Merge tag 'riscv-for-linus-6.16-rc5' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
56374430
JY
71static int sysctl_enable_soft_offline __read_mostly = 1;
72
293c07e3 73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 74
67f22ba7 75static bool hw_memory_failure __read_mostly = false;
76
b79f8eb4
JY
77static DEFINE_MUTEX(mf_mutex);
78
1a7d018d 79void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
80{
81 atomic_long_inc(&num_poisoned_pages);
5033091d 82 memblk_nr_poison_inc(pfn);
d027122d
NH
83}
84
1a7d018d 85void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
86{
87 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
d027122d
NH
90}
91
44b8f8bf
JY
92/**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96#define MF_ATTR_RO(_name) \
97static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100{ \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
408a8dc6 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
44b8f8bf
JY
104} \
105static DEVICE_ATTR_RO(_name)
106
107MF_ATTR_RO(total);
108MF_ATTR_RO(ignored);
109MF_ATTR_RO(failed);
110MF_ATTR_RO(delayed);
111MF_ATTR_RO(recovered);
112
113static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120};
121
122const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125};
126
1751f872 127static const struct ctl_table memory_failure_table[] = {
8cbc82f3
KW
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
56374430
JY
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
8cbc82f3
KW
155};
156
7453bf62
NH
157/*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
163static int __page_handle_poison(struct page *page)
510d25c9 164{
f87060d3 165 int ret;
510d25c9 166
1983184c
ML
167 /*
168 * zone_pcp_disable() can't be used here. It will
54fa49b2 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
1983184c
ML
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
54fa49b2 179 ret = dissolve_free_hugetlb_folio(page_folio(page));
1983184c
ML
180 if (!ret) {
181 drain_all_pages(page_zone(page));
510d25c9 182 ret = take_page_off_buddy(page);
1983184c 183 }
510d25c9 184
7453bf62 185 return ret;
510d25c9
NH
186}
187
6b9a217e 188static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 189{
6b9a217e
OS
190 if (hugepage_or_freepage) {
191 /*
54fa49b2
SK
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
6b9a217e 194 */
7453bf62 195 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
196 /*
197 * We could fail to take off the target page from buddy
f0953a1b 198 * for example due to racy page allocation, but that's
6b9a217e
OS
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
06be6ff3 206 SetPageHWPoison(page);
79f5f8fa
OS
207 if (release)
208 put_page(page);
06be6ff3 209 page_ref_inc(page);
a46c9304 210 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
211
212 return true;
06be6ff3
OS
213}
214
611b9fd8 215#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 216
1bfe5feb 217u32 hwpoison_filter_enable = 0;
7c116f2b
WF
218u32 hwpoison_filter_dev_major = ~0U;
219u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
220u64 hwpoison_filter_flags_mask;
221u64 hwpoison_filter_flags_value;
1bfe5feb 222EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
223EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
225EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
227
228static int hwpoison_filter_dev(struct page *p)
229{
89f5c54b 230 struct folio *folio = page_folio(p);
7c116f2b
WF
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
89f5c54b 238 mapping = folio_mapping(folio);
7c116f2b
WF
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251}
252
478c5ffc
WF
253static int hwpoison_filter_flags(struct page *p)
254{
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263}
264
4fd466eb
AK
265/*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
94a59fb3 275#ifdef CONFIG_MEMCG
4fd466eb
AK
276u64 hwpoison_filter_memcg;
277EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278static int hwpoison_filter_task(struct page *p)
279{
4fd466eb
AK
280 if (!hwpoison_filter_memcg)
281 return 0;
282
94a59fb3 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
284 return -EINVAL;
285
286 return 0;
287}
288#else
289static int hwpoison_filter_task(struct page *p) { return 0; }
290#endif
291
7c116f2b
WF
292int hwpoison_filter(struct page *p)
293{
1bfe5feb
HL
294 if (!hwpoison_filter_enable)
295 return 0;
296
7c116f2b
WF
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
478c5ffc
WF
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
4fd466eb
AK
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
7c116f2b
WF
306 return 0;
307}
5a8b01be 308EXPORT_SYMBOL_GPL(hwpoison_filter);
27df5068
AK
309#else
310int hwpoison_filter(struct page *p)
311{
312 return 0;
313}
314#endif
315
ae1139ec
DW
316/*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
ae1139ec
DW
343};
344
6a46079c 345/*
7329bbeb
TL
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
6a46079c 349 */
ae1139ec 350static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 351{
ae1139ec
DW
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
872e9a20 354 int ret = 0;
6a46079c 355
96f96763 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
96e13a4e 357 pfn, t->comm, task_pid_nr(t));
7329bbeb 358
49775047
ML
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
7329bbeb 363 /*
49775047
ML
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
7329bbeb
TL
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
7329bbeb 368 */
ae1139ec 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 370 addr_lsb, t);
6a46079c 371 if (ret < 0)
96f96763 372 pr_info("Error sending signal to %s:%d: %d\n",
96e13a4e 373 t->comm, task_pid_nr(t), ret);
6a46079c
AK
374 return ret;
375}
376
588f9ce6 377/*
47e431f4 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 379 * lru_add_drain_all.
588f9ce6 380 */
fed5348e 381void shake_folio(struct folio *folio)
588f9ce6 382{
fed5348e 383 if (folio_test_hugetlb(folio))
8bcb74de 384 return;
588f9ce6 385 /*
d0505e9f
YS
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
588f9ce6 388 */
fed5348e 389 if (folio_test_slab(folio))
b7b618da
ML
390 return;
391
392 lru_add_drain_all();
588f9ce6 393}
fed5348e
MWO
394EXPORT_SYMBOL_GPL(shake_folio);
395
396static void shake_page(struct page *page)
397{
398 shake_folio(page_folio(page));
399}
588f9ce6 400
c36e2024
SR
401static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
6100e34b 403{
5c91c0e7 404 unsigned long ret = 0;
6100e34b
DW
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
c33c7948 410 pte_t ptent;
6100e34b 411
a994402b 412 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
38607c62 422 if (pud_trans_huge(*pud))
6100e34b
DW
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
38607c62 427 if (pmd_trans_huge(*pmd))
6100e34b
DW
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
04dee9e8
HD
430 if (!pte)
431 return 0;
c33c7948 432 ptent = ptep_get(pte);
38607c62 433 if (pte_present(ptent))
5c91c0e7
QZ
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
6100e34b 437}
6a46079c
AK
438
439/*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444/*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c 447 */
68158bfa 448static void __add_to_kill(struct task_struct *tsk, const struct page *p,
4f775086 449 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 450 unsigned long addr)
6a46079c
AK
451{
452 struct to_kill *tk;
453
996ff7a0
JC
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
96f96763 456 pr_err("Out of memory while machine check handling\n");
996ff7a0 457 return;
6a46079c 458 }
996ff7a0 459
f2b37197 460 tk->addr = addr;
1c0501e8 461 if (is_zone_device_page(p))
c36e2024 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
1c0501e8 463 else
68158bfa 464 tk->size_shift = folio_shift(page_folio(p));
6a46079c
AK
465
466 /*
3d7fed4a
JC
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
6a46079c 475 */
3d7fed4a 476 if (tk->addr == -EFAULT) {
96f96763 477 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 478 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
6a46079c 482 }
996ff7a0 483
6a46079c
AK
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487}
488
68158bfa 489static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
37bc2ff5
MWO
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
4f775086 492{
37bc2ff5
MWO
493 if (addr == -EFAULT)
494 return;
f2b37197 495 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
496}
497
4248d008
LX
498#ifdef CONFIG_KSM
499static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501{
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510}
f2b37197 511
68158bfa 512void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
4248d008 513 struct vm_area_struct *vma, struct list_head *to_kill,
1c0501e8 514 unsigned long addr)
4248d008
LX
515{
516 if (!task_in_to_kill_list(to_kill, tsk))
1c0501e8 517 __add_to_kill(tsk, p, vma, to_kill, addr);
4248d008
LX
518}
519#endif
6a46079c
AK
520/*
521 * Kill the processes that have been collected earlier.
522 *
a21c184f
ML
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
6a46079c 525 */
aa298fdf 526static void kill_procs(struct list_head *to_kill, int forcekill,
ae1139ec 527 unsigned long pfn, int flags)
6a46079c
AK
528{
529 struct to_kill *tk, *next;
530
54f9555d 531 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 532 if (forcekill) {
aa298fdf 533 if (tk->addr == -EFAULT) {
96f96763 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
96e13a4e 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
6376360e
NH
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
6a46079c
AK
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
ae1139ec 546 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
96e13a4e 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
6a46079c 549 }
54f9555d 550 list_del(&tk->nd);
6a46079c
AK
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554}
555
3ba08129
NH
556/*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
d256d1cd
TT
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
3ba08129
NH
563 */
564static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 565{
3ba08129
NH
566 struct task_struct *t;
567
4e018b45
NH
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
3ba08129
NH
577 return NULL;
578}
579
580/*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 584 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 585 *
30c9cf49
AY
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
3ba08129 591 */
4248d008 592struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 593{
6a46079c 594 if (!tsk->mm)
3ba08129 595 return NULL;
30c9cf49
AY
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
4e018b45 603 return find_early_kill_thread(tsk);
6a46079c
AK
604}
605
606/*
607 * Collect processes when the error hit an anonymous page.
608 */
68158bfa
MWO
609static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
6a46079c 612{
6a46079c
AK
613 struct task_struct *tsk;
614 struct anon_vma *av;
bf181b9f 615 pgoff_t pgoff;
6a46079c 616
6d4675e6 617 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 618 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
619 return;
620
f7470591 621 pgoff = page_pgoff(folio, page);
d256d1cd 622 rcu_read_lock();
5885c6a6 623 for_each_process(tsk) {
37bc2ff5 624 struct vm_area_struct *vma;
5beb4930 625 struct anon_vma_chain *vmac;
3ba08129 626 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 627 unsigned long addr;
5beb4930 628
3ba08129 629 if (!t)
6a46079c 630 continue;
bf181b9f
ML
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
5beb4930 633 vma = vmac->vma;
36537a67
ML
634 if (vma->vm_mm != t->mm)
635 continue;
37bc2ff5
MWO
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
638 }
639 }
d256d1cd 640 rcu_read_unlock();
0c826c0b 641 anon_vma_unlock_read(av);
6a46079c
AK
642}
643
644/*
645 * Collect processes when the error hit a file mapped page.
