mm: workingset: move the stats flush into workingset_test_recent()
[linux-2.6-block.git] / mm / memory.c
CommitLineData
d61ea1cb 1
457c8996 2// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
36090def 45#include <linux/mm_inline.h>
6e84f315 46#include <linux/sched/mm.h>
f7ccbae4 47#include <linux/sched/coredump.h>
6a3827d7 48#include <linux/sched/numa_balancing.h>
29930025 49#include <linux/sched/task.h>
1da177e4
LT
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
5042db43 55#include <linux/memremap.h>
b073d7f8 56#include <linux/kmsan.h>
9a840895 57#include <linux/ksm.h>
1da177e4 58#include <linux/rmap.h>
b95f1b31 59#include <linux/export.h>
0ff92245 60#include <linux/delayacct.h>
1da177e4 61#include <linux/init.h>
01c8f1c4 62#include <linux/pfn_t.h>
edc79b2a 63#include <linux/writeback.h>
8a9f3ccd 64#include <linux/memcontrol.h>
cddb8a5c 65#include <linux/mmu_notifier.h>
3dc14741
HD
66#include <linux/swapops.h>
67#include <linux/elf.h>
5a0e3ad6 68#include <linux/gfp.h>
4daae3b4 69#include <linux/migrate.h>
2fbc57c5 70#include <linux/string.h>
467b171a 71#include <linux/memory-tiers.h>
1592eef0 72#include <linux/debugfs.h>
6b251fc9 73#include <linux/userfaultfd_k.h>
bc2466e4 74#include <linux/dax.h>
6b31d595 75#include <linux/oom.h>
98fa15f3 76#include <linux/numa.h>
bce617ed
PX
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
e80d3909 79#include <linux/vmalloc.h>
33024536 80#include <linux/sched/sysctl.h>
1da177e4 81
b3d1411b
JFG
82#include <trace/events/kmem.h>
83
6952b61d 84#include <asm/io.h>
33a709b2 85#include <asm/mmu_context.h>
1da177e4 86#include <asm/pgalloc.h>
7c0f6ba6 87#include <linux/uaccess.h>
1da177e4
LT
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
1da177e4 90
e80d3909 91#include "pgalloc-track.h"
42b77728 92#include "internal.h"
014bb1de 93#include "swap.h"
42b77728 94
af27d940 95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
97#endif
98
a9ee6cf5 99#ifndef CONFIG_NUMA
1da177e4 100unsigned long max_mapnr;
1da177e4 101EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
102
103struct page *mem_map;
1da177e4
LT
104EXPORT_SYMBOL(mem_map);
105#endif
106
5c041f5d 107static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
5c041f5d 122
1da177e4
LT
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128 * and ZONE_HIGHMEM.
129 */
166f61b9 130void *high_memory;
1da177e4 131EXPORT_SYMBOL(high_memory);
1da177e4 132
32a93233
IM
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
a62eaf15 145
46bdb427
WD
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
a62eaf15
AK
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
9b41046c 161 return 1;
a62eaf15
AK
162}
163__setup("norandmaps", disable_randmaps);
164
62eede62 165unsigned long zero_pfn __read_mostly;
0b70068e
AB
166EXPORT_SYMBOL(zero_pfn);
167
166f61b9
TH
168unsigned long highest_memmap_pfn __read_mostly;
169
a13ea5b7
HD
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
e720e7d0 178early_initcall(init_zero_pfn);
a62eaf15 179
f1a79412 180void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 181{
f1a79412 182 trace_rss_stat(mm, member);
b3d1411b 183}
d559db08 184
1da177e4
LT
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
9e1b32ca
BH
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
1da177e4 191{
2f569afd 192 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 193 pmd_clear(pmd);
9e1b32ca 194 pte_free_tlb(tlb, token, addr);
c4812909 195 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
196}
197
e0da382c
HD
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
1da177e4
LT
201{
202 pmd_t *pmd;
203 unsigned long next;
e0da382c 204 unsigned long start;
1da177e4 205
e0da382c 206 start = addr;
1da177e4 207 pmd = pmd_offset(pud, addr);
1da177e4
LT
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
9e1b32ca 212 free_pte_range(tlb, pmd, addr);
1da177e4
LT
213 } while (pmd++, addr = next, addr != end);
214
e0da382c
HD
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
1da177e4 222 }
e0da382c
HD
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
9e1b32ca 228 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 229 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
230}
231
c2febafc 232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pud_t *pud;
237 unsigned long next;
e0da382c 238 unsigned long start;
1da177e4 239
e0da382c 240 start = addr;
c2febafc 241 pud = pud_offset(p4d, addr);
1da177e4
LT
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
e0da382c 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
247 } while (pud++, addr = next, addr != end);
248
c2febafc
KS
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
b4e98d9a 263 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
c2febafc 294 p4d = p4d_offset(pgd, start);
e0da382c 295 pgd_clear(pgd);
c2febafc 296 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
297}
298
299/*
e0da382c 300 * This function frees user-level page tables of a process.
1da177e4 301 */
42b77728 302void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
1da177e4
LT
305{
306 pgd_t *pgd;
307 unsigned long next;
e0da382c
HD
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
1da177e4 334
e0da382c
HD
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
07e32661
AK
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
ed6a7935 354 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 355 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
c2febafc 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 361 } while (pgd++, addr = next, addr != end);
e0da382c
HD
362}
363
fd892593 364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 365 struct vm_area_struct *vma, unsigned long floor,
98e51a22 366 unsigned long ceiling, bool mm_wr_locked)
e0da382c 367{
763ecb03 368 do {
e0da382c 369 unsigned long addr = vma->vm_start;
763ecb03
LH
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
fd892593 376 next = mas_find(mas, ceiling - 1);
d2406291
PZ
377 if (unlikely(xa_is_zero(next)))
378 next = NULL;
e0da382c 379
8f4f8c16 380 /*
25d9e2d1 381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
8f4f8c16 383 */
98e51a22
SB
384 if (mm_wr_locked)
385 vma_start_write(vma);
5beb4930 386 unlink_anon_vmas(vma);
8f4f8c16
HD
387 unlink_file_vma(vma);
388
9da61aef 389 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 391 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
392 } else {
393 /*
394 * Optimization: gather nearby vmas into one call down
395 */
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 397 && !is_vm_hugetlb_page(next)) {
3bf5ee95 398 vma = next;
fd892593 399 next = mas_find(mas, ceiling - 1);
d2406291
PZ
400 if (unlikely(xa_is_zero(next)))
401 next = NULL;
98e51a22
SB
402 if (mm_wr_locked)
403 vma_start_write(vma);
5beb4930 404 unlink_anon_vmas(vma);
8f4f8c16 405 unlink_file_vma(vma);
3bf5ee95
HD
406 }
407 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 408 floor, next ? next->vm_start : ceiling);
3bf5ee95 409 }
e0da382c 410 vma = next;
763ecb03 411 } while (vma);
1da177e4
LT
412}
413
03c4f204 414void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 415{
03c4f204 416 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 417
8ac1f832 418 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 419 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
420 /*
421 * Ensure all pte setup (eg. pte page lock and page clearing) are
422 * visible before the pte is made visible to other CPUs by being
423 * put into page tables.
424 *
425 * The other side of the story is the pointer chasing in the page
426 * table walking code (when walking the page table without locking;
427 * ie. most of the time). Fortunately, these data accesses consist
428 * of a chain of data-dependent loads, meaning most CPUs (alpha
429 * being the notable exception) will already guarantee loads are
430 * seen in-order. See the alpha page table accessors for the
431 * smp_rmb() barriers in page table walking code.
432 */
433 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
434 pmd_populate(mm, pmd, *pte);
435 *pte = NULL;
4b471e88 436 }
c4088ebd 437 spin_unlock(ptl);
03c4f204
QZ
438}
439
4cf58924 440int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 441{
4cf58924 442 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
443 if (!new)
444 return -ENOMEM;
445
03c4f204 446 pmd_install(mm, pmd, &new);
2f569afd
MS
447 if (new)
448 pte_free(mm, new);
1bb3630e 449 return 0;
1da177e4
LT
450}
451
4cf58924 452int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 453{
4cf58924 454 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
455 if (!new)
456 return -ENOMEM;
457
458 spin_lock(&init_mm.page_table_lock);
8ac1f832 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 460 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 461 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
1bb3630e 464 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
465 if (new)
466 pte_free_kernel(&init_mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
d559db08
KH
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 476{
d559db08
KH
477 int i;
478
479 for (i = 0; i < NR_MM_COUNTERS; i++)
480 if (rss[i])
481 add_mm_counter(mm, i, rss[i]);
ae859762
HD
482}
483
b5810039 484/*
6aab341e
LT
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
b5810039
NP
488 *
489 * The calling function must still handle the error.
490 */
3dc14741
HD
491static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
b5810039 493{
3dc14741 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
499 pgoff_t index;
d936cf9b
HD
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
503
504 /*
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
507 */
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
510 nr_unshown++;
511 return;
512 }
513 if (nr_unshown) {
1170532b
JP
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 nr_unshown);
d936cf9b
HD
516 nr_unshown = 0;
517 }
518 nr_shown = 0;
519 }
520 if (nr_shown++ == 0)
521 resume = jiffies + 60 * HZ;
3dc14741
HD
522
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
525
1170532b
JP
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 current->comm,
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 529 if (page)
f0b791a3 530 dump_page(page, "bad pte");
6aa9b8b2 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
534 vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 537 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 538 dump_stack();
373d4d09 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
540}
541
ee498ed7 542/*
7e675137 543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 544 *
7e675137
NP
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 548 *
7e675137
NP
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
552 * described below.
553 *
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 557 *
b379d790
JH
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
6aab341e
LT
562 *
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 *
7e675137
NP
565 * And for normal mappings this is false.
566 *
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
b379d790 571 *
b379d790 572 *
7e675137 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
574 *
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
582 *
ee498ed7 583 */
25b2995a
CH
584struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 pte_t pte)
ee498ed7 586{
22b31eec 587 unsigned long pfn = pte_pfn(pte);
7e675137 588
00b3a331 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 590 if (likely(!pte_special(pte)))
22b31eec 591 goto check_pfn;
667a0a06
DV
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 return NULL;
df6ad698
JG
596 if (is_zero_pfn(pfn))
597 return NULL;
e1fb4a08 598 if (pte_devmap(pte))
3218f871
AS
599 /*
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 */
e1fb4a08
DJ
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
318e9342
VMO
647struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte)
649{
650 struct page *page = vm_normal_page(vma, addr, pte);
651
652 if (page)
653 return page_folio(page);
654 return NULL;
655}
656
28093f9f
GS
657#ifdef CONFIG_TRANSPARENT_HUGEPAGE
658struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 pmd_t pmd)
660{
661 unsigned long pfn = pmd_pfn(pmd);
662
663 /*
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
667 */
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
670 if (!pfn_valid(pfn))
671 return NULL;
672 goto out;
673 } else {
674 unsigned long off;
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
677 return NULL;
678 if (!is_cow_mapping(vma->vm_flags))
679 return NULL;
680 }
681 }
682
e1fb4a08
DJ
683 if (pmd_devmap(pmd))
684 return NULL;
3cde287b 685 if (is_huge_zero_pmd(pmd))
28093f9f
GS
686 return NULL;
687 if (unlikely(pfn > highest_memmap_pfn))
688 return NULL;
689
690 /*
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
693 */
694out:
695 return pfn_to_page(pfn);
696}
65610453
KW
697
698struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
699 unsigned long addr, pmd_t pmd)
700{
701 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
702
703 if (page)
704 return page_folio(page);
705 return NULL;
706}
28093f9f
GS
707#endif
708
b756a3b5
AP
709static void restore_exclusive_pte(struct vm_area_struct *vma,
710 struct page *page, unsigned long address,
711 pte_t *ptep)
712{
c33c7948 713 pte_t orig_pte;
b756a3b5
AP
714 pte_t pte;
715 swp_entry_t entry;
716
c33c7948 717 orig_pte = ptep_get(ptep);
b756a3b5 718 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 719 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
720 pte = pte_mksoft_dirty(pte);
721
c33c7948
RR
722 entry = pte_to_swp_entry(orig_pte);
723 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
724 pte = pte_mkuffd_wp(pte);
725 else if (is_writable_device_exclusive_entry(entry))
726 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
727
6c287605
DH
728 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
729
b756a3b5
AP
730 /*
731 * No need to take a page reference as one was already
732 * created when the swap entry was made.
733 */
734 if (PageAnon(page))
f1e2db12 735 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
736 else
737 /*
738 * Currently device exclusive access only supports anonymous
739 * memory so the entry shouldn't point to a filebacked page.
740 */
4d8ff640 741 WARN_ON_ONCE(1);
b756a3b5 742
1eba86c0
PT
743 set_pte_at(vma->vm_mm, address, ptep, pte);
744
b756a3b5
AP
745 /*
746 * No need to invalidate - it was non-present before. However
747 * secondary CPUs may have mappings that need invalidating.
748 */
749 update_mmu_cache(vma, address, ptep);
750}
751
752/*
753 * Tries to restore an exclusive pte if the page lock can be acquired without
754 * sleeping.
755 */
756static int
757try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
758 unsigned long addr)
759{
c33c7948 760 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
761 struct page *page = pfn_swap_entry_to_page(entry);
762
763 if (trylock_page(page)) {
764 restore_exclusive_pte(vma, page, addr, src_pte);
765 unlock_page(page);
766 return 0;
767 }
768
769 return -EBUSY;
770}
771
1da177e4
LT
772/*
773 * copy one vm_area from one task to the other. Assumes the page tables
774 * already present in the new task to be cleared in the whole range
775 * covered by this vma.
1da177e4
LT
776 */
777
df3a57d1
LT
778static unsigned long
779copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
780 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
781 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 782{
8f34f1ea 783 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
784 pte_t orig_pte = ptep_get(src_pte);
785 pte_t pte = orig_pte;
1da177e4 786 struct page *page;
c33c7948 787 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
788
789 if (likely(!non_swap_entry(entry))) {
790 if (swap_duplicate(entry) < 0)
9a5cc85c 791 return -EIO;
df3a57d1
LT
792
793 /* make sure dst_mm is on swapoff's mmlist. */
794 if (unlikely(list_empty(&dst_mm->mmlist))) {
795 spin_lock(&mmlist_lock);
796 if (list_empty(&dst_mm->mmlist))
797 list_add(&dst_mm->mmlist,
798 &src_mm->mmlist);
799 spin_unlock(&mmlist_lock);
800 }
1493a191 801 /* Mark the swap entry as shared. */
c33c7948
RR
802 if (pte_swp_exclusive(orig_pte)) {
803 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
804 set_pte_at(src_mm, addr, src_pte, pte);
805 }
df3a57d1
LT
806 rss[MM_SWAPENTS]++;
807 } else if (is_migration_entry(entry)) {
af5cdaf8 808 page = pfn_swap_entry_to_page(entry);
1da177e4 809
df3a57d1 810 rss[mm_counter(page)]++;
5042db43 811
6c287605 812 if (!is_readable_migration_entry(entry) &&
df3a57d1 813 is_cow_mapping(vm_flags)) {
5042db43 814 /*
6c287605
DH
815 * COW mappings require pages in both parent and child
816 * to be set to read. A previously exclusive entry is
817 * now shared.
5042db43 818 */
4dd845b5
AP
819 entry = make_readable_migration_entry(
820 swp_offset(entry));
df3a57d1 821 pte = swp_entry_to_pte(entry);
c33c7948 822 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 823 pte = pte_swp_mksoft_dirty(pte);
c33c7948 824 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
825 pte = pte_swp_mkuffd_wp(pte);
826 set_pte_at(src_mm, addr, src_pte, pte);
827 }
828 } else if (is_device_private_entry(entry)) {
af5cdaf8 829 page = pfn_swap_entry_to_page(entry);
5042db43 830
df3a57d1
LT
831 /*
832 * Update rss count even for unaddressable pages, as
833 * they should treated just like normal pages in this
834 * respect.
835 *
836 * We will likely want to have some new rss counters
837 * for unaddressable pages, at some point. But for now
838 * keep things as they are.
839 */
840 get_page(page);
841 rss[mm_counter(page)]++;
fb3d824d
DH
842 /* Cannot fail as these pages cannot get pinned. */
843 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
844
845 /*
846 * We do not preserve soft-dirty information, because so
847 * far, checkpoint/restore is the only feature that
848 * requires that. And checkpoint/restore does not work
849 * when a device driver is involved (you cannot easily
850 * save and restore device driver state).
851 */
4dd845b5 852 if (is_writable_device_private_entry(entry) &&
df3a57d1 853 is_cow_mapping(vm_flags)) {
4dd845b5
AP
854 entry = make_readable_device_private_entry(
855 swp_offset(entry));
df3a57d1 856 pte = swp_entry_to_pte(entry);
c33c7948 857 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
858 pte = pte_swp_mkuffd_wp(pte);
859 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 860 }
b756a3b5
AP
861 } else if (is_device_exclusive_entry(entry)) {
862 /*
863 * Make device exclusive entries present by restoring the
864 * original entry then copying as for a present pte. Device
865 * exclusive entries currently only support private writable
866 * (ie. COW) mappings.
867 */
868 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
869 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
870 return -EBUSY;
871 return -ENOENT;
c56d1b62 872 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
873 pte_marker marker = copy_pte_marker(entry, dst_vma);
874
875 if (marker)
876 set_pte_at(dst_mm, addr, dst_pte,
877 make_pte_marker(marker));
c56d1b62 878 return 0;
1da177e4 879 }
8f34f1ea
PX
880 if (!userfaultfd_wp(dst_vma))
881 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
882 set_pte_at(dst_mm, addr, dst_pte, pte);
883 return 0;
884}
885
70e806e4 886/*
b51ad4f8 887 * Copy a present and normal page.
70e806e4 888 *
b51ad4f8
DH
889 * NOTE! The usual case is that this isn't required;
890 * instead, the caller can just increase the page refcount
891 * and re-use the pte the traditional way.
70e806e4
PX
892 *
893 * And if we need a pre-allocated page but don't yet have
894 * one, return a negative error to let the preallocation
895 * code know so that it can do so outside the page table
896 * lock.
897 */
898static inline int
c78f4636
PX
899copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
900 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 901 struct folio **prealloc, struct page *page)
70e806e4 902{
edf50470 903 struct folio *new_folio;
b51ad4f8 904 pte_t pte;
70e806e4 905
edf50470
MWO
906 new_folio = *prealloc;
907 if (!new_folio)
70e806e4
PX
908 return -EAGAIN;
909
910 /*
911 * We have a prealloc page, all good! Take it
912 * over and copy the page & arm it.
913 */
914 *prealloc = NULL;
edf50470
MWO
915 copy_user_highpage(&new_folio->page, page, addr, src_vma);
916 __folio_mark_uptodate(new_folio);
917 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
918 folio_add_lru_vma(new_folio, dst_vma);
919 rss[MM_ANONPAGES]++;
70e806e4
PX
920
921 /* All done, just insert the new page copy in the child */
edf50470 922 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 923 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 924 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 925 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 926 pte = pte_mkuffd_wp(pte);
c78f4636 927 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
928 return 0;
929}
930
931/*
932 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
933 * is required to copy this pte.
934 */
935static inline int
c78f4636
PX
936copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 938 struct folio **prealloc)
df3a57d1 939{
c78f4636
PX
940 struct mm_struct *src_mm = src_vma->vm_mm;
941 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 942 pte_t pte = ptep_get(src_pte);
df3a57d1 943 struct page *page;
14ddee41 944 struct folio *folio;
df3a57d1 945
c78f4636 946 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
947 if (page)
948 folio = page_folio(page);
949 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
950 /*
951 * If this page may have been pinned by the parent process,
952 * copy the page immediately for the child so that we'll always
953 * guarantee the pinned page won't be randomly replaced in the
954 * future.
955 */
14ddee41 956 folio_get(folio);
fb3d824d 957 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
958 /* Page may be pinned, we have to copy. */
959 folio_put(folio);
fb3d824d
DH
960 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
961 addr, rss, prealloc, page);
962 }
edf50470 963 rss[MM_ANONPAGES]++;
b51ad4f8 964 } else if (page) {
14ddee41 965 folio_get(folio);
fb3d824d 966 page_dup_file_rmap(page, false);
edf50470 967 rss[mm_counter_file(page)]++;
70e806e4
PX
968 }
969
1da177e4
LT
970 /*
971 * If it's a COW mapping, write protect it both
972 * in the parent and the child
973 */
1b2de5d0 974 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 975 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 976 pte = pte_wrprotect(pte);
1da177e4 977 }
14ddee41 978 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
979
980 /*
981 * If it's a shared mapping, mark it clean in
982 * the child
983 */
984 if (vm_flags & VM_SHARED)
985 pte = pte_mkclean(pte);
986 pte = pte_mkold(pte);
6aab341e 987
8f34f1ea 988 if (!userfaultfd_wp(dst_vma))
b569a176
PX
989 pte = pte_clear_uffd_wp(pte);
990
c78f4636 991 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
992 return 0;
993}
994
294de6d8
KW
995static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
996 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
70e806e4 997{
edf50470 998 struct folio *new_folio;
70e806e4 999
294de6d8
KW
1000 if (need_zero)
1001 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1002 else
1003 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1004 addr, false);
1005
edf50470 1006 if (!new_folio)
70e806e4
PX
1007 return NULL;
1008
edf50470
MWO
1009 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1010 folio_put(new_folio);
70e806e4 1011 return NULL;
6aab341e 1012 }
e601ded4 1013 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 1014
edf50470 1015 return new_folio;
1da177e4
LT
1016}
1017
c78f4636
PX
1018static int
1019copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1020 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1021 unsigned long end)
1da177e4 1022{
c78f4636
PX
1023 struct mm_struct *dst_mm = dst_vma->vm_mm;
1024 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1025 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1026 pte_t *src_pte, *dst_pte;
c33c7948 1027 pte_t ptent;
c74df32c 1028 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1029 int progress, ret = 0;
d559db08 1030 int rss[NR_MM_COUNTERS];
570a335b 1031 swp_entry_t entry = (swp_entry_t){0};
edf50470 1032 struct folio *prealloc = NULL;
1da177e4
LT
1033
1034again:
70e806e4 1035 progress = 0;
d559db08
KH
1036 init_rss_vec(rss);
1037
3db82b93
HD
1038 /*
1039 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1040 * error handling here, assume that exclusive mmap_lock on dst and src
1041 * protects anon from unexpected THP transitions; with shmem and file
1042 * protected by mmap_lock-less collapse skipping areas with anon_vma
1043 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1044 * can remove such assumptions later, but this is good enough for now.
1045 */
c74df32c 1046 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1047 if (!dst_pte) {
1048 ret = -ENOMEM;
1049 goto out;
1050 }
3db82b93
HD
1051 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1052 if (!src_pte) {
1053 pte_unmap_unlock(dst_pte, dst_ptl);
1054 /* ret == 0 */
1055 goto out;
1056 }
f20dc5f7 1057 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1058 orig_src_pte = src_pte;
1059 orig_dst_pte = dst_pte;
6606c3e0 1060 arch_enter_lazy_mmu_mode();
1da177e4 1061
1da177e4
LT
1062 do {
1063 /*
1064 * We are holding two locks at this point - either of them
1065 * could generate latencies in another task on another CPU.
1066 */
e040f218
HD
1067 if (progress >= 32) {
1068 progress = 0;
1069 if (need_resched() ||
95c354fe 1070 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1071 break;
1072 }
c33c7948
RR
1073 ptent = ptep_get(src_pte);
1074 if (pte_none(ptent)) {
1da177e4
LT
1075 progress++;
1076 continue;
1077 }
c33c7948 1078 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1079 ret = copy_nonpresent_pte(dst_mm, src_mm,
1080 dst_pte, src_pte,
1081 dst_vma, src_vma,
1082 addr, rss);
1083 if (ret == -EIO) {
c33c7948 1084 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1085 break;
b756a3b5
AP
1086 } else if (ret == -EBUSY) {
1087 break;
1088 } else if (!ret) {
1089 progress += 8;
1090 continue;
9a5cc85c 1091 }
b756a3b5
AP
1092
1093 /*
1094 * Device exclusive entry restored, continue by copying
1095 * the now present pte.
