mm: list_lru: rename memcg_drain_all_list_lrus to memcg_reparent_list_lrus
[linux-2.6-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
1da177e4 77
b3d1411b
JFG
78#include <trace/events/kmem.h>
79
6952b61d 80#include <asm/io.h>
33a709b2 81#include <asm/mmu_context.h>
1da177e4 82#include <asm/pgalloc.h>
7c0f6ba6 83#include <linux/uaccess.h>
1da177e4
LT
84#include <asm/tlb.h>
85#include <asm/tlbflush.h>
1da177e4 86
e80d3909 87#include "pgalloc-track.h"
42b77728
JB
88#include "internal.h"
89
af27d940 90#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 91#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
92#endif
93
a9ee6cf5 94#ifndef CONFIG_NUMA
1da177e4 95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1 410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
03c4f204 437void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 438{
03c4f204 439 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 440
8ac1f832 441 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 442 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
443 /*
444 * Ensure all pte setup (eg. pte page lock and page clearing) are
445 * visible before the pte is made visible to other CPUs by being
446 * put into page tables.
447 *
448 * The other side of the story is the pointer chasing in the page
449 * table walking code (when walking the page table without locking;
450 * ie. most of the time). Fortunately, these data accesses consist
451 * of a chain of data-dependent loads, meaning most CPUs (alpha
452 * being the notable exception) will already guarantee loads are
453 * seen in-order. See the alpha page table accessors for the
454 * smp_rmb() barriers in page table walking code.
455 */
456 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
457 pmd_populate(mm, pmd, *pte);
458 *pte = NULL;
4b471e88 459 }
c4088ebd 460 spin_unlock(ptl);
03c4f204
QZ
461}
462
4cf58924 463int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 464{
4cf58924 465 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
466 if (!new)
467 return -ENOMEM;
468
03c4f204 469 pmd_install(mm, pmd, &new);
2f569afd
MS
470 if (new)
471 pte_free(mm, new);
1bb3630e 472 return 0;
1da177e4
LT
473}
474
4cf58924 475int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 476{
4cf58924 477 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
478 if (!new)
479 return -ENOMEM;
480
481 spin_lock(&init_mm.page_table_lock);
8ac1f832 482 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 483 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 484 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 485 new = NULL;
4b471e88 486 }
1bb3630e 487 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
488 if (new)
489 pte_free_kernel(&init_mm, new);
1bb3630e 490 return 0;
1da177e4
LT
491}
492
d559db08
KH
493static inline void init_rss_vec(int *rss)
494{
495 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
496}
497
498static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 499{
d559db08
KH
500 int i;
501
34e55232 502 if (current->mm == mm)
05af2e10 503 sync_mm_rss(mm);
d559db08
KH
504 for (i = 0; i < NR_MM_COUNTERS; i++)
505 if (rss[i])
506 add_mm_counter(mm, i, rss[i]);
ae859762
HD
507}
508
b5810039 509/*
6aab341e
LT
510 * This function is called to print an error when a bad pte
511 * is found. For example, we might have a PFN-mapped pte in
512 * a region that doesn't allow it.
b5810039
NP
513 *
514 * The calling function must still handle the error.
515 */
3dc14741
HD
516static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
517 pte_t pte, struct page *page)
b5810039 518{
3dc14741 519 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
520 p4d_t *p4d = p4d_offset(pgd, addr);
521 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
522 pmd_t *pmd = pmd_offset(pud, addr);
523 struct address_space *mapping;
524 pgoff_t index;
d936cf9b
HD
525 static unsigned long resume;
526 static unsigned long nr_shown;
527 static unsigned long nr_unshown;
528
529 /*
530 * Allow a burst of 60 reports, then keep quiet for that minute;
531 * or allow a steady drip of one report per second.
532 */
533 if (nr_shown == 60) {
534 if (time_before(jiffies, resume)) {
535 nr_unshown++;
536 return;
537 }
538 if (nr_unshown) {
1170532b
JP
539 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
540 nr_unshown);
d936cf9b
HD
541 nr_unshown = 0;
542 }
543 nr_shown = 0;
544 }
545 if (nr_shown++ == 0)
546 resume = jiffies + 60 * HZ;
3dc14741
HD
547
548 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
549 index = linear_page_index(vma, addr);
550
1170532b
JP
551 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
552 current->comm,
553 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 554 if (page)
f0b791a3 555 dump_page(page, "bad pte");
6aa9b8b2 556 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 557 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 558 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
559 vma->vm_file,
560 vma->vm_ops ? vma->vm_ops->fault : NULL,
561 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
562 mapping ? mapping->a_ops->readpage : NULL);
b5810039 563 dump_stack();
373d4d09 564 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
565}
566
ee498ed7 567/*
7e675137 568 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 569 *
7e675137
NP
570 * "Special" mappings do not wish to be associated with a "struct page" (either
571 * it doesn't exist, or it exists but they don't want to touch it). In this
572 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 573 *
7e675137
NP
574 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
575 * pte bit, in which case this function is trivial. Secondly, an architecture
576 * may not have a spare pte bit, which requires a more complicated scheme,
577 * described below.
578 *
579 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
580 * special mapping (even if there are underlying and valid "struct pages").
581 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 582 *
b379d790
JH
583 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
584 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
585 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
586 * mapping will always honor the rule
6aab341e
LT
587 *
588 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
589 *
7e675137
NP
590 * And for normal mappings this is false.
591 *
592 * This restricts such mappings to be a linear translation from virtual address
593 * to pfn. To get around this restriction, we allow arbitrary mappings so long
594 * as the vma is not a COW mapping; in that case, we know that all ptes are
595 * special (because none can have been COWed).
b379d790 596 *
b379d790 597 *
7e675137 598 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
599 *
600 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
601 * page" backing, however the difference is that _all_ pages with a struct
602 * page (that is, those where pfn_valid is true) are refcounted and considered
603 * normal pages by the VM. The disadvantage is that pages are refcounted
604 * (which can be slower and simply not an option for some PFNMAP users). The
605 * advantage is that we don't have to follow the strict linearity rule of
606 * PFNMAP mappings in order to support COWable mappings.
607 *
ee498ed7 608 */
25b2995a
CH
609struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
610 pte_t pte)
ee498ed7 611{
22b31eec 612 unsigned long pfn = pte_pfn(pte);
7e675137 613
00b3a331 614 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 615 if (likely(!pte_special(pte)))
22b31eec 616 goto check_pfn;
667a0a06
DV
617 if (vma->vm_ops && vma->vm_ops->find_special_page)
618 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
619 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
620 return NULL;
df6ad698
JG
621 if (is_zero_pfn(pfn))
622 return NULL;
e1fb4a08
DJ
623 if (pte_devmap(pte))
624 return NULL;
625
df6ad698 626 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
627 return NULL;
628 }
629
00b3a331 630 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 631
b379d790
JH
632 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
633 if (vma->vm_flags & VM_MIXEDMAP) {
634 if (!pfn_valid(pfn))
635 return NULL;
636 goto out;
637 } else {
7e675137
NP
638 unsigned long off;
639 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
640 if (pfn == vma->vm_pgoff + off)
641 return NULL;
642 if (!is_cow_mapping(vma->vm_flags))
643 return NULL;
644 }
6aab341e
LT
645 }
646
b38af472
HD
647 if (is_zero_pfn(pfn))
648 return NULL;
00b3a331 649
22b31eec
HD
650check_pfn:
651 if (unlikely(pfn > highest_memmap_pfn)) {
652 print_bad_pte(vma, addr, pte, NULL);
653 return NULL;
654 }
6aab341e
LT
655
656 /*
7e675137 657 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 658 * eg. VDSO mappings can cause them to exist.
6aab341e 659 */
b379d790 660out:
6aab341e 661 return pfn_to_page(pfn);
ee498ed7
HD
662}
663
28093f9f
GS
664#ifdef CONFIG_TRANSPARENT_HUGEPAGE
665struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
666 pmd_t pmd)
667{
668 unsigned long pfn = pmd_pfn(pmd);
669
670 /*
671 * There is no pmd_special() but there may be special pmds, e.g.
672 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 673 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
674 */
675 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
676 if (vma->vm_flags & VM_MIXEDMAP) {
677 if (!pfn_valid(pfn))
678 return NULL;
679 goto out;
680 } else {
681 unsigned long off;
682 off = (addr - vma->vm_start) >> PAGE_SHIFT;
683 if (pfn == vma->vm_pgoff + off)
684 return NULL;
685 if (!is_cow_mapping(vma->vm_flags))
686 return NULL;
687 }
688 }
689
e1fb4a08
DJ
690 if (pmd_devmap(pmd))
691 return NULL;
3cde287b 692 if (is_huge_zero_pmd(pmd))
28093f9f
GS
693 return NULL;
694 if (unlikely(pfn > highest_memmap_pfn))
695 return NULL;
696
697 /*
698 * NOTE! We still have PageReserved() pages in the page tables.
699 * eg. VDSO mappings can cause them to exist.
700 */
701out:
702 return pfn_to_page(pfn);
703}
704#endif
705
b756a3b5
AP
706static void restore_exclusive_pte(struct vm_area_struct *vma,
707 struct page *page, unsigned long address,
708 pte_t *ptep)
709{
710 pte_t pte;
711 swp_entry_t entry;
712
713 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
714 if (pte_swp_soft_dirty(*ptep))
715 pte = pte_mksoft_dirty(pte);
716
717 entry = pte_to_swp_entry(*ptep);
718 if (pte_swp_uffd_wp(*ptep))
719 pte = pte_mkuffd_wp(pte);
720 else if (is_writable_device_exclusive_entry(entry))
721 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
722
b756a3b5
AP
723 /*
724 * No need to take a page reference as one was already
725 * created when the swap entry was made.
726 */
727 if (PageAnon(page))
728 page_add_anon_rmap(page, vma, address, false);
729 else
730 /*
731 * Currently device exclusive access only supports anonymous
732 * memory so the entry shouldn't point to a filebacked page.
733 */
734 WARN_ON_ONCE(!PageAnon(page));
735
1eba86c0
PT
736 set_pte_at(vma->vm_mm, address, ptep, pte);
737
b756a3b5
AP
738 if (vma->vm_flags & VM_LOCKED)
739 mlock_vma_page(page);
740
741 /*
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
744 */
745 update_mmu_cache(vma, address, ptep);
746}
747
748/*
749 * Tries to restore an exclusive pte if the page lock can be acquired without
750 * sleeping.
751 */
752static int
753try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 unsigned long addr)
755{
756 swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 struct page *page = pfn_swap_entry_to_page(entry);
758
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
761 unlock_page(page);
762 return 0;
763 }
764
765 return -EBUSY;
766}
767
1da177e4
LT
768/*
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
1da177e4
LT
772 */
773
df3a57d1
LT
774static unsigned long
775copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 778{
8f34f1ea 779 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
780 pte_t pte = *src_pte;
781 struct page *page;
df3a57d1
LT
782 swp_entry_t entry = pte_to_swp_entry(pte);
783
784 if (likely(!non_swap_entry(entry))) {
785 if (swap_duplicate(entry) < 0)
9a5cc85c 786 return -EIO;
df3a57d1
LT
787
788 /* make sure dst_mm is on swapoff's mmlist. */
789 if (unlikely(list_empty(&dst_mm->mmlist))) {
790 spin_lock(&mmlist_lock);
791 if (list_empty(&dst_mm->mmlist))
792 list_add(&dst_mm->mmlist,
793 &src_mm->mmlist);
794 spin_unlock(&mmlist_lock);
795 }
796 rss[MM_SWAPENTS]++;
797 } else if (is_migration_entry(entry)) {
af5cdaf8 798 page = pfn_swap_entry_to_page(entry);
1da177e4 799
df3a57d1 800 rss[mm_counter(page)]++;
5042db43 801
4dd845b5 802 if (is_writable_migration_entry(entry) &&
df3a57d1 803 is_cow_mapping(vm_flags)) {
5042db43 804 /*
df3a57d1
LT
805 * COW mappings require pages in both
806 * parent and child to be set to read.
5042db43 807 */
4dd845b5
AP
808 entry = make_readable_migration_entry(
809 swp_offset(entry));
df3a57d1
LT
810 pte = swp_entry_to_pte(entry);
811 if (pte_swp_soft_dirty(*src_pte))
812 pte = pte_swp_mksoft_dirty(pte);
813 if (pte_swp_uffd_wp(*src_pte))
814 pte = pte_swp_mkuffd_wp(pte);
815 set_pte_at(src_mm, addr, src_pte, pte);
816 }
817 } else if (is_device_private_entry(entry)) {
af5cdaf8 818 page = pfn_swap_entry_to_page(entry);
5042db43 819
df3a57d1
LT
820 /*
821 * Update rss count even for unaddressable pages, as
822 * they should treated just like normal pages in this
823 * respect.
824 *
825 * We will likely want to have some new rss counters
826 * for unaddressable pages, at some point. But for now
827 * keep things as they are.
828 */
829 get_page(page);
830 rss[mm_counter(page)]++;
831 page_dup_rmap(page, false);
832
833 /*
834 * We do not preserve soft-dirty information, because so
835 * far, checkpoint/restore is the only feature that
836 * requires that. And checkpoint/restore does not work
837 * when a device driver is involved (you cannot easily
838 * save and restore device driver state).
839 */
4dd845b5 840 if (is_writable_device_private_entry(entry) &&
df3a57d1 841 is_cow_mapping(vm_flags)) {
4dd845b5
AP
842 entry = make_readable_device_private_entry(
843 swp_offset(entry));
df3a57d1
LT
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_uffd_wp(*src_pte))
846 pte = pte_swp_mkuffd_wp(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 848 }
b756a3b5
AP
849 } else if (is_device_exclusive_entry(entry)) {
850 /*
851 * Make device exclusive entries present by restoring the
852 * original entry then copying as for a present pte. Device
853 * exclusive entries currently only support private writable
854 * (ie. COW) mappings.
855 */
856 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
857 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
858 return -EBUSY;
859 return -ENOENT;
1da177e4 860 }
8f34f1ea
PX
861 if (!userfaultfd_wp(dst_vma))
862 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
863 set_pte_at(dst_mm, addr, dst_pte, pte);
864 return 0;
865}
866
70e806e4
PX
867/*
868 * Copy a present and normal page if necessary.
869 *
870 * NOTE! The usual case is that this doesn't need to do
871 * anything, and can just return a positive value. That
872 * will let the caller know that it can just increase
873 * the page refcount and re-use the pte the traditional
874 * way.
875 *
876 * But _if_ we need to copy it because it needs to be
877 * pinned in the parent (and the child should get its own
878 * copy rather than just a reference to the same page),
879 * we'll do that here and return zero to let the caller
880 * know we're done.
881 *
882 * And if we need a pre-allocated page but don't yet have
883 * one, return a negative error to let the preallocation
884 * code know so that it can do so outside the page table
885 * lock.
886 */
887static inline int
c78f4636
PX
888copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
889 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
890 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
891{
892 struct page *new_page;
893
70e806e4 894 /*
70e806e4
PX
895 * What we want to do is to check whether this page may
896 * have been pinned by the parent process. If so,
897 * instead of wrprotect the pte on both sides, we copy
898 * the page immediately so that we'll always guarantee
899 * the pinned page won't be randomly replaced in the
900 * future.
901 *
f3c64eda
LT
902 * The page pinning checks are just "has this mm ever
903 * seen pinning", along with the (inexact) check of
904 * the page count. That might give false positives for
905 * for pinning, but it will work correctly.
70e806e4 906 */
97a7e473 907 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
908 return 1;
909
70e806e4
PX
910 new_page = *prealloc;
911 if (!new_page)
912 return -EAGAIN;
913
914 /*
915 * We have a prealloc page, all good! Take it
916 * over and copy the page & arm it.
917 */
918 *prealloc = NULL;
c78f4636 919 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 920 __SetPageUptodate(new_page);
c78f4636
PX
921 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
922 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
923 rss[mm_counter(new_page)]++;
924
925 /* All done, just insert the new page copy in the child */
c78f4636
PX
926 pte = mk_pte(new_page, dst_vma->vm_page_prot);
927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
928 if (userfaultfd_pte_wp(dst_vma, *src_pte))
929 /* Uffd-wp needs to be delivered to dest pte as well */
930 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
932 return 0;
933}
934
935/*
936 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
937 * is required to copy this pte.
938 */
939static inline int
c78f4636
PX
940copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
941 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
942 struct page **prealloc)
df3a57d1 943{
c78f4636
PX
944 struct mm_struct *src_mm = src_vma->vm_mm;
945 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
946 pte_t pte = *src_pte;
947 struct page *page;
948
c78f4636 949 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
950 if (page) {
951 int retval;
952
c78f4636
PX
953 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 addr, rss, prealloc, pte, page);
70e806e4
PX
955 if (retval <= 0)
956 return retval;
957
958 get_page(page);
959 page_dup_rmap(page, false);
960 rss[mm_counter(page)]++;
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
1b2de5d0 967 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4
LT
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
6aab341e 979
8f34f1ea 980 if (!userfaultfd_wp(dst_vma))
b569a176
PX
981 pte = pte_clear_uffd_wp(pte);
982
c78f4636 983 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
984 return 0;
985}
986
987static inline struct page *
988page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
989 unsigned long addr)
990{
991 struct page *new_page;
992
993 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
994 if (!new_page)
995 return NULL;
996
8f425e4e 997 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
998 put_page(new_page);
999 return NULL;
6aab341e 1000 }
70e806e4 1001 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1002
70e806e4 1003 return new_page;
1da177e4
LT
1004}
1005
c78f4636
PX
1006static int
1007copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1008 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1009 unsigned long end)
1da177e4 1010{
c78f4636
PX
1011 struct mm_struct *dst_mm = dst_vma->vm_mm;
1012 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1013 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1014 pte_t *src_pte, *dst_pte;
c74df32c 1015 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1016 int progress, ret = 0;
d559db08 1017 int rss[NR_MM_COUNTERS];
570a335b 1018 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1019 struct page *prealloc = NULL;
1da177e4
LT
1020
1021again:
70e806e4 1022 progress = 0;
d559db08
KH
1023 init_rss_vec(rss);
1024
c74df32c 1025 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1026 if (!dst_pte) {
1027 ret = -ENOMEM;
1028 goto out;
1029 }
ece0e2b6 1030 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1031 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1033 orig_src_pte = src_pte;
1034 orig_dst_pte = dst_pte;
6606c3e0 1035 arch_enter_lazy_mmu_mode();
1da177e4 1036
1da177e4
LT
1037 do {
1038 /*
1039 * We are holding two locks at this point - either of them
1040 * could generate latencies in another task on another CPU.
1041 */
e040f218
HD
1042 if (progress >= 32) {
1043 progress = 0;
1044 if (need_resched() ||
95c354fe 1045 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1046 break;
1047 }
1da177e4
LT
1048 if (pte_none(*src_pte)) {
1049 progress++;
1050 continue;
1051 }
79a1971c 1052 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1053 ret = copy_nonpresent_pte(dst_mm, src_mm,
1054 dst_pte, src_pte,
1055 dst_vma, src_vma,
1056 addr, rss);
1057 if (ret == -EIO) {
1058 entry = pte_to_swp_entry(*src_pte);
79a1971c 1059 break;
b756a3b5
AP
1060 } else if (ret == -EBUSY) {
1061 break;
1062 } else if (!ret) {
1063 progress += 8;
1064 continue;
9a5cc85c 1065 }
b756a3b5
AP
1066
1067 /*
1068 * Device exclusive entry restored, continue by copying
1069 * the now present pte.
1070 */
1071 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1072 }
70e806e4 1073 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1074 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1075 addr, rss, &prealloc);
70e806e4
PX
1076 /*
1077 * If we need a pre-allocated page for this pte, drop the
1078 * locks, allocate, and try again.
1079 */
1080 if (unlikely(ret == -EAGAIN))
1081 break;
1082 if (unlikely(prealloc)) {
1083 /*
1084 * pre-alloc page cannot be reused by next time so as
1085 * to strictly follow mempolicy (e.g., alloc_page_vma()
1086 * will allocate page according to address). This
1087 * could only happen if one pinned pte changed.
