memblock: stop aliasing __memblock_free_late with memblock_free_late
[linux-block.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
a9ee6cf5 93#ifndef CONFIG_NUMA
1da177e4 94unsigned long max_mapnr;
1da177e4 95EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
96
97struct page *mem_map;
1da177e4
LT
98EXPORT_SYMBOL(mem_map);
99#endif
100
1da177e4
LT
101/*
102 * A number of key systems in x86 including ioremap() rely on the assumption
103 * that high_memory defines the upper bound on direct map memory, then end
104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
106 * and ZONE_HIGHMEM.
107 */
166f61b9 108void *high_memory;
1da177e4 109EXPORT_SYMBOL(high_memory);
1da177e4 110
32a93233
IM
111/*
112 * Randomize the address space (stacks, mmaps, brk, etc.).
113 *
114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
115 * as ancient (libc5 based) binaries can segfault. )
116 */
117int randomize_va_space __read_mostly =
118#ifdef CONFIG_COMPAT_BRK
119 1;
120#else
121 2;
122#endif
a62eaf15 123
83d116c5
JH
124#ifndef arch_faults_on_old_pte
125static inline bool arch_faults_on_old_pte(void)
126{
127 /*
128 * Those arches which don't have hw access flag feature need to
129 * implement their own helper. By default, "true" means pagefault
130 * will be hit on old pte.
131 */
132 return true;
133}
134#endif
135
46bdb427
WD
136#ifndef arch_wants_old_prefaulted_pte
137static inline bool arch_wants_old_prefaulted_pte(void)
138{
139 /*
140 * Transitioning a PTE from 'old' to 'young' can be expensive on
141 * some architectures, even if it's performed in hardware. By
142 * default, "false" means prefaulted entries will be 'young'.
143 */
144 return false;
145}
146#endif
147
a62eaf15
AK
148static int __init disable_randmaps(char *s)
149{
150 randomize_va_space = 0;
9b41046c 151 return 1;
a62eaf15
AK
152}
153__setup("norandmaps", disable_randmaps);
154
62eede62 155unsigned long zero_pfn __read_mostly;
0b70068e
AB
156EXPORT_SYMBOL(zero_pfn);
157
166f61b9
TH
158unsigned long highest_memmap_pfn __read_mostly;
159
a13ea5b7
HD
160/*
161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
162 */
163static int __init init_zero_pfn(void)
164{
165 zero_pfn = page_to_pfn(ZERO_PAGE(0));
166 return 0;
167}
e720e7d0 168early_initcall(init_zero_pfn);
a62eaf15 169
e4dcad20 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 171{
e4dcad20 172 trace_rss_stat(mm, member, count);
b3d1411b 173}
d559db08 174
34e55232
KH
175#if defined(SPLIT_RSS_COUNTING)
176
ea48cf78 177void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
178{
179 int i;
180
181 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
182 if (current->rss_stat.count[i]) {
183 add_mm_counter(mm, i, current->rss_stat.count[i]);
184 current->rss_stat.count[i] = 0;
34e55232
KH
185 }
186 }
05af2e10 187 current->rss_stat.events = 0;
34e55232
KH
188}
189
190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
191{
192 struct task_struct *task = current;
193
194 if (likely(task->mm == mm))
195 task->rss_stat.count[member] += val;
196 else
197 add_mm_counter(mm, member, val);
198}
199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
201
202/* sync counter once per 64 page faults */
203#define TASK_RSS_EVENTS_THRESH (64)
204static void check_sync_rss_stat(struct task_struct *task)
205{
206 if (unlikely(task != current))
207 return;
208 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 209 sync_mm_rss(task->mm);
34e55232 210}
9547d01b 211#else /* SPLIT_RSS_COUNTING */
34e55232
KH
212
213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
215
216static void check_sync_rss_stat(struct task_struct *task)
217{
218}
219
9547d01b
PZ
220#endif /* SPLIT_RSS_COUNTING */
221
1da177e4
LT
222/*
223 * Note: this doesn't free the actual pages themselves. That
224 * has been handled earlier when unmapping all the memory regions.
225 */
9e1b32ca
BH
226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
227 unsigned long addr)
1da177e4 228{
2f569afd 229 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 230 pmd_clear(pmd);
9e1b32ca 231 pte_free_tlb(tlb, token, addr);
c4812909 232 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
233}
234
e0da382c
HD
235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
236 unsigned long addr, unsigned long end,
237 unsigned long floor, unsigned long ceiling)
1da177e4
LT
238{
239 pmd_t *pmd;
240 unsigned long next;
e0da382c 241 unsigned long start;
1da177e4 242
e0da382c 243 start = addr;
1da177e4 244 pmd = pmd_offset(pud, addr);
1da177e4
LT
245 do {
246 next = pmd_addr_end(addr, end);
247 if (pmd_none_or_clear_bad(pmd))
248 continue;
9e1b32ca 249 free_pte_range(tlb, pmd, addr);
1da177e4
LT
250 } while (pmd++, addr = next, addr != end);
251
e0da382c
HD
252 start &= PUD_MASK;
253 if (start < floor)
254 return;
255 if (ceiling) {
256 ceiling &= PUD_MASK;
257 if (!ceiling)
258 return;
1da177e4 259 }
e0da382c
HD
260 if (end - 1 > ceiling - 1)
261 return;
262
263 pmd = pmd_offset(pud, start);
264 pud_clear(pud);
9e1b32ca 265 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 266 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
267}
268
c2febafc 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
270 unsigned long addr, unsigned long end,
271 unsigned long floor, unsigned long ceiling)
1da177e4
LT
272{
273 pud_t *pud;
274 unsigned long next;
e0da382c 275 unsigned long start;
1da177e4 276
e0da382c 277 start = addr;
c2febafc 278 pud = pud_offset(p4d, addr);
1da177e4
LT
279 do {
280 next = pud_addr_end(addr, end);
281 if (pud_none_or_clear_bad(pud))
282 continue;
e0da382c 283 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
284 } while (pud++, addr = next, addr != end);
285
c2febafc
KS
286 start &= P4D_MASK;
287 if (start < floor)
288 return;
289 if (ceiling) {
290 ceiling &= P4D_MASK;
291 if (!ceiling)
292 return;
293 }
294 if (end - 1 > ceiling - 1)
295 return;
296
297 pud = pud_offset(p4d, start);
298 p4d_clear(p4d);
299 pud_free_tlb(tlb, pud, start);
b4e98d9a 300 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
301}
302
303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
304 unsigned long addr, unsigned long end,
305 unsigned long floor, unsigned long ceiling)
306{
307 p4d_t *p4d;
308 unsigned long next;
309 unsigned long start;
310
311 start = addr;
312 p4d = p4d_offset(pgd, addr);
313 do {
314 next = p4d_addr_end(addr, end);
315 if (p4d_none_or_clear_bad(p4d))
316 continue;
317 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
318 } while (p4d++, addr = next, addr != end);
319
e0da382c
HD
320 start &= PGDIR_MASK;
321 if (start < floor)
322 return;
323 if (ceiling) {
324 ceiling &= PGDIR_MASK;
325 if (!ceiling)
326 return;
1da177e4 327 }
e0da382c
HD
328 if (end - 1 > ceiling - 1)
329 return;
330
c2febafc 331 p4d = p4d_offset(pgd, start);
e0da382c 332 pgd_clear(pgd);
c2febafc 333 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
334}
335
336/*
e0da382c 337 * This function frees user-level page tables of a process.
1da177e4 338 */
42b77728 339void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
340 unsigned long addr, unsigned long end,
341 unsigned long floor, unsigned long ceiling)
1da177e4
LT
342{
343 pgd_t *pgd;
344 unsigned long next;
e0da382c
HD
345
346 /*
347 * The next few lines have given us lots of grief...
348 *
349 * Why are we testing PMD* at this top level? Because often
350 * there will be no work to do at all, and we'd prefer not to
351 * go all the way down to the bottom just to discover that.
352 *
353 * Why all these "- 1"s? Because 0 represents both the bottom
354 * of the address space and the top of it (using -1 for the
355 * top wouldn't help much: the masks would do the wrong thing).
356 * The rule is that addr 0 and floor 0 refer to the bottom of
357 * the address space, but end 0 and ceiling 0 refer to the top
358 * Comparisons need to use "end - 1" and "ceiling - 1" (though
359 * that end 0 case should be mythical).
360 *
361 * Wherever addr is brought up or ceiling brought down, we must
362 * be careful to reject "the opposite 0" before it confuses the
363 * subsequent tests. But what about where end is brought down
364 * by PMD_SIZE below? no, end can't go down to 0 there.
365 *
366 * Whereas we round start (addr) and ceiling down, by different
367 * masks at different levels, in order to test whether a table
368 * now has no other vmas using it, so can be freed, we don't
369 * bother to round floor or end up - the tests don't need that.
370 */
1da177e4 371
e0da382c
HD
372 addr &= PMD_MASK;
373 if (addr < floor) {
374 addr += PMD_SIZE;
375 if (!addr)
376 return;
377 }
378 if (ceiling) {
379 ceiling &= PMD_MASK;
380 if (!ceiling)
381 return;
382 }
383 if (end - 1 > ceiling - 1)
384 end -= PMD_SIZE;
385 if (addr > end - 1)
386 return;
07e32661
AK
387 /*
388 * We add page table cache pages with PAGE_SIZE,
389 * (see pte_free_tlb()), flush the tlb if we need
390 */
ed6a7935 391 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 392 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
393 do {
394 next = pgd_addr_end(addr, end);
395 if (pgd_none_or_clear_bad(pgd))
396 continue;
c2febafc 397 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 398 } while (pgd++, addr = next, addr != end);
e0da382c
HD
399}
400
42b77728 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 402 unsigned long floor, unsigned long ceiling)
e0da382c
HD
403{
404 while (vma) {
405 struct vm_area_struct *next = vma->vm_next;
406 unsigned long addr = vma->vm_start;
407
8f4f8c16 408 /*
25d9e2d1 409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
8f4f8c16 411 */
5beb4930 412 unlink_anon_vmas(vma);
8f4f8c16
HD
413 unlink_file_vma(vma);
414
9da61aef 415 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 416 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 417 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
418 } else {
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 423 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
424 vma = next;
425 next = vma->vm_next;
5beb4930 426 unlink_anon_vmas(vma);
8f4f8c16 427 unlink_file_vma(vma);
3bf5ee95
HD
428 }
429 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 430 floor, next ? next->vm_start : ceiling);
3bf5ee95 431 }
e0da382c
HD
432 vma = next;
433 }
1da177e4
LT
434}
435
03c4f204
QZ
436void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
437{
438 spinlock_t *ptl = pmd_lock(mm, pmd);
439
440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
441 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
442 /*
443 * Ensure all pte setup (eg. pte page lock and page clearing) are
444 * visible before the pte is made visible to other CPUs by being
445 * put into page tables.
446 *
447 * The other side of the story is the pointer chasing in the page
448 * table walking code (when walking the page table without locking;
449 * ie. most of the time). Fortunately, these data accesses consist
450 * of a chain of data-dependent loads, meaning most CPUs (alpha
451 * being the notable exception) will already guarantee loads are
452 * seen in-order. See the alpha page table accessors for the
453 * smp_rmb() barriers in page table walking code.
454 */
455 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
456 pmd_populate(mm, pmd, *pte);
457 *pte = NULL;
458 }
459 spin_unlock(ptl);
460}
461
4cf58924 462int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 463{
4cf58924 464 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
465 if (!new)
466 return -ENOMEM;
467
03c4f204 468 pmd_install(mm, pmd, &new);
2f569afd
MS
469 if (new)
470 pte_free(mm, new);
1bb3630e 471 return 0;
1da177e4
LT
472}
473
4cf58924 474int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 475{
4cf58924 476 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
477 if (!new)
478 return -ENOMEM;
479
480 spin_lock(&init_mm.page_table_lock);
8ac1f832 481 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 482 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 483 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 484 new = NULL;
4b471e88 485 }
1bb3630e 486 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
487 if (new)
488 pte_free_kernel(&init_mm, new);
1bb3630e 489 return 0;
1da177e4
LT
490}
491
d559db08
KH
492static inline void init_rss_vec(int *rss)
493{
494 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
495}
496
497static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 498{
d559db08
KH
499 int i;
500
34e55232 501 if (current->mm == mm)
05af2e10 502 sync_mm_rss(mm);
d559db08
KH
503 for (i = 0; i < NR_MM_COUNTERS; i++)
504 if (rss[i])
505 add_mm_counter(mm, i, rss[i]);
ae859762
HD
506}
507
b5810039 508/*
6aab341e
LT
509 * This function is called to print an error when a bad pte
510 * is found. For example, we might have a PFN-mapped pte in
511 * a region that doesn't allow it.
b5810039
NP
512 *
513 * The calling function must still handle the error.
514 */
3dc14741
HD
515static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
516 pte_t pte, struct page *page)
b5810039 517{
3dc14741 518 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
519 p4d_t *p4d = p4d_offset(pgd, addr);
520 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
521 pmd_t *pmd = pmd_offset(pud, addr);
522 struct address_space *mapping;
523 pgoff_t index;
d936cf9b
HD
524 static unsigned long resume;
525 static unsigned long nr_shown;
526 static unsigned long nr_unshown;
527
528 /*
529 * Allow a burst of 60 reports, then keep quiet for that minute;
530 * or allow a steady drip of one report per second.
531 */
532 if (nr_shown == 60) {
533 if (time_before(jiffies, resume)) {
534 nr_unshown++;
535 return;
536 }
537 if (nr_unshown) {
1170532b
JP
538 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
539 nr_unshown);
d936cf9b
HD
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
3dc14741
HD
546
547 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
548 index = linear_page_index(vma, addr);
549
1170532b
JP
550 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
551 current->comm,
552 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 553 if (page)
f0b791a3 554 dump_page(page, "bad pte");
6aa9b8b2 555 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 556 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 557 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
558 vma->vm_file,
559 vma->vm_ops ? vma->vm_ops->fault : NULL,
560 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
561 mapping ? mapping->a_ops->readpage : NULL);
b5810039 562 dump_stack();
373d4d09 563 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
564}
565
ee498ed7 566/*
7e675137 567 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 568 *
7e675137
NP
569 * "Special" mappings do not wish to be associated with a "struct page" (either
570 * it doesn't exist, or it exists but they don't want to touch it). In this
571 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 572 *
7e675137
NP
573 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
574 * pte bit, in which case this function is trivial. Secondly, an architecture
575 * may not have a spare pte bit, which requires a more complicated scheme,
576 * described below.
577 *
578 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
579 * special mapping (even if there are underlying and valid "struct pages").
580 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 581 *
b379d790
JH
582 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
583 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
584 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
585 * mapping will always honor the rule
6aab341e
LT
586 *
587 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
588 *
7e675137
NP
589 * And for normal mappings this is false.
590 *
591 * This restricts such mappings to be a linear translation from virtual address
592 * to pfn. To get around this restriction, we allow arbitrary mappings so long
593 * as the vma is not a COW mapping; in that case, we know that all ptes are
594 * special (because none can have been COWed).
b379d790 595 *
b379d790 596 *
7e675137 597 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
598 *
599 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
600 * page" backing, however the difference is that _all_ pages with a struct
601 * page (that is, those where pfn_valid is true) are refcounted and considered
602 * normal pages by the VM. The disadvantage is that pages are refcounted
603 * (which can be slower and simply not an option for some PFNMAP users). The
604 * advantage is that we don't have to follow the strict linearity rule of
605 * PFNMAP mappings in order to support COWable mappings.
606 *
ee498ed7 607 */
25b2995a
CH
608struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
609 pte_t pte)
ee498ed7 610{
22b31eec 611 unsigned long pfn = pte_pfn(pte);
7e675137 612
00b3a331 613 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 614 if (likely(!pte_special(pte)))
22b31eec 615 goto check_pfn;
667a0a06
DV
616 if (vma->vm_ops && vma->vm_ops->find_special_page)
617 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
618 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
619 return NULL;
df6ad698
JG
620 if (is_zero_pfn(pfn))
621 return NULL;
e1fb4a08
DJ
622 if (pte_devmap(pte))
623 return NULL;
624
df6ad698 625 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
626 return NULL;
627 }
628
00b3a331 629 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 630
b379d790
JH
631 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
632 if (vma->vm_flags & VM_MIXEDMAP) {
633 if (!pfn_valid(pfn))
634 return NULL;
635 goto out;
636 } else {
7e675137
NP
637 unsigned long off;
638 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
639 if (pfn == vma->vm_pgoff + off)
640 return NULL;
641 if (!is_cow_mapping(vma->vm_flags))
642 return NULL;
643 }
6aab341e
LT
644 }
645
b38af472
HD
646 if (is_zero_pfn(pfn))
647 return NULL;
00b3a331 648
22b31eec
HD
649check_pfn:
650 if (unlikely(pfn > highest_memmap_pfn)) {
651 print_bad_pte(vma, addr, pte, NULL);
652 return NULL;
653 }
6aab341e
LT
654
655 /*
7e675137 656 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 657 * eg. VDSO mappings can cause them to exist.
6aab341e 658 */
b379d790 659out:
6aab341e 660 return pfn_to_page(pfn);
ee498ed7
HD
661}
662
28093f9f
GS
663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
664struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
665 pmd_t pmd)
666{
667 unsigned long pfn = pmd_pfn(pmd);
668
669 /*
670 * There is no pmd_special() but there may be special pmds, e.g.
671 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 672 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
673 */
674 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
675 if (vma->vm_flags & VM_MIXEDMAP) {
676 if (!pfn_valid(pfn))
677 return NULL;
678 goto out;
679 } else {
680 unsigned long off;
681 off = (addr - vma->vm_start) >> PAGE_SHIFT;
682 if (pfn == vma->vm_pgoff + off)
683 return NULL;
684 if (!is_cow_mapping(vma->vm_flags))
685 return NULL;
686 }
687 }
688
e1fb4a08
DJ
689 if (pmd_devmap(pmd))
690 return NULL;
3cde287b 691 if (is_huge_zero_pmd(pmd))
28093f9f
GS
692 return NULL;
693 if (unlikely(pfn > highest_memmap_pfn))
694 return NULL;
695
696 /*
697 * NOTE! We still have PageReserved() pages in the page tables.
698 * eg. VDSO mappings can cause them to exist.
699 */
700out:
701 return pfn_to_page(pfn);
702}
703#endif
704
b756a3b5
AP
705static void restore_exclusive_pte(struct vm_area_struct *vma,
706 struct page *page, unsigned long address,
707 pte_t *ptep)
708{
709 pte_t pte;
710 swp_entry_t entry;
711
712 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
713 if (pte_swp_soft_dirty(*ptep))
714 pte = pte_mksoft_dirty(pte);
715
716 entry = pte_to_swp_entry(*ptep);
717 if (pte_swp_uffd_wp(*ptep))
718 pte = pte_mkuffd_wp(pte);
719 else if (is_writable_device_exclusive_entry(entry))
720 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
721
722 set_pte_at(vma->vm_mm, address, ptep, pte);
723
724 /*
725 * No need to take a page reference as one was already
726 * created when the swap entry was made.
727 */
728 if (PageAnon(page))
729 page_add_anon_rmap(page, vma, address, false);
730 else
731 /*
732 * Currently device exclusive access only supports anonymous
733 * memory so the entry shouldn't point to a filebacked page.
734 */
735 WARN_ON_ONCE(!PageAnon(page));
736
737 if (vma->vm_flags & VM_LOCKED)
738 mlock_vma_page(page);
739
740 /*
741 * No need to invalidate - it was non-present before. However
742 * secondary CPUs may have mappings that need invalidating.
743 */
744 update_mmu_cache(vma, address, ptep);
745}
746
747/*
748 * Tries to restore an exclusive pte if the page lock can be acquired without
749 * sleeping.
750 */
751static int
752try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
753 unsigned long addr)
754{
755 swp_entry_t entry = pte_to_swp_entry(*src_pte);
756 struct page *page = pfn_swap_entry_to_page(entry);
757
758 if (trylock_page(page)) {
759 restore_exclusive_pte(vma, page, addr, src_pte);
760 unlock_page(page);
761 return 0;
762 }
763
764 return -EBUSY;
765}
766
1da177e4
LT
767/*
768 * copy one vm_area from one task to the other. Assumes the page tables
769 * already present in the new task to be cleared in the whole range
770 * covered by this vma.
1da177e4
LT
771 */
772
df3a57d1
LT
773static unsigned long
774copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
775 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
776 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 777{
8f34f1ea 778 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
779 pte_t pte = *src_pte;
780 struct page *page;
df3a57d1
LT
781 swp_entry_t entry = pte_to_swp_entry(pte);
782
783 if (likely(!non_swap_entry(entry))) {
784 if (swap_duplicate(entry) < 0)
9a5cc85c 785 return -EIO;
df3a57d1
LT
786
787 /* make sure dst_mm is on swapoff's mmlist. */
788 if (unlikely(list_empty(&dst_mm->mmlist))) {
789 spin_lock(&mmlist_lock);
790 if (list_empty(&dst_mm->mmlist))
791 list_add(&dst_mm->mmlist,
792 &src_mm->mmlist);
793 spin_unlock(&mmlist_lock);
794 }
795 rss[MM_SWAPENTS]++;
796 } else if (is_migration_entry(entry)) {
af5cdaf8 797 page = pfn_swap_entry_to_page(entry);
1da177e4 798
df3a57d1 799 rss[mm_counter(page)]++;
5042db43 800
4dd845b5 801 if (is_writable_migration_entry(entry) &&
df3a57d1 802 is_cow_mapping(vm_flags)) {
5042db43 803 /*
df3a57d1
LT
804 * COW mappings require pages in both
805 * parent and child to be set to read.