1096 */
1097 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1098 }
70e806e4 1099 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1100 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1101 addr, rss, &prealloc);
70e806e4
PX
1102 /*
1103 * If we need a pre-allocated page for this pte, drop the
1104 * locks, allocate, and try again.
1105 */
1106 if (unlikely(ret == -EAGAIN))
1107 break;
1108 if (unlikely(prealloc)) {
1109 /*
1110 * pre-alloc page cannot be reused by next time so as
1111 * to strictly follow mempolicy (e.g., alloc_page_vma()
1112 * will allocate page according to address). This
1113 * could only happen if one pinned pte changed.
1114 */
edf50470 1115 folio_put(prealloc);
70e806e4
PX
1116 prealloc = NULL;
1117 }
1da177e4
LT
1118 progress += 8;
1119 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1120
6606c3e0 1121 arch_leave_lazy_mmu_mode();
3db82b93 1122 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1123 add_mm_rss_vec(dst_mm, rss);
c36987e2 1124 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1125 cond_resched();
570a335b 1126
9a5cc85c
AP
1127 if (ret == -EIO) {
1128 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1129 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1130 ret = -ENOMEM;
1131 goto out;
1132 }
1133 entry.val = 0;
b756a3b5
AP
1134 } else if (ret == -EBUSY) {
1135 goto out;
9a5cc85c 1136 } else if (ret == -EAGAIN) {
294de6d8 1137 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
70e806e4 1138 if (!prealloc)
570a335b 1139 return -ENOMEM;
9a5cc85c
AP
1140 } else if (ret) {
1141 VM_WARN_ON_ONCE(1);
570a335b 1142 }
9a5cc85c
AP
1143
1144 /* We've captured and resolved the error. Reset, try again. */
1145 ret = 0;
1146
1da177e4
LT
1147 if (addr != end)
1148 goto again;
70e806e4
PX
1149out:
1150 if (unlikely(prealloc))
edf50470 1151 folio_put(prealloc);
70e806e4 1152 return ret;
1da177e4
LT
1153}
1154
c78f4636
PX
1155static inline int
1156copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1157 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1158 unsigned long end)
1da177e4 1159{
c78f4636
PX
1160 struct mm_struct *dst_mm = dst_vma->vm_mm;
1161 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1162 pmd_t *src_pmd, *dst_pmd;
1163 unsigned long next;
1164
1165 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1166 if (!dst_pmd)
1167 return -ENOMEM;
1168 src_pmd = pmd_offset(src_pud, addr);
1169 do {
1170 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1171 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1172 || pmd_devmap(*src_pmd)) {
71e3aac0 1173 int err;
c78f4636 1174 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1175 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1176 addr, dst_vma, src_vma);
71e3aac0
AA
1177 if (err == -ENOMEM)
1178 return -ENOMEM;
1179 if (!err)
1180 continue;
1181 /* fall through */
1182 }
1da177e4
LT
1183 if (pmd_none_or_clear_bad(src_pmd))
1184 continue;
c78f4636
PX
1185 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1186 addr, next))
1da177e4
LT
1187 return -ENOMEM;
1188 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1189 return 0;
1190}
1191
c78f4636
PX
1192static inline int
1193copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1194 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1195 unsigned long end)
1da177e4 1196{
c78f4636
PX
1197 struct mm_struct *dst_mm = dst_vma->vm_mm;
1198 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1199 pud_t *src_pud, *dst_pud;
1200 unsigned long next;
1201
c2febafc 1202 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1203 if (!dst_pud)
1204 return -ENOMEM;
c2febafc 1205 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1206 do {
1207 next = pud_addr_end(addr, end);
a00cc7d9
MW
1208 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1209 int err;
1210
c78f4636 1211 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1212 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1213 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1214 if (err == -ENOMEM)
1215 return -ENOMEM;
1216 if (!err)
1217 continue;
1218 /* fall through */
1219 }
1da177e4
LT
1220 if (pud_none_or_clear_bad(src_pud))
1221 continue;
c78f4636
PX
1222 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1223 addr, next))
1da177e4
LT
1224 return -ENOMEM;
1225 } while (dst_pud++, src_pud++, addr = next, addr != end);
1226 return 0;
1227}
1228
c78f4636
PX
1229static inline int
1230copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1231 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1232 unsigned long end)
c2febafc 1233{
c78f4636 1234 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1235 p4d_t *src_p4d, *dst_p4d;
1236 unsigned long next;
1237
1238 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1239 if (!dst_p4d)
1240 return -ENOMEM;
1241 src_p4d = p4d_offset(src_pgd, addr);
1242 do {
1243 next = p4d_addr_end(addr, end);
1244 if (p4d_none_or_clear_bad(src_p4d))
1245 continue;
c78f4636
PX
1246 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1247 addr, next))
c2febafc
KS
1248 return -ENOMEM;
1249 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1250 return 0;
1251}
1252
c56d1b62
PX
1253/*
1254 * Return true if the vma needs to copy the pgtable during this fork(). Return
1255 * false when we can speed up fork() by allowing lazy page faults later until
1256 * when the child accesses the memory range.
1257 */
bc70fbf2 1258static bool
c56d1b62
PX
1259vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1260{
1261 /*
1262 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1263 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1264 * contains uffd-wp protection information, that's something we can't
1265 * retrieve from page cache, and skip copying will lose those info.
1266 */
1267 if (userfaultfd_wp(dst_vma))
1268 return true;
1269
bcd51a3c 1270 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1271 return true;
1272
1273 if (src_vma->anon_vma)
1274 return true;
1275
1276 /*
1277 * Don't copy ptes where a page fault will fill them correctly. Fork
1278 * becomes much lighter when there are big shared or private readonly
1279 * mappings. The tradeoff is that copy_page_range is more efficient
1280 * than faulting.
1281 */
1282 return false;
1283}
1284
c78f4636
PX
1285int
1286copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1287{
1288 pgd_t *src_pgd, *dst_pgd;
1289 unsigned long next;
c78f4636
PX
1290 unsigned long addr = src_vma->vm_start;
1291 unsigned long end = src_vma->vm_end;
1292 struct mm_struct *dst_mm = dst_vma->vm_mm;
1293 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1294 struct mmu_notifier_range range;
2ec74c3e 1295 bool is_cow;
cddb8a5c 1296 int ret;
1da177e4 1297
c56d1b62 1298 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1299 return 0;
d992895b 1300
c78f4636 1301 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1302 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1303
c78f4636 1304 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1305 /*
1306 * We do not free on error cases below as remove_vma
1307 * gets called on error from higher level routine
1308 */
c78f4636 1309 ret = track_pfn_copy(src_vma);
2ab64037 1310 if (ret)
1311 return ret;
1312 }
1313
cddb8a5c
AA
1314 /*
1315 * We need to invalidate the secondary MMU mappings only when
1316 * there could be a permission downgrade on the ptes of the
1317 * parent mm. And a permission downgrade will only happen if
1318 * is_cow_mapping() returns true.
1319 */
c78f4636 1320 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1321
1322 if (is_cow) {
7269f999 1323 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1324 0, src_mm, addr, end);
ac46d4f3 1325 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1326 /*
1327 * Disabling preemption is not needed for the write side, as
1328 * the read side doesn't spin, but goes to the mmap_lock.
1329 *
1330 * Use the raw variant of the seqcount_t write API to avoid
1331 * lockdep complaining about preemptibility.
1332 */
e727bfd5 1333 vma_assert_write_locked(src_vma);
57efa1fe 1334 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1335 }
cddb8a5c
AA
1336
1337 ret = 0;
1da177e4
LT
1338 dst_pgd = pgd_offset(dst_mm, addr);
1339 src_pgd = pgd_offset(src_mm, addr);
1340 do {
1341 next = pgd_addr_end(addr, end);
1342 if (pgd_none_or_clear_bad(src_pgd))
1343 continue;
c78f4636
PX
1344 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1345 addr, next))) {
d155df53 1346 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1347 ret = -ENOMEM;
1348 break;
1349 }
1da177e4 1350 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1351
57efa1fe
JG
1352 if (is_cow) {
1353 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1354 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1355 }
cddb8a5c 1356 return ret;
1da177e4
LT
1357}
1358
5abfd71d
PX
1359/* Whether we should zap all COWed (private) pages too */
1360static inline bool should_zap_cows(struct zap_details *details)
1361{
1362 /* By default, zap all pages */
1363 if (!details)
1364 return true;
1365
1366 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1367 return details->even_cows;
5abfd71d
PX
1368}
1369
2e148f1e 1370/* Decides whether we should zap this page with the page pointer specified */
254ab940 1371static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1372{
5abfd71d
PX
1373 /* If we can make a decision without *page.. */
1374 if (should_zap_cows(details))
254ab940 1375 return true;
5abfd71d
PX
1376
1377 /* E.g. the caller passes NULL for the case of a zero page */
1378 if (!page)
254ab940 1379 return true;
3506659e 1380
2e148f1e
PX
1381 /* Otherwise we should only zap non-anon pages */
1382 return !PageAnon(page);
3506659e
MWO
1383}
1384
999dad82
PX
1385static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1386{
1387 if (!details)
1388 return false;
1389
1390 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1391}
1392
1393/*
1394 * This function makes sure that we'll replace the none pte with an uffd-wp
1395 * swap special pte marker when necessary. Must be with the pgtable lock held.
1396 */
1397static inline void
1398zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1399 unsigned long addr, pte_t *pte,
1400 struct zap_details *details, pte_t pteval)
1401{
2bad466c
PX
1402 /* Zap on anonymous always means dropping everything */
1403 if (vma_is_anonymous(vma))
1404 return;
1405
999dad82
PX
1406 if (zap_drop_file_uffd_wp(details))
1407 return;
1408
1409 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1410}
1411
51c6f666 1412static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1413 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1414 unsigned long addr, unsigned long end,
97a89413 1415 struct zap_details *details)
1da177e4 1416{
b5810039 1417 struct mm_struct *mm = tlb->mm;
d16dfc55 1418 int force_flush = 0;
d559db08 1419 int rss[NR_MM_COUNTERS];
97a89413 1420 spinlock_t *ptl;
5f1a1907 1421 pte_t *start_pte;
97a89413 1422 pte_t *pte;
8a5f14a2 1423 swp_entry_t entry;
d559db08 1424
ed6a7935 1425 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1426 init_rss_vec(rss);
3db82b93
HD
1427 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1428 if (!pte)
1429 return addr;
1430
3ea27719 1431 flush_tlb_batched_pending(mm);
6606c3e0 1432 arch_enter_lazy_mmu_mode();
1da177e4 1433 do {
c33c7948 1434 pte_t ptent = ptep_get(pte);
8018db85
PX
1435 struct page *page;
1436
166f61b9 1437 if (pte_none(ptent))
1da177e4 1438 continue;
6f5e6b9e 1439
7b167b68
MK
1440 if (need_resched())
1441 break;
1442
1da177e4 1443 if (pte_present(ptent)) {
5df397de
LT
1444 unsigned int delay_rmap;
1445
25b2995a 1446 page = vm_normal_page(vma, addr, ptent);
254ab940 1447 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1448 continue;
b5810039 1449 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1450 tlb->fullmm);
e5136e87 1451 arch_check_zapped_pte(vma, ptent);
1da177e4 1452 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1453 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1454 ptent);
e2942062 1455 if (unlikely(!page)) {
6080d19f 1456 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1457 continue;
e2942062 1458 }
eca56ff9 1459
5df397de 1460 delay_rmap = 0;
eca56ff9 1461 if (!PageAnon(page)) {
1cf35d47 1462 if (pte_dirty(ptent)) {
6237bcd9 1463 set_page_dirty(page);
5df397de
LT
1464 if (tlb_delay_rmap(tlb)) {
1465 delay_rmap = 1;
1466 force_flush = 1;
1467 }
1cf35d47 1468 }
8788f678 1469 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1470 mark_page_accessed(page);
6237bcd9 1471 }
eca56ff9 1472 rss[mm_counter(page)]--;
5df397de
LT
1473 if (!delay_rmap) {
1474 page_remove_rmap(page, vma, false);
1475 if (unlikely(page_mapcount(page) < 0))
1476 print_bad_pte(vma, addr, ptent, page);
1477 }
1478 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1479 force_flush = 1;
ce9ec37b 1480 addr += PAGE_SIZE;
d16dfc55 1481 break;
1cf35d47 1482 }
1da177e4
LT
1483 continue;
1484 }
5042db43
JG
1485
1486 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1487 if (is_device_private_entry(entry) ||
1488 is_device_exclusive_entry(entry)) {
8018db85 1489 page = pfn_swap_entry_to_page(entry);
254ab940 1490 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1491 continue;
999dad82
PX
1492 /*
1493 * Both device private/exclusive mappings should only
1494 * work with anonymous page so far, so we don't need to
1495 * consider uffd-wp bit when zap. For more information,
1496 * see zap_install_uffd_wp_if_needed().
1497 */
1498 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1499 rss[mm_counter(page)]--;
b756a3b5 1500 if (is_device_private_entry(entry))
cea86fe2 1501 page_remove_rmap(page, vma, false);
5042db43 1502 put_page(page);
8018db85 1503 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1504 /* Genuine swap entry, hence a private anon page */
1505 if (!should_zap_cows(details))
1506 continue;
8a5f14a2 1507 rss[MM_SWAPENTS]--;
8018db85
PX
1508 if (unlikely(!free_swap_and_cache(entry)))
1509 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1510 } else if (is_migration_entry(entry)) {
af5cdaf8 1511 page = pfn_swap_entry_to_page(entry);
254ab940 1512 if (!should_zap_page(details, page))
5abfd71d 1513 continue;
eca56ff9 1514 rss[mm_counter(page)]--;
999dad82 1515 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1516 /*
1517 * For anon: always drop the marker; for file: only
1518 * drop the marker if explicitly requested.
1519 */
1520 if (!vma_is_anonymous(vma) &&
1521 !zap_drop_file_uffd_wp(details))
999dad82 1522 continue;
9f186f9e 1523 } else if (is_hwpoison_entry(entry) ||
af19487f 1524 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1525 if (!should_zap_cows(details))
1526 continue;
1527 } else {
1528 /* We should have covered all the swap entry types */
727d16f1 1529 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
5abfd71d 1530 WARN_ON_ONCE(1);
b084d435 1531 }
9888a1ca 1532 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1533 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1534 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1535
d559db08 1536 add_mm_rss_vec(mm, rss);
6606c3e0 1537 arch_leave_lazy_mmu_mode();
51c6f666 1538
1cf35d47 1539 /* Do the actual TLB flush before dropping ptl */
5df397de 1540 if (force_flush) {
1cf35d47 1541 tlb_flush_mmu_tlbonly(tlb);
f036c818 1542 tlb_flush_rmaps(tlb, vma);
5df397de 1543 }
1cf35d47
LT
1544 pte_unmap_unlock(start_pte, ptl);
1545
1546 /*
1547 * If we forced a TLB flush (either due to running out of
1548 * batch buffers or because we needed to flush dirty TLB
1549 * entries before releasing the ptl), free the batched
3db82b93 1550 * memory too. Come back again if we didn't do everything.
1cf35d47 1551 */
3db82b93 1552 if (force_flush)
fa0aafb8 1553 tlb_flush_mmu(tlb);
d16dfc55 1554
51c6f666 1555 return addr;
1da177e4
LT
1556}
1557
51c6f666 1558static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1559 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1560 unsigned long addr, unsigned long end,
97a89413 1561 struct zap_details *details)
1da177e4
LT
1562{
1563 pmd_t *pmd;
1564 unsigned long next;
1565
1566 pmd = pmd_offset(pud, addr);
1567 do {
1568 next = pmd_addr_end(addr, end);
84c3fc4e 1569 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1570 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1571 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1572 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1573 addr = next;
1574 continue;
1575 }
71e3aac0 1576 /* fall through */
3506659e
MWO
1577 } else if (details && details->single_folio &&
1578 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1579 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1580 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1581 /*
1582 * Take and drop THP pmd lock so that we cannot return
1583 * prematurely, while zap_huge_pmd() has cleared *pmd,
1584 * but not yet decremented compound_mapcount().
1585 */
1586 spin_unlock(ptl);
71e3aac0 1587 }
3db82b93
HD
1588 if (pmd_none(*pmd)) {
1589 addr = next;
1590 continue;
1591 }
1592 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1593 if (addr != next)
1594 pmd--;
1595 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1596
1597 return addr;
1da177e4
LT
1598}
1599
51c6f666 1600static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1601 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1602 unsigned long addr, unsigned long end,
97a89413 1603 struct zap_details *details)
1da177e4
LT
1604{
1605 pud_t *pud;
1606 unsigned long next;
1607
c2febafc 1608 pud = pud_offset(p4d, addr);
1da177e4
LT
1609 do {
1610 next = pud_addr_end(addr, end);
a00cc7d9
MW
1611 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1612 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1613 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1614 split_huge_pud(vma, pud, addr);
1615 } else if (zap_huge_pud(tlb, vma, pud, addr))
1616 goto next;
1617 /* fall through */
1618 }
97a89413 1619 if (pud_none_or_clear_bad(pud))
1da177e4 1620 continue;
97a89413 1621 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1622next:
1623 cond_resched();
97a89413 1624 } while (pud++, addr = next, addr != end);
51c6f666
RH
1625
1626 return addr;
1da177e4
LT
1627}
1628
c2febafc
KS
1629static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1630 struct vm_area_struct *vma, pgd_t *pgd,
1631 unsigned long addr, unsigned long end,
1632 struct zap_details *details)
1633{
1634 p4d_t *p4d;
1635 unsigned long next;
1636
1637 p4d = p4d_offset(pgd, addr);
1638 do {
1639 next = p4d_addr_end(addr, end);
1640 if (p4d_none_or_clear_bad(p4d))
1641 continue;
1642 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1643 } while (p4d++, addr = next, addr != end);
1644
1645 return addr;
1646}
1647
aac45363 1648void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1649 struct vm_area_struct *vma,
1650 unsigned long addr, unsigned long end,
1651 struct zap_details *details)
1da177e4
LT
1652{
1653 pgd_t *pgd;
1654 unsigned long next;
1655
1da177e4
LT
1656 BUG_ON(addr >= end);
1657 tlb_start_vma(tlb, vma);
1658 pgd = pgd_offset(vma->vm_mm, addr);
1659 do {
1660 next = pgd_addr_end(addr, end);
97a89413 1661 if (pgd_none_or_clear_bad(pgd))
1da177e4 1662 continue;
c2febafc 1663 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1664 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1665 tlb_end_vma(tlb, vma);
1666}
51c6f666 1667
f5cc4eef
AV
1668
1669static void unmap_single_vma(struct mmu_gather *tlb,
1670 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1671 unsigned long end_addr,
68f48381 1672 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1673{
1674 unsigned long start = max(vma->vm_start, start_addr);
1675 unsigned long end;
1676
1677 if (start >= vma->vm_end)
1678 return;
1679 end = min(vma->vm_end, end_addr);
1680 if (end <= vma->vm_start)
1681 return;
1682
cbc91f71
SD
1683 if (vma->vm_file)
1684 uprobe_munmap(vma, start, end);
1685
b3b9c293 1686 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1687 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1688
1689 if (start != end) {
1690 if (unlikely(is_vm_hugetlb_page(vma))) {
1691 /*
1692 * It is undesirable to test vma->vm_file as it
1693 * should be non-null for valid hugetlb area.
1694 * However, vm_file will be NULL in the error
7aa6b4ad 1695 * cleanup path of mmap_region. When
f5cc4eef 1696 * hugetlbfs ->mmap method fails,
7aa6b4ad 1697 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1698 * before calling this function to clean up.
1699 * Since no pte has actually been setup, it is
1700 * safe to do nothing in this case.
1701 */
24669e58 1702 if (vma->vm_file) {
05e90bd0
PX
1703 zap_flags_t zap_flags = details ?
1704 details->zap_flags : 0;
2820b0f0 1705 __unmap_hugepage_range(tlb, vma, start, end,
05e90bd0 1706 NULL, zap_flags);
24669e58 1707 }
f5cc4eef
AV
1708 } else
1709 unmap_page_range(tlb, vma, start, end, details);
1710 }
1da177e4
LT
1711}
1712
1da177e4
LT
1713/**
1714 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1715 * @tlb: address of the caller's struct mmu_gather
6e412203 1716 * @mas: the maple state
1da177e4
LT
1717 * @vma: the starting vma
1718 * @start_addr: virtual address at which to start unmapping
1719 * @end_addr: virtual address at which to end unmapping
6e412203 1720 * @tree_end: The maximum index to check
809ef83c 1721 * @mm_wr_locked: lock flag
1da177e4 1722 *
508034a3 1723 * Unmap all pages in the vma list.
1da177e4 1724 *
1da177e4
LT
1725 * Only addresses between `start' and `end' will be unmapped.
1726 *
1727 * The VMA list must be sorted in ascending virtual address order.
1728 *
1729 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1730 * range after unmap_vmas() returns. So the only responsibility here is to
1731 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1732 * drops the lock and schedules.
1733 */
fd892593 1734void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1735 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1736 unsigned long end_addr, unsigned long tree_end,
1737 bool mm_wr_locked)
1da177e4 1738{
ac46d4f3 1739 struct mmu_notifier_range range;
999dad82 1740 struct zap_details details = {
04ada095 1741 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1742 /* Careful - we need to zap private pages too! */
1743 .even_cows = true,
1744 };
1da177e4 1745
7d4a8be0 1746 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1747 start_addr, end_addr);
ac46d4f3 1748 mmu_notifier_invalidate_range_start(&range);
763ecb03 1749 do {
2820b0f0
RR
1750 unsigned long start = start_addr;
1751 unsigned long end = end_addr;
1752 hugetlb_zap_begin(vma, &start, &end);
1753 unmap_single_vma(tlb, vma, start, end, &details,
68f48381 1754 mm_wr_locked);
2820b0f0 1755 hugetlb_zap_end(vma, &details);
d2406291
PZ
1756 vma = mas_find(mas, tree_end - 1);
1757 } while (vma && likely(!xa_is_zero(vma)));
ac46d4f3 1758 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1759}
1760
f5cc4eef
AV
1761/**
1762 * zap_page_range_single - remove user pages in a given range
1763 * @vma: vm_area_struct holding the applicable pages
1764 * @address: starting address of pages to zap
1765 * @size: number of bytes to zap
8a5f14a2 1766 * @details: details of shared cache invalidation
f5cc4eef
AV
1767 *
1768 * The range must fit into one VMA.
1da177e4 1769 */
21b85b09 1770void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1771 unsigned long size, struct zap_details *details)
1772{
21b85b09 1773 const unsigned long end = address + size;
ac46d4f3 1774 struct mmu_notifier_range range;
d16dfc55 1775 struct mmu_gather tlb;
1da177e4 1776
1da177e4 1777 lru_add_drain();
7d4a8be0 1778 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09 1779 address, end);
2820b0f0 1780 hugetlb_zap_begin(vma, &range.start, &range.end);
a72afd87 1781 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1782 update_hiwater_rss(vma->vm_mm);
1783 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1784 /*
1785 * unmap 'address-end' not 'range.start-range.end' as range
1786 * could have been expanded for hugetlb pmd sharing.
1787 */
68f48381 1788 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1789 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1790 tlb_finish_mmu(&tlb);
2820b0f0 1791 hugetlb_zap_end(vma, details);
1da177e4
LT
1792}
1793
c627f9cc
JS
1794/**
1795 * zap_vma_ptes - remove ptes mapping the vma
1796 * @vma: vm_area_struct holding ptes to be zapped
1797 * @address: starting address of pages to zap
1798 * @size: number of bytes to zap
1799 *
1800 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1801 *
1802 * The entire address range must be fully contained within the vma.