1088 */
1089 put_page(prealloc);
1090 prealloc = NULL;
1091 }
1da177e4
LT
1092 progress += 8;
1093 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1094
6606c3e0 1095 arch_leave_lazy_mmu_mode();
c74df32c 1096 spin_unlock(src_ptl);
ece0e2b6 1097 pte_unmap(orig_src_pte);
d559db08 1098 add_mm_rss_vec(dst_mm, rss);
c36987e2 1099 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1100 cond_resched();
570a335b 1101
9a5cc85c
AP
1102 if (ret == -EIO) {
1103 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1104 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1105 ret = -ENOMEM;
1106 goto out;
1107 }
1108 entry.val = 0;
b756a3b5
AP
1109 } else if (ret == -EBUSY) {
1110 goto out;
9a5cc85c 1111 } else if (ret == -EAGAIN) {
c78f4636 1112 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1113 if (!prealloc)
570a335b 1114 return -ENOMEM;
9a5cc85c
AP
1115 } else if (ret) {
1116 VM_WARN_ON_ONCE(1);
570a335b 1117 }
9a5cc85c
AP
1118
1119 /* We've captured and resolved the error. Reset, try again. */
1120 ret = 0;
1121
1da177e4
LT
1122 if (addr != end)
1123 goto again;
70e806e4
PX
1124out:
1125 if (unlikely(prealloc))
1126 put_page(prealloc);
1127 return ret;
1da177e4
LT
1128}
1129
c78f4636
PX
1130static inline int
1131copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1132 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1133 unsigned long end)
1da177e4 1134{
c78f4636
PX
1135 struct mm_struct *dst_mm = dst_vma->vm_mm;
1136 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1137 pmd_t *src_pmd, *dst_pmd;
1138 unsigned long next;
1139
1140 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1141 if (!dst_pmd)
1142 return -ENOMEM;
1143 src_pmd = pmd_offset(src_pud, addr);
1144 do {
1145 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1146 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1147 || pmd_devmap(*src_pmd)) {
71e3aac0 1148 int err;
c78f4636 1149 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1150 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1151 addr, dst_vma, src_vma);
71e3aac0
AA
1152 if (err == -ENOMEM)
1153 return -ENOMEM;
1154 if (!err)
1155 continue;
1156 /* fall through */
1157 }
1da177e4
LT
1158 if (pmd_none_or_clear_bad(src_pmd))
1159 continue;
c78f4636
PX
1160 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1161 addr, next))
1da177e4
LT
1162 return -ENOMEM;
1163 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1164 return 0;
1165}
1166
c78f4636
PX
1167static inline int
1168copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1169 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1170 unsigned long end)
1da177e4 1171{
c78f4636
PX
1172 struct mm_struct *dst_mm = dst_vma->vm_mm;
1173 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1174 pud_t *src_pud, *dst_pud;
1175 unsigned long next;
1176
c2febafc 1177 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1178 if (!dst_pud)
1179 return -ENOMEM;
c2febafc 1180 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1181 do {
1182 next = pud_addr_end(addr, end);
a00cc7d9
MW
1183 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1184 int err;
1185
c78f4636 1186 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1187 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1188 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1189 if (err == -ENOMEM)
1190 return -ENOMEM;
1191 if (!err)
1192 continue;
1193 /* fall through */
1194 }
1da177e4
LT
1195 if (pud_none_or_clear_bad(src_pud))
1196 continue;
c78f4636
PX
1197 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1198 addr, next))
1da177e4
LT
1199 return -ENOMEM;
1200 } while (dst_pud++, src_pud++, addr = next, addr != end);
1201 return 0;
1202}
1203
c78f4636
PX
1204static inline int
1205copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1206 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1207 unsigned long end)
c2febafc 1208{
c78f4636 1209 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1210 p4d_t *src_p4d, *dst_p4d;
1211 unsigned long next;
1212
1213 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1214 if (!dst_p4d)
1215 return -ENOMEM;
1216 src_p4d = p4d_offset(src_pgd, addr);
1217 do {
1218 next = p4d_addr_end(addr, end);
1219 if (p4d_none_or_clear_bad(src_p4d))
1220 continue;
c78f4636
PX
1221 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1222 addr, next))
c2febafc
KS
1223 return -ENOMEM;
1224 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1225 return 0;
1226}
1227
c78f4636
PX
1228int
1229copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1230{
1231 pgd_t *src_pgd, *dst_pgd;
1232 unsigned long next;
c78f4636
PX
1233 unsigned long addr = src_vma->vm_start;
1234 unsigned long end = src_vma->vm_end;
1235 struct mm_struct *dst_mm = dst_vma->vm_mm;
1236 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1237 struct mmu_notifier_range range;
2ec74c3e 1238 bool is_cow;
cddb8a5c 1239 int ret;
1da177e4 1240
d992895b
NP
1241 /*
1242 * Don't copy ptes where a page fault will fill them correctly.
1243 * Fork becomes much lighter when there are big shared or private
1244 * readonly mappings. The tradeoff is that copy_page_range is more
1245 * efficient than faulting.
1246 */
c78f4636
PX
1247 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1248 !src_vma->anon_vma)
0661a336 1249 return 0;
d992895b 1250
c78f4636
PX
1251 if (is_vm_hugetlb_page(src_vma))
1252 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1253
c78f4636 1254 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1255 /*
1256 * We do not free on error cases below as remove_vma
1257 * gets called on error from higher level routine
1258 */
c78f4636 1259 ret = track_pfn_copy(src_vma);
2ab64037 1260 if (ret)
1261 return ret;
1262 }
1263
cddb8a5c
AA
1264 /*
1265 * We need to invalidate the secondary MMU mappings only when
1266 * there could be a permission downgrade on the ptes of the
1267 * parent mm. And a permission downgrade will only happen if
1268 * is_cow_mapping() returns true.
1269 */
c78f4636 1270 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1271
1272 if (is_cow) {
7269f999 1273 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1274 0, src_vma, src_mm, addr, end);
ac46d4f3 1275 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1276 /*
1277 * Disabling preemption is not needed for the write side, as
1278 * the read side doesn't spin, but goes to the mmap_lock.
1279 *
1280 * Use the raw variant of the seqcount_t write API to avoid
1281 * lockdep complaining about preemptibility.
1282 */
1283 mmap_assert_write_locked(src_mm);
1284 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1285 }
cddb8a5c
AA
1286
1287 ret = 0;
1da177e4
LT
1288 dst_pgd = pgd_offset(dst_mm, addr);
1289 src_pgd = pgd_offset(src_mm, addr);
1290 do {
1291 next = pgd_addr_end(addr, end);
1292 if (pgd_none_or_clear_bad(src_pgd))
1293 continue;
c78f4636
PX
1294 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1295 addr, next))) {
cddb8a5c
AA
1296 ret = -ENOMEM;
1297 break;
1298 }
1da177e4 1299 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1300
57efa1fe
JG
1301 if (is_cow) {
1302 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1303 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1304 }
cddb8a5c 1305 return ret;
1da177e4
LT
1306}
1307
3506659e
MWO
1308/*
1309 * Parameter block passed down to zap_pte_range in exceptional cases.
1310 */
1311struct zap_details {
1312 struct address_space *zap_mapping; /* Check page->mapping if set */
1313 struct folio *single_folio; /* Locked folio to be unmapped */
1314};
1315
1316/*
1317 * We set details->zap_mapping when we want to unmap shared but keep private
1318 * pages. Return true if skip zapping this page, false otherwise.
1319 */
1320static inline bool
1321zap_skip_check_mapping(struct zap_details *details, struct page *page)
1322{
1323 if (!details || !page)
1324 return false;
1325
1326 return details->zap_mapping &&
1327 (details->zap_mapping != page_rmapping(page));
1328}
1329
51c6f666 1330static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1331 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1332 unsigned long addr, unsigned long end,
97a89413 1333 struct zap_details *details)
1da177e4 1334{
b5810039 1335 struct mm_struct *mm = tlb->mm;
d16dfc55 1336 int force_flush = 0;
d559db08 1337 int rss[NR_MM_COUNTERS];
97a89413 1338 spinlock_t *ptl;
5f1a1907 1339 pte_t *start_pte;
97a89413 1340 pte_t *pte;
8a5f14a2 1341 swp_entry_t entry;
d559db08 1342
ed6a7935 1343 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1344again:
e303297e 1345 init_rss_vec(rss);
5f1a1907
SR
1346 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1347 pte = start_pte;
3ea27719 1348 flush_tlb_batched_pending(mm);
6606c3e0 1349 arch_enter_lazy_mmu_mode();
1da177e4
LT
1350 do {
1351 pte_t ptent = *pte;
166f61b9 1352 if (pte_none(ptent))
1da177e4 1353 continue;
6f5e6b9e 1354
7b167b68
MK
1355 if (need_resched())
1356 break;
1357
1da177e4 1358 if (pte_present(ptent)) {
ee498ed7 1359 struct page *page;
51c6f666 1360
25b2995a 1361 page = vm_normal_page(vma, addr, ptent);
91b61ef3
PX
1362 if (unlikely(zap_skip_check_mapping(details, page)))
1363 continue;
b5810039 1364 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1365 tlb->fullmm);
1da177e4
LT
1366 tlb_remove_tlb_entry(tlb, pte, addr);
1367 if (unlikely(!page))
1368 continue;
eca56ff9
JM
1369
1370 if (!PageAnon(page)) {
1cf35d47
LT
1371 if (pte_dirty(ptent)) {
1372 force_flush = 1;
6237bcd9 1373 set_page_dirty(page);
1cf35d47 1374 }
4917e5d0 1375 if (pte_young(ptent) &&
64363aad 1376 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1377 mark_page_accessed(page);
6237bcd9 1378 }
eca56ff9 1379 rss[mm_counter(page)]--;
d281ee61 1380 page_remove_rmap(page, false);
3dc14741
HD
1381 if (unlikely(page_mapcount(page) < 0))
1382 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1383 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1384 force_flush = 1;
ce9ec37b 1385 addr += PAGE_SIZE;
d16dfc55 1386 break;
1cf35d47 1387 }
1da177e4
LT
1388 continue;
1389 }
5042db43
JG
1390
1391 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1392 if (is_device_private_entry(entry) ||
1393 is_device_exclusive_entry(entry)) {
af5cdaf8 1394 struct page *page = pfn_swap_entry_to_page(entry);
5042db43 1395
91b61ef3
PX
1396 if (unlikely(zap_skip_check_mapping(details, page)))
1397 continue;
5042db43
JG
1398 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1399 rss[mm_counter(page)]--;
b756a3b5
AP
1400
1401 if (is_device_private_entry(entry))
1402 page_remove_rmap(page, false);
1403
5042db43
JG
1404 put_page(page);
1405 continue;
1406 }
1407
3e8715fd
KS
1408 /* If details->check_mapping, we leave swap entries. */
1409 if (unlikely(details))
1da177e4 1410 continue;
b084d435 1411
8a5f14a2
KS
1412 if (!non_swap_entry(entry))
1413 rss[MM_SWAPENTS]--;
1414 else if (is_migration_entry(entry)) {
1415 struct page *page;
9f9f1acd 1416
af5cdaf8 1417 page = pfn_swap_entry_to_page(entry);
eca56ff9 1418 rss[mm_counter(page)]--;
b084d435 1419 }
8a5f14a2
KS
1420 if (unlikely(!free_swap_and_cache(entry)))
1421 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1422 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1423 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1424
d559db08 1425 add_mm_rss_vec(mm, rss);
6606c3e0 1426 arch_leave_lazy_mmu_mode();
51c6f666 1427
1cf35d47 1428 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1429 if (force_flush)
1cf35d47 1430 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1431 pte_unmap_unlock(start_pte, ptl);
1432
1433 /*
1434 * If we forced a TLB flush (either due to running out of
1435 * batch buffers or because we needed to flush dirty TLB
1436 * entries before releasing the ptl), free the batched
1437 * memory too. Restart if we didn't do everything.
1438 */
1439 if (force_flush) {
1440 force_flush = 0;
fa0aafb8 1441 tlb_flush_mmu(tlb);
7b167b68
MK
1442 }
1443
1444 if (addr != end) {
1445 cond_resched();
1446 goto again;
d16dfc55
PZ
1447 }
1448
51c6f666 1449 return addr;
1da177e4
LT
1450}
1451
51c6f666 1452static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1453 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1454 unsigned long addr, unsigned long end,
97a89413 1455 struct zap_details *details)
1da177e4
LT
1456{
1457 pmd_t *pmd;
1458 unsigned long next;
1459
1460 pmd = pmd_offset(pud, addr);
1461 do {
1462 next = pmd_addr_end(addr, end);
84c3fc4e 1463 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1464 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1465 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1466 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1467 goto next;
71e3aac0 1468 /* fall through */
3506659e
MWO
1469 } else if (details && details->single_folio &&
1470 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1471 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1472 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1473 /*
1474 * Take and drop THP pmd lock so that we cannot return
1475 * prematurely, while zap_huge_pmd() has cleared *pmd,
1476 * but not yet decremented compound_mapcount().
1477 */
1478 spin_unlock(ptl);
71e3aac0 1479 }
22061a1f 1480
1a5a9906
AA
1481 /*
1482 * Here there can be other concurrent MADV_DONTNEED or
1483 * trans huge page faults running, and if the pmd is
1484 * none or trans huge it can change under us. This is
c1e8d7c6 1485 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1486 * mode.
1487 */
1488 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1489 goto next;
97a89413 1490 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1491next:
97a89413
PZ
1492 cond_resched();
1493 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1494
1495 return addr;
1da177e4
LT
1496}
1497
51c6f666 1498static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1499 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1500 unsigned long addr, unsigned long end,
97a89413 1501 struct zap_details *details)
1da177e4
LT
1502{
1503 pud_t *pud;
1504 unsigned long next;
1505
c2febafc 1506 pud = pud_offset(p4d, addr);
1da177e4
LT
1507 do {
1508 next = pud_addr_end(addr, end);
a00cc7d9
MW
1509 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1510 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1511 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1512 split_huge_pud(vma, pud, addr);
1513 } else if (zap_huge_pud(tlb, vma, pud, addr))
1514 goto next;
1515 /* fall through */
1516 }
97a89413 1517 if (pud_none_or_clear_bad(pud))
1da177e4 1518 continue;
97a89413 1519 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1520next:
1521 cond_resched();
97a89413 1522 } while (pud++, addr = next, addr != end);
51c6f666
RH
1523
1524 return addr;
1da177e4
LT
1525}
1526
c2febafc
KS
1527static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1528 struct vm_area_struct *vma, pgd_t *pgd,
1529 unsigned long addr, unsigned long end,
1530 struct zap_details *details)
1531{
1532 p4d_t *p4d;
1533 unsigned long next;
1534
1535 p4d = p4d_offset(pgd, addr);
1536 do {
1537 next = p4d_addr_end(addr, end);
1538 if (p4d_none_or_clear_bad(p4d))
1539 continue;
1540 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1541 } while (p4d++, addr = next, addr != end);
1542
1543 return addr;
1544}
1545
aac45363 1546void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1547 struct vm_area_struct *vma,
1548 unsigned long addr, unsigned long end,
1549 struct zap_details *details)
1da177e4
LT
1550{
1551 pgd_t *pgd;
1552 unsigned long next;
1553
1da177e4
LT
1554 BUG_ON(addr >= end);
1555 tlb_start_vma(tlb, vma);
1556 pgd = pgd_offset(vma->vm_mm, addr);
1557 do {
1558 next = pgd_addr_end(addr, end);
97a89413 1559 if (pgd_none_or_clear_bad(pgd))
1da177e4 1560 continue;
c2febafc 1561 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1562 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1563 tlb_end_vma(tlb, vma);
1564}
51c6f666 1565
f5cc4eef
AV
1566
1567static void unmap_single_vma(struct mmu_gather *tlb,
1568 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1569 unsigned long end_addr,
f5cc4eef
AV
1570 struct zap_details *details)
1571{
1572 unsigned long start = max(vma->vm_start, start_addr);
1573 unsigned long end;
1574
1575 if (start >= vma->vm_end)
1576 return;
1577 end = min(vma->vm_end, end_addr);
1578 if (end <= vma->vm_start)
1579 return;
1580
cbc91f71
SD
1581 if (vma->vm_file)
1582 uprobe_munmap(vma, start, end);
1583
b3b9c293 1584 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1585 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1586
1587 if (start != end) {
1588 if (unlikely(is_vm_hugetlb_page(vma))) {
1589 /*
1590 * It is undesirable to test vma->vm_file as it
1591 * should be non-null for valid hugetlb area.
1592 * However, vm_file will be NULL in the error
7aa6b4ad 1593 * cleanup path of mmap_region. When
f5cc4eef 1594 * hugetlbfs ->mmap method fails,
7aa6b4ad 1595 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1596 * before calling this function to clean up.
1597 * Since no pte has actually been setup, it is
1598 * safe to do nothing in this case.
1599 */
24669e58 1600 if (vma->vm_file) {
83cde9e8 1601 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1602 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1603 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1604 }
f5cc4eef
AV
1605 } else
1606 unmap_page_range(tlb, vma, start, end, details);
1607 }
1da177e4
LT
1608}
1609
1da177e4
LT
1610/**
1611 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1612 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1613 * @vma: the starting vma
1614 * @start_addr: virtual address at which to start unmapping
1615 * @end_addr: virtual address at which to end unmapping
1da177e4 1616 *
508034a3 1617 * Unmap all pages in the vma list.
1da177e4 1618 *
1da177e4
LT
1619 * Only addresses between `start' and `end' will be unmapped.
1620 *
1621 * The VMA list must be sorted in ascending virtual address order.
1622 *
1623 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1624 * range after unmap_vmas() returns. So the only responsibility here is to
1625 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1626 * drops the lock and schedules.
1627 */
6e8bb019 1628void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1629 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1630 unsigned long end_addr)
1da177e4 1631{
ac46d4f3 1632 struct mmu_notifier_range range;
1da177e4 1633
6f4f13e8
JG
1634 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1635 start_addr, end_addr);
ac46d4f3 1636 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1637 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1638 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1639 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1640}
1641
1642/**
1643 * zap_page_range - remove user pages in a given range
1644 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1645 * @start: starting address of pages to zap
1da177e4 1646 * @size: number of bytes to zap
f5cc4eef
AV
1647 *
1648 * Caller must protect the VMA list
1da177e4 1649 */
7e027b14 1650void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1651 unsigned long size)
1da177e4 1652{
ac46d4f3 1653 struct mmu_notifier_range range;
d16dfc55 1654 struct mmu_gather tlb;
1da177e4 1655
1da177e4 1656 lru_add_drain();
7269f999 1657 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1658 start, start + size);
a72afd87 1659 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1660 update_hiwater_rss(vma->vm_mm);
1661 mmu_notifier_invalidate_range_start(&range);
1662 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1663 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1664 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1665 tlb_finish_mmu(&tlb);
1da177e4
LT
1666}
1667
f5cc4eef
AV
1668/**
1669 * zap_page_range_single - remove user pages in a given range
1670 * @vma: vm_area_struct holding the applicable pages
1671 * @address: starting address of pages to zap
1672 * @size: number of bytes to zap
8a5f14a2 1673 * @details: details of shared cache invalidation
f5cc4eef
AV
1674 *
1675 * The range must fit into one VMA.
1da177e4 1676 */
f5cc4eef 1677static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1678 unsigned long size, struct zap_details *details)
1679{
ac46d4f3 1680 struct mmu_notifier_range range;
d16dfc55 1681 struct mmu_gather tlb;
1da177e4 1682
1da177e4 1683 lru_add_drain();
7269f999 1684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1685 address, address + size);
a72afd87 1686 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1687 update_hiwater_rss(vma->vm_mm);
1688 mmu_notifier_invalidate_range_start(&range);
1689 unmap_single_vma(&tlb, vma, address, range.end, details);
1690 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1691 tlb_finish_mmu(&tlb);
1da177e4
LT
1692}
1693
c627f9cc
JS
1694/**
1695 * zap_vma_ptes - remove ptes mapping the vma
1696 * @vma: vm_area_struct holding ptes to be zapped
1697 * @address: starting address of pages to zap
1698 * @size: number of bytes to zap
1699 *
1700 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1701 *
1702 * The entire address range must be fully contained within the vma.
