read is non atomic.
166f61b9 3787 */
82b0f8c3
JK
3788 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3789 spin_lock(vmf->ptl);
cee216a6 3790 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3791 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3792 goto out;
3793 }
3794
cee216a6
AK
3795 /*
3796 * Make it present again, Depending on how arch implementes non
3797 * accessible ptes, some can allow access by kernel mode.
3798 */
3799 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3800 pte = pte_modify(pte, vma->vm_page_prot);
3801 pte = pte_mkyoung(pte);
b191f9b1
MG
3802 if (was_writable)
3803 pte = pte_mkwrite(pte);
cee216a6 3804 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3805 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3806
82b0f8c3 3807 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3808 if (!page) {
82b0f8c3 3809 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3810 return 0;
3811 }
3812
e81c4802
KS
3813 /* TODO: handle PTE-mapped THP */
3814 if (PageCompound(page)) {
82b0f8c3 3815 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3816 return 0;
3817 }
3818
6688cc05 3819 /*
bea66fbd
MG
3820 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3821 * much anyway since they can be in shared cache state. This misses
3822 * the case where a mapping is writable but the process never writes
3823 * to it but pte_write gets cleared during protection updates and
3824 * pte_dirty has unpredictable behaviour between PTE scan updates,
3825 * background writeback, dirty balancing and application behaviour.
6688cc05 3826 */
d59dc7bc 3827 if (!pte_write(pte))
6688cc05
PZ
3828 flags |= TNF_NO_GROUP;
3829
dabe1d99
RR
3830 /*
3831 * Flag if the page is shared between multiple address spaces. This
3832 * is later used when determining whether to group tasks together
3833 */
3834 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3835 flags |= TNF_SHARED;
3836
90572890 3837 last_cpupid = page_cpupid_last(page);
8191acbd 3838 page_nid = page_to_nid(page);
82b0f8c3 3839 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3840 &flags);
82b0f8c3 3841 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3842 if (target_nid == -1) {
4daae3b4
MG
3843 put_page(page);
3844 goto out;
3845 }
3846
3847 /* Migrate to the requested node */
1bc115d8 3848 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3849 if (migrated) {
8191acbd 3850 page_nid = target_nid;
6688cc05 3851 flags |= TNF_MIGRATED;
074c2381
MG
3852 } else
3853 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3854
3855out:
8191acbd 3856 if (page_nid != -1)
6688cc05 3857 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3858 return 0;
3859}
3860
91a90140 3861static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3862{
f4200391 3863 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3864 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3865 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3866 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3867 return VM_FAULT_FALLBACK;
3868}
3869
183f24aa
GU
3870/* `inline' is required to avoid gcc 4.1.2 build error */
3871static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3872{
82b0f8c3
JK
3873 if (vma_is_anonymous(vmf->vma))
3874 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3875 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3876 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3877
3878 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3879 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3880 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3881
b96375f7
MW
3882 return VM_FAULT_FALLBACK;
3883}
3884
38e08854
LS
3885static inline bool vma_is_accessible(struct vm_area_struct *vma)
3886{
3887 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3888}
3889
a00cc7d9
MW
3890static int create_huge_pud(struct vm_fault *vmf)
3891{
3892#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3893 /* No support for anonymous transparent PUD pages yet */
3894 if (vma_is_anonymous(vmf->vma))
3895 return VM_FAULT_FALLBACK;
3896 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3897 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3898#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3899 return VM_FAULT_FALLBACK;
3900}
3901
3902static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3903{
3904#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3905 /* No support for anonymous transparent PUD pages yet */
3906 if (vma_is_anonymous(vmf->vma))
3907 return VM_FAULT_FALLBACK;
3908 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3909 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3910#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3911 return VM_FAULT_FALLBACK;
3912}
3913
1da177e4
LT
3914/*
3915 * These routines also need to handle stuff like marking pages dirty
3916 * and/or accessed for architectures that don't do it in hardware (most
3917 * RISC architectures). The early dirtying is also good on the i386.
