Commit | Line | Data |
---|---|---|
1439f94c | 1 | // SPDX-License-Identifier: GPL-2.0-only |
6a46079c AK |
2 | /* |
3 | * Copyright (C) 2008, 2009 Intel Corporation | |
4 | * Authors: Andi Kleen, Fengguang Wu | |
5 | * | |
6a46079c | 6 | * High level machine check handler. Handles pages reported by the |
1c80b990 | 7 | * hardware as being corrupted usually due to a multi-bit ECC memory or cache |
6a46079c | 8 | * failure. |
c33c7948 | 9 | * |
1c80b990 AK |
10 | * In addition there is a "soft offline" entry point that allows stop using |
11 | * not-yet-corrupted-by-suspicious pages without killing anything. | |
6a46079c AK |
12 | * |
13 | * Handles page cache pages in various states. The tricky part | |
c33c7948 RR |
14 | * here is that we can access any page asynchronously in respect to |
15 | * other VM users, because memory failures could happen anytime and | |
16 | * anywhere. This could violate some of their assumptions. This is why | |
17 | * this code has to be extremely careful. Generally it tries to use | |
18 | * normal locking rules, as in get the standard locks, even if that means | |
1c80b990 | 19 | * the error handling takes potentially a long time. |
e0de78df AK |
20 | * |
21 | * It can be very tempting to add handling for obscure cases here. | |
22 | * In general any code for handling new cases should only be added iff: | |
23 | * - You know how to test it. | |
24 | * - You have a test that can be added to mce-test | |
25 | * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ | |
26 | * - The case actually shows up as a frequent (top 10) page state in | |
799fb82a | 27 | * tools/mm/page-types when running a real workload. |
c33c7948 | 28 | * |
1c80b990 | 29 | * There are several operations here with exponential complexity because |
c33c7948 RR |
30 | * of unsuitable VM data structures. For example the operation to map back |
31 | * from RMAP chains to processes has to walk the complete process list and | |
1c80b990 | 32 | * has non linear complexity with the number. But since memory corruptions |
c33c7948 | 33 | * are rare we hope to get away with this. This avoids impacting the core |
1c80b990 | 34 | * VM. |
6a46079c | 35 | */ |
96f96763 KW |
36 | |
37 | #define pr_fmt(fmt) "Memory failure: " fmt | |
38 | ||
6a46079c AK |
39 | #include <linux/kernel.h> |
40 | #include <linux/mm.h> | |
41 | #include <linux/page-flags.h> | |
3f07c014 | 42 | #include <linux/sched/signal.h> |
29930025 | 43 | #include <linux/sched/task.h> |
96c84dde | 44 | #include <linux/dax.h> |
01e00f88 | 45 | #include <linux/ksm.h> |
6a46079c | 46 | #include <linux/rmap.h> |
b9e15baf | 47 | #include <linux/export.h> |
6a46079c AK |
48 | #include <linux/pagemap.h> |
49 | #include <linux/swap.h> | |
50 | #include <linux/backing-dev.h> | |
facb6011 | 51 | #include <linux/migrate.h> |
5a0e3ad6 | 52 | #include <linux/slab.h> |
bf998156 | 53 | #include <linux/swapops.h> |
7af446a8 | 54 | #include <linux/hugetlb.h> |
20d6c96b | 55 | #include <linux/memory_hotplug.h> |
5db8a73a | 56 | #include <linux/mm_inline.h> |
6100e34b | 57 | #include <linux/memremap.h> |
ea8f5fb8 | 58 | #include <linux/kfifo.h> |
a5f65109 | 59 | #include <linux/ratelimit.h> |
a3f5d80e | 60 | #include <linux/pagewalk.h> |
a7605426 | 61 | #include <linux/shmem_fs.h> |
8cbc82f3 | 62 | #include <linux/sysctl.h> |
014bb1de | 63 | #include "swap.h" |
6a46079c | 64 | #include "internal.h" |
97f0b134 | 65 | #include "ras/ras_event.h" |
6a46079c | 66 | |
8cbc82f3 | 67 | static int sysctl_memory_failure_early_kill __read_mostly; |
6a46079c | 68 | |
8cbc82f3 | 69 | static int sysctl_memory_failure_recovery __read_mostly = 1; |
6a46079c | 70 | |
56374430 JY |
71 | static int sysctl_enable_soft_offline __read_mostly = 1; |
72 | ||
293c07e3 | 73 | atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); |
6a46079c | 74 | |
67f22ba7 | 75 | static bool hw_memory_failure __read_mostly = false; |
76 | ||
b79f8eb4 JY |
77 | static DEFINE_MUTEX(mf_mutex); |
78 | ||
1a7d018d | 79 | void num_poisoned_pages_inc(unsigned long pfn) |
d027122d NH |
80 | { |
81 | atomic_long_inc(&num_poisoned_pages); | |
5033091d | 82 | memblk_nr_poison_inc(pfn); |
d027122d NH |
83 | } |
84 | ||
1a7d018d | 85 | void num_poisoned_pages_sub(unsigned long pfn, long i) |
d027122d NH |
86 | { |
87 | atomic_long_sub(i, &num_poisoned_pages); | |
5033091d NH |
88 | if (pfn != -1UL) |
89 | memblk_nr_poison_sub(pfn, i); | |
d027122d NH |
90 | } |
91 | ||
44b8f8bf JY |
92 | /** |
93 | * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. | |
94 | * @_name: name of the file in the per NUMA sysfs directory. | |
95 | */ | |
96 | #define MF_ATTR_RO(_name) \ | |
97 | static ssize_t _name##_show(struct device *dev, \ | |
98 | struct device_attribute *attr, \ | |
99 | char *buf) \ | |
100 | { \ | |
101 | struct memory_failure_stats *mf_stats = \ | |
102 | &NODE_DATA(dev->id)->mf_stats; \ | |
408a8dc6 | 103 | return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ |
44b8f8bf JY |
104 | } \ |
105 | static DEVICE_ATTR_RO(_name) | |
106 | ||
107 | MF_ATTR_RO(total); | |
108 | MF_ATTR_RO(ignored); | |
109 | MF_ATTR_RO(failed); | |
110 | MF_ATTR_RO(delayed); | |
111 | MF_ATTR_RO(recovered); | |
112 | ||
113 | static struct attribute *memory_failure_attr[] = { | |
114 | &dev_attr_total.attr, | |
115 | &dev_attr_ignored.attr, | |
116 | &dev_attr_failed.attr, | |
117 | &dev_attr_delayed.attr, | |
118 | &dev_attr_recovered.attr, | |
119 | NULL, | |
120 | }; | |
121 | ||
122 | const struct attribute_group memory_failure_attr_group = { | |
123 | .name = "memory_failure", | |
124 | .attrs = memory_failure_attr, | |
125 | }; | |
126 | ||
1751f872 | 127 | static const struct ctl_table memory_failure_table[] = { |
8cbc82f3 KW |
128 | { |
129 | .procname = "memory_failure_early_kill", | |
130 | .data = &sysctl_memory_failure_early_kill, | |
131 | .maxlen = sizeof(sysctl_memory_failure_early_kill), | |
132 | .mode = 0644, | |
133 | .proc_handler = proc_dointvec_minmax, | |
134 | .extra1 = SYSCTL_ZERO, | |
135 | .extra2 = SYSCTL_ONE, | |
136 | }, | |
137 | { | |
138 | .procname = "memory_failure_recovery", | |
139 | .data = &sysctl_memory_failure_recovery, | |
140 | .maxlen = sizeof(sysctl_memory_failure_recovery), | |
141 | .mode = 0644, | |
142 | .proc_handler = proc_dointvec_minmax, | |
143 | .extra1 = SYSCTL_ZERO, | |
144 | .extra2 = SYSCTL_ONE, | |
145 | }, | |
56374430 JY |
146 | { |
147 | .procname = "enable_soft_offline", | |
148 | .data = &sysctl_enable_soft_offline, | |
149 | .maxlen = sizeof(sysctl_enable_soft_offline), | |
150 | .mode = 0644, | |
151 | .proc_handler = proc_dointvec_minmax, | |
152 | .extra1 = SYSCTL_ZERO, | |
153 | .extra2 = SYSCTL_ONE, | |
154 | } | |
8cbc82f3 KW |
155 | }; |
156 | ||
7453bf62 NH |
157 | /* |
158 | * Return values: | |
159 | * 1: the page is dissolved (if needed) and taken off from buddy, | |
160 | * 0: the page is dissolved (if needed) and not taken off from buddy, | |
161 | * < 0: failed to dissolve. | |
162 | */ | |
163 | static int __page_handle_poison(struct page *page) | |
510d25c9 | 164 | { |
f87060d3 | 165 | int ret; |
510d25c9 | 166 | |
1983184c ML |
167 | /* |
168 | * zone_pcp_disable() can't be used here. It will | |
54fa49b2 | 169 | * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold |
1983184c ML |
170 | * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap |
171 | * optimization is enabled. This will break current lock dependency | |
172 | * chain and leads to deadlock. | |
173 | * Disabling pcp before dissolving the page was a deterministic | |
174 | * approach because we made sure that those pages cannot end up in any | |
175 | * PCP list. Draining PCP lists expels those pages to the buddy system, | |
176 | * but nothing guarantees that those pages do not get back to a PCP | |
177 | * queue if we need to refill those. | |
178 | */ | |
54fa49b2 | 179 | ret = dissolve_free_hugetlb_folio(page_folio(page)); |
1983184c ML |
180 | if (!ret) { |
181 | drain_all_pages(page_zone(page)); | |
510d25c9 | 182 | ret = take_page_off_buddy(page); |
1983184c | 183 | } |
510d25c9 | 184 | |
7453bf62 | 185 | return ret; |
510d25c9 NH |
186 | } |
187 | ||
6b9a217e | 188 | static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) |
06be6ff3 | 189 | { |
6b9a217e OS |
190 | if (hugepage_or_freepage) { |
191 | /* | |
54fa49b2 SK |
192 | * Doing this check for free pages is also fine since |
193 | * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. | |
6b9a217e | 194 | */ |
7453bf62 | 195 | if (__page_handle_poison(page) <= 0) |
6b9a217e OS |
196 | /* |
197 | * We could fail to take off the target page from buddy | |
f0953a1b | 198 | * for example due to racy page allocation, but that's |
6b9a217e OS |
199 | * acceptable because soft-offlined page is not broken |
200 | * and if someone really want to use it, they should | |
201 | * take it. | |
202 | */ | |
203 | return false; | |
204 | } | |
205 | ||
06be6ff3 | 206 | SetPageHWPoison(page); |
79f5f8fa OS |
207 | if (release) |
208 | put_page(page); | |
06be6ff3 | 209 | page_ref_inc(page); |
a46c9304 | 210 | num_poisoned_pages_inc(page_to_pfn(page)); |
6b9a217e OS |
211 | |
212 | return true; | |
06be6ff3 OS |
213 | } |
214 | ||
611b9fd8 | 215 | #if IS_ENABLED(CONFIG_HWPOISON_INJECT) |
27df5068 | 216 | |
1bfe5feb | 217 | u32 hwpoison_filter_enable = 0; |
7c116f2b WF |
218 | u32 hwpoison_filter_dev_major = ~0U; |
219 | u32 hwpoison_filter_dev_minor = ~0U; | |
478c5ffc WF |
220 | u64 hwpoison_filter_flags_mask; |
221 | u64 hwpoison_filter_flags_value; | |
1bfe5feb | 222 | EXPORT_SYMBOL_GPL(hwpoison_filter_enable); |
7c116f2b WF |
223 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); |
224 | EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); | |
478c5ffc WF |
225 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); |
226 | EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); | |
7c116f2b WF |
227 | |
228 | static int hwpoison_filter_dev(struct page *p) | |
229 | { | |
89f5c54b | 230 | struct folio *folio = page_folio(p); |
7c116f2b WF |
231 | struct address_space *mapping; |
232 | dev_t dev; | |
233 | ||
234 | if (hwpoison_filter_dev_major == ~0U && | |
235 | hwpoison_filter_dev_minor == ~0U) | |
236 | return 0; | |
237 | ||
89f5c54b | 238 | mapping = folio_mapping(folio); |
7c116f2b WF |
239 | if (mapping == NULL || mapping->host == NULL) |
240 | return -EINVAL; | |
241 | ||
242 | dev = mapping->host->i_sb->s_dev; | |
243 | if (hwpoison_filter_dev_major != ~0U && | |
244 | hwpoison_filter_dev_major != MAJOR(dev)) | |
245 | return -EINVAL; | |
246 | if (hwpoison_filter_dev_minor != ~0U && | |
247 | hwpoison_filter_dev_minor != MINOR(dev)) | |
248 | return -EINVAL; | |
249 | ||
250 | return 0; | |
251 | } | |
252 | ||
478c5ffc WF |
253 | static int hwpoison_filter_flags(struct page *p) |
254 | { | |
255 | if (!hwpoison_filter_flags_mask) | |
256 | return 0; | |
257 | ||
258 | if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == | |
259 | hwpoison_filter_flags_value) | |
260 | return 0; | |
261 | else | |
262 | return -EINVAL; | |
263 | } | |
264 | ||
4fd466eb AK |
265 | /* |
266 | * This allows stress tests to limit test scope to a collection of tasks | |
267 | * by putting them under some memcg. This prevents killing unrelated/important | |
268 | * processes such as /sbin/init. Note that the target task may share clean | |
269 | * pages with init (eg. libc text), which is harmless. If the target task | |
270 | * share _dirty_ pages with another task B, the test scheme must make sure B | |
271 | * is also included in the memcg. At last, due to race conditions this filter | |
272 | * can only guarantee that the page either belongs to the memcg tasks, or is | |
273 | * a freed page. | |
274 | */ | |
94a59fb3 | 275 | #ifdef CONFIG_MEMCG |
4fd466eb AK |
276 | u64 hwpoison_filter_memcg; |
277 | EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); | |
278 | static int hwpoison_filter_task(struct page *p) | |
279 | { | |
4fd466eb AK |
280 | if (!hwpoison_filter_memcg) |
281 | return 0; | |
282 | ||
94a59fb3 | 283 | if (page_cgroup_ino(p) != hwpoison_filter_memcg) |
4fd466eb AK |
284 | return -EINVAL; |
285 | ||
286 | return 0; | |
287 | } | |
288 | #else | |
289 | static int hwpoison_filter_task(struct page *p) { return 0; } | |
290 | #endif | |
291 | ||
7c116f2b WF |
292 | int hwpoison_filter(struct page *p) |
293 | { | |
1bfe5feb HL |
294 | if (!hwpoison_filter_enable) |
295 | return 0; | |
296 | ||
7c116f2b WF |
297 | if (hwpoison_filter_dev(p)) |
298 | return -EINVAL; | |
299 | ||
478c5ffc WF |
300 | if (hwpoison_filter_flags(p)) |
301 | return -EINVAL; | |
302 | ||
4fd466eb AK |
303 | if (hwpoison_filter_task(p)) |
304 | return -EINVAL; | |
305 | ||
7c116f2b WF |
306 | return 0; |
307 | } | |
5a8b01be | 308 | EXPORT_SYMBOL_GPL(hwpoison_filter); |
27df5068 AK |
309 | #else |
310 | int hwpoison_filter(struct page *p) | |
311 | { | |
312 | return 0; | |
313 | } | |
314 | #endif | |
315 | ||
ae1139ec DW |
316 | /* |
317 | * Kill all processes that have a poisoned page mapped and then isolate | |
318 | * the page. | |
319 | * | |
320 | * General strategy: | |
321 | * Find all processes having the page mapped and kill them. | |
322 | * But we keep a page reference around so that the page is not | |
323 | * actually freed yet. | |
324 | * Then stash the page away | |
325 | * | |
326 | * There's no convenient way to get back to mapped processes | |
327 | * from the VMAs. So do a brute-force search over all | |
328 | * running processes. | |
329 | * | |
330 | * Remember that machine checks are not common (or rather | |
331 | * if they are common you have other problems), so this shouldn't | |
332 | * be a performance issue. | |
333 | * | |
334 | * Also there are some races possible while we get from the | |
335 | * error detection to actually handle it. | |
336 | */ | |
337 | ||
338 | struct to_kill { | |
339 | struct list_head nd; | |
340 | struct task_struct *tsk; | |
341 | unsigned long addr; | |
342 | short size_shift; | |
ae1139ec DW |
343 | }; |
344 | ||
6a46079c | 345 | /* |
7329bbeb TL |
346 | * Send all the processes who have the page mapped a signal. |
347 | * ``action optional'' if they are not immediately affected by the error | |
348 | * ``action required'' if error happened in current execution context | |
6a46079c | 349 | */ |