5042db43 806 */
4dd845b5
AP
807 entry = make_readable_migration_entry(
808 swp_offset(entry));
df3a57d1
LT
809 pte = swp_entry_to_pte(entry);
810 if (pte_swp_soft_dirty(*src_pte))
811 pte = pte_swp_mksoft_dirty(pte);
812 if (pte_swp_uffd_wp(*src_pte))
813 pte = pte_swp_mkuffd_wp(pte);
814 set_pte_at(src_mm, addr, src_pte, pte);
815 }
816 } else if (is_device_private_entry(entry)) {
af5cdaf8 817 page = pfn_swap_entry_to_page(entry);
5042db43 818
df3a57d1
LT
819 /*
820 * Update rss count even for unaddressable pages, as
821 * they should treated just like normal pages in this
822 * respect.
823 *
824 * We will likely want to have some new rss counters
825 * for unaddressable pages, at some point. But for now
826 * keep things as they are.
827 */
828 get_page(page);
829 rss[mm_counter(page)]++;
830 page_dup_rmap(page, false);
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
4dd845b5 839 if (is_writable_device_private_entry(entry) &&
df3a57d1 840 is_cow_mapping(vm_flags)) {
4dd845b5
AP
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
df3a57d1
LT
843 pte = swp_entry_to_pte(entry);
844 if (pte_swp_uffd_wp(*src_pte))
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 847 }
b756a3b5
AP
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
1da177e4 859 }
8f34f1ea
PX
860 if (!userfaultfd_wp(dst_vma))
861 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
862 set_pte_at(dst_mm, addr, dst_pte, pte);
863 return 0;
864}
865
70e806e4
PX
866/*
867 * Copy a present and normal page if necessary.
868 *
869 * NOTE! The usual case is that this doesn't need to do
870 * anything, and can just return a positive value. That
871 * will let the caller know that it can just increase
872 * the page refcount and re-use the pte the traditional
873 * way.
874 *
875 * But _if_ we need to copy it because it needs to be
876 * pinned in the parent (and the child should get its own
877 * copy rather than just a reference to the same page),
878 * we'll do that here and return zero to let the caller
879 * know we're done.
880 *
881 * And if we need a pre-allocated page but don't yet have
882 * one, return a negative error to let the preallocation
883 * code know so that it can do so outside the page table
884 * lock.
885 */
886static inline int
c78f4636
PX
887copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
890{
891 struct page *new_page;
892
70e806e4 893 /*
70e806e4
PX
894 * What we want to do is to check whether this page may
895 * have been pinned by the parent process. If so,
896 * instead of wrprotect the pte on both sides, we copy
897 * the page immediately so that we'll always guarantee
898 * the pinned page won't be randomly replaced in the
899 * future.
900 *
f3c64eda
LT
901 * The page pinning checks are just "has this mm ever
902 * seen pinning", along with the (inexact) check of
903 * the page count. That might give false positives for
904 * for pinning, but it will work correctly.
70e806e4 905 */
97a7e473 906 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
907 return 1;
908
70e806e4
PX
909 new_page = *prealloc;
910 if (!new_page)
911 return -EAGAIN;
912
913 /*
914 * We have a prealloc page, all good! Take it
915 * over and copy the page & arm it.
916 */
917 *prealloc = NULL;
c78f4636 918 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 919 __SetPageUptodate(new_page);
c78f4636
PX
920 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
921 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
922 rss[mm_counter(new_page)]++;
923
924 /* All done, just insert the new page copy in the child */
c78f4636
PX
925 pte = mk_pte(new_page, dst_vma->vm_page_prot);
926 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
927 if (userfaultfd_pte_wp(dst_vma, *src_pte))
928 /* Uffd-wp needs to be delivered to dest pte as well */
929 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 930 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
931 return 0;
932}
933
934/*
935 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
936 * is required to copy this pte.
937 */
938static inline int
c78f4636
PX
939copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
940 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
941 struct page **prealloc)
df3a57d1 942{
c78f4636
PX
943 struct mm_struct *src_mm = src_vma->vm_mm;
944 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
945 pte_t pte = *src_pte;
946 struct page *page;
947
c78f4636 948 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
949 if (page) {
950 int retval;
951
c78f4636
PX
952 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
953 addr, rss, prealloc, pte, page);
70e806e4
PX
954 if (retval <= 0)
955 return retval;
956
957 get_page(page);
958 page_dup_rmap(page, false);
959 rss[mm_counter(page)]++;
960 }
961
1da177e4
LT
962 /*
963 * If it's a COW mapping, write protect it both
964 * in the parent and the child
965 */
1b2de5d0 966 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 967 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 968 pte = pte_wrprotect(pte);
1da177e4
LT
969 }
970
971 /*
972 * If it's a shared mapping, mark it clean in
973 * the child
974 */
975 if (vm_flags & VM_SHARED)
976 pte = pte_mkclean(pte);
977 pte = pte_mkold(pte);
6aab341e 978
8f34f1ea 979 if (!userfaultfd_wp(dst_vma))
b569a176
PX
980 pte = pte_clear_uffd_wp(pte);
981
c78f4636 982 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
983 return 0;
984}
985
986static inline struct page *
987page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
988 unsigned long addr)
989{
990 struct page *new_page;
991
992 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
993 if (!new_page)
994 return NULL;
995
996 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
997 put_page(new_page);
998 return NULL;
6aab341e 999 }
70e806e4 1000 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1001
70e806e4 1002 return new_page;
1da177e4
LT
1003}
1004
c78f4636
PX
1005static int
1006copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1007 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1008 unsigned long end)
1da177e4 1009{
c78f4636
PX
1010 struct mm_struct *dst_mm = dst_vma->vm_mm;
1011 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1012 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1013 pte_t *src_pte, *dst_pte;
c74df32c 1014 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1015 int progress, ret = 0;
d559db08 1016 int rss[NR_MM_COUNTERS];
570a335b 1017 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1018 struct page *prealloc = NULL;
1da177e4
LT
1019
1020again:
70e806e4 1021 progress = 0;
d559db08
KH
1022 init_rss_vec(rss);
1023
c74df32c 1024 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1025 if (!dst_pte) {
1026 ret = -ENOMEM;
1027 goto out;
1028 }
ece0e2b6 1029 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1030 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1031 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1032 orig_src_pte = src_pte;
1033 orig_dst_pte = dst_pte;
6606c3e0 1034 arch_enter_lazy_mmu_mode();
1da177e4 1035
1da177e4
LT
1036 do {
1037 /*
1038 * We are holding two locks at this point - either of them
1039 * could generate latencies in another task on another CPU.
1040 */
e040f218
HD
1041 if (progress >= 32) {
1042 progress = 0;
1043 if (need_resched() ||
95c354fe 1044 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1045 break;
1046 }
1da177e4
LT
1047 if (pte_none(*src_pte)) {
1048 progress++;
1049 continue;
1050 }
79a1971c 1051 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1052 ret = copy_nonpresent_pte(dst_mm, src_mm,
1053 dst_pte, src_pte,
1054 dst_vma, src_vma,
1055 addr, rss);
1056 if (ret == -EIO) {
1057 entry = pte_to_swp_entry(*src_pte);
79a1971c 1058 break;
b756a3b5
AP
1059 } else if (ret == -EBUSY) {
1060 break;
1061 } else if (!ret) {
1062 progress += 8;
1063 continue;
9a5cc85c 1064 }
b756a3b5
AP
1065
1066 /*
1067 * Device exclusive entry restored, continue by copying
1068 * the now present pte.
1069 */
1070 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1071 }
70e806e4 1072 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1073 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1074 addr, rss, &prealloc);
70e806e4
PX
1075 /*
1076 * If we need a pre-allocated page for this pte, drop the
1077 * locks, allocate, and try again.
1078 */
1079 if (unlikely(ret == -EAGAIN))
1080 break;
1081 if (unlikely(prealloc)) {
1082 /*
1083 * pre-alloc page cannot be reused by next time so as
1084 * to strictly follow mempolicy (e.g., alloc_page_vma()
1085 * will allocate page according to address). This
1086 * could only happen if one pinned pte changed.
1087 */
1088 put_page(prealloc);
1089 prealloc = NULL;
1090 }
1da177e4
LT
1091 progress += 8;
1092 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1093
6606c3e0 1094 arch_leave_lazy_mmu_mode();
c74df32c 1095 spin_unlock(src_ptl);
ece0e2b6 1096 pte_unmap(orig_src_pte);
d559db08 1097 add_mm_rss_vec(dst_mm, rss);
c36987e2 1098 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1099 cond_resched();
570a335b 1100
9a5cc85c
AP
1101 if (ret == -EIO) {
1102 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1103 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1104 ret = -ENOMEM;
1105 goto out;
1106 }
1107 entry.val = 0;
b756a3b5
AP
1108 } else if (ret == -EBUSY) {
1109 goto out;
9a5cc85c 1110 } else if (ret == -EAGAIN) {
c78f4636 1111 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1112 if (!prealloc)
570a335b 1113 return -ENOMEM;
9a5cc85c
AP
1114 } else if (ret) {
1115 VM_WARN_ON_ONCE(1);
570a335b 1116 }
9a5cc85c
AP
1117
1118 /* We've captured and resolved the error. Reset, try again. */
1119 ret = 0;
1120
1da177e4
LT
1121 if (addr != end)
1122 goto again;
70e806e4
PX
1123out:
1124 if (unlikely(prealloc))
1125 put_page(prealloc);
1126 return ret;
1da177e4
LT
1127}
1128
c78f4636
PX
1129static inline int
1130copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1131 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1132 unsigned long end)
1da177e4 1133{
c78f4636
PX
1134 struct mm_struct *dst_mm = dst_vma->vm_mm;
1135 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1136 pmd_t *src_pmd, *dst_pmd;
1137 unsigned long next;
1138
1139 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1140 if (!dst_pmd)
1141 return -ENOMEM;
1142 src_pmd = pmd_offset(src_pud, addr);
1143 do {
1144 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1145 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1146 || pmd_devmap(*src_pmd)) {
71e3aac0 1147 int err;
c78f4636 1148 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1149 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1150 addr, dst_vma, src_vma);
71e3aac0
AA
1151 if (err == -ENOMEM)
1152 return -ENOMEM;
1153 if (!err)
1154 continue;
1155 /* fall through */
1156 }
1da177e4
LT
1157 if (pmd_none_or_clear_bad(src_pmd))
1158 continue;
c78f4636
PX
1159 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1160 addr, next))
1da177e4
LT
1161 return -ENOMEM;
1162 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1163 return 0;
1164}
1165
c78f4636
PX
1166static inline int
1167copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1168 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1169 unsigned long end)
1da177e4 1170{
c78f4636
PX
1171 struct mm_struct *dst_mm = dst_vma->vm_mm;
1172 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1173 pud_t *src_pud, *dst_pud;
1174 unsigned long next;
1175
c2febafc 1176 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1177 if (!dst_pud)
1178 return -ENOMEM;
c2febafc 1179 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1180 do {
1181 next = pud_addr_end(addr, end);
a00cc7d9
MW
1182 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1183 int err;
1184
c78f4636 1185 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1186 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1187 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1188 if (err == -ENOMEM)
1189 return -ENOMEM;
1190 if (!err)
1191 continue;
1192 /* fall through */
1193 }
1da177e4
LT
1194 if (pud_none_or_clear_bad(src_pud))
1195 continue;
c78f4636
PX
1196 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1197 addr, next))
1da177e4
LT
1198 return -ENOMEM;
1199 } while (dst_pud++, src_pud++, addr = next, addr != end);
1200 return 0;
1201}
1202
c78f4636
PX
1203static inline int
1204copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1205 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1206 unsigned long end)
c2febafc 1207{
c78f4636 1208 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1209 p4d_t *src_p4d, *dst_p4d;
1210 unsigned long next;
1211
1212 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1213 if (!dst_p4d)
1214 return -ENOMEM;
1215 src_p4d = p4d_offset(src_pgd, addr);
1216 do {
1217 next = p4d_addr_end(addr, end);
1218 if (p4d_none_or_clear_bad(src_p4d))
1219 continue;
c78f4636
PX
1220 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1221 addr, next))
c2febafc
KS
1222 return -ENOMEM;
1223 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1224 return 0;
1225}
1226
c78f4636
PX
1227int
1228copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1229{
1230 pgd_t *src_pgd, *dst_pgd;
1231 unsigned long next;
c78f4636
PX
1232 unsigned long addr = src_vma->vm_start;
1233 unsigned long end = src_vma->vm_end;
1234 struct mm_struct *dst_mm = dst_vma->vm_mm;
1235 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1236 struct mmu_notifier_range range;
2ec74c3e 1237 bool is_cow;
cddb8a5c 1238 int ret;
1da177e4 1239
d992895b
NP
1240 /*
1241 * Don't copy ptes where a page fault will fill them correctly.
1242 * Fork becomes much lighter when there are big shared or private
1243 * readonly mappings. The tradeoff is that copy_page_range is more
1244 * efficient than faulting.
1245 */
c78f4636
PX
1246 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1247 !src_vma->anon_vma)
0661a336 1248 return 0;
d992895b 1249
c78f4636
PX
1250 if (is_vm_hugetlb_page(src_vma))
1251 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1252
c78f4636 1253 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1254 /*
1255 * We do not free on error cases below as remove_vma
1256 * gets called on error from higher level routine
1257 */
c78f4636 1258 ret = track_pfn_copy(src_vma);
2ab64037 1259 if (ret)
1260 return ret;
1261 }
1262
cddb8a5c
AA
1263 /*
1264 * We need to invalidate the secondary MMU mappings only when
1265 * there could be a permission downgrade on the ptes of the
1266 * parent mm. And a permission downgrade will only happen if
1267 * is_cow_mapping() returns true.
1268 */
c78f4636 1269 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1270
1271 if (is_cow) {
7269f999 1272 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1273 0, src_vma, src_mm, addr, end);
ac46d4f3 1274 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1275 /*
1276 * Disabling preemption is not needed for the write side, as
1277 * the read side doesn't spin, but goes to the mmap_lock.
1278 *
1279 * Use the raw variant of the seqcount_t write API to avoid
1280 * lockdep complaining about preemptibility.
1281 */
1282 mmap_assert_write_locked(src_mm);
1283 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1284 }
cddb8a5c
AA
1285
1286 ret = 0;
1da177e4
LT
1287 dst_pgd = pgd_offset(dst_mm, addr);
1288 src_pgd = pgd_offset(src_mm, addr);
1289 do {
1290 next = pgd_addr_end(addr, end);
1291 if (pgd_none_or_clear_bad(src_pgd))
1292 continue;
c78f4636
PX
1293 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1294 addr, next))) {
cddb8a5c
AA
1295 ret = -ENOMEM;
1296 break;
1297 }
1da177e4 1298 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1299
57efa1fe
JG
1300 if (is_cow) {
1301 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1302 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1303 }
cddb8a5c 1304 return ret;
1da177e4
LT
1305}
1306
51c6f666 1307static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1308 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1309 unsigned long addr, unsigned long end,
97a89413 1310 struct zap_details *details)
1da177e4 1311{
b5810039 1312 struct mm_struct *mm = tlb->mm;
d16dfc55 1313 int force_flush = 0;
d559db08 1314 int rss[NR_MM_COUNTERS];
97a89413 1315 spinlock_t *ptl;
5f1a1907 1316 pte_t *start_pte;
97a89413 1317 pte_t *pte;
8a5f14a2 1318 swp_entry_t entry;
d559db08 1319
ed6a7935 1320 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1321again:
e303297e 1322 init_rss_vec(rss);
5f1a1907
SR
1323 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1324 pte = start_pte;
3ea27719 1325 flush_tlb_batched_pending(mm);
6606c3e0 1326 arch_enter_lazy_mmu_mode();
1da177e4
LT
1327 do {
1328 pte_t ptent = *pte;
166f61b9 1329 if (pte_none(ptent))
1da177e4 1330 continue;
6f5e6b9e 1331
7b167b68
MK
1332 if (need_resched())
1333 break;
1334
1da177e4 1335 if (pte_present(ptent)) {
ee498ed7 1336 struct page *page;
51c6f666 1337
25b2995a 1338 page = vm_normal_page(vma, addr, ptent);
91b61ef3
PX
1339 if (unlikely(zap_skip_check_mapping(details, page)))
1340 continue;
b5810039 1341 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1342 tlb->fullmm);
1da177e4
LT
1343 tlb_remove_tlb_entry(tlb, pte, addr);
1344 if (unlikely(!page))
1345 continue;
eca56ff9
JM
1346
1347 if (!PageAnon(page)) {
1cf35d47
LT
1348 if (pte_dirty(ptent)) {
1349 force_flush = 1;
6237bcd9 1350 set_page_dirty(page);
1cf35d47 1351 }
4917e5d0 1352 if (pte_young(ptent) &&
64363aad 1353 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1354 mark_page_accessed(page);
6237bcd9 1355 }
eca56ff9 1356 rss[mm_counter(page)]--;
d281ee61 1357 page_remove_rmap(page, false);
3dc14741
HD
1358 if (unlikely(page_mapcount(page) < 0))
1359 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1360 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1361 force_flush = 1;
ce9ec37b 1362 addr += PAGE_SIZE;
d16dfc55 1363 break;
1cf35d47 1364 }
1da177e4
LT
1365 continue;
1366 }
5042db43
JG
1367
1368 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1369 if (is_device_private_entry(entry) ||
1370 is_device_exclusive_entry(entry)) {
af5cdaf8 1371 struct page *page = pfn_swap_entry_to_page(entry);
5042db43 1372
91b61ef3
PX
1373 if (unlikely(zap_skip_check_mapping(details, page)))
1374 continue;
5042db43
JG
1375 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1376 rss[mm_counter(page)]--;
b756a3b5
AP
1377
1378 if (is_device_private_entry(entry))
1379 page_remove_rmap(page, false);
1380
5042db43
JG
1381 put_page(page);
1382 continue;
1383 }
1384
3e8715fd
KS
1385 /* If details->check_mapping, we leave swap entries. */
1386 if (unlikely(details))
1da177e4 1387 continue;
b084d435 1388
8a5f14a2
KS
1389 if (!non_swap_entry(entry))
1390 rss[MM_SWAPENTS]--;
1391 else if (is_migration_entry(entry)) {
1392 struct page *page;
9f9f1acd 1393
af5cdaf8 1394 page = pfn_swap_entry_to_page(entry);
eca56ff9 1395 rss[mm_counter(page)]--;
b084d435 1396 }
8a5f14a2
KS
1397 if (unlikely(!free_swap_and_cache(entry)))
1398 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1399 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1400 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1401
d559db08 1402 add_mm_rss_vec(mm, rss);
6606c3e0 1403 arch_leave_lazy_mmu_mode();
51c6f666 1404
1cf35d47 1405 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1406 if (force_flush)
1cf35d47 1407 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1408 pte_unmap_unlock(start_pte, ptl);
1409
1410 /*
1411 * If we forced a TLB flush (either due to running out of
1412 * batch buffers or because we needed to flush dirty TLB
1413 * entries before releasing the ptl), free the batched
1414 * memory too. Restart if we didn't do everything.
1415 */
1416 if (force_flush) {
1417 force_flush = 0;
fa0aafb8 1418 tlb_flush_mmu(tlb);
7b167b68
MK
1419 }
1420
1421 if (addr != end) {
1422 cond_resched();
1423 goto again;
d16dfc55
PZ
1424 }
1425
51c6f666 1426 return addr;
1da177e4
LT
1427}
1428
51c6f666 1429static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1430 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1431 unsigned long addr, unsigned long end,
97a89413 1432 struct zap_details *details)
1da177e4
LT
1433{
1434 pmd_t *pmd;
1435 unsigned long next;
1436
1437 pmd = pmd_offset(pud, addr);
1438 do {
1439 next = pmd_addr_end(addr, end);
84c3fc4e 1440 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1441 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1442 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1443 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1444 goto next;
71e3aac0 1445 /* fall through */
22061a1f
HD
1446 } else if (details && details->single_page &&
1447 PageTransCompound(details->single_page) &&
1448 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1449 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1450 /*
1451 * Take and drop THP pmd lock so that we cannot return
1452 * prematurely, while zap_huge_pmd() has cleared *pmd,
1453 * but not yet decremented compound_mapcount().
1454 */
1455 spin_unlock(ptl);
71e3aac0 1456 }
22061a1f 1457
1a5a9906
AA
1458 /*
1459 * Here there can be other concurrent MADV_DONTNEED or
1460 * trans huge page faults running, and if the pmd is
1461 * none or trans huge it can change under us. This is
c1e8d7c6 1462 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1463 * mode.