3918 *
3919 * There is also a hook called "update_mmu_cache()" that architectures
3920 * with external mmu caches can use to update those (ie the Sparc or
3921 * PowerPC hashed page tables that act as extended TLBs).
3922 *
7267ec00
KS
3923 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3924 * concurrent faults).
9a95f3cf 3925 *
7267ec00
KS
3926 * The mmap_sem may have been released depending on flags and our return value.
3927 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3928 */
82b0f8c3 3929static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3930{
3931 pte_t entry;
3932
82b0f8c3 3933 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3934 /*
3935 * Leave __pte_alloc() until later: because vm_ops->fault may
3936 * want to allocate huge page, and if we expose page table
3937 * for an instant, it will be difficult to retract from
3938 * concurrent faults and from rmap lookups.
3939 */
82b0f8c3 3940 vmf->pte = NULL;
7267ec00
KS
3941 } else {
3942 /* See comment in pte_alloc_one_map() */
d0f0931d 3943 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3944 return 0;
3945 /*
3946 * A regular pmd is established and it can't morph into a huge
3947 * pmd from under us anymore at this point because we hold the
3948 * mmap_sem read mode and khugepaged takes it in write mode.
3949 * So now it's safe to run pte_offset_map().
3950 */
82b0f8c3 3951 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3952 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3953
3954 /*
3955 * some architectures can have larger ptes than wordsize,
3956 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3957 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3958 * accesses. The code below just needs a consistent view
3959 * for the ifs and we later double check anyway with the
7267ec00
KS
3960 * ptl lock held. So here a barrier will do.
3961 */
3962 barrier();
2994302b 3963 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3964 pte_unmap(vmf->pte);
3965 vmf->pte = NULL;
65500d23 3966 }
1da177e4
LT
3967 }
3968
82b0f8c3
JK
3969 if (!vmf->pte) {
3970 if (vma_is_anonymous(vmf->vma))
3971 return do_anonymous_page(vmf);
7267ec00 3972 else
82b0f8c3 3973 return do_fault(vmf);
7267ec00
KS
3974 }
3975
2994302b
JK
3976 if (!pte_present(vmf->orig_pte))
3977 return do_swap_page(vmf);
7267ec00 3978
2994302b
JK
3979 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3980 return do_numa_page(vmf);
d10e63f2 3981
82b0f8c3
JK
3982 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3983 spin_lock(vmf->ptl);
2994302b 3984 entry = vmf->orig_pte;
82b0f8c3 3985 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3986 goto unlock;
82b0f8c3 3987 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3988 if (!pte_write(entry))
2994302b 3989 return do_wp_page(vmf);
1da177e4
LT
3990 entry = pte_mkdirty(entry);
3991 }
3992 entry = pte_mkyoung(entry);
82b0f8c3
JK
3993 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3994 vmf->flags & FAULT_FLAG_WRITE)) {
3995 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3996 } else {
3997 /*
3998 * This is needed only for protection faults but the arch code
3999 * is not yet telling us if this is a protection fault or not.
4000 * This still avoids useless tlb flushes for .text page faults
4001 * with threads.