ae1139ec | 350 | static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) |
6a46079c | 351 | { |
ae1139ec DW |
352 | struct task_struct *t = tk->tsk; |
353 | short addr_lsb = tk->size_shift; | |
872e9a20 | 354 | int ret = 0; |
6a46079c | 355 | |
96f96763 | 356 | pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", |
96e13a4e | 357 | pfn, t->comm, task_pid_nr(t)); |
7329bbeb | 358 | |
49775047 ML |
359 | if ((flags & MF_ACTION_REQUIRED) && (t == current)) |
360 | ret = force_sig_mceerr(BUS_MCEERR_AR, | |
361 | (void __user *)tk->addr, addr_lsb); | |
362 | else | |
7329bbeb | 363 | /* |
49775047 ML |
364 | * Signal other processes sharing the page if they have |
365 | * PF_MCE_EARLY set. | |
7329bbeb TL |
366 | * Don't use force here, it's convenient if the signal |
367 | * can be temporarily blocked. | |
7329bbeb | 368 | */ |
ae1139ec | 369 | ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, |
9cf28191 | 370 | addr_lsb, t); |
6a46079c | 371 | if (ret < 0) |
96f96763 | 372 | pr_info("Error sending signal to %s:%d: %d\n", |
96e13a4e | 373 | t->comm, task_pid_nr(t), ret); |
6a46079c AK |
374 | return ret; |
375 | } | |
376 | ||
588f9ce6 | 377 | /* |
47e431f4 | 378 | * Unknown page type encountered. Try to check whether it can turn PageLRU by |
d0505e9f | 379 | * lru_add_drain_all. |
588f9ce6 | 380 | */ |
fed5348e | 381 | void shake_folio(struct folio *folio) |
588f9ce6 | 382 | { |
fed5348e | 383 | if (folio_test_hugetlb(folio)) |
8bcb74de | 384 | return; |
588f9ce6 | 385 | /* |
d0505e9f YS |
386 | * TODO: Could shrink slab caches here if a lightweight range-based |
387 | * shrinker will be available. | |
588f9ce6 | 388 | */ |
fed5348e | 389 | if (folio_test_slab(folio)) |
b7b618da ML |
390 | return; |
391 | ||
392 | lru_add_drain_all(); | |
588f9ce6 | 393 | } |
fed5348e MWO |
394 | EXPORT_SYMBOL_GPL(shake_folio); |
395 | ||
396 | static void shake_page(struct page *page) | |
397 | { | |
398 | shake_folio(page_folio(page)); | |
399 | } | |
588f9ce6 | 400 | |
c36e2024 SR |
401 | static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, |
402 | unsigned long address) | |
6100e34b | 403 | { |
5c91c0e7 | 404 | unsigned long ret = 0; |
6100e34b DW |
405 | pgd_t *pgd; |
406 | p4d_t *p4d; | |
407 | pud_t *pud; | |
408 | pmd_t *pmd; | |
409 | pte_t *pte; | |
c33c7948 | 410 | pte_t ptent; |
6100e34b | 411 | |
a994402b | 412 | VM_BUG_ON_VMA(address == -EFAULT, vma); |
6100e34b DW |
413 | pgd = pgd_offset(vma->vm_mm, address); |
414 | if (!pgd_present(*pgd)) | |
415 | return 0; | |
416 | p4d = p4d_offset(pgd, address); | |
417 | if (!p4d_present(*p4d)) | |
418 | return 0; | |
419 | pud = pud_offset(p4d, address); | |
420 | if (!pud_present(*pud)) | |
421 | return 0; | |
38607c62 | 422 | if (pud_trans_huge(*pud)) |
6100e34b DW |
423 | return PUD_SHIFT; |
424 | pmd = pmd_offset(pud, address); | |
425 | if (!pmd_present(*pmd)) | |
426 | return 0; | |
38607c62 | 427 | if (pmd_trans_huge(*pmd)) |
6100e34b DW |
428 | return PMD_SHIFT; |
429 | pte = pte_offset_map(pmd, address); | |
04dee9e8 HD |
430 | if (!pte) |
431 | return 0; | |
c33c7948 | 432 | ptent = ptep_get(pte); |
38607c62 | 433 | if (pte_present(ptent)) |
5c91c0e7 QZ |
434 | ret = PAGE_SHIFT; |
435 | pte_unmap(pte); | |
436 | return ret; | |
6100e34b | 437 | } |
6a46079c AK |
438 | |
439 | /* | |
440 | * Failure handling: if we can't find or can't kill a process there's | |
441 | * not much we can do. We just print a message and ignore otherwise. | |
442 | */ | |
443 | ||
444 | /* | |
445 | * Schedule a process for later kill. | |
446 | * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. | |
6a46079c | 447 | */ |
68158bfa | 448 | static void __add_to_kill(struct task_struct *tsk, const struct page *p, |
4f775086 | 449 | struct vm_area_struct *vma, struct list_head *to_kill, |
1c0501e8 | 450 | unsigned long addr) |
6a46079c AK |
451 | { |
452 | struct to_kill *tk; | |
453 | ||
996ff7a0 JC |
454 | tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); |
455 | if (!tk) { | |
96f96763 | 456 | pr_err("Out of memory while machine check handling\n"); |
996ff7a0 | 457 | return; |
6a46079c | 458 | } |
996ff7a0 | 459 | |
f2b37197 | 460 | tk->addr = addr; |
1c0501e8 | 461 | if (is_zone_device_page(p)) |
c36e2024 | 462 | tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); |
1c0501e8 | 463 | else |
68158bfa | 464 | tk->size_shift = folio_shift(page_folio(p)); |
6a46079c AK |
465 | |
466 | /* | |
3d7fed4a JC |
467 | * Send SIGKILL if "tk->addr == -EFAULT". Also, as |
468 | * "tk->size_shift" is always non-zero for !is_zone_device_page(), | |
469 | * so "tk->size_shift == 0" effectively checks no mapping on | |
470 | * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times | |
471 | * to a process' address space, it's possible not all N VMAs | |
472 | * contain mappings for the page, but at least one VMA does. | |
473 | * Only deliver SIGBUS with payload derived from the VMA that | |
474 | * has a mapping for the page. | |
6a46079c | 475 | */ |
3d7fed4a | 476 | if (tk->addr == -EFAULT) { |
96f96763 | 477 | pr_info("Unable to find user space address %lx in %s\n", |
6a46079c | 478 | page_to_pfn(p), tsk->comm); |
3d7fed4a JC |
479 | } else if (tk->size_shift == 0) { |
480 | kfree(tk); | |
481 | return; | |
6a46079c | 482 | } |
996ff7a0 | 483 | |
6a46079c AK |
484 | get_task_struct(tsk); |
485 | tk->tsk = tsk; | |
486 | list_add_tail(&tk->nd, to_kill); | |
487 | } | |
488 | ||
68158bfa | 489 | static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, |
37bc2ff5 MWO |
490 | struct vm_area_struct *vma, struct list_head *to_kill, |
491 | unsigned long addr) | |
4f775086 | 492 | { |
37bc2ff5 MWO |
493 | if (addr == -EFAULT) |
494 | return; | |
f2b37197 | 495 | __add_to_kill(tsk, p, vma, to_kill, addr); |
4f775086 LX |
496 | } |
497 | ||
4248d008 LX |
498 | #ifdef CONFIG_KSM |
499 | static bool task_in_to_kill_list(struct list_head *to_kill, | |
500 | struct task_struct *tsk) | |
501 | { | |
502 | struct to_kill *tk, *next; | |
503 | ||
504 | list_for_each_entry_safe(tk, next, to_kill, nd) { | |
505 | if (tk->tsk == tsk) | |
506 | return true; | |
507 | } | |
508 | ||
509 | return false; | |
510 | } | |
f2b37197 | 511 | |
68158bfa | 512 | void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, |
4248d008 | 513 | struct vm_area_struct *vma, struct list_head *to_kill, |
1c0501e8 | 514 | unsigned long addr) |
4248d008 LX |
515 | { |
516 | if (!task_in_to_kill_list(to_kill, tsk)) | |
1c0501e8 | 517 | __add_to_kill(tsk, p, vma, to_kill, addr); |
4248d008 LX |
518 | } |
519 | #endif | |
6a46079c AK |
520 | /* |
521 | * Kill the processes that have been collected earlier. | |
522 | * | |
a21c184f ML |
523 | * Only do anything when FORCEKILL is set, otherwise just free the |
524 | * list (this is used for clean pages which do not need killing) | |
6a46079c | 525 | */ |
aa298fdf | 526 | static void kill_procs(struct list_head *to_kill, int forcekill, |
ae1139ec | 527 | unsigned long pfn, int flags) |
6a46079c AK |
528 | { |
529 | struct to_kill *tk, *next; | |
530 | ||
54f9555d | 531 | list_for_each_entry_safe(tk, next, to_kill, nd) { |
6751ed65 | 532 | if (forcekill) { |
aa298fdf | 533 | if (tk->addr == -EFAULT) { |
96f96763 | 534 | pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", |
96e13a4e | 535 | pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); |
6376360e NH |
536 | do_send_sig_info(SIGKILL, SEND_SIG_PRIV, |
537 | tk->tsk, PIDTYPE_PID); | |
6a46079c AK |
538 | } |
539 | ||
540 | /* | |
541 | * In theory the process could have mapped | |
542 | * something else on the address in-between. We could | |
543 | * check for that, but we need to tell the | |
544 | * process anyways. | |
545 | */ | |
ae1139ec | 546 | else if (kill_proc(tk, pfn, flags) < 0) |
96f96763 | 547 | pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", |
96e13a4e | 548 | pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); |
6a46079c | 549 | } |
54f9555d | 550 | list_del(&tk->nd); |
6a46079c AK |
551 | put_task_struct(tk->tsk); |
552 | kfree(tk); | |
553 | } | |
554 | } | |
555 | ||
3ba08129 NH |
556 | /* |
557 | * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) | |
558 | * on behalf of the thread group. Return task_struct of the (first found) | |
559 | * dedicated thread if found, and return NULL otherwise. | |
560 | * | |
d256d1cd TT |
561 | * We already hold rcu lock in the caller, so we don't have to call |
562 | * rcu_read_lock/unlock() in this function. | |
3ba08129 NH |
563 | */ |
564 | static struct task_struct *find_early_kill_thread(struct task_struct *tsk) | |
6a46079c | 565 | { |
3ba08129 NH |
566 | struct task_struct *t; |
567 | ||
4e018b45 NH |
568 | for_each_thread(tsk, t) { |
569 | if (t->flags & PF_MCE_PROCESS) { | |
570 | if (t->flags & PF_MCE_EARLY) | |
571 | return t; | |
572 | } else { | |
573 | if (sysctl_memory_failure_early_kill) | |
574 | return t; | |
575 | } | |
576 | } | |
3ba08129 NH |
577 | return NULL; |
578 | } | |
579 | ||
580 | /* | |
581 | * Determine whether a given process is "early kill" process which expects | |
582 | * to be signaled when some page under the process is hwpoisoned. | |
583 | * Return task_struct of the dedicated thread (main thread unless explicitly | |
30c9cf49 | 584 | * specified) if the process is "early kill" and otherwise returns NULL. |
03151c6e | 585 | * |
30c9cf49 AY |
586 | * Note that the above is true for Action Optional case. For Action Required |
587 | * case, it's only meaningful to the current thread which need to be signaled | |
588 | * with SIGBUS, this error is Action Optional for other non current | |
589 | * processes sharing the same error page,if the process is "early kill", the | |
590 | * task_struct of the dedicated thread will also be returned. | |
3ba08129 | 591 | */ |
4248d008 | 592 | struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) |
3ba08129 | 593 | { |
6a46079c | 594 | if (!tsk->mm) |
3ba08129 | 595 | return NULL; |
30c9cf49 AY |
596 | /* |
597 | * Comparing ->mm here because current task might represent | |
598 | * a subthread, while tsk always points to the main thread. | |
599 | */ | |
600 | if (force_early && tsk->mm == current->mm) | |
601 | return current; | |
602 | ||
4e018b45 | 603 | return find_early_kill_thread(tsk); |
6a46079c AK |
604 | } |
605 | ||
606 | /* | |
607 | * Collect processes when the error hit an anonymous page. | |
608 | */ | |
68158bfa MWO |
609 | static void collect_procs_anon(const struct folio *folio, |
610 | const struct page *page, struct list_head *to_kill, | |
611 | int force_early) | |
6a46079c | 612 | { |
6a46079c AK |
613 | struct task_struct *tsk; |
614 | struct anon_vma *av; | |
bf181b9f | 615 | pgoff_t pgoff; |
6a46079c | 616 | |
6d4675e6 | 617 | av = folio_lock_anon_vma_read(folio, NULL); |
6a46079c | 618 | if (av == NULL) /* Not actually mapped anymore */ |
9b679320 PZ |
619 | return; |
620 | ||
f7470591 | 621 | pgoff = page_pgoff(folio, page); |
d256d1cd | 622 | rcu_read_lock(); |
5885c6a6 | 623 | for_each_process(tsk) { |
37bc2ff5 | 624 | struct vm_area_struct *vma; |
5beb4930 | 625 | struct anon_vma_chain *vmac; |
3ba08129 | 626 | struct task_struct *t = task_early_kill(tsk, force_early); |
37bc2ff5 | 627 | unsigned long addr; |
5beb4930 | 628 | |
3ba08129 | 629 | if (!t) |
6a46079c | 630 | continue; |
bf181b9f ML |
631 | anon_vma_interval_tree_foreach(vmac, &av->rb_root, |
632 | pgoff, pgoff) { | |
5beb4930 | 633 | vma = vmac->vma; |
36537a67 ML |
634 | if (vma->vm_mm != t->mm) |
635 | continue; | |
37bc2ff5 MWO |
636 | addr = page_mapped_in_vma(page, vma); |
637 | add_to_kill_anon_file(t, page, vma, to_kill, addr); | |
6a46079c AK |
638 | } |
639 | } | |
d256d1cd | 640 | rcu_read_unlock(); |
0c826c0b | 641 | anon_vma_unlock_read(av); |
6a46079c AK |
642 | } |
643 | ||
644 | /* | |
645 | * Collect processes when the error hit a file mapped page. | |
646 | */ | |
68158bfa MWO |
647 | static void collect_procs_file(const struct folio *folio, |
648 | const struct page *page, struct list_head *to_kill, | |
649 | int force_early) | |
6a46079c AK |
650 | { |
651 | struct vm_area_struct *vma; | |
652 | struct task_struct *tsk; | |
376907f3 | 653 | struct address_space *mapping = folio->mapping; |
c43bc03d | 654 | pgoff_t pgoff; |
6a46079c | 655 | |
d28eb9c8 | 656 | i_mmap_lock_read(mapping); |
d256d1cd | 657 | rcu_read_lock(); |
f7470591 | 658 | pgoff = page_pgoff(folio, page); |
6a46079c | 659 | for_each_process(tsk) { |
3ba08129 | 660 | struct task_struct *t = task_early_kill(tsk, force_early); |
37bc2ff5 | 661 | unsigned long addr; |
6a46079c | 662 | |
3ba08129 | 663 | if (!t) |
6a46079c | 664 | continue; |
6b2dbba8 | 665 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, |
6a46079c AK |
666 | pgoff) { |
667 | /* | |
668 | * Send early kill signal to tasks where a vma covers | |
669 | * the page but the corrupted page is not necessarily | |
5885c6a6 | 670 | * mapped in its pte. |
6a46079c AK |
671 | * Assume applications who requested early kill want |
672 | * to be informed of all such data corruptions. | |
673 | */ | |
37bc2ff5 MWO |
674 | if (vma->vm_mm != t->mm) |
675 | continue; | |
713da0b3 | 676 | addr = page_address_in_vma(folio, page, vma); |
37bc2ff5 | 677 | add_to_kill_anon_file(t, page, vma, to_kill, addr); |
6a46079c AK |
678 | } |
679 | } | |
d256d1cd | 680 | rcu_read_unlock(); |
d28eb9c8 | 681 | i_mmap_unlock_read(mapping); |
6a46079c AK |
682 | } |
683 | ||
c36e2024 | 684 | #ifdef CONFIG_FS_DAX |
68158bfa | 685 | static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, |
4f775086 LX |
686 | struct vm_area_struct *vma, |
687 | struct list_head *to_kill, pgoff_t pgoff) | |
688 | { | |
1c0501e8 MWO |
689 | unsigned long addr = vma_address(vma, pgoff, 1); |
690 | __add_to_kill(tsk, p, vma, to_kill, addr); | |
4f775086 LX |
691 | } |
692 | ||
c36e2024 SR |
693 | /* |
694 | * Collect processes when the error hit a fsdax page. | |
695 | */ | |
68158bfa | 696 | static void collect_procs_fsdax(const struct page *page, |
c36e2024 | 697 | struct address_space *mapping, pgoff_t pgoff, |
fa422b35 | 698 | struct list_head *to_kill, bool pre_remove) |
c36e2024 SR |
699 | { |
700 | struct vm_area_struct *vma; | |
701 | struct task_struct *tsk; | |
702 | ||
703 | i_mmap_lock_read(mapping); | |
d256d1cd | 704 | rcu_read_lock(); |
c36e2024 | 705 | for_each_process(tsk) { |