1803 *
c627f9cc 1804 */
27d036e3 1805void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1806 unsigned long size)
1807{
88a35912 1808 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1809 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1810 return;
1811
f5cc4eef 1812 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1813}
1814EXPORT_SYMBOL_GPL(zap_vma_ptes);
1815
8cd3984d 1816static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1817{
c2febafc
KS
1818 pgd_t *pgd;
1819 p4d_t *p4d;
1820 pud_t *pud;
1821 pmd_t *pmd;
1822
1823 pgd = pgd_offset(mm, addr);
1824 p4d = p4d_alloc(mm, pgd, addr);
1825 if (!p4d)
1826 return NULL;
1827 pud = pud_alloc(mm, p4d, addr);
1828 if (!pud)
1829 return NULL;
1830 pmd = pmd_alloc(mm, pud, addr);
1831 if (!pmd)
1832 return NULL;
1833
1834 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1835 return pmd;
1836}
1837
1838pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1839 spinlock_t **ptl)
1840{
1841 pmd_t *pmd = walk_to_pmd(mm, addr);
1842
1843 if (!pmd)
1844 return NULL;
c2febafc 1845 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1846}
1847
8efd6f5b
AR
1848static int validate_page_before_insert(struct page *page)
1849{
f8b6187d
KW
1850 struct folio *folio = page_folio(page);
1851
1852 if (folio_test_anon(folio) || folio_test_slab(folio) ||
1853 page_has_type(page))
8efd6f5b 1854 return -EINVAL;
f8b6187d 1855 flush_dcache_folio(folio);
8efd6f5b
AR
1856 return 0;
1857}
1858
cea86fe2 1859static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1860 unsigned long addr, struct page *page, pgprot_t prot)
1861{
c33c7948 1862 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1863 return -EBUSY;
1864 /* Ok, finally just insert the thing.. */
1865 get_page(page);
f1a79412 1866 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1867 page_add_file_rmap(page, vma, false);
1868 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1869 return 0;
1870}
1871
238f58d8
LT
1872/*
1873 * This is the old fallback for page remapping.
1874 *
1875 * For historical reasons, it only allows reserved pages. Only
1876 * old drivers should use this, and they needed to mark their
1877 * pages reserved for the old functions anyway.
1878 */
423bad60
NP
1879static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1880 struct page *page, pgprot_t prot)
238f58d8
LT
1881{
1882 int retval;
c9cfcddf 1883 pte_t *pte;
8a9f3ccd
BS
1884 spinlock_t *ptl;
1885
8efd6f5b
AR
1886 retval = validate_page_before_insert(page);
1887 if (retval)
5b4e655e 1888 goto out;
238f58d8 1889 retval = -ENOMEM;
cea86fe2 1890 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1891 if (!pte)
5b4e655e 1892 goto out;
cea86fe2 1893 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1894 pte_unmap_unlock(pte, ptl);
1895out:
1896 return retval;
1897}
1898
cea86fe2 1899static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1900 unsigned long addr, struct page *page, pgprot_t prot)
1901{
1902 int err;
1903
1904 if (!page_count(page))
1905 return -EINVAL;
1906 err = validate_page_before_insert(page);
7f70c2a6
AR
1907 if (err)
1908 return err;
cea86fe2 1909 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1910}
1911
1912/* insert_pages() amortizes the cost of spinlock operations
bb7dbaaf 1913 * when inserting pages in a loop.
8cd3984d
AR
1914 */
1915static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1916 struct page **pages, unsigned long *num, pgprot_t prot)
1917{
1918 pmd_t *pmd = NULL;
7f70c2a6
AR
1919 pte_t *start_pte, *pte;
1920 spinlock_t *pte_lock;
8cd3984d
AR
1921 struct mm_struct *const mm = vma->vm_mm;
1922 unsigned long curr_page_idx = 0;
1923 unsigned long remaining_pages_total = *num;
1924 unsigned long pages_to_write_in_pmd;
1925 int ret;
1926more:
1927 ret = -EFAULT;
1928 pmd = walk_to_pmd(mm, addr);
1929 if (!pmd)
1930 goto out;
1931
1932 pages_to_write_in_pmd = min_t(unsigned long,
1933 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1934
1935 /* Allocate the PTE if necessary; takes PMD lock once only. */
1936 ret = -ENOMEM;
1937 if (pte_alloc(mm, pmd))
1938 goto out;
8cd3984d
AR
1939
1940 while (pages_to_write_in_pmd) {
1941 int pte_idx = 0;
1942 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1943
7f70c2a6 1944 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1945 if (!start_pte) {
1946 ret = -EFAULT;
1947 goto out;
1948 }
7f70c2a6 1949 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1950 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1951 addr, pages[curr_page_idx], prot);
1952 if (unlikely(err)) {
7f70c2a6 1953 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1954 ret = err;
1955 remaining_pages_total -= pte_idx;
1956 goto out;
1957 }
1958 addr += PAGE_SIZE;
1959 ++curr_page_idx;
1960 }
7f70c2a6 1961 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1962 pages_to_write_in_pmd -= batch_size;
1963 remaining_pages_total -= batch_size;
1964 }
1965 if (remaining_pages_total)
1966 goto more;
1967 ret = 0;
1968out:
1969 *num = remaining_pages_total;
1970 return ret;
1971}
8cd3984d
AR
1972
1973/**
1974 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1975 * @vma: user vma to map to
1976 * @addr: target start user address of these pages
1977 * @pages: source kernel pages
1978 * @num: in: number of pages to map. out: number of pages that were *not*
1979 * mapped. (0 means all pages were successfully mapped).
1980 *
1981 * Preferred over vm_insert_page() when inserting multiple pages.
1982 *
1983 * In case of error, we may have mapped a subset of the provided
1984 * pages. It is the caller's responsibility to account for this case.
1985 *
1986 * The same restrictions apply as in vm_insert_page().
1987 */
1988int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1989 struct page **pages, unsigned long *num)
1990{
8cd3984d
AR
1991 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1992
1993 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1994 return -EFAULT;
1995 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1996 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1997 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1998 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1999 }
2000 /* Defer page refcount checking till we're about to map that page. */
2001 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
8cd3984d
AR
2002}
2003EXPORT_SYMBOL(vm_insert_pages);
2004
bfa5bf6d
REB
2005/**
2006 * vm_insert_page - insert single page into user vma
2007 * @vma: user vma to map to
2008 * @addr: target user address of this page
2009 * @page: source kernel page
2010 *
a145dd41
LT
2011 * This allows drivers to insert individual pages they've allocated
2012 * into a user vma.
2013 *
2014 * The page has to be a nice clean _individual_ kernel allocation.
2015 * If you allocate a compound page, you need to have marked it as
2016 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2017 * (see split_page()).
a145dd41
LT
2018 *
2019 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2020 * took an arbitrary page protection parameter. This doesn't allow
2021 * that. Your vma protection will have to be set up correctly, which
2022 * means that if you want a shared writable mapping, you'd better
2023 * ask for a shared writable mapping!
2024 *
2025 * The page does not need to be reserved.
4b6e1e37
KK
2026 *
2027 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2028 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2029 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2030 * function from other places, for example from page-fault handler.
a862f68a
MR
2031 *
2032 * Return: %0 on success, negative error code otherwise.
a145dd41 2033 */
423bad60
NP
2034int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2035 struct page *page)
a145dd41
LT
2036{
2037 if (addr < vma->vm_start || addr >= vma->vm_end)
2038 return -EFAULT;
2039 if (!page_count(page))
2040 return -EINVAL;
4b6e1e37 2041 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2042 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2043 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2044 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2045 }
423bad60 2046 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2047}
e3c3374f 2048EXPORT_SYMBOL(vm_insert_page);
a145dd41 2049
a667d745
SJ
2050/*
2051 * __vm_map_pages - maps range of kernel pages into user vma
2052 * @vma: user vma to map to
2053 * @pages: pointer to array of source kernel pages
2054 * @num: number of pages in page array
2055 * @offset: user's requested vm_pgoff
2056 *
2057 * This allows drivers to map range of kernel pages into a user vma.
2058 *
2059 * Return: 0 on success and error code otherwise.
2060 */
2061static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2062 unsigned long num, unsigned long offset)
2063{
2064 unsigned long count = vma_pages(vma);
2065 unsigned long uaddr = vma->vm_start;
2066 int ret, i;
2067
2068 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2069 if (offset >= num)
a667d745
SJ
2070 return -ENXIO;
2071
2072 /* Fail if the user requested size exceeds available object size */
2073 if (count > num - offset)
2074 return -ENXIO;
2075
2076 for (i = 0; i < count; i++) {
2077 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2078 if (ret < 0)
2079 return ret;
2080 uaddr += PAGE_SIZE;
2081 }
2082
2083 return 0;
2084}
2085
2086/**
2087 * vm_map_pages - maps range of kernel pages starts with non zero offset
2088 * @vma: user vma to map to
2089 * @pages: pointer to array of source kernel pages
2090 * @num: number of pages in page array
2091 *
2092 * Maps an object consisting of @num pages, catering for the user's
2093 * requested vm_pgoff
2094 *
2095 * If we fail to insert any page into the vma, the function will return
2096 * immediately leaving any previously inserted pages present. Callers
2097 * from the mmap handler may immediately return the error as their caller
2098 * will destroy the vma, removing any successfully inserted pages. Other
2099 * callers should make their own arrangements for calling unmap_region().
2100 *
2101 * Context: Process context. Called by mmap handlers.
2102 * Return: 0 on success and error code otherwise.
2103 */
2104int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2105 unsigned long num)
2106{
2107 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2108}
2109EXPORT_SYMBOL(vm_map_pages);
2110
2111/**
2112 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2113 * @vma: user vma to map to
2114 * @pages: pointer to array of source kernel pages
2115 * @num: number of pages in page array
2116 *
2117 * Similar to vm_map_pages(), except that it explicitly sets the offset
2118 * to 0. This function is intended for the drivers that did not consider
2119 * vm_pgoff.
2120 *
2121 * Context: Process context. Called by mmap handlers.
2122 * Return: 0 on success and error code otherwise.
2123 */
2124int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2125 unsigned long num)
2126{
2127 return __vm_map_pages(vma, pages, num, 0);
2128}
2129EXPORT_SYMBOL(vm_map_pages_zero);
2130
9b5a8e00 2131static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2132 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2133{
2134 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2135 pte_t *pte, entry;
2136 spinlock_t *ptl;
2137
423bad60
NP
2138 pte = get_locked_pte(mm, addr, &ptl);
2139 if (!pte)
9b5a8e00 2140 return VM_FAULT_OOM;
c33c7948
RR
2141 entry = ptep_get(pte);
2142 if (!pte_none(entry)) {
b2770da6
RZ
2143 if (mkwrite) {
2144 /*
2145 * For read faults on private mappings the PFN passed
2146 * in may not match the PFN we have mapped if the
2147 * mapped PFN is a writeable COW page. In the mkwrite
2148 * case we are creating a writable PTE for a shared
f2c57d91
JK
2149 * mapping and we expect the PFNs to match. If they
2150 * don't match, we are likely racing with block
2151 * allocation and mapping invalidation so just skip the
2152 * update.
b2770da6 2153 */
c33c7948
RR
2154 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2155 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2156 goto out_unlock;
f2c57d91 2157 }
c33c7948 2158 entry = pte_mkyoung(entry);
cae85cb8
JK
2159 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2160 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2161 update_mmu_cache(vma, addr, pte);
2162 }
2163 goto out_unlock;
b2770da6 2164 }
423bad60
NP
2165
2166 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2167 if (pfn_t_devmap(pfn))
2168 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2169 else
2170 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2171
b2770da6
RZ
2172 if (mkwrite) {
2173 entry = pte_mkyoung(entry);
2174 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2175 }
2176
423bad60 2177 set_pte_at(mm, addr, pte, entry);
4b3073e1 2178 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2179
423bad60
NP
2180out_unlock:
2181 pte_unmap_unlock(pte, ptl);
9b5a8e00 2182 return VM_FAULT_NOPAGE;
423bad60
NP
2183}
2184
f5e6d1d5
MW
2185/**
2186 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2187 * @vma: user vma to map to
2188 * @addr: target user address of this page
2189 * @pfn: source kernel pfn
2190 * @pgprot: pgprot flags for the inserted page
2191 *
a1a0aea5 2192 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2193 * to override pgprot on a per-page basis.
2194 *
2195 * This only makes sense for IO mappings, and it makes no sense for
2196 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2197 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2198 * impractical.
2199 *
28d8b812
LS
2200 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2201 * caching- and encryption bits different than those of @vma->vm_page_prot,
2202 * because the caching- or encryption mode may not be known at mmap() time.
2203 *
2204 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2205 * to set caching and encryption bits for those vmas (except for COW pages).
2206 * This is ensured by core vm only modifying these page table entries using
2207 * functions that don't touch caching- or encryption bits, using pte_modify()
2208 * if needed. (See for example mprotect()).
2209 *
2210 * Also when new page-table entries are created, this is only done using the
2211 * fault() callback, and never using the value of vma->vm_page_prot,
2212 * except for page-table entries that point to anonymous pages as the result
2213 * of COW.
574c5b3d 2214 *
ae2b01f3 2215 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2216 * Return: vm_fault_t value.
2217 */
2218vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2219 unsigned long pfn, pgprot_t pgprot)
2220{
6d958546
MW
2221 /*
2222 * Technically, architectures with pte_special can avoid all these
2223 * restrictions (same for remap_pfn_range). However we would like
2224 * consistency in testing and feature parity among all, so we should
2225 * try to keep these invariants in place for everybody.
2226 */
2227 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2228 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2229 (VM_PFNMAP|VM_MIXEDMAP));
2230 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2231 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2232
2233 if (addr < vma->vm_start || addr >= vma->vm_end)
2234 return VM_FAULT_SIGBUS;
2235
2236 if (!pfn_modify_allowed(pfn, pgprot))
2237 return VM_FAULT_SIGBUS;
2238
2239 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2240
9b5a8e00 2241 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2242 false);
f5e6d1d5
MW
2243}
2244EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2245
ae2b01f3
MW
2246/**
2247 * vmf_insert_pfn - insert single pfn into user vma
2248 * @vma: user vma to map to
2249 * @addr: target user address of this page
2250 * @pfn: source kernel pfn
2251 *
2252 * Similar to vm_insert_page, this allows drivers to insert individual pages
2253 * they've allocated into a user vma. Same comments apply.
2254 *
2255 * This function should only be called from a vm_ops->fault handler, and
2256 * in that case the handler should return the result of this function.
2257 *
2258 * vma cannot be a COW mapping.
2259 *
2260 * As this is called only for pages that do not currently exist, we
2261 * do not need to flush old virtual caches or the TLB.
2262 *
2263 * Context: Process context. May allocate using %GFP_KERNEL.
2264 * Return: vm_fault_t value.
2265 */
2266vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2267 unsigned long pfn)
2268{
2269 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2270}
2271EXPORT_SYMBOL(vmf_insert_pfn);
2272
785a3fab
DW
2273static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2274{
2275 /* these checks mirror the abort conditions in vm_normal_page */
2276 if (vma->vm_flags & VM_MIXEDMAP)
2277 return true;
2278 if (pfn_t_devmap(pfn))
2279 return true;
2280 if (pfn_t_special(pfn))
2281 return true;
2282 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2283 return true;
2284 return false;
2285}
2286
79f3aa5b 2287static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2288 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2289{
28d8b812 2290 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2291 int err;
87744ab3 2292
785a3fab 2293 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2294
423bad60 2295 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2296 return VM_FAULT_SIGBUS;
308a047c
BP
2297
2298 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2299
42e4089c 2300 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2301 return VM_FAULT_SIGBUS;
42e4089c 2302
423bad60
NP
2303 /*
2304 * If we don't have pte special, then we have to use the pfn_valid()
2305 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2306 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2307 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2308 * without pte special, it would there be refcounted as a normal page.
423bad60 2309 */
00b3a331
LD
2310 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2311 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2312 struct page *page;
2313
03fc2da6
DW
2314 /*
2315 * At this point we are committed to insert_page()
2316 * regardless of whether the caller specified flags that
2317 * result in pfn_t_has_page() == false.
2318 */
2319 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2320 err = insert_page(vma, addr, page, pgprot);
2321 } else {
9b5a8e00 2322 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2323 }
b2770da6 2324
5d747637
MW
2325 if (err == -ENOMEM)
2326 return VM_FAULT_OOM;
2327 if (err < 0 && err != -EBUSY)
2328 return VM_FAULT_SIGBUS;
2329
2330 return VM_FAULT_NOPAGE;
e0dc0d8f 2331}
79f3aa5b
MW
2332
2333vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2334 pfn_t pfn)
2335{
28d8b812 2336 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2337}
5d747637 2338EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2339
ab77dab4
SJ
2340/*
2341 * If the insertion of PTE failed because someone else already added a
2342 * different entry in the mean time, we treat that as success as we assume
2343 * the same entry was actually inserted.
2344 */
ab77dab4
SJ
2345vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2346 unsigned long addr, pfn_t pfn)
b2770da6 2347{
28d8b812 2348 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2349}
ab77dab4 2350EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2351
1da177e4
LT
2352/*
2353 * maps a range of physical memory into the requested pages. the old
2354 * mappings are removed. any references to nonexistent pages results
2355 * in null mappings (currently treated as "copy-on-access")
2356 */
2357static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2358 unsigned long addr, unsigned long end,
2359 unsigned long pfn, pgprot_t prot)
2360{
90a3e375 2361 pte_t *pte, *mapped_pte;
c74df32c 2362 spinlock_t *ptl;
42e4089c 2363 int err = 0;
1da177e4 2364
90a3e375 2365 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2366 if (!pte)
2367 return -ENOMEM;
6606c3e0 2368 arch_enter_lazy_mmu_mode();
1da177e4 2369 do {
c33c7948 2370 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2371 if (!pfn_modify_allowed(pfn, prot)) {
2372 err = -EACCES;
2373 break;
2374 }
7e675137 2375 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2376 pfn++;
2377 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2378 arch_leave_lazy_mmu_mode();
90a3e375 2379 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2380 return err;
1da177e4
LT
2381}
2382
2383static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2384 unsigned long addr, unsigned long end,
2385 unsigned long pfn, pgprot_t prot)
2386{
2387 pmd_t *pmd;
2388 unsigned long next;
42e4089c 2389 int err;
1da177e4
LT
2390
2391 pfn -= addr >> PAGE_SHIFT;
2392 pmd = pmd_alloc(mm, pud, addr);
2393 if (!pmd)
2394 return -ENOMEM;
f66055ab 2395 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2396 do {
2397 next = pmd_addr_end(addr, end);
42e4089c
AK
2398 err = remap_pte_range(mm, pmd, addr, next,
2399 pfn + (addr >> PAGE_SHIFT), prot);
2400 if (err)
2401 return err;
1da177e4
LT
2402 } while (pmd++, addr = next, addr != end);
2403 return 0;
2404}
2405
c2febafc 2406static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2407 unsigned long addr, unsigned long end,
2408 unsigned long pfn, pgprot_t prot)
2409{
2410 pud_t *pud;
2411 unsigned long next;
42e4089c 2412 int err;
1da177e4
LT
2413
2414 pfn -= addr >> PAGE_SHIFT;
c2febafc 2415 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2416 if (!pud)
2417 return -ENOMEM;
2418 do {
2419 next = pud_addr_end(addr, end);
42e4089c
AK
2420 err = remap_pmd_range(mm, pud, addr, next,
2421 pfn + (addr >> PAGE_SHIFT), prot);
2422 if (err)
2423 return err;
1da177e4
LT
2424 } while (pud++, addr = next, addr != end);
2425 return 0;
2426}
2427
c2febafc
KS
2428static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2429 unsigned long addr, unsigned long end,
2430 unsigned long pfn, pgprot_t prot)
2431{
2432 p4d_t *p4d;
2433 unsigned long next;
42e4089c 2434 int err;
c2febafc
KS
2435
2436 pfn -= addr >> PAGE_SHIFT;
2437 p4d = p4d_alloc(mm, pgd, addr);
2438 if (!p4d)
2439 return -ENOMEM;
2440 do {
2441 next = p4d_addr_end(addr, end);
42e4089c
AK
2442 err = remap_pud_range(mm, p4d, addr, next,
2443 pfn + (addr >> PAGE_SHIFT), prot);
2444 if (err)
2445 return err;
c2febafc
KS
2446 } while (p4d++, addr = next, addr != end);
2447 return 0;
2448}
2449
74ffa5a3
CH
2450/*
2451 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2452 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2453 */
74ffa5a3
CH
2454int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2455 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2456{
2457 pgd_t *pgd;
2458 unsigned long next;
2d15cab8 2459 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2460 struct mm_struct *mm = vma->vm_mm;
2461 int err;
2462
0c4123e3
AZ
2463 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2464 return -EINVAL;
2465
1da177e4
LT
2466 /*
2467 * Physically remapped pages are special. Tell the
2468 * rest of the world about it:
2469 * VM_IO tells people not to look at these pages
2470 * (accesses can have side effects).
6aab341e
LT
2471 * VM_PFNMAP tells the core MM that the base pages are just
2472 * raw PFN mappings, and do not have a "struct page" associated
2473 * with them.
314e51b9
KK
2474 * VM_DONTEXPAND
2475 * Disable vma merging and expanding with mremap().
2476 * VM_DONTDUMP
2477 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2478 *
2479 * There's a horrible special case to handle copy-on-write
2480 * behaviour that some programs depend on. We mark the "original"
2481 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2482 * See vm_normal_page() for details.
1da177e4 2483 */
b3b9c293
KK
2484 if (is_cow_mapping(vma->vm_flags)) {
2485 if (addr != vma->vm_start || end != vma->vm_end)
2486 return -EINVAL;
fb155c16 2487 vma->vm_pgoff = pfn;
b3b9c293
KK
2488 }
2489
1c71222e 2490 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2491
2492 BUG_ON(addr >= end);
2493 pfn -= addr >> PAGE_SHIFT;
2494 pgd = pgd_offset(mm, addr);
2495 flush_cache_range(vma, addr, end);
1da177e4
LT
2496 do {
2497 next = pgd_addr_end(addr, end);
c2febafc 2498 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2499 pfn + (addr >> PAGE_SHIFT), prot);
2500 if (err)
74ffa5a3 2501 return err;
1da177e4 2502 } while (pgd++, addr = next, addr != end);
2ab64037 2503
74ffa5a3
CH
2504 return 0;
2505}
2506
2507/**
2508 * remap_pfn_range - remap kernel memory to userspace
2509 * @vma: user vma to map to
2510 * @addr: target page aligned user address to start at
2511 * @pfn: page frame number of kernel physical memory address
2512 * @size: size of mapping area
2513 * @prot: page protection flags for this mapping
2514 *
2515 * Note: this is only safe if the mm semaphore is held when called.
2516 *
2517 * Return: %0 on success, negative error code otherwise.
2518 */
2519int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2520 unsigned long pfn, unsigned long size, pgprot_t prot)
2521{
2522 int err;
2523
2524 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2525 if (err)
74ffa5a3 2526 return -EINVAL;
2ab64037 2527
74ffa5a3
CH
2528 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2529 if (err)
68f48381 2530 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2531 return err;
2532}
2533EXPORT_SYMBOL(remap_pfn_range);
2534
b4cbb197
LT
2535/**
2536 * vm_iomap_memory - remap memory to userspace
2537 * @vma: user vma to map to
abd69b9e 2538 * @start: start of the physical memory to be mapped
b4cbb197
LT
2539 * @len: size of area
2540 *
2541 * This is a simplified io_remap_pfn_range() for common driver use. The
2542 * driver just needs to give us the physical memory range to be mapped,
2543 * we'll figure out the rest from the vma information.
2544 *
2545 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2546 * whatever write-combining details or similar.
a862f68a
MR
2547 *
2548 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2549 */
2550int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2551{
2552 unsigned long vm_len, pfn, pages;
2553
2554 /* Check that the physical memory area passed in looks valid */
2555 if (start + len < start)
2556 return -EINVAL;
2557 /*
2558 * You *really* shouldn't map things that aren't page-aligned,
2559 * but we've historically allowed it because IO memory might
2560 * just have smaller alignment.