1464 */
1465 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1466 goto next;
97a89413 1467 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1468next:
97a89413
PZ
1469 cond_resched();
1470 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1471
1472 return addr;
1da177e4
LT
1473}
1474
51c6f666 1475static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1476 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1477 unsigned long addr, unsigned long end,
97a89413 1478 struct zap_details *details)
1da177e4
LT
1479{
1480 pud_t *pud;
1481 unsigned long next;
1482
c2febafc 1483 pud = pud_offset(p4d, addr);
1da177e4
LT
1484 do {
1485 next = pud_addr_end(addr, end);
a00cc7d9
MW
1486 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1487 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1488 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1489 split_huge_pud(vma, pud, addr);
1490 } else if (zap_huge_pud(tlb, vma, pud, addr))
1491 goto next;
1492 /* fall through */
1493 }
97a89413 1494 if (pud_none_or_clear_bad(pud))
1da177e4 1495 continue;
97a89413 1496 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1497next:
1498 cond_resched();
97a89413 1499 } while (pud++, addr = next, addr != end);
51c6f666
RH
1500
1501 return addr;
1da177e4
LT
1502}
1503
c2febafc
KS
1504static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1505 struct vm_area_struct *vma, pgd_t *pgd,
1506 unsigned long addr, unsigned long end,
1507 struct zap_details *details)
1508{
1509 p4d_t *p4d;
1510 unsigned long next;
1511
1512 p4d = p4d_offset(pgd, addr);
1513 do {
1514 next = p4d_addr_end(addr, end);
1515 if (p4d_none_or_clear_bad(p4d))
1516 continue;
1517 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1518 } while (p4d++, addr = next, addr != end);
1519
1520 return addr;
1521}
1522
aac45363 1523void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1524 struct vm_area_struct *vma,
1525 unsigned long addr, unsigned long end,
1526 struct zap_details *details)
1da177e4
LT
1527{
1528 pgd_t *pgd;
1529 unsigned long next;
1530
1da177e4
LT
1531 BUG_ON(addr >= end);
1532 tlb_start_vma(tlb, vma);
1533 pgd = pgd_offset(vma->vm_mm, addr);
1534 do {
1535 next = pgd_addr_end(addr, end);
97a89413 1536 if (pgd_none_or_clear_bad(pgd))
1da177e4 1537 continue;
c2febafc 1538 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1539 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1540 tlb_end_vma(tlb, vma);
1541}
51c6f666 1542
f5cc4eef
AV
1543
1544static void unmap_single_vma(struct mmu_gather *tlb,
1545 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1546 unsigned long end_addr,
f5cc4eef
AV
1547 struct zap_details *details)
1548{
1549 unsigned long start = max(vma->vm_start, start_addr);
1550 unsigned long end;
1551
1552 if (start >= vma->vm_end)
1553 return;
1554 end = min(vma->vm_end, end_addr);
1555 if (end <= vma->vm_start)
1556 return;
1557
cbc91f71
SD
1558 if (vma->vm_file)
1559 uprobe_munmap(vma, start, end);
1560
b3b9c293 1561 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1562 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1563
1564 if (start != end) {
1565 if (unlikely(is_vm_hugetlb_page(vma))) {
1566 /*
1567 * It is undesirable to test vma->vm_file as it
1568 * should be non-null for valid hugetlb area.
1569 * However, vm_file will be NULL in the error
7aa6b4ad 1570 * cleanup path of mmap_region. When
f5cc4eef 1571 * hugetlbfs ->mmap method fails,
7aa6b4ad 1572 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1573 * before calling this function to clean up.
1574 * Since no pte has actually been setup, it is
1575 * safe to do nothing in this case.
1576 */
24669e58 1577 if (vma->vm_file) {
83cde9e8 1578 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1579 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1580 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1581 }
f5cc4eef
AV
1582 } else
1583 unmap_page_range(tlb, vma, start, end, details);
1584 }
1da177e4
LT
1585}
1586
1da177e4
LT
1587/**
1588 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1589 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1590 * @vma: the starting vma
1591 * @start_addr: virtual address at which to start unmapping
1592 * @end_addr: virtual address at which to end unmapping
1da177e4 1593 *
508034a3 1594 * Unmap all pages in the vma list.
1da177e4 1595 *
1da177e4
LT
1596 * Only addresses between `start' and `end' will be unmapped.
1597 *
1598 * The VMA list must be sorted in ascending virtual address order.
1599 *
1600 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1601 * range after unmap_vmas() returns. So the only responsibility here is to
1602 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1603 * drops the lock and schedules.
1604 */
6e8bb019 1605void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1606 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1607 unsigned long end_addr)
1da177e4 1608{
ac46d4f3 1609 struct mmu_notifier_range range;
1da177e4 1610
6f4f13e8
JG
1611 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1612 start_addr, end_addr);
ac46d4f3 1613 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1614 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1615 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1616 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1617}
1618
1619/**
1620 * zap_page_range - remove user pages in a given range
1621 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1622 * @start: starting address of pages to zap
1da177e4 1623 * @size: number of bytes to zap
f5cc4eef
AV
1624 *
1625 * Caller must protect the VMA list
1da177e4 1626 */
7e027b14 1627void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1628 unsigned long size)
1da177e4 1629{
ac46d4f3 1630 struct mmu_notifier_range range;
d16dfc55 1631 struct mmu_gather tlb;
1da177e4 1632
1da177e4 1633 lru_add_drain();
7269f999 1634 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1635 start, start + size);
a72afd87 1636 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1637 update_hiwater_rss(vma->vm_mm);
1638 mmu_notifier_invalidate_range_start(&range);
1639 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1640 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1641 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1642 tlb_finish_mmu(&tlb);
1da177e4
LT
1643}
1644
f5cc4eef
AV
1645/**
1646 * zap_page_range_single - remove user pages in a given range
1647 * @vma: vm_area_struct holding the applicable pages
1648 * @address: starting address of pages to zap
1649 * @size: number of bytes to zap
8a5f14a2 1650 * @details: details of shared cache invalidation
f5cc4eef
AV
1651 *
1652 * The range must fit into one VMA.
1da177e4 1653 */
f5cc4eef 1654static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1655 unsigned long size, struct zap_details *details)
1656{
ac46d4f3 1657 struct mmu_notifier_range range;
d16dfc55 1658 struct mmu_gather tlb;
1da177e4 1659
1da177e4 1660 lru_add_drain();
7269f999 1661 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1662 address, address + size);
a72afd87 1663 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1664 update_hiwater_rss(vma->vm_mm);
1665 mmu_notifier_invalidate_range_start(&range);
1666 unmap_single_vma(&tlb, vma, address, range.end, details);
1667 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1668 tlb_finish_mmu(&tlb);
1da177e4
LT
1669}
1670
c627f9cc
JS
1671/**
1672 * zap_vma_ptes - remove ptes mapping the vma
1673 * @vma: vm_area_struct holding ptes to be zapped
1674 * @address: starting address of pages to zap
1675 * @size: number of bytes to zap
1676 *
1677 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1678 *
1679 * The entire address range must be fully contained within the vma.
1680 *
c627f9cc 1681 */
27d036e3 1682void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1683 unsigned long size)
1684{
1685 if (address < vma->vm_start || address + size > vma->vm_end ||
1686 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1687 return;
1688
f5cc4eef 1689 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1690}
1691EXPORT_SYMBOL_GPL(zap_vma_ptes);
1692
8cd3984d 1693static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1694{
c2febafc
KS
1695 pgd_t *pgd;
1696 p4d_t *p4d;
1697 pud_t *pud;
1698 pmd_t *pmd;
1699
1700 pgd = pgd_offset(mm, addr);
1701 p4d = p4d_alloc(mm, pgd, addr);
1702 if (!p4d)
1703 return NULL;
1704 pud = pud_alloc(mm, p4d, addr);
1705 if (!pud)
1706 return NULL;
1707 pmd = pmd_alloc(mm, pud, addr);
1708 if (!pmd)
1709 return NULL;
1710
1711 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1712 return pmd;
1713}
1714
1715pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1716 spinlock_t **ptl)
1717{
1718 pmd_t *pmd = walk_to_pmd(mm, addr);
1719
1720 if (!pmd)
1721 return NULL;
c2febafc 1722 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1723}
1724
8efd6f5b
AR
1725static int validate_page_before_insert(struct page *page)
1726{
1727 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1728 return -EINVAL;
1729 flush_dcache_page(page);
1730 return 0;
1731}
1732
1733static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1734 unsigned long addr, struct page *page, pgprot_t prot)
1735{
1736 if (!pte_none(*pte))
1737 return -EBUSY;
1738 /* Ok, finally just insert the thing.. */
1739 get_page(page);
1740 inc_mm_counter_fast(mm, mm_counter_file(page));
1741 page_add_file_rmap(page, false);
1742 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1743 return 0;
1744}
1745
238f58d8
LT
1746/*
1747 * This is the old fallback for page remapping.
1748 *
1749 * For historical reasons, it only allows reserved pages. Only
1750 * old drivers should use this, and they needed to mark their
1751 * pages reserved for the old functions anyway.
1752 */
423bad60
NP
1753static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1754 struct page *page, pgprot_t prot)
238f58d8 1755{
423bad60 1756 struct mm_struct *mm = vma->vm_mm;
238f58d8 1757 int retval;
c9cfcddf 1758 pte_t *pte;
8a9f3ccd
BS
1759 spinlock_t *ptl;
1760
8efd6f5b
AR
1761 retval = validate_page_before_insert(page);
1762 if (retval)
5b4e655e 1763 goto out;
238f58d8 1764 retval = -ENOMEM;
c9cfcddf 1765 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1766 if (!pte)
5b4e655e 1767 goto out;
8efd6f5b 1768 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1769 pte_unmap_unlock(pte, ptl);
1770out:
1771 return retval;
1772}
1773
8cd3984d 1774#ifdef pte_index
7f70c2a6 1775static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1776 unsigned long addr, struct page *page, pgprot_t prot)
1777{
1778 int err;
1779
1780 if (!page_count(page))
1781 return -EINVAL;
1782 err = validate_page_before_insert(page);
7f70c2a6
AR
1783 if (err)
1784 return err;
1785 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1786}
1787
1788/* insert_pages() amortizes the cost of spinlock operations
1789 * when inserting pages in a loop. Arch *must* define pte_index.
1790 */
1791static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1792 struct page **pages, unsigned long *num, pgprot_t prot)
1793{
1794 pmd_t *pmd = NULL;
7f70c2a6
AR
1795 pte_t *start_pte, *pte;
1796 spinlock_t *pte_lock;
8cd3984d
AR
1797 struct mm_struct *const mm = vma->vm_mm;
1798 unsigned long curr_page_idx = 0;
1799 unsigned long remaining_pages_total = *num;
1800 unsigned long pages_to_write_in_pmd;
1801 int ret;
1802more:
1803 ret = -EFAULT;
1804 pmd = walk_to_pmd(mm, addr);
1805 if (!pmd)
1806 goto out;
1807
1808 pages_to_write_in_pmd = min_t(unsigned long,
1809 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1810
1811 /* Allocate the PTE if necessary; takes PMD lock once only. */
1812 ret = -ENOMEM;
1813 if (pte_alloc(mm, pmd))
1814 goto out;
8cd3984d
AR
1815
1816 while (pages_to_write_in_pmd) {
1817 int pte_idx = 0;
1818 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1819
7f70c2a6
AR
1820 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1821 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1822 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1823 addr, pages[curr_page_idx], prot);
1824 if (unlikely(err)) {
7f70c2a6 1825 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1826 ret = err;
1827 remaining_pages_total -= pte_idx;
1828 goto out;
1829 }
1830 addr += PAGE_SIZE;
1831 ++curr_page_idx;
1832 }
7f70c2a6 1833 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1834 pages_to_write_in_pmd -= batch_size;
1835 remaining_pages_total -= batch_size;
1836 }
1837 if (remaining_pages_total)
1838 goto more;
1839 ret = 0;
1840out:
1841 *num = remaining_pages_total;
1842 return ret;
1843}
1844#endif /* ifdef pte_index */
1845
1846/**
1847 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1848 * @vma: user vma to map to
1849 * @addr: target start user address of these pages
1850 * @pages: source kernel pages
1851 * @num: in: number of pages to map. out: number of pages that were *not*
1852 * mapped. (0 means all pages were successfully mapped).
1853 *
1854 * Preferred over vm_insert_page() when inserting multiple pages.
1855 *
1856 * In case of error, we may have mapped a subset of the provided
1857 * pages. It is the caller's responsibility to account for this case.
1858 *
1859 * The same restrictions apply as in vm_insert_page().
1860 */
1861int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1862 struct page **pages, unsigned long *num)
1863{
1864#ifdef pte_index
1865 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1866
1867 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1868 return -EFAULT;
1869 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1870 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1871 BUG_ON(vma->vm_flags & VM_PFNMAP);
1872 vma->vm_flags |= VM_MIXEDMAP;
1873 }
1874 /* Defer page refcount checking till we're about to map that page. */
1875 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1876#else
1877 unsigned long idx = 0, pgcount = *num;
45779b03 1878 int err = -EINVAL;
8cd3984d
AR
1879
1880 for (; idx < pgcount; ++idx) {
1881 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1882 if (err)
1883 break;
1884 }
1885 *num = pgcount - idx;
1886 return err;
1887#endif /* ifdef pte_index */
1888}
1889EXPORT_SYMBOL(vm_insert_pages);
1890
bfa5bf6d
REB
1891/**
1892 * vm_insert_page - insert single page into user vma
1893 * @vma: user vma to map to
1894 * @addr: target user address of this page
1895 * @page: source kernel page
1896 *
a145dd41
LT
1897 * This allows drivers to insert individual pages they've allocated
1898 * into a user vma.
1899 *
1900 * The page has to be a nice clean _individual_ kernel allocation.
1901 * If you allocate a compound page, you need to have marked it as
1902 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1903 * (see split_page()).
a145dd41
LT
1904 *
1905 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1906 * took an arbitrary page protection parameter. This doesn't allow
1907 * that. Your vma protection will have to be set up correctly, which
1908 * means that if you want a shared writable mapping, you'd better
1909 * ask for a shared writable mapping!
1910 *
1911 * The page does not need to be reserved.
4b6e1e37
KK
1912 *
1913 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1914 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1915 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1916 * function from other places, for example from page-fault handler.
a862f68a
MR
1917 *
1918 * Return: %0 on success, negative error code otherwise.
a145dd41 1919 */
423bad60
NP
1920int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1921 struct page *page)
a145dd41
LT
1922{
1923 if (addr < vma->vm_start || addr >= vma->vm_end)
1924 return -EFAULT;
1925 if (!page_count(page))
1926 return -EINVAL;
4b6e1e37 1927 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1928 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1929 BUG_ON(vma->vm_flags & VM_PFNMAP);
1930 vma->vm_flags |= VM_MIXEDMAP;
1931 }
423bad60 1932 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1933}
e3c3374f 1934EXPORT_SYMBOL(vm_insert_page);
a145dd41 1935
a667d745
SJ
1936/*
1937 * __vm_map_pages - maps range of kernel pages into user vma
1938 * @vma: user vma to map to
1939 * @pages: pointer to array of source kernel pages
1940 * @num: number of pages in page array
1941 * @offset: user's requested vm_pgoff
1942 *
1943 * This allows drivers to map range of kernel pages into a user vma.
1944 *
1945 * Return: 0 on success and error code otherwise.
1946 */
1947static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1948 unsigned long num, unsigned long offset)
1949{
1950 unsigned long count = vma_pages(vma);
1951 unsigned long uaddr = vma->vm_start;
1952 int ret, i;
1953
1954 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1955 if (offset >= num)
a667d745
SJ
1956 return -ENXIO;
1957
1958 /* Fail if the user requested size exceeds available object size */
1959 if (count > num - offset)
1960 return -ENXIO;
1961
1962 for (i = 0; i < count; i++) {
1963 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1964 if (ret < 0)
1965 return ret;
1966 uaddr += PAGE_SIZE;
1967 }
1968
1969 return 0;
1970}
1971
1972/**
1973 * vm_map_pages - maps range of kernel pages starts with non zero offset
1974 * @vma: user vma to map to
1975 * @pages: pointer to array of source kernel pages
1976 * @num: number of pages in page array
1977 *
1978 * Maps an object consisting of @num pages, catering for the user's
1979 * requested vm_pgoff
1980 *
1981 * If we fail to insert any page into the vma, the function will return
1982 * immediately leaving any previously inserted pages present. Callers
1983 * from the mmap handler may immediately return the error as their caller
1984 * will destroy the vma, removing any successfully inserted pages. Other
1985 * callers should make their own arrangements for calling unmap_region().
1986 *
1987 * Context: Process context. Called by mmap handlers.
1988 * Return: 0 on success and error code otherwise.
1989 */
1990int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1991 unsigned long num)
1992{
1993 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1994}
1995EXPORT_SYMBOL(vm_map_pages);
1996
1997/**
1998 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1999 * @vma: user vma to map to
2000 * @pages: pointer to array of source kernel pages
2001 * @num: number of pages in page array
2002 *
2003 * Similar to vm_map_pages(), except that it explicitly sets the offset
2004 * to 0. This function is intended for the drivers that did not consider
2005 * vm_pgoff.
2006 *
2007 * Context: Process context. Called by mmap handlers.
2008 * Return: 0 on success and error code otherwise.
2009 */
2010int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2011 unsigned long num)
2012{
2013 return __vm_map_pages(vma, pages, num, 0);
2014}
2015EXPORT_SYMBOL(vm_map_pages_zero);
2016
9b5a8e00 2017static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2018 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2019{
2020 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2021 pte_t *pte, entry;
2022 spinlock_t *ptl;
2023
423bad60
NP
2024 pte = get_locked_pte(mm, addr, &ptl);
2025 if (!pte)
9b5a8e00 2026 return VM_FAULT_OOM;
b2770da6
RZ
2027 if (!pte_none(*pte)) {
2028 if (mkwrite) {
2029 /*
2030 * For read faults on private mappings the PFN passed
2031 * in may not match the PFN we have mapped if the
2032 * mapped PFN is a writeable COW page. In the mkwrite
2033 * case we are creating a writable PTE for a shared
f2c57d91
JK
2034 * mapping and we expect the PFNs to match. If they
2035 * don't match, we are likely racing with block
2036 * allocation and mapping invalidation so just skip the
2037 * update.
b2770da6 2038 */
f2c57d91
JK
2039 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2040 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2041 goto out_unlock;
f2c57d91 2042 }
cae85cb8
JK
2043 entry = pte_mkyoung(*pte);
2044 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2045 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2046 update_mmu_cache(vma, addr, pte);
2047 }
2048 goto out_unlock;
b2770da6 2049 }
423bad60
NP
2050
2051 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2052 if (pfn_t_devmap(pfn))
2053 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2054 else
2055 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2056
b2770da6
RZ
2057 if (mkwrite) {
2058 entry = pte_mkyoung(entry);
2059 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2060 }
2061
423bad60 2062 set_pte_at(mm, addr, pte, entry);
4b3073e1 2063 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2064
423bad60
NP
2065out_unlock:
2066 pte_unmap_unlock(pte, ptl);
9b5a8e00 2067 return VM_FAULT_NOPAGE;
423bad60
NP
2068}
2069
f5e6d1d5
MW
2070/**
2071 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2072 * @vma: user vma to map to
2073 * @addr: target user address of this page
2074 * @pfn: source kernel pfn
2075 * @pgprot: pgprot flags for the inserted page
2076 *
a1a0aea5 2077 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2078 * to override pgprot on a per-page basis.
2079 *
2080 * This only makes sense for IO mappings, and it makes no sense for
2081 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2082 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2083 * impractical.
2084 *
574c5b3d
TH
2085 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2086 * a value of @pgprot different from that of @vma->vm_page_prot.
2087 *
ae2b01f3 2088 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2089 * Return: vm_fault_t value.
2090 */
2091vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2092 unsigned long pfn, pgprot_t pgprot)
2093{
6d958546
MW
2094 /*
2095 * Technically, architectures with pte_special can avoid all these
2096 * restrictions (same for remap_pfn_range). However we would like
2097 * consistency in testing and feature parity among all, so we should
2098 * try to keep these invariants in place for everybody.
2099 */
2100 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2101 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2102 (VM_PFNMAP|VM_MIXEDMAP));
2103 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2104 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2105
2106 if (addr < vma->vm_start || addr >= vma->vm_end)
2107 return VM_FAULT_SIGBUS;
2108
2109 if (!pfn_modify_allowed(pfn, pgprot))
2110 return VM_FAULT_SIGBUS;
2111
2112 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2113
9b5a8e00 2114 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2115 false);
f5e6d1d5
MW
2116}
2117EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2118
ae2b01f3
MW
2119/**
2120 * vmf_insert_pfn - insert single pfn into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @pfn: source kernel pfn
2124 *
2125 * Similar to vm_insert_page, this allows drivers to insert individual pages
2126 * they've allocated into a user vma. Same comments apply.
2127 *
2128 * This function should only be called from a vm_ops->fault handler, and
2129 * in that case the handler should return the result of this function.
2130 *
2131 * vma cannot be a COW mapping.
2132 *
2133 * As this is called only for pages that do not currently exist, we
2134 * do not need to flush old virtual caches or the TLB.
2135 *
2136 * Context: Process context. May allocate using %GFP_KERNEL.
2137 * Return: vm_fault_t value.
2138 */
2139vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2140 unsigned long pfn)
2141{
2142 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2143}
2144EXPORT_SYMBOL(vmf_insert_pfn);
2145
785a3fab
DW
2146static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2147{
2148 /* these checks mirror the abort conditions in vm_normal_page */
2149 if (vma->vm_flags & VM_MIXEDMAP)
2150 return true;
2151 if (pfn_t_devmap(pfn))
2152 return true;
2153 if (pfn_t_special(pfn))
2154 return true;
2155 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2156 return true;
2157 return false;
2158}
2159
79f3aa5b 2160static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2161 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2162 bool mkwrite)
423bad60 2163{
79f3aa5b 2164 int err;
87744ab3 2165
785a3fab 2166 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2167
423bad60 2168 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2169 return VM_FAULT_SIGBUS;
308a047c
BP
2170
2171 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2172
42e4089c 2173 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2174 return VM_FAULT_SIGBUS;
42e4089c 2175
423bad60
NP
2176 /*
2177 * If we don't have pte special, then we have to use the pfn_valid()
2178 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2179 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2180 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2181 * without pte special, it would there be refcounted as a normal page.