646 */
68158bfa
MWO
647static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
6a46079c
AK
650{
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
376907f3 653 struct address_space *mapping = folio->mapping;
c43bc03d 654 pgoff_t pgoff;
6a46079c 655
d28eb9c8 656 i_mmap_lock_read(mapping);
d256d1cd 657 rcu_read_lock();
f7470591 658 pgoff = page_pgoff(folio, page);
6a46079c 659 for_each_process(tsk) {
3ba08129 660 struct task_struct *t = task_early_kill(tsk, force_early);
37bc2ff5 661 unsigned long addr;
6a46079c 662
3ba08129 663 if (!t)
6a46079c 664 continue;
6b2dbba8 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
666 pgoff) {
667 /*
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
5885c6a6 670 * mapped in its pte.
6a46079c
AK
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
673 */
37bc2ff5
MWO
674 if (vma->vm_mm != t->mm)
675 continue;
713da0b3 676 addr = page_address_in_vma(folio, page, vma);
37bc2ff5 677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
6a46079c
AK
678 }
679 }
d256d1cd 680 rcu_read_unlock();
d28eb9c8 681 i_mmap_unlock_read(mapping);
6a46079c
AK
682}
683
c36e2024 684#ifdef CONFIG_FS_DAX
68158bfa 685static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
4f775086
LX
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
688{
1c0501e8
MWO
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
4f775086
LX
691}
692
c36e2024
SR
693/*
694 * Collect processes when the error hit a fsdax page.
695 */
68158bfa 696static void collect_procs_fsdax(const struct page *page,
c36e2024 697 struct address_space *mapping, pgoff_t pgoff,
fa422b35 698 struct list_head *to_kill, bool pre_remove)
c36e2024
SR
699{
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
702
703 i_mmap_lock_read(mapping);
d256d1cd 704 rcu_read_lock();
c36e2024 705 for_each_process(tsk) {
fa422b35 706 struct task_struct *t = tsk;
c36e2024 707
fa422b35
SR
708 /*
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
712 */
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
c36e2024
SR
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
4f775086 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
720 }
721 }
d256d1cd 722 rcu_read_unlock();
c36e2024
SR
723 i_mmap_unlock_read(mapping);
724}
725#endif /* CONFIG_FS_DAX */
726
6a46079c
AK
727/*
728 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 729 */
68158bfa 730static void collect_procs(const struct folio *folio, const struct page *page,
376907f3 731 struct list_head *tokill, int force_early)
6a46079c 732{
376907f3 733 if (!folio->mapping)
6a46079c 734 return;
0edb5b28 735 if (unlikely(folio_test_ksm(folio)))
b650e1d2 736 collect_procs_ksm(folio, page, tokill, force_early);
0edb5b28 737 else if (folio_test_anon(folio))
376907f3 738 collect_procs_anon(folio, page, tokill, force_early);
6a46079c 739 else
376907f3 740 collect_procs_file(folio, page, tokill, force_early);
6a46079c
AK
741}
742
6885938c 743struct hwpoison_walk {
a3f5d80e
NH
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
747};
748
749static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750{
751 tk->addr = addr;
752 tk->size_shift = shift;
753}
754
755static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
757{
758 unsigned long pfn = 0;
759
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
764
765 if (is_hwpoison_entry(swp))
0d206b5d 766 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
767 }
768
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
771
772 set_to_kill(tk, addr, shift);
773 return 1;
774}
775
776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
777static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 778 struct hwpoison_walk *hwp)
a3f5d80e
NH
779{
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
783
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
791 }
792 return 0;
793}
794#else
795static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 796 struct hwpoison_walk *hwp)
a3f5d80e
NH
797{
798 return 0;
799}
800#endif
801
802static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
804{
6885938c 805 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 806 int ret = 0;
ea3732f7 807 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
808 spinlock_t *ptl;
809
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
815 }
816
ea3732f7
ML
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
04dee9e8
HD
819 if (!ptep)
820 goto out;
821
a3f5d80e 822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
827 }
ea3732f7 828 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
829out:
830 cond_resched();
831 return ret;
832}
833
834#ifdef CONFIG_HUGETLB_PAGE
835static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
838{
6885938c 839 struct hwpoison_walk *hwp = walk->private;
e6c0c032 840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
a3f5d80e
NH
841 struct hstate *h = hstate_vma(walk->vma);
842
843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 hwp->pfn, &hwp->tk);
845}
846#else
847#define hwpoison_hugetlb_range NULL
848#endif
849
6885938c 850static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
851 .pmd_entry = hwpoison_pte_range,
852 .hugetlb_entry = hwpoison_hugetlb_range,
49b06385 853 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
854};
855
856/*
857 * Sends SIGBUS to the current process with error info.
858 *
859 * This function is intended to handle "Action Required" MCEs on already
860 * hardware poisoned pages. They could happen, for example, when
861 * memory_failure() failed to unmap the error page at the first call, or
862 * when multiple local machine checks happened on different CPUs.
863 *
864 * MCE handler currently has no easy access to the error virtual address,
865 * so this function walks page table to find it. The returned virtual address
866 * is proper in most cases, but it could be wrong when the application
867 * process has multiple entries mapping the error page.
868 */
869static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 int flags)
871{
872 int ret;
6885938c 873 struct hwpoison_walk priv = {
a3f5d80e
NH
874 .pfn = pfn,
875 };
876 priv.tk.tsk = p;
877
77677cdb
SX
878 if (!p->mm)
879 return -EFAULT;
880
a3f5d80e 881 mmap_read_lock(p->mm);
6885938c 882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e 883 (void *)&priv);
aaf99ac2
SX
884 /*
885 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
886 * succeeds or fails, then kill the process with SIGBUS.
887 * ret = 0 when poison page is a clean page and it's dropped, no
888 * SIGBUS is needed.
889 */
a3f5d80e
NH
890 if (ret == 1 && priv.tk.addr)
891 kill_proc(&priv.tk, pfn, flags);
892 mmap_read_unlock(p->mm);
aaf99ac2
SX
893
894 return ret > 0 ? -EHWPOISON : 0;
a3f5d80e
NH
895}
896
b8b9488d
JC
897/*
898 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
899 * But it could not do more to isolate the page from being accessed again,
900 * nor does it kill the process. This is extremely rare and one of the
901 * potential causes is that the page state has been changed due to
902 * underlying race condition. This is the most severe outcomes.
903 *
904 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905 * It should have killed the process, but it can't isolate the page,
906 * due to conditions such as extra pin, unmap failure, etc. Accessing
907 * the page again may trigger another MCE and the process will be killed
908 * by the m-f() handler immediately.
909 *
910 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * The page is unmapped, and is removed from the LRU or file mapping.
912 * An attempt to access the page again will trigger page fault and the
913 * PF handler will kill the process.
914 *
915 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
916 * The page has been completely isolated, that is, unmapped, taken out of
917 * the buddy system, or hole-punnched out of the file mapping.
918 */
6a46079c 919static const char *action_name[] = {
cc637b17
XX
920 [MF_IGNORED] = "Ignored",
921 [MF_FAILED] = "Failed",
922 [MF_DELAYED] = "Delayed",
923 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
924};
925
926static const char * const action_page_types[] = {
cc637b17
XX
927 [MF_MSG_KERNEL] = "reserved kernel page",
928 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
cc637b17
XX
929 [MF_MSG_HUGE] = "huge page",
930 [MF_MSG_FREE_HUGE] = "free huge page",
b8b9488d 931 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
cc637b17
XX
932 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
933 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
934 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
935 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
936 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
937 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
938 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
939 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
940 [MF_MSG_CLEAN_LRU] = "clean LRU page",
941 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
942 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 943 [MF_MSG_DAX] = "dax page",
5d1fd5dc 944 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
b8b9488d 945 [MF_MSG_ALREADY_POISONED] = "already poisoned",
cc637b17 946 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
947};
948
dc2a1cbf
WF
949/*
950 * XXX: It is possible that a page is isolated from LRU cache,
951 * and then kept in swap cache or failed to remove from page cache.
952 * The page count will stop it from being freed by unpoison.
953 * Stress tests should be aware of this memory leak problem.
954 */
f7092393 955static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 956{
f7092393 957 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
958 /*
959 * Clear sensible page flags, so that the buddy system won't
f7092393 960 * complain when the folio is unpoison-and-freed.
dc2a1cbf 961 */
f7092393
MWO
962 folio_clear_active(folio);
963 folio_clear_unevictable(folio);
18365225
MH
964
965 /*
966 * Poisoned page might never drop its ref count to 0 so we have
967 * to uncharge it manually from its memcg.
968 */
f7092393 969 mem_cgroup_uncharge(folio);
18365225 970
dc2a1cbf 971 /*
f7092393 972 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 973 */
f7092393 974 folio_put(folio);
dc2a1cbf
WF
975 return 0;
976 }
977 return -EIO;
978}
979
af7628d6 980static int truncate_error_folio(struct folio *folio, unsigned long pfn,
78bb9203
NH
981 struct address_space *mapping)
982{
983 int ret = MF_FAILED;
984
af7628d6
MWO
985 if (mapping->a_ops->error_remove_folio) {
986 int err = mapping->a_ops->error_remove_folio(mapping, folio);
78bb9203 987
0201ebf2 988 if (err != 0)
96f96763 989 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 990 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 991 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 992 else
78bb9203 993 ret = MF_RECOVERED;
78bb9203
NH
994 } else {
995 /*
996 * If the file system doesn't support it just invalidate
997 * This fails on dirty or anything with private pages
998 */
19369d86 999 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
1000 ret = MF_RECOVERED;
1001 else
96f96763 1002 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
1003 }
1004
1005 return ret;
1006}
1007
dd0f230a
YS
1008struct page_state {
1009 unsigned long mask;
1010 unsigned long res;
1011 enum mf_action_page_type type;
1012
1013 /* Callback ->action() has to unlock the relevant page inside it. */
1014 int (*action)(struct page_state *ps, struct page *p);
1015};
1016
1017/*
1018 * Return true if page is still referenced by others, otherwise return
1019 * false.
1020 *
1021 * The extra_pins is true when one extra refcount is expected.