4002 */
82b0f8c3
JK
4003 if (vmf->flags & FAULT_FLAG_WRITE)
4004 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4005 }
8f4e2101 4006unlock:
82b0f8c3 4007 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4008 return 0;
1da177e4
LT
4009}
4010
4011/*
4012 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
4013 *
4014 * The mmap_sem may have been released depending on flags and our
4015 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4016 */
dcddffd4
KS
4017static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4018 unsigned int flags)
1da177e4 4019{
82b0f8c3 4020 struct vm_fault vmf = {
bae473a4 4021 .vma = vma,
1a29d85e 4022 .address = address & PAGE_MASK,
bae473a4 4023 .flags = flags,
0721ec8b 4024 .pgoff = linear_page_index(vma, address),
667240e0 4025 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4026 };
fde26bed 4027 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4028 struct mm_struct *mm = vma->vm_mm;
1da177e4 4029 pgd_t *pgd;
c2febafc 4030 p4d_t *p4d;
a2d58167 4031 int ret;
1da177e4 4032
1da177e4 4033 pgd = pgd_offset(mm, address);
c2febafc
KS
4034 p4d = p4d_alloc(mm, pgd, address);
4035 if (!p4d)
4036 return VM_FAULT_OOM;
a00cc7d9 4037
c2febafc 4038 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4039 if (!vmf.pud)
c74df32c 4040 return VM_FAULT_OOM;
a00cc7d9 4041 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4042 ret = create_huge_pud(&vmf);
4043 if (!(ret & VM_FAULT_FALLBACK))
4044 return ret;
4045 } else {
4046 pud_t orig_pud = *vmf.pud;
4047
4048 barrier();
4049 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4050
a00cc7d9
MW
4051 /* NUMA case for anonymous PUDs would go here */
4052
f6f37321 4053 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4054 ret = wp_huge_pud(&vmf, orig_pud);
4055 if (!(ret & VM_FAULT_FALLBACK))
4056 return ret;
4057 } else {
4058 huge_pud_set_accessed(&vmf, orig_pud);
4059 return 0;
4060 }
4061 }
4062 }
4063
4064 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4065 if (!vmf.pmd)
c74df32c 4066 return VM_FAULT_OOM;
82b0f8c3 4067 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 4068 ret = create_huge_pmd(&vmf);
c0292554
KS
4069 if (!(ret & VM_FAULT_FALLBACK))
4070 return ret;
71e3aac0 4071 } else {
82b0f8c3 4072 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4073
71e3aac0 4074 barrier();
84c3fc4e
ZY
4075 if (unlikely(is_swap_pmd(orig_pmd))) {
4076 VM_BUG_ON(thp_migration_supported() &&
4077 !is_pmd_migration_entry(orig_pmd));
4078 if (is_pmd_migration_entry(orig_pmd))
4079 pmd_migration_entry_wait(mm, vmf.pmd);
4080 return 0;
4081 }
5c7fb56e 4082 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4083 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4084 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4085
f6f37321 4086 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4087 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4088 if (!(ret & VM_FAULT_FALLBACK))
4089 return ret;
a1dd450b 4090 } else {
82b0f8c3 4091 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4092 return 0;
1f1d06c3 4093 }
71e3aac0
AA
4094 }
4095 }
4096
82b0f8c3 4097 return handle_pte_fault(&vmf);
1da177e4
LT
4098}
4099
9a95f3cf
PC
4100/*
4101 * By the time we get here, we already hold the mm semaphore
4102 *
4103 * The mmap_sem may have been released depending on flags and our
4104 * return value. See filemap_fault() and __lock_page_or_retry().
4105 */
dcddffd4
KS
4106int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4107 unsigned int flags)
519e5247
JW
4108{
4109 int ret;
4110
4111 __set_current_state(TASK_RUNNING);
4112
4113 count_vm_event(PGFAULT);
2262185c 4114 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4115
4116 /* do counter updates before entering really critical section. */
4117 check_sync_rss_stat(current);
4118
de0c799b
LD
4119 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4120 flags & FAULT_FLAG_INSTRUCTION,
4121 flags & FAULT_FLAG_REMOTE))
4122 return VM_FAULT_SIGSEGV;
4123
519e5247
JW
4124 /*
4125 * Enable the memcg OOM handling for faults triggered in user
4126 * space. Kernel faults are handled more gracefully.
4127 */
4128 if (flags & FAULT_FLAG_USER)
49426420 4129 mem_cgroup_oom_enable();
519e5247 4130
bae473a4
KS
4131 if (unlikely(is_vm_hugetlb_page(vma)))
4132 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4133 else
4134 ret = __handle_mm_fault(vma, address, flags);
519e5247 4135
49426420
JW
4136 if (flags & FAULT_FLAG_USER) {
4137 mem_cgroup_oom_disable();
166f61b9
TH
4138 /*
4139 * The task may have entered a memcg OOM situation but
4140 * if the allocation error was handled gracefully (no
4141 * VM_FAULT_OOM), there is no need to kill anything.