1703 *
c627f9cc 1704 */
27d036e3 1705void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1706 unsigned long size)
1707{
1708 if (address < vma->vm_start || address + size > vma->vm_end ||
1709 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1710 return;
1711
f5cc4eef 1712 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1713}
1714EXPORT_SYMBOL_GPL(zap_vma_ptes);
1715
8cd3984d 1716static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1717{
c2febafc
KS
1718 pgd_t *pgd;
1719 p4d_t *p4d;
1720 pud_t *pud;
1721 pmd_t *pmd;
1722
1723 pgd = pgd_offset(mm, addr);
1724 p4d = p4d_alloc(mm, pgd, addr);
1725 if (!p4d)
1726 return NULL;
1727 pud = pud_alloc(mm, p4d, addr);
1728 if (!pud)
1729 return NULL;
1730 pmd = pmd_alloc(mm, pud, addr);
1731 if (!pmd)
1732 return NULL;
1733
1734 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1735 return pmd;
1736}
1737
1738pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1739 spinlock_t **ptl)
1740{
1741 pmd_t *pmd = walk_to_pmd(mm, addr);
1742
1743 if (!pmd)
1744 return NULL;
c2febafc 1745 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1746}
1747
8efd6f5b
AR
1748static int validate_page_before_insert(struct page *page)
1749{
1750 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1751 return -EINVAL;
1752 flush_dcache_page(page);
1753 return 0;
1754}
1755
1756static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1757 unsigned long addr, struct page *page, pgprot_t prot)
1758{
1759 if (!pte_none(*pte))
1760 return -EBUSY;
1761 /* Ok, finally just insert the thing.. */
1762 get_page(page);
1763 inc_mm_counter_fast(mm, mm_counter_file(page));
1764 page_add_file_rmap(page, false);
1765 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1766 return 0;
1767}
1768
238f58d8
LT
1769/*
1770 * This is the old fallback for page remapping.
1771 *
1772 * For historical reasons, it only allows reserved pages. Only
1773 * old drivers should use this, and they needed to mark their
1774 * pages reserved for the old functions anyway.
1775 */
423bad60
NP
1776static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1777 struct page *page, pgprot_t prot)
238f58d8 1778{
423bad60 1779 struct mm_struct *mm = vma->vm_mm;
238f58d8 1780 int retval;
c9cfcddf 1781 pte_t *pte;
8a9f3ccd
BS
1782 spinlock_t *ptl;
1783
8efd6f5b
AR
1784 retval = validate_page_before_insert(page);
1785 if (retval)
5b4e655e 1786 goto out;
238f58d8 1787 retval = -ENOMEM;
c9cfcddf 1788 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1789 if (!pte)
5b4e655e 1790 goto out;
8efd6f5b 1791 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1792 pte_unmap_unlock(pte, ptl);
1793out:
1794 return retval;
1795}
1796
8cd3984d 1797#ifdef pte_index
7f70c2a6 1798static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1799 unsigned long addr, struct page *page, pgprot_t prot)
1800{
1801 int err;
1802
1803 if (!page_count(page))
1804 return -EINVAL;
1805 err = validate_page_before_insert(page);
7f70c2a6
AR
1806 if (err)
1807 return err;
1808 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1809}
1810
1811/* insert_pages() amortizes the cost of spinlock operations
1812 * when inserting pages in a loop. Arch *must* define pte_index.
1813 */
1814static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1815 struct page **pages, unsigned long *num, pgprot_t prot)
1816{
1817 pmd_t *pmd = NULL;
7f70c2a6
AR
1818 pte_t *start_pte, *pte;
1819 spinlock_t *pte_lock;
8cd3984d
AR
1820 struct mm_struct *const mm = vma->vm_mm;
1821 unsigned long curr_page_idx = 0;
1822 unsigned long remaining_pages_total = *num;
1823 unsigned long pages_to_write_in_pmd;
1824 int ret;
1825more:
1826 ret = -EFAULT;
1827 pmd = walk_to_pmd(mm, addr);
1828 if (!pmd)
1829 goto out;
1830
1831 pages_to_write_in_pmd = min_t(unsigned long,
1832 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1833
1834 /* Allocate the PTE if necessary; takes PMD lock once only. */
1835 ret = -ENOMEM;
1836 if (pte_alloc(mm, pmd))
1837 goto out;
8cd3984d
AR
1838
1839 while (pages_to_write_in_pmd) {
1840 int pte_idx = 0;
1841 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1842
7f70c2a6
AR
1843 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1844 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1845 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1846 addr, pages[curr_page_idx], prot);
1847 if (unlikely(err)) {
7f70c2a6 1848 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1849 ret = err;
1850 remaining_pages_total -= pte_idx;
1851 goto out;
1852 }
1853 addr += PAGE_SIZE;
1854 ++curr_page_idx;
1855 }
7f70c2a6 1856 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1857 pages_to_write_in_pmd -= batch_size;
1858 remaining_pages_total -= batch_size;
1859 }
1860 if (remaining_pages_total)
1861 goto more;
1862 ret = 0;
1863out:
1864 *num = remaining_pages_total;
1865 return ret;
1866}
1867#endif /* ifdef pte_index */
1868
1869/**
1870 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1871 * @vma: user vma to map to
1872 * @addr: target start user address of these pages
1873 * @pages: source kernel pages
1874 * @num: in: number of pages to map. out: number of pages that were *not*
1875 * mapped. (0 means all pages were successfully mapped).
1876 *
1877 * Preferred over vm_insert_page() when inserting multiple pages.
1878 *
1879 * In case of error, we may have mapped a subset of the provided
1880 * pages. It is the caller's responsibility to account for this case.
1881 *
1882 * The same restrictions apply as in vm_insert_page().
1883 */
1884int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1885 struct page **pages, unsigned long *num)
1886{
1887#ifdef pte_index
1888 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1889
1890 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1891 return -EFAULT;
1892 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1893 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1894 BUG_ON(vma->vm_flags & VM_PFNMAP);
1895 vma->vm_flags |= VM_MIXEDMAP;
1896 }
1897 /* Defer page refcount checking till we're about to map that page. */
1898 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1899#else
1900 unsigned long idx = 0, pgcount = *num;
45779b03 1901 int err = -EINVAL;
8cd3984d
AR
1902
1903 for (; idx < pgcount; ++idx) {
1904 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1905 if (err)
1906 break;
1907 }
1908 *num = pgcount - idx;
1909 return err;
1910#endif /* ifdef pte_index */
1911}
1912EXPORT_SYMBOL(vm_insert_pages);
1913
bfa5bf6d
REB
1914/**
1915 * vm_insert_page - insert single page into user vma
1916 * @vma: user vma to map to
1917 * @addr: target user address of this page
1918 * @page: source kernel page
1919 *
a145dd41
LT
1920 * This allows drivers to insert individual pages they've allocated
1921 * into a user vma.
1922 *
1923 * The page has to be a nice clean _individual_ kernel allocation.
1924 * If you allocate a compound page, you need to have marked it as
1925 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1926 * (see split_page()).
a145dd41
LT
1927 *
1928 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1929 * took an arbitrary page protection parameter. This doesn't allow
1930 * that. Your vma protection will have to be set up correctly, which
1931 * means that if you want a shared writable mapping, you'd better
1932 * ask for a shared writable mapping!
1933 *
1934 * The page does not need to be reserved.
4b6e1e37
KK
1935 *
1936 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1937 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1938 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1939 * function from other places, for example from page-fault handler.
a862f68a
MR
1940 *
1941 * Return: %0 on success, negative error code otherwise.
a145dd41 1942 */
423bad60
NP
1943int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1944 struct page *page)
a145dd41
LT
1945{
1946 if (addr < vma->vm_start || addr >= vma->vm_end)
1947 return -EFAULT;
1948 if (!page_count(page))
1949 return -EINVAL;
4b6e1e37 1950 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1951 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1952 BUG_ON(vma->vm_flags & VM_PFNMAP);
1953 vma->vm_flags |= VM_MIXEDMAP;
1954 }
423bad60 1955 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1956}
e3c3374f 1957EXPORT_SYMBOL(vm_insert_page);
a145dd41 1958
a667d745
SJ
1959/*
1960 * __vm_map_pages - maps range of kernel pages into user vma
1961 * @vma: user vma to map to
1962 * @pages: pointer to array of source kernel pages
1963 * @num: number of pages in page array
1964 * @offset: user's requested vm_pgoff
1965 *
1966 * This allows drivers to map range of kernel pages into a user vma.
1967 *
1968 * Return: 0 on success and error code otherwise.
1969 */
1970static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1971 unsigned long num, unsigned long offset)
1972{
1973 unsigned long count = vma_pages(vma);
1974 unsigned long uaddr = vma->vm_start;
1975 int ret, i;
1976
1977 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1978 if (offset >= num)
a667d745
SJ
1979 return -ENXIO;
1980
1981 /* Fail if the user requested size exceeds available object size */
1982 if (count > num - offset)
1983 return -ENXIO;
1984
1985 for (i = 0; i < count; i++) {
1986 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1987 if (ret < 0)
1988 return ret;
1989 uaddr += PAGE_SIZE;
1990 }
1991
1992 return 0;
1993}
1994
1995/**
1996 * vm_map_pages - maps range of kernel pages starts with non zero offset
1997 * @vma: user vma to map to
1998 * @pages: pointer to array of source kernel pages
1999 * @num: number of pages in page array
2000 *
2001 * Maps an object consisting of @num pages, catering for the user's
2002 * requested vm_pgoff
2003 *
2004 * If we fail to insert any page into the vma, the function will return
2005 * immediately leaving any previously inserted pages present. Callers
2006 * from the mmap handler may immediately return the error as their caller
2007 * will destroy the vma, removing any successfully inserted pages. Other
2008 * callers should make their own arrangements for calling unmap_region().
2009 *
2010 * Context: Process context. Called by mmap handlers.
2011 * Return: 0 on success and error code otherwise.
2012 */
2013int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2014 unsigned long num)
2015{
2016 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2017}
2018EXPORT_SYMBOL(vm_map_pages);
2019
2020/**
2021 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2022 * @vma: user vma to map to
2023 * @pages: pointer to array of source kernel pages
2024 * @num: number of pages in page array
2025 *
2026 * Similar to vm_map_pages(), except that it explicitly sets the offset
2027 * to 0. This function is intended for the drivers that did not consider
2028 * vm_pgoff.
2029 *
2030 * Context: Process context. Called by mmap handlers.
2031 * Return: 0 on success and error code otherwise.
2032 */
2033int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2034 unsigned long num)
2035{
2036 return __vm_map_pages(vma, pages, num, 0);
2037}
2038EXPORT_SYMBOL(vm_map_pages_zero);
2039
9b5a8e00 2040static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2041 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2042{
2043 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2044 pte_t *pte, entry;
2045 spinlock_t *ptl;
2046
423bad60
NP
2047 pte = get_locked_pte(mm, addr, &ptl);
2048 if (!pte)
9b5a8e00 2049 return VM_FAULT_OOM;
b2770da6
RZ
2050 if (!pte_none(*pte)) {
2051 if (mkwrite) {
2052 /*
2053 * For read faults on private mappings the PFN passed
2054 * in may not match the PFN we have mapped if the
2055 * mapped PFN is a writeable COW page. In the mkwrite
2056 * case we are creating a writable PTE for a shared
f2c57d91
JK
2057 * mapping and we expect the PFNs to match. If they
2058 * don't match, we are likely racing with block
2059 * allocation and mapping invalidation so just skip the
2060 * update.
b2770da6 2061 */
f2c57d91
JK
2062 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2063 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2064 goto out_unlock;
f2c57d91 2065 }
cae85cb8
JK
2066 entry = pte_mkyoung(*pte);
2067 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2068 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2069 update_mmu_cache(vma, addr, pte);
2070 }
2071 goto out_unlock;
b2770da6 2072 }
423bad60
NP
2073
2074 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2075 if (pfn_t_devmap(pfn))
2076 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2077 else
2078 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2079
b2770da6
RZ
2080 if (mkwrite) {
2081 entry = pte_mkyoung(entry);
2082 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2083 }
2084
423bad60 2085 set_pte_at(mm, addr, pte, entry);
4b3073e1 2086 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2087
423bad60
NP
2088out_unlock:
2089 pte_unmap_unlock(pte, ptl);
9b5a8e00 2090 return VM_FAULT_NOPAGE;
423bad60
NP
2091}
2092
f5e6d1d5
MW
2093/**
2094 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2095 * @vma: user vma to map to
2096 * @addr: target user address of this page
2097 * @pfn: source kernel pfn
2098 * @pgprot: pgprot flags for the inserted page
2099 *
a1a0aea5 2100 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2101 * to override pgprot on a per-page basis.
2102 *
2103 * This only makes sense for IO mappings, and it makes no sense for
2104 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2105 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2106 * impractical.
2107 *
574c5b3d
TH
2108 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2109 * a value of @pgprot different from that of @vma->vm_page_prot.
2110 *
ae2b01f3 2111 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2112 * Return: vm_fault_t value.
2113 */
2114vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn, pgprot_t pgprot)
2116{
6d958546
MW
2117 /*
2118 * Technically, architectures with pte_special can avoid all these
2119 * restrictions (same for remap_pfn_range). However we would like
2120 * consistency in testing and feature parity among all, so we should
2121 * try to keep these invariants in place for everybody.
2122 */
2123 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2124 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2125 (VM_PFNMAP|VM_MIXEDMAP));
2126 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2127 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2128
2129 if (addr < vma->vm_start || addr >= vma->vm_end)
2130 return VM_FAULT_SIGBUS;
2131
2132 if (!pfn_modify_allowed(pfn, pgprot))
2133 return VM_FAULT_SIGBUS;
2134
2135 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2136
9b5a8e00 2137 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2138 false);
f5e6d1d5
MW
2139}
2140EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2141
ae2b01f3
MW
2142/**
2143 * vmf_insert_pfn - insert single pfn into user vma
2144 * @vma: user vma to map to
2145 * @addr: target user address of this page
2146 * @pfn: source kernel pfn
2147 *
2148 * Similar to vm_insert_page, this allows drivers to insert individual pages
2149 * they've allocated into a user vma. Same comments apply.
2150 *
2151 * This function should only be called from a vm_ops->fault handler, and
2152 * in that case the handler should return the result of this function.
2153 *
2154 * vma cannot be a COW mapping.
2155 *
2156 * As this is called only for pages that do not currently exist, we
2157 * do not need to flush old virtual caches or the TLB.
2158 *
2159 * Context: Process context. May allocate using %GFP_KERNEL.
2160 * Return: vm_fault_t value.
2161 */
2162vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 unsigned long pfn)
2164{
2165 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2166}
2167EXPORT_SYMBOL(vmf_insert_pfn);
2168
785a3fab
DW
2169static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2170{
2171 /* these checks mirror the abort conditions in vm_normal_page */
2172 if (vma->vm_flags & VM_MIXEDMAP)
2173 return true;
2174 if (pfn_t_devmap(pfn))
2175 return true;
2176 if (pfn_t_special(pfn))
2177 return true;
2178 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2179 return true;
2180 return false;
2181}
2182
79f3aa5b 2183static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2184 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2185 bool mkwrite)
423bad60 2186{
79f3aa5b 2187 int err;
87744ab3 2188
785a3fab 2189 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2190
423bad60 2191 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2192 return VM_FAULT_SIGBUS;
308a047c
BP
2193
2194 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2195
42e4089c 2196 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2197 return VM_FAULT_SIGBUS;
42e4089c 2198
423bad60
NP
2199 /*
2200 * If we don't have pte special, then we have to use the pfn_valid()
2201 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2202 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2203 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2204 * without pte special, it would there be refcounted as a normal page.
423bad60 2205 */
00b3a331
LD
2206 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2207 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2208 struct page *page;
2209
03fc2da6
DW
2210 /*
2211 * At this point we are committed to insert_page()
2212 * regardless of whether the caller specified flags that
2213 * result in pfn_t_has_page() == false.
2214 */
2215 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2216 err = insert_page(vma, addr, page, pgprot);
2217 } else {
9b5a8e00 2218 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2219 }
b2770da6 2220
5d747637
MW
2221 if (err == -ENOMEM)
2222 return VM_FAULT_OOM;
2223 if (err < 0 && err != -EBUSY)
2224 return VM_FAULT_SIGBUS;
2225
2226 return VM_FAULT_NOPAGE;
e0dc0d8f 2227}
79f3aa5b 2228
574c5b3d
TH
2229/**
2230 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2231 * @vma: user vma to map to
2232 * @addr: target user address of this page
2233 * @pfn: source kernel pfn
2234 * @pgprot: pgprot flags for the inserted page
2235 *
a1a0aea5 2236 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2237 * to override pgprot on a per-page basis.
2238 *
2239 * Typically this function should be used by drivers to set caching- and
2240 * encryption bits different than those of @vma->vm_page_prot, because
2241 * the caching- or encryption mode may not be known at mmap() time.
2242 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2243 * to set caching and encryption bits for those vmas (except for COW pages).
2244 * This is ensured by core vm only modifying these page table entries using
2245 * functions that don't touch caching- or encryption bits, using pte_modify()
2246 * if needed. (See for example mprotect()).
2247 * Also when new page-table entries are created, this is only done using the
2248 * fault() callback, and never using the value of vma->vm_page_prot,
2249 * except for page-table entries that point to anonymous pages as the result
2250 * of COW.
2251 *
2252 * Context: Process context. May allocate using %GFP_KERNEL.
2253 * Return: vm_fault_t value.
2254 */
2255vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2256 pfn_t pfn, pgprot_t pgprot)
2257{
2258 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2259}
5379e4dd 2260EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2261
79f3aa5b
MW
2262vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2263 pfn_t pfn)
2264{
574c5b3d 2265 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2266}
5d747637 2267EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2268
ab77dab4
SJ
2269/*
2270 * If the insertion of PTE failed because someone else already added a
2271 * different entry in the mean time, we treat that as success as we assume
2272 * the same entry was actually inserted.
2273 */
ab77dab4
SJ
2274vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2275 unsigned long addr, pfn_t pfn)
b2770da6 2276{
574c5b3d 2277 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2278}
ab77dab4 2279EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2280
1da177e4
LT
2281/*
2282 * maps a range of physical memory into the requested pages. the old
2283 * mappings are removed. any references to nonexistent pages results
2284 * in null mappings (currently treated as "copy-on-access")
2285 */
2286static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2287 unsigned long addr, unsigned long end,
2288 unsigned long pfn, pgprot_t prot)
2289{
90a3e375 2290 pte_t *pte, *mapped_pte;
c74df32c 2291 spinlock_t *ptl;
42e4089c 2292 int err = 0;
1da177e4 2293
90a3e375 2294 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2295 if (!pte)
2296 return -ENOMEM;
6606c3e0 2297 arch_enter_lazy_mmu_mode();
1da177e4
LT
2298 do {
2299 BUG_ON(!pte_none(*pte));
42e4089c
AK
2300 if (!pfn_modify_allowed(pfn, prot)) {
2301 err = -EACCES;
2302 break;
2303 }
7e675137 2304 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2305 pfn++;
2306 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2307 arch_leave_lazy_mmu_mode();
90a3e375 2308 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2309 return err;
1da177e4
LT
2310}
2311
2312static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2313 unsigned long addr, unsigned long end,
2314 unsigned long pfn, pgprot_t prot)
2315{
2316 pmd_t *pmd;
2317 unsigned long next;
42e4089c 2318 int err;
1da177e4
LT
2319
2320 pfn -= addr >> PAGE_SHIFT;
2321 pmd = pmd_alloc(mm, pud, addr);
2322 if (!pmd)
2323 return -ENOMEM;
f66055ab 2324 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2325 do {
2326 next = pmd_addr_end(addr, end);
42e4089c
AK
2327 err = remap_pte_range(mm, pmd, addr, next,
2328 pfn + (addr >> PAGE_SHIFT), prot);
2329 if (err)
2330 return err;
1da177e4
LT
2331 } while (pmd++, addr = next, addr != end);
2332 return 0;
2333}
2334
c2febafc 2335static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2338{
2339 pud_t *pud;
2340 unsigned long next;
42e4089c 2341 int err;
1da177e4
LT
2342
2343 pfn -= addr >> PAGE_SHIFT;
c2febafc 2344 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2345 if (!pud)
2346 return -ENOMEM;
2347 do {
2348 next = pud_addr_end(addr, end);
42e4089c
AK
2349 err = remap_pmd_range(mm, pud, addr, next,
2350 pfn + (addr >> PAGE_SHIFT), prot);
2351 if (err)
2352 return err;
1da177e4
LT
2353 } while (pud++, addr = next, addr != end);
2354 return 0;
2355}
2356
c2febafc
KS
2357static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2360{
2361 p4d_t *p4d;
2362 unsigned long next;
42e4089c 2363 int err;
c2febafc
KS
2364
2365 pfn -= addr >> PAGE_SHIFT;
2366 p4d = p4d_alloc(mm, pgd, addr);
2367 if (!p4d)
2368 return -ENOMEM;
2369 do {
2370 next = p4d_addr_end(addr, end);
42e4089c
AK
2371 err = remap_pud_range(mm, p4d, addr, next,
2372 pfn + (addr >> PAGE_SHIFT), prot);
2373 if (err)
2374 return err;
c2febafc
KS
2375 } while (p4d++, addr = next, addr != end);
2376 return 0;
2377}
2378
74ffa5a3
CH
2379/*
2380 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2381 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2382 */
74ffa5a3
CH
2383int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2384 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2385{
2386 pgd_t *pgd;
2387 unsigned long next;
2d15cab8 2388 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2389 struct mm_struct *mm = vma->vm_mm;
2390 int err;
2391
0c4123e3
AZ
2392 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2393 return -EINVAL;
2394
1da177e4
LT
2395 /*
2396 * Physically remapped pages are special. Tell the
2397 * rest of the world about it:
2398 * VM_IO tells people not to look at these pages
2399 * (accesses can have side effects).