fa422b35 | 706 | struct task_struct *t = tsk; |
c36e2024 | 707 | |
fa422b35 SR |
708 | /* |
709 | * Search for all tasks while MF_MEM_PRE_REMOVE is set, because | |
710 | * the current may not be the one accessing the fsdax page. | |
711 | * Otherwise, search for the current task. | |
712 | */ | |
713 | if (!pre_remove) | |
714 | t = task_early_kill(tsk, true); | |
c36e2024 SR |
715 | if (!t) |
716 | continue; | |
717 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { | |
718 | if (vma->vm_mm == t->mm) | |
4f775086 | 719 | add_to_kill_fsdax(t, page, vma, to_kill, pgoff); |
c36e2024 SR |
720 | } |
721 | } | |
d256d1cd | 722 | rcu_read_unlock(); |
c36e2024 SR |
723 | i_mmap_unlock_read(mapping); |
724 | } | |
725 | #endif /* CONFIG_FS_DAX */ | |
726 | ||
6a46079c AK |
727 | /* |
728 | * Collect the processes who have the corrupted page mapped to kill. | |
6a46079c | 729 | */ |
68158bfa | 730 | static void collect_procs(const struct folio *folio, const struct page *page, |
376907f3 | 731 | struct list_head *tokill, int force_early) |
6a46079c | 732 | { |
376907f3 | 733 | if (!folio->mapping) |
6a46079c | 734 | return; |
0edb5b28 | 735 | if (unlikely(folio_test_ksm(folio))) |
b650e1d2 | 736 | collect_procs_ksm(folio, page, tokill, force_early); |
0edb5b28 | 737 | else if (folio_test_anon(folio)) |
376907f3 | 738 | collect_procs_anon(folio, page, tokill, force_early); |
6a46079c | 739 | else |
376907f3 | 740 | collect_procs_file(folio, page, tokill, force_early); |
6a46079c AK |
741 | } |
742 | ||
6885938c | 743 | struct hwpoison_walk { |
a3f5d80e NH |
744 | struct to_kill tk; |
745 | unsigned long pfn; | |
746 | int flags; | |
747 | }; | |
748 | ||
749 | static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) | |
750 | { | |
751 | tk->addr = addr; | |
752 | tk->size_shift = shift; | |
753 | } | |
754 | ||
755 | static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, | |
756 | unsigned long poisoned_pfn, struct to_kill *tk) | |
757 | { | |
758 | unsigned long pfn = 0; | |
759 | ||
760 | if (pte_present(pte)) { | |
761 | pfn = pte_pfn(pte); | |
762 | } else { | |
763 | swp_entry_t swp = pte_to_swp_entry(pte); | |
764 | ||
765 | if (is_hwpoison_entry(swp)) | |
0d206b5d | 766 | pfn = swp_offset_pfn(swp); |
a3f5d80e NH |
767 | } |
768 | ||
769 | if (!pfn || pfn != poisoned_pfn) | |
770 | return 0; | |
771 | ||
772 | set_to_kill(tk, addr, shift); | |
773 | return 1; | |
774 | } | |
775 | ||
776 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | |
777 | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | |
6885938c | 778 | struct hwpoison_walk *hwp) |
a3f5d80e NH |
779 | { |
780 | pmd_t pmd = *pmdp; | |
781 | unsigned long pfn; | |
782 | unsigned long hwpoison_vaddr; | |
783 | ||
784 | if (!pmd_present(pmd)) | |
785 | return 0; | |
786 | pfn = pmd_pfn(pmd); | |
787 | if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { | |
788 | hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); | |
789 | set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); | |
790 | return 1; | |
791 | } | |
792 | return 0; | |
793 | } | |
794 | #else | |
795 | static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, | |
6885938c | 796 | struct hwpoison_walk *hwp) |
a3f5d80e NH |
797 | { |
798 | return 0; | |
799 | } | |
800 | #endif | |
801 | ||
802 | static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, | |
803 | unsigned long end, struct mm_walk *walk) | |
804 | { | |
6885938c | 805 | struct hwpoison_walk *hwp = walk->private; |
a3f5d80e | 806 | int ret = 0; |
ea3732f7 | 807 | pte_t *ptep, *mapped_pte; |
a3f5d80e NH |
808 | spinlock_t *ptl; |
809 | ||
810 | ptl = pmd_trans_huge_lock(pmdp, walk->vma); | |
811 | if (ptl) { | |
812 | ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); | |
813 | spin_unlock(ptl); | |
814 | goto out; | |
815 | } | |
816 | ||
ea3732f7 ML |
817 | mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, |
818 | addr, &ptl); | |
04dee9e8 HD |
819 | if (!ptep) |
820 | goto out; | |
821 | ||
a3f5d80e | 822 | for (; addr != end; ptep++, addr += PAGE_SIZE) { |
c33c7948 | 823 | ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, |
a3f5d80e NH |
824 | hwp->pfn, &hwp->tk); |
825 | if (ret == 1) | |
826 | break; | |
827 | } | |
ea3732f7 | 828 | pte_unmap_unlock(mapped_pte, ptl); |
a3f5d80e NH |
829 | out: |
830 | cond_resched(); | |
831 | return ret; | |
832 | } | |
833 | ||
834 | #ifdef CONFIG_HUGETLB_PAGE | |
835 | static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, | |
836 | unsigned long addr, unsigned long end, | |
837 | struct mm_walk *walk) | |
838 | { | |
6885938c | 839 | struct hwpoison_walk *hwp = walk->private; |
e6c0c032 | 840 | pte_t pte = huge_ptep_get(walk->mm, addr, ptep); |
a3f5d80e NH |
841 | struct hstate *h = hstate_vma(walk->vma); |
842 | ||
843 | return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), | |
844 | hwp->pfn, &hwp->tk); | |
845 | } | |
846 | #else | |
847 | #define hwpoison_hugetlb_range NULL | |
848 | #endif | |
849 | ||
6885938c | 850 | static const struct mm_walk_ops hwpoison_walk_ops = { |
a3f5d80e NH |
851 | .pmd_entry = hwpoison_pte_range, |
852 | .hugetlb_entry = hwpoison_hugetlb_range, | |
49b06385 | 853 | .walk_lock = PGWALK_RDLOCK, |
a3f5d80e NH |
854 | }; |
855 | ||
856 | /* | |
857 | * Sends SIGBUS to the current process with error info. | |
858 | * | |
859 | * This function is intended to handle "Action Required" MCEs on already | |
860 | * hardware poisoned pages. They could happen, for example, when | |
861 | * memory_failure() failed to unmap the error page at the first call, or | |
862 | * when multiple local machine checks happened on different CPUs. | |
863 | * | |
864 | * MCE handler currently has no easy access to the error virtual address, | |
865 | * so this function walks page table to find it. The returned virtual address | |
866 | * is proper in most cases, but it could be wrong when the application | |
867 | * process has multiple entries mapping the error page. | |
868 | */ | |
869 | static int kill_accessing_process(struct task_struct *p, unsigned long pfn, | |
870 | int flags) | |
871 | { | |
872 | int ret; | |
6885938c | 873 | struct hwpoison_walk priv = { |
a3f5d80e NH |
874 | .pfn = pfn, |
875 | }; | |
876 | priv.tk.tsk = p; | |
877 | ||
77677cdb SX |
878 | if (!p->mm) |
879 | return -EFAULT; | |
880 | ||
a3f5d80e | 881 | mmap_read_lock(p->mm); |
6885938c | 882 | ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, |
a3f5d80e | 883 | (void *)&priv); |
aaf99ac2 SX |
884 | /* |
885 | * ret = 1 when CMCI wins, regardless of whether try_to_unmap() | |
886 | * succeeds or fails, then kill the process with SIGBUS. | |
887 | * ret = 0 when poison page is a clean page and it's dropped, no | |
888 | * SIGBUS is needed. | |
889 | */ | |
a3f5d80e NH |
890 | if (ret == 1 && priv.tk.addr) |
891 | kill_proc(&priv.tk, pfn, flags); | |
892 | mmap_read_unlock(p->mm); | |
aaf99ac2 SX |
893 | |
894 | return ret > 0 ? -EHWPOISON : 0; | |
a3f5d80e NH |
895 | } |
896 | ||
b8b9488d JC |
897 | /* |
898 | * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. | |
899 | * But it could not do more to isolate the page from being accessed again, | |
900 | * nor does it kill the process. This is extremely rare and one of the | |
901 | * potential causes is that the page state has been changed due to | |
902 | * underlying race condition. This is the most severe outcomes. | |
903 | * | |
904 | * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. | |
905 | * It should have killed the process, but it can't isolate the page, | |
906 | * due to conditions such as extra pin, unmap failure, etc. Accessing | |
907 | * the page again may trigger another MCE and the process will be killed | |
908 | * by the m-f() handler immediately. | |
909 | * | |
910 | * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. | |
911 | * The page is unmapped, and is removed from the LRU or file mapping. | |
912 | * An attempt to access the page again will trigger page fault and the | |
913 | * PF handler will kill the process. | |
914 | * | |
915 | * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. | |
916 | * The page has been completely isolated, that is, unmapped, taken out of | |
917 | * the buddy system, or hole-punnched out of the file mapping. | |
918 | */ | |
6a46079c | 919 | static const char *action_name[] = { |
cc637b17 XX |
920 | [MF_IGNORED] = "Ignored", |
921 | [MF_FAILED] = "Failed", | |
922 | [MF_DELAYED] = "Delayed", | |
923 | [MF_RECOVERED] = "Recovered", | |
64d37a2b NH |
924 | }; |
925 | ||
926 | static const char * const action_page_types[] = { | |
cc637b17 XX |
927 | [MF_MSG_KERNEL] = "reserved kernel page", |
928 | [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", | |
cc637b17 XX |
929 | [MF_MSG_HUGE] = "huge page", |
930 | [MF_MSG_FREE_HUGE] = "free huge page", | |
b8b9488d | 931 | [MF_MSG_GET_HWPOISON] = "get hwpoison page", |
cc637b17 XX |
932 | [MF_MSG_UNMAP_FAILED] = "unmapping failed page", |
933 | [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", | |
934 | [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", | |
935 | [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", | |
936 | [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", | |
937 | [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", | |
938 | [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", | |
939 | [MF_MSG_DIRTY_LRU] = "dirty LRU page", | |
940 | [MF_MSG_CLEAN_LRU] = "clean LRU page", | |
941 | [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", | |
942 | [MF_MSG_BUDDY] = "free buddy page", | |
6100e34b | 943 | [MF_MSG_DAX] = "dax page", |
5d1fd5dc | 944 | [MF_MSG_UNSPLIT_THP] = "unsplit thp", |
b8b9488d | 945 | [MF_MSG_ALREADY_POISONED] = "already poisoned", |
cc637b17 | 946 | [MF_MSG_UNKNOWN] = "unknown page", |
64d37a2b NH |
947 | }; |
948 | ||
dc2a1cbf WF |
949 | /* |
950 | * XXX: It is possible that a page is isolated from LRU cache, | |
951 | * and then kept in swap cache or failed to remove from page cache. | |
952 | * The page count will stop it from being freed by unpoison. | |
953 | * Stress tests should be aware of this memory leak problem. | |
954 | */ | |
f7092393 | 955 | static int delete_from_lru_cache(struct folio *folio) |
dc2a1cbf | 956 | { |
f7092393 | 957 | if (folio_isolate_lru(folio)) { |
dc2a1cbf WF |
958 | /* |
959 | * Clear sensible page flags, so that the buddy system won't | |
f7092393 | 960 | * complain when the folio is unpoison-and-freed. |
dc2a1cbf | 961 | */ |
f7092393 MWO |
962 | folio_clear_active(folio); |
963 | folio_clear_unevictable(folio); | |
18365225 MH |
964 | |
965 | /* | |
966 | * Poisoned page might never drop its ref count to 0 so we have | |
967 | * to uncharge it manually from its memcg. | |
968 | */ | |
f7092393 | 969 | mem_cgroup_uncharge(folio); |
18365225 | 970 | |
dc2a1cbf | 971 | /* |
f7092393 | 972 | * drop the refcount elevated by folio_isolate_lru() |
dc2a1cbf | 973 | */ |
f7092393 | 974 | folio_put(folio); |
dc2a1cbf WF |
975 | return 0; |
976 | } | |
977 | return -EIO; | |
978 | } | |
979 | ||
af7628d6 | 980 | static int truncate_error_folio(struct folio *folio, unsigned long pfn, |
78bb9203 NH |
981 | struct address_space *mapping) |
982 | { | |
983 | int ret = MF_FAILED; | |
984 | ||
af7628d6 MWO |
985 | if (mapping->a_ops->error_remove_folio) { |
986 | int err = mapping->a_ops->error_remove_folio(mapping, folio); | |
78bb9203 | 987 | |
0201ebf2 | 988 | if (err != 0) |
96f96763 | 989 | pr_info("%#lx: Failed to punch page: %d\n", pfn, err); |
0201ebf2 | 990 | else if (!filemap_release_folio(folio, GFP_NOIO)) |
96f96763 | 991 | pr_info("%#lx: failed to release buffers\n", pfn); |
0201ebf2 | 992 | else |
78bb9203 | 993 | ret = MF_RECOVERED; |
78bb9203 NH |
994 | } else { |
995 | /* | |
996 | * If the file system doesn't support it just invalidate | |
997 | * This fails on dirty or anything with private pages | |
998 | */ | |
19369d86 | 999 | if (mapping_evict_folio(mapping, folio)) |
78bb9203 NH |
1000 | ret = MF_RECOVERED; |
1001 | else | |
96f96763 | 1002 | pr_info("%#lx: Failed to invalidate\n", pfn); |
78bb9203 NH |
1003 | } |
1004 | ||
1005 | return ret; | |
1006 | } | |
1007 | ||
dd0f230a YS |
1008 | struct page_state { |
1009 | unsigned long mask; | |
1010 | unsigned long res; | |
1011 | enum mf_action_page_type type; | |
1012 | ||
1013 | /* Callback ->action() has to unlock the relevant page inside it. */ | |
1014 | int (*action)(struct page_state *ps, struct page *p); | |
1015 | }; | |
1016 | ||
1017 | /* | |
1018 | * Return true if page is still referenced by others, otherwise return | |
1019 | * false. | |
1020 | * | |
1021 | * The extra_pins is true when one extra refcount is expected. | |
1022 | */ | |
1023 | static bool has_extra_refcount(struct page_state *ps, struct page *p, | |
1024 | bool extra_pins) | |
1025 | { | |
1026 | int count = page_count(p) - 1; | |
1027 | ||
1028 | if (extra_pins) | |
19d3e221 | 1029 | count -= folio_nr_pages(page_folio(p)); |
dd0f230a YS |
1030 | |
1031 | if (count > 0) { | |
96f96763 | 1032 | pr_err("%#lx: %s still referenced by %d users\n", |
dd0f230a YS |
1033 | page_to_pfn(p), action_page_types[ps->type], count); |
1034 | return true; | |
1035 | } | |
1036 | ||
1037 | return false; | |
1038 | } | |
1039 | ||
6a46079c AK |
1040 | /* |
1041 | * Error hit kernel page. | |
1042 | * Do nothing, try to be lucky and not touch this instead. For a few cases we | |
1043 | * could be more sophisticated. | |
1044 | */ | |
dd0f230a | 1045 | static int me_kernel(struct page_state *ps, struct page *p) |
6a46079c | 1046 | { |
ea6d0630 | 1047 | unlock_page(p); |
cc637b17 | 1048 | return MF_IGNORED; |
6a46079c AK |
1049 | } |
1050 | ||
1051 | /* | |
1052 | * Page in unknown state. Do nothing. | |
b8b9488d | 1053 | * This is a catch-all in case we fail to make sense of the page state. |
6a46079c | 1054 | */ |
dd0f230a | 1055 | static int me_unknown(struct page_state *ps, struct page *p) |
6a46079c | 1056 | { |
96f96763 | 1057 | pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); |
ea6d0630 | 1058 | unlock_page(p); |
b8b9488d | 1059 | return MF_IGNORED; |
6a46079c AK |
1060 | } |
1061 | ||
6a46079c AK |
1062 | /* |
1063 | * Clean (or cleaned) page cache page. | |
1064 | */ | |
dd0f230a | 1065 | static int me_pagecache_clean(struct page_state *ps, struct page *p) |