423bad60 2182 */
00b3a331
LD
2183 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2184 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2185 struct page *page;
2186
03fc2da6
DW
2187 /*
2188 * At this point we are committed to insert_page()
2189 * regardless of whether the caller specified flags that
2190 * result in pfn_t_has_page() == false.
2191 */
2192 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2193 err = insert_page(vma, addr, page, pgprot);
2194 } else {
9b5a8e00 2195 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2196 }
b2770da6 2197
5d747637
MW
2198 if (err == -ENOMEM)
2199 return VM_FAULT_OOM;
2200 if (err < 0 && err != -EBUSY)
2201 return VM_FAULT_SIGBUS;
2202
2203 return VM_FAULT_NOPAGE;
e0dc0d8f 2204}
79f3aa5b 2205
574c5b3d
TH
2206/**
2207 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2208 * @vma: user vma to map to
2209 * @addr: target user address of this page
2210 * @pfn: source kernel pfn
2211 * @pgprot: pgprot flags for the inserted page
2212 *
a1a0aea5 2213 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2214 * to override pgprot on a per-page basis.
2215 *
2216 * Typically this function should be used by drivers to set caching- and
2217 * encryption bits different than those of @vma->vm_page_prot, because
2218 * the caching- or encryption mode may not be known at mmap() time.
2219 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2220 * to set caching and encryption bits for those vmas (except for COW pages).
2221 * This is ensured by core vm only modifying these page table entries using
2222 * functions that don't touch caching- or encryption bits, using pte_modify()
2223 * if needed. (See for example mprotect()).
2224 * Also when new page-table entries are created, this is only done using the
2225 * fault() callback, and never using the value of vma->vm_page_prot,
2226 * except for page-table entries that point to anonymous pages as the result
2227 * of COW.
2228 *
2229 * Context: Process context. May allocate using %GFP_KERNEL.
2230 * Return: vm_fault_t value.
2231 */
2232vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2233 pfn_t pfn, pgprot_t pgprot)
2234{
2235 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2236}
5379e4dd 2237EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2238
79f3aa5b
MW
2239vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2240 pfn_t pfn)
2241{
574c5b3d 2242 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2243}
5d747637 2244EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2245
ab77dab4
SJ
2246/*
2247 * If the insertion of PTE failed because someone else already added a
2248 * different entry in the mean time, we treat that as success as we assume
2249 * the same entry was actually inserted.
2250 */
ab77dab4
SJ
2251vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2252 unsigned long addr, pfn_t pfn)
b2770da6 2253{
574c5b3d 2254 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2255}
ab77dab4 2256EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2257
1da177e4
LT
2258/*
2259 * maps a range of physical memory into the requested pages. the old
2260 * mappings are removed. any references to nonexistent pages results
2261 * in null mappings (currently treated as "copy-on-access")
2262 */
2263static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2264 unsigned long addr, unsigned long end,
2265 unsigned long pfn, pgprot_t prot)
2266{
90a3e375 2267 pte_t *pte, *mapped_pte;
c74df32c 2268 spinlock_t *ptl;
42e4089c 2269 int err = 0;
1da177e4 2270
90a3e375 2271 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2272 if (!pte)
2273 return -ENOMEM;
6606c3e0 2274 arch_enter_lazy_mmu_mode();
1da177e4
LT
2275 do {
2276 BUG_ON(!pte_none(*pte));
42e4089c
AK
2277 if (!pfn_modify_allowed(pfn, prot)) {
2278 err = -EACCES;
2279 break;
2280 }
7e675137 2281 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2282 pfn++;
2283 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2284 arch_leave_lazy_mmu_mode();
90a3e375 2285 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2286 return err;
1da177e4
LT
2287}
2288
2289static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2290 unsigned long addr, unsigned long end,
2291 unsigned long pfn, pgprot_t prot)
2292{
2293 pmd_t *pmd;
2294 unsigned long next;
42e4089c 2295 int err;
1da177e4
LT
2296
2297 pfn -= addr >> PAGE_SHIFT;
2298 pmd = pmd_alloc(mm, pud, addr);
2299 if (!pmd)
2300 return -ENOMEM;
f66055ab 2301 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2302 do {
2303 next = pmd_addr_end(addr, end);
42e4089c
AK
2304 err = remap_pte_range(mm, pmd, addr, next,
2305 pfn + (addr >> PAGE_SHIFT), prot);
2306 if (err)
2307 return err;
1da177e4
LT
2308 } while (pmd++, addr = next, addr != end);
2309 return 0;
2310}
2311
c2febafc 2312static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2313 unsigned long addr, unsigned long end,
2314 unsigned long pfn, pgprot_t prot)
2315{
2316 pud_t *pud;
2317 unsigned long next;
42e4089c 2318 int err;
1da177e4
LT
2319
2320 pfn -= addr >> PAGE_SHIFT;
c2febafc 2321 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2322 if (!pud)
2323 return -ENOMEM;
2324 do {
2325 next = pud_addr_end(addr, end);
42e4089c
AK
2326 err = remap_pmd_range(mm, pud, addr, next,
2327 pfn + (addr >> PAGE_SHIFT), prot);
2328 if (err)
2329 return err;
1da177e4
LT
2330 } while (pud++, addr = next, addr != end);
2331 return 0;
2332}
2333
c2febafc
KS
2334static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2335 unsigned long addr, unsigned long end,
2336 unsigned long pfn, pgprot_t prot)
2337{
2338 p4d_t *p4d;
2339 unsigned long next;
42e4089c 2340 int err;
c2febafc
KS
2341
2342 pfn -= addr >> PAGE_SHIFT;
2343 p4d = p4d_alloc(mm, pgd, addr);
2344 if (!p4d)
2345 return -ENOMEM;
2346 do {
2347 next = p4d_addr_end(addr, end);
42e4089c
AK
2348 err = remap_pud_range(mm, p4d, addr, next,
2349 pfn + (addr >> PAGE_SHIFT), prot);
2350 if (err)
2351 return err;
c2febafc
KS
2352 } while (p4d++, addr = next, addr != end);
2353 return 0;
2354}
2355
74ffa5a3
CH
2356/*
2357 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2358 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2359 */
74ffa5a3
CH
2360int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2361 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2362{
2363 pgd_t *pgd;
2364 unsigned long next;
2d15cab8 2365 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2366 struct mm_struct *mm = vma->vm_mm;
2367 int err;
2368
0c4123e3
AZ
2369 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2370 return -EINVAL;
2371
1da177e4
LT
2372 /*
2373 * Physically remapped pages are special. Tell the
2374 * rest of the world about it:
2375 * VM_IO tells people not to look at these pages
2376 * (accesses can have side effects).
6aab341e
LT
2377 * VM_PFNMAP tells the core MM that the base pages are just
2378 * raw PFN mappings, and do not have a "struct page" associated
2379 * with them.
314e51b9
KK
2380 * VM_DONTEXPAND
2381 * Disable vma merging and expanding with mremap().
2382 * VM_DONTDUMP
2383 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2384 *
2385 * There's a horrible special case to handle copy-on-write
2386 * behaviour that some programs depend on. We mark the "original"
2387 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2388 * See vm_normal_page() for details.
1da177e4 2389 */
b3b9c293
KK
2390 if (is_cow_mapping(vma->vm_flags)) {
2391 if (addr != vma->vm_start || end != vma->vm_end)
2392 return -EINVAL;
fb155c16 2393 vma->vm_pgoff = pfn;
b3b9c293
KK
2394 }
2395
314e51b9 2396 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2397
2398 BUG_ON(addr >= end);
2399 pfn -= addr >> PAGE_SHIFT;
2400 pgd = pgd_offset(mm, addr);
2401 flush_cache_range(vma, addr, end);
1da177e4
LT
2402 do {
2403 next = pgd_addr_end(addr, end);
c2febafc 2404 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2405 pfn + (addr >> PAGE_SHIFT), prot);
2406 if (err)
74ffa5a3 2407 return err;
1da177e4 2408 } while (pgd++, addr = next, addr != end);
2ab64037 2409
74ffa5a3
CH
2410 return 0;
2411}
2412
2413/**
2414 * remap_pfn_range - remap kernel memory to userspace
2415 * @vma: user vma to map to
2416 * @addr: target page aligned user address to start at
2417 * @pfn: page frame number of kernel physical memory address
2418 * @size: size of mapping area
2419 * @prot: page protection flags for this mapping
2420 *
2421 * Note: this is only safe if the mm semaphore is held when called.
2422 *
2423 * Return: %0 on success, negative error code otherwise.
2424 */
2425int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2426 unsigned long pfn, unsigned long size, pgprot_t prot)
2427{
2428 int err;
2429
2430 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2431 if (err)
74ffa5a3 2432 return -EINVAL;
2ab64037 2433
74ffa5a3
CH
2434 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2435 if (err)
2436 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2437 return err;
2438}
2439EXPORT_SYMBOL(remap_pfn_range);
2440
b4cbb197
LT
2441/**
2442 * vm_iomap_memory - remap memory to userspace
2443 * @vma: user vma to map to
abd69b9e 2444 * @start: start of the physical memory to be mapped
b4cbb197
LT
2445 * @len: size of area
2446 *
2447 * This is a simplified io_remap_pfn_range() for common driver use. The
2448 * driver just needs to give us the physical memory range to be mapped,
2449 * we'll figure out the rest from the vma information.
2450 *
2451 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2452 * whatever write-combining details or similar.
a862f68a
MR
2453 *
2454 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2455 */
2456int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2457{
2458 unsigned long vm_len, pfn, pages;
2459
2460 /* Check that the physical memory area passed in looks valid */
2461 if (start + len < start)
2462 return -EINVAL;
2463 /*
2464 * You *really* shouldn't map things that aren't page-aligned,
2465 * but we've historically allowed it because IO memory might
2466 * just have smaller alignment.
2467 */
2468 len += start & ~PAGE_MASK;
2469 pfn = start >> PAGE_SHIFT;
2470 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2471 if (pfn + pages < pfn)
2472 return -EINVAL;
2473
2474 /* We start the mapping 'vm_pgoff' pages into the area */
2475 if (vma->vm_pgoff > pages)
2476 return -EINVAL;
2477 pfn += vma->vm_pgoff;
2478 pages -= vma->vm_pgoff;
2479
2480 /* Can we fit all of the mapping? */
2481 vm_len = vma->vm_end - vma->vm_start;
2482 if (vm_len >> PAGE_SHIFT > pages)
2483 return -EINVAL;
2484
2485 /* Ok, let it rip */
2486 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2487}
2488EXPORT_SYMBOL(vm_iomap_memory);
2489
aee16b3c
JF
2490static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2491 unsigned long addr, unsigned long end,
e80d3909
JR
2492 pte_fn_t fn, void *data, bool create,
2493 pgtbl_mod_mask *mask)
aee16b3c 2494{
8abb50c7 2495 pte_t *pte, *mapped_pte;
be1db475 2496 int err = 0;
3f649ab7 2497 spinlock_t *ptl;
aee16b3c 2498
be1db475 2499 if (create) {
8abb50c7 2500 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2501 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2502 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2503 if (!pte)
2504 return -ENOMEM;
2505 } else {
8abb50c7 2506 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2507 pte_offset_kernel(pmd, addr) :
2508 pte_offset_map_lock(mm, pmd, addr, &ptl);
2509 }
aee16b3c
JF
2510
2511 BUG_ON(pmd_huge(*pmd));
2512
38e0edb1
JF
2513 arch_enter_lazy_mmu_mode();
2514
eeb4a05f
CH
2515 if (fn) {
2516 do {
2517 if (create || !pte_none(*pte)) {
2518 err = fn(pte++, addr, data);
2519 if (err)
2520 break;
2521 }
2522 } while (addr += PAGE_SIZE, addr != end);
2523 }
e80d3909 2524 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2525
38e0edb1
JF
2526 arch_leave_lazy_mmu_mode();
2527
aee16b3c 2528 if (mm != &init_mm)
8abb50c7 2529 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2530 return err;
2531}
2532
2533static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2534 unsigned long addr, unsigned long end,
e80d3909
JR
2535 pte_fn_t fn, void *data, bool create,
2536 pgtbl_mod_mask *mask)
aee16b3c
JF
2537{
2538 pmd_t *pmd;
2539 unsigned long next;
be1db475 2540 int err = 0;
aee16b3c 2541
ceb86879
AK
2542 BUG_ON(pud_huge(*pud));
2543
be1db475 2544 if (create) {
e80d3909 2545 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2546 if (!pmd)
2547 return -ENOMEM;
2548 } else {
2549 pmd = pmd_offset(pud, addr);
2550 }
aee16b3c
JF
2551 do {
2552 next = pmd_addr_end(addr, end);
0c95cba4
NP
2553 if (pmd_none(*pmd) && !create)
2554 continue;
2555 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2556 return -EINVAL;
2557 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2558 if (!create)
2559 continue;
2560 pmd_clear_bad(pmd);
be1db475 2561 }
0c95cba4
NP
2562 err = apply_to_pte_range(mm, pmd, addr, next,
2563 fn, data, create, mask);
2564 if (err)
2565 break;
aee16b3c 2566 } while (pmd++, addr = next, addr != end);
0c95cba4 2567
aee16b3c
JF
2568 return err;
2569}
2570
c2febafc 2571static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2572 unsigned long addr, unsigned long end,
e80d3909
JR
2573 pte_fn_t fn, void *data, bool create,
2574 pgtbl_mod_mask *mask)
aee16b3c
JF
2575{
2576 pud_t *pud;
2577 unsigned long next;
be1db475 2578 int err = 0;
aee16b3c 2579
be1db475 2580 if (create) {
e80d3909 2581 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2582 if (!pud)
2583 return -ENOMEM;
2584 } else {
2585 pud = pud_offset(p4d, addr);
2586 }
aee16b3c
JF
2587 do {
2588 next = pud_addr_end(addr, end);
0c95cba4
NP
2589 if (pud_none(*pud) && !create)
2590 continue;
2591 if (WARN_ON_ONCE(pud_leaf(*pud)))
2592 return -EINVAL;
2593 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2594 if (!create)
2595 continue;
2596 pud_clear_bad(pud);
be1db475 2597 }
0c95cba4
NP
2598 err = apply_to_pmd_range(mm, pud, addr, next,
2599 fn, data, create, mask);
2600 if (err)
2601 break;
aee16b3c 2602 } while (pud++, addr = next, addr != end);
0c95cba4 2603
aee16b3c
JF
2604 return err;
2605}
2606
c2febafc
KS
2607static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2608 unsigned long addr, unsigned long end,
e80d3909
JR
2609 pte_fn_t fn, void *data, bool create,
2610 pgtbl_mod_mask *mask)
c2febafc
KS
2611{
2612 p4d_t *p4d;
2613 unsigned long next;
be1db475 2614 int err = 0;
c2febafc 2615
be1db475 2616 if (create) {
e80d3909 2617 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2618 if (!p4d)
2619 return -ENOMEM;
2620 } else {
2621 p4d = p4d_offset(pgd, addr);
2622 }
c2febafc
KS
2623 do {
2624 next = p4d_addr_end(addr, end);
0c95cba4
NP
2625 if (p4d_none(*p4d) && !create)
2626 continue;
2627 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2628 return -EINVAL;
2629 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2630 if (!create)
2631 continue;
2632 p4d_clear_bad(p4d);
be1db475 2633 }
0c95cba4
NP
2634 err = apply_to_pud_range(mm, p4d, addr, next,
2635 fn, data, create, mask);
2636 if (err)
2637 break;
c2febafc 2638 } while (p4d++, addr = next, addr != end);
0c95cba4 2639
c2febafc
KS
2640 return err;
2641}
2642
be1db475
DA
2643static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2644 unsigned long size, pte_fn_t fn,
2645 void *data, bool create)
aee16b3c
JF
2646{
2647 pgd_t *pgd;
e80d3909 2648 unsigned long start = addr, next;
57250a5b 2649 unsigned long end = addr + size;
e80d3909 2650 pgtbl_mod_mask mask = 0;
be1db475 2651 int err = 0;
aee16b3c 2652
9cb65bc3
MP
2653 if (WARN_ON(addr >= end))
2654 return -EINVAL;
2655
aee16b3c
JF
2656 pgd = pgd_offset(mm, addr);
2657 do {
2658 next = pgd_addr_end(addr, end);
0c95cba4 2659 if (pgd_none(*pgd) && !create)
be1db475 2660 continue;
0c95cba4
NP
2661 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2662 return -EINVAL;
2663 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2664 if (!create)
2665 continue;
2666 pgd_clear_bad(pgd);
2667 }
2668 err = apply_to_p4d_range(mm, pgd, addr, next,
2669 fn, data, create, &mask);
aee16b3c
JF
2670 if (err)
2671 break;
2672 } while (pgd++, addr = next, addr != end);
57250a5b 2673
e80d3909
JR
2674 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2675 arch_sync_kernel_mappings(start, start + size);
2676
aee16b3c
JF
2677 return err;
2678}
be1db475
DA
2679
2680/*
2681 * Scan a region of virtual memory, filling in page tables as necessary
2682 * and calling a provided function on each leaf page table.
2683 */
2684int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2685 unsigned long size, pte_fn_t fn, void *data)
2686{
2687 return __apply_to_page_range(mm, addr, size, fn, data, true);
2688}
aee16b3c
JF
2689EXPORT_SYMBOL_GPL(apply_to_page_range);
2690
be1db475
DA
2691/*
2692 * Scan a region of virtual memory, calling a provided function on
2693 * each leaf page table where it exists.
2694 *
2695 * Unlike apply_to_page_range, this does _not_ fill in page tables
2696 * where they are absent.
2697 */
2698int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2699 unsigned long size, pte_fn_t fn, void *data)
2700{
2701 return __apply_to_page_range(mm, addr, size, fn, data, false);
2702}
2703EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2704
8f4e2101 2705/*
9b4bdd2f
KS
2706 * handle_pte_fault chooses page fault handler according to an entry which was
2707 * read non-atomically. Before making any commitment, on those architectures
2708 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2709 * parts, do_swap_page must check under lock before unmapping the pte and
2710 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2711 * and do_anonymous_page can safely check later on).
8f4e2101 2712 */
2ca99358 2713static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2714{
2715 int same = 1;
923717cb 2716#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2717 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2718 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2719 spin_lock(ptl);
2ca99358 2720 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2721 spin_unlock(ptl);
8f4e2101
HD
2722 }
2723#endif
2ca99358
PX
2724 pte_unmap(vmf->pte);
2725 vmf->pte = NULL;
8f4e2101
HD
2726 return same;
2727}
2728
83d116c5
JH
2729static inline bool cow_user_page(struct page *dst, struct page *src,
2730 struct vm_fault *vmf)
6aab341e 2731{
83d116c5
JH
2732 bool ret;
2733 void *kaddr;
2734 void __user *uaddr;
c3e5ea6e 2735 bool locked = false;
83d116c5
JH
2736 struct vm_area_struct *vma = vmf->vma;
2737 struct mm_struct *mm = vma->vm_mm;
2738 unsigned long addr = vmf->address;
2739
83d116c5
JH
2740 if (likely(src)) {
2741 copy_user_highpage(dst, src, addr, vma);
2742 return true;
2743 }
2744
6aab341e
LT
2745 /*
2746 * If the source page was a PFN mapping, we don't have
2747 * a "struct page" for it. We do a best-effort copy by
2748 * just copying from the original user address. If that
2749 * fails, we just zero-fill it. Live with it.
2750 */
83d116c5
JH
2751 kaddr = kmap_atomic(dst);
2752 uaddr = (void __user *)(addr & PAGE_MASK);
2753
2754 /*
2755 * On architectures with software "accessed" bits, we would
2756 * take a double page fault, so mark it accessed here.
2757 */
c3e5ea6e 2758 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2759 pte_t entry;
5d2a2dbb 2760
83d116c5 2761 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2762 locked = true;
83d116c5
JH
2763 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2764 /*
2765 * Other thread has already handled the fault
7df67697 2766 * and update local tlb only
83d116c5 2767 */
7df67697 2768 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2769 ret = false;
2770 goto pte_unlock;
2771 }
2772
2773 entry = pte_mkyoung(vmf->orig_pte);
2774 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2775 update_mmu_cache(vma, addr, vmf->pte);
2776 }
2777
2778 /*
2779 * This really shouldn't fail, because the page is there
2780 * in the page tables. But it might just be unreadable,
2781 * in which case we just give up and fill the result with
2782 * zeroes.
2783 */
2784 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2785 if (locked)
2786 goto warn;
2787
2788 /* Re-validate under PTL if the page is still mapped */
2789 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2790 locked = true;
2791 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2792 /* The PTE changed under us, update local tlb */
2793 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2794 ret = false;
2795 goto pte_unlock;
2796 }
2797
5d2a2dbb 2798 /*
985ba004 2799 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2800 * Try to copy again under PTL.