4142 * Just clean up the OOM state peacefully.
4143 */
4144 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4145 mem_cgroup_oom_synchronize(false);
49426420 4146 }
3812c8c8 4147
519e5247
JW
4148 return ret;
4149}
e1d6d01a 4150EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4151
90eceff1
KS
4152#ifndef __PAGETABLE_P4D_FOLDED
4153/*
4154 * Allocate p4d page table.
4155 * We've already handled the fast-path in-line.
4156 */
4157int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4158{
4159 p4d_t *new = p4d_alloc_one(mm, address);
4160 if (!new)
4161 return -ENOMEM;
4162
4163 smp_wmb(); /* See comment in __pte_alloc */
4164
4165 spin_lock(&mm->page_table_lock);
4166 if (pgd_present(*pgd)) /* Another has populated it */
4167 p4d_free(mm, new);
4168 else
4169 pgd_populate(mm, pgd, new);
4170 spin_unlock(&mm->page_table_lock);
4171 return 0;
4172}
4173#endif /* __PAGETABLE_P4D_FOLDED */
4174
1da177e4
LT
4175#ifndef __PAGETABLE_PUD_FOLDED
4176/*
4177 * Allocate page upper directory.
872fec16 4178 * We've already handled the fast-path in-line.
1da177e4 4179 */
c2febafc 4180int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4181{
c74df32c
HD
4182 pud_t *new = pud_alloc_one(mm, address);
4183 if (!new)
1bb3630e 4184 return -ENOMEM;
1da177e4 4185
362a61ad
NP
4186 smp_wmb(); /* See comment in __pte_alloc */
4187
872fec16 4188 spin_lock(&mm->page_table_lock);
c2febafc 4189#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4190 if (!p4d_present(*p4d)) {
4191 mm_inc_nr_puds(mm);
c2febafc 4192 p4d_populate(mm, p4d, new);
b4e98d9a 4193 } else /* Another has populated it */
5e541973 4194 pud_free(mm, new);
b4e98d9a
KS
4195#else
4196 if (!pgd_present(*p4d)) {
4197 mm_inc_nr_puds(mm);
c2febafc 4198 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4199 } else /* Another has populated it */
4200 pud_free(mm, new);
c2febafc 4201#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4202 spin_unlock(&mm->page_table_lock);
1bb3630e 4203 return 0;
1da177e4
LT
4204}
4205#endif /* __PAGETABLE_PUD_FOLDED */
4206
4207#ifndef __PAGETABLE_PMD_FOLDED
4208/*
4209 * Allocate page middle directory.
872fec16 4210 * We've already handled the fast-path in-line.