1022 */
1023static bool has_extra_refcount(struct page_state *ps, struct page *p,
1024 bool extra_pins)
1025{
1026 int count = page_count(p) - 1;
1027
1028 if (extra_pins)
19d3e221 1029 count -= folio_nr_pages(page_folio(p));
dd0f230a
YS
1030
1031 if (count > 0) {
96f96763 1032 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
1033 page_to_pfn(p), action_page_types[ps->type], count);
1034 return true;
1035 }
1036
1037 return false;
1038}
1039
6a46079c
AK
1040/*
1041 * Error hit kernel page.
1042 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1043 * could be more sophisticated.
1044 */
dd0f230a 1045static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 1046{
ea6d0630 1047 unlock_page(p);
cc637b17 1048 return MF_IGNORED;
6a46079c
AK
1049}
1050
1051/*
1052 * Page in unknown state. Do nothing.
b8b9488d 1053 * This is a catch-all in case we fail to make sense of the page state.
6a46079c 1054 */
dd0f230a 1055static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1056{
96f96763 1057 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1058 unlock_page(p);
b8b9488d 1059 return MF_IGNORED;
6a46079c
AK
1060}
1061
6a46079c
AK
1062/*
1063 * Clean (or cleaned) page cache page.
1064 */
dd0f230a 1065static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1066{
3d47e317 1067 struct folio *folio = page_folio(p);
ea6d0630 1068 int ret;
6a46079c 1069 struct address_space *mapping;
a7605426 1070 bool extra_pins;
6a46079c 1071
f7092393 1072 delete_from_lru_cache(folio);
dc2a1cbf 1073
6a46079c 1074 /*
3d47e317 1075 * For anonymous folios the only reference left
6a46079c
AK
1076 * should be the one m_f() holds.
1077 */
3d47e317 1078 if (folio_test_anon(folio)) {
ea6d0630
NH
1079 ret = MF_RECOVERED;
1080 goto out;
1081 }
6a46079c
AK
1082
1083 /*
1084 * Now truncate the page in the page cache. This is really
1085 * more like a "temporary hole punch"
1086 * Don't do this for block devices when someone else
1087 * has a reference, because it could be file system metadata
1088 * and that's not safe to truncate.
1089 */
3d47e317 1090 mapping = folio_mapping(folio);
6a46079c 1091 if (!mapping) {
3d47e317 1092 /* Folio has been torn down in the meantime */
ea6d0630
NH
1093 ret = MF_FAILED;
1094 goto out;
6a46079c
AK
1095 }
1096
a7605426
YS
1097 /*
1098 * The shmem page is kept in page cache instead of truncating
1099 * so is expected to have an extra refcount after error-handling.
1100 */
1101 extra_pins = shmem_mapping(mapping);
1102
6a46079c
AK
1103 /*
1104 * Truncation is a bit tricky. Enable it per file system for now.
1105 *
9608703e 1106 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1107 */
af7628d6 1108 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
a7605426
YS
1109 if (has_extra_refcount(ps, p, extra_pins))
1110 ret = MF_FAILED;
1111
ea6d0630 1112out:
3d47e317 1113 folio_unlock(folio);
dd0f230a 1114
ea6d0630 1115 return ret;
6a46079c
AK
1116}
1117
1118/*
549543df 1119 * Dirty pagecache page
6a46079c
AK
1120 * Issues: when the error hit a hole page the error is not properly
1121 * propagated.
1122 */
dd0f230a 1123static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c 1124{
89f5c54b
MWO
1125 struct folio *folio = page_folio(p);
1126 struct address_space *mapping = folio_mapping(folio);
6a46079c 1127
6a46079c
AK
1128 /* TBD: print more information about the file. */
1129 if (mapping) {
1130 /*
1131 * IO error will be reported by write(), fsync(), etc.
1132 * who check the mapping.
1133 * This way the application knows that something went
1134 * wrong with its dirty file data.
6a46079c 1135 */
af21bfaf 1136 mapping_set_error(mapping, -EIO);
6a46079c
AK
1137 }
1138
dd0f230a 1139 return me_pagecache_clean(ps, p);
6a46079c
AK
1140}
1141
1142/*
1143 * Clean and dirty swap cache.
1144 *
1145 * Dirty swap cache page is tricky to handle. The page could live both in page
e5d89670 1146 * table and swap cache(ie. page is freshly swapped in). So it could be
6a46079c
AK
1147 * referenced concurrently by 2 types of PTEs:
1148 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1149 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1150 * and then
1151 * - clear dirty bit to prevent IO
1152 * - remove from LRU
1153 * - but keep in the swap cache, so that when we return to it on
1154 * a later page fault, we know the application is accessing
1155 * corrupted data and shall be killed (we installed simple
1156 * interception code in do_swap_page to catch it).
1157 *
1158 * Clean swap cache pages can be directly isolated. A later page fault will
1159 * bring in the known good data from disk.
1160 */
dd0f230a 1161static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1162{
6304b531 1163 struct folio *folio = page_folio(p);
ea6d0630 1164 int ret;
dd0f230a 1165 bool extra_pins = false;
ea6d0630 1166
6304b531 1167 folio_clear_dirty(folio);
6a46079c 1168 /* Trigger EIO in shmem: */
6304b531 1169 folio_clear_uptodate(folio);
6a46079c 1170
f7092393 1171 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1172 folio_unlock(folio);
dd0f230a
YS
1173
1174 if (ret == MF_DELAYED)
1175 extra_pins = true;
1176
1177 if (has_extra_refcount(ps, p, extra_pins))
1178 ret = MF_FAILED;
1179
ea6d0630 1180 return ret;
6a46079c
AK
1181}
1182
dd0f230a 1183static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1184{
75fa68a5 1185 struct folio *folio = page_folio(p);
ea6d0630
NH
1186 int ret;
1187
75fa68a5 1188 delete_from_swap_cache(folio);
e43c3afb 1189
f7092393 1190 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1191 folio_unlock(folio);
dd0f230a
YS
1192
1193 if (has_extra_refcount(ps, p, false))
1194 ret = MF_FAILED;
1195
ea6d0630 1196 return ret;
6a46079c
AK
1197}
1198
1199/*
1200 * Huge pages. Needs work.
1201 * Issues:
93f70f90
NH
1202 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1203 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1204 */
dd0f230a 1205static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1206{
b6fd410c 1207 struct folio *folio = page_folio(p);
a8b2c2ce 1208 int res;
78bb9203 1209 struct address_space *mapping;
8625147c 1210 bool extra_pins = false;
2491ffee 1211
b6fd410c 1212 mapping = folio_mapping(folio);
78bb9203 1213 if (mapping) {
af7628d6 1214 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
8625147c
JH
1215 /* The page is kept in page cache. */
1216 extra_pins = true;
b6fd410c 1217 folio_unlock(folio);
78bb9203 1218 } else {
b6fd410c 1219 folio_unlock(folio);
78bb9203 1220 /*
ef526b17
ML
1221 * migration entry prevents later access on error hugepage,
1222 * so we can free and dissolve it into buddy to save healthy
1223 * subpages.
78bb9203 1224 */
b6fd410c 1225 folio_put(folio);
8cf360b9 1226 if (__page_handle_poison(p) > 0) {
a8b2c2ce
OS
1227 page_ref_inc(p);
1228 res = MF_RECOVERED;
ceaf8fbe
NH
1229 } else {
1230 res = MF_FAILED;
a8b2c2ce 1231 }
93f70f90 1232 }
78bb9203 1233
8625147c 1234 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1235 res = MF_FAILED;
1236
78bb9203 1237 return res;
6a46079c
AK
1238}
1239
1240/*
1241 * Various page states we can handle.
1242 *
1243 * A page state is defined by its current page->flags bits.
1244 * The table matches them in order and calls the right handler.
1245 *
1246 * This is quite tricky because we can access page at any time
25985edc 1247 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1248 *
1249 * This is not complete. More states could be added.
1250 * For any missing state don't attempt recovery.
1251 */
1252
1253#define dirty (1UL << PG_dirty)
6326fec1 1254#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1255#define unevict (1UL << PG_unevictable)
1256#define mlock (1UL << PG_mlocked)
6a46079c 1257#define lru (1UL << PG_lru)
6a46079c 1258#define head (1UL << PG_head)
6a46079c
AK
1259#define reserved (1UL << PG_reserved)
1260
dd0f230a 1261static struct page_state error_states[] = {
cc637b17 1262 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1263 /*
1264 * free pages are specially detected outside this table:
1265 * PG_buddy pages only make a small fraction of all free pages.
1266 */
6a46079c 1267
cc637b17 1268 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1269
cc637b17
XX
1270 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1271 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1272
cc637b17
XX
1273 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1274 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1275
cc637b17
XX
1276 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1277 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1278
cc637b17
XX
1279 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1280 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1281
1282 /*
1283 * Catchall entry: must be at end.
1284 */
cc637b17 1285 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1286};
1287
2326c467
AK
1288#undef dirty
1289#undef sc
1290#undef unevict
1291#undef mlock
2326c467 1292#undef lru
2326c467 1293#undef head
2326c467
AK
1294#undef reserved
1295
18f41fa6
JY
1296static void update_per_node_mf_stats(unsigned long pfn,
1297 enum mf_result result)
1298{
1299 int nid = MAX_NUMNODES;
1300 struct memory_failure_stats *mf_stats = NULL;
1301
1302 nid = pfn_to_nid(pfn);
1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 return;
1306 }
1307
1308 mf_stats = &NODE_DATA(nid)->mf_stats;
1309 switch (result) {
1310 case MF_IGNORED:
1311 ++mf_stats->ignored;
1312 break;
1313 case MF_FAILED:
1314 ++mf_stats->failed;
1315 break;
1316 case MF_DELAYED:
1317 ++mf_stats->delayed;
1318 break;
1319 case MF_RECOVERED:
1320 ++mf_stats->recovered;
1321 break;
1322 default:
1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 break;
1325 }
1326 ++mf_stats->total;
1327}
1328
ff604cf6
NH
1329/*
1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332 */
b66d00df
KW
1333static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 enum mf_result result)
6a46079c 1335{
97f0b134
XX
1336 trace_memory_failure_event(pfn, type, result);
1337
a46c9304 1338 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1339
1340 update_per_node_mf_stats(pfn, result);
1341
96f96763 1342 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1343 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1344
1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1346}
1347
1348static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1349 unsigned long pfn)
6a46079c
AK
1350{
1351 int result;
1352
ea6d0630 1353 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1354 result = ps->action(ps, p);
7456b040 1355
6a46079c
AK
1356 /* Could do more checks here if page looks ok */
1357 /*
1358 * Could adjust zone counters here to correct for the missing page.