2561 */
2562 len += start & ~PAGE_MASK;
2563 pfn = start >> PAGE_SHIFT;
2564 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2565 if (pfn + pages < pfn)
2566 return -EINVAL;
2567
2568 /* We start the mapping 'vm_pgoff' pages into the area */
2569 if (vma->vm_pgoff > pages)
2570 return -EINVAL;
2571 pfn += vma->vm_pgoff;
2572 pages -= vma->vm_pgoff;
2573
2574 /* Can we fit all of the mapping? */
2575 vm_len = vma->vm_end - vma->vm_start;
2576 if (vm_len >> PAGE_SHIFT > pages)
2577 return -EINVAL;
2578
2579 /* Ok, let it rip */
2580 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2581}
2582EXPORT_SYMBOL(vm_iomap_memory);
2583
aee16b3c
JF
2584static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2585 unsigned long addr, unsigned long end,
e80d3909
JR
2586 pte_fn_t fn, void *data, bool create,
2587 pgtbl_mod_mask *mask)
aee16b3c 2588{
8abb50c7 2589 pte_t *pte, *mapped_pte;
be1db475 2590 int err = 0;
3f649ab7 2591 spinlock_t *ptl;
aee16b3c 2592
be1db475 2593 if (create) {
8abb50c7 2594 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2595 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2596 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2597 if (!pte)
2598 return -ENOMEM;
2599 } else {
8abb50c7 2600 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2601 pte_offset_kernel(pmd, addr) :
2602 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2603 if (!pte)
2604 return -EINVAL;
be1db475 2605 }
aee16b3c 2606
38e0edb1
JF
2607 arch_enter_lazy_mmu_mode();
2608
eeb4a05f
CH
2609 if (fn) {
2610 do {
c33c7948 2611 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2612 err = fn(pte++, addr, data);
2613 if (err)
2614 break;
2615 }
2616 } while (addr += PAGE_SIZE, addr != end);
2617 }
e80d3909 2618 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2619
38e0edb1
JF
2620 arch_leave_lazy_mmu_mode();
2621
aee16b3c 2622 if (mm != &init_mm)
8abb50c7 2623 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2624 return err;
2625}
2626
2627static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2628 unsigned long addr, unsigned long end,
e80d3909
JR
2629 pte_fn_t fn, void *data, bool create,
2630 pgtbl_mod_mask *mask)
aee16b3c
JF
2631{
2632 pmd_t *pmd;
2633 unsigned long next;
be1db475 2634 int err = 0;
aee16b3c 2635
ceb86879
AK
2636 BUG_ON(pud_huge(*pud));
2637
be1db475 2638 if (create) {
e80d3909 2639 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2640 if (!pmd)
2641 return -ENOMEM;
2642 } else {
2643 pmd = pmd_offset(pud, addr);
2644 }
aee16b3c
JF
2645 do {
2646 next = pmd_addr_end(addr, end);
0c95cba4
NP
2647 if (pmd_none(*pmd) && !create)
2648 continue;
2649 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2650 return -EINVAL;
2651 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2652 if (!create)
2653 continue;
2654 pmd_clear_bad(pmd);
be1db475 2655 }
0c95cba4
NP
2656 err = apply_to_pte_range(mm, pmd, addr, next,
2657 fn, data, create, mask);
2658 if (err)
2659 break;
aee16b3c 2660 } while (pmd++, addr = next, addr != end);
0c95cba4 2661
aee16b3c
JF
2662 return err;
2663}
2664
c2febafc 2665static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2666 unsigned long addr, unsigned long end,
e80d3909
JR
2667 pte_fn_t fn, void *data, bool create,
2668 pgtbl_mod_mask *mask)
aee16b3c
JF
2669{
2670 pud_t *pud;
2671 unsigned long next;
be1db475 2672 int err = 0;
aee16b3c 2673
be1db475 2674 if (create) {
e80d3909 2675 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2676 if (!pud)
2677 return -ENOMEM;
2678 } else {
2679 pud = pud_offset(p4d, addr);
2680 }
aee16b3c
JF
2681 do {
2682 next = pud_addr_end(addr, end);
0c95cba4
NP
2683 if (pud_none(*pud) && !create)
2684 continue;
2685 if (WARN_ON_ONCE(pud_leaf(*pud)))
2686 return -EINVAL;
2687 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2688 if (!create)
2689 continue;
2690 pud_clear_bad(pud);
be1db475 2691 }
0c95cba4
NP
2692 err = apply_to_pmd_range(mm, pud, addr, next,
2693 fn, data, create, mask);
2694 if (err)
2695 break;
aee16b3c 2696 } while (pud++, addr = next, addr != end);
0c95cba4 2697
aee16b3c
JF
2698 return err;
2699}
2700
c2febafc
KS
2701static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2702 unsigned long addr, unsigned long end,
e80d3909
JR
2703 pte_fn_t fn, void *data, bool create,
2704 pgtbl_mod_mask *mask)
c2febafc
KS
2705{
2706 p4d_t *p4d;
2707 unsigned long next;
be1db475 2708 int err = 0;
c2febafc 2709
be1db475 2710 if (create) {
e80d3909 2711 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2712 if (!p4d)
2713 return -ENOMEM;
2714 } else {
2715 p4d = p4d_offset(pgd, addr);
2716 }
c2febafc
KS
2717 do {
2718 next = p4d_addr_end(addr, end);
0c95cba4
NP
2719 if (p4d_none(*p4d) && !create)
2720 continue;
2721 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2722 return -EINVAL;
2723 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2724 if (!create)
2725 continue;
2726 p4d_clear_bad(p4d);
be1db475 2727 }
0c95cba4
NP
2728 err = apply_to_pud_range(mm, p4d, addr, next,
2729 fn, data, create, mask);
2730 if (err)
2731 break;
c2febafc 2732 } while (p4d++, addr = next, addr != end);
0c95cba4 2733
c2febafc
KS
2734 return err;
2735}
2736
be1db475
DA
2737static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2738 unsigned long size, pte_fn_t fn,
2739 void *data, bool create)
aee16b3c
JF
2740{
2741 pgd_t *pgd;
e80d3909 2742 unsigned long start = addr, next;
57250a5b 2743 unsigned long end = addr + size;
e80d3909 2744 pgtbl_mod_mask mask = 0;
be1db475 2745 int err = 0;
aee16b3c 2746
9cb65bc3
MP
2747 if (WARN_ON(addr >= end))
2748 return -EINVAL;
2749
aee16b3c
JF
2750 pgd = pgd_offset(mm, addr);
2751 do {
2752 next = pgd_addr_end(addr, end);
0c95cba4 2753 if (pgd_none(*pgd) && !create)
be1db475 2754 continue;
0c95cba4
NP
2755 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2756 return -EINVAL;
2757 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2758 if (!create)
2759 continue;
2760 pgd_clear_bad(pgd);
2761 }
2762 err = apply_to_p4d_range(mm, pgd, addr, next,
2763 fn, data, create, &mask);
aee16b3c
JF
2764 if (err)
2765 break;
2766 } while (pgd++, addr = next, addr != end);
57250a5b 2767
e80d3909
JR
2768 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2769 arch_sync_kernel_mappings(start, start + size);
2770
aee16b3c
JF
2771 return err;
2772}
be1db475
DA
2773
2774/*
2775 * Scan a region of virtual memory, filling in page tables as necessary
2776 * and calling a provided function on each leaf page table.
2777 */
2778int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2779 unsigned long size, pte_fn_t fn, void *data)
2780{
2781 return __apply_to_page_range(mm, addr, size, fn, data, true);
2782}
aee16b3c
JF
2783EXPORT_SYMBOL_GPL(apply_to_page_range);
2784
be1db475
DA
2785/*
2786 * Scan a region of virtual memory, calling a provided function on
2787 * each leaf page table where it exists.
2788 *
2789 * Unlike apply_to_page_range, this does _not_ fill in page tables
2790 * where they are absent.
2791 */
2792int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2793 unsigned long size, pte_fn_t fn, void *data)
2794{
2795 return __apply_to_page_range(mm, addr, size, fn, data, false);
2796}
2797EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2798
8f4e2101 2799/*
9b4bdd2f
KS
2800 * handle_pte_fault chooses page fault handler according to an entry which was
2801 * read non-atomically. Before making any commitment, on those architectures
2802 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2803 * parts, do_swap_page must check under lock before unmapping the pte and
2804 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2805 * and do_anonymous_page can safely check later on).
8f4e2101 2806 */
2ca99358 2807static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2808{
2809 int same = 1;
923717cb 2810#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2811 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2812 spin_lock(vmf->ptl);
c33c7948 2813 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2814 spin_unlock(vmf->ptl);
8f4e2101
HD
2815 }
2816#endif
2ca99358
PX
2817 pte_unmap(vmf->pte);
2818 vmf->pte = NULL;
8f4e2101
HD
2819 return same;
2820}
2821
a873dfe1
TL
2822/*
2823 * Return:
2824 * 0: copied succeeded
2825 * -EHWPOISON: copy failed due to hwpoison in source page
2826 * -EAGAIN: copied failed (some other reason)
2827 */
2828static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2829 struct vm_fault *vmf)
6aab341e 2830{
a873dfe1 2831 int ret;
83d116c5
JH
2832 void *kaddr;
2833 void __user *uaddr;
83d116c5
JH
2834 struct vm_area_struct *vma = vmf->vma;
2835 struct mm_struct *mm = vma->vm_mm;
2836 unsigned long addr = vmf->address;
2837
83d116c5 2838 if (likely(src)) {
d302c239
TL
2839 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2840 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2841 return -EHWPOISON;
d302c239 2842 }
a873dfe1 2843 return 0;
83d116c5
JH
2844 }
2845
6aab341e
LT
2846 /*
2847 * If the source page was a PFN mapping, we don't have
2848 * a "struct page" for it. We do a best-effort copy by
2849 * just copying from the original user address. If that
2850 * fails, we just zero-fill it. Live with it.
2851 */
24d2613a
FDF
2852 kaddr = kmap_local_page(dst);
2853 pagefault_disable();
83d116c5
JH
2854 uaddr = (void __user *)(addr & PAGE_MASK);
2855
2856 /*
2857 * On architectures with software "accessed" bits, we would
2858 * take a double page fault, so mark it accessed here.
2859 */
3db82b93 2860 vmf->pte = NULL;
e1fd09e3 2861 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2862 pte_t entry;
5d2a2dbb 2863
83d116c5 2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2865 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2866 /*
2867 * Other thread has already handled the fault
7df67697 2868 * and update local tlb only
83d116c5 2869 */
a92cbb82
HD
2870 if (vmf->pte)
2871 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2872 ret = -EAGAIN;
83d116c5
JH
2873 goto pte_unlock;
2874 }
2875
2876 entry = pte_mkyoung(vmf->orig_pte);
2877 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
5003a2bd 2878 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
83d116c5
JH
2879 }
2880
2881 /*
2882 * This really shouldn't fail, because the page is there
2883 * in the page tables. But it might just be unreadable,
2884 * in which case we just give up and fill the result with
2885 * zeroes.
2886 */
2887 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2888 if (vmf->pte)
c3e5ea6e
KS
2889 goto warn;
2890
2891 /* Re-validate under PTL if the page is still mapped */
2892 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2893 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2894 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2895 if (vmf->pte)
2896 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2897 ret = -EAGAIN;
c3e5ea6e
KS
2898 goto pte_unlock;
2899 }
2900
5d2a2dbb 2901 /*
985ba004 2902 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2903 * Try to copy again under PTL.
5d2a2dbb 2904 */
c3e5ea6e
KS
2905 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2906 /*
2907 * Give a warn in case there can be some obscure
2908 * use-case
2909 */
2910warn:
2911 WARN_ON_ONCE(1);
2912 clear_page(kaddr);
2913 }
83d116c5
JH
2914 }
2915
a873dfe1 2916 ret = 0;
83d116c5
JH
2917
2918pte_unlock:
3db82b93 2919 if (vmf->pte)
83d116c5 2920 pte_unmap_unlock(vmf->pte, vmf->ptl);
24d2613a
FDF
2921 pagefault_enable();
2922 kunmap_local(kaddr);
83d116c5
JH
2923 flush_dcache_page(dst);
2924
2925 return ret;
6aab341e
LT
2926}
2927
c20cd45e
MH
2928static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2929{
2930 struct file *vm_file = vma->vm_file;
2931
2932 if (vm_file)
2933 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2934
2935 /*
2936 * Special mappings (e.g. VDSO) do not have any file so fake
2937 * a default GFP_KERNEL for them.
2938 */
2939 return GFP_KERNEL;
2940}
2941
fb09a464
KS
2942/*
2943 * Notify the address space that the page is about to become writable so that
2944 * it can prohibit this or wait for the page to get into an appropriate state.
2945 *
2946 * We do this without the lock held, so that it can sleep if it needs to.
2947 */
86aa6998 2948static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2949{
2b740303 2950 vm_fault_t ret;
38b8cb7f 2951 unsigned int old_flags = vmf->flags;
fb09a464 2952
38b8cb7f 2953 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2954
dc617f29
DW
2955 if (vmf->vma->vm_file &&
2956 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2957 return VM_FAULT_SIGBUS;
2958
11bac800 2959 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2960 /* Restore original flags so that caller is not surprised */
2961 vmf->flags = old_flags;
fb09a464
KS
2962 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2963 return ret;
2964 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2965 folio_lock(folio);
2966 if (!folio->mapping) {
2967 folio_unlock(folio);
fb09a464
KS
2968 return 0; /* retry */
2969 }
2970 ret |= VM_FAULT_LOCKED;
2971 } else
3d243659 2972 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2973 return ret;
2974}
2975
97ba0c2b
JK
2976/*
2977 * Handle dirtying of a page in shared file mapping on a write fault.
2978 *
2979 * The function expects the page to be locked and unlocks it.
2980 */
89b15332 2981static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2982{
89b15332 2983 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2984 struct address_space *mapping;
15b4919a 2985 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2986 bool dirtied;
2987 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2988
15b4919a
Z
2989 dirtied = folio_mark_dirty(folio);
2990 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2991 /*
15b4919a
Z
2992 * Take a local copy of the address_space - folio.mapping may be zeroed
2993 * by truncate after folio_unlock(). The address_space itself remains
2994 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2995 * release semantics to prevent the compiler from undoing this copying.
2996 */
15b4919a
Z
2997 mapping = folio_raw_mapping(folio);
2998 folio_unlock(folio);
97ba0c2b 2999
89b15332
JW
3000 if (!page_mkwrite)
3001 file_update_time(vma->vm_file);
3002
3003 /*
3004 * Throttle page dirtying rate down to writeback speed.
3005 *
3006 * mapping may be NULL here because some device drivers do not
3007 * set page.mapping but still dirty their pages
3008 *
c1e8d7c6 3009 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3010 * is pinning the mapping, as per above.
3011 */
97ba0c2b 3012 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3013 struct file *fpin;
3014
3015 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3016 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3017 if (fpin) {
3018 fput(fpin);
d9272525 3019 return VM_FAULT_COMPLETED;
89b15332 3020 }
97ba0c2b
JK
3021 }
3022
89b15332 3023 return 0;
97ba0c2b
JK
3024}
3025
4e047f89
SR
3026/*
3027 * Handle write page faults for pages that can be reused in the current vma
3028 *
3029 * This can happen either due to the mapping being with the VM_SHARED flag,
3030 * or due to us being the last reference standing to the page. In either
3031 * case, all we need to do here is to mark the page as writable and update
3032 * any related book-keeping.
3033 */
a86bc96b 3034static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3035 __releases(vmf->ptl)
4e047f89 3036{
82b0f8c3 3037 struct vm_area_struct *vma = vmf->vma;
4e047f89 3038 pte_t entry;
6c287605 3039
c89357e2 3040 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605 3041
c2c3b514
KW
3042 if (folio) {
3043 VM_BUG_ON(folio_test_anon(folio) &&
3044 !PageAnonExclusive(vmf->page));
3045 /*
3046 * Clear the folio's cpupid information as the existing
3047 * information potentially belongs to a now completely
3048 * unrelated process.
3049 */
3050 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3051 }
4e047f89 3052
2994302b
JK
3053 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3054 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3055 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3 3056 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
5003a2bd 3057 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
82b0f8c3 3058 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3059 count_vm_event(PGREUSE);
4e047f89
SR
3060}
3061
4ed43798
MWO
3062/*
3063 * We could add a bitflag somewhere, but for now, we know that all
3064 * vm_ops that have a ->map_pages have been audited and don't need
3065 * the mmap_lock to be held.
3066 */
3067static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3068{
3069 struct vm_area_struct *vma = vmf->vma;
3070
3071 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3072 return 0;
3073 vma_end_read(vma);
3074 return VM_FAULT_RETRY;
3075}
3076
164b06f2
MWO
3077static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3078{
3079 struct vm_area_struct *vma = vmf->vma;
3080
3081 if (likely(vma->anon_vma))
3082 return 0;
3083 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3084 vma_end_read(vma);
3085 return VM_FAULT_RETRY;
3086 }
3087 if (__anon_vma_prepare(vma))
3088 return VM_FAULT_OOM;
3089 return 0;
3090}
3091
2f38ab2c 3092/*
c89357e2
DH
3093 * Handle the case of a page which we actually need to copy to a new page,
3094 * either due to COW or unsharing.
2f38ab2c 3095 *
c1e8d7c6 3096 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3097 * without the ptl held.
3098 *
3099 * High level logic flow:
3100 *
3101 * - Allocate a page, copy the content of the old page to the new one.
3102 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3103 * - Take the PTL. If the pte changed, bail out and release the allocated page
3104 * - If the pte is still the way we remember it, update the page table and all
3105 * relevant references. This includes dropping the reference the page-table
3106 * held to the old page, as well as updating the rmap.
3107 * - In any case, unlock the PTL and drop the reference we took to the old page.
3108 */
2b740303 3109static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3110{
c89357e2 3111 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3112 struct vm_area_struct *vma = vmf->vma;
bae473a4 3113 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3114 struct folio *old_folio = NULL;
3115 struct folio *new_folio = NULL;
2f38ab2c
SR
3116 pte_t entry;
3117 int page_copied = 0;
ac46d4f3 3118 struct mmu_notifier_range range;
164b06f2 3119 vm_fault_t ret;
cf503cc6 3120 bool pfn_is_zero;
2f38ab2c 3121
662ce1dc
YY
3122 delayacct_wpcopy_start();
3123
28d41a48
MWO
3124 if (vmf->page)
3125 old_folio = page_folio(vmf->page);
164b06f2
MWO
3126 ret = vmf_anon_prepare(vmf);
3127 if (unlikely(ret))
3128 goto out;
2f38ab2c 3129
cf503cc6
KW
3130 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3131 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3132 if (!new_folio)
3133 goto oom;
3134
3135 if (!pfn_is_zero) {
164b06f2 3136 int err;
83d116c5 3137
164b06f2
MWO
3138 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3139 if (err) {
83d116c5
JH
3140 /*
3141 * COW failed, if the fault was solved by other,
3142 * it's fine. If not, userspace would re-fault on
3143 * the same address and we will handle the fault
3144 * from the second attempt.
a873dfe1 3145 * The -EHWPOISON case will not be retried.
83d116c5 3146 */
28d41a48
MWO
3147 folio_put(new_folio);
3148 if (old_folio)
3149 folio_put(old_folio);
662ce1dc
YY
3150
3151 delayacct_wpcopy_end();
164b06f2 3152 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3153 }
28d41a48 3154 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3155 }
2f38ab2c 3156
28d41a48 3157 __folio_mark_uptodate(new_folio);
eb3c24f3 3158
7d4a8be0 3159 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3160 vmf->address & PAGE_MASK,
ac46d4f3
JG
3161 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3162 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3163
3164 /*
3165 * Re-check the pte - we dropped the lock
3166 */
82b0f8c3 3167 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3168 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3169 if (old_folio) {
3170 if (!folio_test_anon(old_folio)) {
3171 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3172 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3173 }
3174 } else {
6080d19f 3175 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3176 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3177 }
2994302b 3178 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3179 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3180 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3181 if (unlikely(unshare)) {
3182 if (pte_soft_dirty(vmf->orig_pte))
3183 entry = pte_mksoft_dirty(entry);
3184 if (pte_uffd_wp(vmf->orig_pte))
3185 entry = pte_mkuffd_wp(entry);
3186 } else {
3187 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3188 }
111fe718 3189
2f38ab2c
SR
3190 /*
3191 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3192 * pte with the new entry, to keep TLBs on different CPUs in
3193 * sync. This code used to set the new PTE then flush TLBs, but
3194 * that left a window where the new PTE could be loaded into
3195 * some TLBs while the old PTE remains in others.
2f38ab2c 3196 */
ec8832d0 3197 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3198 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3199 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3200 /*
3201 * We call the notify macro here because, when using secondary
3202 * mmu page tables (such as kvm shadow page tables), we want the
3203 * new page to be mapped directly into the secondary page table.
3204 */
c89357e2 3205 BUG_ON(unshare && pte_write(entry));
82b0f8c3 3206 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
5003a2bd 3207 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
28d41a48 3208 if (old_folio) {
2f38ab2c
SR
3209 /*
3210 * Only after switching the pte to the new page may
3211 * we remove the mapcount here. Otherwise another
3212 * process may come and find the rmap count decremented
3213 * before the pte is switched to the new page, and
3214 * "reuse" the old page writing into it while our pte
3215 * here still points into it and can be read by other
3216 * threads.
3217 *
3218 * The critical issue is to order this
3219 * page_remove_rmap with the ptp_clear_flush above.
3220 * Those stores are ordered by (if nothing else,)
3221 * the barrier present in the atomic_add_negative
3222 * in page_remove_rmap.
3223 *
3224 * Then the TLB flush in ptep_clear_flush ensures that
3225 * no process can access the old page before the
3226 * decremented mapcount is visible. And the old page
3227 * cannot be reused until after the decremented
3228 * mapcount is visible. So transitively, TLBs to
3229 * old page will be flushed before it can be reused.
3230 */
28d41a48 3231 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3232 }
3233
3234 /* Free the old page.. */
28d41a48 3235 new_folio = old_folio;
2f38ab2c 3236 page_copied = 1;
3db82b93
HD
3237 pte_unmap_unlock(vmf->pte, vmf->ptl);
3238 } else if (vmf->pte) {
7df67697 3239 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3240 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3241 }
3242
ec8832d0 3243 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3244
3245 if (new_folio)
3246 folio_put(new_folio);
28d41a48 3247 if (old_folio) {
f4c4a3f4 3248 if (page_copied)
28d41a48
MWO
3249 free_swap_cache(&old_folio->page);
3250 folio_put(old_folio);
2f38ab2c 3251 }
662ce1dc
YY
3252
3253 delayacct_wpcopy_end();
cb8d8633 3254 return 0;
2f38ab2c 3255oom:
164b06f2
MWO
3256 ret = VM_FAULT_OOM;
3257out:
28d41a48
MWO
3258 if (old_folio)
3259 folio_put(old_folio);
662ce1dc
YY
3260
3261 delayacct_wpcopy_end();
164b06f2 3262 return ret;
2f38ab2c
SR
3263}
3264
66a6197c
JK
3265/**
3266 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3267 * writeable once the page is prepared
3268 *
3269 * @vmf: structure describing the fault
a86bc96b 3270 * @folio: the folio of vmf->page
66a6197c
JK
3271 *
3272 * This function handles all that is needed to finish a write page fault in a
3273 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3274 * It handles locking of PTE and modifying it.
66a6197c
JK
3275 *
3276 * The function expects the page to be locked or other protection against
3277 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3278 *
2797e79f 3279 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3280 * we acquired PTE lock.
66a6197c 3281 */
a86bc96b 3282static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
66a6197c
JK
3283{
3284 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3285 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3286 &vmf->ptl);
3db82b93
HD
3287 if (!vmf->pte)
3288 return VM_FAULT_NOPAGE;
66a6197c
JK
3289 /*
3290 * We might have raced with another page fault while we released the
3291 * pte_offset_map_lock.