5d2a2dbb 2801 */
c3e5ea6e
KS
2802 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2803 /*
2804 * Give a warn in case there can be some obscure
2805 * use-case
2806 */
2807warn:
2808 WARN_ON_ONCE(1);
2809 clear_page(kaddr);
2810 }
83d116c5
JH
2811 }
2812
2813 ret = true;
2814
2815pte_unlock:
c3e5ea6e 2816 if (locked)
83d116c5
JH
2817 pte_unmap_unlock(vmf->pte, vmf->ptl);
2818 kunmap_atomic(kaddr);
2819 flush_dcache_page(dst);
2820
2821 return ret;
6aab341e
LT
2822}
2823
c20cd45e
MH
2824static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2825{
2826 struct file *vm_file = vma->vm_file;
2827
2828 if (vm_file)
2829 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2830
2831 /*
2832 * Special mappings (e.g. VDSO) do not have any file so fake
2833 * a default GFP_KERNEL for them.
2834 */
2835 return GFP_KERNEL;
2836}
2837
fb09a464
KS
2838/*
2839 * Notify the address space that the page is about to become writable so that
2840 * it can prohibit this or wait for the page to get into an appropriate state.
2841 *
2842 * We do this without the lock held, so that it can sleep if it needs to.
2843 */
2b740303 2844static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2845{
2b740303 2846 vm_fault_t ret;
38b8cb7f
JK
2847 struct page *page = vmf->page;
2848 unsigned int old_flags = vmf->flags;
fb09a464 2849
38b8cb7f 2850 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2851
dc617f29
DW
2852 if (vmf->vma->vm_file &&
2853 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2854 return VM_FAULT_SIGBUS;
2855
11bac800 2856 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2857 /* Restore original flags so that caller is not surprised */
2858 vmf->flags = old_flags;
fb09a464
KS
2859 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2860 return ret;
2861 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2862 lock_page(page);
2863 if (!page->mapping) {
2864 unlock_page(page);
2865 return 0; /* retry */
2866 }
2867 ret |= VM_FAULT_LOCKED;
2868 } else
2869 VM_BUG_ON_PAGE(!PageLocked(page), page);
2870 return ret;
2871}
2872
97ba0c2b
JK
2873/*
2874 * Handle dirtying of a page in shared file mapping on a write fault.
2875 *
2876 * The function expects the page to be locked and unlocks it.
2877 */
89b15332 2878static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2879{
89b15332 2880 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2881 struct address_space *mapping;
89b15332 2882 struct page *page = vmf->page;
97ba0c2b
JK
2883 bool dirtied;
2884 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2885
2886 dirtied = set_page_dirty(page);
2887 VM_BUG_ON_PAGE(PageAnon(page), page);
2888 /*
2889 * Take a local copy of the address_space - page.mapping may be zeroed
2890 * by truncate after unlock_page(). The address_space itself remains
2891 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2892 * release semantics to prevent the compiler from undoing this copying.
2893 */
2894 mapping = page_rmapping(page);
2895 unlock_page(page);
2896
89b15332
JW
2897 if (!page_mkwrite)
2898 file_update_time(vma->vm_file);
2899
2900 /*
2901 * Throttle page dirtying rate down to writeback speed.
2902 *
2903 * mapping may be NULL here because some device drivers do not
2904 * set page.mapping but still dirty their pages
2905 *
c1e8d7c6 2906 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2907 * is pinning the mapping, as per above.
2908 */
97ba0c2b 2909 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2910 struct file *fpin;
2911
2912 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2913 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2914 if (fpin) {
2915 fput(fpin);
2916 return VM_FAULT_RETRY;
2917 }
97ba0c2b
JK
2918 }
2919
89b15332 2920 return 0;
97ba0c2b
JK
2921}
2922
4e047f89
SR
2923/*
2924 * Handle write page faults for pages that can be reused in the current vma
2925 *
2926 * This can happen either due to the mapping being with the VM_SHARED flag,
2927 * or due to us being the last reference standing to the page. In either
2928 * case, all we need to do here is to mark the page as writable and update
2929 * any related book-keeping.
2930 */
997dd98d 2931static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2932 __releases(vmf->ptl)
4e047f89 2933{
82b0f8c3 2934 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2935 struct page *page = vmf->page;
4e047f89
SR
2936 pte_t entry;
2937 /*
2938 * Clear the pages cpupid information as the existing
2939 * information potentially belongs to a now completely
2940 * unrelated process.
2941 */
2942 if (page)
2943 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2944
2994302b
JK
2945 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2946 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2947 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2948 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2949 update_mmu_cache(vma, vmf->address, vmf->pte);
2950 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2951 count_vm_event(PGREUSE);
4e047f89
SR
2952}
2953
2f38ab2c
SR
2954/*
2955 * Handle the case of a page which we actually need to copy to a new page.
2956 *
c1e8d7c6 2957 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2958 * without the ptl held.
2959 *
2960 * High level logic flow:
2961 *
2962 * - Allocate a page, copy the content of the old page to the new one.
2963 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2964 * - Take the PTL. If the pte changed, bail out and release the allocated page
2965 * - If the pte is still the way we remember it, update the page table and all
2966 * relevant references. This includes dropping the reference the page-table
2967 * held to the old page, as well as updating the rmap.
2968 * - In any case, unlock the PTL and drop the reference we took to the old page.
2969 */
2b740303 2970static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2971{
82b0f8c3 2972 struct vm_area_struct *vma = vmf->vma;
bae473a4 2973 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2974 struct page *old_page = vmf->page;
2f38ab2c 2975 struct page *new_page = NULL;
2f38ab2c
SR
2976 pte_t entry;
2977 int page_copied = 0;
ac46d4f3 2978 struct mmu_notifier_range range;
2f38ab2c
SR
2979
2980 if (unlikely(anon_vma_prepare(vma)))
2981 goto oom;
2982
2994302b 2983 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2984 new_page = alloc_zeroed_user_highpage_movable(vma,
2985 vmf->address);
2f38ab2c
SR
2986 if (!new_page)
2987 goto oom;
2988 } else {
bae473a4 2989 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2990 vmf->address);
2f38ab2c
SR
2991 if (!new_page)
2992 goto oom;
83d116c5
JH
2993
2994 if (!cow_user_page(new_page, old_page, vmf)) {
2995 /*
2996 * COW failed, if the fault was solved by other,
2997 * it's fine. If not, userspace would re-fault on
2998 * the same address and we will handle the fault
2999 * from the second attempt.
3000 */
3001 put_page(new_page);
3002 if (old_page)
3003 put_page(old_page);
3004 return 0;
3005 }
2f38ab2c 3006 }
2f38ab2c 3007
d9eb1ea2 3008 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 3009 goto oom_free_new;
9d82c694 3010 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3011
eb3c24f3
MG
3012 __SetPageUptodate(new_page);
3013
7269f999 3014 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3015 vmf->address & PAGE_MASK,
ac46d4f3
JG
3016 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3017 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3018
3019 /*
3020 * Re-check the pte - we dropped the lock
3021 */
82b0f8c3 3022 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3023 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3024 if (old_page) {
3025 if (!PageAnon(old_page)) {
eca56ff9
JM
3026 dec_mm_counter_fast(mm,
3027 mm_counter_file(old_page));
2f38ab2c
SR
3028 inc_mm_counter_fast(mm, MM_ANONPAGES);
3029 }
3030 } else {
3031 inc_mm_counter_fast(mm, MM_ANONPAGES);
3032 }
2994302b 3033 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3034 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3035 entry = pte_sw_mkyoung(entry);
2f38ab2c 3036 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 3037
2f38ab2c
SR
3038 /*
3039 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3040 * pte with the new entry, to keep TLBs on different CPUs in
3041 * sync. This code used to set the new PTE then flush TLBs, but
3042 * that left a window where the new PTE could be loaded into
3043 * some TLBs while the old PTE remains in others.
2f38ab2c 3044 */
82b0f8c3
JK
3045 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3046 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 3047 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3048 /*
3049 * We call the notify macro here because, when using secondary
3050 * mmu page tables (such as kvm shadow page tables), we want the
3051 * new page to be mapped directly into the secondary page table.
3052 */
82b0f8c3
JK
3053 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3054 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3055 if (old_page) {
3056 /*
3057 * Only after switching the pte to the new page may
3058 * we remove the mapcount here. Otherwise another
3059 * process may come and find the rmap count decremented
3060 * before the pte is switched to the new page, and
3061 * "reuse" the old page writing into it while our pte
3062 * here still points into it and can be read by other
3063 * threads.
3064 *
3065 * The critical issue is to order this
3066 * page_remove_rmap with the ptp_clear_flush above.
3067 * Those stores are ordered by (if nothing else,)
3068 * the barrier present in the atomic_add_negative
3069 * in page_remove_rmap.
3070 *
3071 * Then the TLB flush in ptep_clear_flush ensures that
3072 * no process can access the old page before the
3073 * decremented mapcount is visible. And the old page
3074 * cannot be reused until after the decremented
3075 * mapcount is visible. So transitively, TLBs to
3076 * old page will be flushed before it can be reused.
3077 */
d281ee61 3078 page_remove_rmap(old_page, false);
2f38ab2c
SR
3079 }
3080
3081 /* Free the old page.. */
3082 new_page = old_page;
3083 page_copied = 1;
3084 } else {
7df67697 3085 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3086 }
3087
3088 if (new_page)
09cbfeaf 3089 put_page(new_page);
2f38ab2c 3090
82b0f8c3 3091 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3092 /*
3093 * No need to double call mmu_notifier->invalidate_range() callback as
3094 * the above ptep_clear_flush_notify() did already call it.
3095 */
ac46d4f3 3096 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3097 if (old_page) {
3098 /*
3099 * Don't let another task, with possibly unlocked vma,
3100 * keep the mlocked page.
3101 */
3102 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3103 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3104 if (PageMlocked(old_page))
3105 munlock_vma_page(old_page);
2f38ab2c
SR
3106 unlock_page(old_page);
3107 }
f4c4a3f4
HY
3108 if (page_copied)
3109 free_swap_cache(old_page);
09cbfeaf 3110 put_page(old_page);
2f38ab2c
SR
3111 }
3112 return page_copied ? VM_FAULT_WRITE : 0;
3113oom_free_new:
09cbfeaf 3114 put_page(new_page);
2f38ab2c
SR
3115oom:
3116 if (old_page)
09cbfeaf 3117 put_page(old_page);
2f38ab2c
SR
3118 return VM_FAULT_OOM;
3119}
3120
66a6197c
JK
3121/**
3122 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3123 * writeable once the page is prepared
3124 *
3125 * @vmf: structure describing the fault
3126 *
3127 * This function handles all that is needed to finish a write page fault in a
3128 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3129 * It handles locking of PTE and modifying it.
66a6197c
JK
3130 *
3131 * The function expects the page to be locked or other protection against
3132 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3133 *
2797e79f 3134 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3135 * we acquired PTE lock.
66a6197c 3136 */
2b740303 3137vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3138{
3139 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3140 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3141 &vmf->ptl);
3142 /*
3143 * We might have raced with another page fault while we released the
3144 * pte_offset_map_lock.
3145 */
3146 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3147 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3148 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3149 return VM_FAULT_NOPAGE;
66a6197c
JK
3150 }
3151 wp_page_reuse(vmf);
a19e2553 3152 return 0;
66a6197c
JK
3153}
3154
dd906184
BH
3155/*
3156 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3157 * mapping
3158 */
2b740303 3159static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3160{
82b0f8c3 3161 struct vm_area_struct *vma = vmf->vma;
bae473a4 3162
dd906184 3163 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3164 vm_fault_t ret;
dd906184 3165
82b0f8c3 3166 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3167 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3168 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3169 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3170 return ret;
66a6197c 3171 return finish_mkwrite_fault(vmf);
dd906184 3172 }
997dd98d
JK
3173 wp_page_reuse(vmf);
3174 return VM_FAULT_WRITE;
dd906184
BH
3175}
3176
2b740303 3177static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3178 __releases(vmf->ptl)
93e478d4 3179{
82b0f8c3 3180 struct vm_area_struct *vma = vmf->vma;
89b15332 3181 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3182
a41b70d6 3183 get_page(vmf->page);
93e478d4 3184
93e478d4 3185 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3186 vm_fault_t tmp;
93e478d4 3187
82b0f8c3 3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3189 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3190 if (unlikely(!tmp || (tmp &
3191 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3192 put_page(vmf->page);
93e478d4
SR
3193 return tmp;
3194 }
66a6197c 3195 tmp = finish_mkwrite_fault(vmf);
a19e2553 3196 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3197 unlock_page(vmf->page);
a41b70d6 3198 put_page(vmf->page);
66a6197c 3199 return tmp;
93e478d4 3200 }
66a6197c
JK
3201 } else {
3202 wp_page_reuse(vmf);
997dd98d 3203 lock_page(vmf->page);
93e478d4 3204 }
89b15332 3205 ret |= fault_dirty_shared_page(vmf);
997dd98d 3206 put_page(vmf->page);
93e478d4 3207
89b15332 3208 return ret;
93e478d4
SR
3209}
3210
1da177e4
LT
3211/*
3212 * This routine handles present pages, when users try to write
3213 * to a shared page. It is done by copying the page to a new address
3214 * and decrementing the shared-page counter for the old page.
3215 *
1da177e4
LT
3216 * Note that this routine assumes that the protection checks have been
3217 * done by the caller (the low-level page fault routine in most cases).
3218 * Thus we can safely just mark it writable once we've done any necessary
3219 * COW.
3220 *
3221 * We also mark the page dirty at this point even though the page will
3222 * change only once the write actually happens. This avoids a few races,
3223 * and potentially makes it more efficient.
3224 *
c1e8d7c6 3225 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3226 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3227 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3228 */
2b740303 3229static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3230 __releases(vmf->ptl)
1da177e4 3231{
82b0f8c3 3232 struct vm_area_struct *vma = vmf->vma;
1da177e4 3233
292924b2 3234 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3235 pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 return handle_userfault(vmf, VM_UFFD_WP);
3237 }
3238
6ce64428
NA
3239 /*
3240 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3241 * is flushed in this case before copying.
3242 */
3243 if (unlikely(userfaultfd_wp(vmf->vma) &&
3244 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3245 flush_tlb_page(vmf->vma, vmf->address);
3246
a41b70d6
JK
3247 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3248 if (!vmf->page) {
251b97f5 3249 /*
64e45507
PF
3250 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3251 * VM_PFNMAP VMA.
251b97f5
PZ
3252 *
3253 * We should not cow pages in a shared writeable mapping.
dd906184 3254 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3255 */
3256 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3257 (VM_WRITE|VM_SHARED))
2994302b 3258 return wp_pfn_shared(vmf);
2f38ab2c 3259
82b0f8c3 3260 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3261 return wp_page_copy(vmf);
251b97f5 3262 }
1da177e4 3263
d08b3851 3264 /*
ee6a6457
PZ
3265 * Take out anonymous pages first, anonymous shared vmas are
3266 * not dirty accountable.
d08b3851 3267 */
52d1e606 3268 if (PageAnon(vmf->page)) {
09854ba9
LT
3269 struct page *page = vmf->page;
3270
3271 /* PageKsm() doesn't necessarily raise the page refcount */
3272 if (PageKsm(page) || page_count(page) != 1)
3273 goto copy;
3274 if (!trylock_page(page))
3275 goto copy;
3276 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3277 unlock_page(page);
52d1e606 3278 goto copy;
b009c024 3279 }
09854ba9
LT
3280 /*
3281 * Ok, we've got the only map reference, and the only
3282 * page count reference, and the page is locked,
3283 * it's dark out, and we're wearing sunglasses. Hit it.
3284 */
09854ba9 3285 unlock_page(page);
be068f29 3286 wp_page_reuse(vmf);
09854ba9 3287 return VM_FAULT_WRITE;
ee6a6457 3288 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3289 (VM_WRITE|VM_SHARED))) {
a41b70d6 3290 return wp_page_shared(vmf);
1da177e4 3291 }
52d1e606 3292copy:
1da177e4
LT
3293 /*
3294 * Ok, we need to copy. Oh, well..
3295 */
a41b70d6 3296 get_page(vmf->page);
28766805 3297
82b0f8c3 3298 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3299 return wp_page_copy(vmf);
1da177e4
LT
3300}
3301
97a89413 3302static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3303 unsigned long start_addr, unsigned long end_addr,
3304 struct zap_details *details)
3305{
f5cc4eef 3306 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3307}
3308
f808c13f 3309static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3310 pgoff_t first_index,
3311 pgoff_t last_index,
1da177e4
LT
3312 struct zap_details *details)
3313{
3314 struct vm_area_struct *vma;
1da177e4
LT
3315 pgoff_t vba, vea, zba, zea;
3316
232a6a1c 3317 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3318 vba = vma->vm_pgoff;
d6e93217 3319 vea = vba + vma_pages(vma) - 1;
232a6a1c 3320 zba = first_index;
1da177e4
LT
3321 if (zba < vba)
3322 zba = vba;
232a6a1c 3323 zea = last_index;
1da177e4
LT
3324 if (zea > vea)
3325 zea = vea;
3326
97a89413 3327 unmap_mapping_range_vma(vma,
1da177e4
LT
3328 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3329 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3330 details);
1da177e4
LT
3331 }
3332}
3333
22061a1f
HD
3334/**
3335 * unmap_mapping_page() - Unmap single page from processes.
3336 * @page: The locked page to be unmapped.
3337 *
3338 * Unmap this page from any userspace process which still has it mmaped.
3339 * Typically, for efficiency, the range of nearby pages has already been
3340 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3341 * truncation or invalidation holds the lock on a page, it may find that
3342 * the page has been remapped again: and then uses unmap_mapping_page()
3343 * to unmap it finally.
3344 */
3345void unmap_mapping_page(struct page *page)
3346{
3347 struct address_space *mapping = page->mapping;
3348 struct zap_details details = { };
232a6a1c
PX
3349 pgoff_t first_index;
3350 pgoff_t last_index;
22061a1f
HD
3351
3352 VM_BUG_ON(!PageLocked(page));
3353 VM_BUG_ON(PageTail(page));
3354
232a6a1c
PX
3355 first_index = page->index;
3356 last_index = page->index + thp_nr_pages(page) - 1;
3357
91b61ef3 3358 details.zap_mapping = mapping;
22061a1f
HD
3359 details.single_page = page;
3360
3361 i_mmap_lock_write(mapping);
3362 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3363 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3364 last_index, &details);
22061a1f
HD
3365 i_mmap_unlock_write(mapping);
3366}
3367
977fbdcd
MW
3368/**
3369 * unmap_mapping_pages() - Unmap pages from processes.
3370 * @mapping: The address space containing pages to be unmapped.
3371 * @start: Index of first page to be unmapped.
3372 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3373 * @even_cows: Whether to unmap even private COWed pages.
3374 *
3375 * Unmap the pages in this address space from any userspace process which
3376 * has them mmaped. Generally, you want to remove COWed pages as well when
3377 * a file is being truncated, but not when invalidating pages from the page
3378 * cache.
3379 */
3380void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3381 pgoff_t nr, bool even_cows)
3382{
3383 struct zap_details details = { };
232a6a1c
PX
3384 pgoff_t first_index = start;
3385 pgoff_t last_index = start + nr - 1;
977fbdcd 3386
91b61ef3 3387 details.zap_mapping = even_cows ? NULL : mapping;
232a6a1c
PX
3388 if (last_index < first_index)
3389 last_index = ULONG_MAX;
977fbdcd
MW
3390
3391 i_mmap_lock_write(mapping);
3392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3393 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3394 last_index, &details);
977fbdcd
MW
3395 i_mmap_unlock_write(mapping);
3396}
6e0e99d5 3397EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3398
1da177e4 3399/**
8a5f14a2 3400 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3401 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3402 * file.
3403 *
3d41088f 3404 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3405 * @holebegin: byte in first page to unmap, relative to the start of
3406 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3407 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3408 * must keep the partial page. In contrast, we must get rid of
3409 * partial pages.
3410 * @holelen: size of prospective hole in bytes. This will be rounded
3411 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3412 * end of the file.
3413 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3414 * but 0 when invalidating pagecache, don't throw away private data.
3415 */
3416void unmap_mapping_range(struct address_space *mapping,
3417 loff_t const holebegin, loff_t const holelen, int even_cows)
3418{
1da177e4
LT
3419 pgoff_t hba = holebegin >> PAGE_SHIFT;
3420 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3421
3422 /* Check for overflow. */
3423 if (sizeof(holelen) > sizeof(hlen)) {
3424 long long holeend =
3425 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3426 if (holeend & ~(long long)ULONG_MAX)
3427 hlen = ULONG_MAX - hba + 1;
3428 }
3429
977fbdcd 3430 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3431}
3432EXPORT_SYMBOL(unmap_mapping_range);
3433
b756a3b5
AP
3434/*
3435 * Restore a potential device exclusive pte to a working pte entry
3436 */
3437static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3438{
3439 struct page *page = vmf->page;
3440 struct vm_area_struct *vma = vmf->vma;
3441 struct mmu_notifier_range range;
3442
3443 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3444 return VM_FAULT_RETRY;
3445 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3446 vma->vm_mm, vmf->address & PAGE_MASK,
3447 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3448 mmu_notifier_invalidate_range_start(&range);
3449
3450 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3451 &vmf->ptl);
3452 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3453 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3454
3455 pte_unmap_unlock(vmf->pte, vmf->ptl);
3456 unlock_page(page);
3457
3458 mmu_notifier_invalidate_range_end(&range);
3459 return 0;
3460}
3461
1da177e4 3462/*
c1e8d7c6 3463 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3464 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3465 * We return with pte unmapped and unlocked.
3466 *
c1e8d7c6 3467 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3468 * as does filemap_fault().