1359 */
1360
b66d00df 1361 return action_result(pfn, ps->type, result);
6a46079c
AK
1362}
1363
bf181c58
NH
1364static inline bool PageHWPoisonTakenOff(struct page *page)
1365{
1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367}
1368
1369void SetPageHWPoisonTakenOff(struct page *page)
1370{
1371 set_page_private(page, MAGIC_HWPOISON);
1372}
1373
1374void ClearPageHWPoisonTakenOff(struct page *page)
1375{
1376 if (PageHWPoison(page))
1377 set_page_private(page, 0);
1378}
1379
25182f05
NH
1380/*
1381 * Return true if a page type of a given page is supported by hwpoison
1382 * mechanism (while handling could fail), otherwise false. This function
1383 * does not return true for hugetlb or device memory pages, so it's assumed
1384 * to be called only in the context where we never have such pages.
1385 */
bf6445bc 1386static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1387{
2fde9e7f
ML
1388 if (PageSlab(page))
1389 return false;
1390
3f871370 1391 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1392 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1393 return true;
bf6445bc 1394
3f871370 1395 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1396}
1397
bf6445bc 1398static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1399{
04bac040 1400 struct folio *folio = page_folio(page);
25182f05
NH
1401 int ret = 0;
1402 bool hugetlb = false;
1403
04bac040 1404 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1405 if (hugetlb) {
1406 /* Make sure hugetlb demotion did not happen from under us. */
1407 if (folio == page_folio(page))
1408 return ret;
1409 if (ret > 0) {
1410 folio_put(folio);
1411 folio = page_folio(page);
1412 }
1413 }
25182f05
NH
1414
1415 /*
04bac040
SK
1416 * This check prevents from calling folio_try_get() for any
1417 * unsupported type of folio in order to reduce the risk of unexpected
1418 * races caused by taking a folio refcount.
25182f05 1419 */
04bac040 1420 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1421 return -EBUSY;
ead07f6a 1422
04bac040
SK
1423 if (folio_try_get(folio)) {
1424 if (folio == page_folio(page))
c2e7e00b
KK
1425 return 1;
1426
96f96763 1427 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1428 folio_put(folio);
c2e7e00b
KK
1429 }
1430
1431 return 0;
ead07f6a 1432}
ead07f6a 1433
babde186
ML
1434#define GET_PAGE_MAX_RETRY_NUM 3
1435
2f714160 1436static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1437{
2f714160
OS
1438 int ret = 0, pass = 0;
1439 bool count_increased = false;
17e395b6 1440
2f714160
OS
1441 if (flags & MF_COUNT_INCREASED)
1442 count_increased = true;
1443
1444try_again:
0ed950d1 1445 if (!count_increased) {
bf6445bc 1446 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1447 if (!ret) {
1448 if (page_count(p)) {
1449 /* We raced with an allocation, retry. */
babde186 1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
0ed950d1
NH
1451 goto try_again;
1452 ret = -EBUSY;
1453 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1454 /* We raced with put_page, retry. */
babde186 1455 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
0ed950d1
NH
1456 goto try_again;
1457 ret = -EIO;
1458 }
1459 goto out;
1460 } else if (ret == -EBUSY) {
fcc00621
NH
1461 /*
1462 * We raced with (possibly temporary) unhandlable
1463 * page, retry.
1464 */
1465 if (pass++ < 3) {
d0505e9f 1466 shake_page(p);
2f714160 1467 goto try_again;
fcc00621
NH
1468 }
1469 ret = -EIO;
0ed950d1 1470 goto out;
2f714160 1471 }
0ed950d1
NH
1472 }
1473
bf6445bc 1474 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1475 ret = 1;
2f714160 1476 } else {
0ed950d1
NH
1477 /*
1478 * A page we cannot handle. Check whether we can turn
1479 * it into something we can handle.
1480 */
babde186 1481 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
2f714160 1482 put_page(p);
d0505e9f 1483 shake_page(p);
0ed950d1
NH
1484 count_increased = false;
1485 goto try_again;
2f714160 1486 }
0ed950d1
NH
1487 put_page(p);
1488 ret = -EIO;
17e395b6 1489 }
0ed950d1 1490out:
941ca063 1491 if (ret == -EIO)
96f96763 1492 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1493
17e395b6
OS
1494 return ret;
1495}
1496
bf181c58
NH
1497static int __get_unpoison_page(struct page *page)
1498{
04bac040 1499 struct folio *folio = page_folio(page);
bf181c58
NH
1500 int ret = 0;
1501 bool hugetlb = false;
1502
04bac040 1503 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1504 if (hugetlb) {
1505 /* Make sure hugetlb demotion did not happen from under us. */
1506 if (folio == page_folio(page))
1507 return ret;
1508 if (ret > 0)
1509 folio_put(folio);
1510 }
bf181c58
NH
1511
1512 /*
1513 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1514 * but also isolated from buddy freelist, so need to identify the
1515 * state and have to cancel both operations to unpoison.
1516 */
1517 if (PageHWPoisonTakenOff(page))
1518 return -EHWPOISON;
1519
1520 return get_page_unless_zero(page) ? 1 : 0;
1521}
1522
0ed950d1
NH
1523/**
1524 * get_hwpoison_page() - Get refcount for memory error handling
1525 * @p: Raw error page (hit by memory error)
1526 * @flags: Flags controlling behavior of error handling
1527 *
1528 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1529 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1530 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1531 * such as LRU page and hugetlb page).
1532 *
1533 * Memory error handling could be triggered at any time on any type of page,
1534 * so it's prone to race with typical memory management lifecycle (like
1535 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1536 * extra care for the error page's state (as done in __get_hwpoison_page()),
1537 * and has some retry logic in get_any_page().
1538 *
bf181c58
NH
1539 * When called from unpoison_memory(), the caller should already ensure that
1540 * the given page has PG_hwpoison. So it's never reused for other page
1541 * allocations, and __get_unpoison_page() never races with them.
1542 *
b71340ef 1543 * Return: 0 on failure or free buddy (hugetlb) page,
0ed950d1
NH
1544 * 1 on success for in-use pages in a well-defined state,
1545 * -EIO for pages on which we can not handle memory errors,
1546 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1547 * operations like allocation and free,
1548 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1549 */
1550static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1551{
1552 int ret;
1553
1554 zone_pcp_disable(page_zone(p));
bf181c58
NH
1555 if (flags & MF_UNPOISON)
1556 ret = __get_unpoison_page(p);
1557 else
1558 ret = get_any_page(p, flags);
2f714160
OS
1559 zone_pcp_enable(page_zone(p));
1560
1561 return ret;
1562}
1563
b81679b1 1564int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
16038c4f 1565{
b81679b1
MW
1566 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1567 struct address_space *mapping;
1568
1569 if (folio_test_swapcache(folio)) {
1570 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1571 ttu &= ~TTU_HWPOISON;
1572 }
1573
1574 /*
1575 * Propagate the dirty bit from PTEs to struct page first, because we
1576 * need this to decide if we should kill or just drop the page.
1577 * XXX: the dirty test could be racy: set_page_dirty() may not always
1578 * be called inside page lock (it's recommended but not enforced).
1579 */
1580 mapping = folio_mapping(folio);
1581 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1582 mapping_can_writeback(mapping)) {
1583 if (folio_mkclean(folio)) {
1584 folio_set_dirty(folio);
1585 } else {
1586 ttu &= ~TTU_HWPOISON;
1587 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1588 pfn);
1589 }
1590 }
16038c4f 1591
b81679b1 1592 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
16038c4f
KW
1593 /*
1594 * For hugetlb folios in shared mappings, try_to_unmap
1595 * could potentially call huge_pmd_unshare. Because of
1596 * this, take semaphore in write mode here and set
1597 * TTU_RMAP_LOCKED to indicate we have taken the lock
1598 * at this higher level.
1599 */
1600 mapping = hugetlb_folio_mapping_lock_write(folio);
1601 if (!mapping) {
1602 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1603 folio_pfn(folio));
b81679b1 1604 return -EBUSY;
16038c4f
KW
1605 }
1606
1607 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1608 i_mmap_unlock_write(mapping);
1609 } else {
1610 try_to_unmap(folio, ttu);
1611 }
b81679b1
MW
1612
1613 return folio_mapped(folio) ? -EBUSY : 0;
16038c4f
KW
1614}
1615
6a46079c
AK
1616/*
1617 * Do all that is necessary to remove user space mappings. Unmap
1618 * the pages and send SIGBUS to the processes if the data was dirty.
1619 */
03468a0f
MWO
1620static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1621 unsigned long pfn, int flags)
6a46079c 1622{
6a46079c 1623 LIST_HEAD(tokill);
1fb08ac6 1624 bool unmap_success;
0792a4a6 1625 int forcekill;
03468a0f 1626 bool mlocked = folio_test_mlocked(folio);
6a46079c 1627
93a9eb39
NH
1628 /*
1629 * Here we are interested only in user-mapped pages, so skip any
1630 * other types of pages.
1631 */
03468a0f
MWO
1632 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1633 folio_test_pgtable(folio) || folio_test_offline(folio))
666e5a40 1634 return true;
03468a0f 1635 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
666e5a40 1636 return true;
6a46079c 1637
6a46079c
AK
1638 /*
1639 * This check implies we don't kill processes if their pages
1640 * are in the swap cache early. Those are always late kills.
1641 */
b7c3afba 1642 if (!folio_mapped(folio))
666e5a40 1643 return true;
1668bfd5 1644
6a46079c
AK
1645 /*
1646 * First collect all the processes that have the page
1647 * mapped in dirty form. This has to be done before try_to_unmap,
1648 * because ttu takes the rmap data structures down.
6a46079c 1649 */
376907f3 1650 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1651
b81679b1 1652 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
666e5a40 1653 if (!unmap_success)
33d844bb 1654 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
b7c3afba 1655 pfn, folio_mapcount(folio));
a6d30ddd 1656
286c469a
NH
1657 /*
1658 * try_to_unmap() might put mlocked page in lru cache, so call
1659 * shake_page() again to ensure that it's flushed.
1660 */
1661 if (mlocked)
fed5348e 1662 shake_folio(folio);
286c469a 1663
6a46079c
AK
1664 /*
1665 * Now that the dirty bit has been propagated to the
1666 * struct page and all unmaps done we can decide if
1667 * killing is needed or not. Only kill when the page
6751ed65
TL
1668 * was dirty or the process is not restartable,
1669 * otherwise the tokill list is merely
6a46079c
AK
1670 * freed. When there was a problem unmapping earlier
1671 * use a more force-full uncatchable kill to prevent
1672 * any accesses to the poisoned memory.
