mm/hwpoison: change argument struct page **hpagep to *hpage
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
01e00f88 42#include <linux/ksm.h>
6a46079c 43#include <linux/rmap.h>
b9e15baf 44#include <linux/export.h>
6a46079c
AK
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
facb6011 48#include <linux/migrate.h>
facb6011 49#include <linux/suspend.h>
5a0e3ad6 50#include <linux/slab.h>
bf998156 51#include <linux/swapops.h>
7af446a8 52#include <linux/hugetlb.h>
20d6c96b 53#include <linux/memory_hotplug.h>
5db8a73a 54#include <linux/mm_inline.h>
6100e34b 55#include <linux/memremap.h>
ea8f5fb8 56#include <linux/kfifo.h>
a5f65109 57#include <linux/ratelimit.h>
d4ae9916 58#include <linux/page-isolation.h>
a3f5d80e 59#include <linux/pagewalk.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
510d25c9
NH
69static bool __page_handle_poison(struct page *page)
70{
71 bool ret;
72
73 zone_pcp_disable(page_zone(page));
74 ret = dissolve_free_huge_page(page);
75 if (!ret)
76 ret = take_page_off_buddy(page);
77 zone_pcp_enable(page_zone(page));
78
79 return ret;
80}
81
6b9a217e 82static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 83{
6b9a217e
OS
84 if (hugepage_or_freepage) {
85 /*
86 * Doing this check for free pages is also fine since dissolve_free_huge_page
87 * returns 0 for non-hugetlb pages as well.
88 */
510d25c9 89 if (!__page_handle_poison(page))
6b9a217e
OS
90 /*
91 * We could fail to take off the target page from buddy
f0953a1b 92 * for example due to racy page allocation, but that's
6b9a217e
OS
93 * acceptable because soft-offlined page is not broken
94 * and if someone really want to use it, they should
95 * take it.
96 */
97 return false;
98 }
99
06be6ff3 100 SetPageHWPoison(page);
79f5f8fa
OS
101 if (release)
102 put_page(page);
06be6ff3
OS
103 page_ref_inc(page);
104 num_poisoned_pages_inc();
6b9a217e
OS
105
106 return true;
06be6ff3
OS
107}
108
27df5068
AK
109#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
110
1bfe5feb 111u32 hwpoison_filter_enable = 0;
7c116f2b
WF
112u32 hwpoison_filter_dev_major = ~0U;
113u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
114u64 hwpoison_filter_flags_mask;
115u64 hwpoison_filter_flags_value;
1bfe5feb 116EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
117EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
118EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
119EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
120EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
121
122static int hwpoison_filter_dev(struct page *p)
123{
124 struct address_space *mapping;
125 dev_t dev;
126
127 if (hwpoison_filter_dev_major == ~0U &&
128 hwpoison_filter_dev_minor == ~0U)
129 return 0;
130
131 /*
1c80b990 132 * page_mapping() does not accept slab pages.
7c116f2b
WF
133 */
134 if (PageSlab(p))
135 return -EINVAL;
136
137 mapping = page_mapping(p);
138 if (mapping == NULL || mapping->host == NULL)
139 return -EINVAL;
140
141 dev = mapping->host->i_sb->s_dev;
142 if (hwpoison_filter_dev_major != ~0U &&
143 hwpoison_filter_dev_major != MAJOR(dev))
144 return -EINVAL;
145 if (hwpoison_filter_dev_minor != ~0U &&
146 hwpoison_filter_dev_minor != MINOR(dev))
147 return -EINVAL;
148
149 return 0;
150}
151
478c5ffc
WF
152static int hwpoison_filter_flags(struct page *p)
153{
154 if (!hwpoison_filter_flags_mask)
155 return 0;
156
157 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
158 hwpoison_filter_flags_value)
159 return 0;
160 else
161 return -EINVAL;
162}
163
4fd466eb
AK
164/*
165 * This allows stress tests to limit test scope to a collection of tasks
166 * by putting them under some memcg. This prevents killing unrelated/important
167 * processes such as /sbin/init. Note that the target task may share clean
168 * pages with init (eg. libc text), which is harmless. If the target task
169 * share _dirty_ pages with another task B, the test scheme must make sure B
170 * is also included in the memcg. At last, due to race conditions this filter
171 * can only guarantee that the page either belongs to the memcg tasks, or is
172 * a freed page.