3292 */
c33c7948 3293 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3294 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3295 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3296 return VM_FAULT_NOPAGE;
66a6197c 3297 }
a86bc96b 3298 wp_page_reuse(vmf, folio);
a19e2553 3299 return 0;
66a6197c
JK
3300}
3301
dd906184
BH
3302/*
3303 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3304 * mapping
3305 */
2b740303 3306static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3307{
82b0f8c3 3308 struct vm_area_struct *vma = vmf->vma;
bae473a4 3309
dd906184 3310 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3311 vm_fault_t ret;
dd906184 3312
82b0f8c3 3313 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3314 ret = vmf_can_call_fault(vmf);
3315 if (ret)
3316 return ret;
063e60d8 3317
fe82221f 3318 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3319 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3320 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3321 return ret;
a86bc96b 3322 return finish_mkwrite_fault(vmf, NULL);
dd906184 3323 }
a86bc96b 3324 wp_page_reuse(vmf, NULL);
cb8d8633 3325 return 0;
dd906184
BH
3326}
3327
5a97858b 3328static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3329 __releases(vmf->ptl)
93e478d4 3330{
82b0f8c3 3331 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3332 vm_fault_t ret = 0;
93e478d4 3333
5a97858b 3334 folio_get(folio);
93e478d4 3335
93e478d4 3336 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3337 vm_fault_t tmp;
93e478d4 3338
82b0f8c3 3339 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3340 tmp = vmf_can_call_fault(vmf);
3341 if (tmp) {
063e60d8 3342 folio_put(folio);
4a68fef1 3343 return tmp;
063e60d8
MWO
3344 }
3345
86aa6998 3346 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3347 if (unlikely(!tmp || (tmp &
3348 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3349 folio_put(folio);
93e478d4
SR
3350 return tmp;
3351 }
a86bc96b 3352 tmp = finish_mkwrite_fault(vmf, folio);
a19e2553 3353 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3354 folio_unlock(folio);
3355 folio_put(folio);
66a6197c 3356 return tmp;
93e478d4 3357 }
66a6197c 3358 } else {
a86bc96b 3359 wp_page_reuse(vmf, folio);
5a97858b 3360 folio_lock(folio);
93e478d4 3361 }
89b15332 3362 ret |= fault_dirty_shared_page(vmf);
5a97858b 3363 folio_put(folio);
93e478d4 3364
89b15332 3365 return ret;
93e478d4
SR
3366}
3367
dec078cc
DH
3368static bool wp_can_reuse_anon_folio(struct folio *folio,
3369 struct vm_area_struct *vma)
3370{
3371 /*
3372 * We have to verify under folio lock: these early checks are
3373 * just an optimization to avoid locking the folio and freeing
3374 * the swapcache if there is little hope that we can reuse.
3375 *
3376 * KSM doesn't necessarily raise the folio refcount.
3377 */
3378 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3379 return false;
3380 if (!folio_test_lru(folio))
3381 /*
3382 * We cannot easily detect+handle references from
3383 * remote LRU caches or references to LRU folios.
3384 */
3385 lru_add_drain();
3386 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3387 return false;
3388 if (!folio_trylock(folio))
3389 return false;
3390 if (folio_test_swapcache(folio))
3391 folio_free_swap(folio);
3392 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3393 folio_unlock(folio);
3394 return false;
3395 }
3396 /*
3397 * Ok, we've got the only folio reference from our mapping
3398 * and the folio is locked, it's dark out, and we're wearing
3399 * sunglasses. Hit it.
3400 */
3401 folio_move_anon_rmap(folio, vma);
3402 folio_unlock(folio);
3403 return true;
3404}
3405
1da177e4 3406/*
c89357e2
DH
3407 * This routine handles present pages, when
3408 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3409 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3410 * (FAULT_FLAG_UNSHARE)
3411 *
3412 * It is done by copying the page to a new address and decrementing the
3413 * shared-page counter for the old page.
1da177e4 3414 *
1da177e4
LT
3415 * Note that this routine assumes that the protection checks have been
3416 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3417 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3418 * done any necessary COW.
1da177e4 3419 *
c89357e2
DH
3420 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3421 * though the page will change only once the write actually happens. This
3422 * avoids a few races, and potentially makes it more efficient.
1da177e4 3423 *
c1e8d7c6 3424 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3425 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3426 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3427 */
2b740303 3428static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3429 __releases(vmf->ptl)
1da177e4 3430{
c89357e2 3431 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3432 struct vm_area_struct *vma = vmf->vma;
b9086fde 3433 struct folio *folio = NULL;
d61ea1cb 3434 pte_t pte;
1da177e4 3435
c89357e2 3436 if (likely(!unshare)) {
c33c7948 3437 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
d61ea1cb
PX
3438 if (!userfaultfd_wp_async(vma)) {
3439 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 return handle_userfault(vmf, VM_UFFD_WP);
3441 }
3442
3443 /*
3444 * Nothing needed (cache flush, TLB invalidations,
3445 * etc.) because we're only removing the uffd-wp bit,
3446 * which is completely invisible to the user.
3447 */
3448 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3449
3450 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3451 /*
3452 * Update this to be prepared for following up CoW
3453 * handling
3454 */
3455 vmf->orig_pte = pte;
c89357e2
DH
3456 }
3457
3458 /*
3459 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3460 * is flushed in this case before copying.
3461 */
3462 if (unlikely(userfaultfd_wp(vmf->vma) &&
3463 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3464 flush_tlb_page(vmf->vma, vmf->address);
3465 }
6ce64428 3466
a41b70d6 3467 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3468
5a97858b
SK
3469 if (vmf->page)
3470 folio = page_folio(vmf->page);
3471
b9086fde
DH
3472 /*
3473 * Shared mapping: we are guaranteed to have VM_WRITE and
3474 * FAULT_FLAG_WRITE set at this point.
3475 */
3476 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3477 /*
64e45507
PF
3478 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3479 * VM_PFNMAP VMA.
251b97f5
PZ
3480 *
3481 * We should not cow pages in a shared writeable mapping.
dd906184 3482 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3483 */
b9086fde 3484 if (!vmf->page)
2994302b 3485 return wp_pfn_shared(vmf);
5a97858b 3486 return wp_page_shared(vmf, folio);
251b97f5 3487 }
1da177e4 3488
d08b3851 3489 /*
b9086fde
DH
3490 * Private mapping: create an exclusive anonymous page copy if reuse
3491 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
dec078cc
DH
3492 *
3493 * If we encounter a page that is marked exclusive, we must reuse
3494 * the page without further checks.
d08b3851 3495 */
dec078cc
DH
3496 if (folio && folio_test_anon(folio) &&
3497 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3498 if (!PageAnonExclusive(vmf->page))
3499 SetPageAnonExclusive(vmf->page);
c89357e2
DH
3500 if (unlikely(unshare)) {
3501 pte_unmap_unlock(vmf->pte, vmf->ptl);
3502 return 0;
3503 }
a86bc96b 3504 wp_page_reuse(vmf, folio);
cb8d8633 3505 return 0;
1da177e4 3506 }
1da177e4
LT
3507 /*
3508 * Ok, we need to copy. Oh, well..
3509 */
b9086fde
DH
3510 if (folio)
3511 folio_get(folio);
28766805 3512
82b0f8c3 3513 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3514#ifdef CONFIG_KSM
b9086fde 3515 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3516 count_vm_event(COW_KSM);
3517#endif
a41b70d6 3518 return wp_page_copy(vmf);
1da177e4
LT
3519}
3520
97a89413 3521static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3522 unsigned long start_addr, unsigned long end_addr,
3523 struct zap_details *details)
3524{
f5cc4eef 3525 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3526}
3527
f808c13f 3528static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3529 pgoff_t first_index,
3530 pgoff_t last_index,
1da177e4
LT
3531 struct zap_details *details)
3532{
3533 struct vm_area_struct *vma;
1da177e4
LT
3534 pgoff_t vba, vea, zba, zea;
3535
232a6a1c 3536 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3537 vba = vma->vm_pgoff;
d6e93217 3538 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3539 zba = max(first_index, vba);
3540 zea = min(last_index, vea);
1da177e4 3541
97a89413 3542 unmap_mapping_range_vma(vma,
1da177e4
LT
3543 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3544 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3545 details);
1da177e4
LT
3546 }
3547}
3548
22061a1f 3549/**
3506659e
MWO
3550 * unmap_mapping_folio() - Unmap single folio from processes.
3551 * @folio: The locked folio to be unmapped.
22061a1f 3552 *
3506659e 3553 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3554 * Typically, for efficiency, the range of nearby pages has already been
3555 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3556 * truncation or invalidation holds the lock on a folio, it may find that
3557 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3558 * to unmap it finally.
3559 */
3506659e 3560void unmap_mapping_folio(struct folio *folio)
22061a1f 3561{
3506659e 3562 struct address_space *mapping = folio->mapping;
22061a1f 3563 struct zap_details details = { };
232a6a1c
PX
3564 pgoff_t first_index;
3565 pgoff_t last_index;
22061a1f 3566
3506659e 3567 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3568
3506659e 3569 first_index = folio->index;
87b11f86 3570 last_index = folio_next_index(folio) - 1;
232a6a1c 3571
2e148f1e 3572 details.even_cows = false;
3506659e 3573 details.single_folio = folio;
999dad82 3574 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3575
2c865995 3576 i_mmap_lock_read(mapping);
22061a1f 3577 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3578 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3579 last_index, &details);
2c865995 3580 i_mmap_unlock_read(mapping);
22061a1f
HD
3581}
3582
977fbdcd
MW
3583/**
3584 * unmap_mapping_pages() - Unmap pages from processes.
3585 * @mapping: The address space containing pages to be unmapped.
3586 * @start: Index of first page to be unmapped.
3587 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3588 * @even_cows: Whether to unmap even private COWed pages.
3589 *
3590 * Unmap the pages in this address space from any userspace process which
3591 * has them mmaped. Generally, you want to remove COWed pages as well when
3592 * a file is being truncated, but not when invalidating pages from the page
3593 * cache.
3594 */
3595void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3596 pgoff_t nr, bool even_cows)
3597{
3598 struct zap_details details = { };
232a6a1c
PX
3599 pgoff_t first_index = start;
3600 pgoff_t last_index = start + nr - 1;
977fbdcd 3601
2e148f1e 3602 details.even_cows = even_cows;
232a6a1c
PX
3603 if (last_index < first_index)
3604 last_index = ULONG_MAX;
977fbdcd 3605
2c865995 3606 i_mmap_lock_read(mapping);
977fbdcd 3607 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3608 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3609 last_index, &details);
2c865995 3610 i_mmap_unlock_read(mapping);
977fbdcd 3611}
6e0e99d5 3612EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3613
1da177e4 3614/**
8a5f14a2 3615 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3616 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3617 * file.
3618 *
3d41088f 3619 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3620 * @holebegin: byte in first page to unmap, relative to the start of
3621 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3622 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3623 * must keep the partial page. In contrast, we must get rid of
3624 * partial pages.
3625 * @holelen: size of prospective hole in bytes. This will be rounded
3626 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3627 * end of the file.
3628 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3629 * but 0 when invalidating pagecache, don't throw away private data.
3630 */
3631void unmap_mapping_range(struct address_space *mapping,
3632 loff_t const holebegin, loff_t const holelen, int even_cows)
3633{
1da177e4
LT
3634 pgoff_t hba = holebegin >> PAGE_SHIFT;
3635 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3636
3637 /* Check for overflow. */
3638 if (sizeof(holelen) > sizeof(hlen)) {
3639 long long holeend =
3640 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3641 if (holeend & ~(long long)ULONG_MAX)
3642 hlen = ULONG_MAX - hba + 1;
3643 }
3644
977fbdcd 3645 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3646}
3647EXPORT_SYMBOL(unmap_mapping_range);
3648
b756a3b5
AP
3649/*
3650 * Restore a potential device exclusive pte to a working pte entry
3651 */
3652static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3653{
19672a9e 3654 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3655 struct vm_area_struct *vma = vmf->vma;
3656 struct mmu_notifier_range range;
fdc724d6 3657 vm_fault_t ret;
b756a3b5 3658
7c7b9629
AP
3659 /*
3660 * We need a reference to lock the folio because we don't hold
3661 * the PTL so a racing thread can remove the device-exclusive
3662 * entry and unmap it. If the folio is free the entry must
3663 * have been removed already. If it happens to have already
3664 * been re-allocated after being freed all we do is lock and
3665 * unlock it.
3666 */
3667 if (!folio_try_get(folio))
3668 return 0;
3669
fdc724d6
SB
3670 ret = folio_lock_or_retry(folio, vmf);
3671 if (ret) {
7c7b9629 3672 folio_put(folio);
fdc724d6 3673 return ret;
7c7b9629 3674 }
7d4a8be0 3675 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3676 vma->vm_mm, vmf->address & PAGE_MASK,
3677 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3678 mmu_notifier_invalidate_range_start(&range);
3679
3680 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3681 &vmf->ptl);
c33c7948 3682 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3683 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3684
3db82b93
HD
3685 if (vmf->pte)
3686 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3687 folio_unlock(folio);
7c7b9629 3688 folio_put(folio);
b756a3b5
AP
3689
3690 mmu_notifier_invalidate_range_end(&range);
3691 return 0;
3692}
3693
a160e537 3694static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3695 struct vm_area_struct *vma,
3696 unsigned int fault_flags)
3697{
a160e537 3698 if (!folio_test_swapcache(folio))
c145e0b4 3699 return false;
9202d527 3700 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3701 folio_test_mlocked(folio))
c145e0b4
DH
3702 return true;
3703 /*
3704 * If we want to map a page that's in the swapcache writable, we
3705 * have to detect via the refcount if we're really the exclusive
3706 * user. Try freeing the swapcache to get rid of the swapcache
3707 * reference only in case it's likely that we'll be the exlusive user.
3708 */
a160e537
MWO
3709 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3710 folio_ref_count(folio) == 2;
c145e0b4
DH
3711}
3712
9c28a205
PX
3713static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3714{
3715 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3716 vmf->address, &vmf->ptl);
3db82b93
HD
3717 if (!vmf->pte)
3718 return 0;
9c28a205
PX
3719 /*
3720 * Be careful so that we will only recover a special uffd-wp pte into a
3721 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3722 *
3723 * This should also cover the case where e.g. the pte changed
af19487f 3724 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3725 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3726 */
c33c7948 3727 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3728 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3729 pte_unmap_unlock(vmf->pte, vmf->ptl);
3730 return 0;
3731}
3732
2bad466c
PX
3733static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3734{
3735 if (vma_is_anonymous(vmf->vma))
3736 return do_anonymous_page(vmf);
3737 else
3738 return do_fault(vmf);
3739}
3740
9c28a205
PX
3741/*
3742 * This is actually a page-missing access, but with uffd-wp special pte
3743 * installed. It means this pte was wr-protected before being unmapped.
3744 */
3745static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3746{
3747 /*
3748 * Just in case there're leftover special ptes even after the region
7a079ba2 3749 * got unregistered - we can simply clear them.
9c28a205 3750 */
2bad466c 3751 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3752 return pte_marker_clear(vmf);
3753
2bad466c 3754 return do_pte_missing(vmf);
9c28a205
PX
3755}
3756
5c041f5d
PX
3757static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3758{
3759 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3760 unsigned long marker = pte_marker_get(entry);
3761
3762 /*
ca92ea3d
PX
3763 * PTE markers should never be empty. If anything weird happened,
3764 * the best thing to do is to kill the process along with its mm.
5c041f5d 3765 */
ca92ea3d 3766 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3767 return VM_FAULT_SIGBUS;
3768
15520a3f 3769 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3770 if (marker & PTE_MARKER_POISONED)
3771 return VM_FAULT_HWPOISON;
15520a3f 3772
9c28a205
PX
3773 if (pte_marker_entry_uffd_wp(entry))
3774 return pte_marker_handle_uffd_wp(vmf);
3775
3776 /* This is an unknown pte marker */
3777 return VM_FAULT_SIGBUS;
5c041f5d
PX
3778}
3779
1da177e4 3780/*
c1e8d7c6 3781 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3782 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3783 * We return with pte unmapped and unlocked.
3784 *
c1e8d7c6 3785 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3786 * as does filemap_fault().
1da177e4 3787 */
2b740303 3788vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3789{
82b0f8c3 3790 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3791 struct folio *swapcache, *folio = NULL;
3792 struct page *page;
2799e775 3793 struct swap_info_struct *si = NULL;
14f9135d 3794 rmap_t rmap_flags = RMAP_NONE;
1493a191 3795 bool exclusive = false;
65500d23 3796 swp_entry_t entry;
1da177e4 3797 pte_t pte;
2b740303 3798 vm_fault_t ret = 0;
aae466b0 3799 void *shadow = NULL;
1da177e4 3800
2ca99358 3801 if (!pte_unmap_same(vmf))
8f4e2101 3802 goto out;
65500d23 3803
2994302b 3804 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3805 if (unlikely(non_swap_entry(entry))) {
3806 if (is_migration_entry(entry)) {
82b0f8c3
JK
3807 migration_entry_wait(vma->vm_mm, vmf->pmd,
3808 vmf->address);
b756a3b5
AP
3809 } else if (is_device_exclusive_entry(entry)) {
3810 vmf->page = pfn_swap_entry_to_page(entry);
3811 ret = remove_device_exclusive_entry(vmf);
5042db43 3812 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3813 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3814 /*
3815 * migrate_to_ram is not yet ready to operate
3816 * under VMA lock.
3817 */
3818 vma_end_read(vma);
3819 ret = VM_FAULT_RETRY;
3820 goto out;
3821 }
3822
af5cdaf8 3823 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3824 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3825 vmf->address, &vmf->ptl);
3db82b93 3826 if (unlikely(!vmf->pte ||
c33c7948
RR
3827 !pte_same(ptep_get(vmf->pte),
3828 vmf->orig_pte)))
3b65f437 3829 goto unlock;
16ce101d
AP
3830
3831 /*
3832 * Get a page reference while we know the page can't be
3833 * freed.
3834 */
3835 get_page(vmf->page);
3836 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3837 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3838 put_page(vmf->page);
d1737fdb
AK
3839 } else if (is_hwpoison_entry(entry)) {
3840 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3841 } else if (is_pte_marker_entry(entry)) {
3842 ret = handle_pte_marker(vmf);
d1737fdb 3843 } else {
2994302b 3844 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3845 ret = VM_FAULT_SIGBUS;
d1737fdb 3846 }
0697212a
CL
3847 goto out;
3848 }
0bcac06f 3849
2799e775
ML
3850 /* Prevent swapoff from happening to us. */
3851 si = get_swap_device(entry);
3852 if (unlikely(!si))
3853 goto out;
0bcac06f 3854
5a423081
MWO
3855 folio = swap_cache_get_folio(entry, vma, vmf->address);
3856 if (folio)
3857 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3858 swapcache = folio;
f8020772 3859
d4f9565a 3860 if (!folio) {
a449bf58
QC
3861 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3862 __swap_count(entry) == 1) {
0bcac06f 3863 /* skip swapcache */
63ad4add
MWO
3864 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3865 vma, vmf->address, false);
3866 page = &folio->page;
3867 if (folio) {
3868 __folio_set_locked(folio);
3869 __folio_set_swapbacked(folio);
4c6355b2 3870
65995918 3871 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3872 vma->vm_mm, GFP_KERNEL,
3873 entry)) {
545b1b07 3874 ret = VM_FAULT_OOM;
4c6355b2 3875 goto out_page;
545b1b07 3876 }
0add0c77 3877 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3878
aae466b0
JK
3879 shadow = get_shadow_from_swap_cache(entry);
3880 if (shadow)
63ad4add 3881 workingset_refault(folio, shadow);
0076f029 3882
63ad4add 3883 folio_add_lru(folio);
0add0c77
SB
3884
3885 /* To provide entry to swap_readpage() */
3d2c9087 3886 folio->swap = entry;
5169b844 3887 swap_readpage(page, true, NULL);
63ad4add 3888 folio->private = NULL;
0bcac06f 3889 }
aa8d22a1 3890 } else {
e9e9b7ec
MK
3891 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3892 vmf);
63ad4add
MWO
3893 if (page)
3894 folio = page_folio(page);
d4f9565a 3895 swapcache = folio;
0bcac06f
MK
3896 }
3897
d4f9565a 3898 if (!folio) {
1da177e4 3899 /*
8f4e2101
HD
3900 * Back out if somebody else faulted in this pte
3901 * while we released the pte lock.
1da177e4 3902 */
82b0f8c3
JK
3903 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3904 vmf->address, &vmf->ptl);
c33c7948
RR
3905 if (likely(vmf->pte &&
3906 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3907 ret = VM_FAULT_OOM;
65500d23 3908 goto unlock;
1da177e4
LT
3909 }
3910
3911 /* Had to read the page from swap area: Major fault */
3912 ret = VM_FAULT_MAJOR;
f8891e5e 3913 count_vm_event(PGMAJFAULT);
2262185c 3914 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3915 } else if (PageHWPoison(page)) {
71f72525
WF
3916 /*
3917 * hwpoisoned dirty swapcache pages are kept for killing
3918 * owner processes (which may be unknown at hwpoison time)
3919 */
d1737fdb 3920 ret = VM_FAULT_HWPOISON;
4779cb31 3921 goto out_release;
1da177e4
LT
3922 }
3923
fdc724d6
SB
3924 ret |= folio_lock_or_retry(folio, vmf);
3925 if (ret & VM_FAULT_RETRY)
d065bd81 3926 goto out_release;
073e587e 3927
84d60fdd
DH
3928 if (swapcache) {
3929 /*
3b344157 3930 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3931 * swapcache from under us. The page pin, and pte_same test
3932 * below, are not enough to exclude that. Even if it is still
3933 * swapcache, we need to check that the page's swap has not
3934 * changed.
3935 */
63ad4add 3936 if (unlikely(!folio_test_swapcache(folio) ||
cfeed8ff 3937 page_swap_entry(page).val != entry.val))
84d60fdd
DH
3938 goto out_page;
3939
3940 /*
3941 * KSM sometimes has to copy on read faults, for example, if
3942 * page->index of !PageKSM() pages would be nonlinear inside the
3943 * anon VMA -- PageKSM() is lost on actual swapout.
3944 */
3945 page = ksm_might_need_to_copy(page, vma, vmf->address);
3946 if (unlikely(!page)) {
3947 ret = VM_FAULT_OOM;
84d60fdd 3948 goto out_page;
6b970599
KW
3949 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3950 ret = VM_FAULT_HWPOISON;
3951 goto out_page;
84d60fdd 3952 }
63ad4add 3953 folio = page_folio(page);
c145e0b4
DH
3954
3955 /*
3956 * If we want to map a page that's in the swapcache writable, we
3957 * have to detect via the refcount if we're really the exclusive
3958 * owner. Try removing the extra reference from the local LRU
1fec6890 3959 * caches if required.
c145e0b4 3960 */
d4f9565a 3961 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3962 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3963 lru_add_drain();
5ad64688
HD
3964 }
3965
4231f842 3966 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3967
1da177e4 3968 /*
8f4e2101 3969 * Back out if somebody else already faulted in this pte.
1da177e4 3970 */
82b0f8c3
JK
3971 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3972 &vmf->ptl);
c33c7948 3973 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3974 goto out_nomap;
b8107480 3975
63ad4add 3976 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3977 ret = VM_FAULT_SIGBUS;
3978 goto out_nomap;
1da177e4
LT
3979 }
3980
78fbe906
DH
3981 /*
3982 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3983 * must never point at an anonymous page in the swapcache that is
3984 * PG_anon_exclusive. Sanity check that this holds and especially, that
3985 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3986 * check after taking the PT lock and making sure that nobody
3987 * concurrently faulted in this page and set PG_anon_exclusive.
3988 */
63ad4add
MWO
3989 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3990 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3991
1493a191
DH
3992 /*
3993 * Check under PT lock (to protect against concurrent fork() sharing
3994 * the swap entry concurrently) for certainly exclusive pages.
3995 */
63ad4add 3996 if (!folio_test_ksm(folio)) {
1493a191 3997 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3998 if (folio != swapcache) {
1493a191
DH
3999 /*
4000 * We have a fresh page that is not exposed to the
4001 * swapcache -> certainly exclusive.
4002 */
4003 exclusive = true;
63ad4add 4004 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 4005 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
4006 /*
4007 * This is tricky: not all swap backends support
4008 * concurrent page modifications while under writeback.
4009 *
4010 * So if we stumble over such a page in the swapcache
4011 * we must not set the page exclusive, otherwise we can
4012 * map it writable without further checks and modify it
4013 * while still under writeback.