1da177e4 3469 */
2b740303 3470vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3471{
82b0f8c3 3472 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3473 struct page *page = NULL, *swapcache;
2799e775 3474 struct swap_info_struct *si = NULL;
65500d23 3475 swp_entry_t entry;
1da177e4 3476 pte_t pte;
d065bd81 3477 int locked;
ad8c2ee8 3478 int exclusive = 0;
2b740303 3479 vm_fault_t ret = 0;
aae466b0 3480 void *shadow = NULL;
1da177e4 3481
2ca99358 3482 if (!pte_unmap_same(vmf))
8f4e2101 3483 goto out;
65500d23 3484
2994302b 3485 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3486 if (unlikely(non_swap_entry(entry))) {
3487 if (is_migration_entry(entry)) {
82b0f8c3
JK
3488 migration_entry_wait(vma->vm_mm, vmf->pmd,
3489 vmf->address);
b756a3b5
AP
3490 } else if (is_device_exclusive_entry(entry)) {
3491 vmf->page = pfn_swap_entry_to_page(entry);
3492 ret = remove_device_exclusive_entry(vmf);
5042db43 3493 } else if (is_device_private_entry(entry)) {
af5cdaf8 3494 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3495 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3496 } else if (is_hwpoison_entry(entry)) {
3497 ret = VM_FAULT_HWPOISON;
3498 } else {
2994302b 3499 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3500 ret = VM_FAULT_SIGBUS;
d1737fdb 3501 }
0697212a
CL
3502 goto out;
3503 }
0bcac06f 3504
2799e775
ML
3505 /* Prevent swapoff from happening to us. */
3506 si = get_swap_device(entry);
3507 if (unlikely(!si))
3508 goto out;
0bcac06f 3509
3d1c7fd9 3510 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3511 page = lookup_swap_cache(entry, vma, vmf->address);
3512 swapcache = page;
f8020772 3513
1da177e4 3514 if (!page) {
a449bf58
QC
3515 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3516 __swap_count(entry) == 1) {
0bcac06f 3517 /* skip swapcache */
e9e9b7ec
MK
3518 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3519 vmf->address);
0bcac06f
MK
3520 if (page) {
3521 __SetPageLocked(page);
3522 __SetPageSwapBacked(page);
4c6355b2 3523
0add0c77
SB
3524 if (mem_cgroup_swapin_charge_page(page,
3525 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3526 ret = VM_FAULT_OOM;
4c6355b2 3527 goto out_page;
545b1b07 3528 }
0add0c77 3529 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3530
aae466b0
JK
3531 shadow = get_shadow_from_swap_cache(entry);
3532 if (shadow)
3533 workingset_refault(page, shadow);
0076f029 3534
6058eaec 3535 lru_cache_add(page);
0add0c77
SB
3536
3537 /* To provide entry to swap_readpage() */
3538 set_page_private(page, entry.val);
0bcac06f 3539 swap_readpage(page, true);
0add0c77 3540 set_page_private(page, 0);
0bcac06f 3541 }
aa8d22a1 3542 } else {
e9e9b7ec
MK
3543 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3544 vmf);
aa8d22a1 3545 swapcache = page;
0bcac06f
MK
3546 }
3547
1da177e4
LT
3548 if (!page) {
3549 /*
8f4e2101
HD
3550 * Back out if somebody else faulted in this pte
3551 * while we released the pte lock.
1da177e4 3552 */
82b0f8c3
JK
3553 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3554 vmf->address, &vmf->ptl);
2994302b 3555 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3556 ret = VM_FAULT_OOM;
3d1c7fd9 3557 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3558 goto unlock;
1da177e4
LT
3559 }
3560
3561 /* Had to read the page from swap area: Major fault */
3562 ret = VM_FAULT_MAJOR;
f8891e5e 3563 count_vm_event(PGMAJFAULT);
2262185c 3564 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3565 } else if (PageHWPoison(page)) {
71f72525
WF
3566 /*
3567 * hwpoisoned dirty swapcache pages are kept for killing
3568 * owner processes (which may be unknown at hwpoison time)
3569 */
d1737fdb 3570 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3571 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3572 goto out_release;
1da177e4
LT
3573 }
3574
82b0f8c3 3575 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3576
3d1c7fd9 3577 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3578 if (!locked) {
3579 ret |= VM_FAULT_RETRY;
3580 goto out_release;
3581 }
073e587e 3582
4969c119 3583 /*
31c4a3d3
HD
3584 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3585 * release the swapcache from under us. The page pin, and pte_same
3586 * test below, are not enough to exclude that. Even if it is still
3587 * swapcache, we need to check that the page's swap has not changed.
4969c119 3588 */
0bcac06f
MK
3589 if (unlikely((!PageSwapCache(page) ||
3590 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3591 goto out_page;
3592
82b0f8c3 3593 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3594 if (unlikely(!page)) {
3595 ret = VM_FAULT_OOM;
3596 page = swapcache;
cbf86cfe 3597 goto out_page;
5ad64688
HD
3598 }
3599
9d82c694 3600 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3601
1da177e4 3602 /*
8f4e2101 3603 * Back out if somebody else already faulted in this pte.
1da177e4 3604 */
82b0f8c3
JK
3605 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3606 &vmf->ptl);
2994302b 3607 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3608 goto out_nomap;
b8107480
KK
3609
3610 if (unlikely(!PageUptodate(page))) {
3611 ret = VM_FAULT_SIGBUS;
3612 goto out_nomap;
1da177e4
LT
3613 }
3614
8c7c6e34
KH
3615 /*
3616 * The page isn't present yet, go ahead with the fault.
3617 *
3618 * Be careful about the sequence of operations here.
3619 * To get its accounting right, reuse_swap_page() must be called
3620 * while the page is counted on swap but not yet in mapcount i.e.
3621 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3622 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3623 */
1da177e4 3624
bae473a4
KS
3625 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3626 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3627 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3628 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3629 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3630 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3631 ret |= VM_FAULT_WRITE;
d281ee61 3632 exclusive = RMAP_EXCLUSIVE;
1da177e4 3633 }
1da177e4 3634 flush_icache_page(vma, page);
2994302b 3635 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3636 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3637 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3638 pte = pte_mkuffd_wp(pte);
3639 pte = pte_wrprotect(pte);
3640 }
82b0f8c3 3641 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3642 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3643 vmf->orig_pte = pte;
0bcac06f
MK
3644
3645 /* ksm created a completely new copy */
3646 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3647 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3648 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3649 } else {
3650 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3651 }
1da177e4 3652
c475a8ab 3653 swap_free(entry);
5ccc5aba
VD
3654 if (mem_cgroup_swap_full(page) ||
3655 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3656 try_to_free_swap(page);
c475a8ab 3657 unlock_page(page);
0bcac06f 3658 if (page != swapcache && swapcache) {
4969c119
AA
3659 /*
3660 * Hold the lock to avoid the swap entry to be reused
3661 * until we take the PT lock for the pte_same() check
3662 * (to avoid false positives from pte_same). For
3663 * further safety release the lock after the swap_free
3664 * so that the swap count won't change under a
3665 * parallel locked swapcache.
3666 */
3667 unlock_page(swapcache);
09cbfeaf 3668 put_page(swapcache);
4969c119 3669 }
c475a8ab 3670
82b0f8c3 3671 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3672 ret |= do_wp_page(vmf);
61469f1d
HD
3673 if (ret & VM_FAULT_ERROR)
3674 ret &= VM_FAULT_ERROR;
1da177e4
LT
3675 goto out;
3676 }
3677
3678 /* No need to invalidate - it was non-present before */
82b0f8c3 3679 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3680unlock:
82b0f8c3 3681 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3682out:
2799e775
ML
3683 if (si)
3684 put_swap_device(si);
1da177e4 3685 return ret;
b8107480 3686out_nomap:
82b0f8c3 3687 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3688out_page:
b8107480 3689 unlock_page(page);
4779cb31 3690out_release:
09cbfeaf 3691 put_page(page);
0bcac06f 3692 if (page != swapcache && swapcache) {
4969c119 3693 unlock_page(swapcache);
09cbfeaf 3694 put_page(swapcache);
4969c119 3695 }
2799e775
ML
3696 if (si)
3697 put_swap_device(si);
65500d23 3698 return ret;
1da177e4
LT
3699}
3700
3701/*
c1e8d7c6 3702 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3703 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3704 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3705 */
2b740303 3706static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3707{
82b0f8c3 3708 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3709 struct page *page;
2b740303 3710 vm_fault_t ret = 0;
1da177e4 3711 pte_t entry;
1da177e4 3712
6b7339f4
KS
3713 /* File mapping without ->vm_ops ? */
3714 if (vma->vm_flags & VM_SHARED)
3715 return VM_FAULT_SIGBUS;
3716
7267ec00
KS
3717 /*
3718 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3719 * pte_offset_map() on pmds where a huge pmd might be created
3720 * from a different thread.
3721 *
3e4e28c5 3722 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3723 * parallel threads are excluded by other means.
3724 *
3e4e28c5 3725 * Here we only have mmap_read_lock(mm).
7267ec00 3726 */
4cf58924 3727 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3728 return VM_FAULT_OOM;
3729
f9ce0be7 3730 /* See comment in handle_pte_fault() */
82b0f8c3 3731 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3732 return 0;
3733
11ac5524 3734 /* Use the zero-page for reads */
82b0f8c3 3735 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3736 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3737 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3738 vma->vm_page_prot));
82b0f8c3
JK
3739 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3740 vmf->address, &vmf->ptl);
7df67697
BM
3741 if (!pte_none(*vmf->pte)) {
3742 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3743 goto unlock;
7df67697 3744 }
6b31d595
MH
3745 ret = check_stable_address_space(vma->vm_mm);
3746 if (ret)
3747 goto unlock;
6b251fc9
AA
3748 /* Deliver the page fault to userland, check inside PT lock */
3749 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3750 pte_unmap_unlock(vmf->pte, vmf->ptl);
3751 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3752 }
a13ea5b7
HD
3753 goto setpte;
3754 }
3755
557ed1fa 3756 /* Allocate our own private page. */
557ed1fa
NP
3757 if (unlikely(anon_vma_prepare(vma)))
3758 goto oom;
82b0f8c3 3759 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3760 if (!page)
3761 goto oom;
eb3c24f3 3762
d9eb1ea2 3763 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3764 goto oom_free_page;
9d82c694 3765 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3766
52f37629
MK
3767 /*
3768 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3769 * preceding stores to the page contents become visible before
52f37629
MK
3770 * the set_pte_at() write.
3771 */
0ed361de 3772 __SetPageUptodate(page);
8f4e2101 3773
557ed1fa 3774 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3775 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3776 if (vma->vm_flags & VM_WRITE)
3777 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3778
82b0f8c3
JK
3779 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3780 &vmf->ptl);
7df67697
BM
3781 if (!pte_none(*vmf->pte)) {
3782 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3783 goto release;
7df67697 3784 }
9ba69294 3785
6b31d595
MH
3786 ret = check_stable_address_space(vma->vm_mm);
3787 if (ret)
3788 goto release;
3789
6b251fc9
AA
3790 /* Deliver the page fault to userland, check inside PT lock */
3791 if (userfaultfd_missing(vma)) {
82b0f8c3 3792 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3793 put_page(page);
82b0f8c3 3794 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3795 }
3796
bae473a4 3797 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3798 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3799 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3800setpte:
82b0f8c3 3801 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3802
3803 /* No need to invalidate - it was non-present before */
82b0f8c3 3804 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3805unlock:
82b0f8c3 3806 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3807 return ret;
8f4e2101 3808release:
09cbfeaf 3809 put_page(page);
8f4e2101 3810 goto unlock;
8a9f3ccd 3811oom_free_page:
09cbfeaf 3812 put_page(page);
65500d23 3813oom:
1da177e4
LT
3814 return VM_FAULT_OOM;
3815}
3816
9a95f3cf 3817/*
c1e8d7c6 3818 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3819 * released depending on flags and vma->vm_ops->fault() return value.
3820 * See filemap_fault() and __lock_page_retry().
3821 */
2b740303 3822static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3823{
82b0f8c3 3824 struct vm_area_struct *vma = vmf->vma;
2b740303 3825 vm_fault_t ret;
7eae74af 3826
63f3655f
MH
3827 /*
3828 * Preallocate pte before we take page_lock because this might lead to
3829 * deadlocks for memcg reclaim which waits for pages under writeback:
3830 * lock_page(A)
3831 * SetPageWriteback(A)
3832 * unlock_page(A)
3833 * lock_page(B)
3834 * lock_page(B)
d383807a 3835 * pte_alloc_one
63f3655f
MH
3836 * shrink_page_list
3837 * wait_on_page_writeback(A)
3838 * SetPageWriteback(B)
3839 * unlock_page(B)
3840 * # flush A, B to clear the writeback
3841 */
3842 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3843 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3844 if (!vmf->prealloc_pte)
3845 return VM_FAULT_OOM;
63f3655f
MH
3846 }
3847
11bac800 3848 ret = vma->vm_ops->fault(vmf);
3917048d 3849 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3850 VM_FAULT_DONE_COW)))
bc2466e4 3851 return ret;
7eae74af 3852
667240e0 3853 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3854 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3855 unlock_page(vmf->page);
3856 put_page(vmf->page);
936ca80d 3857 vmf->page = NULL;
7eae74af
KS
3858 return VM_FAULT_HWPOISON;
3859 }
3860
3861 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3862 lock_page(vmf->page);
7eae74af 3863 else
667240e0 3864 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3865
7eae74af
KS
3866 return ret;
3867}
3868
396bcc52 3869#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3870static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3871{
82b0f8c3 3872 struct vm_area_struct *vma = vmf->vma;
953c66c2 3873
82b0f8c3 3874 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3875 /*
3876 * We are going to consume the prealloc table,
3877 * count that as nr_ptes.
3878 */
c4812909 3879 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3880 vmf->prealloc_pte = NULL;
953c66c2
AK
3881}
3882
f9ce0be7 3883vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3884{
82b0f8c3
JK
3885 struct vm_area_struct *vma = vmf->vma;
3886 bool write = vmf->flags & FAULT_FLAG_WRITE;
3887 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3888 pmd_t entry;
2b740303 3889 int i;
d01ac3c3 3890 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3891
3892 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3893 return ret;
10102459 3894
10102459 3895 page = compound_head(page);
d01ac3c3
MWO
3896 if (compound_order(page) != HPAGE_PMD_ORDER)
3897 return ret;
10102459 3898
eac96c3e
YS
3899 /*
3900 * Just backoff if any subpage of a THP is corrupted otherwise
3901 * the corrupted page may mapped by PMD silently to escape the
3902 * check. This kind of THP just can be PTE mapped. Access to
3903 * the corrupted subpage should trigger SIGBUS as expected.
3904 */
3905 if (unlikely(PageHasHWPoisoned(page)))
3906 return ret;
3907
953c66c2 3908 /*
f0953a1b 3909 * Archs like ppc64 need additional space to store information
953c66c2
AK
3910 * related to pte entry. Use the preallocated table for that.
3911 */
82b0f8c3 3912 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3913 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3914 if (!vmf->prealloc_pte)
953c66c2 3915 return VM_FAULT_OOM;
953c66c2
AK
3916 }
3917
82b0f8c3
JK
3918 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3919 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3920 goto out;
3921
3922 for (i = 0; i < HPAGE_PMD_NR; i++)
3923 flush_icache_page(vma, page + i);
3924
3925 entry = mk_huge_pmd(page, vma->vm_page_prot);
3926 if (write)
f55e1014 3927 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3928
fadae295 3929 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3930 page_add_file_rmap(page, true);
953c66c2
AK
3931 /*
3932 * deposit and withdraw with pmd lock held
3933 */
3934 if (arch_needs_pgtable_deposit())
82b0f8c3 3935 deposit_prealloc_pte(vmf);
10102459 3936
82b0f8c3 3937 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3938
82b0f8c3 3939 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3940
3941 /* fault is handled */
3942 ret = 0;
95ecedcd 3943 count_vm_event(THP_FILE_MAPPED);
10102459 3944out:
82b0f8c3 3945 spin_unlock(vmf->ptl);
10102459
KS
3946 return ret;
3947}
3948#else
f9ce0be7 3949vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3950{
f9ce0be7 3951 return VM_FAULT_FALLBACK;
10102459
KS
3952}
3953#endif
3954
9d3af4b4 3955void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3956{
82b0f8c3
JK
3957 struct vm_area_struct *vma = vmf->vma;
3958 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3959 bool prefault = vmf->address != addr;
3bb97794 3960 pte_t entry;
7267ec00 3961
3bb97794
KS
3962 flush_icache_page(vma, page);
3963 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3964
3965 if (prefault && arch_wants_old_prefaulted_pte())
3966 entry = pte_mkold(entry);
50c25ee9
TB
3967 else
3968 entry = pte_sw_mkyoung(entry);
46bdb427 3969
3bb97794
KS
3970 if (write)
3971 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3972 /* copy-on-write page */
3973 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3974 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3975 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3976 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3977 } else {
eca56ff9 3978 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3979 page_add_file_rmap(page, false);
3bb97794 3980 }
9d3af4b4 3981 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3982}
3983
9118c0cb
JK
3984/**
3985 * finish_fault - finish page fault once we have prepared the page to fault
3986 *
3987 * @vmf: structure describing the fault
3988 *
3989 * This function handles all that is needed to finish a page fault once the
3990 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3991 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3992 * addition.
9118c0cb
JK
3993 *
3994 * The function expects the page to be locked and on success it consumes a
3995 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3996 *
3997 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3998 */
2b740303 3999vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4000{
f9ce0be7 4001 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4002 struct page *page;
f9ce0be7 4003 vm_fault_t ret;
9118c0cb
JK
4004
4005 /* Did we COW the page? */
f9ce0be7 4006 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4007 page = vmf->cow_page;
4008 else
4009 page = vmf->page;
6b31d595
MH
4010
4011 /*
4012 * check even for read faults because we might have lost our CoWed
4013 * page
4014 */
f9ce0be7
KS
4015 if (!(vma->vm_flags & VM_SHARED)) {
4016 ret = check_stable_address_space(vma->vm_mm);
4017 if (ret)
4018 return ret;
4019 }
4020
4021 if (pmd_none(*vmf->pmd)) {
4022 if (PageTransCompound(page)) {
4023 ret = do_set_pmd(vmf, page);
4024 if (ret != VM_FAULT_FALLBACK)
4025 return ret;
4026 }
4027
03c4f204
QZ
4028 if (vmf->prealloc_pte)
4029 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4030 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4031 return VM_FAULT_OOM;
4032 }
4033
4034 /* See comment in handle_pte_fault() */
4035 if (pmd_devmap_trans_unstable(vmf->pmd))
4036 return 0;
4037
4038 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4039 vmf->address, &vmf->ptl);
4040 ret = 0;
4041 /* Re-check under ptl */
4042 if (likely(pte_none(*vmf->pte)))
9d3af4b4 4043 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4044 else
4045 ret = VM_FAULT_NOPAGE;
4046
4047 update_mmu_tlb(vma, vmf->address, vmf->pte);
4048 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4049 return ret;
4050}
4051
3a91053a
KS
4052static unsigned long fault_around_bytes __read_mostly =
4053 rounddown_pow_of_two(65536);
a9b0f861 4054
a9b0f861
KS
4055#ifdef CONFIG_DEBUG_FS
4056static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4057{
a9b0f861 4058 *val = fault_around_bytes;
1592eef0
KS
4059 return 0;
4060}
4061
b4903d6e 4062/*
da391d64
WK
4063 * fault_around_bytes must be rounded down to the nearest page order as it's
4064 * what do_fault_around() expects to see.
b4903d6e 4065 */
a9b0f861 4066static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4067{
a9b0f861 4068 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4069 return -EINVAL;
b4903d6e
AR
4070 if (val > PAGE_SIZE)
4071 fault_around_bytes = rounddown_pow_of_two(val);
4072 else
4073 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4074 return 0;
4075}
0a1345f8 4076DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4077 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4078
4079static int __init fault_around_debugfs(void)
4080{
d9f7979c
GKH
4081 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4082 &fault_around_bytes_fops);
1592eef0
KS
4083 return 0;
4084}
4085late_initcall(fault_around_debugfs);
1592eef0 4086#endif
8c6e50b0 4087
1fdb412b
KS
4088/*
4089 * do_fault_around() tries to map few pages around the fault address. The hope
4090 * is that the pages will be needed soon and this will lower the number of
4091 * faults to handle.
4092 *
4093 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4094 * not ready to be mapped: not up-to-date, locked, etc.
4095 *
4096 * This function is called with the page table lock taken. In the split ptlock
4097 * case the page table lock only protects only those entries which belong to
4098 * the page table corresponding to the fault address.
4099 *
4100 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4101 * only once.
4102 *
da391d64
WK
4103 * fault_around_bytes defines how many bytes we'll try to map.
4104 * do_fault_around() expects it to be set to a power of two less than or equal
4105 * to PTRS_PER_PTE.
1fdb412b 4106 *
da391d64
WK
4107 * The virtual address of the area that we map is naturally aligned to
4108 * fault_around_bytes rounded down to the machine page size
4109 * (and therefore to page order). This way it's easier to guarantee
4110 * that we don't cross page table boundaries.