6aab341e
LT
2400 * VM_PFNMAP tells the core MM that the base pages are just
2401 * raw PFN mappings, and do not have a "struct page" associated
2402 * with them.
314e51b9
KK
2403 * VM_DONTEXPAND
2404 * Disable vma merging and expanding with mremap().
2405 * VM_DONTDUMP
2406 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2407 *
2408 * There's a horrible special case to handle copy-on-write
2409 * behaviour that some programs depend on. We mark the "original"
2410 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2411 * See vm_normal_page() for details.
1da177e4 2412 */
b3b9c293
KK
2413 if (is_cow_mapping(vma->vm_flags)) {
2414 if (addr != vma->vm_start || end != vma->vm_end)
2415 return -EINVAL;
fb155c16 2416 vma->vm_pgoff = pfn;
b3b9c293
KK
2417 }
2418
314e51b9 2419 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2420
2421 BUG_ON(addr >= end);
2422 pfn -= addr >> PAGE_SHIFT;
2423 pgd = pgd_offset(mm, addr);
2424 flush_cache_range(vma, addr, end);
1da177e4
LT
2425 do {
2426 next = pgd_addr_end(addr, end);
c2febafc 2427 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2428 pfn + (addr >> PAGE_SHIFT), prot);
2429 if (err)
74ffa5a3 2430 return err;
1da177e4 2431 } while (pgd++, addr = next, addr != end);
2ab64037 2432
74ffa5a3
CH
2433 return 0;
2434}
2435
2436/**
2437 * remap_pfn_range - remap kernel memory to userspace
2438 * @vma: user vma to map to
2439 * @addr: target page aligned user address to start at
2440 * @pfn: page frame number of kernel physical memory address
2441 * @size: size of mapping area
2442 * @prot: page protection flags for this mapping
2443 *
2444 * Note: this is only safe if the mm semaphore is held when called.
2445 *
2446 * Return: %0 on success, negative error code otherwise.
2447 */
2448int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2449 unsigned long pfn, unsigned long size, pgprot_t prot)
2450{
2451 int err;
2452
2453 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2454 if (err)
74ffa5a3 2455 return -EINVAL;
2ab64037 2456
74ffa5a3
CH
2457 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2458 if (err)
2459 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2460 return err;
2461}
2462EXPORT_SYMBOL(remap_pfn_range);
2463
b4cbb197
LT
2464/**
2465 * vm_iomap_memory - remap memory to userspace
2466 * @vma: user vma to map to
abd69b9e 2467 * @start: start of the physical memory to be mapped
b4cbb197
LT
2468 * @len: size of area
2469 *
2470 * This is a simplified io_remap_pfn_range() for common driver use. The
2471 * driver just needs to give us the physical memory range to be mapped,
2472 * we'll figure out the rest from the vma information.
2473 *
2474 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2475 * whatever write-combining details or similar.
a862f68a
MR
2476 *
2477 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2478 */
2479int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2480{
2481 unsigned long vm_len, pfn, pages;
2482
2483 /* Check that the physical memory area passed in looks valid */
2484 if (start + len < start)
2485 return -EINVAL;
2486 /*
2487 * You *really* shouldn't map things that aren't page-aligned,
2488 * but we've historically allowed it because IO memory might
2489 * just have smaller alignment.
2490 */
2491 len += start & ~PAGE_MASK;
2492 pfn = start >> PAGE_SHIFT;
2493 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2494 if (pfn + pages < pfn)
2495 return -EINVAL;
2496
2497 /* We start the mapping 'vm_pgoff' pages into the area */
2498 if (vma->vm_pgoff > pages)
2499 return -EINVAL;
2500 pfn += vma->vm_pgoff;
2501 pages -= vma->vm_pgoff;
2502
2503 /* Can we fit all of the mapping? */
2504 vm_len = vma->vm_end - vma->vm_start;
2505 if (vm_len >> PAGE_SHIFT > pages)
2506 return -EINVAL;
2507
2508 /* Ok, let it rip */
2509 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2510}
2511EXPORT_SYMBOL(vm_iomap_memory);
2512
aee16b3c
JF
2513static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2514 unsigned long addr, unsigned long end,
e80d3909
JR
2515 pte_fn_t fn, void *data, bool create,
2516 pgtbl_mod_mask *mask)
aee16b3c 2517{
8abb50c7 2518 pte_t *pte, *mapped_pte;
be1db475 2519 int err = 0;
3f649ab7 2520 spinlock_t *ptl;
aee16b3c 2521
be1db475 2522 if (create) {
8abb50c7 2523 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2524 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2525 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2526 if (!pte)
2527 return -ENOMEM;
2528 } else {
8abb50c7 2529 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2530 pte_offset_kernel(pmd, addr) :
2531 pte_offset_map_lock(mm, pmd, addr, &ptl);
2532 }
aee16b3c
JF
2533
2534 BUG_ON(pmd_huge(*pmd));
2535
38e0edb1
JF
2536 arch_enter_lazy_mmu_mode();
2537
eeb4a05f
CH
2538 if (fn) {
2539 do {
2540 if (create || !pte_none(*pte)) {
2541 err = fn(pte++, addr, data);
2542 if (err)
2543 break;
2544 }
2545 } while (addr += PAGE_SIZE, addr != end);
2546 }
e80d3909 2547 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2548
38e0edb1
JF
2549 arch_leave_lazy_mmu_mode();
2550
aee16b3c 2551 if (mm != &init_mm)
8abb50c7 2552 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2553 return err;
2554}
2555
2556static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2557 unsigned long addr, unsigned long end,
e80d3909
JR
2558 pte_fn_t fn, void *data, bool create,
2559 pgtbl_mod_mask *mask)
aee16b3c
JF
2560{
2561 pmd_t *pmd;
2562 unsigned long next;
be1db475 2563 int err = 0;
aee16b3c 2564
ceb86879
AK
2565 BUG_ON(pud_huge(*pud));
2566
be1db475 2567 if (create) {
e80d3909 2568 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2569 if (!pmd)
2570 return -ENOMEM;
2571 } else {
2572 pmd = pmd_offset(pud, addr);
2573 }
aee16b3c
JF
2574 do {
2575 next = pmd_addr_end(addr, end);
0c95cba4
NP
2576 if (pmd_none(*pmd) && !create)
2577 continue;
2578 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2579 return -EINVAL;
2580 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2581 if (!create)
2582 continue;
2583 pmd_clear_bad(pmd);
be1db475 2584 }
0c95cba4
NP
2585 err = apply_to_pte_range(mm, pmd, addr, next,
2586 fn, data, create, mask);
2587 if (err)
2588 break;
aee16b3c 2589 } while (pmd++, addr = next, addr != end);
0c95cba4 2590
aee16b3c
JF
2591 return err;
2592}
2593
c2febafc 2594static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2595 unsigned long addr, unsigned long end,
e80d3909
JR
2596 pte_fn_t fn, void *data, bool create,
2597 pgtbl_mod_mask *mask)
aee16b3c
JF
2598{
2599 pud_t *pud;
2600 unsigned long next;
be1db475 2601 int err = 0;
aee16b3c 2602
be1db475 2603 if (create) {
e80d3909 2604 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2605 if (!pud)
2606 return -ENOMEM;
2607 } else {
2608 pud = pud_offset(p4d, addr);
2609 }
aee16b3c
JF
2610 do {
2611 next = pud_addr_end(addr, end);
0c95cba4
NP
2612 if (pud_none(*pud) && !create)
2613 continue;
2614 if (WARN_ON_ONCE(pud_leaf(*pud)))
2615 return -EINVAL;
2616 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2617 if (!create)
2618 continue;
2619 pud_clear_bad(pud);
be1db475 2620 }
0c95cba4
NP
2621 err = apply_to_pmd_range(mm, pud, addr, next,
2622 fn, data, create, mask);
2623 if (err)
2624 break;
aee16b3c 2625 } while (pud++, addr = next, addr != end);
0c95cba4 2626
aee16b3c
JF
2627 return err;
2628}
2629
c2febafc
KS
2630static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 unsigned long addr, unsigned long end,
e80d3909
JR
2632 pte_fn_t fn, void *data, bool create,
2633 pgtbl_mod_mask *mask)
c2febafc
KS
2634{
2635 p4d_t *p4d;
2636 unsigned long next;
be1db475 2637 int err = 0;
c2febafc 2638
be1db475 2639 if (create) {
e80d3909 2640 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2641 if (!p4d)
2642 return -ENOMEM;
2643 } else {
2644 p4d = p4d_offset(pgd, addr);
2645 }
c2febafc
KS
2646 do {
2647 next = p4d_addr_end(addr, end);
0c95cba4
NP
2648 if (p4d_none(*p4d) && !create)
2649 continue;
2650 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2651 return -EINVAL;
2652 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2653 if (!create)
2654 continue;
2655 p4d_clear_bad(p4d);
be1db475 2656 }
0c95cba4
NP
2657 err = apply_to_pud_range(mm, p4d, addr, next,
2658 fn, data, create, mask);
2659 if (err)
2660 break;
c2febafc 2661 } while (p4d++, addr = next, addr != end);
0c95cba4 2662
c2febafc
KS
2663 return err;
2664}
2665
be1db475
DA
2666static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2667 unsigned long size, pte_fn_t fn,
2668 void *data, bool create)
aee16b3c
JF
2669{
2670 pgd_t *pgd;
e80d3909 2671 unsigned long start = addr, next;
57250a5b 2672 unsigned long end = addr + size;
e80d3909 2673 pgtbl_mod_mask mask = 0;
be1db475 2674 int err = 0;
aee16b3c 2675
9cb65bc3
MP
2676 if (WARN_ON(addr >= end))
2677 return -EINVAL;
2678
aee16b3c
JF
2679 pgd = pgd_offset(mm, addr);
2680 do {
2681 next = pgd_addr_end(addr, end);
0c95cba4 2682 if (pgd_none(*pgd) && !create)
be1db475 2683 continue;
0c95cba4
NP
2684 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2685 return -EINVAL;
2686 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2687 if (!create)
2688 continue;
2689 pgd_clear_bad(pgd);
2690 }
2691 err = apply_to_p4d_range(mm, pgd, addr, next,
2692 fn, data, create, &mask);
aee16b3c
JF
2693 if (err)
2694 break;
2695 } while (pgd++, addr = next, addr != end);
57250a5b 2696
e80d3909
JR
2697 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2698 arch_sync_kernel_mappings(start, start + size);
2699
aee16b3c
JF
2700 return err;
2701}
be1db475
DA
2702
2703/*
2704 * Scan a region of virtual memory, filling in page tables as necessary
2705 * and calling a provided function on each leaf page table.
2706 */
2707int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2708 unsigned long size, pte_fn_t fn, void *data)
2709{
2710 return __apply_to_page_range(mm, addr, size, fn, data, true);
2711}
aee16b3c
JF
2712EXPORT_SYMBOL_GPL(apply_to_page_range);
2713
be1db475
DA
2714/*
2715 * Scan a region of virtual memory, calling a provided function on
2716 * each leaf page table where it exists.
2717 *
2718 * Unlike apply_to_page_range, this does _not_ fill in page tables
2719 * where they are absent.
2720 */
2721int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2722 unsigned long size, pte_fn_t fn, void *data)
2723{
2724 return __apply_to_page_range(mm, addr, size, fn, data, false);
2725}
2726EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2727
8f4e2101 2728/*
9b4bdd2f
KS
2729 * handle_pte_fault chooses page fault handler according to an entry which was
2730 * read non-atomically. Before making any commitment, on those architectures
2731 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2732 * parts, do_swap_page must check under lock before unmapping the pte and
2733 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2734 * and do_anonymous_page can safely check later on).
8f4e2101 2735 */
2ca99358 2736static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2737{
2738 int same = 1;
923717cb 2739#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2740 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2741 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2742 spin_lock(ptl);
2ca99358 2743 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2744 spin_unlock(ptl);
8f4e2101
HD
2745 }
2746#endif
2ca99358
PX
2747 pte_unmap(vmf->pte);
2748 vmf->pte = NULL;
8f4e2101
HD
2749 return same;
2750}
2751
83d116c5
JH
2752static inline bool cow_user_page(struct page *dst, struct page *src,
2753 struct vm_fault *vmf)
6aab341e 2754{
83d116c5
JH
2755 bool ret;
2756 void *kaddr;
2757 void __user *uaddr;
c3e5ea6e 2758 bool locked = false;
83d116c5
JH
2759 struct vm_area_struct *vma = vmf->vma;
2760 struct mm_struct *mm = vma->vm_mm;
2761 unsigned long addr = vmf->address;
2762
83d116c5
JH
2763 if (likely(src)) {
2764 copy_user_highpage(dst, src, addr, vma);
2765 return true;
2766 }
2767
6aab341e
LT
2768 /*
2769 * If the source page was a PFN mapping, we don't have
2770 * a "struct page" for it. We do a best-effort copy by
2771 * just copying from the original user address. If that
2772 * fails, we just zero-fill it. Live with it.
2773 */
83d116c5
JH
2774 kaddr = kmap_atomic(dst);
2775 uaddr = (void __user *)(addr & PAGE_MASK);
2776
2777 /*
2778 * On architectures with software "accessed" bits, we would
2779 * take a double page fault, so mark it accessed here.
2780 */
c3e5ea6e 2781 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2782 pte_t entry;
5d2a2dbb 2783
83d116c5 2784 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2785 locked = true;
83d116c5
JH
2786 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2787 /*
2788 * Other thread has already handled the fault
7df67697 2789 * and update local tlb only
83d116c5 2790 */
7df67697 2791 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2792 ret = false;
2793 goto pte_unlock;
2794 }
2795
2796 entry = pte_mkyoung(vmf->orig_pte);
2797 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2798 update_mmu_cache(vma, addr, vmf->pte);
2799 }
2800
2801 /*
2802 * This really shouldn't fail, because the page is there
2803 * in the page tables. But it might just be unreadable,
2804 * in which case we just give up and fill the result with
2805 * zeroes.
2806 */
2807 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2808 if (locked)
2809 goto warn;
2810
2811 /* Re-validate under PTL if the page is still mapped */
2812 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2813 locked = true;
2814 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2815 /* The PTE changed under us, update local tlb */
2816 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2817 ret = false;
2818 goto pte_unlock;
2819 }
2820
5d2a2dbb 2821 /*
985ba004 2822 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2823 * Try to copy again under PTL.
5d2a2dbb 2824 */
c3e5ea6e
KS
2825 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2826 /*
2827 * Give a warn in case there can be some obscure
2828 * use-case
2829 */
2830warn:
2831 WARN_ON_ONCE(1);
2832 clear_page(kaddr);
2833 }
83d116c5
JH
2834 }
2835
2836 ret = true;
2837
2838pte_unlock:
c3e5ea6e 2839 if (locked)
83d116c5
JH
2840 pte_unmap_unlock(vmf->pte, vmf->ptl);
2841 kunmap_atomic(kaddr);
2842 flush_dcache_page(dst);
2843
2844 return ret;
6aab341e
LT
2845}
2846
c20cd45e
MH
2847static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2848{
2849 struct file *vm_file = vma->vm_file;
2850
2851 if (vm_file)
2852 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2853
2854 /*
2855 * Special mappings (e.g. VDSO) do not have any file so fake
2856 * a default GFP_KERNEL for them.
2857 */
2858 return GFP_KERNEL;
2859}
2860
fb09a464
KS
2861/*
2862 * Notify the address space that the page is about to become writable so that
2863 * it can prohibit this or wait for the page to get into an appropriate state.
2864 *
2865 * We do this without the lock held, so that it can sleep if it needs to.
2866 */
2b740303 2867static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2868{
2b740303 2869 vm_fault_t ret;
38b8cb7f
JK
2870 struct page *page = vmf->page;
2871 unsigned int old_flags = vmf->flags;
fb09a464 2872
38b8cb7f 2873 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2874
dc617f29
DW
2875 if (vmf->vma->vm_file &&
2876 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2877 return VM_FAULT_SIGBUS;
2878
11bac800 2879 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2880 /* Restore original flags so that caller is not surprised */
2881 vmf->flags = old_flags;
fb09a464
KS
2882 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2883 return ret;
2884 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2885 lock_page(page);
2886 if (!page->mapping) {
2887 unlock_page(page);
2888 return 0; /* retry */
2889 }
2890 ret |= VM_FAULT_LOCKED;
2891 } else
2892 VM_BUG_ON_PAGE(!PageLocked(page), page);
2893 return ret;
2894}
2895
97ba0c2b
JK
2896/*
2897 * Handle dirtying of a page in shared file mapping on a write fault.
2898 *
2899 * The function expects the page to be locked and unlocks it.
2900 */
89b15332 2901static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2902{
89b15332 2903 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2904 struct address_space *mapping;
89b15332 2905 struct page *page = vmf->page;
97ba0c2b
JK
2906 bool dirtied;
2907 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2908
2909 dirtied = set_page_dirty(page);
2910 VM_BUG_ON_PAGE(PageAnon(page), page);
2911 /*
2912 * Take a local copy of the address_space - page.mapping may be zeroed
2913 * by truncate after unlock_page(). The address_space itself remains
2914 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2915 * release semantics to prevent the compiler from undoing this copying.
2916 */
2917 mapping = page_rmapping(page);
2918 unlock_page(page);
2919
89b15332
JW
2920 if (!page_mkwrite)
2921 file_update_time(vma->vm_file);
2922
2923 /*
2924 * Throttle page dirtying rate down to writeback speed.
2925 *
2926 * mapping may be NULL here because some device drivers do not
2927 * set page.mapping but still dirty their pages
2928 *
c1e8d7c6 2929 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2930 * is pinning the mapping, as per above.
2931 */
97ba0c2b 2932 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2933 struct file *fpin;
2934
2935 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2936 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2937 if (fpin) {
2938 fput(fpin);
2939 return VM_FAULT_RETRY;
2940 }
97ba0c2b
JK
2941 }
2942
89b15332 2943 return 0;
97ba0c2b
JK
2944}
2945
4e047f89
SR
2946/*
2947 * Handle write page faults for pages that can be reused in the current vma
2948 *
2949 * This can happen either due to the mapping being with the VM_SHARED flag,
2950 * or due to us being the last reference standing to the page. In either
2951 * case, all we need to do here is to mark the page as writable and update
2952 * any related book-keeping.
2953 */
997dd98d 2954static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2955 __releases(vmf->ptl)
4e047f89 2956{
82b0f8c3 2957 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2958 struct page *page = vmf->page;
4e047f89
SR
2959 pte_t entry;
2960 /*
2961 * Clear the pages cpupid information as the existing
2962 * information potentially belongs to a now completely
2963 * unrelated process.
2964 */
2965 if (page)
2966 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2967
2994302b
JK
2968 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2969 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2970 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2971 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2972 update_mmu_cache(vma, vmf->address, vmf->pte);
2973 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2974 count_vm_event(PGREUSE);
4e047f89
SR
2975}
2976
2f38ab2c
SR
2977/*
2978 * Handle the case of a page which we actually need to copy to a new page.
2979 *
c1e8d7c6 2980 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2981 * without the ptl held.
2982 *
2983 * High level logic flow:
2984 *
2985 * - Allocate a page, copy the content of the old page to the new one.