1da177e4 4211 */
1bb3630e 4212int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4213{
a00cc7d9 4214 spinlock_t *ptl;
c74df32c
HD
4215 pmd_t *new = pmd_alloc_one(mm, address);
4216 if (!new)
1bb3630e 4217 return -ENOMEM;
1da177e4 4218
362a61ad
NP
4219 smp_wmb(); /* See comment in __pte_alloc */
4220
a00cc7d9 4221 ptl = pud_lock(mm, pud);
1da177e4 4222#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4223 if (!pud_present(*pud)) {
4224 mm_inc_nr_pmds(mm);
1bb3630e 4225 pud_populate(mm, pud, new);
dc6c9a35 4226 } else /* Another has populated it */
5e541973 4227 pmd_free(mm, new);
dc6c9a35
KS
4228#else
4229 if (!pgd_present(*pud)) {
4230 mm_inc_nr_pmds(mm);
1bb3630e 4231 pgd_populate(mm, pud, new);
dc6c9a35
KS
4232 } else /* Another has populated it */
4233 pmd_free(mm, new);
1da177e4 4234#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4235 spin_unlock(ptl);
1bb3630e 4236 return 0;
e0f39591 4237}
1da177e4
LT
4238#endif /* __PAGETABLE_PMD_FOLDED */
4239
09796395 4240static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4241 unsigned long *start, unsigned long *end,
4242 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4243{
4244 pgd_t *pgd;
c2febafc 4245 p4d_t *p4d;
f8ad0f49
JW
4246 pud_t *pud;
4247 pmd_t *pmd;
4248 pte_t *ptep;
4249
4250 pgd = pgd_offset(mm, address);
4251 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4252 goto out;
4253
c2febafc
KS
4254 p4d = p4d_offset(pgd, address);
4255 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4256 goto out;
4257
4258 pud = pud_offset(p4d, address);
f8ad0f49
JW
4259 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4260 goto out;
4261
4262 pmd = pmd_offset(pud, address);
f66055ab 4263 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4264
09796395
RZ
4265 if (pmd_huge(*pmd)) {
4266 if (!pmdpp)
4267 goto out;
4268
a4d1a885
JG
4269 if (start && end) {
4270 *start = address & PMD_MASK;
4271 *end = *start + PMD_SIZE;
4272 mmu_notifier_invalidate_range_start(mm, *start, *end);
4273 }
09796395
RZ
4274 *ptlp = pmd_lock(mm, pmd);
4275 if (pmd_huge(*pmd)) {
4276 *pmdpp = pmd;
4277 return 0;
4278 }
4279 spin_unlock(*ptlp);
a4d1a885
JG
4280 if (start && end)
4281 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4282 }
4283
4284 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4285 goto out;
4286
a4d1a885
JG
4287 if (start && end) {
4288 *start = address & PAGE_MASK;
4289 *end = *start + PAGE_SIZE;
4290 mmu_notifier_invalidate_range_start(mm, *start, *end);
4291 }
f8ad0f49 4292 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4293 if (!pte_present(*ptep))
4294 goto unlock;
4295 *ptepp = ptep;
4296 return 0;
4297unlock:
4298 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4299 if (start && end)
4300 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4301out:
4302 return -EINVAL;
4303}
4304
f729c8c9
RZ
4305static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4306 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4307{
4308 int res;
4309
4310 /* (void) is needed to make gcc happy */
4311 (void) __cond_lock(*ptlp,
a4d1a885
JG
4312 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4313 ptepp, NULL, ptlp)));
09796395
RZ
4314 return res;
4315}
4316
4317int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4318 unsigned long *start, unsigned long *end,
09796395
RZ
4319 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320{
4321 int res;
4322
4323 /* (void) is needed to make gcc happy */
4324 (void) __cond_lock(*ptlp,
a4d1a885
JG
4325 !(res = __follow_pte_pmd(mm, address, start, end,
4326 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4327 return res;
4328}
09796395 4329EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4330
3b6748e2
JW
4331/**
4332 * follow_pfn - look up PFN at a user virtual address
4333 * @vma: memory mapping
4334 * @address: user virtual address
4335 * @pfn: location to store found PFN
4336 *
4337 * Only IO mappings and raw PFN mappings are allowed.