1673 */
03468a0f 1674 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
0792a4a6 1675 !unmap_success;
aa298fdf 1676 kill_procs(&tokill, forcekill, pfn, flags);
1668bfd5 1677
666e5a40 1678 return unmap_success;
6a46079c
AK
1679}
1680
0348d2eb
NH
1681static int identify_page_state(unsigned long pfn, struct page *p,
1682 unsigned long page_flags)
761ad8d7
NH
1683{
1684 struct page_state *ps;
0348d2eb
NH
1685
1686 /*
1687 * The first check uses the current page flags which may not have any
1688 * relevant information. The second check with the saved page flags is
1689 * carried out only if the first check can't determine the page status.
1690 */
1691 for (ps = error_states;; ps++)
1692 if ((p->flags & ps->mask) == ps->res)
1693 break;
1694
1695 page_flags |= (p->flags & (1UL << PG_dirty));
1696
1697 if (!ps->mask)
1698 for (ps = error_states;; ps++)
1699 if ((page_flags & ps->mask) == ps->res)
1700 break;
1701 return page_action(ps, p, pfn);
1702}
1703
1a3798de
JC
1704/*
1705 * When 'release' is 'false', it means that if thp split has failed,
1706 * there is still more to do, hence the page refcount we took earlier
1707 * is still needed.
1708 */
1709static int try_to_split_thp_page(struct page *page, bool release)
694bf0b0 1710{
2ace36f0
KW
1711 int ret;
1712
694bf0b0 1713 lock_page(page);
2ace36f0
KW
1714 ret = split_huge_page(page);
1715 unlock_page(page);
694bf0b0 1716
1a3798de 1717 if (ret && release)
694bf0b0 1718 put_page(page);
694bf0b0 1719
2ace36f0 1720 return ret;
694bf0b0
OS
1721}
1722
00cc790e
SR
1723static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1724 struct address_space *mapping, pgoff_t index, int flags)
1725{
1726 struct to_kill *tk;
1727 unsigned long size = 0;
1728
1729 list_for_each_entry(tk, to_kill, nd)
1730 if (tk->size_shift)
1731 size = max(size, 1UL << tk->size_shift);
1732
1733 if (size) {
1734 /*
1735 * Unmap the largest mapping to avoid breaking up device-dax
1736 * mappings which are constant size. The actual size of the
1737 * mapping being torn down is communicated in siginfo, see
1738 * kill_proc()
1739 */
39ebd6dc 1740 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
00cc790e
SR
1741
1742 unmap_mapping_range(mapping, start, size, 0);
1743 }
1744
aa298fdf 1745 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
00cc790e
SR
1746}
1747
91e79d22
MWO
1748/*
1749 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1750 * either do not claim or fails to claim a hwpoison event, or devdax.
1751 * The fsdax pages are initialized per base page, and the devdax pages
1752 * could be initialized either as base pages, or as compound pages with
1753 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1754 * hwpoison, such that, if a subpage of a compound page is poisoned,
1755 * simply mark the compound head page is by far sufficient.
1756 */
00cc790e
SR
1757static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1758 struct dev_pagemap *pgmap)
1759{
91e79d22 1760 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1761 LIST_HEAD(to_kill);
1762 dax_entry_t cookie;
1763 int rc = 0;
1764
00cc790e
SR
1765 /*
1766 * Prevent the inode from being freed while we are interrogating
1767 * the address_space, typically this would be handled by
1768 * lock_page(), but dax pages do not use the page lock. This
1769 * also prevents changes to the mapping of this pfn until
1770 * poison signaling is complete.
1771 */
91e79d22 1772 cookie = dax_lock_folio(folio);
00cc790e
SR
1773 if (!cookie)
1774 return -EBUSY;
1775
91e79d22 1776 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1777 rc = -EOPNOTSUPP;
1778 goto unlock;
1779 }
1780
1781 switch (pgmap->type) {
1782 case MEMORY_DEVICE_PRIVATE:
1783 case MEMORY_DEVICE_COHERENT:
1784 /*
1785 * TODO: Handle device pages which may need coordination
1786 * with device-side memory.
1787 */
1788 rc = -ENXIO;
1789 goto unlock;
1790 default:
1791 break;
1792 }
1793
1794 /*
1795 * Use this flag as an indication that the dax page has been
1796 * remapped UC to prevent speculative consumption of poison.
1797 */
91e79d22 1798 SetPageHWPoison(&folio->page);
00cc790e
SR
1799
1800 /*
1801 * Unlike System-RAM there is no possibility to swap in a
1802 * different physical page at a given virtual address, so all
1803 * userspace consumption of ZONE_DEVICE memory necessitates
1804 * SIGBUS (i.e. MF_MUST_KILL)
1805 */
1806 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
376907f3 1807 collect_procs(folio, &folio->page, &to_kill, true);
00cc790e 1808
91e79d22 1809 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1810unlock:
91e79d22 1811 dax_unlock_folio(folio, cookie);
00cc790e
SR
1812 return rc;
1813}
1814
c36e2024
SR
1815#ifdef CONFIG_FS_DAX
1816/**
1817 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1818 * @mapping: address_space of the file in use
1819 * @index: start pgoff of the range within the file
1820 * @count: length of the range, in unit of PAGE_SIZE
1821 * @mf_flags: memory failure flags
1822 */
1823int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1824 unsigned long count, int mf_flags)
1825{
1826 LIST_HEAD(to_kill);
1827 dax_entry_t cookie;
1828 struct page *page;
1829 size_t end = index + count;
fa422b35 1830 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
c36e2024
SR
1831
1832 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1833
1834 for (; index < end; index++) {
1835 page = NULL;
1836 cookie = dax_lock_mapping_entry(mapping, index, &page);
1837 if (!cookie)
1838 return -EBUSY;
1839 if (!page)
1840 goto unlock;
1841
fa422b35
SR
1842 if (!pre_remove)
1843 SetPageHWPoison(page);
c36e2024 1844
fa422b35
SR
1845 /*
1846 * The pre_remove case is revoking access, the memory is still
1847 * good and could theoretically be put back into service.
1848 */
1849 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
c36e2024
SR
1850 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1851 index, mf_flags);
1852unlock:
1853 dax_unlock_mapping_entry(mapping, index, cookie);
1854 }
1855 return 0;
1856}
1857EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1858#endif /* CONFIG_FS_DAX */
1859
161df60e 1860#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1861
161df60e
NH
1862/*
1863 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1864 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1865 */
1866struct raw_hwp_page {
1867 struct llist_node node;
1868 struct page *page;
1869};
1870
b02e7582 1871static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1872{
b02e7582 1873 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1874}
1875
b79f8eb4
JY
1876bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1877{
1878 struct llist_head *raw_hwp_head;
1879 struct raw_hwp_page *p;
1880 struct folio *folio = page_folio(page);
1881 bool ret = false;
1882
1883 if (!folio_test_hwpoison(folio))
1884 return false;
1885
1886 if (!folio_test_hugetlb(folio))
1887 return PageHWPoison(page);
1888
1889 /*
1890 * When RawHwpUnreliable is set, kernel lost track of which subpages
1891 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1892 */
1893 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1894 return true;
1895
1896 mutex_lock(&mf_mutex);
1897
1898 raw_hwp_head = raw_hwp_list_head(folio);
1899 llist_for_each_entry(p, raw_hwp_head->first, node) {
1900 if (page == p->page) {
1901 ret = true;
1902 break;
1903 }
1904 }
1905
1906 mutex_unlock(&mf_mutex);
1907
1908 return ret;
1909}
1910
0858b5eb 1911static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1912{
6379693e
ML
1913 struct llist_node *head;
1914 struct raw_hwp_page *p, *next;
ac5fcde0 1915 unsigned long count = 0;
161df60e 1916
9e130c4b 1917 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1918 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1919 if (move_flag)
1920 SetPageHWPoison(p->page);
5033091d
NH
1921 else
1922 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1923 kfree(p);
ac5fcde0 1924 count++;
161df60e 1925 }
ac5fcde0 1926 return count;
161df60e
NH
1927}
1928
595dd818 1929static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1930{
1931 struct llist_head *head;
1932 struct raw_hwp_page *raw_hwp;
1e25501d 1933 struct raw_hwp_page *p;
595dd818 1934 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1935
1936 /*
1937 * Once the hwpoison hugepage has lost reliable raw error info,
1938 * there is little meaning to keep additional error info precisely,
1939 * so skip to add additional raw error info.
1940 */
b02e7582 1941 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1942 return -EHWPOISON;
b02e7582 1943 head = raw_hwp_list_head(folio);
1e25501d 1944 llist_for_each_entry(p, head->first, node) {
161df60e
NH
1945 if (p->page == page)
1946 return -EHWPOISON;
1947 }
1948
1949 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1950 if (raw_hwp) {
1951 raw_hwp->page = page;
1952 llist_add(&raw_hwp->node, head);
1953 /* the first error event will be counted in action_result(). */
1954 if (ret)
a46c9304 1955 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1956 } else {
1957 /*
1958 * Failed to save raw error info. We no longer trace all
1959 * hwpoisoned subpages, and we need refuse to free/dissolve
1960 * this hwpoisoned hugepage.
1961 */
b02e7582 1962 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1963 /*
b02e7582 1964 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1965 * used any more, so free it.
1966 */
0858b5eb 1967 __folio_free_raw_hwp(folio, false);
161df60e
NH
1968 }
1969 return ret;
1970}
1971
9637d7df 1972static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1973{
1974 /*
9637d7df 1975 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1976 * pages for tail pages are required but they don't exist.
1977 */
9637d7df 1978 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1979 return 0;
1980
1981 /*
9637d7df 1982 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1983 * definition.
1984 */
9637d7df 1985 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1986 return 0;
1987
0858b5eb 1988 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1989}
1990
2ff6cece 1991void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1992{
2ff6cece 1993 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1994 return;
92a025a7
ML
1995 if (folio_test_hugetlb_vmemmap_optimized(folio))
1996 return;
2ff6cece 1997 folio_clear_hwpoison(folio);
9637d7df 1998 folio_free_raw_hwp(folio, true);
161df60e
NH
1999}
2000
405ce051
NH
2001/*
2002 * Called from hugetlb code with hugetlb_lock held.