2986 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2987 * - Take the PTL. If the pte changed, bail out and release the allocated page
2988 * - If the pte is still the way we remember it, update the page table and all
2989 * relevant references. This includes dropping the reference the page-table
2990 * held to the old page, as well as updating the rmap.
2991 * - In any case, unlock the PTL and drop the reference we took to the old page.
2992 */
2b740303 2993static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2994{
82b0f8c3 2995 struct vm_area_struct *vma = vmf->vma;
bae473a4 2996 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2997 struct page *old_page = vmf->page;
2f38ab2c 2998 struct page *new_page = NULL;
2f38ab2c
SR
2999 pte_t entry;
3000 int page_copied = 0;
ac46d4f3 3001 struct mmu_notifier_range range;
2f38ab2c
SR
3002
3003 if (unlikely(anon_vma_prepare(vma)))
3004 goto oom;
3005
2994302b 3006 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3007 new_page = alloc_zeroed_user_highpage_movable(vma,
3008 vmf->address);
2f38ab2c
SR
3009 if (!new_page)
3010 goto oom;
3011 } else {
bae473a4 3012 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3013 vmf->address);
2f38ab2c
SR
3014 if (!new_page)
3015 goto oom;
83d116c5
JH
3016
3017 if (!cow_user_page(new_page, old_page, vmf)) {
3018 /*
3019 * COW failed, if the fault was solved by other,
3020 * it's fine. If not, userspace would re-fault on
3021 * the same address and we will handle the fault
3022 * from the second attempt.
3023 */
3024 put_page(new_page);
3025 if (old_page)
3026 put_page(old_page);
3027 return 0;
3028 }
2f38ab2c 3029 }
2f38ab2c 3030
8f425e4e 3031 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3032 goto oom_free_new;
9d82c694 3033 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3034
eb3c24f3
MG
3035 __SetPageUptodate(new_page);
3036
7269f999 3037 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3038 vmf->address & PAGE_MASK,
ac46d4f3
JG
3039 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3040 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3041
3042 /*
3043 * Re-check the pte - we dropped the lock
3044 */
82b0f8c3 3045 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3046 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3047 if (old_page) {
3048 if (!PageAnon(old_page)) {
eca56ff9
JM
3049 dec_mm_counter_fast(mm,
3050 mm_counter_file(old_page));
2f38ab2c
SR
3051 inc_mm_counter_fast(mm, MM_ANONPAGES);
3052 }
3053 } else {
3054 inc_mm_counter_fast(mm, MM_ANONPAGES);
3055 }
2994302b 3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3057 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3058 entry = pte_sw_mkyoung(entry);
2f38ab2c 3059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3060
2f38ab2c
SR
3061 /*
3062 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3063 * pte with the new entry, to keep TLBs on different CPUs in
3064 * sync. This code used to set the new PTE then flush TLBs, but
3065 * that left a window where the new PTE could be loaded into
3066 * some TLBs while the old PTE remains in others.
2f38ab2c 3067 */
82b0f8c3
JK
3068 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3069 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3070 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3071 /*
3072 * We call the notify macro here because, when using secondary
3073 * mmu page tables (such as kvm shadow page tables), we want the
3074 * new page to be mapped directly into the secondary page table.
3075 */
82b0f8c3
JK
3076 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3077 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3078 if (old_page) {
3079 /*
3080 * Only after switching the pte to the new page may
3081 * we remove the mapcount here. Otherwise another
3082 * process may come and find the rmap count decremented
3083 * before the pte is switched to the new page, and
3084 * "reuse" the old page writing into it while our pte
3085 * here still points into it and can be read by other
3086 * threads.
3087 *
3088 * The critical issue is to order this
3089 * page_remove_rmap with the ptp_clear_flush above.
3090 * Those stores are ordered by (if nothing else,)
3091 * the barrier present in the atomic_add_negative
3092 * in page_remove_rmap.
3093 *
3094 * Then the TLB flush in ptep_clear_flush ensures that
3095 * no process can access the old page before the
3096 * decremented mapcount is visible. And the old page
3097 * cannot be reused until after the decremented
3098 * mapcount is visible. So transitively, TLBs to
3099 * old page will be flushed before it can be reused.
3100 */
d281ee61 3101 page_remove_rmap(old_page, false);
2f38ab2c
SR
3102 }
3103
3104 /* Free the old page.. */
3105 new_page = old_page;
3106 page_copied = 1;
3107 } else {
7df67697 3108 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3109 }
3110
3111 if (new_page)
09cbfeaf 3112 put_page(new_page);
2f38ab2c 3113
82b0f8c3 3114 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3115 /*
3116 * No need to double call mmu_notifier->invalidate_range() callback as
3117 * the above ptep_clear_flush_notify() did already call it.
3118 */
ac46d4f3 3119 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3120 if (old_page) {
3121 /*
3122 * Don't let another task, with possibly unlocked vma,
3123 * keep the mlocked page.
3124 */
3125 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3126 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3127 if (PageMlocked(old_page))
3128 munlock_vma_page(old_page);
2f38ab2c
SR
3129 unlock_page(old_page);
3130 }
f4c4a3f4
HY
3131 if (page_copied)
3132 free_swap_cache(old_page);
09cbfeaf 3133 put_page(old_page);
2f38ab2c
SR
3134 }
3135 return page_copied ? VM_FAULT_WRITE : 0;
3136oom_free_new:
09cbfeaf 3137 put_page(new_page);
2f38ab2c
SR
3138oom:
3139 if (old_page)
09cbfeaf 3140 put_page(old_page);
2f38ab2c
SR
3141 return VM_FAULT_OOM;
3142}
3143
66a6197c
JK
3144/**
3145 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3146 * writeable once the page is prepared
3147 *
3148 * @vmf: structure describing the fault
3149 *
3150 * This function handles all that is needed to finish a write page fault in a
3151 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3152 * It handles locking of PTE and modifying it.
66a6197c
JK
3153 *
3154 * The function expects the page to be locked or other protection against
3155 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3156 *
2797e79f 3157 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3158 * we acquired PTE lock.
66a6197c 3159 */
2b740303 3160vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3161{
3162 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3163 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3164 &vmf->ptl);
3165 /*
3166 * We might have raced with another page fault while we released the
3167 * pte_offset_map_lock.
3168 */
3169 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3170 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3171 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3172 return VM_FAULT_NOPAGE;
66a6197c
JK
3173 }
3174 wp_page_reuse(vmf);
a19e2553 3175 return 0;
66a6197c
JK
3176}
3177
dd906184
BH
3178/*
3179 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3180 * mapping
3181 */
2b740303 3182static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3183{
82b0f8c3 3184 struct vm_area_struct *vma = vmf->vma;
bae473a4 3185
dd906184 3186 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3187 vm_fault_t ret;
dd906184 3188
82b0f8c3 3189 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3190 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3191 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3192 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3193 return ret;
66a6197c 3194 return finish_mkwrite_fault(vmf);
dd906184 3195 }
997dd98d
JK
3196 wp_page_reuse(vmf);
3197 return VM_FAULT_WRITE;
dd906184
BH
3198}
3199
2b740303 3200static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3201 __releases(vmf->ptl)
93e478d4 3202{
82b0f8c3 3203 struct vm_area_struct *vma = vmf->vma;
89b15332 3204 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3205
a41b70d6 3206 get_page(vmf->page);
93e478d4 3207
93e478d4 3208 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3209 vm_fault_t tmp;
93e478d4 3210
82b0f8c3 3211 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3212 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3213 if (unlikely(!tmp || (tmp &
3214 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3215 put_page(vmf->page);
93e478d4
SR
3216 return tmp;
3217 }
66a6197c 3218 tmp = finish_mkwrite_fault(vmf);
a19e2553 3219 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3220 unlock_page(vmf->page);
a41b70d6 3221 put_page(vmf->page);
66a6197c 3222 return tmp;
93e478d4 3223 }
66a6197c
JK
3224 } else {
3225 wp_page_reuse(vmf);
997dd98d 3226 lock_page(vmf->page);
93e478d4 3227 }
89b15332 3228 ret |= fault_dirty_shared_page(vmf);
997dd98d 3229 put_page(vmf->page);
93e478d4 3230
89b15332 3231 return ret;
93e478d4
SR
3232}
3233
1da177e4
LT
3234/*
3235 * This routine handles present pages, when users try to write
3236 * to a shared page. It is done by copying the page to a new address
3237 * and decrementing the shared-page counter for the old page.
3238 *
1da177e4
LT
3239 * Note that this routine assumes that the protection checks have been
3240 * done by the caller (the low-level page fault routine in most cases).
3241 * Thus we can safely just mark it writable once we've done any necessary
3242 * COW.
3243 *
3244 * We also mark the page dirty at this point even though the page will
3245 * change only once the write actually happens. This avoids a few races,
3246 * and potentially makes it more efficient.
3247 *
c1e8d7c6 3248 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3249 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3250 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3251 */
2b740303 3252static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3253 __releases(vmf->ptl)
1da177e4 3254{
82b0f8c3 3255 struct vm_area_struct *vma = vmf->vma;
1da177e4 3256
292924b2 3257 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3258 pte_unmap_unlock(vmf->pte, vmf->ptl);
3259 return handle_userfault(vmf, VM_UFFD_WP);
3260 }
3261
6ce64428
NA
3262 /*
3263 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3264 * is flushed in this case before copying.
3265 */
3266 if (unlikely(userfaultfd_wp(vmf->vma) &&
3267 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3268 flush_tlb_page(vmf->vma, vmf->address);
3269
a41b70d6
JK
3270 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3271 if (!vmf->page) {
251b97f5 3272 /*
64e45507
PF
3273 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3274 * VM_PFNMAP VMA.
251b97f5
PZ
3275 *
3276 * We should not cow pages in a shared writeable mapping.
dd906184 3277 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3278 */
3279 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3280 (VM_WRITE|VM_SHARED))
2994302b 3281 return wp_pfn_shared(vmf);
2f38ab2c 3282
82b0f8c3 3283 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3284 return wp_page_copy(vmf);
251b97f5 3285 }
1da177e4 3286
d08b3851 3287 /*
ee6a6457
PZ
3288 * Take out anonymous pages first, anonymous shared vmas are
3289 * not dirty accountable.
d08b3851 3290 */
52d1e606 3291 if (PageAnon(vmf->page)) {
09854ba9
LT
3292 struct page *page = vmf->page;
3293
3294 /* PageKsm() doesn't necessarily raise the page refcount */
3295 if (PageKsm(page) || page_count(page) != 1)
3296 goto copy;
3297 if (!trylock_page(page))
3298 goto copy;
3299 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3300 unlock_page(page);
52d1e606 3301 goto copy;
b009c024 3302 }
09854ba9
LT
3303 /*
3304 * Ok, we've got the only map reference, and the only
3305 * page count reference, and the page is locked,
3306 * it's dark out, and we're wearing sunglasses. Hit it.
3307 */
09854ba9 3308 unlock_page(page);
be068f29 3309 wp_page_reuse(vmf);
09854ba9 3310 return VM_FAULT_WRITE;
ee6a6457 3311 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3312 (VM_WRITE|VM_SHARED))) {
a41b70d6 3313 return wp_page_shared(vmf);
1da177e4 3314 }
52d1e606 3315copy:
1da177e4
LT
3316 /*
3317 * Ok, we need to copy. Oh, well..
3318 */
a41b70d6 3319 get_page(vmf->page);
28766805 3320
82b0f8c3 3321 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3322 return wp_page_copy(vmf);
1da177e4
LT
3323}
3324
97a89413 3325static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3326 unsigned long start_addr, unsigned long end_addr,
3327 struct zap_details *details)
3328{
f5cc4eef 3329 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3330}
3331
f808c13f 3332static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3333 pgoff_t first_index,
3334 pgoff_t last_index,
1da177e4
LT
3335 struct zap_details *details)
3336{
3337 struct vm_area_struct *vma;
1da177e4
LT
3338 pgoff_t vba, vea, zba, zea;
3339
232a6a1c 3340 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3341 vba = vma->vm_pgoff;
d6e93217 3342 vea = vba + vma_pages(vma) - 1;
232a6a1c 3343 zba = first_index;
1da177e4
LT
3344 if (zba < vba)
3345 zba = vba;
232a6a1c 3346 zea = last_index;
1da177e4
LT
3347 if (zea > vea)
3348 zea = vea;
3349
97a89413 3350 unmap_mapping_range_vma(vma,
1da177e4
LT
3351 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3352 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3353 details);
1da177e4
LT
3354 }
3355}
3356
22061a1f 3357/**
3506659e
MWO
3358 * unmap_mapping_folio() - Unmap single folio from processes.
3359 * @folio: The locked folio to be unmapped.
22061a1f 3360 *
3506659e 3361 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3362 * Typically, for efficiency, the range of nearby pages has already been
3363 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3364 * truncation or invalidation holds the lock on a folio, it may find that
3365 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3366 * to unmap it finally.
3367 */
3506659e 3368void unmap_mapping_folio(struct folio *folio)
22061a1f 3369{
3506659e 3370 struct address_space *mapping = folio->mapping;
22061a1f 3371 struct zap_details details = { };
232a6a1c
PX
3372 pgoff_t first_index;
3373 pgoff_t last_index;
22061a1f 3374
3506659e 3375 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3376
3506659e
MWO
3377 first_index = folio->index;
3378 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3379
91b61ef3 3380 details.zap_mapping = mapping;
3506659e 3381 details.single_folio = folio;
22061a1f
HD
3382
3383 i_mmap_lock_write(mapping);
3384 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3385 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3386 last_index, &details);
22061a1f
HD
3387 i_mmap_unlock_write(mapping);
3388}
3389
977fbdcd
MW
3390/**
3391 * unmap_mapping_pages() - Unmap pages from processes.
3392 * @mapping: The address space containing pages to be unmapped.
3393 * @start: Index of first page to be unmapped.
3394 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3395 * @even_cows: Whether to unmap even private COWed pages.
3396 *
3397 * Unmap the pages in this address space from any userspace process which
3398 * has them mmaped. Generally, you want to remove COWed pages as well when
3399 * a file is being truncated, but not when invalidating pages from the page
3400 * cache.
3401 */
3402void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3403 pgoff_t nr, bool even_cows)
3404{
3405 struct zap_details details = { };
232a6a1c
PX
3406 pgoff_t first_index = start;
3407 pgoff_t last_index = start + nr - 1;
977fbdcd 3408
91b61ef3 3409 details.zap_mapping = even_cows ? NULL : mapping;
232a6a1c
PX
3410 if (last_index < first_index)
3411 last_index = ULONG_MAX;
977fbdcd
MW
3412
3413 i_mmap_lock_write(mapping);
3414 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3415 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3416 last_index, &details);
977fbdcd
MW
3417 i_mmap_unlock_write(mapping);
3418}
6e0e99d5 3419EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3420
1da177e4 3421/**
8a5f14a2 3422 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3423 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3424 * file.
3425 *
3d41088f 3426 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3427 * @holebegin: byte in first page to unmap, relative to the start of
3428 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3429 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3430 * must keep the partial page. In contrast, we must get rid of
3431 * partial pages.
3432 * @holelen: size of prospective hole in bytes. This will be rounded
3433 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3434 * end of the file.
3435 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3436 * but 0 when invalidating pagecache, don't throw away private data.
3437 */
3438void unmap_mapping_range(struct address_space *mapping,
3439 loff_t const holebegin, loff_t const holelen, int even_cows)
3440{
1da177e4
LT
3441 pgoff_t hba = holebegin >> PAGE_SHIFT;
3442 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3443
3444 /* Check for overflow. */
3445 if (sizeof(holelen) > sizeof(hlen)) {
3446 long long holeend =
3447 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3448 if (holeend & ~(long long)ULONG_MAX)
3449 hlen = ULONG_MAX - hba + 1;
3450 }
3451
977fbdcd 3452 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3453}
3454EXPORT_SYMBOL(unmap_mapping_range);
3455
b756a3b5
AP
3456/*
3457 * Restore a potential device exclusive pte to a working pte entry
3458 */
3459static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3460{
3461 struct page *page = vmf->page;
3462 struct vm_area_struct *vma = vmf->vma;
3463 struct mmu_notifier_range range;
3464
3465 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3466 return VM_FAULT_RETRY;
3467 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3468 vma->vm_mm, vmf->address & PAGE_MASK,
3469 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3470 mmu_notifier_invalidate_range_start(&range);
3471
3472 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3473 &vmf->ptl);
3474 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3475 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3476
3477 pte_unmap_unlock(vmf->pte, vmf->ptl);
3478 unlock_page(page);
3479
3480 mmu_notifier_invalidate_range_end(&range);
3481 return 0;
3482}
3483
1da177e4 3484/*
c1e8d7c6 3485 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3486 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3487 * We return with pte unmapped and unlocked.
3488 *
c1e8d7c6 3489 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3490 * as does filemap_fault().
1da177e4 3491 */
2b740303 3492vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3493{
82b0f8c3 3494 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3495 struct page *page = NULL, *swapcache;
2799e775 3496 struct swap_info_struct *si = NULL;
65500d23 3497 swp_entry_t entry;
1da177e4 3498 pte_t pte;
d065bd81 3499 int locked;
ad8c2ee8 3500 int exclusive = 0;
2b740303 3501 vm_fault_t ret = 0;
aae466b0 3502 void *shadow = NULL;
1da177e4 3503
2ca99358 3504 if (!pte_unmap_same(vmf))
8f4e2101 3505 goto out;
65500d23 3506
2994302b 3507 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3508 if (unlikely(non_swap_entry(entry))) {
3509 if (is_migration_entry(entry)) {
82b0f8c3
JK
3510 migration_entry_wait(vma->vm_mm, vmf->pmd,
3511 vmf->address);
b756a3b5
AP
3512 } else if (is_device_exclusive_entry(entry)) {
3513 vmf->page = pfn_swap_entry_to_page(entry);
3514 ret = remove_device_exclusive_entry(vmf);
5042db43 3515 } else if (is_device_private_entry(entry)) {
af5cdaf8 3516 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3517 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3518 } else if (is_hwpoison_entry(entry)) {
3519 ret = VM_FAULT_HWPOISON;
3520 } else {
2994302b 3521 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3522 ret = VM_FAULT_SIGBUS;
d1737fdb 3523 }
0697212a
CL
3524 goto out;
3525 }
0bcac06f 3526
2799e775
ML
3527 /* Prevent swapoff from happening to us. */
3528 si = get_swap_device(entry);
3529 if (unlikely(!si))
3530 goto out;
0bcac06f 3531
eaf649eb
MK
3532 page = lookup_swap_cache(entry, vma, vmf->address);
3533 swapcache = page;
f8020772 3534
1da177e4 3535 if (!page) {
a449bf58
QC
3536 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3537 __swap_count(entry) == 1) {
0bcac06f 3538 /* skip swapcache */
e9e9b7ec
MK
3539 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3540 vmf->address);
0bcac06f
MK
3541 if (page) {
3542 __SetPageLocked(page);
3543 __SetPageSwapBacked(page);
4c6355b2 3544
0add0c77
SB
3545 if (mem_cgroup_swapin_charge_page(page,
3546 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3547 ret = VM_FAULT_OOM;
4c6355b2 3548 goto out_page;
545b1b07 3549 }
0add0c77 3550 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3551
aae466b0
JK
3552 shadow = get_shadow_from_swap_cache(entry);
3553 if (shadow)
0995d7e5
MWO
3554 workingset_refault(page_folio(page),
3555 shadow);
0076f029 3556
6058eaec 3557 lru_cache_add(page);
0add0c77
SB
3558
3559 /* To provide entry to swap_readpage() */
3560 set_page_private(page, entry.val);
0bcac06f 3561 swap_readpage(page, true);
0add0c77 3562 set_page_private(page, 0);
0bcac06f 3563 }
aa8d22a1 3564 } else {
e9e9b7ec
MK
3565 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3566 vmf);
aa8d22a1 3567 swapcache = page;
0bcac06f
MK
3568 }
3569
1da177e4
LT
3570 if (!page) {
3571 /*
8f4e2101
HD
3572 * Back out if somebody else faulted in this pte
3573 * while we released the pte lock.