4338 *
4339 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4340 */
4341int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4342 unsigned long *pfn)
4343{
4344 int ret = -EINVAL;
4345 spinlock_t *ptl;
4346 pte_t *ptep;
4347
4348 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4349 return ret;
4350
4351 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4352 if (ret)
4353 return ret;
4354 *pfn = pte_pfn(*ptep);
4355 pte_unmap_unlock(ptep, ptl);
4356 return 0;
4357}
4358EXPORT_SYMBOL(follow_pfn);
4359
28b2ee20 4360#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4361int follow_phys(struct vm_area_struct *vma,
4362 unsigned long address, unsigned int flags,
4363 unsigned long *prot, resource_size_t *phys)
28b2ee20 4364{
03668a4d 4365 int ret = -EINVAL;
28b2ee20
RR
4366 pte_t *ptep, pte;
4367 spinlock_t *ptl;
28b2ee20 4368
d87fe660 4369 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4370 goto out;
28b2ee20 4371
03668a4d 4372 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4373 goto out;
28b2ee20 4374 pte = *ptep;
03668a4d 4375
f6f37321 4376 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4377 goto unlock;
28b2ee20
RR
4378
4379 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4380 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4381
03668a4d 4382 ret = 0;
28b2ee20
RR
4383unlock:
4384 pte_unmap_unlock(ptep, ptl);
4385out:
d87fe660 4386 return ret;
28b2ee20
RR
4387}
4388
4389int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4390 void *buf, int len, int write)
4391{
4392 resource_size_t phys_addr;
4393 unsigned long prot = 0;
2bc7273b 4394 void __iomem *maddr;
28b2ee20
RR
4395 int offset = addr & (PAGE_SIZE-1);
4396
d87fe660 4397 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4398 return -EINVAL;
4399
9cb12d7b 4400 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4401 if (write)
4402 memcpy_toio(maddr + offset, buf, len);
4403 else
4404 memcpy_fromio(buf, maddr + offset, len);
4405 iounmap(maddr);
4406
4407 return len;
4408}
5a73633e 4409EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4410#endif
4411
0ec76a11 4412/*
206cb636
SW
4413 * Access another process' address space as given in mm. If non-NULL, use the
4414 * given task for page fault accounting.
0ec76a11 4415 */
84d77d3f 4416int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4417 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4418{
0ec76a11 4419 struct vm_area_struct *vma;
0ec76a11 4420 void *old_buf = buf;
442486ec 4421 int write = gup_flags & FOLL_WRITE;
0ec76a11 4422
0ec76a11 4423 down_read(&mm->mmap_sem);
183ff22b 4424 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4425 while (len) {
4426 int bytes, ret, offset;
4427 void *maddr;
28b2ee20 4428 struct page *page = NULL;
0ec76a11 4429
1e987790 4430 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4431 gup_flags, &page, &vma, NULL);
28b2ee20 4432 if (ret <= 0) {
dbffcd03
RR
4433#ifndef CONFIG_HAVE_IOREMAP_PROT
4434 break;
4435#else
28b2ee20
RR
4436 /*
4437 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4438 * we can access using slightly different code.
4439 */
28b2ee20 4440 vma = find_vma(mm, addr);
fe936dfc 4441 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4442 break;
4443 if (vma->vm_ops && vma->vm_ops->access)
4444 ret = vma->vm_ops->access(vma, addr, buf,
4445 len, write);
4446 if (ret <= 0)
28b2ee20
RR
4447 break;
4448 bytes = ret;
dbffcd03 4449#endif
0ec76a11 4450 } else {
28b2ee20
RR
4451 bytes = len;
4452 offset = addr & (PAGE_SIZE-1);
4453 if (bytes > PAGE_SIZE-offset)
4454 bytes = PAGE_SIZE-offset;
4455
4456 maddr = kmap(page);
4457 if (write) {
4458 copy_to_user_page(vma, page, addr,
4459 maddr + offset, buf, bytes);
4460 set_page_dirty_lock(page);
4461 } else {
4462 copy_from_user_page(vma, page, addr,
4463 buf, maddr + offset, bytes);
4464 }
4465 kunmap(page);
09cbfeaf 4466 put_page(page);
0ec76a11 4467 }
0ec76a11
DH
4468 len -= bytes;
4469 buf += bytes;
4470 addr += bytes;
4471 }
4472 up_read(&mm->mmap_sem);
0ec76a11
DH
4473
4474 return buf - old_buf;
4475}
03252919 4476
5ddd36b9 4477/**
ae91dbfc 4478 * access_remote_vm - access another process' address space
5ddd36b9
SW
4479 * @mm: the mm_struct of the target address space
4480 * @addr: start address to access
4481 * @buf: source or destination buffer
4482 * @len: number of bytes to transfer
6347e8d5 4483 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4484 *
4485 * The caller must hold a reference on @mm.