2003 *
2004 * Return values:
2005 * 0 - free hugepage
2006 * 1 - in-use hugepage
2007 * 2 - not a hugepage
2008 * -EBUSY - the hugepage is busy (try to retry)
2009 * -EHWPOISON - the hugepage is already hwpoisoned
2010 */
e591ef7d
NH
2011int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2012 bool *migratable_cleared)
405ce051
NH
2013{
2014 struct page *page = pfn_to_page(pfn);
4c110ec9 2015 struct folio *folio = page_folio(page);
405ce051
NH
2016 int ret = 2; /* fallback to normal page handling */
2017 bool count_increased = false;
2018
4c110ec9 2019 if (!folio_test_hugetlb(folio))
405ce051
NH
2020 goto out;
2021
2022 if (flags & MF_COUNT_INCREASED) {
2023 ret = 1;
2024 count_increased = true;
4c110ec9 2025 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 2026 ret = 0;
4c110ec9
SK
2027 } else if (folio_test_hugetlb_migratable(folio)) {
2028 ret = folio_try_get(folio);
405ce051
NH
2029 if (ret)
2030 count_increased = true;
2031 } else {
2032 ret = -EBUSY;
38f6d293
NH
2033 if (!(flags & MF_NO_RETRY))
2034 goto out;
405ce051
NH
2035 }
2036
595dd818 2037 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
2038 ret = -EHWPOISON;
2039 goto out;
2040 }
2041
e591ef7d 2042 /*
4c110ec9 2043 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2044 * from being migrated by memory hotremove.
2045 */
4c110ec9
SK
2046 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2047 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2048 *migratable_cleared = true;
2049 }
2050
405ce051
NH
2051 return ret;
2052out:
2053 if (count_increased)
4c110ec9 2054 folio_put(folio);
405ce051
NH
2055 return ret;
2056}
2057
405ce051
NH
2058/*
2059 * Taking refcount of hugetlb pages needs extra care about race conditions
2060 * with basic operations like hugepage allocation/free/demotion.
2061 * So some of prechecks for hwpoison (pinning, and testing/setting
2062 * PageHWPoison) should be done in single hugetlb_lock range.
2063 */
2064static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2065{
761ad8d7 2066 int res;
405ce051 2067 struct page *p = pfn_to_page(pfn);
bc1cfde1 2068 struct folio *folio;
761ad8d7 2069 unsigned long page_flags;
e591ef7d 2070 bool migratable_cleared = false;
761ad8d7 2071
405ce051
NH
2072 *hugetlb = 1;
2073retry:
e591ef7d 2074 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2075 if (res == 2) { /* fallback to normal page handling */
2076 *hugetlb = 0;
2077 return 0;
2078 } else if (res == -EHWPOISON) {
96f96763 2079 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 2080 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2081 folio = page_folio(p);
2082 res = kill_accessing_process(current, folio_pfn(folio), flags);
b8b9488d 2083 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
405ce051
NH
2084 }
2085 return res;
2086 } else if (res == -EBUSY) {
38f6d293
NH
2087 if (!(flags & MF_NO_RETRY)) {
2088 flags |= MF_NO_RETRY;
405ce051
NH
2089 goto retry;
2090 }
b8b9488d 2091 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
761ad8d7
NH
2092 }
2093
bc1cfde1
SK
2094 folio = page_folio(p);
2095 folio_lock(folio);
405ce051
NH
2096
2097 if (hwpoison_filter(p)) {
2ff6cece 2098 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2099 if (migratable_cleared)
bc1cfde1
SK
2100 folio_set_hugetlb_migratable(folio);
2101 folio_unlock(folio);
f36a5543 2102 if (res == 1)
bc1cfde1 2103 folio_put(folio);
f36a5543 2104 return -EOPNOTSUPP;
405ce051
NH
2105 }
2106
405ce051
NH
2107 /*
2108 * Handling free hugepage. The possible race with hugepage allocation
2109 * or demotion can be prevented by PageHWPoison flag.
2110 */
2111 if (res == 0) {
bc1cfde1 2112 folio_unlock(folio);
8cf360b9 2113 if (__page_handle_poison(p) > 0) {
405ce051
NH
2114 page_ref_inc(p);
2115 res = MF_RECOVERED;
ceaf8fbe
NH
2116 } else {
2117 res = MF_FAILED;
761ad8d7 2118 }
b66d00df 2119 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2120 }
2121
bc1cfde1 2122 page_flags = folio->flags;
761ad8d7 2123
03468a0f 2124 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
bc1cfde1 2125 folio_unlock(folio);
b8b9488d 2126 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
761ad8d7
NH
2127 }
2128
ea6d0630 2129 return identify_page_state(pfn, p, page_flags);
761ad8d7 2130}
00cc790e 2131
405ce051
NH
2132#else
2133static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2134{
2135 return 0;
2136}
00cc790e 2137
9637d7df 2138static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2139{
2140 return 0;
2141}
00cc790e 2142#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2143
b5f1fc98
KW
2144/* Drop the extra refcount in case we come from madvise() */
2145static void put_ref_page(unsigned long pfn, int flags)
2146{
b5f1fc98
KW
2147 if (!(flags & MF_COUNT_INCREASED))
2148 return;
2149
16117532 2150 put_page(pfn_to_page(pfn));
b5f1fc98
KW
2151}
2152
6100e34b
DW
2153static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2154 struct dev_pagemap *pgmap)
2155{
00cc790e 2156 int rc = -ENXIO;
6100e34b 2157
34dc45be 2158 /* device metadata space is not recoverable */
00cc790e 2159 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2160 goto out;
61e28cf0 2161
6100e34b 2162 /*
33a8f7f2
SR
2163 * Call driver's implementation to handle the memory failure, otherwise
2164 * fall back to generic handler.
6100e34b 2165 */
65d3440e 2166 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2167 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2168 /*
33a8f7f2
SR
2169 * Fall back to generic handler too if operation is not
2170 * supported inside the driver/device/filesystem.
6100e34b 2171 */
33a8f7f2
SR
2172 if (rc != -EOPNOTSUPP)
2173 goto out;
6100e34b
DW
2174 }
2175
00cc790e 2176 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2177out:
2178 /* drop pgmap ref acquired in caller */
2179 put_dev_pagemap(pgmap);
80ee7cb2
ML
2180 if (rc != -EOPNOTSUPP)
2181 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2182 return rc;
2183}
2184
1a3798de
JC
2185/*
2186 * The calling condition is as such: thp split failed, page might have
2187 * been RDMA pinned, not much can be done for recovery.
2188 * But a SIGBUS should be delivered with vaddr provided so that the user
2189 * application has a chance to recover. Also, application processes'
2190 * election for MCE early killed will be honored.
2191 */
2192static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2193 struct folio *folio)
2194{
2195 LIST_HEAD(tokill);
2196
2197 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2198 kill_procs(&tokill, true, pfn, flags);
2199}
2200
cd42f4a3
TL
2201/**
2202 * memory_failure - Handle memory failure of a page.
2203 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2204 * @flags: fine tune action taken
2205 *
2206 * This function is called by the low level machine check code
2207 * of an architecture when it detects hardware memory corruption
2208 * of a page. It tries its best to recover, which includes
2209 * dropping pages, killing processes etc.
2210 *
2211 * The function is primarily of use for corruptions that
2212 * happen outside the current execution context (e.g. when
2213 * detected by a background scrubber)
2214 *
2215 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2216 * enabled and no spinlocks held.
d1fe111f 2217 *
d2734f04
SX
2218 * Return:
2219 * 0 - success,
2220 * -ENXIO - memory not managed by the kernel
2221 * -EOPNOTSUPP - hwpoison_filter() filtered the error event,
2222 * -EHWPOISON - the page was already poisoned, potentially
2223 * kill process,
2224 * other negative values - failure.
cd42f4a3 2225 */
83b57531 2226int memory_failure(unsigned long pfn, int flags)
6a46079c 2227{
6a46079c 2228 struct page *p;
5dba5c35 2229 struct folio *folio;
6100e34b 2230 struct dev_pagemap *pgmap;
171936dd 2231 int res = 0;
524fca1e 2232 unsigned long page_flags;
a8b2c2ce 2233 bool retry = true;
405ce051 2234 int hugetlb = 0;
6a46079c
AK
2235
2236 if (!sysctl_memory_failure_recovery)
83b57531 2237 panic("Memory failure on page %lx", pfn);
6a46079c 2238
03b122da
TL
2239 mutex_lock(&mf_mutex);
2240
67f22ba7 2241 if (!(flags & MF_SW_SIMULATED))
2242 hw_memory_failure = true;
2243
96c804a6
DH
2244 p = pfn_to_online_page(pfn);
2245 if (!p) {
03b122da
TL
2246 res = arch_memory_failure(pfn, flags);
2247 if (res == 0)
2248 goto unlock_mutex;
2249
96c804a6
DH
2250 if (pfn_valid(pfn)) {
2251 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2252 put_ref_page(pfn, flags);
03b122da
TL
2253 if (pgmap) {
2254 res = memory_failure_dev_pagemap(pfn, flags,
2255 pgmap);
2256 goto unlock_mutex;
2257 }
96c804a6 2258 }
96f96763 2259 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2260 res = -ENXIO;
2261 goto unlock_mutex;
6a46079c
AK
2262 }
2263
a8b2c2ce 2264try_again:
405ce051
NH
2265 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2266 if (hugetlb)
171936dd 2267 goto unlock_mutex;
171936dd 2268
6a46079c 2269 if (TestSetPageHWPoison(p)) {
96f96763 2270 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2271 res = -EHWPOISON;
a3f5d80e
NH
2272 if (flags & MF_ACTION_REQUIRED)
2273 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2274 if (flags & MF_COUNT_INCREASED)
2275 put_page(p);
b8b9488d 2276 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
171936dd 2277 goto unlock_mutex;
6a46079c
AK
2278 }
2279
6a46079c
AK
2280 /*
2281 * We need/can do nothing about count=0 pages.
2282 * 1) it's a free page, and therefore in safe hand:
9cf28191 2283 * check_new_page() will be the gate keeper.
761ad8d7 2284 * 2) it's part of a non-compound high order page.
6a46079c
AK
2285 * Implies some kernel user: cannot stop them from
2286 * R/W the page; let's pray that the page has been
2287 * used and will be freed some time later.