6a46079c | 1066 | { |
3d47e317 | 1067 | struct folio *folio = page_folio(p); |
ea6d0630 | 1068 | int ret; |
6a46079c | 1069 | struct address_space *mapping; |
a7605426 | 1070 | bool extra_pins; |
6a46079c | 1071 | |
f7092393 | 1072 | delete_from_lru_cache(folio); |
dc2a1cbf | 1073 | |
6a46079c | 1074 | /* |
3d47e317 | 1075 | * For anonymous folios the only reference left |
6a46079c AK |
1076 | * should be the one m_f() holds. |
1077 | */ | |
3d47e317 | 1078 | if (folio_test_anon(folio)) { |
ea6d0630 NH |
1079 | ret = MF_RECOVERED; |
1080 | goto out; | |
1081 | } | |
6a46079c AK |
1082 | |
1083 | /* | |
1084 | * Now truncate the page in the page cache. This is really | |
1085 | * more like a "temporary hole punch" | |
1086 | * Don't do this for block devices when someone else | |
1087 | * has a reference, because it could be file system metadata | |
1088 | * and that's not safe to truncate. | |
1089 | */ | |
3d47e317 | 1090 | mapping = folio_mapping(folio); |
6a46079c | 1091 | if (!mapping) { |
3d47e317 | 1092 | /* Folio has been torn down in the meantime */ |
ea6d0630 NH |
1093 | ret = MF_FAILED; |
1094 | goto out; | |
6a46079c AK |
1095 | } |
1096 | ||
a7605426 YS |
1097 | /* |
1098 | * The shmem page is kept in page cache instead of truncating | |
1099 | * so is expected to have an extra refcount after error-handling. | |
1100 | */ | |
1101 | extra_pins = shmem_mapping(mapping); | |
1102 | ||
6a46079c AK |
1103 | /* |
1104 | * Truncation is a bit tricky. Enable it per file system for now. | |
1105 | * | |
9608703e | 1106 | * Open: to take i_rwsem or not for this? Right now we don't. |
6a46079c | 1107 | */ |
af7628d6 | 1108 | ret = truncate_error_folio(folio, page_to_pfn(p), mapping); |
a7605426 YS |
1109 | if (has_extra_refcount(ps, p, extra_pins)) |
1110 | ret = MF_FAILED; | |
1111 | ||
ea6d0630 | 1112 | out: |
3d47e317 | 1113 | folio_unlock(folio); |
dd0f230a | 1114 | |
ea6d0630 | 1115 | return ret; |
6a46079c AK |
1116 | } |
1117 | ||
1118 | /* | |
549543df | 1119 | * Dirty pagecache page |
6a46079c AK |
1120 | * Issues: when the error hit a hole page the error is not properly |
1121 | * propagated. | |
1122 | */ | |
dd0f230a | 1123 | static int me_pagecache_dirty(struct page_state *ps, struct page *p) |
6a46079c | 1124 | { |
89f5c54b MWO |
1125 | struct folio *folio = page_folio(p); |
1126 | struct address_space *mapping = folio_mapping(folio); | |
6a46079c | 1127 | |
6a46079c AK |
1128 | /* TBD: print more information about the file. */ |
1129 | if (mapping) { | |
1130 | /* | |
1131 | * IO error will be reported by write(), fsync(), etc. | |
1132 | * who check the mapping. | |
1133 | * This way the application knows that something went | |
1134 | * wrong with its dirty file data. | |
6a46079c | 1135 | */ |
af21bfaf | 1136 | mapping_set_error(mapping, -EIO); |
6a46079c AK |
1137 | } |
1138 | ||
dd0f230a | 1139 | return me_pagecache_clean(ps, p); |
6a46079c AK |
1140 | } |
1141 | ||
1142 | /* | |
1143 | * Clean and dirty swap cache. | |
1144 | * | |
1145 | * Dirty swap cache page is tricky to handle. The page could live both in page | |
e5d89670 | 1146 | * table and swap cache(ie. page is freshly swapped in). So it could be |
6a46079c AK |
1147 | * referenced concurrently by 2 types of PTEs: |
1148 | * normal PTEs and swap PTEs. We try to handle them consistently by calling | |
6da6b1d4 | 1149 | * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, |
6a46079c AK |
1150 | * and then |
1151 | * - clear dirty bit to prevent IO | |
1152 | * - remove from LRU | |
1153 | * - but keep in the swap cache, so that when we return to it on | |
1154 | * a later page fault, we know the application is accessing | |
1155 | * corrupted data and shall be killed (we installed simple | |
1156 | * interception code in do_swap_page to catch it). | |
1157 | * | |
1158 | * Clean swap cache pages can be directly isolated. A later page fault will | |
1159 | * bring in the known good data from disk. | |
1160 | */ | |
dd0f230a | 1161 | static int me_swapcache_dirty(struct page_state *ps, struct page *p) |
6a46079c | 1162 | { |
6304b531 | 1163 | struct folio *folio = page_folio(p); |
ea6d0630 | 1164 | int ret; |
dd0f230a | 1165 | bool extra_pins = false; |
ea6d0630 | 1166 | |
6304b531 | 1167 | folio_clear_dirty(folio); |
6a46079c | 1168 | /* Trigger EIO in shmem: */ |
6304b531 | 1169 | folio_clear_uptodate(folio); |
6a46079c | 1170 | |
f7092393 | 1171 | ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; |
6304b531 | 1172 | folio_unlock(folio); |
dd0f230a YS |
1173 | |
1174 | if (ret == MF_DELAYED) | |
1175 | extra_pins = true; | |
1176 | ||
1177 | if (has_extra_refcount(ps, p, extra_pins)) | |
1178 | ret = MF_FAILED; | |
1179 | ||
ea6d0630 | 1180 | return ret; |
6a46079c AK |
1181 | } |
1182 | ||
dd0f230a | 1183 | static int me_swapcache_clean(struct page_state *ps, struct page *p) |
6a46079c | 1184 | { |
75fa68a5 | 1185 | struct folio *folio = page_folio(p); |
ea6d0630 NH |
1186 | int ret; |
1187 | ||
75fa68a5 | 1188 | delete_from_swap_cache(folio); |
e43c3afb | 1189 | |
f7092393 | 1190 | ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; |
75fa68a5 | 1191 | folio_unlock(folio); |
dd0f230a YS |
1192 | |
1193 | if (has_extra_refcount(ps, p, false)) | |
1194 | ret = MF_FAILED; | |
1195 | ||
ea6d0630 | 1196 | return ret; |
6a46079c AK |
1197 | } |
1198 | ||
1199 | /* | |
1200 | * Huge pages. Needs work. | |
1201 | * Issues: | |
93f70f90 NH |
1202 | * - Error on hugepage is contained in hugepage unit (not in raw page unit.) |
1203 | * To narrow down kill region to one page, we need to break up pmd. | |
6a46079c | 1204 | */ |
dd0f230a | 1205 | static int me_huge_page(struct page_state *ps, struct page *p) |
6a46079c | 1206 | { |
b6fd410c | 1207 | struct folio *folio = page_folio(p); |
a8b2c2ce | 1208 | int res; |
78bb9203 | 1209 | struct address_space *mapping; |
8625147c | 1210 | bool extra_pins = false; |
2491ffee | 1211 | |
b6fd410c | 1212 | mapping = folio_mapping(folio); |
78bb9203 | 1213 | if (mapping) { |
af7628d6 | 1214 | res = truncate_error_folio(folio, page_to_pfn(p), mapping); |
8625147c JH |
1215 | /* The page is kept in page cache. */ |
1216 | extra_pins = true; | |
b6fd410c | 1217 | folio_unlock(folio); |
78bb9203 | 1218 | } else { |
b6fd410c | 1219 | folio_unlock(folio); |
78bb9203 | 1220 | /* |
ef526b17 ML |
1221 | * migration entry prevents later access on error hugepage, |
1222 | * so we can free and dissolve it into buddy to save healthy | |
1223 | * subpages. | |
78bb9203 | 1224 | */ |
b6fd410c | 1225 | folio_put(folio); |
8cf360b9 | 1226 | if (__page_handle_poison(p) > 0) { |
a8b2c2ce OS |
1227 | page_ref_inc(p); |
1228 | res = MF_RECOVERED; | |
ceaf8fbe NH |
1229 | } else { |
1230 | res = MF_FAILED; | |
a8b2c2ce | 1231 | } |
93f70f90 | 1232 | } |
78bb9203 | 1233 | |
8625147c | 1234 | if (has_extra_refcount(ps, p, extra_pins)) |
dd0f230a YS |
1235 | res = MF_FAILED; |
1236 | ||
78bb9203 | 1237 | return res; |
6a46079c AK |
1238 | } |
1239 | ||
1240 | /* | |
1241 | * Various page states we can handle. | |
1242 | * | |
1243 | * A page state is defined by its current page->flags bits. | |
1244 | * The table matches them in order and calls the right handler. | |
1245 | * | |
1246 | * This is quite tricky because we can access page at any time | |
25985edc | 1247 | * in its live cycle, so all accesses have to be extremely careful. |
6a46079c AK |
1248 | * |
1249 | * This is not complete. More states could be added. | |
1250 | * For any missing state don't attempt recovery. | |
1251 | */ | |
1252 | ||
1253 | #define dirty (1UL << PG_dirty) | |
6326fec1 | 1254 | #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) |
6a46079c AK |
1255 | #define unevict (1UL << PG_unevictable) |
1256 | #define mlock (1UL << PG_mlocked) | |
6a46079c | 1257 | #define lru (1UL << PG_lru) |
6a46079c | 1258 | #define head (1UL << PG_head) |
6a46079c AK |
1259 | #define reserved (1UL << PG_reserved) |
1260 | ||
dd0f230a | 1261 | static struct page_state error_states[] = { |
cc637b17 | 1262 | { reserved, reserved, MF_MSG_KERNEL, me_kernel }, |
95d01fc6 WF |
1263 | /* |
1264 | * free pages are specially detected outside this table: | |
1265 | * PG_buddy pages only make a small fraction of all free pages. | |
1266 | */ | |
6a46079c | 1267 | |
cc637b17 | 1268 | { head, head, MF_MSG_HUGE, me_huge_page }, |
6a46079c | 1269 | |
cc637b17 XX |
1270 | { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, |
1271 | { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, | |
6a46079c | 1272 | |
cc637b17 XX |
1273 | { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, |
1274 | { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, | |
6a46079c | 1275 | |
cc637b17 XX |
1276 | { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, |
1277 | { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, | |
5f4b9fc5 | 1278 | |
cc637b17 XX |
1279 | { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, |
1280 | { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, | |
6a46079c AK |
1281 | |
1282 | /* | |
1283 | * Catchall entry: must be at end. | |
1284 | */ | |
cc637b17 | 1285 | { 0, 0, MF_MSG_UNKNOWN, me_unknown }, |
6a46079c AK |
1286 | }; |
1287 | ||
2326c467 AK |
1288 | #undef dirty |
1289 | #undef sc | |
1290 | #undef unevict | |
1291 | #undef mlock | |
2326c467 | 1292 | #undef lru |
2326c467 | 1293 | #undef head |
2326c467 AK |
1294 | #undef reserved |
1295 | ||
18f41fa6 JY |
1296 | static void update_per_node_mf_stats(unsigned long pfn, |
1297 | enum mf_result result) | |
1298 | { | |
1299 | int nid = MAX_NUMNODES; | |
1300 | struct memory_failure_stats *mf_stats = NULL; | |
1301 | ||
1302 | nid = pfn_to_nid(pfn); | |
1303 | if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { | |
1304 | WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); | |
1305 | return; | |
1306 | } | |
1307 | ||
1308 | mf_stats = &NODE_DATA(nid)->mf_stats; | |
1309 | switch (result) { | |
1310 | case MF_IGNORED: | |
1311 | ++mf_stats->ignored; | |
1312 | break; | |
1313 | case MF_FAILED: | |
1314 | ++mf_stats->failed; | |
1315 | break; | |
1316 | case MF_DELAYED: | |
1317 | ++mf_stats->delayed; | |
1318 | break; | |
1319 | case MF_RECOVERED: | |
1320 | ++mf_stats->recovered; | |
1321 | break; | |
1322 | default: | |
1323 | WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); | |
1324 | break; | |
1325 | } | |
1326 | ++mf_stats->total; | |
1327 | } | |
1328 | ||
ff604cf6 NH |
1329 | /* |
1330 | * "Dirty/Clean" indication is not 100% accurate due to the possibility of | |
1331 | * setting PG_dirty outside page lock. See also comment above set_page_dirty(). | |
1332 | */ | |
b66d00df KW |
1333 | static int action_result(unsigned long pfn, enum mf_action_page_type type, |
1334 | enum mf_result result) | |
6a46079c | 1335 | { |
97f0b134 XX |
1336 | trace_memory_failure_event(pfn, type, result); |
1337 | ||
a46c9304 | 1338 | num_poisoned_pages_inc(pfn); |
18f41fa6 JY |
1339 | |
1340 | update_per_node_mf_stats(pfn, result); | |
1341 | ||
96f96763 | 1342 | pr_err("%#lx: recovery action for %s: %s\n", |
64d37a2b | 1343 | pfn, action_page_types[type], action_name[result]); |
b66d00df KW |
1344 | |
1345 | return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; | |
6a46079c AK |
1346 | } |
1347 | ||
1348 | static int page_action(struct page_state *ps, struct page *p, | |
bd1ce5f9 | 1349 | unsigned long pfn) |
6a46079c AK |
1350 | { |
1351 | int result; | |
1352 | ||
ea6d0630 | 1353 | /* page p should be unlocked after returning from ps->action(). */ |
dd0f230a | 1354 | result = ps->action(ps, p); |
7456b040 | 1355 | |
6a46079c AK |
1356 | /* Could do more checks here if page looks ok */ |
1357 | /* | |
1358 | * Could adjust zone counters here to correct for the missing page. | |
1359 | */ | |
1360 | ||
b66d00df | 1361 | return action_result(pfn, ps->type, result); |
6a46079c AK |
1362 | } |
1363 | ||
bf181c58 NH |
1364 | static inline bool PageHWPoisonTakenOff(struct page *page) |
1365 | { | |
1366 | return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; | |
1367 | } | |
1368 | ||
1369 | void SetPageHWPoisonTakenOff(struct page *page) | |
1370 | { | |
1371 | set_page_private(page, MAGIC_HWPOISON); | |
1372 | } | |
1373 | ||
1374 | void ClearPageHWPoisonTakenOff(struct page *page) | |
1375 | { | |
1376 | if (PageHWPoison(page)) | |
1377 | set_page_private(page, 0); | |
1378 | } | |
1379 | ||
25182f05 NH |
1380 | /* |
1381 | * Return true if a page type of a given page is supported by hwpoison | |
1382 | * mechanism (while handling could fail), otherwise false. This function | |
1383 | * does not return true for hugetlb or device memory pages, so it's assumed | |
1384 | * to be called only in the context where we never have such pages. | |
1385 | */ | |
bf6445bc | 1386 | static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) |
25182f05 | 1387 | { |
2fde9e7f ML |
1388 | if (PageSlab(page)) |
1389 | return false; | |
1390 | ||
3f871370 | 1391 | /* Soft offline could migrate non-LRU movable pages */ |
bf6445bc | 1392 | if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) |
3f871370 | 1393 | return true; |
bf6445bc | 1394 | |
3f871370 | 1395 | return PageLRU(page) || is_free_buddy_page(page); |
25182f05 NH |
1396 | } |
1397 | ||
bf6445bc | 1398 | static int __get_hwpoison_page(struct page *page, unsigned long flags) |
ead07f6a | 1399 | { |
04bac040 | 1400 | struct folio *folio = page_folio(page); |
25182f05 NH |
1401 | int ret = 0; |
1402 | bool hugetlb = false; | |
1403 | ||
04bac040 | 1404 | ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); |
d31155b8 ML |
1405 | if (hugetlb) { |
1406 | /* Make sure hugetlb demotion did not happen from under us. */ | |
1407 | if (folio == page_folio(page)) | |
1408 | return ret; | |
1409 | if (ret > 0) { | |
1410 | folio_put(folio); | |
1411 | folio = page_folio(page); | |
1412 | } | |
1413 | } | |
25182f05 NH |
1414 | |
1415 | /* | |
04bac040 SK |
1416 | * This check prevents from calling folio_try_get() for any |
1417 | * unsupported type of folio in order to reduce the risk of unexpected | |
1418 | * races caused by taking a folio refcount. | |
25182f05 | 1419 | */ |
04bac040 | 1420 | if (!HWPoisonHandlable(&folio->page, flags)) |
fcc00621 | 1421 | return -EBUSY; |
ead07f6a | 1422 | |
04bac040 SK |
1423 | if (folio_try_get(folio)) { |
1424 | if (folio == page_folio(page)) | |