4486 */
4487int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4488 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4489{
6347e8d5 4490 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4491}
4492
206cb636
SW
4493/*
4494 * Access another process' address space.
4495 * Source/target buffer must be kernel space,
4496 * Do not walk the page table directly, use get_user_pages
4497 */
4498int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4499 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4500{
4501 struct mm_struct *mm;
4502 int ret;
4503
4504 mm = get_task_mm(tsk);
4505 if (!mm)
4506 return 0;
4507
f307ab6d 4508 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4509
206cb636
SW
4510 mmput(mm);
4511
4512 return ret;
4513}
fcd35857 4514EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4515
03252919
AK
4516/*
4517 * Print the name of a VMA.
4518 */
4519void print_vma_addr(char *prefix, unsigned long ip)
4520{
4521 struct mm_struct *mm = current->mm;
4522 struct vm_area_struct *vma;
4523
e8bff74a 4524 /*
0a7f682d 4525 * we might be running from an atomic context so we cannot sleep
e8bff74a 4526 */
0a7f682d 4527 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4528 return;
4529
03252919
AK
4530 vma = find_vma(mm, ip);
4531 if (vma && vma->vm_file) {
4532 struct file *f = vma->vm_file;
0a7f682d 4533 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4534 if (buf) {
2fbc57c5 4535 char *p;
03252919 4536
9bf39ab2 4537 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4538 if (IS_ERR(p))
4539 p = "?";
2fbc57c5 4540 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4541 vma->vm_start,
4542 vma->vm_end - vma->vm_start);
4543 free_page((unsigned long)buf);
4544 }
4545 }
51a07e50 4546 up_read(&mm->mmap_sem);
03252919 4547}
3ee1afa3 4548
662bbcb2 4549#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4550void __might_fault(const char *file, int line)
3ee1afa3 4551{
95156f00
PZ
4552 /*
4553 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4554 * holding the mmap_sem, this is safe because kernel memory doesn't
4555 * get paged out, therefore we'll never actually fault, and the
4556 * below annotations will generate false positives.
4557 */
db68ce10 4558 if (uaccess_kernel())
95156f00 4559 return;
9ec23531 4560 if (pagefault_disabled())
662bbcb2 4561 return;
9ec23531
DH
4562 __might_sleep(file, line, 0);
4563#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4564 if (current->mm)
3ee1afa3 4565 might_lock_read(&current->mm->mmap_sem);
9ec23531 4566#endif
3ee1afa3 4567}
9ec23531 4568EXPORT_SYMBOL(__might_fault);
3ee1afa3 4569#endif
47ad8475
AA
4570
4571#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4572static void clear_gigantic_page(struct page *page,
4573 unsigned long addr,
4574 unsigned int pages_per_huge_page)
4575{
4576 int i;
4577 struct page *p = page;
4578
4579 might_sleep();
4580 for (i = 0; i < pages_per_huge_page;
4581 i++, p = mem_map_next(p, page, i)) {
4582 cond_resched();
4583 clear_user_highpage(p, addr + i * PAGE_SIZE);
4584 }
4585}
4586void clear_huge_page(struct page *page,
c79b57e4 4587 unsigned long addr_hint, unsigned int pages_per_huge_page)
47ad8475 4588{
c79b57e4
HY
4589 int i, n, base, l;
4590 unsigned long addr = addr_hint &
4591 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475
AA
4592
4593 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4594 clear_gigantic_page(page, addr, pages_per_huge_page);
4595 return;
4596 }
4597
c79b57e4 4598 /* Clear sub-page to access last to keep its cache lines hot */
47ad8475 4599 might_sleep();
c79b57e4
HY
4600 n = (addr_hint - addr) / PAGE_SIZE;
4601 if (2 * n <= pages_per_huge_page) {
4602 /* If sub-page to access in first half of huge page */