173 */
94a59fb3 174#ifdef CONFIG_MEMCG
4fd466eb
AK
175u64 hwpoison_filter_memcg;
176EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
177static int hwpoison_filter_task(struct page *p)
178{
4fd466eb
AK
179 if (!hwpoison_filter_memcg)
180 return 0;
181
94a59fb3 182 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
183 return -EINVAL;
184
185 return 0;
186}
187#else
188static int hwpoison_filter_task(struct page *p) { return 0; }
189#endif
190
7c116f2b
WF
191int hwpoison_filter(struct page *p)
192{
1bfe5feb
HL
193 if (!hwpoison_filter_enable)
194 return 0;
195
7c116f2b
WF
196 if (hwpoison_filter_dev(p))
197 return -EINVAL;
198
478c5ffc
WF
199 if (hwpoison_filter_flags(p))
200 return -EINVAL;
201
4fd466eb
AK
202 if (hwpoison_filter_task(p))
203 return -EINVAL;
204
7c116f2b
WF
205 return 0;
206}
27df5068
AK
207#else
208int hwpoison_filter(struct page *p)
209{
210 return 0;
211}
212#endif
213
7c116f2b
WF
214EXPORT_SYMBOL_GPL(hwpoison_filter);
215
ae1139ec
DW
216/*
217 * Kill all processes that have a poisoned page mapped and then isolate
218 * the page.
219 *
220 * General strategy:
221 * Find all processes having the page mapped and kill them.
222 * But we keep a page reference around so that the page is not
223 * actually freed yet.
224 * Then stash the page away
225 *
226 * There's no convenient way to get back to mapped processes
227 * from the VMAs. So do a brute-force search over all
228 * running processes.
229 *
230 * Remember that machine checks are not common (or rather
231 * if they are common you have other problems), so this shouldn't
232 * be a performance issue.
233 *
234 * Also there are some races possible while we get from the
235 * error detection to actually handle it.
236 */
237
238struct to_kill {
239 struct list_head nd;
240 struct task_struct *tsk;
241 unsigned long addr;
242 short size_shift;
ae1139ec
DW
243};
244
6a46079c 245/*
7329bbeb
TL
246 * Send all the processes who have the page mapped a signal.
247 * ``action optional'' if they are not immediately affected by the error
248 * ``action required'' if error happened in current execution context
6a46079c 249 */
ae1139ec 250static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 251{
ae1139ec
DW
252 struct task_struct *t = tk->tsk;
253 short addr_lsb = tk->size_shift;
872e9a20 254 int ret = 0;
6a46079c 255
03151c6e 256 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 257 pfn, t->comm, t->pid);
7329bbeb 258
872e9a20 259 if (flags & MF_ACTION_REQUIRED) {
30c9cf49
AY
260 if (t == current)
261 ret = force_sig_mceerr(BUS_MCEERR_AR,
872e9a20 262 (void __user *)tk->addr, addr_lsb);
30c9cf49
AY
263 else
264 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
265 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
266 addr_lsb, t);
7329bbeb
TL
267 } else {
268 /*
269 * Don't use force here, it's convenient if the signal
270 * can be temporarily blocked.
271 * This could cause a loop when the user sets SIGBUS
272 * to SIG_IGN, but hopefully no one will do that?
273 */
ae1139ec 274 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 275 addr_lsb, t); /* synchronous? */
7329bbeb 276 }
6a46079c 277 if (ret < 0)
495367c0 278 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 279 t->comm, t->pid, ret);
6a46079c
AK
280 return ret;
281}
282
588f9ce6 283/*
47e431f4
OS
284 * Unknown page type encountered. Try to check whether it can turn PageLRU by
285 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
588f9ce6 286 */
facb6011 287void shake_page(struct page *p, int access)
588f9ce6 288{
8bcb74de
NH
289 if (PageHuge(p))
290 return;
291
588f9ce6
AK
292 if (!PageSlab(p)) {
293 lru_add_drain_all();
588f9ce6
AK
294 if (PageLRU(p) || is_free_buddy_page(p))
295 return;
296 }
facb6011 297
588f9ce6 298 /*
6b4f7799
JW
299 * Only call shrink_node_slabs here (which would also shrink
300 * other caches) if access is not potentially fatal.