c2e7e00b KK |
1425 | return 1; |
1426 | ||
96f96763 | 1427 | pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); |
04bac040 | 1428 | folio_put(folio); |
c2e7e00b KK |
1429 | } |
1430 | ||
1431 | return 0; | |
ead07f6a | 1432 | } |
ead07f6a | 1433 | |
babde186 ML |
1434 | #define GET_PAGE_MAX_RETRY_NUM 3 |
1435 | ||
2f714160 | 1436 | static int get_any_page(struct page *p, unsigned long flags) |
17e395b6 | 1437 | { |
2f714160 OS |
1438 | int ret = 0, pass = 0; |
1439 | bool count_increased = false; | |
17e395b6 | 1440 | |
2f714160 OS |
1441 | if (flags & MF_COUNT_INCREASED) |
1442 | count_increased = true; | |
1443 | ||
1444 | try_again: | |
0ed950d1 | 1445 | if (!count_increased) { |
bf6445bc | 1446 | ret = __get_hwpoison_page(p, flags); |
0ed950d1 NH |
1447 | if (!ret) { |
1448 | if (page_count(p)) { | |
1449 | /* We raced with an allocation, retry. */ | |
babde186 | 1450 | if (pass++ < GET_PAGE_MAX_RETRY_NUM) |
0ed950d1 NH |
1451 | goto try_again; |
1452 | ret = -EBUSY; | |
1453 | } else if (!PageHuge(p) && !is_free_buddy_page(p)) { | |
1454 | /* We raced with put_page, retry. */ | |
babde186 | 1455 | if (pass++ < GET_PAGE_MAX_RETRY_NUM) |
0ed950d1 NH |
1456 | goto try_again; |
1457 | ret = -EIO; | |
1458 | } | |
1459 | goto out; | |
1460 | } else if (ret == -EBUSY) { | |
fcc00621 NH |
1461 | /* |
1462 | * We raced with (possibly temporary) unhandlable | |
1463 | * page, retry. | |
1464 | */ | |
1465 | if (pass++ < 3) { | |
d0505e9f | 1466 | shake_page(p); |
2f714160 | 1467 | goto try_again; |
fcc00621 NH |
1468 | } |
1469 | ret = -EIO; | |
0ed950d1 | 1470 | goto out; |
2f714160 | 1471 | } |
0ed950d1 NH |
1472 | } |
1473 | ||
bf6445bc | 1474 | if (PageHuge(p) || HWPoisonHandlable(p, flags)) { |
0ed950d1 | 1475 | ret = 1; |
2f714160 | 1476 | } else { |
0ed950d1 NH |
1477 | /* |
1478 | * A page we cannot handle. Check whether we can turn | |
1479 | * it into something we can handle. | |
1480 | */ | |
babde186 | 1481 | if (pass++ < GET_PAGE_MAX_RETRY_NUM) { |
2f714160 | 1482 | put_page(p); |
d0505e9f | 1483 | shake_page(p); |
0ed950d1 NH |
1484 | count_increased = false; |
1485 | goto try_again; | |
2f714160 | 1486 | } |
0ed950d1 NH |
1487 | put_page(p); |
1488 | ret = -EIO; | |
17e395b6 | 1489 | } |
0ed950d1 | 1490 | out: |
941ca063 | 1491 | if (ret == -EIO) |
96f96763 | 1492 | pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); |
941ca063 | 1493 | |
17e395b6 OS |
1494 | return ret; |
1495 | } | |
1496 | ||
bf181c58 NH |
1497 | static int __get_unpoison_page(struct page *page) |
1498 | { | |
04bac040 | 1499 | struct folio *folio = page_folio(page); |
bf181c58 NH |
1500 | int ret = 0; |
1501 | bool hugetlb = false; | |
1502 | ||
04bac040 | 1503 | ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); |
d31155b8 ML |
1504 | if (hugetlb) { |
1505 | /* Make sure hugetlb demotion did not happen from under us. */ | |
1506 | if (folio == page_folio(page)) | |
1507 | return ret; | |
1508 | if (ret > 0) | |
1509 | folio_put(folio); | |
1510 | } | |
bf181c58 NH |
1511 | |
1512 | /* | |
1513 | * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, | |
1514 | * but also isolated from buddy freelist, so need to identify the | |
1515 | * state and have to cancel both operations to unpoison. | |
1516 | */ | |
1517 | if (PageHWPoisonTakenOff(page)) | |
1518 | return -EHWPOISON; | |
1519 | ||
1520 | return get_page_unless_zero(page) ? 1 : 0; | |
1521 | } | |
1522 | ||
0ed950d1 NH |
1523 | /** |
1524 | * get_hwpoison_page() - Get refcount for memory error handling | |
1525 | * @p: Raw error page (hit by memory error) | |
1526 | * @flags: Flags controlling behavior of error handling | |
1527 | * | |
1528 | * get_hwpoison_page() takes a page refcount of an error page to handle memory | |
1529 | * error on it, after checking that the error page is in a well-defined state | |
0b8f0d87 | 1530 | * (defined as a page-type we can successfully handle the memory error on it, |
0ed950d1 NH |
1531 | * such as LRU page and hugetlb page). |
1532 | * | |
1533 | * Memory error handling could be triggered at any time on any type of page, | |
1534 | * so it's prone to race with typical memory management lifecycle (like | |
1535 | * allocation and free). So to avoid such races, get_hwpoison_page() takes | |
1536 | * extra care for the error page's state (as done in __get_hwpoison_page()), | |
1537 | * and has some retry logic in get_any_page(). | |
1538 | * | |
bf181c58 NH |
1539 | * When called from unpoison_memory(), the caller should already ensure that |
1540 | * the given page has PG_hwpoison. So it's never reused for other page | |
1541 | * allocations, and __get_unpoison_page() never races with them. | |
1542 | * | |
b71340ef | 1543 | * Return: 0 on failure or free buddy (hugetlb) page, |
0ed950d1 NH |
1544 | * 1 on success for in-use pages in a well-defined state, |
1545 | * -EIO for pages on which we can not handle memory errors, | |
1546 | * -EBUSY when get_hwpoison_page() has raced with page lifecycle | |
bf181c58 NH |
1547 | * operations like allocation and free, |
1548 | * -EHWPOISON when the page is hwpoisoned and taken off from buddy. | |
0ed950d1 NH |
1549 | */ |
1550 | static int get_hwpoison_page(struct page *p, unsigned long flags) | |
2f714160 OS |
1551 | { |
1552 | int ret; | |
1553 | ||
1554 | zone_pcp_disable(page_zone(p)); | |
bf181c58 NH |
1555 | if (flags & MF_UNPOISON) |
1556 | ret = __get_unpoison_page(p); | |
1557 | else | |
1558 | ret = get_any_page(p, flags); | |
2f714160 OS |
1559 | zone_pcp_enable(page_zone(p)); |
1560 | ||
1561 | return ret; | |
1562 | } | |
1563 | ||
b81679b1 | 1564 | int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) |
16038c4f | 1565 | { |
b81679b1 MW |
1566 | enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; |
1567 | struct address_space *mapping; | |
1568 | ||
1569 | if (folio_test_swapcache(folio)) { | |
1570 | pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); | |
1571 | ttu &= ~TTU_HWPOISON; | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * Propagate the dirty bit from PTEs to struct page first, because we | |
1576 | * need this to decide if we should kill or just drop the page. | |
1577 | * XXX: the dirty test could be racy: set_page_dirty() may not always | |
1578 | * be called inside page lock (it's recommended but not enforced). | |
1579 | */ | |
1580 | mapping = folio_mapping(folio); | |
1581 | if (!must_kill && !folio_test_dirty(folio) && mapping && | |
1582 | mapping_can_writeback(mapping)) { | |
1583 | if (folio_mkclean(folio)) { | |
1584 | folio_set_dirty(folio); | |
1585 | } else { | |
1586 | ttu &= ~TTU_HWPOISON; | |
1587 | pr_info("%#lx: corrupted page was clean: dropped without side effects\n", | |
1588 | pfn); | |
1589 | } | |
1590 | } | |
16038c4f | 1591 | |
b81679b1 | 1592 | if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { |
16038c4f KW |
1593 | /* |
1594 | * For hugetlb folios in shared mappings, try_to_unmap | |
1595 | * could potentially call huge_pmd_unshare. Because of | |
1596 | * this, take semaphore in write mode here and set | |
1597 | * TTU_RMAP_LOCKED to indicate we have taken the lock | |
1598 | * at this higher level. | |
1599 | */ | |
1600 | mapping = hugetlb_folio_mapping_lock_write(folio); | |
1601 | if (!mapping) { | |
1602 | pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", | |
1603 | folio_pfn(folio)); | |
b81679b1 | 1604 | return -EBUSY; |
16038c4f KW |
1605 | } |
1606 | ||
1607 | try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); | |
1608 | i_mmap_unlock_write(mapping); | |
1609 | } else { | |
1610 | try_to_unmap(folio, ttu); | |
1611 | } | |
b81679b1 MW |
1612 | |
1613 | return folio_mapped(folio) ? -EBUSY : 0; | |
16038c4f KW |
1614 | } |
1615 | ||
6a46079c AK |
1616 | /* |
1617 | * Do all that is necessary to remove user space mappings. Unmap | |
1618 | * the pages and send SIGBUS to the processes if the data was dirty. | |
1619 | */ | |
03468a0f MWO |
1620 | static bool hwpoison_user_mappings(struct folio *folio, struct page *p, |
1621 | unsigned long pfn, int flags) | |
6a46079c | 1622 | { |
6a46079c | 1623 | LIST_HEAD(tokill); |
1fb08ac6 | 1624 | bool unmap_success; |
0792a4a6 | 1625 | int forcekill; |
03468a0f | 1626 | bool mlocked = folio_test_mlocked(folio); |
6a46079c | 1627 | |
93a9eb39 NH |
1628 | /* |
1629 | * Here we are interested only in user-mapped pages, so skip any | |
1630 | * other types of pages. | |
1631 | */ | |
03468a0f MWO |
1632 | if (folio_test_reserved(folio) || folio_test_slab(folio) || |
1633 | folio_test_pgtable(folio) || folio_test_offline(folio)) | |
666e5a40 | 1634 | return true; |
03468a0f | 1635 | if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) |
666e5a40 | 1636 | return true; |
6a46079c | 1637 | |
6a46079c AK |
1638 | /* |
1639 | * This check implies we don't kill processes if their pages | |
1640 | * are in the swap cache early. Those are always late kills. | |
1641 | */ | |
b7c3afba | 1642 | if (!folio_mapped(folio)) |
666e5a40 | 1643 | return true; |
1668bfd5 | 1644 | |
6a46079c AK |
1645 | /* |
1646 | * First collect all the processes that have the page | |
1647 | * mapped in dirty form. This has to be done before try_to_unmap, | |
1648 | * because ttu takes the rmap data structures down. | |
6a46079c | 1649 | */ |
376907f3 | 1650 | collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); |
6a46079c | 1651 | |
b81679b1 | 1652 | unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); |
666e5a40 | 1653 | if (!unmap_success) |
33d844bb | 1654 | pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", |
b7c3afba | 1655 | pfn, folio_mapcount(folio)); |
a6d30ddd | 1656 | |
286c469a NH |
1657 | /* |
1658 | * try_to_unmap() might put mlocked page in lru cache, so call | |
1659 | * shake_page() again to ensure that it's flushed. | |
1660 | */ | |
1661 | if (mlocked) | |
fed5348e | 1662 | shake_folio(folio); |
286c469a | 1663 | |
6a46079c AK |
1664 | /* |
1665 | * Now that the dirty bit has been propagated to the | |
1666 | * struct page and all unmaps done we can decide if | |
1667 | * killing is needed or not. Only kill when the page | |
6751ed65 TL |
1668 | * was dirty or the process is not restartable, |
1669 | * otherwise the tokill list is merely | |
6a46079c AK |
1670 | * freed. When there was a problem unmapping earlier |
1671 | * use a more force-full uncatchable kill to prevent | |
1672 | * any accesses to the poisoned memory. | |
1673 | */ | |
03468a0f | 1674 | forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || |
0792a4a6 | 1675 | !unmap_success; |
aa298fdf | 1676 | kill_procs(&tokill, forcekill, pfn, flags); |
1668bfd5 | 1677 | |
666e5a40 | 1678 | return unmap_success; |
6a46079c AK |
1679 | } |
1680 | ||
0348d2eb NH |
1681 | static int identify_page_state(unsigned long pfn, struct page *p, |
1682 | unsigned long page_flags) | |
761ad8d7 NH |
1683 | { |
1684 | struct page_state *ps; | |
0348d2eb NH |
1685 | |
1686 | /* | |
1687 | * The first check uses the current page flags which may not have any | |
1688 | * relevant information. The second check with the saved page flags is | |
1689 | * carried out only if the first check can't determine the page status. | |
1690 | */ | |
1691 | for (ps = error_states;; ps++) | |
1692 | if ((p->flags & ps->mask) == ps->res) | |
1693 | break; | |
1694 | ||
1695 | page_flags |= (p->flags & (1UL << PG_dirty)); | |
1696 | ||
1697 | if (!ps->mask) | |
1698 | for (ps = error_states;; ps++) | |
1699 | if ((page_flags & ps->mask) == ps->res) | |
1700 | break; | |
1701 | return page_action(ps, p, pfn); | |
1702 | } | |
1703 | ||
1a3798de JC |
1704 | /* |
1705 | * When 'release' is 'false', it means that if thp split has failed, | |
1706 | * there is still more to do, hence the page refcount we took earlier | |
1707 | * is still needed. | |
1708 | */ | |
1709 | static int try_to_split_thp_page(struct page *page, bool release) | |
694bf0b0 | 1710 | { |
2ace36f0 KW |
1711 | int ret; |
1712 | ||
694bf0b0 | 1713 | lock_page(page); |
2ace36f0 KW |
1714 | ret = split_huge_page(page); |
1715 | unlock_page(page); | |
694bf0b0 | 1716 | |
1a3798de | 1717 | if (ret && release) |
694bf0b0 | 1718 | put_page(page); |
694bf0b0 | 1719 | |
2ace36f0 | 1720 | return ret; |
694bf0b0 OS |
1721 | } |
1722 | ||
00cc790e SR |
1723 | static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, |
1724 | struct address_space *mapping, pgoff_t index, int flags) | |
1725 | { | |
1726 | struct to_kill *tk; | |
1727 | unsigned long size = 0; | |
1728 | ||
1729 | list_for_each_entry(tk, to_kill, nd) | |
1730 | if (tk->size_shift) | |
1731 | size = max(size, 1UL << tk->size_shift); | |
1732 | ||
1733 | if (size) { | |
1734 | /* | |
1735 | * Unmap the largest mapping to avoid breaking up device-dax | |
1736 | * mappings which are constant size. The actual size of the | |
1737 | * mapping being torn down is communicated in siginfo, see | |
1738 | * kill_proc() | |
1739 | */ | |
39ebd6dc | 1740 | loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); |
00cc790e SR |
1741 | |
1742 | unmap_mapping_range(mapping, start, size, 0); | |
1743 | } | |
1744 | ||
aa298fdf | 1745 | kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); |
00cc790e SR |
1746 | } |
1747 | ||
91e79d22 MWO |
1748 | /* |
1749 | * Only dev_pagemap pages get here, such as fsdax when the filesystem | |
1750 | * either do not claim or fails to claim a hwpoison event, or devdax. | |
1751 | * The fsdax pages are initialized per base page, and the devdax pages | |
1752 | * could be initialized either as base pages, or as compound pages with | |
1753 | * vmemmap optimization enabled. Devdax is simplistic in its dealing with | |
1754 | * hwpoison, such that, if a subpage of a compound page is poisoned, | |
1755 | * simply mark the compound head page is by far sufficient. | |
1756 | */ | |
00cc790e SR |
1757 | static int mf_generic_kill_procs(unsigned long long pfn, int flags, |
1758 | struct dev_pagemap *pgmap) | |
1759 | { | |
91e79d22 | 1760 | struct folio *folio = pfn_folio(pfn); |
00cc790e SR |
1761 | LIST_HEAD(to_kill); |
1762 | dax_entry_t cookie; | |
1763 | int rc = 0; | |
1764 | ||
00cc790e SR |
1765 | /* |
1766 | * Prevent the inode from being freed while we are interrogating | |
1767 | * the address_space, typically this would be handled by | |
1768 | * lock_page(), but dax pages do not use the page lock. This | |