1da177e4 3574 */
82b0f8c3
JK
3575 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3576 vmf->address, &vmf->ptl);
2994302b 3577 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3578 ret = VM_FAULT_OOM;
65500d23 3579 goto unlock;
1da177e4
LT
3580 }
3581
3582 /* Had to read the page from swap area: Major fault */
3583 ret = VM_FAULT_MAJOR;
f8891e5e 3584 count_vm_event(PGMAJFAULT);
2262185c 3585 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3586 } else if (PageHWPoison(page)) {
71f72525
WF
3587 /*
3588 * hwpoisoned dirty swapcache pages are kept for killing
3589 * owner processes (which may be unknown at hwpoison time)
3590 */
d1737fdb 3591 ret = VM_FAULT_HWPOISON;
4779cb31 3592 goto out_release;
1da177e4
LT
3593 }
3594
82b0f8c3 3595 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3596
d065bd81
ML
3597 if (!locked) {
3598 ret |= VM_FAULT_RETRY;
3599 goto out_release;
3600 }
073e587e 3601
4969c119 3602 /*
31c4a3d3
HD
3603 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3604 * release the swapcache from under us. The page pin, and pte_same
3605 * test below, are not enough to exclude that. Even if it is still
3606 * swapcache, we need to check that the page's swap has not changed.
4969c119 3607 */
0bcac06f
MK
3608 if (unlikely((!PageSwapCache(page) ||
3609 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3610 goto out_page;
3611
82b0f8c3 3612 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3613 if (unlikely(!page)) {
3614 ret = VM_FAULT_OOM;
3615 page = swapcache;
cbf86cfe 3616 goto out_page;
5ad64688
HD
3617 }
3618
9d82c694 3619 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3620
1da177e4 3621 /*
8f4e2101 3622 * Back out if somebody else already faulted in this pte.
1da177e4 3623 */
82b0f8c3
JK
3624 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3625 &vmf->ptl);
2994302b 3626 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3627 goto out_nomap;
b8107480
KK
3628
3629 if (unlikely(!PageUptodate(page))) {
3630 ret = VM_FAULT_SIGBUS;
3631 goto out_nomap;
1da177e4
LT
3632 }
3633
8c7c6e34
KH
3634 /*
3635 * The page isn't present yet, go ahead with the fault.
3636 *
3637 * Be careful about the sequence of operations here.
3638 * To get its accounting right, reuse_swap_page() must be called
3639 * while the page is counted on swap but not yet in mapcount i.e.
3640 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3641 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3642 */
1da177e4 3643
bae473a4
KS
3644 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3645 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3646 pte = mk_pte(page, vma->vm_page_prot);
020e8765 3647 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 3648 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3649 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3650 ret |= VM_FAULT_WRITE;
d281ee61 3651 exclusive = RMAP_EXCLUSIVE;
1da177e4 3652 }
1da177e4 3653 flush_icache_page(vma, page);
2994302b 3654 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3655 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3656 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3657 pte = pte_mkuffd_wp(pte);
3658 pte = pte_wrprotect(pte);
3659 }
2994302b 3660 vmf->orig_pte = pte;
0bcac06f
MK
3661
3662 /* ksm created a completely new copy */
3663 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3664 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3665 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3666 } else {
3667 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3668 }
1da177e4 3669
1eba86c0
PT
3670 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3671 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3672
c475a8ab 3673 swap_free(entry);
5ccc5aba
VD
3674 if (mem_cgroup_swap_full(page) ||
3675 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3676 try_to_free_swap(page);
c475a8ab 3677 unlock_page(page);
0bcac06f 3678 if (page != swapcache && swapcache) {
4969c119
AA
3679 /*
3680 * Hold the lock to avoid the swap entry to be reused
3681 * until we take the PT lock for the pte_same() check
3682 * (to avoid false positives from pte_same). For
3683 * further safety release the lock after the swap_free
3684 * so that the swap count won't change under a
3685 * parallel locked swapcache.
3686 */
3687 unlock_page(swapcache);
09cbfeaf 3688 put_page(swapcache);
4969c119 3689 }
c475a8ab 3690
82b0f8c3 3691 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3692 ret |= do_wp_page(vmf);
61469f1d
HD
3693 if (ret & VM_FAULT_ERROR)
3694 ret &= VM_FAULT_ERROR;
1da177e4
LT
3695 goto out;
3696 }
3697
3698 /* No need to invalidate - it was non-present before */
82b0f8c3 3699 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3700unlock:
82b0f8c3 3701 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3702out:
2799e775
ML
3703 if (si)
3704 put_swap_device(si);
1da177e4 3705 return ret;
b8107480 3706out_nomap:
82b0f8c3 3707 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3708out_page:
b8107480 3709 unlock_page(page);
4779cb31 3710out_release:
09cbfeaf 3711 put_page(page);
0bcac06f 3712 if (page != swapcache && swapcache) {
4969c119 3713 unlock_page(swapcache);
09cbfeaf 3714 put_page(swapcache);
4969c119 3715 }
2799e775
ML
3716 if (si)
3717 put_swap_device(si);
65500d23 3718 return ret;
1da177e4
LT
3719}
3720
3721/*
c1e8d7c6 3722 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3723 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3724 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3725 */
2b740303 3726static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3727{
82b0f8c3 3728 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3729 struct page *page;
2b740303 3730 vm_fault_t ret = 0;
1da177e4 3731 pte_t entry;
1da177e4 3732
6b7339f4
KS
3733 /* File mapping without ->vm_ops ? */
3734 if (vma->vm_flags & VM_SHARED)
3735 return VM_FAULT_SIGBUS;
3736
7267ec00
KS
3737 /*
3738 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3739 * pte_offset_map() on pmds where a huge pmd might be created
3740 * from a different thread.
3741 *
3e4e28c5 3742 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3743 * parallel threads are excluded by other means.
3744 *
3e4e28c5 3745 * Here we only have mmap_read_lock(mm).
7267ec00 3746 */
4cf58924 3747 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3748 return VM_FAULT_OOM;
3749
f9ce0be7 3750 /* See comment in handle_pte_fault() */
82b0f8c3 3751 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3752 return 0;
3753
11ac5524 3754 /* Use the zero-page for reads */
82b0f8c3 3755 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3756 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3757 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3758 vma->vm_page_prot));
82b0f8c3
JK
3759 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3760 vmf->address, &vmf->ptl);
7df67697
BM
3761 if (!pte_none(*vmf->pte)) {
3762 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3763 goto unlock;
7df67697 3764 }
6b31d595
MH
3765 ret = check_stable_address_space(vma->vm_mm);
3766 if (ret)
3767 goto unlock;
6b251fc9
AA
3768 /* Deliver the page fault to userland, check inside PT lock */
3769 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3770 pte_unmap_unlock(vmf->pte, vmf->ptl);
3771 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3772 }
a13ea5b7
HD
3773 goto setpte;
3774 }
3775
557ed1fa 3776 /* Allocate our own private page. */
557ed1fa
NP
3777 if (unlikely(anon_vma_prepare(vma)))
3778 goto oom;
82b0f8c3 3779 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3780 if (!page)
3781 goto oom;
eb3c24f3 3782
8f425e4e 3783 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 3784 goto oom_free_page;
9d82c694 3785 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3786
52f37629
MK
3787 /*
3788 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3789 * preceding stores to the page contents become visible before
52f37629
MK
3790 * the set_pte_at() write.
3791 */
0ed361de 3792 __SetPageUptodate(page);
8f4e2101 3793
557ed1fa 3794 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3795 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3796 if (vma->vm_flags & VM_WRITE)
3797 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3798
82b0f8c3
JK
3799 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3800 &vmf->ptl);
7df67697
BM
3801 if (!pte_none(*vmf->pte)) {
3802 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3803 goto release;
7df67697 3804 }
9ba69294 3805
6b31d595
MH
3806 ret = check_stable_address_space(vma->vm_mm);
3807 if (ret)
3808 goto release;
3809
6b251fc9
AA
3810 /* Deliver the page fault to userland, check inside PT lock */
3811 if (userfaultfd_missing(vma)) {
82b0f8c3 3812 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3813 put_page(page);
82b0f8c3 3814 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3815 }
3816
bae473a4 3817 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3818 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3819 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3820setpte:
82b0f8c3 3821 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3822
3823 /* No need to invalidate - it was non-present before */
82b0f8c3 3824 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3825unlock:
82b0f8c3 3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3827 return ret;
8f4e2101 3828release:
09cbfeaf 3829 put_page(page);
8f4e2101 3830 goto unlock;
8a9f3ccd 3831oom_free_page:
09cbfeaf 3832 put_page(page);
65500d23 3833oom:
1da177e4
LT
3834 return VM_FAULT_OOM;
3835}
3836
9a95f3cf 3837/*
c1e8d7c6 3838 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3839 * released depending on flags and vma->vm_ops->fault() return value.
3840 * See filemap_fault() and __lock_page_retry().
3841 */
2b740303 3842static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3843{
82b0f8c3 3844 struct vm_area_struct *vma = vmf->vma;
2b740303 3845 vm_fault_t ret;
7eae74af 3846
63f3655f
MH
3847 /*
3848 * Preallocate pte before we take page_lock because this might lead to
3849 * deadlocks for memcg reclaim which waits for pages under writeback:
3850 * lock_page(A)
3851 * SetPageWriteback(A)
3852 * unlock_page(A)
3853 * lock_page(B)
3854 * lock_page(B)
d383807a 3855 * pte_alloc_one
63f3655f
MH
3856 * shrink_page_list
3857 * wait_on_page_writeback(A)
3858 * SetPageWriteback(B)
3859 * unlock_page(B)
3860 * # flush A, B to clear the writeback
3861 */
3862 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3863 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3864 if (!vmf->prealloc_pte)
3865 return VM_FAULT_OOM;
63f3655f
MH
3866 }
3867
11bac800 3868 ret = vma->vm_ops->fault(vmf);
3917048d 3869 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3870 VM_FAULT_DONE_COW)))
bc2466e4 3871 return ret;
7eae74af 3872
667240e0 3873 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3874 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3875 unlock_page(vmf->page);
3876 put_page(vmf->page);
936ca80d 3877 vmf->page = NULL;
7eae74af
KS
3878 return VM_FAULT_HWPOISON;
3879 }
3880
3881 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3882 lock_page(vmf->page);
7eae74af 3883 else
667240e0 3884 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3885
7eae74af
KS
3886 return ret;
3887}
3888
396bcc52 3889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3890static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3891{
82b0f8c3 3892 struct vm_area_struct *vma = vmf->vma;
953c66c2 3893
82b0f8c3 3894 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3895 /*
3896 * We are going to consume the prealloc table,
3897 * count that as nr_ptes.
3898 */
c4812909 3899 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3900 vmf->prealloc_pte = NULL;
953c66c2
AK
3901}
3902
f9ce0be7 3903vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3904{
82b0f8c3
JK
3905 struct vm_area_struct *vma = vmf->vma;
3906 bool write = vmf->flags & FAULT_FLAG_WRITE;
3907 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3908 pmd_t entry;
2b740303 3909 int i;
d01ac3c3 3910 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3911
3912 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3913 return ret;
10102459 3914
10102459 3915 page = compound_head(page);
d01ac3c3
MWO
3916 if (compound_order(page) != HPAGE_PMD_ORDER)
3917 return ret;
10102459 3918
eac96c3e
YS
3919 /*
3920 * Just backoff if any subpage of a THP is corrupted otherwise
3921 * the corrupted page may mapped by PMD silently to escape the
3922 * check. This kind of THP just can be PTE mapped. Access to
3923 * the corrupted subpage should trigger SIGBUS as expected.
3924 */
3925 if (unlikely(PageHasHWPoisoned(page)))
3926 return ret;
3927
953c66c2 3928 /*
f0953a1b 3929 * Archs like ppc64 need additional space to store information
953c66c2
AK
3930 * related to pte entry. Use the preallocated table for that.
3931 */
82b0f8c3 3932 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3933 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3934 if (!vmf->prealloc_pte)
953c66c2 3935 return VM_FAULT_OOM;
953c66c2
AK
3936 }
3937
82b0f8c3
JK
3938 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3939 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3940 goto out;
3941
3942 for (i = 0; i < HPAGE_PMD_NR; i++)
3943 flush_icache_page(vma, page + i);
3944
3945 entry = mk_huge_pmd(page, vma->vm_page_prot);
3946 if (write)
f55e1014 3947 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3948
fadae295 3949 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3950 page_add_file_rmap(page, true);
953c66c2
AK
3951 /*
3952 * deposit and withdraw with pmd lock held
3953 */
3954 if (arch_needs_pgtable_deposit())
82b0f8c3 3955 deposit_prealloc_pte(vmf);
10102459 3956
82b0f8c3 3957 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3958
82b0f8c3 3959 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3960
3961 /* fault is handled */
3962 ret = 0;
95ecedcd 3963 count_vm_event(THP_FILE_MAPPED);
10102459 3964out:
82b0f8c3 3965 spin_unlock(vmf->ptl);
10102459
KS
3966 return ret;
3967}
3968#else
f9ce0be7 3969vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3970{
f9ce0be7 3971 return VM_FAULT_FALLBACK;
10102459
KS
3972}
3973#endif
3974
9d3af4b4 3975void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3976{
82b0f8c3
JK
3977 struct vm_area_struct *vma = vmf->vma;
3978 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3979 bool prefault = vmf->address != addr;
3bb97794 3980 pte_t entry;
7267ec00 3981
3bb97794
KS
3982 flush_icache_page(vma, page);
3983 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3984
3985 if (prefault && arch_wants_old_prefaulted_pte())
3986 entry = pte_mkold(entry);
50c25ee9
TB
3987 else
3988 entry = pte_sw_mkyoung(entry);
46bdb427 3989
3bb97794
KS
3990 if (write)
3991 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3992 /* copy-on-write page */
3993 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3994 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3995 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3996 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3997 } else {
eca56ff9 3998 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3999 page_add_file_rmap(page, false);
3bb97794 4000 }
9d3af4b4 4001 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4002}
4003
9118c0cb
JK
4004/**
4005 * finish_fault - finish page fault once we have prepared the page to fault
4006 *
4007 * @vmf: structure describing the fault
4008 *
4009 * This function handles all that is needed to finish a page fault once the
4010 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4011 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4012 * addition.
9118c0cb
JK
4013 *
4014 * The function expects the page to be locked and on success it consumes a
4015 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4016 *
4017 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4018 */
2b740303 4019vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4020{
f9ce0be7 4021 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4022 struct page *page;
f9ce0be7 4023 vm_fault_t ret;
9118c0cb
JK
4024
4025 /* Did we COW the page? */
f9ce0be7 4026 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4027 page = vmf->cow_page;
4028 else
4029 page = vmf->page;
6b31d595
MH
4030
4031 /*
4032 * check even for read faults because we might have lost our CoWed
4033 * page
4034 */
f9ce0be7
KS
4035 if (!(vma->vm_flags & VM_SHARED)) {
4036 ret = check_stable_address_space(vma->vm_mm);
4037 if (ret)
4038 return ret;
4039 }
4040
4041 if (pmd_none(*vmf->pmd)) {
4042 if (PageTransCompound(page)) {
4043 ret = do_set_pmd(vmf, page);
4044 if (ret != VM_FAULT_FALLBACK)
4045 return ret;
4046 }
4047
03c4f204
QZ
4048 if (vmf->prealloc_pte)
4049 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4050 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4051 return VM_FAULT_OOM;
4052 }
4053
4054 /* See comment in handle_pte_fault() */
4055 if (pmd_devmap_trans_unstable(vmf->pmd))
4056 return 0;
4057
4058 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4059 vmf->address, &vmf->ptl);
4060 ret = 0;
4061 /* Re-check under ptl */
4062 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4063 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4064 else
4065 ret = VM_FAULT_NOPAGE;
4066
4067 update_mmu_tlb(vma, vmf->address, vmf->pte);
4068 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4069 return ret;
4070}
4071
3a91053a
KS
4072static unsigned long fault_around_bytes __read_mostly =
4073 rounddown_pow_of_two(65536);
a9b0f861 4074
a9b0f861
KS
4075#ifdef CONFIG_DEBUG_FS
4076static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4077{
a9b0f861 4078 *val = fault_around_bytes;
1592eef0
KS
4079 return 0;
4080}
4081
b4903d6e 4082/*
da391d64
WK
4083 * fault_around_bytes must be rounded down to the nearest page order as it's
4084 * what do_fault_around() expects to see.
b4903d6e 4085 */
a9b0f861 4086static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4087{
a9b0f861 4088 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4089 return -EINVAL;
b4903d6e
AR
4090 if (val > PAGE_SIZE)
4091 fault_around_bytes = rounddown_pow_of_two(val);
4092 else
4093 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4094 return 0;
4095}
0a1345f8 4096DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4097 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4098
4099static int __init fault_around_debugfs(void)
4100{
d9f7979c
GKH
4101 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4102 &fault_around_bytes_fops);
1592eef0
KS
4103 return 0;
4104}
4105late_initcall(fault_around_debugfs);
1592eef0 4106#endif
8c6e50b0 4107
1fdb412b
KS
4108/*
4109 * do_fault_around() tries to map few pages around the fault address. The hope
4110 * is that the pages will be needed soon and this will lower the number of
4111 * faults to handle.
4112 *
4113 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4114 * not ready to be mapped: not up-to-date, locked, etc.
4115 *
4116 * This function is called with the page table lock taken. In the split ptlock
4117 * case the page table lock only protects only those entries which belong to
4118 * the page table corresponding to the fault address.
4119 *
4120 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4121 * only once.
4122 *
da391d64
WK
4123 * fault_around_bytes defines how many bytes we'll try to map.
4124 * do_fault_around() expects it to be set to a power of two less than or equal
4125 * to PTRS_PER_PTE.
1fdb412b 4126 *
da391d64
WK
4127 * The virtual address of the area that we map is naturally aligned to
4128 * fault_around_bytes rounded down to the machine page size
4129 * (and therefore to page order). This way it's easier to guarantee
4130 * that we don't cross page table boundaries.
1fdb412b 4131 */
2b740303 4132static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4133{
82b0f8c3 4134 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4135 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4136 pgoff_t end_pgoff;
2b740303 4137 int off;
8c6e50b0 4138
4db0c3c2 4139 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4140 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4141
f9ce0be7
KS
4142 address = max(address & mask, vmf->vma->vm_start);
4143 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4144 start_pgoff -= off;
8c6e50b0
KS
4145
4146 /*
da391d64
WK
4147 * end_pgoff is either the end of the page table, the end of
4148 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4149 */
bae473a4 4150 end_pgoff = start_pgoff -
f9ce0be7 4151 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4152 PTRS_PER_PTE - 1;
82b0f8c3 4153 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4154 start_pgoff + nr_pages - 1);
8c6e50b0 4155
82b0f8c3 4156 if (pmd_none(*vmf->pmd)) {
4cf58924 4157 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4158 if (!vmf->prealloc_pte)
f9ce0be7 4159 return VM_FAULT_OOM;
8c6e50b0
KS
4160 }
4161
f9ce0be7 4162 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4163}
4164
2b740303 4165static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4166{
82b0f8c3 4167 struct vm_area_struct *vma = vmf->vma;
2b740303 4168 vm_fault_t ret = 0;
8c6e50b0
KS
4169
4170 /*
4171 * Let's call ->map_pages() first and use ->fault() as fallback
4172 * if page by the offset is not ready to be mapped (cold cache or
4173 * something).