2288 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2289 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2290 */
0ed950d1
NH
2291 if (!(flags & MF_COUNT_INCREASED)) {
2292 res = get_hwpoison_page(p, flags);
2293 if (!res) {
2294 if (is_free_buddy_page(p)) {
2295 if (take_page_off_buddy(p)) {
2296 page_ref_inc(p);
2297 res = MF_RECOVERED;
2298 } else {
2299 /* We lost the race, try again */
2300 if (retry) {
2301 ClearPageHWPoison(p);
0ed950d1
NH
2302 retry = false;
2303 goto try_again;
2304 }
2305 res = MF_FAILED;
a8b2c2ce 2306 }
b66d00df 2307 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2308 } else {
b66d00df 2309 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2310 }
0ed950d1
NH
2311 goto unlock_mutex;
2312 } else if (res < 0) {
b8b9488d 2313 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
0ed950d1 2314 goto unlock_mutex;
8d22ba1b 2315 }
6a46079c
AK
2316 }
2317
5dba5c35 2318 folio = page_folio(p);
9b0ab153
JC
2319
2320 /* filter pages that are protected from hwpoison test by users */
2321 folio_lock(folio);
2322 if (hwpoison_filter(p)) {
2323 ClearPageHWPoison(p);
2324 folio_unlock(folio);
2325 folio_put(folio);
2326 res = -EOPNOTSUPP;
2327 goto unlock_mutex;
2328 }
2329 folio_unlock(folio);
2330
5dba5c35 2331 if (folio_test_large(folio)) {
eac96c3e
YS
2332 /*
2333 * The flag must be set after the refcount is bumped
2334 * otherwise it may race with THP split.
2335 * And the flag can't be set in get_hwpoison_page() since
2336 * it is called by soft offline too and it is just called
5885c6a6 2337 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2338 * place.
2339 *
2340 * Don't need care about the above error handling paths for
2341 * get_hwpoison_page() since they handle either free page
2342 * or unhandlable page. The refcount is bumped iff the
2343 * page is a valid handlable page.
2344 */
5dba5c35 2345 folio_set_has_hwpoisoned(folio);
1a3798de
JC
2346 if (try_to_split_thp_page(p, false) < 0) {
2347 res = -EHWPOISON;
2348 kill_procs_now(p, pfn, flags, folio);
2349 put_page(p);
2350 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
171936dd 2351 goto unlock_mutex;
5d1fd5dc 2352 }
415c64c1 2353 VM_BUG_ON_PAGE(!page_count(p), p);
5dba5c35 2354 folio = page_folio(p);
415c64c1
NH
2355 }
2356
e43c3afb
WF
2357 /*
2358 * We ignore non-LRU pages for good reasons.
2359 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2360 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2361 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2362 * The check (unnecessarily) ignores LRU pages being isolated and
2363 * walked by the page reclaim code, however that's not a big loss.
2364 */
5dba5c35 2365 shake_folio(folio);
e43c3afb 2366
5dba5c35 2367 folio_lock(folio);
847ce401 2368
f37d4298 2369 /*
75ee64b3 2370 * We're only intended to deal with the non-Compound page here.
8a78882d
ML
2371 * The page cannot become compound pages again as folio has been
2372 * splited and extra refcnt is held.
f37d4298 2373 */
8a78882d 2374 WARN_ON(folio_test_large(folio));
f37d4298 2375
524fca1e
NH
2376 /*
2377 * We use page flags to determine what action should be taken, but
2378 * the flags can be modified by the error containment action. One
2379 * example is an mlocked page, where PG_mlocked is cleared by
4d8f7418
DH
2380 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2381 * status correctly, we save a copy of the page flags at this time.
524fca1e 2382 */
5dba5c35 2383 page_flags = folio->flags;
524fca1e 2384
e8675d29 2385 /*
5dba5c35
MWO
2386 * __munlock_folio() may clear a writeback folio's LRU flag without
2387 * the folio lock. We need to wait for writeback completion for this
2388 * folio or it may trigger a vfs BUG while evicting inode.
e8675d29 2389 */
5dba5c35 2390 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
0bc1f8b0
CY
2391 goto identify_page_state;
2392
6edd6cc6
NH
2393 /*
2394 * It's very difficult to mess with pages currently under IO
2395 * and in many cases impossible, so we just avoid it here.
2396 */
5dba5c35 2397 folio_wait_writeback(folio);
6a46079c
AK
2398
2399 /*
2400 * Now take care of user space mappings.
6ffcd825 2401 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2402 */
03468a0f 2403 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
b8b9488d 2404 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
171936dd 2405 goto unlock_page;
1668bfd5 2406 }
6a46079c
AK
2407
2408 /*
2409 * Torn down by someone else?
2410 */
5dba5c35
MWO
2411 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2412 folio->mapping == NULL) {
b66d00df 2413 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2414 goto unlock_page;
6a46079c
AK
2415 }
2416
0bc1f8b0 2417identify_page_state:
0348d2eb 2418 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2419 mutex_unlock(&mf_mutex);
2420 return res;
171936dd 2421unlock_page:
5dba5c35 2422 folio_unlock(folio);
171936dd
TL
2423unlock_mutex:
2424 mutex_unlock(&mf_mutex);
6a46079c
AK
2425 return res;
2426}
cd42f4a3 2427EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2428
ea8f5fb8
HY
2429#define MEMORY_FAILURE_FIFO_ORDER 4
2430#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2431
2432struct memory_failure_entry {
2433 unsigned long pfn;
ea8f5fb8
HY
2434 int flags;
2435};
2436
2437struct memory_failure_cpu {
2438 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2439 MEMORY_FAILURE_FIFO_SIZE);
d75abd0d 2440 raw_spinlock_t lock;
ea8f5fb8
HY
2441 struct work_struct work;
2442};
2443
2444static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2445
2446/**
2447 * memory_failure_queue - Schedule handling memory failure of a page.
2448 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2449 * @flags: Flags for memory failure handling
2450 *
2451 * This function is called by the low level hardware error handler
2452 * when it detects hardware memory corruption of a page. It schedules
2453 * the recovering of error page, including dropping pages, killing
2454 * processes etc.
2455 *
2456 * The function is primarily of use for corruptions that
2457 * happen outside the current execution context (e.g. when
2458 * detected by a background scrubber)
2459 *
2460 * Can run in IRQ context.
2461 */
83b57531 2462void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2463{
2464 struct memory_failure_cpu *mf_cpu;
2465 unsigned long proc_flags;
d75abd0d 2466 bool buffer_overflow;
ea8f5fb8
HY
2467 struct memory_failure_entry entry = {
2468 .pfn = pfn,
ea8f5fb8
HY
2469 .flags = flags,
2470 };
2471
2472 mf_cpu = &get_cpu_var(memory_failure_cpu);
d75abd0d
WL
2473 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2474 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2475 if (!buffer_overflow)
ea8f5fb8 2476 schedule_work_on(smp_processor_id(), &mf_cpu->work);
d75abd0d
WL
2477 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2478 put_cpu_var(memory_failure_cpu);
2479 if (buffer_overflow)
96f96763 2480 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8 2481 pfn);
ea8f5fb8
HY
2482}
2483EXPORT_SYMBOL_GPL(memory_failure_queue);
2484
2485static void memory_failure_work_func(struct work_struct *work)
2486{
2487 struct memory_failure_cpu *mf_cpu;
2488 struct memory_failure_entry entry = { 0, };
2489 unsigned long proc_flags;
2490 int gotten;
2491
06202231 2492 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8 2493 for (;;) {
d75abd0d 2494 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
ea8f5fb8 2495 gotten = kfifo_get(&mf_cpu->fifo, &entry);
d75abd0d 2496 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
ea8f5fb8
HY
2497 if (!gotten)
2498 break;
cf870c70 2499 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2500 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2501 else
83b57531 2502 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2503 }
2504}
2505
06202231
JM
2506/*
2507 * Process memory_failure work queued on the specified CPU.
2508 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2509 */
2510void memory_failure_queue_kick(int cpu)
2511{
2512 struct memory_failure_cpu *mf_cpu;
2513
2514 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2515 cancel_work_sync(&mf_cpu->work);
2516 memory_failure_work_func(&mf_cpu->work);
2517}
2518
ea8f5fb8
HY
2519static int __init memory_failure_init(void)
2520{
2521 struct memory_failure_cpu *mf_cpu;
2522 int cpu;
2523
2524 for_each_possible_cpu(cpu) {
2525 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
d75abd0d 2526 raw_spin_lock_init(&mf_cpu->lock);
ea8f5fb8
HY
2527 INIT_KFIFO(mf_cpu->fifo);
2528 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2529 }
2530
97de10a9
KW
2531 register_sysctl_init("vm", memory_failure_table);
2532
ea8f5fb8
HY
2533 return 0;
2534}
2535core_initcall(memory_failure_init);
2536
96f96763 2537#undef pr_fmt
5cea5666 2538#define pr_fmt(fmt) "Unpoison: " fmt
a5f65109
NH
2539#define unpoison_pr_info(fmt, pfn, rs) \
2540({ \
2541 if (__ratelimit(rs)) \
2542 pr_info(fmt, pfn); \
2543})
2544
847ce401
WF
2545/**
2546 * unpoison_memory - Unpoison a previously poisoned page
2547 * @pfn: Page number of the to be unpoisoned page
2548 *
2549 * Software-unpoison a page that has been poisoned by
2550 * memory_failure() earlier.
2551 *
2552 * This is only done on the software-level, so it only works
2553 * for linux injected failures, not real hardware failures
2554 *
2555 * Returns 0 for success, otherwise -errno.