1fdb412b 4111 */
2b740303 4112static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4113{
82b0f8c3 4114 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4115 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4116 pgoff_t end_pgoff;
2b740303 4117 int off;
8c6e50b0 4118
4db0c3c2 4119 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4120 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4121
f9ce0be7
KS
4122 address = max(address & mask, vmf->vma->vm_start);
4123 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4124 start_pgoff -= off;
8c6e50b0
KS
4125
4126 /*
da391d64
WK
4127 * end_pgoff is either the end of the page table, the end of
4128 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4129 */
bae473a4 4130 end_pgoff = start_pgoff -
f9ce0be7 4131 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4132 PTRS_PER_PTE - 1;
82b0f8c3 4133 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4134 start_pgoff + nr_pages - 1);
8c6e50b0 4135
82b0f8c3 4136 if (pmd_none(*vmf->pmd)) {
4cf58924 4137 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4138 if (!vmf->prealloc_pte)
f9ce0be7 4139 return VM_FAULT_OOM;
8c6e50b0
KS
4140 }
4141
f9ce0be7 4142 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4143}
4144
2b740303 4145static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4146{
82b0f8c3 4147 struct vm_area_struct *vma = vmf->vma;
2b740303 4148 vm_fault_t ret = 0;
8c6e50b0
KS
4149
4150 /*
4151 * Let's call ->map_pages() first and use ->fault() as fallback
4152 * if page by the offset is not ready to be mapped (cold cache or
4153 * something).
4154 */
9b4bdd2f 4155 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
c949b097
AR
4156 if (likely(!userfaultfd_minor(vmf->vma))) {
4157 ret = do_fault_around(vmf);
4158 if (ret)
4159 return ret;
4160 }
8c6e50b0 4161 }
e655fb29 4162
936ca80d 4163 ret = __do_fault(vmf);
e655fb29
KS
4164 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4165 return ret;
4166
9118c0cb 4167 ret |= finish_fault(vmf);
936ca80d 4168 unlock_page(vmf->page);
7267ec00 4169 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4170 put_page(vmf->page);
e655fb29
KS
4171 return ret;
4172}
4173
2b740303 4174static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4175{
82b0f8c3 4176 struct vm_area_struct *vma = vmf->vma;
2b740303 4177 vm_fault_t ret;
ec47c3b9
KS
4178
4179 if (unlikely(anon_vma_prepare(vma)))
4180 return VM_FAULT_OOM;
4181
936ca80d
JK
4182 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4183 if (!vmf->cow_page)
ec47c3b9
KS
4184 return VM_FAULT_OOM;
4185
d9eb1ea2 4186 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4187 put_page(vmf->cow_page);
ec47c3b9
KS
4188 return VM_FAULT_OOM;
4189 }
9d82c694 4190 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4191
936ca80d 4192 ret = __do_fault(vmf);
ec47c3b9
KS
4193 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4194 goto uncharge_out;
3917048d
JK
4195 if (ret & VM_FAULT_DONE_COW)
4196 return ret;
ec47c3b9 4197
b1aa812b 4198 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4199 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4200
9118c0cb 4201 ret |= finish_fault(vmf);
b1aa812b
JK
4202 unlock_page(vmf->page);
4203 put_page(vmf->page);
7267ec00
KS
4204 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4205 goto uncharge_out;
ec47c3b9
KS
4206 return ret;
4207uncharge_out:
936ca80d 4208 put_page(vmf->cow_page);
ec47c3b9
KS
4209 return ret;
4210}
4211
2b740303 4212static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4213{
82b0f8c3 4214 struct vm_area_struct *vma = vmf->vma;
2b740303 4215 vm_fault_t ret, tmp;
1d65f86d 4216
936ca80d 4217 ret = __do_fault(vmf);
7eae74af 4218 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4219 return ret;
1da177e4
LT
4220
4221 /*
f0c6d4d2
KS
4222 * Check if the backing address space wants to know that the page is
4223 * about to become writable
1da177e4 4224 */
fb09a464 4225 if (vma->vm_ops->page_mkwrite) {
936ca80d 4226 unlock_page(vmf->page);
38b8cb7f 4227 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4228 if (unlikely(!tmp ||
4229 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4230 put_page(vmf->page);
fb09a464 4231 return tmp;
4294621f 4232 }
fb09a464
KS
4233 }
4234
9118c0cb 4235 ret |= finish_fault(vmf);
7267ec00
KS
4236 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4237 VM_FAULT_RETRY))) {
936ca80d
JK
4238 unlock_page(vmf->page);
4239 put_page(vmf->page);
f0c6d4d2 4240 return ret;
1da177e4 4241 }
b827e496 4242
89b15332 4243 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4244 return ret;
54cb8821 4245}
d00806b1 4246
9a95f3cf 4247/*
c1e8d7c6 4248 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4249 * but allow concurrent faults).
c1e8d7c6 4250 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4251 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4252 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4253 * by other thread calling munmap()).
9a95f3cf 4254 */
2b740303 4255static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4256{
82b0f8c3 4257 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4258 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4259 vm_fault_t ret;
54cb8821 4260
ff09d7ec
AK
4261 /*
4262 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4263 */
4264 if (!vma->vm_ops->fault) {
4265 /*
4266 * If we find a migration pmd entry or a none pmd entry, which
4267 * should never happen, return SIGBUS
4268 */
4269 if (unlikely(!pmd_present(*vmf->pmd)))
4270 ret = VM_FAULT_SIGBUS;
4271 else {
4272 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4273 vmf->pmd,
4274 vmf->address,
4275 &vmf->ptl);
4276 /*
4277 * Make sure this is not a temporary clearing of pte
4278 * by holding ptl and checking again. A R/M/W update
4279 * of pte involves: take ptl, clearing the pte so that
4280 * we don't have concurrent modification by hardware
4281 * followed by an update.
4282 */
4283 if (unlikely(pte_none(*vmf->pte)))
4284 ret = VM_FAULT_SIGBUS;
4285 else
4286 ret = VM_FAULT_NOPAGE;
4287
4288 pte_unmap_unlock(vmf->pte, vmf->ptl);
4289 }
4290 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4291 ret = do_read_fault(vmf);
4292 else if (!(vma->vm_flags & VM_SHARED))
4293 ret = do_cow_fault(vmf);
4294 else
4295 ret = do_shared_fault(vmf);
4296
4297 /* preallocated pagetable is unused: free it */
4298 if (vmf->prealloc_pte) {
fc8efd2d 4299 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4300 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4301 }
4302 return ret;
54cb8821
NP
4303}
4304
f4c0d836
YS
4305int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4306 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4307{
4308 get_page(page);
4309
4310 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4311 if (page_nid == numa_node_id()) {
9532fec1 4312 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4313 *flags |= TNF_FAULT_LOCAL;
4314 }
9532fec1
MG
4315
4316 return mpol_misplaced(page, vma, addr);
4317}
4318
2b740303 4319static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4320{
82b0f8c3 4321 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4322 struct page *page = NULL;
98fa15f3 4323 int page_nid = NUMA_NO_NODE;
90572890 4324 int last_cpupid;
cbee9f88 4325 int target_nid;
04a86453 4326 pte_t pte, old_pte;
288bc549 4327 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4328 int flags = 0;
d10e63f2
MG
4329
4330 /*
166f61b9
TH
4331 * The "pte" at this point cannot be used safely without
4332 * validation through pte_unmap_same(). It's of NUMA type but
4333 * the pfn may be screwed if the read is non atomic.
166f61b9 4334 */
82b0f8c3
JK
4335 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4336 spin_lock(vmf->ptl);
cee216a6 4337 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4338 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4339 goto out;
4340 }
4341
b99a342d
HY
4342 /* Get the normal PTE */
4343 old_pte = ptep_get(vmf->pte);
04a86453 4344 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4345
82b0f8c3 4346 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4347 if (!page)
4348 goto out_map;
d10e63f2 4349
e81c4802 4350 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4351 if (PageCompound(page))
4352 goto out_map;
e81c4802 4353
6688cc05 4354 /*
bea66fbd
MG
4355 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4356 * much anyway since they can be in shared cache state. This misses
4357 * the case where a mapping is writable but the process never writes
4358 * to it but pte_write gets cleared during protection updates and
4359 * pte_dirty has unpredictable behaviour between PTE scan updates,
4360 * background writeback, dirty balancing and application behaviour.
6688cc05 4361 */
b99a342d 4362 if (!was_writable)
6688cc05
PZ
4363 flags |= TNF_NO_GROUP;
4364
dabe1d99
RR
4365 /*
4366 * Flag if the page is shared between multiple address spaces. This
4367 * is later used when determining whether to group tasks together
4368 */
4369 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4370 flags |= TNF_SHARED;
4371
90572890 4372 last_cpupid = page_cpupid_last(page);
8191acbd 4373 page_nid = page_to_nid(page);
82b0f8c3 4374 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4375 &flags);
98fa15f3 4376 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4377 put_page(page);
b99a342d 4378 goto out_map;
4daae3b4 4379 }
b99a342d 4380 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4381
4382 /* Migrate to the requested node */
bf90ac19 4383 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4384 page_nid = target_nid;
6688cc05 4385 flags |= TNF_MIGRATED;
b99a342d 4386 } else {
074c2381 4387 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4388 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4389 spin_lock(vmf->ptl);
4390 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4391 pte_unmap_unlock(vmf->pte, vmf->ptl);
4392 goto out;
4393 }
4394 goto out_map;
4395 }
4daae3b4
MG
4396
4397out:
98fa15f3 4398 if (page_nid != NUMA_NO_NODE)
6688cc05 4399 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4400 return 0;
b99a342d
HY
4401out_map:
4402 /*
4403 * Make it present again, depending on how arch implements
4404 * non-accessible ptes, some can allow access by kernel mode.
4405 */
4406 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4407 pte = pte_modify(old_pte, vma->vm_page_prot);
4408 pte = pte_mkyoung(pte);
4409 if (was_writable)
4410 pte = pte_mkwrite(pte);
4411 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4412 update_mmu_cache(vma, vmf->address, vmf->pte);
4413 pte_unmap_unlock(vmf->pte, vmf->ptl);
4414 goto out;
d10e63f2
MG
4415}
4416
2b740303 4417static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4418{
f4200391 4419 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4420 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4421 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4422 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4423 return VM_FAULT_FALLBACK;
4424}
4425
183f24aa 4426/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4427static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4428{
529b930b 4429 if (vma_is_anonymous(vmf->vma)) {
5db4f15c 4430 if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4431 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4432 return do_huge_pmd_wp_page(vmf);
529b930b 4433 }
327e9fd4
THV
4434 if (vmf->vma->vm_ops->huge_fault) {
4435 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4436
4437 if (!(ret & VM_FAULT_FALLBACK))
4438 return ret;
4439 }
af9e4d5f 4440
327e9fd4 4441 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4442 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4443
b96375f7
MW
4444 return VM_FAULT_FALLBACK;
4445}
4446
2b740303 4447static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4448{
327e9fd4
THV
4449#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4450 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4451 /* No support for anonymous transparent PUD pages yet */
4452 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4453 goto split;
4454 if (vmf->vma->vm_ops->huge_fault) {
4455 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4456
4457 if (!(ret & VM_FAULT_FALLBACK))
4458 return ret;
4459 }
4460split:
4461 /* COW or write-notify not handled on PUD level: split pud.*/
4462 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4463#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4464 return VM_FAULT_FALLBACK;
4465}
4466
2b740303 4467static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4468{
4469#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4470 /* No support for anonymous transparent PUD pages yet */
4471 if (vma_is_anonymous(vmf->vma))
4472 return VM_FAULT_FALLBACK;
4473 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4474 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4475#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4476 return VM_FAULT_FALLBACK;
4477}
4478
1da177e4
LT
4479/*
4480 * These routines also need to handle stuff like marking pages dirty
4481 * and/or accessed for architectures that don't do it in hardware (most
4482 * RISC architectures). The early dirtying is also good on the i386.
4483 *
4484 * There is also a hook called "update_mmu_cache()" that architectures
4485 * with external mmu caches can use to update those (ie the Sparc or
4486 * PowerPC hashed page tables that act as extended TLBs).
4487 *
c1e8d7c6 4488 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4489 * concurrent faults).
9a95f3cf 4490 *
c1e8d7c6 4491 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4492 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4493 */
2b740303 4494static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4495{
4496 pte_t entry;
4497
82b0f8c3 4498 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4499 /*
4500 * Leave __pte_alloc() until later: because vm_ops->fault may
4501 * want to allocate huge page, and if we expose page table
4502 * for an instant, it will be difficult to retract from
4503 * concurrent faults and from rmap lookups.
4504 */
82b0f8c3 4505 vmf->pte = NULL;
7267ec00 4506 } else {
f9ce0be7
KS
4507 /*
4508 * If a huge pmd materialized under us just retry later. Use
4509 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4510 * of pmd_trans_huge() to ensure the pmd didn't become
4511 * pmd_trans_huge under us and then back to pmd_none, as a
4512 * result of MADV_DONTNEED running immediately after a huge pmd
4513 * fault in a different thread of this mm, in turn leading to a
4514 * misleading pmd_trans_huge() retval. All we have to ensure is
4515 * that it is a regular pmd that we can walk with
4516 * pte_offset_map() and we can do that through an atomic read
4517 * in C, which is what pmd_trans_unstable() provides.
4518 */
d0f0931d 4519 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4520 return 0;
4521 /*
4522 * A regular pmd is established and it can't morph into a huge
4523 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4524 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4525 * So now it's safe to run pte_offset_map().
4526 */
82b0f8c3 4527 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4528 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4529
4530 /*
4531 * some architectures can have larger ptes than wordsize,
4532 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4533 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4534 * accesses. The code below just needs a consistent view
4535 * for the ifs and we later double check anyway with the
7267ec00
KS
4536 * ptl lock held. So here a barrier will do.
4537 */
4538 barrier();
2994302b 4539 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4540 pte_unmap(vmf->pte);
4541 vmf->pte = NULL;
65500d23 4542 }
1da177e4
LT
4543 }
4544
82b0f8c3
JK
4545 if (!vmf->pte) {
4546 if (vma_is_anonymous(vmf->vma))
4547 return do_anonymous_page(vmf);
7267ec00 4548 else
82b0f8c3 4549 return do_fault(vmf);
7267ec00
KS
4550 }
4551
2994302b
JK
4552 if (!pte_present(vmf->orig_pte))
4553 return do_swap_page(vmf);
7267ec00 4554
2994302b
JK
4555 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4556 return do_numa_page(vmf);
d10e63f2 4557
82b0f8c3
JK
4558 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4559 spin_lock(vmf->ptl);
2994302b 4560 entry = vmf->orig_pte;
7df67697
BM
4561 if (unlikely(!pte_same(*vmf->pte, entry))) {
4562 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4563 goto unlock;
7df67697 4564 }
82b0f8c3 4565 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4566 if (!pte_write(entry))
2994302b 4567 return do_wp_page(vmf);
1da177e4
LT
4568 entry = pte_mkdirty(entry);
4569 }
4570 entry = pte_mkyoung(entry);
82b0f8c3
JK
4571 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4572 vmf->flags & FAULT_FLAG_WRITE)) {
4573 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4574 } else {
b7333b58
YS
4575 /* Skip spurious TLB flush for retried page fault */
4576 if (vmf->flags & FAULT_FLAG_TRIED)
4577 goto unlock;
1a44e149
AA
4578 /*
4579 * This is needed only for protection faults but the arch code
4580 * is not yet telling us if this is a protection fault or not.
4581 * This still avoids useless tlb flushes for .text page faults
4582 * with threads.
4583 */
82b0f8c3
JK
4584 if (vmf->flags & FAULT_FLAG_WRITE)
4585 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4586 }
8f4e2101 4587unlock:
82b0f8c3 4588 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4589 return 0;
1da177e4
LT
4590}
4591
4592/*
4593 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4594 *
c1e8d7c6 4595 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4596 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4597 */
2b740303
SJ
4598static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4599 unsigned long address, unsigned int flags)
1da177e4 4600{
82b0f8c3 4601 struct vm_fault vmf = {
bae473a4 4602 .vma = vma,
1a29d85e 4603 .address = address & PAGE_MASK,
bae473a4 4604 .flags = flags,
0721ec8b 4605 .pgoff = linear_page_index(vma, address),
667240e0 4606 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4607 };
fde26bed 4608 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4609 struct mm_struct *mm = vma->vm_mm;
1da177e4 4610 pgd_t *pgd;
c2febafc 4611 p4d_t *p4d;
2b740303 4612 vm_fault_t ret;
1da177e4 4613
1da177e4 4614 pgd = pgd_offset(mm, address);
c2febafc
KS
4615 p4d = p4d_alloc(mm, pgd, address);
4616 if (!p4d)
4617 return VM_FAULT_OOM;
a00cc7d9 4618
c2febafc 4619 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4620 if (!vmf.pud)
c74df32c 4621 return VM_FAULT_OOM;
625110b5 4622retry_pud:
7635d9cb 4623 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4624 ret = create_huge_pud(&vmf);
4625 if (!(ret & VM_FAULT_FALLBACK))
4626 return ret;
4627 } else {
4628 pud_t orig_pud = *vmf.pud;
4629
4630 barrier();
4631 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4632
a00cc7d9
MW
4633 /* NUMA case for anonymous PUDs would go here */
4634
f6f37321 4635 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4636 ret = wp_huge_pud(&vmf, orig_pud);
4637 if (!(ret & VM_FAULT_FALLBACK))
4638 return ret;
4639 } else {
4640 huge_pud_set_accessed(&vmf, orig_pud);
4641 return 0;
4642 }
4643 }
4644 }
4645
4646 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4647 if (!vmf.pmd)
c74df32c 4648 return VM_FAULT_OOM;
625110b5
TH
4649
4650 /* Huge pud page fault raced with pmd_alloc? */
4651 if (pud_trans_unstable(vmf.pud))
4652 goto retry_pud;
4653
7635d9cb 4654 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4655 ret = create_huge_pmd(&vmf);
c0292554
KS
4656 if (!(ret & VM_FAULT_FALLBACK))
4657 return ret;
71e3aac0 4658 } else {
5db4f15c 4659 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 4660
71e3aac0 4661 barrier();
5db4f15c 4662 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 4663 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
4664 !is_pmd_migration_entry(vmf.orig_pmd));
4665 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
4666 pmd_migration_entry_wait(mm, vmf.pmd);
4667 return 0;
4668 }
5db4f15c
YS
4669 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4670 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4671 return do_huge_pmd_numa_page(&vmf);
d10e63f2 4672
5db4f15c
YS
4673 if (dirty && !pmd_write(vmf.orig_pmd)) {
4674 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
4675 if (!(ret & VM_FAULT_FALLBACK))
4676 return ret;
a1dd450b 4677 } else {
5db4f15c 4678 huge_pmd_set_accessed(&vmf);
9845cbbd 4679 return 0;
1f1d06c3 4680 }
71e3aac0
AA
4681 }
4682 }
4683
82b0f8c3 4684 return handle_pte_fault(&vmf);
1da177e4
LT
4685}
4686
bce617ed 4687/**
f0953a1b 4688 * mm_account_fault - Do page fault accounting
bce617ed
PX
4689 *
4690 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4691 * of perf event counters, but we'll still do the per-task accounting to
4692 * the task who triggered this page fault.
4693 * @address: the faulted address.
4694 * @flags: the fault flags.
4695 * @ret: the fault retcode.
4696 *
f0953a1b 4697 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4698 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4699 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4700 * still be in per-arch page fault handlers at the entry of page fault.
4701 */
4702static inline void mm_account_fault(struct pt_regs *regs,
4703 unsigned long address, unsigned int flags,
4704 vm_fault_t ret)
4705{
4706 bool major;
4707
4708 /*
4709 * We don't do accounting for some specific faults:
4710 *
4711 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4712 * includes arch_vma_access_permitted() failing before reaching here.
4713 * So this is not a "this many hardware page faults" counter. We
4714 * should use the hw profiling for that.
4715 *
4716 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4717 * once they're completed.
4718 */
4719 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4720 return;
4721
4722 /*
4723 * We define the fault as a major fault when the final successful fault
4724 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4725 * handle it immediately previously).
4726 */
4727 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4728
a2beb5f1
PX
4729 if (major)
4730 current->maj_flt++;
4731 else
4732 current->min_flt++;
4733
bce617ed 4734 /*
a2beb5f1
PX
4735 * If the fault is done for GUP, regs will be NULL. We only do the
4736 * accounting for the per thread fault counters who triggered the
4737 * fault, and we skip the perf event updates.
bce617ed
PX
4738 */
4739 if (!regs)
4740 return;
4741
a2beb5f1 4742 if (major)
bce617ed 4743 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4744 else
bce617ed 4745 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4746}
4747
9a95f3cf
PC
4748/*
4749 * By the time we get here, we already hold the mm semaphore
4750 *
c1e8d7c6 4751 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4752 * return value. See filemap_fault() and __lock_page_or_retry().
4753 */
2b740303 4754vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4755 unsigned int flags, struct pt_regs *regs)
519e5247 4756{
2b740303 4757 vm_fault_t ret;
519e5247
JW
4758
4759 __set_current_state(TASK_RUNNING);
4760
4761 count_vm_event(PGFAULT);
2262185c 4762 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4763
4764 /* do counter updates before entering really critical section. */
4765 check_sync_rss_stat(current);
4766
de0c799b
LD
4767 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4768 flags & FAULT_FLAG_INSTRUCTION,
4769 flags & FAULT_FLAG_REMOTE))
4770 return VM_FAULT_SIGSEGV;
4771
519e5247
JW
4772 /*
4773 * Enable the memcg OOM handling for faults triggered in user
4774 * space. Kernel faults are handled more gracefully.