4174 */
9b4bdd2f 4175 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4176 if (likely(!userfaultfd_minor(vmf->vma))) {
4177 ret = do_fault_around(vmf);
4178 if (ret)
4179 return ret;
4180 }
8c6e50b0 4181 }
e655fb29 4182
936ca80d 4183 ret = __do_fault(vmf);
e655fb29
KS
4184 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4185 return ret;
4186
9118c0cb 4187 ret |= finish_fault(vmf);
936ca80d 4188 unlock_page(vmf->page);
7267ec00 4189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4190 put_page(vmf->page);
e655fb29
KS
4191 return ret;
4192}
4193
2b740303 4194static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4195{
82b0f8c3 4196 struct vm_area_struct *vma = vmf->vma;
2b740303 4197 vm_fault_t ret;
ec47c3b9
KS
4198
4199 if (unlikely(anon_vma_prepare(vma)))
4200 return VM_FAULT_OOM;
4201
936ca80d
JK
4202 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4203 if (!vmf->cow_page)
ec47c3b9
KS
4204 return VM_FAULT_OOM;
4205
8f425e4e
MWO
4206 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4207 GFP_KERNEL)) {
936ca80d 4208 put_page(vmf->cow_page);
ec47c3b9
KS
4209 return VM_FAULT_OOM;
4210 }
9d82c694 4211 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4212
936ca80d 4213 ret = __do_fault(vmf);
ec47c3b9
KS
4214 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4215 goto uncharge_out;
3917048d
JK
4216 if (ret & VM_FAULT_DONE_COW)
4217 return ret;
ec47c3b9 4218
b1aa812b 4219 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4220 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4221
9118c0cb 4222 ret |= finish_fault(vmf);
b1aa812b
JK
4223 unlock_page(vmf->page);
4224 put_page(vmf->page);
7267ec00
KS
4225 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4226 goto uncharge_out;
ec47c3b9
KS
4227 return ret;
4228uncharge_out:
936ca80d 4229 put_page(vmf->cow_page);
ec47c3b9
KS
4230 return ret;
4231}
4232
2b740303 4233static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4234{
82b0f8c3 4235 struct vm_area_struct *vma = vmf->vma;
2b740303 4236 vm_fault_t ret, tmp;
1d65f86d 4237
936ca80d 4238 ret = __do_fault(vmf);
7eae74af 4239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4240 return ret;
1da177e4
LT
4241
4242 /*
f0c6d4d2
KS
4243 * Check if the backing address space wants to know that the page is
4244 * about to become writable
1da177e4 4245 */
fb09a464 4246 if (vma->vm_ops->page_mkwrite) {
936ca80d 4247 unlock_page(vmf->page);
38b8cb7f 4248 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4249 if (unlikely(!tmp ||
4250 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4251 put_page(vmf->page);
fb09a464 4252 return tmp;
4294621f 4253 }
fb09a464
KS
4254 }
4255
9118c0cb 4256 ret |= finish_fault(vmf);
7267ec00
KS
4257 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4258 VM_FAULT_RETRY))) {
936ca80d
JK
4259 unlock_page(vmf->page);
4260 put_page(vmf->page);
f0c6d4d2 4261 return ret;
1da177e4 4262 }
b827e496 4263
89b15332 4264 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4265 return ret;
54cb8821 4266}
d00806b1 4267
9a95f3cf 4268/*
c1e8d7c6 4269 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4270 * but allow concurrent faults).
c1e8d7c6 4271 * The mmap_lock may have been released depending on flags and our
9138e47e 4272 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4273 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4274 * by other thread calling munmap()).
9a95f3cf 4275 */
2b740303 4276static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4277{
82b0f8c3 4278 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4279 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4280 vm_fault_t ret;
54cb8821 4281
ff09d7ec
AK
4282 /*
4283 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4284 */
4285 if (!vma->vm_ops->fault) {
4286 /*
4287 * If we find a migration pmd entry or a none pmd entry, which
4288 * should never happen, return SIGBUS
4289 */
4290 if (unlikely(!pmd_present(*vmf->pmd)))
4291 ret = VM_FAULT_SIGBUS;
4292 else {
4293 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4294 vmf->pmd,
4295 vmf->address,
4296 &vmf->ptl);
4297 /*
4298 * Make sure this is not a temporary clearing of pte
4299 * by holding ptl and checking again. A R/M/W update
4300 * of pte involves: take ptl, clearing the pte so that
4301 * we don't have concurrent modification by hardware
4302 * followed by an update.
4303 */
4304 if (unlikely(pte_none(*vmf->pte)))
4305 ret = VM_FAULT_SIGBUS;
4306 else
4307 ret = VM_FAULT_NOPAGE;
4308
4309 pte_unmap_unlock(vmf->pte, vmf->ptl);
4310 }
4311 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4312 ret = do_read_fault(vmf);
4313 else if (!(vma->vm_flags & VM_SHARED))
4314 ret = do_cow_fault(vmf);
4315 else
4316 ret = do_shared_fault(vmf);
4317
4318 /* preallocated pagetable is unused: free it */
4319 if (vmf->prealloc_pte) {
fc8efd2d 4320 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4321 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4322 }
4323 return ret;
54cb8821
NP
4324}
4325
f4c0d836
YS
4326int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4327 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4328{
4329 get_page(page);
4330
4331 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4332 if (page_nid == numa_node_id()) {
9532fec1 4333 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4334 *flags |= TNF_FAULT_LOCAL;
4335 }
9532fec1
MG
4336
4337 return mpol_misplaced(page, vma, addr);
4338}
4339
2b740303 4340static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4341{
82b0f8c3 4342 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4343 struct page *page = NULL;
98fa15f3 4344 int page_nid = NUMA_NO_NODE;
90572890 4345 int last_cpupid;
cbee9f88 4346 int target_nid;
04a86453 4347 pte_t pte, old_pte;
288bc549 4348 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4349 int flags = 0;
d10e63f2
MG
4350
4351 /*
166f61b9
TH
4352 * The "pte" at this point cannot be used safely without
4353 * validation through pte_unmap_same(). It's of NUMA type but
4354 * the pfn may be screwed if the read is non atomic.
166f61b9 4355 */
82b0f8c3
JK
4356 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4357 spin_lock(vmf->ptl);
cee216a6 4358 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4359 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4360 goto out;
4361 }
4362
b99a342d
HY
4363 /* Get the normal PTE */
4364 old_pte = ptep_get(vmf->pte);
04a86453 4365 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4366
82b0f8c3 4367 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4368 if (!page)
4369 goto out_map;
d10e63f2 4370
e81c4802 4371 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4372 if (PageCompound(page))
4373 goto out_map;
e81c4802 4374
6688cc05 4375 /*
bea66fbd
MG
4376 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4377 * much anyway since they can be in shared cache state. This misses
4378 * the case where a mapping is writable but the process never writes
4379 * to it but pte_write gets cleared during protection updates and
4380 * pte_dirty has unpredictable behaviour between PTE scan updates,
4381 * background writeback, dirty balancing and application behaviour.
6688cc05 4382 */
b99a342d 4383 if (!was_writable)
6688cc05
PZ
4384 flags |= TNF_NO_GROUP;
4385
dabe1d99
RR
4386 /*
4387 * Flag if the page is shared between multiple address spaces. This
4388 * is later used when determining whether to group tasks together
4389 */
4390 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4391 flags |= TNF_SHARED;
4392
90572890 4393 last_cpupid = page_cpupid_last(page);
8191acbd 4394 page_nid = page_to_nid(page);
82b0f8c3 4395 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4396 &flags);
98fa15f3 4397 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4398 put_page(page);
b99a342d 4399 goto out_map;
4daae3b4 4400 }
b99a342d 4401 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4402
4403 /* Migrate to the requested node */
bf90ac19 4404 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4405 page_nid = target_nid;
6688cc05 4406 flags |= TNF_MIGRATED;
b99a342d 4407 } else {
074c2381 4408 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4409 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4410 spin_lock(vmf->ptl);
4411 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4412 pte_unmap_unlock(vmf->pte, vmf->ptl);
4413 goto out;
4414 }
4415 goto out_map;
4416 }
4daae3b4
MG
4417
4418out:
98fa15f3 4419 if (page_nid != NUMA_NO_NODE)
6688cc05 4420 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4421 return 0;
b99a342d
HY
4422out_map:
4423 /*
4424 * Make it present again, depending on how arch implements
4425 * non-accessible ptes, some can allow access by kernel mode.
4426 */
4427 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4428 pte = pte_modify(old_pte, vma->vm_page_prot);
4429 pte = pte_mkyoung(pte);
4430 if (was_writable)
4431 pte = pte_mkwrite(pte);
4432 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4433 update_mmu_cache(vma, vmf->address, vmf->pte);
4434 pte_unmap_unlock(vmf->pte, vmf->ptl);
4435 goto out;
d10e63f2
MG
4436}
4437
2b740303 4438static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4439{
f4200391 4440 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4441 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4442 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4443 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4444 return VM_FAULT_FALLBACK;
4445}
4446
183f24aa 4447/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4448static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4449{
529b930b 4450 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4451 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4452 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4453 return do_huge_pmd_wp_page(vmf);
529b930b 4454 }
327e9fd4
THV
4455 if (vmf->vma->vm_ops->huge_fault) {
4456 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4457
4458 if (!(ret & VM_FAULT_FALLBACK))
4459 return ret;
4460 }
af9e4d5f 4461
327e9fd4 4462 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4463 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4464
b96375f7
MW
4465 return VM_FAULT_FALLBACK;
4466}
4467
2b740303 4468static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4469{
327e9fd4
THV
4470#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4471 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4472 /* No support for anonymous transparent PUD pages yet */
4473 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4474 goto split;
4475 if (vmf->vma->vm_ops->huge_fault) {
4476 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4477
4478 if (!(ret & VM_FAULT_FALLBACK))
4479 return ret;
4480 }
4481split:
4482 /* COW or write-notify not handled on PUD level: split pud.*/
4483 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4484#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485 return VM_FAULT_FALLBACK;
4486}
4487
2b740303 4488static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4489{
4490#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4491 /* No support for anonymous transparent PUD pages yet */
4492 if (vma_is_anonymous(vmf->vma))
4493 return VM_FAULT_FALLBACK;
4494 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4495 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4496#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4497 return VM_FAULT_FALLBACK;
4498}
4499
1da177e4
LT
4500/*
4501 * These routines also need to handle stuff like marking pages dirty
4502 * and/or accessed for architectures that don't do it in hardware (most
4503 * RISC architectures). The early dirtying is also good on the i386.
4504 *
4505 * There is also a hook called "update_mmu_cache()" that architectures
4506 * with external mmu caches can use to update those (ie the Sparc or
4507 * PowerPC hashed page tables that act as extended TLBs).
4508 *
c1e8d7c6 4509 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4510 * concurrent faults).
9a95f3cf 4511 *
c1e8d7c6 4512 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4513 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4514 */
2b740303 4515static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4516{
4517 pte_t entry;
4518
82b0f8c3 4519 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4520 /*
4521 * Leave __pte_alloc() until later: because vm_ops->fault may
4522 * want to allocate huge page, and if we expose page table
4523 * for an instant, it will be difficult to retract from
4524 * concurrent faults and from rmap lookups.
4525 */
82b0f8c3 4526 vmf->pte = NULL;
7267ec00 4527 } else {
f9ce0be7
KS
4528 /*
4529 * If a huge pmd materialized under us just retry later. Use
4530 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4531 * of pmd_trans_huge() to ensure the pmd didn't become
4532 * pmd_trans_huge under us and then back to pmd_none, as a
4533 * result of MADV_DONTNEED running immediately after a huge pmd
4534 * fault in a different thread of this mm, in turn leading to a
4535 * misleading pmd_trans_huge() retval. All we have to ensure is
4536 * that it is a regular pmd that we can walk with
4537 * pte_offset_map() and we can do that through an atomic read
4538 * in C, which is what pmd_trans_unstable() provides.
4539 */
d0f0931d 4540 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4541 return 0;
4542 /*
4543 * A regular pmd is established and it can't morph into a huge
4544 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4545 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4546 * So now it's safe to run pte_offset_map().
4547 */
82b0f8c3 4548 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4549 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4550
4551 /*
4552 * some architectures can have larger ptes than wordsize,
4553 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4554 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4555 * accesses. The code below just needs a consistent view
4556 * for the ifs and we later double check anyway with the
7267ec00
KS
4557 * ptl lock held. So here a barrier will do.
4558 */
4559 barrier();
2994302b 4560 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4561 pte_unmap(vmf->pte);
4562 vmf->pte = NULL;
65500d23 4563 }
1da177e4
LT
4564 }
4565
82b0f8c3
JK
4566 if (!vmf->pte) {
4567 if (vma_is_anonymous(vmf->vma))
4568 return do_anonymous_page(vmf);
7267ec00 4569 else
82b0f8c3 4570 return do_fault(vmf);
7267ec00
KS
4571 }
4572
2994302b
JK
4573 if (!pte_present(vmf->orig_pte))
4574 return do_swap_page(vmf);
7267ec00 4575
2994302b
JK
4576 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4577 return do_numa_page(vmf);
d10e63f2 4578
82b0f8c3
JK
4579 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4580 spin_lock(vmf->ptl);
2994302b 4581 entry = vmf->orig_pte;
7df67697
BM
4582 if (unlikely(!pte_same(*vmf->pte, entry))) {
4583 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4584 goto unlock;
7df67697 4585 }
82b0f8c3 4586 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4587 if (!pte_write(entry))
2994302b 4588 return do_wp_page(vmf);
1da177e4
LT
4589 entry = pte_mkdirty(entry);
4590 }
4591 entry = pte_mkyoung(entry);
82b0f8c3
JK
4592 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4593 vmf->flags & FAULT_FLAG_WRITE)) {
4594 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4595 } else {
b7333b58
YS
4596 /* Skip spurious TLB flush for retried page fault */
4597 if (vmf->flags & FAULT_FLAG_TRIED)
4598 goto unlock;
1a44e149
AA
4599 /*
4600 * This is needed only for protection faults but the arch code
4601 * is not yet telling us if this is a protection fault or not.
4602 * This still avoids useless tlb flushes for .text page faults
4603 * with threads.
4604 */
82b0f8c3
JK
4605 if (vmf->flags & FAULT_FLAG_WRITE)
4606 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4607 }
8f4e2101 4608unlock:
82b0f8c3 4609 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4610 return 0;
1da177e4
LT
4611}
4612
4613/*
4614 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4615 *
c1e8d7c6 4616 * The mmap_lock may have been released depending on flags and our
9138e47e 4617 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4618 */
2b740303
SJ
4619static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4620 unsigned long address, unsigned int flags)
1da177e4 4621{
82b0f8c3 4622 struct vm_fault vmf = {
bae473a4 4623 .vma = vma,
1a29d85e 4624 .address = address & PAGE_MASK,
bae473a4 4625 .flags = flags,
0721ec8b 4626 .pgoff = linear_page_index(vma, address),
667240e0 4627 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4628 };
fde26bed 4629 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4630 struct mm_struct *mm = vma->vm_mm;
1da177e4 4631 pgd_t *pgd;
c2febafc 4632 p4d_t *p4d;
2b740303 4633 vm_fault_t ret;
1da177e4 4634
1da177e4 4635 pgd = pgd_offset(mm, address);
c2febafc
KS
4636 p4d = p4d_alloc(mm, pgd, address);
4637 if (!p4d)
4638 return VM_FAULT_OOM;
a00cc7d9 4639
c2febafc 4640 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4641 if (!vmf.pud)
c74df32c 4642 return VM_FAULT_OOM;
625110b5 4643retry_pud:
7635d9cb 4644 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4645 ret = create_huge_pud(&vmf);
4646 if (!(ret & VM_FAULT_FALLBACK))
4647 return ret;
4648 } else {
4649 pud_t orig_pud = *vmf.pud;
4650
4651 barrier();
4652 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4653
a00cc7d9
MW
4654 /* NUMA case for anonymous PUDs would go here */
4655
f6f37321 4656 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4657 ret = wp_huge_pud(&vmf, orig_pud);
4658 if (!(ret & VM_FAULT_FALLBACK))
4659 return ret;
4660 } else {
4661 huge_pud_set_accessed(&vmf, orig_pud);
4662 return 0;
4663 }
4664 }
4665 }
4666
4667 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4668 if (!vmf.pmd)
c74df32c 4669 return VM_FAULT_OOM;
625110b5
TH
4670
4671 /* Huge pud page fault raced with pmd_alloc? */
4672 if (pud_trans_unstable(vmf.pud))
4673 goto retry_pud;
4674
7635d9cb 4675 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4676 ret = create_huge_pmd(&vmf);
c0292554
KS
4677 if (!(ret & VM_FAULT_FALLBACK))
4678 return ret;
71e3aac0 4679 } else {
5db4f15c 4680 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4681
71e3aac0 4682 barrier();
5db4f15c 4683 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4684 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4685 !is_pmd_migration_entry(vmf.orig_pmd));
4686 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4687 pmd_migration_entry_wait(mm, vmf.pmd);
4688 return 0;
4689 }
5db4f15c
YS
4690 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4691 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4692 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4693
5db4f15c
YS
4694 if (dirty && !pmd_write(vmf.orig_pmd)) {
4695 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4696 if (!(ret & VM_FAULT_FALLBACK))
4697 return ret;
a1dd450b 4698 } else {
5db4f15c 4699 huge_pmd_set_accessed(&vmf);
9845cbbd 4700 return 0;
1f1d06c3 4701 }
71e3aac0
AA
4702 }
4703 }
4704
82b0f8c3 4705 return handle_pte_fault(&vmf);
1da177e4
LT
4706}
4707
bce617ed 4708/**
f0953a1b 4709 * mm_account_fault - Do page fault accounting
bce617ed
PX
4710 *
4711 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4712 * of perf event counters, but we'll still do the per-task accounting to
4713 * the task who triggered this page fault.
4714 * @address: the faulted address.
4715 * @flags: the fault flags.
4716 * @ret: the fault retcode.
4717 *
f0953a1b 4718 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4719 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4720 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4721 * still be in per-arch page fault handlers at the entry of page fault.
4722 */
4723static inline void mm_account_fault(struct pt_regs *regs,
4724 unsigned long address, unsigned int flags,
4725 vm_fault_t ret)
4726{
4727 bool major;
4728
4729 /*
4730 * We don't do accounting for some specific faults:
4731 *
4732 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4733 * includes arch_vma_access_permitted() failing before reaching here.
4734 * So this is not a "this many hardware page faults" counter. We
4735 * should use the hw profiling for that.
4736 *
4737 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4738 * once they're completed.
4739 */
4740 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4741 return;
4742
4743 /*
4744 * We define the fault as a major fault when the final successful fault
4745 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4746 * handle it immediately previously).
4747 */
4748 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4749
a2beb5f1
PX
4750 if (major)
4751 current->maj_flt++;
4752 else
4753 current->min_flt++;
4754
bce617ed 4755 /*
a2beb5f1
PX
4756 * If the fault is done for GUP, regs will be NULL. We only do the
4757 * accounting for the per thread fault counters who triggered the
4758 * fault, and we skip the perf event updates.
bce617ed
PX
4759 */
4760 if (!regs)
4761 return;
4762
a2beb5f1 4763 if (major)
bce617ed 4764 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4765 else
bce617ed 4766 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4767}
4768
9a95f3cf
PC
4769/*
4770 * By the time we get here, we already hold the mm semaphore
4771 *
c1e8d7c6 4772 * The mmap_lock may have been released depending on flags and our
9138e47e 4773 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 4774 */
2b740303 4775vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4776 unsigned int flags, struct pt_regs *regs)
519e5247 4777{
2b740303 4778 vm_fault_t ret;
519e5247
JW
4779
4780 __set_current_state(TASK_RUNNING);
4781
4782 count_vm_event(PGFAULT);
2262185c 4783 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4784
4785 /* do counter updates before entering really critical section. */
4786 check_sync_rss_stat(current);
4787
de0c799b
LD
4788 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4789 flags & FAULT_FLAG_INSTRUCTION,
4790 flags & FAULT_FLAG_REMOTE))
4791 return VM_FAULT_SIGSEGV;
4792
519e5247
JW
4793 /*
4794 * Enable the memcg OOM handling for faults triggered in user
4795 * space. Kernel faults are handled more gracefully.
4796 */
4797 if (flags & FAULT_FLAG_USER)
29ef680a 4798 mem_cgroup_enter_user_fault();
519e5247 4799
bae473a4
KS
4800 if (unlikely(is_vm_hugetlb_page(vma)))
4801 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4802 else
4803 ret = __handle_mm_fault(vma, address, flags);
519e5247 4804
49426420 4805 if (flags & FAULT_FLAG_USER) {
29ef680a 4806 mem_cgroup_exit_user_fault();
166f61b9
TH
4807 /*
4808 * The task may have entered a memcg OOM situation but
4809 * if the allocation error was handled gracefully (no
4810 * VM_FAULT_OOM), there is no need to kill anything.
4811 * Just clean up the OOM state peacefully.
4812 */
4813 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4814 mem_cgroup_oom_synchronize(false);
49426420 4815 }
3812c8c8 4816
bce617ed
PX
4817 mm_account_fault(regs, address, flags, ret);
4818
519e5247
JW
4819 return ret;
4820}
e1d6d01a 4821EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4822
90eceff1
KS
4823#ifndef __PAGETABLE_P4D_FOLDED
4824/*
4825 * Allocate p4d page table.
4826 * We've already handled the fast-path in-line.