4603 base = 0;
4604 l = n;
4605 /* Clear sub-pages at the end of huge page */
4606 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4607 cond_resched();
4608 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4609 }
4610 } else {
4611 /* If sub-page to access in second half of huge page */
4612 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4613 l = pages_per_huge_page - n;
4614 /* Clear sub-pages at the begin of huge page */
4615 for (i = 0; i < base; i++) {
4616 cond_resched();
4617 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4618 }
4619 }
4620 /*
4621 * Clear remaining sub-pages in left-right-left-right pattern
4622 * towards the sub-page to access
4623 */
4624 for (i = 0; i < l; i++) {
4625 int left_idx = base + i;
4626 int right_idx = base + 2 * l - 1 - i;
4627
4628 cond_resched();
4629 clear_user_highpage(page + left_idx,
4630 addr + left_idx * PAGE_SIZE);
47ad8475 4631 cond_resched();
c79b57e4
HY
4632 clear_user_highpage(page + right_idx,
4633 addr + right_idx * PAGE_SIZE);
47ad8475
AA
4634 }
4635}
4636
4637static void copy_user_gigantic_page(struct page *dst, struct page *src,
4638 unsigned long addr,
4639 struct vm_area_struct *vma,
4640 unsigned int pages_per_huge_page)
4641{
4642 int i;
4643 struct page *dst_base = dst;
4644 struct page *src_base = src;
4645
4646 for (i = 0; i < pages_per_huge_page; ) {
4647 cond_resched();
4648 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4649
4650 i++;
4651 dst = mem_map_next(dst, dst_base, i);
4652 src = mem_map_next(src, src_base, i);
4653 }
4654}
4655
4656void copy_user_huge_page(struct page *dst, struct page *src,
4657 unsigned long addr, struct vm_area_struct *vma,
4658 unsigned int pages_per_huge_page)
4659{
4660 int i;
4661
4662 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4663 copy_user_gigantic_page(dst, src, addr, vma,
4664 pages_per_huge_page);
4665 return;
4666 }
4667
4668 might_sleep();
4669 for (i = 0; i < pages_per_huge_page; i++) {
4670 cond_resched();
4671 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4672 }
4673}
fa4d75c1
MK
4674
4675long copy_huge_page_from_user(struct page *dst_page,
4676 const void __user *usr_src,
810a56b9
MK
4677 unsigned int pages_per_huge_page,
4678 bool allow_pagefault)
fa4d75c1
MK
4679{
4680 void *src = (void *)usr_src;
4681 void *page_kaddr;
4682 unsigned long i, rc = 0;
4683 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4684
4685 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4686 if (allow_pagefault)
4687 page_kaddr = kmap(dst_page + i);
4688 else
4689 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4690 rc = copy_from_user(page_kaddr,
4691 (const void __user *)(src + i * PAGE_SIZE),
4692 PAGE_SIZE);
810a56b9
MK
4693 if (allow_pagefault)
4694 kunmap(dst_page + i);
4695 else
4696 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4697
4698 ret_val -= (PAGE_SIZE - rc);
4699 if (rc)
4700 break;
4701
4702 cond_resched();
4703 }
4704 return ret_val;
4705}
47ad8475 4706#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4707
40b64acd 4708#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4709
4710static struct kmem_cache *page_ptl_cachep;
4711
4712void __init ptlock_cache_init(void)
4713{
4714 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4715 SLAB_PANIC, NULL);
4716}
4717
539edb58 4718bool ptlock_alloc(struct page *page)
49076ec2
KS
4719{
4720 spinlock_t *ptl;
4721
b35f1819 4722 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4723 if (!ptl)
4724 return false;
539edb58 4725 page->ptl = ptl;
49076ec2
KS
4726 return true;
4727}
4728
539edb58 4729void ptlock_free(struct page *page)
49076ec2 4730{
b35f1819 4731 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4732}
4733#endif