588f9ce6 301 */
cb731d6c
VD
302 if (access)
303 drop_slab_node(page_to_nid(p));
588f9ce6
AK
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
6100e34b
DW
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
311 pgd_t *pgd;
312 p4d_t *p4d;
313 pud_t *pud;
314 pmd_t *pmd;
315 pte_t *pte;
316
317 pgd = pgd_offset(vma->vm_mm, address);
318 if (!pgd_present(*pgd))
319 return 0;
320 p4d = p4d_offset(pgd, address);
321 if (!p4d_present(*p4d))
322 return 0;
323 pud = pud_offset(p4d, address);
324 if (!pud_present(*pud))
325 return 0;
326 if (pud_devmap(*pud))
327 return PUD_SHIFT;
328 pmd = pmd_offset(pud, address);
329 if (!pmd_present(*pmd))
330 return 0;
331 if (pmd_devmap(*pmd))
332 return PMD_SHIFT;
333 pte = pte_offset_map(pmd, address);
334 if (!pte_present(*pte))
335 return 0;
336 if (pte_devmap(*pte))
337 return PAGE_SHIFT;
338 return 0;
339}
6a46079c
AK
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
996ff7a0 352 struct list_head *to_kill)
6a46079c
AK
353{
354 struct to_kill *tk;
355
996ff7a0
JC
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
6a46079c 360 }
996ff7a0 361
6a46079c 362 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
75068518 366 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
367
368 /*
3d7fed4a
JC
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
6a46079c 377 */
3d7fed4a 378 if (tk->addr == -EFAULT) {
495367c0 379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 380 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
6a46079c 384 }
996ff7a0 385
6a46079c
AK
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
394 * Only do anything when DOIT is set, otherwise just free the list
395 * (this is used for clean pages which do not need killing)
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
ae1139ec
DW
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
6a46079c
AK
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 405 if (forcekill) {
6a46079c 406 /*
af901ca1 407 * In case something went wrong with munmapping
6a46079c
AK
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
6a46079c 410 */
3d7fed4a 411 if (fail || tk->addr == -EFAULT) {
495367c0 412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 413 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
6a46079c
AK
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
ae1139ec 424 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 426 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
3ba08129
NH
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 442{
3ba08129
NH
443 struct task_struct *t;
444
4e018b45
NH
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
3ba08129
NH
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 461 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 462 *
30c9cf49
AY
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
6a46079c 472 if (!tsk->mm)
3ba08129 473 return NULL;
30c9cf49
AY
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
4e018b45 481 return find_early_kill_thread(tsk);
6a46079c
AK
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 488 int force_early)
6a46079c
AK
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
bf181b9f 493 pgoff_t pgoff;
6a46079c 494
4fc3f1d6 495 av = page_lock_anon_vma_read(page);
6a46079c 496 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
497 return;
498
a0f7a756 499 pgoff = page_to_pgoff(page);
9b679320 500 read_lock(&tasklist_lock);
6a46079c 501 for_each_process (tsk) {
5beb4930 502 struct anon_vma_chain *vmac;
3ba08129 503 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 504
3ba08129 505 if (!t)
6a46079c 506 continue;
bf181b9f
ML
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
5beb4930 509 vma = vmac->vma;
6a46079c
AK
510 if (!page_mapped_in_vma(page, vma))
511 continue;
3ba08129 512 if (vma->vm_mm == t->mm)
996ff7a0 513 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
514 }
515 }
6a46079c 516 read_unlock(&tasklist_lock);
4fc3f1d6 517 page_unlock_anon_vma_read(av);
6a46079c
AK
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 524 int force_early)
6a46079c
AK
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
6a46079c 528 struct address_space *mapping = page->mapping;
c43bc03d 529 pgoff_t pgoff;
6a46079c 530
d28eb9c8 531 i_mmap_lock_read(mapping);
9b679320 532 read_lock(&tasklist_lock);
c43bc03d 533 pgoff = page_to_pgoff(page);
6a46079c 534 for_each_process(tsk) {
3ba08129 535 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 536
3ba08129 537 if (!t)
6a46079c 538 continue;
6b2dbba8 539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
3ba08129 548 if (vma->vm_mm == t->mm)
996ff7a0 549 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
550 }
551 }
6a46079c 552 read_unlock(&tasklist_lock);
d28eb9c8 553 i_mmap_unlock_read(mapping);
6a46079c
AK
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 558 */
74614de1
TL
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
6a46079c 561{
6a46079c
AK
562 if (!page->mapping)
563 return;
564
6a46079c 565 if (PageAnon(page))
996ff7a0 566 collect_procs_anon(page, tokill, force_early);
6a46079c 567 else
996ff7a0 568 collect_procs_file(page, tokill, force_early);
6a46079c
AK
569}
570
a3f5d80e
NH
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
ea3732f7 635 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
ea3732f7
ML
648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
649 addr, &ptl);
a3f5d80e
NH
650 for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
652 hwp->pfn, &hwp->tk);
653 if (ret == 1)
654 break;
655 }
ea3732f7 656 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
657out:
658 cond_resched();
659 return ret;
660}
661
662#ifdef CONFIG_HUGETLB_PAGE
663static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 unsigned long addr, unsigned long end,
665 struct mm_walk *walk)
666{
667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 pte_t pte = huge_ptep_get(ptep);
669 struct hstate *h = hstate_vma(walk->vma);
670
671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
672 hwp->pfn, &hwp->tk);
673}
674#else
675#define hwpoison_hugetlb_range NULL
676#endif
677
678static struct mm_walk_ops hwp_walk_ops = {
679 .pmd_entry = hwpoison_pte_range,
680 .hugetlb_entry = hwpoison_hugetlb_range,
681};
682
683/*
684 * Sends SIGBUS to the current process with error info.