4014 *
4015 * For these problematic swap backends, simply drop the
4016 * exclusive marker: this is perfectly fine as we start
4017 * writeback only if we fully unmapped the page and
4018 * there are no unexpected references on the page after
4019 * unmapping succeeded. After fully unmapped, no
4020 * further GUP references (FOLL_GET and FOLL_PIN) can
4021 * appear, so dropping the exclusive marker and mapping
4022 * it only R/O is fine.
4023 */
4024 exclusive = false;
4025 }
4026 }
4027
6dca4ac6
PC
4028 /*
4029 * Some architectures may have to restore extra metadata to the page
4030 * when reading from swap. This metadata may be indexed by swap entry
4031 * so this must be called before swap_free().
4032 */
4033 arch_swap_restore(entry, folio);
4034
8c7c6e34 4035 /*
c145e0b4
DH
4036 * Remove the swap entry and conditionally try to free up the swapcache.
4037 * We're already holding a reference on the page but haven't mapped it
4038 * yet.
8c7c6e34 4039 */
c145e0b4 4040 swap_free(entry);
a160e537
MWO
4041 if (should_try_to_free_swap(folio, vma, vmf->flags))
4042 folio_free_swap(folio);
1da177e4 4043
f1a79412
SB
4044 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4045 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 4046 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
4047
4048 /*
1493a191
DH
4049 * Same logic as in do_wp_page(); however, optimize for pages that are
4050 * certainly not shared either because we just allocated them without
4051 * exposing them to the swapcache or because the swap entry indicates
4052 * exclusivity.
c145e0b4 4053 */
63ad4add
MWO
4054 if (!folio_test_ksm(folio) &&
4055 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
4056 if (vmf->flags & FAULT_FLAG_WRITE) {
4057 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4058 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4059 }
14f9135d 4060 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4061 }
1da177e4 4062 flush_icache_page(vma, page);
2994302b 4063 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4064 pte = pte_mksoft_dirty(pte);
f1eb1bac 4065 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4066 pte = pte_mkuffd_wp(pte);
2994302b 4067 vmf->orig_pte = pte;
0bcac06f
MK
4068
4069 /* ksm created a completely new copy */
d4f9565a 4070 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4071 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4072 folio_add_lru_vma(folio, vma);
0bcac06f 4073 } else {
f1e2db12 4074 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4075 }
1da177e4 4076
63ad4add
MWO
4077 VM_BUG_ON(!folio_test_anon(folio) ||
4078 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4079 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4080 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4081
63ad4add 4082 folio_unlock(folio);
d4f9565a 4083 if (folio != swapcache && swapcache) {
4969c119
AA
4084 /*
4085 * Hold the lock to avoid the swap entry to be reused
4086 * until we take the PT lock for the pte_same() check
4087 * (to avoid false positives from pte_same). For
4088 * further safety release the lock after the swap_free
4089 * so that the swap count won't change under a
4090 * parallel locked swapcache.
4091 */
d4f9565a
MWO
4092 folio_unlock(swapcache);
4093 folio_put(swapcache);
4969c119 4094 }
c475a8ab 4095
82b0f8c3 4096 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4097 ret |= do_wp_page(vmf);
61469f1d
HD
4098 if (ret & VM_FAULT_ERROR)
4099 ret &= VM_FAULT_ERROR;
1da177e4
LT
4100 goto out;
4101 }
4102
4103 /* No need to invalidate - it was non-present before */
5003a2bd 4104 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4105unlock:
3db82b93
HD
4106 if (vmf->pte)
4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4108out:
2799e775
ML
4109 if (si)
4110 put_swap_device(si);
1da177e4 4111 return ret;
b8107480 4112out_nomap:
3db82b93
HD
4113 if (vmf->pte)
4114 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4115out_page:
63ad4add 4116 folio_unlock(folio);
4779cb31 4117out_release:
63ad4add 4118 folio_put(folio);
d4f9565a
MWO
4119 if (folio != swapcache && swapcache) {
4120 folio_unlock(swapcache);
4121 folio_put(swapcache);
4969c119 4122 }
2799e775
ML
4123 if (si)
4124 put_swap_device(si);
65500d23 4125 return ret;
1da177e4
LT
4126}
4127
4128/*
c1e8d7c6 4129 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4130 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4131 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4132 */
2b740303 4133static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4134{
2bad466c 4135 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4136 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4137 struct folio *folio;
2b740303 4138 vm_fault_t ret = 0;
1da177e4 4139 pte_t entry;
1da177e4 4140
6b7339f4
KS
4141 /* File mapping without ->vm_ops ? */
4142 if (vma->vm_flags & VM_SHARED)
4143 return VM_FAULT_SIGBUS;
4144
7267ec00 4145 /*
3db82b93
HD
4146 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4147 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4148 */
4cf58924 4149 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4150 return VM_FAULT_OOM;
4151
11ac5524 4152 /* Use the zero-page for reads */
82b0f8c3 4153 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4154 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4155 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4156 vma->vm_page_prot));
82b0f8c3
JK
4157 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4158 vmf->address, &vmf->ptl);
3db82b93
HD
4159 if (!vmf->pte)
4160 goto unlock;
2bad466c 4161 if (vmf_pte_changed(vmf)) {
7df67697 4162 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4163 goto unlock;
7df67697 4164 }
6b31d595
MH
4165 ret = check_stable_address_space(vma->vm_mm);
4166 if (ret)
4167 goto unlock;
6b251fc9
AA
4168 /* Deliver the page fault to userland, check inside PT lock */
4169 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4170 pte_unmap_unlock(vmf->pte, vmf->ptl);
4171 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4172 }
a13ea5b7
HD
4173 goto setpte;
4174 }
4175
557ed1fa 4176 /* Allocate our own private page. */
557ed1fa
NP
4177 if (unlikely(anon_vma_prepare(vma)))
4178 goto oom;
6bc56a4d
MWO
4179 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4180 if (!folio)
557ed1fa 4181 goto oom;
eb3c24f3 4182
6bc56a4d 4183 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4184 goto oom_free_page;
e2bf3e2c 4185 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4186
52f37629 4187 /*
cb3184de 4188 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4189 * preceding stores to the page contents become visible before
52f37629
MK
4190 * the set_pte_at() write.
4191 */
cb3184de 4192 __folio_mark_uptodate(folio);
8f4e2101 4193
cb3184de 4194 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4195 entry = pte_sw_mkyoung(entry);
1ac0cb5d 4196 if (vma->vm_flags & VM_WRITE)
161e393c 4197 entry = pte_mkwrite(pte_mkdirty(entry), vma);
1da177e4 4198
82b0f8c3
JK
4199 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4200 &vmf->ptl);
3db82b93
HD
4201 if (!vmf->pte)
4202 goto release;
2bad466c 4203 if (vmf_pte_changed(vmf)) {
bce8cb3c 4204 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4205 goto release;
7df67697 4206 }
9ba69294 4207
6b31d595
MH
4208 ret = check_stable_address_space(vma->vm_mm);
4209 if (ret)
4210 goto release;
4211
6b251fc9
AA
4212 /* Deliver the page fault to userland, check inside PT lock */
4213 if (userfaultfd_missing(vma)) {
82b0f8c3 4214 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4215 folio_put(folio);
82b0f8c3 4216 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4217 }
4218
f1a79412 4219 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4220 folio_add_new_anon_rmap(folio, vma, vmf->address);
4221 folio_add_lru_vma(folio, vma);
a13ea5b7 4222setpte:
2bad466c
PX
4223 if (uffd_wp)
4224 entry = pte_mkuffd_wp(entry);
82b0f8c3 4225 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4226
4227 /* No need to invalidate - it was non-present before */
5003a2bd 4228 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4229unlock:
3db82b93
HD
4230 if (vmf->pte)
4231 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4232 return ret;
8f4e2101 4233release:
cb3184de 4234 folio_put(folio);
8f4e2101 4235 goto unlock;
8a9f3ccd 4236oom_free_page:
cb3184de 4237 folio_put(folio);
65500d23 4238oom:
1da177e4
LT
4239 return VM_FAULT_OOM;
4240}
4241
9a95f3cf 4242/*
c1e8d7c6 4243 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4244 * released depending on flags and vma->vm_ops->fault() return value.
4245 * See filemap_fault() and __lock_page_retry().
4246 */
2b740303 4247static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4248{
82b0f8c3 4249 struct vm_area_struct *vma = vmf->vma;
01d1e0e6 4250 struct folio *folio;
2b740303 4251 vm_fault_t ret;
7eae74af 4252
63f3655f
MH
4253 /*
4254 * Preallocate pte before we take page_lock because this might lead to
4255 * deadlocks for memcg reclaim which waits for pages under writeback:
4256 * lock_page(A)
4257 * SetPageWriteback(A)
4258 * unlock_page(A)
4259 * lock_page(B)
4260 * lock_page(B)
d383807a 4261 * pte_alloc_one
63f3655f
MH
4262 * shrink_page_list
4263 * wait_on_page_writeback(A)
4264 * SetPageWriteback(B)
4265 * unlock_page(B)
4266 * # flush A, B to clear the writeback
4267 */
4268 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4269 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4270 if (!vmf->prealloc_pte)
4271 return VM_FAULT_OOM;
63f3655f
MH
4272 }
4273
11bac800 4274 ret = vma->vm_ops->fault(vmf);
3917048d 4275 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4276 VM_FAULT_DONE_COW)))
bc2466e4 4277 return ret;
7eae74af 4278
01d1e0e6 4279 folio = page_folio(vmf->page);
667240e0 4280 if (unlikely(PageHWPoison(vmf->page))) {
e53ac737
RR
4281 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4282 if (ret & VM_FAULT_LOCKED) {
01d1e0e6
MWO
4283 if (page_mapped(vmf->page))
4284 unmap_mapping_folio(folio);
4285 /* Retry if a clean folio was removed from the cache. */
4286 if (mapping_evict_folio(folio->mapping, folio))
3149c79f 4287 poisonret = VM_FAULT_NOPAGE;
01d1e0e6 4288 folio_unlock(folio);
e53ac737 4289 }
01d1e0e6 4290 folio_put(folio);
936ca80d 4291 vmf->page = NULL;
e53ac737 4292 return poisonret;
7eae74af
KS
4293 }
4294
4295 if (unlikely(!(ret & VM_FAULT_LOCKED)))
01d1e0e6 4296 folio_lock(folio);
7eae74af 4297 else
01d1e0e6 4298 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
7eae74af 4299
7eae74af
KS
4300 return ret;
4301}
4302
396bcc52 4303#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4304static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4305{
82b0f8c3 4306 struct vm_area_struct *vma = vmf->vma;
953c66c2 4307
82b0f8c3 4308 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4309 /*
4310 * We are going to consume the prealloc table,
4311 * count that as nr_ptes.
4312 */
c4812909 4313 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4314 vmf->prealloc_pte = NULL;
953c66c2
AK
4315}
4316
f9ce0be7 4317vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4318{
82b0f8c3
JK
4319 struct vm_area_struct *vma = vmf->vma;
4320 bool write = vmf->flags & FAULT_FLAG_WRITE;
4321 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4322 pmd_t entry;
d01ac3c3 4323 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4324
4325 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4326 return ret;
10102459 4327
10102459 4328 page = compound_head(page);
d01ac3c3
MWO
4329 if (compound_order(page) != HPAGE_PMD_ORDER)
4330 return ret;
10102459 4331
eac96c3e
YS
4332 /*
4333 * Just backoff if any subpage of a THP is corrupted otherwise
4334 * the corrupted page may mapped by PMD silently to escape the
4335 * check. This kind of THP just can be PTE mapped. Access to
4336 * the corrupted subpage should trigger SIGBUS as expected.
4337 */
4338 if (unlikely(PageHasHWPoisoned(page)))
4339 return ret;
4340
953c66c2 4341 /*
f0953a1b 4342 * Archs like ppc64 need additional space to store information
953c66c2
AK
4343 * related to pte entry. Use the preallocated table for that.
4344 */
82b0f8c3 4345 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4346 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4347 if (!vmf->prealloc_pte)
953c66c2 4348 return VM_FAULT_OOM;
953c66c2
AK
4349 }
4350
82b0f8c3
JK
4351 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4352 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4353 goto out;
4354
9f1f5b60 4355 flush_icache_pages(vma, page, HPAGE_PMD_NR);
10102459
KS
4356
4357 entry = mk_huge_pmd(page, vma->vm_page_prot);
4358 if (write)
f55e1014 4359 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4360
fadae295 4361 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4362 page_add_file_rmap(page, vma, true);
4363
953c66c2
AK
4364 /*
4365 * deposit and withdraw with pmd lock held
4366 */
4367 if (arch_needs_pgtable_deposit())
82b0f8c3 4368 deposit_prealloc_pte(vmf);
10102459 4369
82b0f8c3 4370 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4371
82b0f8c3 4372 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4373
4374 /* fault is handled */
4375 ret = 0;
95ecedcd 4376 count_vm_event(THP_FILE_MAPPED);
10102459 4377out:
82b0f8c3 4378 spin_unlock(vmf->ptl);
10102459
KS
4379 return ret;
4380}
4381#else
f9ce0be7 4382vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4383{
f9ce0be7 4384 return VM_FAULT_FALLBACK;
10102459
KS
4385}
4386#endif
4387
3bd786f7
YF
4388/**
4389 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4390 * @vmf: Fault decription.
4391 * @folio: The folio that contains @page.
4392 * @page: The first page to create a PTE for.
4393 * @nr: The number of PTEs to create.
4394 * @addr: The first address to create a PTE for.
4395 */
4396void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4397 struct page *page, unsigned int nr, unsigned long addr)
3bb97794 4398{
82b0f8c3 4399 struct vm_area_struct *vma = vmf->vma;
2bad466c 4400 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4401 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bd786f7 4402 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
3bb97794 4403 pte_t entry;
7267ec00 4404
3bd786f7 4405 flush_icache_pages(vma, page, nr);
3bb97794 4406 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4407
4408 if (prefault && arch_wants_old_prefaulted_pte())
4409 entry = pte_mkold(entry);
50c25ee9
TB
4410 else
4411 entry = pte_sw_mkyoung(entry);
46bdb427 4412
3bb97794
KS
4413 if (write)
4414 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4415 if (unlikely(uffd_wp))
f1eb1bac 4416 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4417 /* copy-on-write page */
4418 if (write && !(vma->vm_flags & VM_SHARED)) {
3bd786f7
YF
4419 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4420 VM_BUG_ON_FOLIO(nr != 1, folio);
4421 folio_add_new_anon_rmap(folio, vma, addr);
4422 folio_add_lru_vma(folio, vma);
3bb97794 4423 } else {
3bd786f7
YF
4424 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4425 folio_add_file_rmap_range(folio, page, nr, vma, false);
3bb97794 4426 }
3bd786f7
YF
4427 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4428
4429 /* no need to invalidate: a not-present page won't be cached */
4430 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
3bb97794
KS
4431}
4432
f46f2ade
PX
4433static bool vmf_pte_changed(struct vm_fault *vmf)
4434{
4435 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4436 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4437
c33c7948 4438 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4439}
4440
9118c0cb
JK
4441/**
4442 * finish_fault - finish page fault once we have prepared the page to fault
4443 *
4444 * @vmf: structure describing the fault
4445 *
4446 * This function handles all that is needed to finish a page fault once the
4447 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4448 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4449 * addition.
9118c0cb
JK
4450 *
4451 * The function expects the page to be locked and on success it consumes a
4452 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4453 *
4454 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4455 */
2b740303 4456vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4457{
f9ce0be7 4458 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4459 struct page *page;
f9ce0be7 4460 vm_fault_t ret;
9118c0cb
JK
4461
4462 /* Did we COW the page? */
f9ce0be7 4463 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4464 page = vmf->cow_page;
4465 else
4466 page = vmf->page;
6b31d595
MH
4467
4468 /*
4469 * check even for read faults because we might have lost our CoWed
4470 * page
4471 */
f9ce0be7
KS
4472 if (!(vma->vm_flags & VM_SHARED)) {
4473 ret = check_stable_address_space(vma->vm_mm);
4474 if (ret)
4475 return ret;
4476 }
4477
4478 if (pmd_none(*vmf->pmd)) {
4479 if (PageTransCompound(page)) {
4480 ret = do_set_pmd(vmf, page);
4481 if (ret != VM_FAULT_FALLBACK)
4482 return ret;
4483 }
4484
03c4f204
QZ
4485 if (vmf->prealloc_pte)
4486 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4487 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4488 return VM_FAULT_OOM;
4489 }
4490
f9ce0be7
KS
4491 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4492 vmf->address, &vmf->ptl);
3db82b93
HD
4493 if (!vmf->pte)
4494 return VM_FAULT_NOPAGE;
70427f6e 4495
f9ce0be7 4496 /* Re-check under ptl */
70427f6e 4497 if (likely(!vmf_pte_changed(vmf))) {
3bd786f7 4498 struct folio *folio = page_folio(page);
70427f6e 4499
3bd786f7 4500 set_pte_range(vmf, folio, page, 1, vmf->address);
70427f6e
SA
4501 ret = 0;
4502 } else {
4503 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4504 ret = VM_FAULT_NOPAGE;
70427f6e 4505 }
f9ce0be7 4506
f9ce0be7 4507 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4508 return ret;
4509}
4510
53d36a56
LS
4511static unsigned long fault_around_pages __read_mostly =
4512 65536 >> PAGE_SHIFT;
a9b0f861 4513
a9b0f861
KS
4514#ifdef CONFIG_DEBUG_FS
4515static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4516{
53d36a56 4517 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4518 return 0;
4519}
4520
b4903d6e 4521/*
da391d64
WK
4522 * fault_around_bytes must be rounded down to the nearest page order as it's
4523 * what do_fault_around() expects to see.
b4903d6e 4524 */
a9b0f861 4525static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4526{
a9b0f861 4527 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4528 return -EINVAL;
53d36a56
LS
4529
4530 /*
4531 * The minimum value is 1 page, however this results in no fault-around
4532 * at all. See should_fault_around().
4533 */
4534 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4535
1592eef0
KS
4536 return 0;
4537}
0a1345f8 4538DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4539 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4540
4541static int __init fault_around_debugfs(void)
4542{
d9f7979c
GKH
4543 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4544 &fault_around_bytes_fops);
1592eef0
KS
4545 return 0;
4546}
4547late_initcall(fault_around_debugfs);
1592eef0 4548#endif
8c6e50b0 4549
1fdb412b
KS
4550/*
4551 * do_fault_around() tries to map few pages around the fault address. The hope
4552 * is that the pages will be needed soon and this will lower the number of
4553 * faults to handle.
4554 *
4555 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4556 * not ready to be mapped: not up-to-date, locked, etc.
4557 *
9042599e
LS
4558 * This function doesn't cross VMA or page table boundaries, in order to call
4559 * map_pages() and acquire a PTE lock only once.
1fdb412b 4560 *
53d36a56 4561 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4562 * do_fault_around() expects it to be set to a power of two less than or equal
4563 * to PTRS_PER_PTE.
1fdb412b 4564 *
da391d64 4565 * The virtual address of the area that we map is naturally aligned to
53d36a56 4566 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4567 * (and therefore to page order). This way it's easier to guarantee
4568 * that we don't cross page table boundaries.
1fdb412b 4569 */
2b740303 4570static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4571{
53d36a56 4572 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4573 pgoff_t pte_off = pte_index(vmf->address);
4574 /* The page offset of vmf->address within the VMA. */
4575 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4576 pgoff_t from_pte, to_pte;
58ef47ef 4577 vm_fault_t ret;
8c6e50b0 4578
9042599e
LS
4579 /* The PTE offset of the start address, clamped to the VMA. */
4580 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4581 pte_off - min(pte_off, vma_off));
aecd6f44 4582
9042599e
LS
4583 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4584 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4585 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4586
82b0f8c3 4587 if (pmd_none(*vmf->pmd)) {
4cf58924 4588 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4589 if (!vmf->prealloc_pte)
f9ce0be7 4590 return VM_FAULT_OOM;
8c6e50b0
KS
4591 }
4592
58ef47ef
MWO
4593 rcu_read_lock();
4594 ret = vmf->vma->vm_ops->map_pages(vmf,
4595 vmf->pgoff + from_pte - pte_off,
4596 vmf->pgoff + to_pte - pte_off);
4597 rcu_read_unlock();
4598
4599 return ret;
8c6e50b0
KS
4600}
4601
9c28a205
PX
4602/* Return true if we should do read fault-around, false otherwise */
4603static inline bool should_fault_around(struct vm_fault *vmf)
4604{
4605 /* No ->map_pages? No way to fault around... */
4606 if (!vmf->vma->vm_ops->map_pages)
4607 return false;
4608
4609 if (uffd_disable_fault_around(vmf->vma))
4610 return false;
4611
53d36a56
LS
4612 /* A single page implies no faulting 'around' at all. */
4613 return fault_around_pages > 1;
9c28a205
PX
4614}
4615
2b740303 4616static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4617{
2b740303 4618 vm_fault_t ret = 0;
22d1e68f 4619 struct folio *folio;
8c6e50b0
KS
4620
4621 /*
4622 * Let's call ->map_pages() first and use ->fault() as fallback
4623 * if page by the offset is not ready to be mapped (cold cache or
4624 * something).
4625 */
9c28a205
PX
4626 if (should_fault_around(vmf)) {
4627 ret = do_fault_around(vmf);
4628 if (ret)
4629 return ret;
8c6e50b0 4630 }
e655fb29 4631
12214eba
MWO
4632 ret = vmf_can_call_fault(vmf);
4633 if (ret)
4634 return ret;
f5617ffe 4635
936ca80d 4636 ret = __do_fault(vmf);
e655fb29
KS
4637 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4638 return ret;
4639
9118c0cb 4640 ret |= finish_fault(vmf);
22d1e68f
SK
4641 folio = page_folio(vmf->page);
4642 folio_unlock(folio);
7267ec00 4643 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4644 folio_put(folio);
e655fb29
KS
4645 return ret;
4646}
4647
2b740303 4648static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4649{
82b0f8c3 4650 struct vm_area_struct *vma = vmf->vma;
e4621e70 4651 struct folio *folio;
2b740303 4652 vm_fault_t ret;
ec47c3b9 4653
4de8c93a
MWO
4654 ret = vmf_can_call_fault(vmf);
4655 if (!ret)
4656 ret = vmf_anon_prepare(vmf);
4657 if (ret)
4658 return ret;
ec47c3b9 4659
e4621e70
KW
4660 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
4661 if (!folio)
ec47c3b9
KS
4662 return VM_FAULT_OOM;
4663
e4621e70 4664 vmf->cow_page = &folio->page;
ec47c3b9 4665
936ca80d 4666 ret = __do_fault(vmf);
ec47c3b9
KS
4667 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4668 goto uncharge_out;
3917048d
JK
4669 if (ret & VM_FAULT_DONE_COW)
4670 return ret;
ec47c3b9 4671
b1aa812b 4672 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
e4621e70 4673 __folio_mark_uptodate(folio);
ec47c3b9 4674
9118c0cb 4675 ret |= finish_fault(vmf);
b1aa812b
JK
4676 unlock_page(vmf->page);
4677 put_page(vmf->page);
7267ec00
KS
4678 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4679 goto uncharge_out;
ec47c3b9
KS
4680 return ret;
4681uncharge_out:
e4621e70 4682 folio_put(folio);
ec47c3b9
KS
4683 return ret;
4684}
4685
2b740303 4686static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4687{
82b0f8c3 4688 struct vm_area_struct *vma = vmf->vma;
2b740303 4689 vm_fault_t ret, tmp;
6f609b7e 4690 struct folio *folio;
1d65f86d 4691
4ed43798
MWO
4692 ret = vmf_can_call_fault(vmf);
4693 if (ret)
4694 return ret;
1d65f86d 4695
936ca80d 4696 ret = __do_fault(vmf);
7eae74af 4697 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4698 return ret;
1da177e4 4699
6f609b7e
SK
4700 folio = page_folio(vmf->page);
4701
1da177e4 4702 /*
f0c6d4d2
KS
4703 * Check if the backing address space wants to know that the page is
4704 * about to become writable
1da177e4 4705 */
fb09a464 4706 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4707 folio_unlock(folio);
86aa6998 4708 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4709 if (unlikely(!tmp ||
4710 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4711 folio_put(folio);
fb09a464 4712 return tmp;
4294621f 4713 }
fb09a464
KS
4714 }
4715
9118c0cb 4716 ret |= finish_fault(vmf);
7267ec00
KS
4717 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4718 VM_FAULT_RETRY))) {
6f609b7e
SK
4719 folio_unlock(folio);
4720 folio_put(folio);
f0c6d4d2 4721 return ret;
1da177e4 4722 }
b827e496 4723
89b15332 4724 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4725 return ret;
54cb8821 4726}
d00806b1 4727
9a95f3cf 4728/*
c1e8d7c6 4729 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4730 * but allow concurrent faults).
c1e8d7c6 4731 * The mmap_lock may have been released depending on flags and our
9138e47e 4732 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4733 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4734 * by other thread calling munmap()).