1769 | * also prevents changes to the mapping of this pfn until | |
1770 | * poison signaling is complete. | |
1771 | */ | |
91e79d22 | 1772 | cookie = dax_lock_folio(folio); |
00cc790e SR |
1773 | if (!cookie) |
1774 | return -EBUSY; | |
1775 | ||
91e79d22 | 1776 | if (hwpoison_filter(&folio->page)) { |
00cc790e SR |
1777 | rc = -EOPNOTSUPP; |
1778 | goto unlock; | |
1779 | } | |
1780 | ||
1781 | switch (pgmap->type) { | |
1782 | case MEMORY_DEVICE_PRIVATE: | |
1783 | case MEMORY_DEVICE_COHERENT: | |
1784 | /* | |
1785 | * TODO: Handle device pages which may need coordination | |
1786 | * with device-side memory. | |
1787 | */ | |
1788 | rc = -ENXIO; | |
1789 | goto unlock; | |
1790 | default: | |
1791 | break; | |
1792 | } | |
1793 | ||
1794 | /* | |
1795 | * Use this flag as an indication that the dax page has been | |
1796 | * remapped UC to prevent speculative consumption of poison. | |
1797 | */ | |
91e79d22 | 1798 | SetPageHWPoison(&folio->page); |
00cc790e SR |
1799 | |
1800 | /* | |
1801 | * Unlike System-RAM there is no possibility to swap in a | |
1802 | * different physical page at a given virtual address, so all | |
1803 | * userspace consumption of ZONE_DEVICE memory necessitates | |
1804 | * SIGBUS (i.e. MF_MUST_KILL) | |
1805 | */ | |
1806 | flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | |
376907f3 | 1807 | collect_procs(folio, &folio->page, &to_kill, true); |
00cc790e | 1808 | |
91e79d22 | 1809 | unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); |
00cc790e | 1810 | unlock: |
91e79d22 | 1811 | dax_unlock_folio(folio, cookie); |
00cc790e SR |
1812 | return rc; |
1813 | } | |
1814 | ||
c36e2024 SR |
1815 | #ifdef CONFIG_FS_DAX |
1816 | /** | |
1817 | * mf_dax_kill_procs - Collect and kill processes who are using this file range | |
1818 | * @mapping: address_space of the file in use | |
1819 | * @index: start pgoff of the range within the file | |
1820 | * @count: length of the range, in unit of PAGE_SIZE | |
1821 | * @mf_flags: memory failure flags | |
1822 | */ | |
1823 | int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, | |
1824 | unsigned long count, int mf_flags) | |
1825 | { | |
1826 | LIST_HEAD(to_kill); | |
1827 | dax_entry_t cookie; | |
1828 | struct page *page; | |
1829 | size_t end = index + count; | |
fa422b35 | 1830 | bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; |
c36e2024 SR |
1831 | |
1832 | mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; | |
1833 | ||
1834 | for (; index < end; index++) { | |
1835 | page = NULL; | |
1836 | cookie = dax_lock_mapping_entry(mapping, index, &page); | |
1837 | if (!cookie) | |
1838 | return -EBUSY; | |
1839 | if (!page) | |
1840 | goto unlock; | |
1841 | ||
fa422b35 SR |
1842 | if (!pre_remove) |
1843 | SetPageHWPoison(page); | |
c36e2024 | 1844 | |
fa422b35 SR |
1845 | /* |
1846 | * The pre_remove case is revoking access, the memory is still | |
1847 | * good and could theoretically be put back into service. | |
1848 | */ | |
1849 | collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); | |
c36e2024 SR |
1850 | unmap_and_kill(&to_kill, page_to_pfn(page), mapping, |
1851 | index, mf_flags); | |
1852 | unlock: | |
1853 | dax_unlock_mapping_entry(mapping, index, cookie); | |
1854 | } | |
1855 | return 0; | |
1856 | } | |
1857 | EXPORT_SYMBOL_GPL(mf_dax_kill_procs); | |
1858 | #endif /* CONFIG_FS_DAX */ | |
1859 | ||
161df60e | 1860 | #ifdef CONFIG_HUGETLB_PAGE |
b79f8eb4 | 1861 | |
161df60e NH |
1862 | /* |
1863 | * Struct raw_hwp_page represents information about "raw error page", | |
dad6a5eb | 1864 | * constructing singly linked list from ->_hugetlb_hwpoison field of folio. |
161df60e NH |
1865 | */ |
1866 | struct raw_hwp_page { | |
1867 | struct llist_node node; | |
1868 | struct page *page; | |
1869 | }; | |
1870 | ||
b02e7582 | 1871 | static inline struct llist_head *raw_hwp_list_head(struct folio *folio) |
161df60e | 1872 | { |
b02e7582 | 1873 | return (struct llist_head *)&folio->_hugetlb_hwpoison; |
161df60e NH |
1874 | } |
1875 | ||
b79f8eb4 JY |
1876 | bool is_raw_hwpoison_page_in_hugepage(struct page *page) |
1877 | { | |
1878 | struct llist_head *raw_hwp_head; | |
1879 | struct raw_hwp_page *p; | |
1880 | struct folio *folio = page_folio(page); | |
1881 | bool ret = false; | |
1882 | ||
1883 | if (!folio_test_hwpoison(folio)) | |
1884 | return false; | |
1885 | ||
1886 | if (!folio_test_hugetlb(folio)) | |
1887 | return PageHWPoison(page); | |
1888 | ||
1889 | /* | |
1890 | * When RawHwpUnreliable is set, kernel lost track of which subpages | |
1891 | * are HWPOISON. So return as if ALL subpages are HWPOISONed. | |
1892 | */ | |
1893 | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) | |
1894 | return true; | |
1895 | ||
1896 | mutex_lock(&mf_mutex); | |
1897 | ||
1898 | raw_hwp_head = raw_hwp_list_head(folio); | |
1899 | llist_for_each_entry(p, raw_hwp_head->first, node) { | |
1900 | if (page == p->page) { | |
1901 | ret = true; | |
1902 | break; | |
1903 | } | |
1904 | } | |
1905 | ||
1906 | mutex_unlock(&mf_mutex); | |
1907 | ||
1908 | return ret; | |
1909 | } | |
1910 | ||
0858b5eb | 1911 | static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) |
161df60e | 1912 | { |
6379693e ML |
1913 | struct llist_node *head; |
1914 | struct raw_hwp_page *p, *next; | |
ac5fcde0 | 1915 | unsigned long count = 0; |
161df60e | 1916 | |
9e130c4b | 1917 | head = llist_del_all(raw_hwp_list_head(folio)); |
6379693e | 1918 | llist_for_each_entry_safe(p, next, head, node) { |
ac5fcde0 NH |
1919 | if (move_flag) |
1920 | SetPageHWPoison(p->page); | |
5033091d NH |
1921 | else |
1922 | num_poisoned_pages_sub(page_to_pfn(p->page), 1); | |
161df60e | 1923 | kfree(p); |
ac5fcde0 | 1924 | count++; |
161df60e | 1925 | } |
ac5fcde0 | 1926 | return count; |
161df60e NH |
1927 | } |
1928 | ||
595dd818 | 1929 | static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) |
161df60e NH |
1930 | { |
1931 | struct llist_head *head; | |
1932 | struct raw_hwp_page *raw_hwp; | |
1e25501d | 1933 | struct raw_hwp_page *p; |
595dd818 | 1934 | int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; |
161df60e NH |
1935 | |
1936 | /* | |
1937 | * Once the hwpoison hugepage has lost reliable raw error info, | |
1938 | * there is little meaning to keep additional error info precisely, | |
1939 | * so skip to add additional raw error info. | |
1940 | */ | |
b02e7582 | 1941 | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) |
161df60e | 1942 | return -EHWPOISON; |
b02e7582 | 1943 | head = raw_hwp_list_head(folio); |
1e25501d | 1944 | llist_for_each_entry(p, head->first, node) { |
161df60e NH |
1945 | if (p->page == page) |
1946 | return -EHWPOISON; | |
1947 | } | |
1948 | ||
1949 | raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); | |
1950 | if (raw_hwp) { | |
1951 | raw_hwp->page = page; | |
1952 | llist_add(&raw_hwp->node, head); | |
1953 | /* the first error event will be counted in action_result(). */ | |
1954 | if (ret) | |
a46c9304 | 1955 | num_poisoned_pages_inc(page_to_pfn(page)); |
161df60e NH |
1956 | } else { |
1957 | /* | |
1958 | * Failed to save raw error info. We no longer trace all | |
1959 | * hwpoisoned subpages, and we need refuse to free/dissolve | |
1960 | * this hwpoisoned hugepage. | |
1961 | */ | |
b02e7582 | 1962 | folio_set_hugetlb_raw_hwp_unreliable(folio); |
161df60e | 1963 | /* |
b02e7582 | 1964 | * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not |
161df60e NH |
1965 | * used any more, so free it. |
1966 | */ | |
0858b5eb | 1967 | __folio_free_raw_hwp(folio, false); |
161df60e NH |
1968 | } |
1969 | return ret; | |
1970 | } | |
1971 | ||
9637d7df | 1972 | static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) |
ac5fcde0 NH |
1973 | { |
1974 | /* | |
9637d7df | 1975 | * hugetlb_vmemmap_optimized hugepages can't be freed because struct |
ac5fcde0 NH |
1976 | * pages for tail pages are required but they don't exist. |
1977 | */ | |
9637d7df | 1978 | if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) |
ac5fcde0 NH |
1979 | return 0; |
1980 | ||
1981 | /* | |
9637d7df | 1982 | * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by |
ac5fcde0 NH |
1983 | * definition. |
1984 | */ | |
9637d7df | 1985 | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) |
ac5fcde0 NH |
1986 | return 0; |
1987 | ||
0858b5eb | 1988 | return __folio_free_raw_hwp(folio, move_flag); |
ac5fcde0 NH |
1989 | } |
1990 | ||
2ff6cece | 1991 | void folio_clear_hugetlb_hwpoison(struct folio *folio) |
161df60e | 1992 | { |
2ff6cece | 1993 | if (folio_test_hugetlb_raw_hwp_unreliable(folio)) |
161df60e | 1994 | return; |
92a025a7 ML |
1995 | if (folio_test_hugetlb_vmemmap_optimized(folio)) |
1996 | return; | |
2ff6cece | 1997 | folio_clear_hwpoison(folio); |
9637d7df | 1998 | folio_free_raw_hwp(folio, true); |
161df60e NH |
1999 | } |
2000 | ||
405ce051 NH |
2001 | /* |
2002 | * Called from hugetlb code with hugetlb_lock held. | |
2003 | * | |
2004 | * Return values: | |
2005 | * 0 - free hugepage | |
2006 | * 1 - in-use hugepage | |
2007 | * 2 - not a hugepage | |
2008 | * -EBUSY - the hugepage is busy (try to retry) | |
2009 | * -EHWPOISON - the hugepage is already hwpoisoned | |
2010 | */ | |
e591ef7d NH |
2011 | int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, |
2012 | bool *migratable_cleared) | |
405ce051 NH |
2013 | { |
2014 | struct page *page = pfn_to_page(pfn); | |
4c110ec9 | 2015 | struct folio *folio = page_folio(page); |
405ce051 NH |
2016 | int ret = 2; /* fallback to normal page handling */ |
2017 | bool count_increased = false; | |
2018 | ||
4c110ec9 | 2019 | if (!folio_test_hugetlb(folio)) |
405ce051 NH |
2020 | goto out; |
2021 | ||
2022 | if (flags & MF_COUNT_INCREASED) { | |
2023 | ret = 1; | |
2024 | count_increased = true; | |
4c110ec9 | 2025 | } else if (folio_test_hugetlb_freed(folio)) { |
b283d983 | 2026 | ret = 0; |
4c110ec9 SK |
2027 | } else if (folio_test_hugetlb_migratable(folio)) { |
2028 | ret = folio_try_get(folio); | |
405ce051 NH |
2029 | if (ret) |
2030 | count_increased = true; | |
2031 | } else { | |
2032 | ret = -EBUSY; | |
38f6d293 NH |
2033 | if (!(flags & MF_NO_RETRY)) |
2034 | goto out; | |
405ce051 NH |
2035 | } |
2036 | ||
595dd818 | 2037 | if (folio_set_hugetlb_hwpoison(folio, page)) { |
405ce051 NH |
2038 | ret = -EHWPOISON; |
2039 | goto out; | |
2040 | } | |
2041 | ||
e591ef7d | 2042 | /* |
4c110ec9 | 2043 | * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them |
e591ef7d NH |
2044 | * from being migrated by memory hotremove. |
2045 | */ | |
4c110ec9 SK |
2046 | if (count_increased && folio_test_hugetlb_migratable(folio)) { |
2047 | folio_clear_hugetlb_migratable(folio); | |
e591ef7d NH |
2048 | *migratable_cleared = true; |
2049 | } | |
2050 | ||
405ce051 NH |
2051 | return ret; |
2052 | out: | |
2053 | if (count_increased) | |
4c110ec9 | 2054 | folio_put(folio); |
405ce051 NH |
2055 | return ret; |
2056 | } | |
2057 | ||
405ce051 NH |
2058 | /* |
2059 | * Taking refcount of hugetlb pages needs extra care about race conditions | |
2060 | * with basic operations like hugepage allocation/free/demotion. | |
2061 | * So some of prechecks for hwpoison (pinning, and testing/setting | |
2062 | * PageHWPoison) should be done in single hugetlb_lock range. | |
2063 | */ | |
2064 | static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | |
0348d2eb | 2065 | { |
761ad8d7 | 2066 | int res; |
405ce051 | 2067 | struct page *p = pfn_to_page(pfn); |
bc1cfde1 | 2068 | struct folio *folio; |
761ad8d7 | 2069 | unsigned long page_flags; |
e591ef7d | 2070 | bool migratable_cleared = false; |
761ad8d7 | 2071 | |
405ce051 NH |
2072 | *hugetlb = 1; |
2073 | retry: | |
e591ef7d | 2074 | res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); |
405ce051 NH |
2075 | if (res == 2) { /* fallback to normal page handling */ |
2076 | *hugetlb = 0; | |
2077 | return 0; | |
2078 | } else if (res == -EHWPOISON) { | |
96f96763 | 2079 | pr_err("%#lx: already hardware poisoned\n", pfn); |
405ce051 | 2080 | if (flags & MF_ACTION_REQUIRED) { |
bc1cfde1 SK |
2081 | folio = page_folio(p); |
2082 | res = kill_accessing_process(current, folio_pfn(folio), flags); | |
b8b9488d | 2083 | action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); |
405ce051 NH |
2084 | } |
2085 | return res; | |
2086 | } else if (res == -EBUSY) { | |
38f6d293 NH |
2087 | if (!(flags & MF_NO_RETRY)) { |
2088 | flags |= MF_NO_RETRY; | |
405ce051 NH |
2089 | goto retry; |
2090 | } | |
b8b9488d | 2091 | return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); |
761ad8d7 NH |
2092 | } |
2093 | ||
bc1cfde1 SK |
2094 | folio = page_folio(p); |
2095 | folio_lock(folio); | |
405ce051 NH |
2096 | |
2097 | if (hwpoison_filter(p)) { | |
2ff6cece | 2098 | folio_clear_hugetlb_hwpoison(folio); |
e591ef7d | 2099 | if (migratable_cleared) |
bc1cfde1 SK |
2100 | folio_set_hugetlb_migratable(folio); |
2101 | folio_unlock(folio); | |
f36a5543 | 2102 | if (res == 1) |
bc1cfde1 | 2103 | folio_put(folio); |
f36a5543 | 2104 | return -EOPNOTSUPP; |
405ce051 NH |
2105 | } |
2106 | ||
405ce051 NH |
2107 | /* |
2108 | * Handling free hugepage. The possible race with hugepage allocation | |
2109 | * or demotion can be prevented by PageHWPoison flag. | |
2110 | */ | |
2111 | if (res == 0) { | |
bc1cfde1 | 2112 | folio_unlock(folio); |
8cf360b9 | 2113 | if (__page_handle_poison(p) > 0) { |
405ce051 NH |
2114 | page_ref_inc(p); |
2115 | res = MF_RECOVERED; | |
ceaf8fbe NH |
2116 | } else { |
2117 | res = MF_FAILED; | |
761ad8d7 | 2118 | } |
b66d00df | 2119 | return action_result(pfn, MF_MSG_FREE_HUGE, res); |
761ad8d7 NH |
2120 | } |
2121 | ||
bc1cfde1 | 2122 | page_flags = folio->flags; |
761ad8d7 | 2123 | |
03468a0f | 2124 | if (!hwpoison_user_mappings(folio, p, pfn, flags)) { |
bc1cfde1 | 2125 | folio_unlock(folio); |
b8b9488d | 2126 | return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); |
761ad8d7 NH |
2127 | } |
2128 | ||
ea6d0630 | 2129 | return identify_page_state(pfn, p, page_flags); |
761ad8d7 | 2130 | } |
00cc790e | 2131 | |
405ce051 NH |
2132 | #else |
2133 | static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) | |
2134 | { | |
2135 | return 0; | |
2136 | } | |
00cc790e | 2137 | |
9637d7df | 2138 | static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) |
ac5fcde0 NH |
2139 | { |
2140 | return 0; | |