2556 */
2557int unpoison_memory(unsigned long pfn)
2558{
9637d7df 2559 struct folio *folio;
847ce401 2560 struct page *p;
f29623e4 2561 int ret = -EBUSY, ghp;
4d64ab2f 2562 unsigned long count;
5033091d 2563 bool huge = false;
a5f65109
NH
2564 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2565 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2566
2567 if (!pfn_valid(pfn))
2568 return -ENXIO;
2569
2570 p = pfn_to_page(pfn);
9637d7df 2571 folio = page_folio(p);
847ce401 2572
91d00547
NH
2573 mutex_lock(&mf_mutex);
2574
67f22ba7 2575 if (hw_memory_failure) {
5cea5666 2576 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
67f22ba7 2577 pfn, &unpoison_rs);
2578 ret = -EOPNOTSUPP;
2579 goto unlock_mutex;
2580 }
2581
fe6f86f4 2582 if (is_huge_zero_folio(folio)) {
5cea5666 2583 unpoison_pr_info("%#lx: huge zero page is not supported\n",
fe6f86f4
ML
2584 pfn, &unpoison_rs);
2585 ret = -EOPNOTSUPP;
2586 goto unlock_mutex;
2587 }
2588
6c54312f 2589 if (!PageHWPoison(p)) {
5cea5666 2590 unpoison_pr_info("%#lx: page was already unpoisoned\n",
a5f65109 2591 pfn, &unpoison_rs);
91d00547 2592 goto unlock_mutex;
847ce401
WF
2593 }
2594
a6fddef4 2595 if (folio_ref_count(folio) > 1) {
5cea5666 2596 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
a5f65109 2597 pfn, &unpoison_rs);
91d00547 2598 goto unlock_mutex;
230ac719
NH
2599 }
2600
ee299e98
MWO
2601 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2602 folio_test_reserved(folio) || folio_test_offline(folio))
faeb2ff2
ML
2603 goto unlock_mutex;
2604
a6fddef4 2605 if (folio_mapped(folio)) {
5cea5666 2606 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
a5f65109 2607 pfn, &unpoison_rs);
91d00547 2608 goto unlock_mutex;
230ac719
NH
2609 }
2610
a6fddef4 2611 if (folio_mapping(folio)) {
5cea5666 2612 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
a5f65109 2613 pfn, &unpoison_rs);
91d00547 2614 goto unlock_mutex;
0cea3fdc
WL
2615 }
2616
f29623e4
ML
2617 ghp = get_hwpoison_page(p, MF_UNPOISON);
2618 if (!ghp) {
ee299e98 2619 if (folio_test_hugetlb(folio)) {
5033091d 2620 huge = true;
9637d7df 2621 count = folio_free_raw_hwp(folio, false);
f29623e4 2622 if (count == 0)
ac5fcde0 2623 goto unlock_mutex;
ac5fcde0 2624 }
a6fddef4 2625 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2626 } else if (ghp < 0) {
2627 if (ghp == -EHWPOISON) {
c8bd84f7 2628 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2629 } else {
2630 ret = ghp;
5cea5666 2631 unpoison_pr_info("%#lx: failed to grab page\n",
bf181c58 2632 pfn, &unpoison_rs);
f29623e4 2633 }
bf181c58 2634 } else {
ee299e98 2635 if (folio_test_hugetlb(folio)) {
5033091d 2636 huge = true;
9637d7df 2637 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2638 if (count == 0) {
a6fddef4 2639 folio_put(folio);
ac5fcde0
NH
2640 goto unlock_mutex;
2641 }
2642 }
847ce401 2643
a6fddef4 2644 folio_put(folio);
e0ff4280 2645 if (TestClearPageHWPoison(p)) {
a6fddef4 2646 folio_put(folio);
bf181c58
NH
2647 ret = 0;
2648 }
2649 }
847ce401 2650
91d00547
NH
2651unlock_mutex:
2652 mutex_unlock(&mf_mutex);
e0ff4280 2653 if (!ret) {
5033091d
NH
2654 if (!huge)
2655 num_poisoned_pages_sub(pfn, 1);
5cea5666 2656 unpoison_pr_info("%#lx: software-unpoisoned page\n",
c8bd84f7 2657 page_to_pfn(p), &unpoison_rs);
2658 }
91d00547 2659 return ret;
847ce401
WF
2660}
2661EXPORT_SYMBOL(unpoison_memory);
facb6011 2662
865319f7
JY
2663#undef pr_fmt
2664#define pr_fmt(fmt) "Soft offline: " fmt
2665
6b9a217e 2666/*
48309e1f 2667 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2668 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2669 * If the page is mapped, it migrates the contents over.
2670 */
48309e1f 2671static int soft_offline_in_use_page(struct page *page)
af8fae7c 2672{
d6c75dc2 2673 long ret = 0;
af8fae7c 2674 unsigned long pfn = page_to_pfn(page);
049b2604 2675 struct folio *folio = page_folio(page);
6b9a217e 2676 char const *msg_page[] = {"page", "hugepage"};
049b2604 2677 bool huge = folio_test_hugetlb(folio);
f1264e95 2678 bool isolated;
6b9a217e 2679 LIST_HEAD(pagelist);
54608759
JK
2680 struct migration_target_control mtc = {
2681 .nid = NUMA_NO_NODE,
2682 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
e42dfe4e 2683 .reason = MR_MEMORY_FAILURE,
54608759 2684 };
facb6011 2685
049b2604 2686 if (!huge && folio_test_large(folio)) {
1a3798de 2687 if (try_to_split_thp_page(page, true)) {
865319f7 2688 pr_info("%#lx: thp split failed\n", pfn);
48309e1f
KW
2689 return -EBUSY;
2690 }
049b2604 2691 folio = page_folio(page);
48309e1f
KW
2692 }
2693
049b2604 2694 folio_lock(folio);
55c7ac45 2695 if (!huge)
049b2604 2696 folio_wait_writeback(folio);
af8fae7c 2697 if (PageHWPoison(page)) {
049b2604
MWO
2698 folio_unlock(folio);
2699 folio_put(folio);
865319f7 2700 pr_info("%#lx: page already poisoned\n", pfn);
5a2ffca3 2701 return 0;
af8fae7c 2702 }
6b9a217e 2703
049b2604 2704 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2705 /*
2706 * Try to invalidate first. This should work for
2707 * non dirty unmapped page cache pages.
2708 */
049b2604
MWO
2709 ret = mapping_evict_folio(folio_mapping(folio), folio);
2710 folio_unlock(folio);
6b9a217e 2711
6b9a217e 2712 if (ret) {
865319f7 2713 pr_info("%#lx: invalidated\n", pfn);
6b9a217e 2714 page_handle_poison(page, false, true);
af8fae7c 2715 return 0;
facb6011
AK
2716 }
2717
f1264e95
KW
2718 isolated = isolate_folio_to_list(folio, &pagelist);
2719
2720 /*
2721 * If we succeed to isolate the folio, we grabbed another refcount on
2722 * the folio, so we can safely drop the one we got from get_any_page().
2723 * If we failed to isolate the folio, it means that we cannot go further
2724 * and we will return an error, so drop the reference we got from
2725 * get_any_page() as well.
2726 */
2727 folio_put(folio);
2728
2729 if (isolated) {
54608759 2730 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2731 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2732 if (!ret) {
6b9a217e
OS
2733 bool release = !huge;
2734
2735 if (!page_handle_poison(page, huge, release))
2736 ret = -EBUSY;
79f5f8fa 2737 } else {
85fbe5d1
YX
2738 if (!list_empty(&pagelist))
2739 putback_movable_pages(&pagelist);
59c82b70 2740
865319f7 2741 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
23efd080 2742 pfn, msg_page[huge], ret, &page->flags);
facb6011 2743 if (ret > 0)
3f4b815a 2744 ret = -EBUSY;
facb6011
AK
2745 }
2746 } else {
865319f7 2747 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
23efd080 2748 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2749 ret = -EBUSY;
facb6011 2750 }
facb6011
AK
2751 return ret;
2752}
86e05773
WL
2753
2754/**
2755 * soft_offline_page - Soft offline a page.
feec24a6 2756 * @pfn: pfn to soft-offline
86e05773
WL
2757 * @flags: flags. Same as memory_failure().
2758 *
56374430
JY
2759 * Returns 0 on success,
2760 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2761 * disabled by /proc/sys/vm/enable_soft_offline,
9113eaf3 2762 * < 0 otherwise negated errno.
86e05773
WL
2763 *
2764 * Soft offline a page, by migration or invalidation,
2765 * without killing anything. This is for the case when
2766 * a page is not corrupted yet (so it's still valid to access),
2767 * but has had a number of corrected errors and is better taken
2768 * out.
2769 *
2770 * The actual policy on when to do that is maintained by
2771 * user space.
2772 *
2773 * This should never impact any application or cause data loss,
2774 * however it might take some time.
2775 *
2776 * This is not a 100% solution for all memory, but tries to be
2777 * ``good enough'' for the majority of memory.
2778 */
feec24a6 2779int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2780{
2781 int ret;
b94e0282 2782 bool try_again = true;
b5f1fc98 2783 struct page *page;
dad4e5b3 2784
183a7c5d
KW
2785 if (!pfn_valid(pfn)) {
2786 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2787 return -ENXIO;
183a7c5d 2788 }
dad4e5b3 2789
feec24a6
NH
2790 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2791 page = pfn_to_online_page(pfn);
dad4e5b3 2792 if (!page) {
b5f1fc98 2793 put_ref_page(pfn, flags);
86a66810 2794 return -EIO;
dad4e5b3 2795 }
86a66810 2796
56374430
JY
2797 if (!sysctl_enable_soft_offline) {
2798 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2799 put_ref_page(pfn, flags);
2800 return -EOPNOTSUPP;
2801 }
2802
91d00547
NH
2803 mutex_lock(&mf_mutex);
2804
86e05773 2805 if (PageHWPoison(page)) {
865319f7 2806 pr_info("%#lx: page already poisoned\n", pfn);
b5f1fc98 2807 put_ref_page(pfn, flags);
91d00547 2808 mutex_unlock(&mf_mutex);
5a2ffca3 2809 return 0;
86e05773 2810 }
86e05773 2811
b94e0282 2812retry:
bfc8c901 2813 get_online_mems();
bf6445bc 2814 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2815 put_online_mems();
4e41a30c 2816
9113eaf3 2817 if (hwpoison_filter(page)) {
2818 if (ret > 0)
2819 put_page(page);
9113eaf3 2820
2821 mutex_unlock(&mf_mutex);
2822 return -EOPNOTSUPP;
2823 }
2824
8295d535 2825 if (ret > 0) {
6b9a217e 2826 ret = soft_offline_in_use_page(page);
8295d535 2827 } else if (ret == 0) {
e2c1ab07
ML
2828 if (!page_handle_poison(page, true, false)) {
2829 if (try_again) {
2830 try_again = false;
2831 flags &= ~MF_COUNT_INCREASED;
2832 goto retry;
2833 }
2834 ret = -EBUSY;
b94e0282 2835 }
8295d535 2836 }
4e41a30c 2837
91d00547
NH
2838 mutex_unlock(&mf_mutex);
2839
86e05773
WL
2840 return ret;
2841}