9a95f3cf 4735 */
2b740303 4736static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4737{
82b0f8c3 4738 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4739 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4740 vm_fault_t ret;
54cb8821 4741
ff09d7ec
AK
4742 /*
4743 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4744 */
4745 if (!vma->vm_ops->fault) {
3db82b93
HD
4746 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4747 vmf->address, &vmf->ptl);
4748 if (unlikely(!vmf->pte))
ff09d7ec
AK
4749 ret = VM_FAULT_SIGBUS;
4750 else {
ff09d7ec
AK
4751 /*
4752 * Make sure this is not a temporary clearing of pte
4753 * by holding ptl and checking again. A R/M/W update
4754 * of pte involves: take ptl, clearing the pte so that
4755 * we don't have concurrent modification by hardware
4756 * followed by an update.
4757 */
c33c7948 4758 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4759 ret = VM_FAULT_SIGBUS;
4760 else
4761 ret = VM_FAULT_NOPAGE;
4762
4763 pte_unmap_unlock(vmf->pte, vmf->ptl);
4764 }
4765 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4766 ret = do_read_fault(vmf);
4767 else if (!(vma->vm_flags & VM_SHARED))
4768 ret = do_cow_fault(vmf);
4769 else
4770 ret = do_shared_fault(vmf);
4771
4772 /* preallocated pagetable is unused: free it */
4773 if (vmf->prealloc_pte) {
fc8efd2d 4774 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4775 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4776 }
4777 return ret;
54cb8821
NP
4778}
4779
cda6d936 4780int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
f4c0d836 4781 unsigned long addr, int page_nid, int *flags)
9532fec1 4782{
cda6d936 4783 folio_get(folio);
9532fec1 4784
fc137c0d
R
4785 /* Record the current PID acceesing VMA */
4786 vma_set_access_pid_bit(vma);
4787
9532fec1 4788 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4789 if (page_nid == numa_node_id()) {
9532fec1 4790 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4791 *flags |= TNF_FAULT_LOCAL;
4792 }
9532fec1 4793
75c70128 4794 return mpol_misplaced(folio, vma, addr);
9532fec1
MG
4795}
4796
2b740303 4797static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4798{
82b0f8c3 4799 struct vm_area_struct *vma = vmf->vma;
6695cf68
KW
4800 struct folio *folio = NULL;
4801 int nid = NUMA_NO_NODE;
6a56ccbc 4802 bool writable = false;
90572890 4803 int last_cpupid;
cbee9f88 4804 int target_nid;
04a86453 4805 pte_t pte, old_pte;
6688cc05 4806 int flags = 0;
d10e63f2
MG
4807
4808 /*
166f61b9
TH
4809 * The "pte" at this point cannot be used safely without
4810 * validation through pte_unmap_same(). It's of NUMA type but
4811 * the pfn may be screwed if the read is non atomic.
166f61b9 4812 */
82b0f8c3 4813 spin_lock(vmf->ptl);
c33c7948 4814 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4815 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4816 goto out;
4817 }
4818
b99a342d
HY
4819 /* Get the normal PTE */
4820 old_pte = ptep_get(vmf->pte);
04a86453 4821 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4822
6a56ccbc
DH
4823 /*
4824 * Detect now whether the PTE could be writable; this information
4825 * is only valid while holding the PT lock.
4826 */
4827 writable = pte_write(pte);
4828 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4829 can_change_pte_writable(vma, vmf->address, pte))
4830 writable = true;
4831
6695cf68
KW
4832 folio = vm_normal_folio(vma, vmf->address, pte);
4833 if (!folio || folio_is_zone_device(folio))
b99a342d 4834 goto out_map;
d10e63f2 4835
e81c4802 4836 /* TODO: handle PTE-mapped THP */
6695cf68 4837 if (folio_test_large(folio))
b99a342d 4838 goto out_map;
e81c4802 4839
6688cc05 4840 /*
bea66fbd
MG
4841 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4842 * much anyway since they can be in shared cache state. This misses
4843 * the case where a mapping is writable but the process never writes
4844 * to it but pte_write gets cleared during protection updates and
4845 * pte_dirty has unpredictable behaviour between PTE scan updates,
4846 * background writeback, dirty balancing and application behaviour.
6688cc05 4847 */
6a56ccbc 4848 if (!writable)
6688cc05
PZ
4849 flags |= TNF_NO_GROUP;
4850
dabe1d99 4851 /*
6695cf68 4852 * Flag if the folio is shared between multiple address spaces. This
dabe1d99
RR
4853 * is later used when determining whether to group tasks together
4854 */
6695cf68 4855 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
dabe1d99
RR
4856 flags |= TNF_SHARED;
4857
6695cf68 4858 nid = folio_nid(folio);
33024536
HY
4859 /*
4860 * For memory tiering mode, cpupid of slow memory page is used
4861 * to record page access time. So use default value.
4862 */
4863 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
6695cf68 4864 !node_is_toptier(nid))
33024536
HY
4865 last_cpupid = (-1 & LAST_CPUPID_MASK);
4866 else
67b33e3f 4867 last_cpupid = folio_last_cpupid(folio);
cda6d936 4868 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
98fa15f3 4869 if (target_nid == NUMA_NO_NODE) {
6695cf68 4870 folio_put(folio);
b99a342d 4871 goto out_map;
4daae3b4 4872 }
b99a342d 4873 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4874 writable = false;
4daae3b4
MG
4875
4876 /* Migrate to the requested node */
6695cf68
KW
4877 if (migrate_misplaced_folio(folio, vma, target_nid)) {
4878 nid = target_nid;
6688cc05 4879 flags |= TNF_MIGRATED;
b99a342d 4880 } else {
074c2381 4881 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4882 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4883 vmf->address, &vmf->ptl);
4884 if (unlikely(!vmf->pte))
4885 goto out;
c33c7948 4886 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4887 pte_unmap_unlock(vmf->pte, vmf->ptl);
4888 goto out;
4889 }
4890 goto out_map;
4891 }
4daae3b4
MG
4892
4893out:
6695cf68
KW
4894 if (nid != NUMA_NO_NODE)
4895 task_numa_fault(last_cpupid, nid, 1, flags);
d10e63f2 4896 return 0;
b99a342d
HY
4897out_map:
4898 /*
4899 * Make it present again, depending on how arch implements
4900 * non-accessible ptes, some can allow access by kernel mode.
4901 */
4902 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4903 pte = pte_modify(old_pte, vma->vm_page_prot);
4904 pte = pte_mkyoung(pte);
6a56ccbc 4905 if (writable)
161e393c 4906 pte = pte_mkwrite(pte, vma);
b99a342d 4907 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5003a2bd 4908 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
b99a342d
HY
4909 pte_unmap_unlock(vmf->pte, vmf->ptl);
4910 goto out;
d10e63f2
MG
4911}
4912
2b740303 4913static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4914{
8f5fd0e1
MWO
4915 struct vm_area_struct *vma = vmf->vma;
4916 if (vma_is_anonymous(vma))
82b0f8c3 4917 return do_huge_pmd_anonymous_page(vmf);
40d49a3c 4918 if (vma->vm_ops->huge_fault)
1d024e7a 4919 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
b96375f7
MW
4920 return VM_FAULT_FALLBACK;
4921}
4922
183f24aa 4923/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4924static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4925{
8f5fd0e1 4926 struct vm_area_struct *vma = vmf->vma;
c89357e2 4927 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4928 vm_fault_t ret;
c89357e2 4929
8f5fd0e1 4930 if (vma_is_anonymous(vma)) {
c89357e2 4931 if (likely(!unshare) &&
d61ea1cb
PX
4932 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4933 if (userfaultfd_wp_async(vmf->vma))
4934 goto split;
529b930b 4935 return handle_userfault(vmf, VM_UFFD_WP);
d61ea1cb 4936 }
5db4f15c 4937 return do_huge_pmd_wp_page(vmf);
529b930b 4938 }
327e9fd4 4939
8f5fd0e1
MWO
4940 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4941 if (vma->vm_ops->huge_fault) {
1d024e7a 4942 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
aea06577
DH
4943 if (!(ret & VM_FAULT_FALLBACK))
4944 return ret;
4945 }
327e9fd4 4946 }
af9e4d5f 4947
d61ea1cb 4948split:
327e9fd4 4949 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 4950 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4951
b96375f7
MW
4952 return VM_FAULT_FALLBACK;
4953}
4954
2b740303 4955static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4956{
14c99d65
GJ
4957#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4958 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4959 struct vm_area_struct *vma = vmf->vma;
14c99d65 4960 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4961 if (vma_is_anonymous(vma))
14c99d65 4962 return VM_FAULT_FALLBACK;
40d49a3c 4963 if (vma->vm_ops->huge_fault)
1d024e7a 4964 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
14c99d65
GJ
4965#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4966 return VM_FAULT_FALLBACK;
4967}
4968
4969static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4970{
327e9fd4
THV
4971#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4972 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4973 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
4974 vm_fault_t ret;
4975
a00cc7d9 4976 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4977 if (vma_is_anonymous(vma))
327e9fd4 4978 goto split;
c4fd825e
MWO
4979 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4980 if (vma->vm_ops->huge_fault) {
1d024e7a 4981 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
aea06577
DH
4982 if (!(ret & VM_FAULT_FALLBACK))
4983 return ret;
4984 }
327e9fd4
THV
4985 }
4986split:
4987 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 4988 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 4989#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4990 return VM_FAULT_FALLBACK;
4991}
4992
1da177e4
LT
4993/*
4994 * These routines also need to handle stuff like marking pages dirty
4995 * and/or accessed for architectures that don't do it in hardware (most
4996 * RISC architectures). The early dirtying is also good on the i386.
4997 *
4998 * There is also a hook called "update_mmu_cache()" that architectures
4999 * with external mmu caches can use to update those (ie the Sparc or
5000 * PowerPC hashed page tables that act as extended TLBs).
5001 *
c1e8d7c6 5002 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 5003 * concurrent faults).
9a95f3cf 5004 *
c1e8d7c6 5005 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 5006 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 5007 */
2b740303 5008static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
5009{
5010 pte_t entry;
5011
82b0f8c3 5012 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
5013 /*
5014 * Leave __pte_alloc() until later: because vm_ops->fault may
5015 * want to allocate huge page, and if we expose page table
5016 * for an instant, it will be difficult to retract from
5017 * concurrent faults and from rmap lookups.
5018 */
82b0f8c3 5019 vmf->pte = NULL;
f46f2ade 5020 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5021 } else {
7267ec00
KS
5022 /*
5023 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
5024 * pmd by anon khugepaged, since that takes mmap_lock in write
5025 * mode; but shmem or file collapse to THP could still morph
5026 * it into a huge pmd: just retry later if so.
7267ec00 5027 */
c7ad0880
HD
5028 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5029 vmf->address, &vmf->ptl);
5030 if (unlikely(!vmf->pte))
5031 return 0;
26e1a0c3 5032 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 5033 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5034
2994302b 5035 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
5036 pte_unmap(vmf->pte);
5037 vmf->pte = NULL;
65500d23 5038 }
1da177e4
LT
5039 }
5040
2bad466c
PX
5041 if (!vmf->pte)
5042 return do_pte_missing(vmf);
7267ec00 5043
2994302b
JK
5044 if (!pte_present(vmf->orig_pte))
5045 return do_swap_page(vmf);
7267ec00 5046
2994302b
JK
5047 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5048 return do_numa_page(vmf);
d10e63f2 5049
82b0f8c3 5050 spin_lock(vmf->ptl);
2994302b 5051 entry = vmf->orig_pte;
c33c7948 5052 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5053 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5054 goto unlock;
7df67697 5055 }
c89357e2 5056 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5057 if (!pte_write(entry))
2994302b 5058 return do_wp_page(vmf);
c89357e2
DH
5059 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5060 entry = pte_mkdirty(entry);
1da177e4
LT
5061 }
5062 entry = pte_mkyoung(entry);
82b0f8c3
JK
5063 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5064 vmf->flags & FAULT_FLAG_WRITE)) {
5003a2bd
MWO
5065 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5066 vmf->pte, 1);
1a44e149 5067 } else {
b7333b58
YS
5068 /* Skip spurious TLB flush for retried page fault */
5069 if (vmf->flags & FAULT_FLAG_TRIED)
5070 goto unlock;
1a44e149
AA
5071 /*
5072 * This is needed only for protection faults but the arch code
5073 * is not yet telling us if this is a protection fault or not.
5074 * This still avoids useless tlb flushes for .text page faults
5075 * with threads.
5076 */
82b0f8c3 5077 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5078 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5079 vmf->pte);
1a44e149 5080 }
8f4e2101 5081unlock:
82b0f8c3 5082 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5083 return 0;
1da177e4
LT
5084}
5085
5086/*
4ec31152
MWO
5087 * On entry, we hold either the VMA lock or the mmap_lock
5088 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5089 * the result, the mmap_lock is not held on exit. See filemap_fault()
5090 * and __folio_lock_or_retry().
1da177e4 5091 */
2b740303
SJ
5092static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5093 unsigned long address, unsigned int flags)
1da177e4 5094{
82b0f8c3 5095 struct vm_fault vmf = {
bae473a4 5096 .vma = vma,
1a29d85e 5097 .address = address & PAGE_MASK,
824ddc60 5098 .real_address = address,
bae473a4 5099 .flags = flags,
0721ec8b 5100 .pgoff = linear_page_index(vma, address),
667240e0 5101 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5102 };
dcddffd4 5103 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5104 unsigned long vm_flags = vma->vm_flags;
1da177e4 5105 pgd_t *pgd;
c2febafc 5106 p4d_t *p4d;
2b740303 5107 vm_fault_t ret;
1da177e4 5108
1da177e4 5109 pgd = pgd_offset(mm, address);
c2febafc
KS
5110 p4d = p4d_alloc(mm, pgd, address);
5111 if (!p4d)
5112 return VM_FAULT_OOM;
a00cc7d9 5113
c2febafc 5114 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5115 if (!vmf.pud)
c74df32c 5116 return VM_FAULT_OOM;
625110b5 5117retry_pud:
7da4e2cb 5118 if (pud_none(*vmf.pud) &&
a7f4e6e4 5119 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5120 ret = create_huge_pud(&vmf);
5121 if (!(ret & VM_FAULT_FALLBACK))
5122 return ret;
5123 } else {
5124 pud_t orig_pud = *vmf.pud;
5125
5126 barrier();
5127 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5128
c89357e2
DH
5129 /*
5130 * TODO once we support anonymous PUDs: NUMA case and
5131 * FAULT_FLAG_UNSHARE handling.
5132 */
5133 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5134 ret = wp_huge_pud(&vmf, orig_pud);
5135 if (!(ret & VM_FAULT_FALLBACK))
5136 return ret;
5137 } else {
5138 huge_pud_set_accessed(&vmf, orig_pud);
5139 return 0;
5140 }
5141 }
5142 }
5143
5144 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5145 if (!vmf.pmd)
c74df32c 5146 return VM_FAULT_OOM;
625110b5
TH
5147
5148 /* Huge pud page fault raced with pmd_alloc? */
5149 if (pud_trans_unstable(vmf.pud))
5150 goto retry_pud;
5151
7da4e2cb 5152 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5153 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5154 ret = create_huge_pmd(&vmf);
c0292554
KS
5155 if (!(ret & VM_FAULT_FALLBACK))
5156 return ret;
71e3aac0 5157 } else {
26e1a0c3 5158 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5159
5db4f15c 5160 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5161 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5162 !is_pmd_migration_entry(vmf.orig_pmd));
5163 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5164 pmd_migration_entry_wait(mm, vmf.pmd);
5165 return 0;
5166 }
5db4f15c
YS
5167 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5168 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5169 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5170
c89357e2
DH
5171 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5172 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5173 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5174 if (!(ret & VM_FAULT_FALLBACK))
5175 return ret;
a1dd450b 5176 } else {
5db4f15c 5177 huge_pmd_set_accessed(&vmf);
9845cbbd 5178 return 0;
1f1d06c3 5179 }
71e3aac0
AA
5180 }
5181 }
5182
82b0f8c3 5183 return handle_pte_fault(&vmf);
1da177e4
LT
5184}
5185
bce617ed 5186/**
f0953a1b 5187 * mm_account_fault - Do page fault accounting
809ef83c 5188 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5189 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5190 * of perf event counters, but we'll still do the per-task accounting to
5191 * the task who triggered this page fault.
5192 * @address: the faulted address.
5193 * @flags: the fault flags.
5194 * @ret: the fault retcode.
5195 *
f0953a1b 5196 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5197 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5198 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5199 * still be in per-arch page fault handlers at the entry of page fault.
5200 */
53156443 5201static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5202 unsigned long address, unsigned int flags,
5203 vm_fault_t ret)
5204{
5205 bool major;
5206
53156443
SB
5207 /* Incomplete faults will be accounted upon completion. */
5208 if (ret & VM_FAULT_RETRY)
5209 return;
5210
bce617ed 5211 /*
53156443
SB
5212 * To preserve the behavior of older kernels, PGFAULT counters record
5213 * both successful and failed faults, as opposed to perf counters,
5214 * which ignore failed cases.
bce617ed 5215 */
53156443
SB
5216 count_vm_event(PGFAULT);
5217 count_memcg_event_mm(mm, PGFAULT);
5218
5219 /*
5220 * Do not account for unsuccessful faults (e.g. when the address wasn't
5221 * valid). That includes arch_vma_access_permitted() failing before
5222 * reaching here. So this is not a "this many hardware page faults"
5223 * counter. We should use the hw profiling for that.
5224 */
5225 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5226 return;
5227
5228 /*
5229 * We define the fault as a major fault when the final successful fault
5230 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5231 * handle it immediately previously).
5232 */
5233 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5234
a2beb5f1
PX
5235 if (major)
5236 current->maj_flt++;
5237 else
5238 current->min_flt++;
5239
bce617ed 5240 /*
a2beb5f1
PX
5241 * If the fault is done for GUP, regs will be NULL. We only do the
5242 * accounting for the per thread fault counters who triggered the
5243 * fault, and we skip the perf event updates.
bce617ed
PX
5244 */
5245 if (!regs)
5246 return;
5247
a2beb5f1 5248 if (major)
bce617ed 5249 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5250 else
bce617ed 5251 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5252}
5253
ec1c86b2
YZ
5254#ifdef CONFIG_LRU_GEN
5255static void lru_gen_enter_fault(struct vm_area_struct *vma)
5256{
8788f678
YZ
5257 /* the LRU algorithm only applies to accesses with recency */
5258 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5259}
5260
5261static void lru_gen_exit_fault(void)
5262{
5263 current->in_lru_fault = false;
5264}
5265#else
5266static void lru_gen_enter_fault(struct vm_area_struct *vma)
5267{
5268}
5269
5270static void lru_gen_exit_fault(void)
5271{
5272}
5273#endif /* CONFIG_LRU_GEN */
5274
cdc5021c
DH
5275static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5276 unsigned int *flags)
5277{
5278 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5279 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5280 return VM_FAULT_SIGSEGV;
5281 /*
5282 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5283 * just treat it like an ordinary read-fault otherwise.
5284 */
5285 if (!is_cow_mapping(vma->vm_flags))
5286 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5287 } else if (*flags & FAULT_FLAG_WRITE) {
5288 /* Write faults on read-only mappings are impossible ... */
5289 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5290 return VM_FAULT_SIGSEGV;
5291 /* ... and FOLL_FORCE only applies to COW mappings. */
5292 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5293 !is_cow_mapping(vma->vm_flags)))
5294 return VM_FAULT_SIGSEGV;
cdc5021c 5295 }
4089eef0
SB
5296#ifdef CONFIG_PER_VMA_LOCK
5297 /*
5298 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5299 * the assumption that lock is dropped on VM_FAULT_RETRY.
5300 */
5301 if (WARN_ON_ONCE((*flags &
5302 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5303 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5304 return VM_FAULT_SIGSEGV;
5305#endif
5306
cdc5021c
DH
5307 return 0;
5308}
5309
9a95f3cf
PC
5310/*
5311 * By the time we get here, we already hold the mm semaphore
5312 *
c1e8d7c6 5313 * The mmap_lock may have been released depending on flags and our
9138e47e 5314 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5315 */
2b740303 5316vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5317 unsigned int flags, struct pt_regs *regs)
519e5247 5318{
53156443
SB
5319 /* If the fault handler drops the mmap_lock, vma may be freed */
5320 struct mm_struct *mm = vma->vm_mm;
2b740303 5321 vm_fault_t ret;
519e5247
JW
5322
5323 __set_current_state(TASK_RUNNING);
5324
cdc5021c
DH
5325 ret = sanitize_fault_flags(vma, &flags);
5326 if (ret)
53156443 5327 goto out;
cdc5021c 5328
de0c799b
LD
5329 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5330 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5331 flags & FAULT_FLAG_REMOTE)) {
5332 ret = VM_FAULT_SIGSEGV;
5333 goto out;
5334 }
de0c799b 5335
519e5247
JW
5336 /*
5337 * Enable the memcg OOM handling for faults triggered in user
5338 * space. Kernel faults are handled more gracefully.
5339 */
5340 if (flags & FAULT_FLAG_USER)
29ef680a 5341 mem_cgroup_enter_user_fault();
519e5247 5342
ec1c86b2
YZ
5343 lru_gen_enter_fault(vma);
5344
bae473a4
KS
5345 if (unlikely(is_vm_hugetlb_page(vma)))
5346 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5347 else
5348 ret = __handle_mm_fault(vma, address, flags);
519e5247 5349
ec1c86b2
YZ
5350 lru_gen_exit_fault();
5351
49426420 5352 if (flags & FAULT_FLAG_USER) {
29ef680a 5353 mem_cgroup_exit_user_fault();
166f61b9
TH
5354 /*
5355 * The task may have entered a memcg OOM situation but
5356 * if the allocation error was handled gracefully (no
5357 * VM_FAULT_OOM), there is no need to kill anything.
5358 * Just clean up the OOM state peacefully.
5359 */
5360 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5361 mem_cgroup_oom_synchronize(false);
49426420 5362 }
53156443
SB
5363out:
5364 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5365
519e5247
JW
5366 return ret;
5367}
e1d6d01a 5368EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5369
c2508ec5
LT
5370#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5371#include <linux/extable.h>
5372
5373static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5374{
4542057e 5375 if (likely(mmap_read_trylock(mm)))
c2508ec5 5376 return true;
c2508ec5
LT
5377
5378 if (regs && !user_mode(regs)) {
5379 unsigned long ip = instruction_pointer(regs);
5380 if (!search_exception_tables(ip))
5381 return false;
5382 }
5383
eda00472 5384 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5385}
5386
5387static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5388{
5389 /*
5390 * We don't have this operation yet.
5391 *
5392 * It should be easy enough to do: it's basically a
5393 * atomic_long_try_cmpxchg_acquire()
5394 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5395 * it also needs the proper lockdep magic etc.
5396 */
5397 return false;
5398}
5399
5400static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5401{
5402 mmap_read_unlock(mm);
5403 if (regs && !user_mode(regs)) {
5404 unsigned long ip = instruction_pointer(regs);
5405 if (!search_exception_tables(ip))
5406 return false;
5407 }
eda00472 5408 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5409}
5410
5411/*
5412 * Helper for page fault handling.
5413 *
5414 * This is kind of equivalend to "mmap_read_lock()" followed
5415 * by "find_extend_vma()", except it's a lot more careful about
5416 * the locking (and will drop the lock on failure).