4827 */
4828int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4829{
4830 p4d_t *new = p4d_alloc_one(mm, address);
4831 if (!new)
4832 return -ENOMEM;
4833
90eceff1 4834 spin_lock(&mm->page_table_lock);
ed33b5a6 4835 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 4836 p4d_free(mm, new);
ed33b5a6
QZ
4837 } else {
4838 smp_wmb(); /* See comment in pmd_install() */
90eceff1 4839 pgd_populate(mm, pgd, new);
ed33b5a6 4840 }
90eceff1
KS
4841 spin_unlock(&mm->page_table_lock);
4842 return 0;
4843}
4844#endif /* __PAGETABLE_P4D_FOLDED */
4845
1da177e4
LT
4846#ifndef __PAGETABLE_PUD_FOLDED
4847/*
4848 * Allocate page upper directory.
872fec16 4849 * We've already handled the fast-path in-line.
1da177e4 4850 */
c2febafc 4851int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4852{
c74df32c
HD
4853 pud_t *new = pud_alloc_one(mm, address);
4854 if (!new)
1bb3630e 4855 return -ENOMEM;
1da177e4 4856
872fec16 4857 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4858 if (!p4d_present(*p4d)) {
4859 mm_inc_nr_puds(mm);
ed33b5a6 4860 smp_wmb(); /* See comment in pmd_install() */
c2febafc 4861 p4d_populate(mm, p4d, new);
b4e98d9a 4862 } else /* Another has populated it */
5e541973 4863 pud_free(mm, new);
c74df32c 4864 spin_unlock(&mm->page_table_lock);
1bb3630e 4865 return 0;
1da177e4
LT
4866}
4867#endif /* __PAGETABLE_PUD_FOLDED */
4868
4869#ifndef __PAGETABLE_PMD_FOLDED
4870/*
4871 * Allocate page middle directory.
872fec16 4872 * We've already handled the fast-path in-line.
1da177e4 4873 */
1bb3630e 4874int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4875{
a00cc7d9 4876 spinlock_t *ptl;
c74df32c
HD
4877 pmd_t *new = pmd_alloc_one(mm, address);
4878 if (!new)
1bb3630e 4879 return -ENOMEM;
1da177e4 4880
a00cc7d9 4881 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4882 if (!pud_present(*pud)) {
4883 mm_inc_nr_pmds(mm);
ed33b5a6 4884 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 4885 pud_populate(mm, pud, new);
ed33b5a6 4886 } else { /* Another has populated it */
5e541973 4887 pmd_free(mm, new);
ed33b5a6 4888 }
a00cc7d9 4889 spin_unlock(ptl);
1bb3630e 4890 return 0;
e0f39591 4891}
1da177e4
LT
4892#endif /* __PAGETABLE_PMD_FOLDED */
4893
9fd6dad1
PB
4894int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4895 struct mmu_notifier_range *range, pte_t **ptepp,
4896 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4897{
4898 pgd_t *pgd;
c2febafc 4899 p4d_t *p4d;
f8ad0f49
JW
4900 pud_t *pud;
4901 pmd_t *pmd;
4902 pte_t *ptep;
4903
4904 pgd = pgd_offset(mm, address);
4905 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4906 goto out;
4907
c2febafc
KS
4908 p4d = p4d_offset(pgd, address);
4909 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4910 goto out;
4911
4912 pud = pud_offset(p4d, address);
f8ad0f49
JW
4913 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4914 goto out;
4915
4916 pmd = pmd_offset(pud, address);
f66055ab 4917 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4918
09796395
RZ
4919 if (pmd_huge(*pmd)) {
4920 if (!pmdpp)
4921 goto out;
4922
ac46d4f3 4923 if (range) {
7269f999 4924 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4925 NULL, mm, address & PMD_MASK,
4926 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4927 mmu_notifier_invalidate_range_start(range);
a4d1a885 4928 }
09796395
RZ
4929 *ptlp = pmd_lock(mm, pmd);
4930 if (pmd_huge(*pmd)) {
4931 *pmdpp = pmd;
4932 return 0;
4933 }
4934 spin_unlock(*ptlp);
ac46d4f3
JG
4935 if (range)
4936 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4937 }
4938
4939 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4940 goto out;
4941
ac46d4f3 4942 if (range) {
7269f999 4943 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4944 address & PAGE_MASK,
4945 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4946 mmu_notifier_invalidate_range_start(range);
a4d1a885 4947 }
f8ad0f49 4948 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4949 if (!pte_present(*ptep))
4950 goto unlock;
4951 *ptepp = ptep;
4952 return 0;
4953unlock:
4954 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4955 if (range)
4956 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4957out:
4958 return -EINVAL;
4959}
4960
9fd6dad1
PB
4961/**
4962 * follow_pte - look up PTE at a user virtual address
4963 * @mm: the mm_struct of the target address space
4964 * @address: user virtual address
4965 * @ptepp: location to store found PTE
4966 * @ptlp: location to store the lock for the PTE
4967 *
4968 * On a successful return, the pointer to the PTE is stored in @ptepp;
4969 * the corresponding lock is taken and its location is stored in @ptlp.
4970 * The contents of the PTE are only stable until @ptlp is released;
4971 * any further use, if any, must be protected against invalidation
4972 * with MMU notifiers.
4973 *
4974 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4975 * should be taken for read.
4976 *
4977 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4978 * it is not a good general-purpose API.
4979 *
4980 * Return: zero on success, -ve otherwise.
4981 */
4982int follow_pte(struct mm_struct *mm, unsigned long address,
4983 pte_t **ptepp, spinlock_t **ptlp)
4984{
4985 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4986}
4987EXPORT_SYMBOL_GPL(follow_pte);
4988
3b6748e2
JW
4989/**
4990 * follow_pfn - look up PFN at a user virtual address
4991 * @vma: memory mapping
4992 * @address: user virtual address
4993 * @pfn: location to store found PFN
4994 *
4995 * Only IO mappings and raw PFN mappings are allowed.
4996 *
9fd6dad1
PB
4997 * This function does not allow the caller to read the permissions
4998 * of the PTE. Do not use it.
4999 *
a862f68a 5000 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5001 */
5002int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5003 unsigned long *pfn)
5004{
5005 int ret = -EINVAL;
5006 spinlock_t *ptl;
5007 pte_t *ptep;
5008
5009 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5010 return ret;
5011
9fd6dad1 5012 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5013 if (ret)
5014 return ret;
5015 *pfn = pte_pfn(*ptep);
5016 pte_unmap_unlock(ptep, ptl);
5017 return 0;
5018}
5019EXPORT_SYMBOL(follow_pfn);
5020
28b2ee20 5021#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5022int follow_phys(struct vm_area_struct *vma,
5023 unsigned long address, unsigned int flags,
5024 unsigned long *prot, resource_size_t *phys)
28b2ee20 5025{
03668a4d 5026 int ret = -EINVAL;
28b2ee20
RR
5027 pte_t *ptep, pte;
5028 spinlock_t *ptl;
28b2ee20 5029
d87fe660 5030 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5031 goto out;
28b2ee20 5032
9fd6dad1 5033 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5034 goto out;
28b2ee20 5035 pte = *ptep;
03668a4d 5036
f6f37321 5037 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5038 goto unlock;
28b2ee20
RR
5039
5040 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5041 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5042
03668a4d 5043 ret = 0;
28b2ee20
RR
5044unlock:
5045 pte_unmap_unlock(ptep, ptl);
5046out:
d87fe660 5047 return ret;
28b2ee20
RR
5048}
5049
96667f8a
DV
5050/**
5051 * generic_access_phys - generic implementation for iomem mmap access
5052 * @vma: the vma to access
f0953a1b 5053 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5054 * @buf: buffer to read/write
5055 * @len: length of transfer
5056 * @write: set to FOLL_WRITE when writing, otherwise reading
5057 *
5058 * This is a generic implementation for &vm_operations_struct.access for an
5059 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5060 * not page based.
5061 */
28b2ee20
RR
5062int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5063 void *buf, int len, int write)
5064{
5065 resource_size_t phys_addr;
5066 unsigned long prot = 0;
2bc7273b 5067 void __iomem *maddr;
96667f8a
DV
5068 pte_t *ptep, pte;
5069 spinlock_t *ptl;
5070 int offset = offset_in_page(addr);
5071 int ret = -EINVAL;
5072
5073 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5074 return -EINVAL;
5075
5076retry:
e913a8cd 5077 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5078 return -EINVAL;
5079 pte = *ptep;
5080 pte_unmap_unlock(ptep, ptl);
28b2ee20 5081
96667f8a
DV
5082 prot = pgprot_val(pte_pgprot(pte));
5083 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5084
5085 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5086 return -EINVAL;
5087
9cb12d7b 5088 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5089 if (!maddr)
5090 return -ENOMEM;
5091
e913a8cd 5092 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5093 goto out_unmap;
5094
5095 if (!pte_same(pte, *ptep)) {
5096 pte_unmap_unlock(ptep, ptl);
5097 iounmap(maddr);
5098
5099 goto retry;
5100 }
5101
28b2ee20
RR
5102 if (write)
5103 memcpy_toio(maddr + offset, buf, len);
5104 else
5105 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5106 ret = len;
5107 pte_unmap_unlock(ptep, ptl);
5108out_unmap:
28b2ee20
RR
5109 iounmap(maddr);
5110
96667f8a 5111 return ret;
28b2ee20 5112}
5a73633e 5113EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5114#endif
5115
0ec76a11 5116/*
d3f5ffca 5117 * Access another process' address space as given in mm.
0ec76a11 5118 */
d3f5ffca
JH
5119int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5120 int len, unsigned int gup_flags)
0ec76a11 5121{
0ec76a11 5122 struct vm_area_struct *vma;
0ec76a11 5123 void *old_buf = buf;
442486ec 5124 int write = gup_flags & FOLL_WRITE;
0ec76a11 5125
d8ed45c5 5126 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5127 return 0;
5128
183ff22b 5129 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5130 while (len) {
5131 int bytes, ret, offset;
5132 void *maddr;
28b2ee20 5133 struct page *page = NULL;
0ec76a11 5134
64019a2e 5135 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5136 gup_flags, &page, &vma, NULL);
28b2ee20 5137 if (ret <= 0) {
dbffcd03
RR
5138#ifndef CONFIG_HAVE_IOREMAP_PROT
5139 break;
5140#else
28b2ee20
RR
5141 /*
5142 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5143 * we can access using slightly different code.
5144 */
3e418f98
LH
5145 vma = vma_lookup(mm, addr);
5146 if (!vma)
28b2ee20
RR
5147 break;
5148 if (vma->vm_ops && vma->vm_ops->access)
5149 ret = vma->vm_ops->access(vma, addr, buf,
5150 len, write);
5151 if (ret <= 0)
28b2ee20
RR
5152 break;
5153 bytes = ret;
dbffcd03 5154#endif
0ec76a11 5155 } else {
28b2ee20
RR
5156 bytes = len;
5157 offset = addr & (PAGE_SIZE-1);
5158 if (bytes > PAGE_SIZE-offset)
5159 bytes = PAGE_SIZE-offset;
5160
5161 maddr = kmap(page);
5162 if (write) {
5163 copy_to_user_page(vma, page, addr,
5164 maddr + offset, buf, bytes);
5165 set_page_dirty_lock(page);
5166 } else {
5167 copy_from_user_page(vma, page, addr,
5168 buf, maddr + offset, bytes);
5169 }
5170 kunmap(page);
09cbfeaf 5171 put_page(page);
0ec76a11 5172 }
0ec76a11
DH
5173 len -= bytes;
5174 buf += bytes;
5175 addr += bytes;
5176 }
d8ed45c5 5177 mmap_read_unlock(mm);
0ec76a11
DH
5178
5179 return buf - old_buf;
5180}
03252919 5181
5ddd36b9 5182/**
ae91dbfc 5183 * access_remote_vm - access another process' address space
5ddd36b9
SW
5184 * @mm: the mm_struct of the target address space
5185 * @addr: start address to access
5186 * @buf: source or destination buffer
5187 * @len: number of bytes to transfer
6347e8d5 5188 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5189 *
5190 * The caller must hold a reference on @mm.
a862f68a
MR
5191 *
5192 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5193 */
5194int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5195 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5196{
d3f5ffca 5197 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5198}
5199
206cb636
SW
5200/*
5201 * Access another process' address space.
5202 * Source/target buffer must be kernel space,
5203 * Do not walk the page table directly, use get_user_pages
5204 */
5205int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5206 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5207{
5208 struct mm_struct *mm;
5209 int ret;
5210
5211 mm = get_task_mm(tsk);
5212 if (!mm)
5213 return 0;
5214
d3f5ffca 5215 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5216
206cb636
SW
5217 mmput(mm);
5218
5219 return ret;
5220}
fcd35857 5221EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5222
03252919
AK
5223/*
5224 * Print the name of a VMA.
5225 */
5226void print_vma_addr(char *prefix, unsigned long ip)
5227{
5228 struct mm_struct *mm = current->mm;
5229 struct vm_area_struct *vma;
5230
e8bff74a 5231 /*
0a7f682d 5232 * we might be running from an atomic context so we cannot sleep
e8bff74a 5233 */
d8ed45c5 5234 if (!mmap_read_trylock(mm))
e8bff74a
IM
5235 return;
5236
03252919
AK
5237 vma = find_vma(mm, ip);
5238 if (vma && vma->vm_file) {
5239 struct file *f = vma->vm_file;
0a7f682d 5240 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5241 if (buf) {
2fbc57c5 5242 char *p;
03252919 5243
9bf39ab2 5244 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5245 if (IS_ERR(p))
5246 p = "?";
2fbc57c5 5247 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5248 vma->vm_start,
5249 vma->vm_end - vma->vm_start);
5250 free_page((unsigned long)buf);
5251 }
5252 }
d8ed45c5 5253 mmap_read_unlock(mm);
03252919 5254}
3ee1afa3 5255
662bbcb2 5256#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5257void __might_fault(const char *file, int line)
3ee1afa3 5258{
95156f00
PZ
5259 /*
5260 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5261 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5262 * get paged out, therefore we'll never actually fault, and the
5263 * below annotations will generate false positives.
5264 */
db68ce10 5265 if (uaccess_kernel())
95156f00 5266 return;
9ec23531 5267 if (pagefault_disabled())
662bbcb2 5268 return;
42a38756 5269 __might_sleep(file, line);
9ec23531 5270#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5271 if (current->mm)
da1c55f1 5272 might_lock_read(&current->mm->mmap_lock);
9ec23531 5273#endif
3ee1afa3 5274}
9ec23531 5275EXPORT_SYMBOL(__might_fault);
3ee1afa3 5276#endif
47ad8475
AA
5277
5278#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5279/*
5280 * Process all subpages of the specified huge page with the specified
5281 * operation. The target subpage will be processed last to keep its
5282 * cache lines hot.
5283 */
5284static inline void process_huge_page(
5285 unsigned long addr_hint, unsigned int pages_per_huge_page,
5286 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5287 void *arg)
47ad8475 5288{
c79b57e4
HY
5289 int i, n, base, l;
5290 unsigned long addr = addr_hint &
5291 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5292
c6ddfb6c 5293 /* Process target subpage last to keep its cache lines hot */
47ad8475 5294 might_sleep();
c79b57e4
HY
5295 n = (addr_hint - addr) / PAGE_SIZE;
5296 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5297 /* If target subpage in first half of huge page */
c79b57e4
HY
5298 base = 0;
5299 l = n;
c6ddfb6c 5300 /* Process subpages at the end of huge page */
c79b57e4
HY
5301 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5302 cond_resched();
c6ddfb6c 5303 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5304 }
5305 } else {
c6ddfb6c 5306 /* If target subpage in second half of huge page */
c79b57e4
HY
5307 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5308 l = pages_per_huge_page - n;
c6ddfb6c 5309 /* Process subpages at the begin of huge page */
c79b57e4
HY
5310 for (i = 0; i < base; i++) {
5311 cond_resched();
c6ddfb6c 5312 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5313 }
5314 }
5315 /*
c6ddfb6c
HY
5316 * Process remaining subpages in left-right-left-right pattern
5317 * towards the target subpage
c79b57e4
HY
5318 */
5319 for (i = 0; i < l; i++) {
5320 int left_idx = base + i;
5321 int right_idx = base + 2 * l - 1 - i;
5322
5323 cond_resched();
c6ddfb6c 5324 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5325 cond_resched();
c6ddfb6c 5326 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5327 }
5328}
5329
c6ddfb6c
HY
5330static void clear_gigantic_page(struct page *page,
5331 unsigned long addr,
5332 unsigned int pages_per_huge_page)
5333{
5334 int i;
5335 struct page *p = page;
5336
5337 might_sleep();
5338 for (i = 0; i < pages_per_huge_page;
5339 i++, p = mem_map_next(p, page, i)) {
5340 cond_resched();
5341 clear_user_highpage(p, addr + i * PAGE_SIZE);
5342 }
5343}
5344
5345static void clear_subpage(unsigned long addr, int idx, void *arg)
5346{
5347 struct page *page = arg;
5348
5349 clear_user_highpage(page + idx, addr);
5350}
5351
5352void clear_huge_page(struct page *page,
5353 unsigned long addr_hint, unsigned int pages_per_huge_page)
5354{
5355 unsigned long addr = addr_hint &
5356 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5357
5358 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5359 clear_gigantic_page(page, addr, pages_per_huge_page);
5360 return;
5361 }
5362
5363 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5364}
5365
47ad8475
AA
5366static void copy_user_gigantic_page(struct page *dst, struct page *src,
5367 unsigned long addr,
5368 struct vm_area_struct *vma,
5369 unsigned int pages_per_huge_page)
5370{
5371 int i;
5372 struct page *dst_base = dst;
5373 struct page *src_base = src;
5374
5375 for (i = 0; i < pages_per_huge_page; ) {
5376 cond_resched();
5377 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5378
5379 i++;
5380 dst = mem_map_next(dst, dst_base, i);
5381 src = mem_map_next(src, src_base, i);
5382 }
5383}
5384
c9f4cd71
HY
5385struct copy_subpage_arg {
5386 struct page *dst;
5387 struct page *src;
5388 struct vm_area_struct *vma;
5389};
5390
5391static void copy_subpage(unsigned long addr, int idx, void *arg)
5392{
5393 struct copy_subpage_arg *copy_arg = arg;
5394
5395 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5396 addr, copy_arg->vma);
5397}
5398
47ad8475 5399void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5400 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5401 unsigned int pages_per_huge_page)
5402{
c9f4cd71
HY
5403 unsigned long addr = addr_hint &
5404 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5405 struct copy_subpage_arg arg = {
5406 .dst = dst,
5407 .src = src,
5408 .vma = vma,
5409 };
47ad8475
AA
5410
5411 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5412 copy_user_gigantic_page(dst, src, addr, vma,
5413 pages_per_huge_page);
5414 return;
5415 }
5416
c9f4cd71 5417 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5418}
fa4d75c1
MK
5419
5420long copy_huge_page_from_user(struct page *dst_page,
5421 const void __user *usr_src,
810a56b9
MK
5422 unsigned int pages_per_huge_page,
5423 bool allow_pagefault)
fa4d75c1 5424{
fa4d75c1
MK
5425 void *page_kaddr;
5426 unsigned long i, rc = 0;
5427 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5428 struct page *subpage = dst_page;
fa4d75c1 5429
3272cfc2
MK
5430 for (i = 0; i < pages_per_huge_page;
5431 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5432 if (allow_pagefault)
3272cfc2 5433 page_kaddr = kmap(subpage);
810a56b9 5434 else
3272cfc2 5435 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5436 rc = copy_from_user(page_kaddr,
b063e374 5437 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5438 if (allow_pagefault)
3272cfc2 5439 kunmap(subpage);
810a56b9
MK
5440 else
5441 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5442
5443 ret_val -= (PAGE_SIZE - rc);
5444 if (rc)
5445 break;
5446
5447 cond_resched();
5448 }
5449 return ret_val;
5450}
47ad8475 5451#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5452
40b64acd 5453#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5454
5455static struct kmem_cache *page_ptl_cachep;
5456
5457void __init ptlock_cache_init(void)
5458{
5459 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5460 SLAB_PANIC, NULL);
5461}
5462
539edb58 5463bool ptlock_alloc(struct page *page)
49076ec2
KS
5464{
5465 spinlock_t *ptl;
5466
b35f1819 5467 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5468 if (!ptl)
5469 return false;
539edb58 5470 page->ptl = ptl;
49076ec2
KS
5471 return true;
5472}
5473
539edb58 5474void ptlock_free(struct page *page)
49076ec2 5475{
b35f1819 5476 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5477}
5478#endif