4775 */
4776 if (flags & FAULT_FLAG_USER)
29ef680a 4777 mem_cgroup_enter_user_fault();
519e5247 4778
bae473a4
KS
4779 if (unlikely(is_vm_hugetlb_page(vma)))
4780 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4781 else
4782 ret = __handle_mm_fault(vma, address, flags);
519e5247 4783
49426420 4784 if (flags & FAULT_FLAG_USER) {
29ef680a 4785 mem_cgroup_exit_user_fault();
166f61b9
TH
4786 /*
4787 * The task may have entered a memcg OOM situation but
4788 * if the allocation error was handled gracefully (no
4789 * VM_FAULT_OOM), there is no need to kill anything.
4790 * Just clean up the OOM state peacefully.
4791 */
4792 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4793 mem_cgroup_oom_synchronize(false);
49426420 4794 }
3812c8c8 4795
bce617ed
PX
4796 mm_account_fault(regs, address, flags, ret);
4797
519e5247
JW
4798 return ret;
4799}
e1d6d01a 4800EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4801
90eceff1
KS
4802#ifndef __PAGETABLE_P4D_FOLDED
4803/*
4804 * Allocate p4d page table.
4805 * We've already handled the fast-path in-line.
4806 */
4807int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4808{
4809 p4d_t *new = p4d_alloc_one(mm, address);
4810 if (!new)
4811 return -ENOMEM;
4812
90eceff1 4813 spin_lock(&mm->page_table_lock);
ed33b5a6 4814 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 4815 p4d_free(mm, new);
ed33b5a6
QZ
4816 } else {
4817 smp_wmb(); /* See comment in pmd_install() */
90eceff1 4818 pgd_populate(mm, pgd, new);
ed33b5a6 4819 }
90eceff1
KS
4820 spin_unlock(&mm->page_table_lock);
4821 return 0;
4822}
4823#endif /* __PAGETABLE_P4D_FOLDED */
4824
1da177e4
LT
4825#ifndef __PAGETABLE_PUD_FOLDED
4826/*
4827 * Allocate page upper directory.
872fec16 4828 * We've already handled the fast-path in-line.
1da177e4 4829 */
c2febafc 4830int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4831{
c74df32c
HD
4832 pud_t *new = pud_alloc_one(mm, address);
4833 if (!new)
1bb3630e 4834 return -ENOMEM;
1da177e4 4835
872fec16 4836 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4837 if (!p4d_present(*p4d)) {
4838 mm_inc_nr_puds(mm);
ed33b5a6 4839 smp_wmb(); /* See comment in pmd_install() */
c2febafc 4840 p4d_populate(mm, p4d, new);
b4e98d9a 4841 } else /* Another has populated it */
5e541973 4842 pud_free(mm, new);
c74df32c 4843 spin_unlock(&mm->page_table_lock);
1bb3630e 4844 return 0;
1da177e4
LT
4845}
4846#endif /* __PAGETABLE_PUD_FOLDED */
4847
4848#ifndef __PAGETABLE_PMD_FOLDED
4849/*
4850 * Allocate page middle directory.
872fec16 4851 * We've already handled the fast-path in-line.
1da177e4 4852 */
1bb3630e 4853int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4854{
a00cc7d9 4855 spinlock_t *ptl;
c74df32c
HD
4856 pmd_t *new = pmd_alloc_one(mm, address);
4857 if (!new)
1bb3630e 4858 return -ENOMEM;
1da177e4 4859
a00cc7d9 4860 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4861 if (!pud_present(*pud)) {
4862 mm_inc_nr_pmds(mm);
ed33b5a6 4863 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 4864 pud_populate(mm, pud, new);
ed33b5a6 4865 } else { /* Another has populated it */
5e541973 4866 pmd_free(mm, new);
ed33b5a6 4867 }
a00cc7d9 4868 spin_unlock(ptl);
1bb3630e 4869 return 0;
e0f39591 4870}
1da177e4
LT
4871#endif /* __PAGETABLE_PMD_FOLDED */
4872
9fd6dad1
PB
4873int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4874 struct mmu_notifier_range *range, pte_t **ptepp,
4875 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4876{
4877 pgd_t *pgd;
c2febafc 4878 p4d_t *p4d;
f8ad0f49
JW
4879 pud_t *pud;
4880 pmd_t *pmd;
4881 pte_t *ptep;
4882
4883 pgd = pgd_offset(mm, address);
4884 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4885 goto out;
4886
c2febafc
KS
4887 p4d = p4d_offset(pgd, address);
4888 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4889 goto out;
4890
4891 pud = pud_offset(p4d, address);
f8ad0f49
JW
4892 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4893 goto out;
4894
4895 pmd = pmd_offset(pud, address);
f66055ab 4896 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4897
09796395
RZ
4898 if (pmd_huge(*pmd)) {
4899 if (!pmdpp)
4900 goto out;
4901
ac46d4f3 4902 if (range) {
7269f999 4903 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4904 NULL, mm, address & PMD_MASK,
4905 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4906 mmu_notifier_invalidate_range_start(range);
a4d1a885 4907 }
09796395
RZ
4908 *ptlp = pmd_lock(mm, pmd);
4909 if (pmd_huge(*pmd)) {
4910 *pmdpp = pmd;
4911 return 0;
4912 }
4913 spin_unlock(*ptlp);
ac46d4f3
JG
4914 if (range)
4915 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4916 }
4917
4918 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4919 goto out;
4920
ac46d4f3 4921 if (range) {
7269f999 4922 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4923 address & PAGE_MASK,
4924 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4925 mmu_notifier_invalidate_range_start(range);
a4d1a885 4926 }
f8ad0f49 4927 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4928 if (!pte_present(*ptep))
4929 goto unlock;
4930 *ptepp = ptep;
4931 return 0;
4932unlock:
4933 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4934 if (range)
4935 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4936out:
4937 return -EINVAL;
4938}
4939
9fd6dad1
PB
4940/**
4941 * follow_pte - look up PTE at a user virtual address
4942 * @mm: the mm_struct of the target address space
4943 * @address: user virtual address
4944 * @ptepp: location to store found PTE
4945 * @ptlp: location to store the lock for the PTE
4946 *
4947 * On a successful return, the pointer to the PTE is stored in @ptepp;
4948 * the corresponding lock is taken and its location is stored in @ptlp.
4949 * The contents of the PTE are only stable until @ptlp is released;
4950 * any further use, if any, must be protected against invalidation
4951 * with MMU notifiers.
4952 *
4953 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4954 * should be taken for read.
4955 *
4956 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4957 * it is not a good general-purpose API.
4958 *
4959 * Return: zero on success, -ve otherwise.
4960 */
4961int follow_pte(struct mm_struct *mm, unsigned long address,
4962 pte_t **ptepp, spinlock_t **ptlp)
4963{
4964 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4965}
4966EXPORT_SYMBOL_GPL(follow_pte);
4967
3b6748e2
JW
4968/**
4969 * follow_pfn - look up PFN at a user virtual address
4970 * @vma: memory mapping
4971 * @address: user virtual address
4972 * @pfn: location to store found PFN
4973 *
4974 * Only IO mappings and raw PFN mappings are allowed.
4975 *
9fd6dad1
PB
4976 * This function does not allow the caller to read the permissions
4977 * of the PTE. Do not use it.
4978 *
a862f68a 4979 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4980 */
4981int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4982 unsigned long *pfn)
4983{
4984 int ret = -EINVAL;
4985 spinlock_t *ptl;
4986 pte_t *ptep;
4987
4988 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4989 return ret;
4990
9fd6dad1 4991 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4992 if (ret)
4993 return ret;
4994 *pfn = pte_pfn(*ptep);
4995 pte_unmap_unlock(ptep, ptl);
4996 return 0;
4997}
4998EXPORT_SYMBOL(follow_pfn);
4999
28b2ee20 5000#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5001int follow_phys(struct vm_area_struct *vma,
5002 unsigned long address, unsigned int flags,
5003 unsigned long *prot, resource_size_t *phys)
28b2ee20 5004{
03668a4d 5005 int ret = -EINVAL;
28b2ee20
RR
5006 pte_t *ptep, pte;
5007 spinlock_t *ptl;
28b2ee20 5008
d87fe660 5009 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5010 goto out;
28b2ee20 5011
9fd6dad1 5012 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5013 goto out;
28b2ee20 5014 pte = *ptep;
03668a4d 5015
f6f37321 5016 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5017 goto unlock;
28b2ee20
RR
5018
5019 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5020 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5021
03668a4d 5022 ret = 0;
28b2ee20
RR
5023unlock:
5024 pte_unmap_unlock(ptep, ptl);
5025out:
d87fe660 5026 return ret;
28b2ee20
RR
5027}
5028
96667f8a
DV
5029/**
5030 * generic_access_phys - generic implementation for iomem mmap access
5031 * @vma: the vma to access
f0953a1b 5032 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5033 * @buf: buffer to read/write
5034 * @len: length of transfer
5035 * @write: set to FOLL_WRITE when writing, otherwise reading
5036 *
5037 * This is a generic implementation for &vm_operations_struct.access for an
5038 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5039 * not page based.
5040 */
28b2ee20
RR
5041int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5042 void *buf, int len, int write)
5043{
5044 resource_size_t phys_addr;
5045 unsigned long prot = 0;
2bc7273b 5046 void __iomem *maddr;
96667f8a
DV
5047 pte_t *ptep, pte;
5048 spinlock_t *ptl;
5049 int offset = offset_in_page(addr);
5050 int ret = -EINVAL;
5051
5052 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5053 return -EINVAL;
5054
5055retry:
e913a8cd 5056 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5057 return -EINVAL;
5058 pte = *ptep;
5059 pte_unmap_unlock(ptep, ptl);
28b2ee20 5060
96667f8a
DV
5061 prot = pgprot_val(pte_pgprot(pte));
5062 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5063
5064 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5065 return -EINVAL;
5066
9cb12d7b 5067 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5068 if (!maddr)
5069 return -ENOMEM;
5070
e913a8cd 5071 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5072 goto out_unmap;
5073
5074 if (!pte_same(pte, *ptep)) {
5075 pte_unmap_unlock(ptep, ptl);
5076 iounmap(maddr);
5077
5078 goto retry;
5079 }
5080
28b2ee20
RR
5081 if (write)
5082 memcpy_toio(maddr + offset, buf, len);
5083 else
5084 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5085 ret = len;
5086 pte_unmap_unlock(ptep, ptl);
5087out_unmap:
28b2ee20
RR
5088 iounmap(maddr);
5089
96667f8a 5090 return ret;
28b2ee20 5091}
5a73633e 5092EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5093#endif
5094
0ec76a11 5095/*
d3f5ffca 5096 * Access another process' address space as given in mm.
0ec76a11 5097 */
d3f5ffca
JH
5098int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5099 int len, unsigned int gup_flags)
0ec76a11 5100{
0ec76a11 5101 struct vm_area_struct *vma;
0ec76a11 5102 void *old_buf = buf;
442486ec 5103 int write = gup_flags & FOLL_WRITE;
0ec76a11 5104
d8ed45c5 5105 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5106 return 0;
5107
183ff22b 5108 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5109 while (len) {
5110 int bytes, ret, offset;
5111 void *maddr;
28b2ee20 5112 struct page *page = NULL;
0ec76a11 5113
64019a2e 5114 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5115 gup_flags, &page, &vma, NULL);
28b2ee20 5116 if (ret <= 0) {
dbffcd03
RR
5117#ifndef CONFIG_HAVE_IOREMAP_PROT
5118 break;
5119#else
28b2ee20
RR
5120 /*
5121 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5122 * we can access using slightly different code.
5123 */
3e418f98
LH
5124 vma = vma_lookup(mm, addr);
5125 if (!vma)
28b2ee20
RR
5126 break;
5127 if (vma->vm_ops && vma->vm_ops->access)
5128 ret = vma->vm_ops->access(vma, addr, buf,
5129 len, write);
5130 if (ret <= 0)
28b2ee20
RR
5131 break;
5132 bytes = ret;
dbffcd03 5133#endif
0ec76a11 5134 } else {
28b2ee20
RR
5135 bytes = len;
5136 offset = addr & (PAGE_SIZE-1);
5137 if (bytes > PAGE_SIZE-offset)
5138 bytes = PAGE_SIZE-offset;
5139
5140 maddr = kmap(page);
5141 if (write) {
5142 copy_to_user_page(vma, page, addr,
5143 maddr + offset, buf, bytes);
5144 set_page_dirty_lock(page);
5145 } else {
5146 copy_from_user_page(vma, page, addr,
5147 buf, maddr + offset, bytes);
5148 }
5149 kunmap(page);
09cbfeaf 5150 put_page(page);
0ec76a11 5151 }
0ec76a11
DH
5152 len -= bytes;
5153 buf += bytes;
5154 addr += bytes;
5155 }
d8ed45c5 5156 mmap_read_unlock(mm);
0ec76a11
DH
5157
5158 return buf - old_buf;
5159}
03252919 5160
5ddd36b9 5161/**
ae91dbfc 5162 * access_remote_vm - access another process' address space
5ddd36b9
SW
5163 * @mm: the mm_struct of the target address space
5164 * @addr: start address to access
5165 * @buf: source or destination buffer
5166 * @len: number of bytes to transfer
6347e8d5 5167 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5168 *
5169 * The caller must hold a reference on @mm.
a862f68a
MR
5170 *
5171 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5172 */
5173int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5174 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5175{
d3f5ffca 5176 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5177}
5178
206cb636
SW
5179/*
5180 * Access another process' address space.
5181 * Source/target buffer must be kernel space,
5182 * Do not walk the page table directly, use get_user_pages
5183 */
5184int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5185 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5186{
5187 struct mm_struct *mm;
5188 int ret;
5189
5190 mm = get_task_mm(tsk);
5191 if (!mm)
5192 return 0;
5193
d3f5ffca 5194 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5195
206cb636
SW
5196 mmput(mm);
5197
5198 return ret;
5199}
fcd35857 5200EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5201
03252919
AK
5202/*
5203 * Print the name of a VMA.
5204 */
5205void print_vma_addr(char *prefix, unsigned long ip)
5206{
5207 struct mm_struct *mm = current->mm;
5208 struct vm_area_struct *vma;
5209
e8bff74a 5210 /*
0a7f682d 5211 * we might be running from an atomic context so we cannot sleep
e8bff74a 5212 */
d8ed45c5 5213 if (!mmap_read_trylock(mm))
e8bff74a
IM
5214 return;
5215
03252919
AK
5216 vma = find_vma(mm, ip);
5217 if (vma && vma->vm_file) {
5218 struct file *f = vma->vm_file;
0a7f682d 5219 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5220 if (buf) {
2fbc57c5 5221 char *p;
03252919 5222
9bf39ab2 5223 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5224 if (IS_ERR(p))
5225 p = "?";
2fbc57c5 5226 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5227 vma->vm_start,
5228 vma->vm_end - vma->vm_start);
5229 free_page((unsigned long)buf);
5230 }
5231 }
d8ed45c5 5232 mmap_read_unlock(mm);
03252919 5233}
3ee1afa3 5234
662bbcb2 5235#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5236void __might_fault(const char *file, int line)
3ee1afa3 5237{
95156f00
PZ
5238 /*
5239 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5240 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5241 * get paged out, therefore we'll never actually fault, and the
5242 * below annotations will generate false positives.
5243 */
db68ce10 5244 if (uaccess_kernel())
95156f00 5245 return;
9ec23531 5246 if (pagefault_disabled())
662bbcb2 5247 return;
9ec23531
DH
5248 __might_sleep(file, line, 0);
5249#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5250 if (current->mm)
da1c55f1 5251 might_lock_read(&current->mm->mmap_lock);
9ec23531 5252#endif
3ee1afa3 5253}
9ec23531 5254EXPORT_SYMBOL(__might_fault);
3ee1afa3 5255#endif
47ad8475
AA
5256
5257#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5258/*
5259 * Process all subpages of the specified huge page with the specified
5260 * operation. The target subpage will be processed last to keep its
5261 * cache lines hot.
5262 */
5263static inline void process_huge_page(
5264 unsigned long addr_hint, unsigned int pages_per_huge_page,
5265 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5266 void *arg)
47ad8475 5267{
c79b57e4
HY
5268 int i, n, base, l;
5269 unsigned long addr = addr_hint &
5270 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5271
c6ddfb6c 5272 /* Process target subpage last to keep its cache lines hot */
47ad8475 5273 might_sleep();
c79b57e4
HY
5274 n = (addr_hint - addr) / PAGE_SIZE;
5275 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5276 /* If target subpage in first half of huge page */
c79b57e4
HY
5277 base = 0;
5278 l = n;
c6ddfb6c 5279 /* Process subpages at the end of huge page */
c79b57e4
HY
5280 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5281 cond_resched();
c6ddfb6c 5282 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5283 }
5284 } else {
c6ddfb6c 5285 /* If target subpage in second half of huge page */
c79b57e4
HY
5286 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5287 l = pages_per_huge_page - n;
c6ddfb6c 5288 /* Process subpages at the begin of huge page */
c79b57e4
HY
5289 for (i = 0; i < base; i++) {
5290 cond_resched();
c6ddfb6c 5291 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5292 }
5293 }
5294 /*
c6ddfb6c
HY
5295 * Process remaining subpages in left-right-left-right pattern
5296 * towards the target subpage
c79b57e4
HY
5297 */
5298 for (i = 0; i < l; i++) {
5299 int left_idx = base + i;
5300 int right_idx = base + 2 * l - 1 - i;
5301
5302 cond_resched();
c6ddfb6c 5303 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5304 cond_resched();
c6ddfb6c 5305 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5306 }
5307}
5308
c6ddfb6c
HY
5309static void clear_gigantic_page(struct page *page,
5310 unsigned long addr,
5311 unsigned int pages_per_huge_page)
5312{
5313 int i;
5314 struct page *p = page;
5315
5316 might_sleep();
5317 for (i = 0; i < pages_per_huge_page;
5318 i++, p = mem_map_next(p, page, i)) {
5319 cond_resched();
5320 clear_user_highpage(p, addr + i * PAGE_SIZE);
5321 }
5322}
5323
5324static void clear_subpage(unsigned long addr, int idx, void *arg)
5325{
5326 struct page *page = arg;
5327
5328 clear_user_highpage(page + idx, addr);
5329}
5330
5331void clear_huge_page(struct page *page,
5332 unsigned long addr_hint, unsigned int pages_per_huge_page)
5333{
5334 unsigned long addr = addr_hint &
5335 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5336
5337 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5338 clear_gigantic_page(page, addr, pages_per_huge_page);
5339 return;
5340 }
5341
5342 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5343}
5344
47ad8475
AA
5345static void copy_user_gigantic_page(struct page *dst, struct page *src,
5346 unsigned long addr,
5347 struct vm_area_struct *vma,
5348 unsigned int pages_per_huge_page)
5349{
5350 int i;
5351 struct page *dst_base = dst;
5352 struct page *src_base = src;
5353
5354 for (i = 0; i < pages_per_huge_page; ) {
5355 cond_resched();
5356 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5357
5358 i++;
5359 dst = mem_map_next(dst, dst_base, i);
5360 src = mem_map_next(src, src_base, i);
5361 }
5362}
5363
c9f4cd71
HY
5364struct copy_subpage_arg {
5365 struct page *dst;
5366 struct page *src;
5367 struct vm_area_struct *vma;
5368};
5369
5370static void copy_subpage(unsigned long addr, int idx, void *arg)
5371{
5372 struct copy_subpage_arg *copy_arg = arg;
5373
5374 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5375 addr, copy_arg->vma);
5376}
5377
47ad8475 5378void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5379 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5380 unsigned int pages_per_huge_page)
5381{
c9f4cd71
HY
5382 unsigned long addr = addr_hint &
5383 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5384 struct copy_subpage_arg arg = {
5385 .dst = dst,
5386 .src = src,
5387 .vma = vma,
5388 };
47ad8475
AA
5389
5390 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5391 copy_user_gigantic_page(dst, src, addr, vma,
5392 pages_per_huge_page);
5393 return;
5394 }
5395
c9f4cd71 5396 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5397}
fa4d75c1
MK
5398
5399long copy_huge_page_from_user(struct page *dst_page,
5400 const void __user *usr_src,
810a56b9
MK
5401 unsigned int pages_per_huge_page,
5402 bool allow_pagefault)
fa4d75c1 5403{
fa4d75c1
MK
5404 void *page_kaddr;
5405 unsigned long i, rc = 0;
5406 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5407 struct page *subpage = dst_page;
fa4d75c1 5408
3272cfc2
MK
5409 for (i = 0; i < pages_per_huge_page;
5410 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5411 if (allow_pagefault)
3272cfc2 5412 page_kaddr = kmap(subpage);
810a56b9 5413 else
3272cfc2 5414 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5415 rc = copy_from_user(page_kaddr,
b063e374 5416 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5417 if (allow_pagefault)
3272cfc2 5418 kunmap(subpage);
810a56b9
MK
5419 else
5420 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5421
5422 ret_val -= (PAGE_SIZE - rc);
5423 if (rc)
5424 break;
5425
5426 cond_resched();
5427 }
5428 return ret_val;
5429}
47ad8475 5430#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5431
40b64acd 5432#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5433
5434static struct kmem_cache *page_ptl_cachep;
5435
5436void __init ptlock_cache_init(void)
5437{
5438 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5439 SLAB_PANIC, NULL);
5440}
5441
539edb58 5442bool ptlock_alloc(struct page *page)
49076ec2
KS
5443{
5444 spinlock_t *ptl;
5445
b35f1819 5446 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5447 if (!ptl)
5448 return false;
539edb58 5449 page->ptl = ptl;
49076ec2
KS
5450 return true;
5451}
5452
539edb58 5453void ptlock_free(struct page *page)
49076ec2 5454{
b35f1819 5455 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5456}
5457#endif