5417 *
5418 * For example, if we have a kernel bug that causes a page
5419 * fault, we don't want to just use mmap_read_lock() to get
5420 * the mm lock, because that would deadlock if the bug were
5421 * to happen while we're holding the mm lock for writing.
5422 *
5423 * So this checks the exception tables on kernel faults in
5424 * order to only do this all for instructions that are actually
5425 * expected to fault.
5426 *
5427 * We can also actually take the mm lock for writing if we
5428 * need to extend the vma, which helps the VM layer a lot.
5429 */
5430struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5431 unsigned long addr, struct pt_regs *regs)
5432{
5433 struct vm_area_struct *vma;
5434
5435 if (!get_mmap_lock_carefully(mm, regs))
5436 return NULL;
5437
5438 vma = find_vma(mm, addr);
5439 if (likely(vma && (vma->vm_start <= addr)))
5440 return vma;
5441
5442 /*
5443 * Well, dang. We might still be successful, but only
5444 * if we can extend a vma to do so.
5445 */
5446 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5447 mmap_read_unlock(mm);
5448 return NULL;
5449 }
5450
5451 /*
5452 * We can try to upgrade the mmap lock atomically,
5453 * in which case we can continue to use the vma
5454 * we already looked up.
5455 *
5456 * Otherwise we'll have to drop the mmap lock and
5457 * re-take it, and also look up the vma again,
5458 * re-checking it.
5459 */
5460 if (!mmap_upgrade_trylock(mm)) {
5461 if (!upgrade_mmap_lock_carefully(mm, regs))
5462 return NULL;
5463
5464 vma = find_vma(mm, addr);
5465 if (!vma)
5466 goto fail;
5467 if (vma->vm_start <= addr)
5468 goto success;
5469 if (!(vma->vm_flags & VM_GROWSDOWN))
5470 goto fail;
5471 }
5472
8d7071af 5473 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5474 goto fail;
5475
5476success:
5477 mmap_write_downgrade(mm);
5478 return vma;
5479
5480fail:
5481 mmap_write_unlock(mm);
5482 return NULL;
5483}
5484#endif
5485
50ee3253
SB
5486#ifdef CONFIG_PER_VMA_LOCK
5487/*
5488 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5489 * stable and not isolated. If the VMA is not found or is being modified the
5490 * function returns NULL.
5491 */
5492struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5493 unsigned long address)
5494{
5495 MA_STATE(mas, &mm->mm_mt, address, address);
5496 struct vm_area_struct *vma;
5497
5498 rcu_read_lock();
5499retry:
5500 vma = mas_walk(&mas);
5501 if (!vma)
5502 goto inval;
5503
50ee3253
SB
5504 if (!vma_start_read(vma))
5505 goto inval;
5506
657b5146
JH
5507 /*
5508 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5509 * This check must happen after vma_start_read(); otherwise, a
5510 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5511 * from its anon_vma.
5512 */
29a22b9e 5513 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
657b5146 5514 goto inval_end_read;
444eeb17 5515
50ee3253 5516 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5517 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5518 goto inval_end_read;
50ee3253
SB
5519
5520 /* Check if the VMA got isolated after we found it */
5521 if (vma->detached) {
5522 vma_end_read(vma);
52f23865 5523 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5524 /* The area was replaced with another one */
5525 goto retry;
5526 }
5527
5528 rcu_read_unlock();
5529 return vma;
657b5146
JH
5530
5531inval_end_read:
5532 vma_end_read(vma);
50ee3253
SB
5533inval:
5534 rcu_read_unlock();
52f23865 5535 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5536 return NULL;
5537}
5538#endif /* CONFIG_PER_VMA_LOCK */
5539
90eceff1
KS
5540#ifndef __PAGETABLE_P4D_FOLDED
5541/*
5542 * Allocate p4d page table.
5543 * We've already handled the fast-path in-line.
5544 */
5545int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5546{
5547 p4d_t *new = p4d_alloc_one(mm, address);
5548 if (!new)
5549 return -ENOMEM;
5550
90eceff1 5551 spin_lock(&mm->page_table_lock);
ed33b5a6 5552 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5553 p4d_free(mm, new);
ed33b5a6
QZ
5554 } else {
5555 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5556 pgd_populate(mm, pgd, new);
ed33b5a6 5557 }
90eceff1
KS
5558 spin_unlock(&mm->page_table_lock);
5559 return 0;
5560}
5561#endif /* __PAGETABLE_P4D_FOLDED */
5562
1da177e4
LT
5563#ifndef __PAGETABLE_PUD_FOLDED
5564/*
5565 * Allocate page upper directory.
872fec16 5566 * We've already handled the fast-path in-line.
1da177e4 5567 */
c2febafc 5568int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5569{
c74df32c
HD
5570 pud_t *new = pud_alloc_one(mm, address);
5571 if (!new)
1bb3630e 5572 return -ENOMEM;
1da177e4 5573
872fec16 5574 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5575 if (!p4d_present(*p4d)) {
5576 mm_inc_nr_puds(mm);
ed33b5a6 5577 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5578 p4d_populate(mm, p4d, new);
b4e98d9a 5579 } else /* Another has populated it */
5e541973 5580 pud_free(mm, new);
c74df32c 5581 spin_unlock(&mm->page_table_lock);
1bb3630e 5582 return 0;
1da177e4
LT
5583}
5584#endif /* __PAGETABLE_PUD_FOLDED */
5585
5586#ifndef __PAGETABLE_PMD_FOLDED
5587/*
5588 * Allocate page middle directory.
872fec16 5589 * We've already handled the fast-path in-line.
1da177e4 5590 */
1bb3630e 5591int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5592{
a00cc7d9 5593 spinlock_t *ptl;
c74df32c
HD
5594 pmd_t *new = pmd_alloc_one(mm, address);
5595 if (!new)
1bb3630e 5596 return -ENOMEM;
1da177e4 5597
a00cc7d9 5598 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5599 if (!pud_present(*pud)) {
5600 mm_inc_nr_pmds(mm);
ed33b5a6 5601 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5602 pud_populate(mm, pud, new);
ed33b5a6 5603 } else { /* Another has populated it */
5e541973 5604 pmd_free(mm, new);
ed33b5a6 5605 }
a00cc7d9 5606 spin_unlock(ptl);
1bb3630e 5607 return 0;
e0f39591 5608}
1da177e4
LT
5609#endif /* __PAGETABLE_PMD_FOLDED */
5610
0e5e64c0
MS
5611/**
5612 * follow_pte - look up PTE at a user virtual address
5613 * @mm: the mm_struct of the target address space
5614 * @address: user virtual address
5615 * @ptepp: location to store found PTE
5616 * @ptlp: location to store the lock for the PTE
5617 *
5618 * On a successful return, the pointer to the PTE is stored in @ptepp;
5619 * the corresponding lock is taken and its location is stored in @ptlp.
5620 * The contents of the PTE are only stable until @ptlp is released;
5621 * any further use, if any, must be protected against invalidation
5622 * with MMU notifiers.
5623 *
5624 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5625 * should be taken for read.
5626 *
5627 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5628 * it is not a good general-purpose API.
5629 *
5630 * Return: zero on success, -ve otherwise.
5631 */
5632int follow_pte(struct mm_struct *mm, unsigned long address,
5633 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5634{
5635 pgd_t *pgd;
c2febafc 5636 p4d_t *p4d;
f8ad0f49
JW
5637 pud_t *pud;
5638 pmd_t *pmd;
5639 pte_t *ptep;
5640
5641 pgd = pgd_offset(mm, address);
5642 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5643 goto out;
5644
c2febafc
KS
5645 p4d = p4d_offset(pgd, address);
5646 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5647 goto out;
5648
5649 pud = pud_offset(p4d, address);
f8ad0f49
JW
5650 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5651 goto out;
5652
5653 pmd = pmd_offset(pud, address);
f66055ab 5654 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5655
f8ad0f49 5656 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5657 if (!ptep)
5658 goto out;
c33c7948 5659 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5660 goto unlock;
5661 *ptepp = ptep;
5662 return 0;
5663unlock:
5664 pte_unmap_unlock(ptep, *ptlp);
5665out:
5666 return -EINVAL;
5667}
9fd6dad1
PB
5668EXPORT_SYMBOL_GPL(follow_pte);
5669
3b6748e2
JW
5670/**
5671 * follow_pfn - look up PFN at a user virtual address
5672 * @vma: memory mapping
5673 * @address: user virtual address
5674 * @pfn: location to store found PFN
5675 *
5676 * Only IO mappings and raw PFN mappings are allowed.
5677 *
9fd6dad1
PB
5678 * This function does not allow the caller to read the permissions
5679 * of the PTE. Do not use it.
5680 *
a862f68a 5681 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5682 */
5683int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5684 unsigned long *pfn)
5685{
5686 int ret = -EINVAL;
5687 spinlock_t *ptl;
5688 pte_t *ptep;
5689
5690 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5691 return ret;
5692
9fd6dad1 5693 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5694 if (ret)
5695 return ret;
c33c7948 5696 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5697 pte_unmap_unlock(ptep, ptl);
5698 return 0;
5699}
5700EXPORT_SYMBOL(follow_pfn);
5701
28b2ee20 5702#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5703int follow_phys(struct vm_area_struct *vma,
5704 unsigned long address, unsigned int flags,
5705 unsigned long *prot, resource_size_t *phys)
28b2ee20 5706{
03668a4d 5707 int ret = -EINVAL;
28b2ee20
RR
5708 pte_t *ptep, pte;
5709 spinlock_t *ptl;
28b2ee20 5710
d87fe660 5711 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5712 goto out;
28b2ee20 5713
9fd6dad1 5714 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5715 goto out;
c33c7948 5716 pte = ptep_get(ptep);
03668a4d 5717
f6f37321 5718 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5719 goto unlock;
28b2ee20
RR
5720
5721 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5722 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5723
03668a4d 5724 ret = 0;
28b2ee20
RR
5725unlock:
5726 pte_unmap_unlock(ptep, ptl);
5727out:
d87fe660 5728 return ret;
28b2ee20
RR
5729}
5730
96667f8a
DV
5731/**
5732 * generic_access_phys - generic implementation for iomem mmap access
5733 * @vma: the vma to access
f0953a1b 5734 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5735 * @buf: buffer to read/write
5736 * @len: length of transfer
5737 * @write: set to FOLL_WRITE when writing, otherwise reading
5738 *
5739 * This is a generic implementation for &vm_operations_struct.access for an
5740 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5741 * not page based.
5742 */
28b2ee20
RR
5743int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5744 void *buf, int len, int write)
5745{
5746 resource_size_t phys_addr;
5747 unsigned long prot = 0;
2bc7273b 5748 void __iomem *maddr;
96667f8a
DV
5749 pte_t *ptep, pte;
5750 spinlock_t *ptl;
5751 int offset = offset_in_page(addr);
5752 int ret = -EINVAL;
5753
5754 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5755 return -EINVAL;
5756
5757retry:
e913a8cd 5758 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5759 return -EINVAL;
c33c7948 5760 pte = ptep_get(ptep);
96667f8a 5761 pte_unmap_unlock(ptep, ptl);
28b2ee20 5762
96667f8a
DV
5763 prot = pgprot_val(pte_pgprot(pte));
5764 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5765
5766 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5767 return -EINVAL;
5768
9cb12d7b 5769 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5770 if (!maddr)
5771 return -ENOMEM;
5772
e913a8cd 5773 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5774 goto out_unmap;
5775
c33c7948 5776 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
DV
5777 pte_unmap_unlock(ptep, ptl);
5778 iounmap(maddr);
5779
5780 goto retry;
5781 }
5782
28b2ee20
RR
5783 if (write)
5784 memcpy_toio(maddr + offset, buf, len);
5785 else
5786 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5787 ret = len;
5788 pte_unmap_unlock(ptep, ptl);
5789out_unmap:
28b2ee20
RR
5790 iounmap(maddr);
5791
96667f8a 5792 return ret;
28b2ee20 5793}
5a73633e 5794EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5795#endif
5796
0ec76a11 5797/*
d3f5ffca 5798 * Access another process' address space as given in mm.
0ec76a11 5799 */
c43cfa42
LS
5800static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5801 void *buf, int len, unsigned int gup_flags)
0ec76a11 5802{
0ec76a11 5803 void *old_buf = buf;
442486ec 5804 int write = gup_flags & FOLL_WRITE;
0ec76a11 5805
d8ed45c5 5806 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5807 return 0;
5808
22883973
KS
5809 /* Untag the address before looking up the VMA */
5810 addr = untagged_addr_remote(mm, addr);
5811
eee9c708
LT
5812 /* Avoid triggering the temporary warning in __get_user_pages */
5813 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5814 return 0;
5815
183ff22b 5816 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5817 while (len) {
ca5e8632 5818 int bytes, offset;
0ec76a11 5819 void *maddr;
ca5e8632
LS
5820 struct vm_area_struct *vma = NULL;
5821 struct page *page = get_user_page_vma_remote(mm, addr,
5822 gup_flags, &vma);
0ec76a11 5823
6a1960b8 5824 if (IS_ERR(page)) {
9471f1f2
LT
5825 /* We might need to expand the stack to access it */
5826 vma = vma_lookup(mm, addr);
5827 if (!vma) {
5828 vma = expand_stack(mm, addr);
5829
5830 /* mmap_lock was dropped on failure */
5831 if (!vma)
5832 return buf - old_buf;
5833
5834 /* Try again if stack expansion worked */
5835 continue;
5836 }
5837
28b2ee20
RR
5838 /*
5839 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5840 * we can access using slightly different code.
5841 */
9471f1f2
LT
5842 bytes = 0;
5843#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5844 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5845 bytes = vma->vm_ops->access(vma, addr, buf,
5846 len, write);
dbffcd03 5847#endif
9471f1f2
LT
5848 if (bytes <= 0)
5849 break;
0ec76a11 5850 } else {
28b2ee20
RR
5851 bytes = len;
5852 offset = addr & (PAGE_SIZE-1);
5853 if (bytes > PAGE_SIZE-offset)
5854 bytes = PAGE_SIZE-offset;
5855
5856 maddr = kmap(page);
5857 if (write) {
5858 copy_to_user_page(vma, page, addr,
5859 maddr + offset, buf, bytes);
5860 set_page_dirty_lock(page);
5861 } else {
5862 copy_from_user_page(vma, page, addr,
5863 buf, maddr + offset, bytes);
5864 }
5865 kunmap(page);
09cbfeaf 5866 put_page(page);
0ec76a11 5867 }
0ec76a11
DH
5868 len -= bytes;
5869 buf += bytes;
5870 addr += bytes;
5871 }
d8ed45c5 5872 mmap_read_unlock(mm);
0ec76a11
DH
5873
5874 return buf - old_buf;
5875}
03252919 5876
5ddd36b9 5877/**
ae91dbfc 5878 * access_remote_vm - access another process' address space
5ddd36b9
SW
5879 * @mm: the mm_struct of the target address space
5880 * @addr: start address to access
5881 * @buf: source or destination buffer
5882 * @len: number of bytes to transfer
6347e8d5 5883 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5884 *
5885 * The caller must hold a reference on @mm.
a862f68a
MR
5886 *
5887 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5888 */
5889int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5890 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5891{
d3f5ffca 5892 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5893}
5894
206cb636
SW
5895/*
5896 * Access another process' address space.
5897 * Source/target buffer must be kernel space,
5898 * Do not walk the page table directly, use get_user_pages
5899 */
5900int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5901 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5902{
5903 struct mm_struct *mm;
5904 int ret;
5905
5906 mm = get_task_mm(tsk);
5907 if (!mm)
5908 return 0;
5909
d3f5ffca 5910 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5911
206cb636
SW
5912 mmput(mm);
5913
5914 return ret;
5915}
fcd35857 5916EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5917
03252919
AK
5918/*
5919 * Print the name of a VMA.
5920 */
5921void print_vma_addr(char *prefix, unsigned long ip)
5922{
5923 struct mm_struct *mm = current->mm;
5924 struct vm_area_struct *vma;
5925
e8bff74a 5926 /*
0a7f682d 5927 * we might be running from an atomic context so we cannot sleep
e8bff74a 5928 */
d8ed45c5 5929 if (!mmap_read_trylock(mm))
e8bff74a
IM
5930 return;
5931
03252919
AK
5932 vma = find_vma(mm, ip);
5933 if (vma && vma->vm_file) {
5934 struct file *f = vma->vm_file;
0a7f682d 5935 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5936 if (buf) {
2fbc57c5 5937 char *p;
03252919 5938
9bf39ab2 5939 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5940 if (IS_ERR(p))
5941 p = "?";
2fbc57c5 5942 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5943 vma->vm_start,
5944 vma->vm_end - vma->vm_start);
5945 free_page((unsigned long)buf);
5946 }
5947 }
d8ed45c5 5948 mmap_read_unlock(mm);
03252919 5949}
3ee1afa3 5950
662bbcb2 5951#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5952void __might_fault(const char *file, int line)
3ee1afa3 5953{
9ec23531 5954 if (pagefault_disabled())
662bbcb2 5955 return;
42a38756 5956 __might_sleep(file, line);
9ec23531 5957#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5958 if (current->mm)
da1c55f1 5959 might_lock_read(&current->mm->mmap_lock);
9ec23531 5960#endif
3ee1afa3 5961}
9ec23531 5962EXPORT_SYMBOL(__might_fault);
3ee1afa3 5963#endif
47ad8475
AA
5964
5965#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5966/*
5967 * Process all subpages of the specified huge page with the specified
5968 * operation. The target subpage will be processed last to keep its
5969 * cache lines hot.
5970 */
1cb9dc4b 5971static inline int process_huge_page(
c6ddfb6c 5972 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5973 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5974 void *arg)
47ad8475 5975{
1cb9dc4b 5976 int i, n, base, l, ret;
c79b57e4
HY
5977 unsigned long addr = addr_hint &
5978 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5979
c6ddfb6c 5980 /* Process target subpage last to keep its cache lines hot */
47ad8475 5981 might_sleep();
c79b57e4
HY
5982 n = (addr_hint - addr) / PAGE_SIZE;
5983 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5984 /* If target subpage in first half of huge page */
c79b57e4
HY
5985 base = 0;
5986 l = n;
c6ddfb6c 5987 /* Process subpages at the end of huge page */
c79b57e4
HY
5988 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5989 cond_resched();
1cb9dc4b
LS
5990 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5991 if (ret)
5992 return ret;
c79b57e4
HY
5993 }
5994 } else {
c6ddfb6c 5995 /* If target subpage in second half of huge page */
c79b57e4
HY
5996 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5997 l = pages_per_huge_page - n;
c6ddfb6c 5998 /* Process subpages at the begin of huge page */
c79b57e4
HY
5999 for (i = 0; i < base; i++) {
6000 cond_resched();
1cb9dc4b
LS
6001 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6002 if (ret)
6003 return ret;
c79b57e4
HY
6004 }
6005 }
6006 /*
c6ddfb6c
HY
6007 * Process remaining subpages in left-right-left-right pattern
6008 * towards the target subpage
c79b57e4
HY
6009 */
6010 for (i = 0; i < l; i++) {
6011 int left_idx = base + i;
6012 int right_idx = base + 2 * l - 1 - i;
6013
6014 cond_resched();
1cb9dc4b
LS
6015 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6016 if (ret)
6017 return ret;
47ad8475 6018 cond_resched();
1cb9dc4b
LS
6019 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6020 if (ret)
6021 return ret;
47ad8475 6022 }
1cb9dc4b 6023 return 0;
47ad8475
AA
6024}
6025
c6ddfb6c
HY
6026static void clear_gigantic_page(struct page *page,
6027 unsigned long addr,
6028 unsigned int pages_per_huge_page)
6029{
6030 int i;
14455eab 6031 struct page *p;
c6ddfb6c
HY
6032
6033 might_sleep();
14455eab
CL
6034 for (i = 0; i < pages_per_huge_page; i++) {
6035 p = nth_page(page, i);
c6ddfb6c
HY
6036 cond_resched();
6037 clear_user_highpage(p, addr + i * PAGE_SIZE);
6038 }
6039}
6040
1cb9dc4b 6041static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
6042{
6043 struct page *page = arg;
6044
6045 clear_user_highpage(page + idx, addr);
1cb9dc4b 6046 return 0;
c6ddfb6c
HY
6047}
6048
6049void clear_huge_page(struct page *page,
6050 unsigned long addr_hint, unsigned int pages_per_huge_page)
6051{
6052 unsigned long addr = addr_hint &
6053 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6054
6055 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6056 clear_gigantic_page(page, addr, pages_per_huge_page);
6057 return;
6058 }
6059
6060 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6061}
6062
1cb9dc4b 6063static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6064 unsigned long addr,
6065 struct vm_area_struct *vma,
6066 unsigned int pages_per_huge_page)
47ad8475
AA
6067{
6068 int i;
c0e8150e
Z
6069 struct page *dst_page;
6070 struct page *src_page;
47ad8475 6071
14455eab 6072 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6073 dst_page = folio_page(dst, i);
6074 src_page = folio_page(src, i);
14455eab 6075
47ad8475 6076 cond_resched();
1cb9dc4b
LS
6077 if (copy_mc_user_highpage(dst_page, src_page,
6078 addr + i*PAGE_SIZE, vma)) {
6079 memory_failure_queue(page_to_pfn(src_page), 0);
6080 return -EHWPOISON;
6081 }
47ad8475 6082 }
1cb9dc4b 6083 return 0;
47ad8475
AA
6084}
6085
c9f4cd71
HY
6086struct copy_subpage_arg {
6087 struct page *dst;
6088 struct page *src;
6089 struct vm_area_struct *vma;
6090};
6091
1cb9dc4b 6092static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6093{
6094 struct copy_subpage_arg *copy_arg = arg;
6095
1cb9dc4b
LS
6096 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6097 addr, copy_arg->vma)) {
6098 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6099 return -EHWPOISON;
6100 }
6101 return 0;
c9f4cd71
HY
6102}
6103
1cb9dc4b
LS
6104int copy_user_large_folio(struct folio *dst, struct folio *src,
6105 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6106{
c0e8150e 6107 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6108 unsigned long addr = addr_hint &
6109 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6110 struct copy_subpage_arg arg = {
c0e8150e
Z
6111 .dst = &dst->page,
6112 .src = &src->page,
c9f4cd71
HY
6113 .vma = vma,
6114 };
47ad8475 6115
1cb9dc4b
LS
6116 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6117 return copy_user_gigantic_page(dst, src, addr, vma,
6118 pages_per_huge_page);
47ad8475 6119
1cb9dc4b 6120 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6121}
fa4d75c1 6122
e87340ca
Z
6123long copy_folio_from_user(struct folio *dst_folio,
6124 const void __user *usr_src,
6125 bool allow_pagefault)
fa4d75c1 6126{
e87340ca 6127 void *kaddr;
fa4d75c1 6128 unsigned long i, rc = 0;
e87340ca
Z
6129 unsigned int nr_pages = folio_nr_pages(dst_folio);
6130 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6131 struct page *subpage;
fa4d75c1 6132
e87340ca
Z
6133 for (i = 0; i < nr_pages; i++) {
6134 subpage = folio_page(dst_folio, i);
6135 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6136 if (!allow_pagefault)
6137 pagefault_disable();
e87340ca 6138 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6139 if (!allow_pagefault)
6140 pagefault_enable();
e87340ca 6141 kunmap_local(kaddr);
fa4d75c1
MK
6142
6143 ret_val -= (PAGE_SIZE - rc);
6144 if (rc)
6145 break;
6146
e763243c
MS
6147 flush_dcache_page(subpage);
6148
fa4d75c1
MK
6149 cond_resched();
6150 }
6151 return ret_val;
6152}
47ad8475 6153#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6154
40b64acd 6155#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6156
6157static struct kmem_cache *page_ptl_cachep;
6158
6159void __init ptlock_cache_init(void)
6160{
6161 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6162 SLAB_PANIC, NULL);
6163}
6164
f5ecca06 6165bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6166{
6167 spinlock_t *ptl;
6168
b35f1819 6169 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6170 if (!ptl)
6171 return false;
f5ecca06 6172 ptdesc->ptl = ptl;
49076ec2
KS
6173 return true;
6174}
6175
6ed1b8a0 6176void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6177{
6ed1b8a0 6178 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6179}
6180#endif