2141 | } | |
00cc790e | 2142 | #endif /* CONFIG_HUGETLB_PAGE */ |
761ad8d7 | 2143 | |
b5f1fc98 KW |
2144 | /* Drop the extra refcount in case we come from madvise() */ |
2145 | static void put_ref_page(unsigned long pfn, int flags) | |
2146 | { | |
b5f1fc98 KW |
2147 | if (!(flags & MF_COUNT_INCREASED)) |
2148 | return; | |
2149 | ||
16117532 | 2150 | put_page(pfn_to_page(pfn)); |
b5f1fc98 KW |
2151 | } |
2152 | ||
6100e34b DW |
2153 | static int memory_failure_dev_pagemap(unsigned long pfn, int flags, |
2154 | struct dev_pagemap *pgmap) | |
2155 | { | |
00cc790e | 2156 | int rc = -ENXIO; |
6100e34b | 2157 | |
34dc45be | 2158 | /* device metadata space is not recoverable */ |
00cc790e | 2159 | if (!pgmap_pfn_valid(pgmap, pfn)) |
34dc45be | 2160 | goto out; |
61e28cf0 | 2161 | |
6100e34b | 2162 | /* |
33a8f7f2 SR |
2163 | * Call driver's implementation to handle the memory failure, otherwise |
2164 | * fall back to generic handler. | |
6100e34b | 2165 | */ |
65d3440e | 2166 | if (pgmap_has_memory_failure(pgmap)) { |
33a8f7f2 | 2167 | rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); |
6100e34b | 2168 | /* |
33a8f7f2 SR |
2169 | * Fall back to generic handler too if operation is not |
2170 | * supported inside the driver/device/filesystem. | |
6100e34b | 2171 | */ |
33a8f7f2 SR |
2172 | if (rc != -EOPNOTSUPP) |
2173 | goto out; | |
6100e34b DW |
2174 | } |
2175 | ||
00cc790e | 2176 | rc = mf_generic_kill_procs(pfn, flags, pgmap); |
6100e34b DW |
2177 | out: |
2178 | /* drop pgmap ref acquired in caller */ | |
2179 | put_dev_pagemap(pgmap); | |
80ee7cb2 ML |
2180 | if (rc != -EOPNOTSUPP) |
2181 | action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); | |
6100e34b DW |
2182 | return rc; |
2183 | } | |
2184 | ||
1a3798de JC |
2185 | /* |
2186 | * The calling condition is as such: thp split failed, page might have | |
2187 | * been RDMA pinned, not much can be done for recovery. | |
2188 | * But a SIGBUS should be delivered with vaddr provided so that the user | |
2189 | * application has a chance to recover. Also, application processes' | |
2190 | * election for MCE early killed will be honored. | |
2191 | */ | |
2192 | static void kill_procs_now(struct page *p, unsigned long pfn, int flags, | |
2193 | struct folio *folio) | |
2194 | { | |
2195 | LIST_HEAD(tokill); | |
2196 | ||
2197 | collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); | |
2198 | kill_procs(&tokill, true, pfn, flags); | |
2199 | } | |
2200 | ||
cd42f4a3 TL |
2201 | /** |
2202 | * memory_failure - Handle memory failure of a page. | |
2203 | * @pfn: Page Number of the corrupted page | |
cd42f4a3 TL |
2204 | * @flags: fine tune action taken |
2205 | * | |
2206 | * This function is called by the low level machine check code | |
2207 | * of an architecture when it detects hardware memory corruption | |
2208 | * of a page. It tries its best to recover, which includes | |
2209 | * dropping pages, killing processes etc. | |
2210 | * | |
2211 | * The function is primarily of use for corruptions that | |
2212 | * happen outside the current execution context (e.g. when | |
2213 | * detected by a background scrubber) | |
2214 | * | |
2215 | * Must run in process context (e.g. a work queue) with interrupts | |
5885c6a6 | 2216 | * enabled and no spinlocks held. |
d1fe111f | 2217 | * |
d2734f04 SX |
2218 | * Return: |
2219 | * 0 - success, | |
2220 | * -ENXIO - memory not managed by the kernel | |
2221 | * -EOPNOTSUPP - hwpoison_filter() filtered the error event, | |
2222 | * -EHWPOISON - the page was already poisoned, potentially | |
2223 | * kill process, | |
2224 | * other negative values - failure. | |
cd42f4a3 | 2225 | */ |
83b57531 | 2226 | int memory_failure(unsigned long pfn, int flags) |
6a46079c | 2227 | { |
6a46079c | 2228 | struct page *p; |
5dba5c35 | 2229 | struct folio *folio; |
6100e34b | 2230 | struct dev_pagemap *pgmap; |
171936dd | 2231 | int res = 0; |
524fca1e | 2232 | unsigned long page_flags; |
a8b2c2ce | 2233 | bool retry = true; |
405ce051 | 2234 | int hugetlb = 0; |
6a46079c AK |
2235 | |
2236 | if (!sysctl_memory_failure_recovery) | |
83b57531 | 2237 | panic("Memory failure on page %lx", pfn); |
6a46079c | 2238 | |
03b122da TL |
2239 | mutex_lock(&mf_mutex); |
2240 | ||
67f22ba7 | 2241 | if (!(flags & MF_SW_SIMULATED)) |
2242 | hw_memory_failure = true; | |
2243 | ||
96c804a6 DH |
2244 | p = pfn_to_online_page(pfn); |
2245 | if (!p) { | |
03b122da TL |
2246 | res = arch_memory_failure(pfn, flags); |
2247 | if (res == 0) | |
2248 | goto unlock_mutex; | |
2249 | ||
96c804a6 DH |
2250 | if (pfn_valid(pfn)) { |
2251 | pgmap = get_dev_pagemap(pfn, NULL); | |
d51b6846 | 2252 | put_ref_page(pfn, flags); |
03b122da TL |
2253 | if (pgmap) { |
2254 | res = memory_failure_dev_pagemap(pfn, flags, | |
2255 | pgmap); | |
2256 | goto unlock_mutex; | |
2257 | } | |
96c804a6 | 2258 | } |
96f96763 | 2259 | pr_err("%#lx: memory outside kernel control\n", pfn); |
03b122da TL |
2260 | res = -ENXIO; |
2261 | goto unlock_mutex; | |
6a46079c AK |
2262 | } |
2263 | ||
a8b2c2ce | 2264 | try_again: |
405ce051 NH |
2265 | res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); |
2266 | if (hugetlb) | |
171936dd | 2267 | goto unlock_mutex; |
171936dd | 2268 | |
6a46079c | 2269 | if (TestSetPageHWPoison(p)) { |
96f96763 | 2270 | pr_err("%#lx: already hardware poisoned\n", pfn); |
47af12ba | 2271 | res = -EHWPOISON; |
a3f5d80e NH |
2272 | if (flags & MF_ACTION_REQUIRED) |
2273 | res = kill_accessing_process(current, pfn, flags); | |
f361e246 NH |
2274 | if (flags & MF_COUNT_INCREASED) |
2275 | put_page(p); | |
b8b9488d | 2276 | action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); |
171936dd | 2277 | goto unlock_mutex; |
6a46079c AK |
2278 | } |
2279 | ||
6a46079c AK |
2280 | /* |
2281 | * We need/can do nothing about count=0 pages. | |
2282 | * 1) it's a free page, and therefore in safe hand: | |
9cf28191 | 2283 | * check_new_page() will be the gate keeper. |
761ad8d7 | 2284 | * 2) it's part of a non-compound high order page. |
6a46079c AK |
2285 | * Implies some kernel user: cannot stop them from |
2286 | * R/W the page; let's pray that the page has been | |
2287 | * used and will be freed some time later. | |
2288 | * In fact it's dangerous to directly bump up page count from 0, | |
1c4c3b99 | 2289 | * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. |
6a46079c | 2290 | */ |
0ed950d1 NH |
2291 | if (!(flags & MF_COUNT_INCREASED)) { |
2292 | res = get_hwpoison_page(p, flags); | |
2293 | if (!res) { | |
2294 | if (is_free_buddy_page(p)) { | |
2295 | if (take_page_off_buddy(p)) { | |
2296 | page_ref_inc(p); | |
2297 | res = MF_RECOVERED; | |
2298 | } else { | |
2299 | /* We lost the race, try again */ | |
2300 | if (retry) { | |
2301 | ClearPageHWPoison(p); | |
0ed950d1 NH |
2302 | retry = false; |
2303 | goto try_again; | |
2304 | } | |
2305 | res = MF_FAILED; | |
a8b2c2ce | 2306 | } |
b66d00df | 2307 | res = action_result(pfn, MF_MSG_BUDDY, res); |
0ed950d1 | 2308 | } else { |
b66d00df | 2309 | res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); |
a8b2c2ce | 2310 | } |
0ed950d1 NH |
2311 | goto unlock_mutex; |
2312 | } else if (res < 0) { | |
b8b9488d | 2313 | res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); |
0ed950d1 | 2314 | goto unlock_mutex; |
8d22ba1b | 2315 | } |
6a46079c AK |
2316 | } |
2317 | ||
5dba5c35 | 2318 | folio = page_folio(p); |
9b0ab153 JC |
2319 | |
2320 | /* filter pages that are protected from hwpoison test by users */ | |
2321 | folio_lock(folio); | |
2322 | if (hwpoison_filter(p)) { | |
2323 | ClearPageHWPoison(p); | |
2324 | folio_unlock(folio); | |
2325 | folio_put(folio); | |
2326 | res = -EOPNOTSUPP; | |
2327 | goto unlock_mutex; | |
2328 | } | |
2329 | folio_unlock(folio); | |
2330 | ||
5dba5c35 | 2331 | if (folio_test_large(folio)) { |
eac96c3e YS |
2332 | /* |
2333 | * The flag must be set after the refcount is bumped | |
2334 | * otherwise it may race with THP split. | |
2335 | * And the flag can't be set in get_hwpoison_page() since | |
2336 | * it is called by soft offline too and it is just called | |
5885c6a6 | 2337 | * for !MF_COUNT_INCREASED. So here seems to be the best |
eac96c3e YS |
2338 | * place. |
2339 | * | |
2340 | * Don't need care about the above error handling paths for | |
2341 | * get_hwpoison_page() since they handle either free page | |
2342 | * or unhandlable page. The refcount is bumped iff the | |
2343 | * page is a valid handlable page. | |
2344 | */ | |
5dba5c35 | 2345 | folio_set_has_hwpoisoned(folio); |
1a3798de JC |
2346 | if (try_to_split_thp_page(p, false) < 0) { |
2347 | res = -EHWPOISON; | |
2348 | kill_procs_now(p, pfn, flags, folio); | |
2349 | put_page(p); | |
2350 | action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); | |
171936dd | 2351 | goto unlock_mutex; |
5d1fd5dc | 2352 | } |
415c64c1 | 2353 | VM_BUG_ON_PAGE(!page_count(p), p); |
5dba5c35 | 2354 | folio = page_folio(p); |
415c64c1 NH |
2355 | } |
2356 | ||
e43c3afb WF |
2357 | /* |
2358 | * We ignore non-LRU pages for good reasons. | |
2359 | * - PG_locked is only well defined for LRU pages and a few others | |
48c935ad | 2360 | * - to avoid races with __SetPageLocked() |
e43c3afb WF |
2361 | * - to avoid races with __SetPageSlab*() (and more non-atomic ops) |
2362 | * The check (unnecessarily) ignores LRU pages being isolated and | |
2363 | * walked by the page reclaim code, however that's not a big loss. | |
2364 | */ | |
5dba5c35 | 2365 | shake_folio(folio); |
e43c3afb | 2366 | |
5dba5c35 | 2367 | folio_lock(folio); |
847ce401 | 2368 | |
f37d4298 | 2369 | /* |
75ee64b3 | 2370 | * We're only intended to deal with the non-Compound page here. |
8a78882d ML |
2371 | * The page cannot become compound pages again as folio has been |
2372 | * splited and extra refcnt is held. | |
f37d4298 | 2373 | */ |
8a78882d | 2374 | WARN_ON(folio_test_large(folio)); |
f37d4298 | 2375 | |
524fca1e NH |
2376 | /* |
2377 | * We use page flags to determine what action should be taken, but | |
2378 | * the flags can be modified by the error containment action. One | |
2379 | * example is an mlocked page, where PG_mlocked is cleared by | |
4d8f7418 DH |
2380 | * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page |
2381 | * status correctly, we save a copy of the page flags at this time. | |
524fca1e | 2382 | */ |
5dba5c35 | 2383 | page_flags = folio->flags; |
524fca1e | 2384 | |
e8675d29 | 2385 | /* |
5dba5c35 MWO |
2386 | * __munlock_folio() may clear a writeback folio's LRU flag without |
2387 | * the folio lock. We need to wait for writeback completion for this | |
2388 | * folio or it may trigger a vfs BUG while evicting inode. | |
e8675d29 | 2389 | */ |
5dba5c35 | 2390 | if (!folio_test_lru(folio) && !folio_test_writeback(folio)) |
0bc1f8b0 CY |
2391 | goto identify_page_state; |
2392 | ||
6edd6cc6 NH |
2393 | /* |
2394 | * It's very difficult to mess with pages currently under IO | |
2395 | * and in many cases impossible, so we just avoid it here. | |
2396 | */ | |
5dba5c35 | 2397 | folio_wait_writeback(folio); |
6a46079c AK |
2398 | |
2399 | /* | |
2400 | * Now take care of user space mappings. | |
6ffcd825 | 2401 | * Abort on fail: __filemap_remove_folio() assumes unmapped page. |
6a46079c | 2402 | */ |
03468a0f | 2403 | if (!hwpoison_user_mappings(folio, p, pfn, flags)) { |
b8b9488d | 2404 | res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); |
171936dd | 2405 | goto unlock_page; |
1668bfd5 | 2406 | } |
6a46079c AK |
2407 | |
2408 | /* | |
2409 | * Torn down by someone else? | |
2410 | */ | |
5dba5c35 MWO |
2411 | if (folio_test_lru(folio) && !folio_test_swapcache(folio) && |
2412 | folio->mapping == NULL) { | |
b66d00df | 2413 | res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); |
171936dd | 2414 | goto unlock_page; |
6a46079c AK |
2415 | } |
2416 | ||
0bc1f8b0 | 2417 | identify_page_state: |
0348d2eb | 2418 | res = identify_page_state(pfn, p, page_flags); |
ea6d0630 NH |
2419 | mutex_unlock(&mf_mutex); |
2420 | return res; | |
171936dd | 2421 | unlock_page: |
5dba5c35 | 2422 | folio_unlock(folio); |
171936dd TL |
2423 | unlock_mutex: |
2424 | mutex_unlock(&mf_mutex); | |
6a46079c AK |
2425 | return res; |
2426 | } | |
cd42f4a3 | 2427 | EXPORT_SYMBOL_GPL(memory_failure); |
847ce401 | 2428 | |
ea8f5fb8 HY |
2429 | #define MEMORY_FAILURE_FIFO_ORDER 4 |
2430 | #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) | |
2431 | ||
2432 | struct memory_failure_entry { | |
2433 | unsigned long pfn; | |
ea8f5fb8 HY |
2434 | int flags; |
2435 | }; | |
2436 | ||
2437 | struct memory_failure_cpu { | |
2438 | DECLARE_KFIFO(fifo, struct memory_failure_entry, | |
2439 | MEMORY_FAILURE_FIFO_SIZE); | |
d75abd0d | 2440 | raw_spinlock_t lock; |
ea8f5fb8 HY |
2441 | struct work_struct work; |
2442 | }; | |
2443 | ||
2444 | static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); | |
2445 | ||
2446 | /** | |
2447 | * memory_failure_queue - Schedule handling memory failure of a page. | |
2448 | * @pfn: Page Number of the corrupted page | |
ea8f5fb8 HY |
2449 | * @flags: Flags for memory failure handling |
2450 | * | |
2451 | * This function is called by the low level hardware error handler | |
2452 | * when it detects hardware memory corruption of a page. It schedules | |
2453 | * the recovering of error page, including dropping pages, killing | |
2454 | * processes etc. | |
2455 | * | |
2456 | * The function is primarily of use for corruptions that | |
2457 | * happen outside the current execution context (e.g. when | |
2458 | * detected by a background scrubber) | |
2459 | * | |
2460 | * Can run in IRQ context. | |
2461 | */ | |
83b57531 | 2462 | void memory_failure_queue(unsigned long pfn, int flags) |
ea8f5fb8 HY |
2463 | { |
2464 | struct memory_failure_cpu *mf_cpu; | |
2465 | unsigned long proc_flags; | |
d75abd0d | 2466 | bool buffer_overflow; |
ea8f5fb8 HY |
2467 | struct memory_failure_entry entry = { |
2468 | .pfn = pfn, | |
ea8f5fb8 HY |
2469 | .flags = flags, |
2470 | }; | |
2471 | ||
2472 | mf_cpu = &get_cpu_var(memory_failure_cpu); | |
d75abd0d WL |
2473 | raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); |
2474 | buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); | |
2475 | if (!buffer_overflow) | |
ea8f5fb8 | 2476 | schedule_work_on(smp_processor_id(), &mf_cpu->work); |
d75abd0d WL |
2477 | raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); |
2478 | put_cpu_var(memory_failure_cpu); | |
2479 | if (buffer_overflow) | |
96f96763 | 2480 | pr_err("buffer overflow when queuing memory failure at %#lx\n", |
ea8f5fb8 | 2481 | pfn); |
ea8f5fb8 HY |
2482 | } |
2483 | EXPORT_SYMBOL_GPL(memory_failure_queue); | |
2484 | ||
2485 | static void memory_failure_work_func(struct work_struct *work) | |
2486 | { | |
2487 | struct memory_failure_cpu *mf_cpu; | |
2488 | struct memory_failure_entry entry = { 0, }; | |
2489 | unsigned long proc_flags; | |
2490 | int gotten; | |
2491 | ||
06202231 | 2492 | mf_cpu = container_of(work, struct memory_failure_cpu, work); |
ea8f5fb8 | 2493 | for (;;) { |
d75abd0d | 2494 | raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); |
ea8f5fb8 | 2495 | gotten = kfifo_get(&mf_cpu->fifo, &entry); |
d75abd0d | 2496 | raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); |
ea8f5fb8 HY |
2497 | if (!gotten) |
2498 | break; | |
cf870c70 | 2499 | if (entry.flags & MF_SOFT_OFFLINE) |
feec24a6 | 2500 | soft_offline_page(entry.pfn, entry.flags); |
cf870c70 | 2501 | else |
83b57531 | 2502 | memory_failure(entry.pfn, entry.flags); |
ea8f5fb8 HY |
2503 | } |
2504 | } | |
2505 | ||
06202231 JM |
2506 | /* |
2507 | * Process memory_failure work queued on the specified CPU. | |
2508 | * Used to avoid return-to-userspace racing with the memory_failure workqueue. | |
2509 | */ | |
2510 | void memory_failure_queue_kick(int cpu) | |
2511 | { | |
2512 | struct memory_failure_cpu *mf_cpu; | |
2513 | ||
2514 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | |
2515 | cancel_work_sync(&mf_cpu->work); | |
2516 | memory_failure_work_func(&mf_cpu->work); | |
2517 | } | |
2518 | ||
ea8f5fb8 HY |
2519 | static int __init memory_failure_init(void) |
2520 | { | |
2521 | struct memory_failure_cpu *mf_cpu; | |
2522 | int cpu; | |
2523 | ||
2524 | for_each_possible_cpu(cpu) { | |
2525 | mf_cpu = &per_cpu(memory_failure_cpu, cpu); | |
d75abd0d | 2526 | raw_spin_lock_init(&mf_cpu->lock); |
ea8f5fb8 HY |
2527 | INIT_KFIFO(mf_cpu->fifo); |
2528 | INIT_WORK(&mf_cpu->work, memory_failure_work_func); | |
2529 | } | |
2530 | ||
97de10a9 KW |
2531 | register_sysctl_init("vm", memory_failure_table); |
2532 | ||
ea8f5fb8 HY |
2533 | return 0; |
2534 | } | |
2535 | core_initcall(memory_failure_init); | |
2536 | ||
96f96763 | 2537 | #undef pr_fmt |
5cea5666 | 2538 | #define pr_fmt(fmt) "Unpoison: " fmt |
a5f65109 NH |
2539 | #define unpoison_pr_info(fmt, pfn, rs) \ |
2540 | ({ \ | |
2541 | if (__ratelimit(rs)) \ | |
2542 | pr_info(fmt, pfn); \ | |
2543 | }) | |
2544 | ||
847ce401 WF |
2545 | /** |
2546 | * unpoison_memory - Unpoison a previously poisoned page | |
2547 | * @pfn: Page number of the to be unpoisoned page | |
2548 | * | |
2549 | * Software-unpoison a page that has been poisoned by | |
2550 | * memory_failure() earlier. | |
2551 | * | |
2552 | * This is only done on the software-level, so it only works | |
2553 | * for linux injected failures, not real hardware failures | |
2554 | * | |
2555 | * Returns 0 for success, otherwise -errno. | |
2556 | */ | |
2557 | int unpoison_memory(unsigned long pfn) | |
2558 | { | |
9637d7df | 2559 | struct folio *folio; |
847ce401 | 2560 | struct page *p; |
f29623e4 | 2561 | int ret = -EBUSY, ghp; |
4d64ab2f | 2562 | unsigned long count; |
5033091d | 2563 | bool huge = false; |
a5f65109 NH |
2564 | static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, |
2565 | DEFAULT_RATELIMIT_BURST); | |
847ce401 WF |
2566 | |
2567 | if (!pfn_valid(pfn)) | |
2568 | return -ENXIO; | |
2569 | ||
2570 | p = pfn_to_page(pfn); | |
9637d7df | 2571 | folio = page_folio(p); |
847ce401 | 2572 | |
91d00547 NH |
2573 | mutex_lock(&mf_mutex); |
2574 | ||
67f22ba7 | 2575 | if (hw_memory_failure) { |
5cea5666 | 2576 | unpoison_pr_info("%#lx: disabled after HW memory failure\n", |
67f22ba7 | 2577 | pfn, &unpoison_rs); |
2578 | ret = -EOPNOTSUPP; | |
2579 | goto unlock_mutex; | |
2580 | } | |
2581 | ||
fe6f86f4 | 2582 | if (is_huge_zero_folio(folio)) { |
5cea5666 | 2583 | unpoison_pr_info("%#lx: huge zero page is not supported\n", |
fe6f86f4 ML |
2584 | pfn, &unpoison_rs); |
2585 | ret = -EOPNOTSUPP; | |
2586 | goto unlock_mutex; | |
2587 | } | |
2588 | ||
6c54312f | 2589 | if (!PageHWPoison(p)) { |
5cea5666 | 2590 | unpoison_pr_info("%#lx: page was already unpoisoned\n", |
a5f65109 | 2591 | pfn, &unpoison_rs); |
91d00547 | 2592 | goto unlock_mutex; |
847ce401 WF |
2593 | } |
2594 | ||
a6fddef4 | 2595 | if (folio_ref_count(folio) > 1) { |
5cea5666 | 2596 | unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", |
a5f65109 | 2597 | pfn, &unpoison_rs); |
91d00547 | 2598 | goto unlock_mutex; |
230ac719 NH |
2599 | } |
2600 | ||
ee299e98 MWO |
2601 | if (folio_test_slab(folio) || folio_test_pgtable(folio) || |
2602 | folio_test_reserved(folio) || folio_test_offline(folio)) | |
faeb2ff2 ML |
2603 | goto unlock_mutex; |
2604 | ||
a6fddef4 | 2605 | if (folio_mapped(folio)) { |
5cea5666 | 2606 | unpoison_pr_info("%#lx: someone maps the hwpoison page\n", |
a5f65109 | 2607 | pfn, &unpoison_rs); |
91d00547 | 2608 | goto unlock_mutex; |
230ac719 NH |
2609 | } |
2610 | ||
a6fddef4 | 2611 | if (folio_mapping(folio)) { |
5cea5666 | 2612 | unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", |
a5f65109 | 2613 | pfn, &unpoison_rs); |
91d00547 | 2614 | goto unlock_mutex; |
0cea3fdc WL |
2615 | } |
2616 | ||
f29623e4 ML |
2617 | ghp = get_hwpoison_page(p, MF_UNPOISON); |
2618 | if (!ghp) { | |
ee299e98 | 2619 | if (folio_test_hugetlb(folio)) { |
5033091d | 2620 | huge = true; |
9637d7df | 2621 | count = folio_free_raw_hwp(folio, false); |
f29623e4 | 2622 | if (count == 0) |
ac5fcde0 | 2623 | goto unlock_mutex; |
ac5fcde0 | 2624 | } |
a6fddef4 | 2625 | ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; |
f29623e4 ML |
2626 | } else if (ghp < 0) { |
2627 | if (ghp == -EHWPOISON) { | |
c8bd84f7 | 2628 | ret = put_page_back_buddy(p) ? 0 : -EBUSY; |
f29623e4 ML |
2629 | } else { |
2630 | ret = ghp; | |
5cea5666 | 2631 | unpoison_pr_info("%#lx: failed to grab page\n", |
bf181c58 | 2632 | pfn, &unpoison_rs); |
f29623e4 | 2633 | } |
bf181c58 | 2634 | } else { |
ee299e98 | 2635 | if (folio_test_hugetlb(folio)) { |
5033091d | 2636 | huge = true; |
9637d7df | 2637 | count = folio_free_raw_hwp(folio, false); |
ac5fcde0 | 2638 | if (count == 0) { |
a6fddef4 | 2639 | folio_put(folio); |
ac5fcde0 NH |
2640 | goto unlock_mutex; |
2641 | } | |
2642 | } | |
847ce401 | 2643 | |
a6fddef4 | 2644 | folio_put(folio); |
e0ff4280 | 2645 | if (TestClearPageHWPoison(p)) { |
a6fddef4 | 2646 | folio_put(folio); |
bf181c58 NH |
2647 | ret = 0; |
2648 | } | |
2649 | } | |
847ce401 | 2650 | |
91d00547 NH |
2651 | unlock_mutex: |
2652 | mutex_unlock(&mf_mutex); | |
e0ff4280 | 2653 | if (!ret) { |
5033091d NH |
2654 | if (!huge) |
2655 | num_poisoned_pages_sub(pfn, 1); | |
5cea5666 | 2656 | unpoison_pr_info("%#lx: software-unpoisoned page\n", |
c8bd84f7 | 2657 | page_to_pfn(p), &unpoison_rs); |
2658 | } | |
91d00547 | 2659 | return ret; |
847ce401 WF |
2660 | } |
2661 | EXPORT_SYMBOL(unpoison_memory); | |
facb6011 | 2662 | |
865319f7 JY |
2663 | #undef pr_fmt |
2664 | #define pr_fmt(fmt) "Soft offline: " fmt | |
2665 | ||
6b9a217e | 2666 | /* |
48309e1f | 2667 | * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. |
6b9a217e OS |
2668 | * If the page is a non-dirty unmapped page-cache page, it simply invalidates. |
2669 | * If the page is mapped, it migrates the contents over. | |
2670 | */ | |
48309e1f | 2671 | static int soft_offline_in_use_page(struct page *page) |
af8fae7c | 2672 | { |
d6c75dc2 | 2673 | long ret = 0; |
af8fae7c | 2674 | unsigned long pfn = page_to_pfn(page); |
049b2604 | 2675 | struct folio *folio = page_folio(page); |
6b9a217e | 2676 | char const *msg_page[] = {"page", "hugepage"}; |
049b2604 | 2677 | bool huge = folio_test_hugetlb(folio); |
f1264e95 | 2678 | bool isolated; |
6b9a217e | 2679 | LIST_HEAD(pagelist); |
54608759 JK |
2680 | struct migration_target_control mtc = { |
2681 | .nid = NUMA_NO_NODE, | |
2682 | .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, | |
e42dfe4e | 2683 | .reason = MR_MEMORY_FAILURE, |
54608759 | 2684 | }; |
facb6011 | 2685 | |
049b2604 | 2686 | if (!huge && folio_test_large(folio)) { |
1a3798de | 2687 | if (try_to_split_thp_page(page, true)) { |
865319f7 | 2688 | pr_info("%#lx: thp split failed\n", pfn); |
48309e1f KW |
2689 | return -EBUSY; |
2690 | } | |
049b2604 | 2691 | folio = page_folio(page); |
48309e1f KW |
2692 | } |
2693 | ||
049b2604 | 2694 | folio_lock(folio); |
55c7ac45 | 2695 | if (!huge) |
049b2604 | 2696 | folio_wait_writeback(folio); |
af8fae7c | 2697 | if (PageHWPoison(page)) { |
049b2604 MWO |
2698 | folio_unlock(folio); |
2699 | folio_put(folio); | |
865319f7 | 2700 | pr_info("%#lx: page already poisoned\n", pfn); |
5a2ffca3 | 2701 | return 0; |
af8fae7c | 2702 | } |
6b9a217e | 2703 | |
049b2604 | 2704 | if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) |
6b9a217e OS |
2705 | /* |
2706 | * Try to invalidate first. This should work for | |
2707 | * non dirty unmapped page cache pages. | |
2708 | */ | |
049b2604 MWO |
2709 | ret = mapping_evict_folio(folio_mapping(folio), folio); |
2710 | folio_unlock(folio); | |
6b9a217e | 2711 | |
6b9a217e | 2712 | if (ret) { |
865319f7 | 2713 | pr_info("%#lx: invalidated\n", pfn); |
6b9a217e | 2714 | page_handle_poison(page, false, true); |
af8fae7c | 2715 | return 0; |
facb6011 AK |
2716 | } |
2717 | ||
f1264e95 KW |
2718 | isolated = isolate_folio_to_list(folio, &pagelist); |
2719 | ||
2720 | /* | |
2721 | * If we succeed to isolate the folio, we grabbed another refcount on | |
2722 | * the folio, so we can safely drop the one we got from get_any_page(). | |
2723 | * If we failed to isolate the folio, it means that we cannot go further | |
2724 | * and we will return an error, so drop the reference we got from | |
2725 | * get_any_page() as well. | |
2726 | */ | |
2727 | folio_put(folio); | |
2728 | ||
2729 | if (isolated) { | |
54608759 | 2730 | ret = migrate_pages(&pagelist, alloc_migration_target, NULL, |
5ac95884 | 2731 | (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); |
79f5f8fa | 2732 | if (!ret) { |
6b9a217e OS |
2733 | bool release = !huge; |
2734 | ||
2735 | if (!page_handle_poison(page, huge, release)) | |
2736 | ret = -EBUSY; | |
79f5f8fa | 2737 | } else { |
85fbe5d1 YX |
2738 | if (!list_empty(&pagelist)) |
2739 | putback_movable_pages(&pagelist); | |
59c82b70 | 2740 | |
865319f7 | 2741 | pr_info("%#lx: %s migration failed %ld, type %pGp\n", |
23efd080 | 2742 | pfn, msg_page[huge], ret, &page->flags); |
facb6011 | 2743 | if (ret > 0) |
3f4b815a | 2744 | ret = -EBUSY; |
facb6011 AK |
2745 | } |
2746 | } else { | |
865319f7 | 2747 | pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", |
23efd080 | 2748 | pfn, msg_page[huge], page_count(page), &page->flags); |
6b9a217e | 2749 | ret = -EBUSY; |
facb6011 | 2750 | } |
facb6011 AK |
2751 | return ret; |
2752 | } | |
86e05773 WL |
2753 | |
2754 | /** | |
2755 | * soft_offline_page - Soft offline a page. | |
feec24a6 | 2756 | * @pfn: pfn to soft-offline |
86e05773 WL |
2757 | * @flags: flags. Same as memory_failure(). |
2758 | * | |
56374430 JY |
2759 | * Returns 0 on success, |
2760 | * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or | |
2761 | * disabled by /proc/sys/vm/enable_soft_offline, | |
9113eaf3 | 2762 | * < 0 otherwise negated errno. |
86e05773 WL |
2763 | * |
2764 | * Soft offline a page, by migration or invalidation, | |
2765 | * without killing anything. This is for the case when | |
2766 | * a page is not corrupted yet (so it's still valid to access), | |
2767 | * but has had a number of corrected errors and is better taken | |
2768 | * out. | |
2769 | * | |
2770 | * The actual policy on when to do that is maintained by | |
2771 | * user space. | |
2772 | * | |
2773 | * This should never impact any application or cause data loss, | |
2774 | * however it might take some time. | |
2775 | * | |
2776 | * This is not a 100% solution for all memory, but tries to be | |
2777 | * ``good enough'' for the majority of memory. | |
2778 | */ | |
feec24a6 | 2779 | int soft_offline_page(unsigned long pfn, int flags) |
86e05773 WL |
2780 | { |
2781 | int ret; | |
b94e0282 | 2782 | bool try_again = true; |
b5f1fc98 | 2783 | struct page *page; |
dad4e5b3 | 2784 | |
183a7c5d KW |
2785 | if (!pfn_valid(pfn)) { |
2786 | WARN_ON_ONCE(flags & MF_COUNT_INCREASED); | |
feec24a6 | 2787 | return -ENXIO; |
183a7c5d | 2788 | } |
dad4e5b3 | 2789 | |
feec24a6 NH |
2790 | /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ |
2791 | page = pfn_to_online_page(pfn); | |
dad4e5b3 | 2792 | if (!page) { |
b5f1fc98 | 2793 | put_ref_page(pfn, flags); |
86a66810 | 2794 | return -EIO; |
dad4e5b3 | 2795 | } |
86a66810 | 2796 | |
56374430 JY |
2797 | if (!sysctl_enable_soft_offline) { |
2798 | pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); | |
2799 | put_ref_page(pfn, flags); | |
2800 | return -EOPNOTSUPP; | |
2801 | } | |
2802 | ||
91d00547 NH |
2803 | mutex_lock(&mf_mutex); |
2804 | ||
86e05773 | 2805 | if (PageHWPoison(page)) { |
865319f7 | 2806 | pr_info("%#lx: page already poisoned\n", pfn); |
b5f1fc98 | 2807 | put_ref_page(pfn, flags); |
91d00547 | 2808 | mutex_unlock(&mf_mutex); |
5a2ffca3 | 2809 | return 0; |
86e05773 | 2810 | } |
86e05773 | 2811 | |
b94e0282 | 2812 | retry: |
bfc8c901 | 2813 | get_online_mems(); |
bf6445bc | 2814 | ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); |
bfc8c901 | 2815 | put_online_mems(); |
4e41a30c | 2816 | |
9113eaf3 | 2817 | if (hwpoison_filter(page)) { |
2818 | if (ret > 0) | |
2819 | put_page(page); | |
9113eaf3 | 2820 | |
2821 | mutex_unlock(&mf_mutex); | |
2822 | return -EOPNOTSUPP; | |
2823 | } | |
2824 | ||
8295d535 | 2825 | if (ret > 0) { |
6b9a217e | 2826 | ret = soft_offline_in_use_page(page); |
8295d535 | 2827 | } else if (ret == 0) { |
e2c1ab07 ML |
2828 | if (!page_handle_poison(page, true, false)) { |
2829 | if (try_again) { | |
2830 | try_again = false; | |
2831 | flags &= ~MF_COUNT_INCREASED; | |
2832 | goto retry; | |
2833 | } | |
2834 | ret = -EBUSY; | |
b94e0282 | 2835 | } |
8295d535 | 2836 | } |
4e41a30c | 2837 | |
91d00547 NH |
2838 | mutex_unlock(&mf_mutex); |
2839 | ||
86e05773 WL |
2840 | return ret; |
2841 | } |