685 *
686 * This function is intended to handle "Action Required" MCEs on already
687 * hardware poisoned pages. They could happen, for example, when
688 * memory_failure() failed to unmap the error page at the first call, or
689 * when multiple local machine checks happened on different CPUs.
690 *
691 * MCE handler currently has no easy access to the error virtual address,
692 * so this function walks page table to find it. The returned virtual address
693 * is proper in most cases, but it could be wrong when the application
694 * process has multiple entries mapping the error page.
695 */
696static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
697 int flags)
698{
699 int ret;
700 struct hwp_walk priv = {
701 .pfn = pfn,
702 };
703 priv.tk.tsk = p;
704
705 mmap_read_lock(p->mm);
706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
707 (void *)&priv);
708 if (ret == 1 && priv.tk.addr)
709 kill_proc(&priv.tk, pfn, flags);
710 mmap_read_unlock(p->mm);
711 return ret ? -EFAULT : -EHWPOISON;
712}
713
6a46079c 714static const char *action_name[] = {
cc637b17
XX
715 [MF_IGNORED] = "Ignored",
716 [MF_FAILED] = "Failed",
717 [MF_DELAYED] = "Delayed",
718 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
719};
720
721static const char * const action_page_types[] = {
cc637b17
XX
722 [MF_MSG_KERNEL] = "reserved kernel page",
723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
724 [MF_MSG_SLAB] = "kernel slab page",
725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
726 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
727 [MF_MSG_HUGE] = "huge page",
728 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 729 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
730 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
731 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
732 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
733 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
734 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
735 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
736 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
737 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
738 [MF_MSG_CLEAN_LRU] = "clean LRU page",
739 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
740 [MF_MSG_BUDDY] = "free buddy page",
741 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
6100e34b 742 [MF_MSG_DAX] = "dax page",
5d1fd5dc 743 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 744 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
745};
746
dc2a1cbf
WF
747/*
748 * XXX: It is possible that a page is isolated from LRU cache,
749 * and then kept in swap cache or failed to remove from page cache.
750 * The page count will stop it from being freed by unpoison.
751 * Stress tests should be aware of this memory leak problem.
752 */
753static int delete_from_lru_cache(struct page *p)
754{
755 if (!isolate_lru_page(p)) {
756 /*
757 * Clear sensible page flags, so that the buddy system won't
758 * complain when the page is unpoison-and-freed.
759 */
760 ClearPageActive(p);
761 ClearPageUnevictable(p);
18365225
MH
762
763 /*
764 * Poisoned page might never drop its ref count to 0 so we have
765 * to uncharge it manually from its memcg.
766 */
767 mem_cgroup_uncharge(p);
768
dc2a1cbf
WF
769 /*
770 * drop the page count elevated by isolate_lru_page()
771 */
09cbfeaf 772 put_page(p);
dc2a1cbf
WF
773 return 0;
774 }
775 return -EIO;
776}
777
78bb9203
NH
778static int truncate_error_page(struct page *p, unsigned long pfn,
779 struct address_space *mapping)
780{
781 int ret = MF_FAILED;
782
783 if (mapping->a_ops->error_remove_page) {
784 int err = mapping->a_ops->error_remove_page(mapping, p);
785
786 if (err != 0) {
787 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
788 pfn, err);
789 } else if (page_has_private(p) &&
790 !try_to_release_page(p, GFP_NOIO)) {
791 pr_info("Memory failure: %#lx: failed to release buffers\n",
792 pfn);
793 } else {
794 ret = MF_RECOVERED;
795 }
796 } else {
797 /*
798 * If the file system doesn't support it just invalidate
799 * This fails on dirty or anything with private pages
800 */
801 if (invalidate_inode_page(p))
802 ret = MF_RECOVERED;
803 else
804 pr_info("Memory failure: %#lx: Failed to invalidate\n",
805 pfn);
806 }
807
808 return ret;
809}
810
6a46079c
AK
811/*
812 * Error hit kernel page.
813 * Do nothing, try to be lucky and not touch this instead. For a few cases we
814 * could be more sophisticated.
815 */
816static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 817{
ea6d0630 818 unlock_page(p);
cc637b17 819 return MF_IGNORED;
6a46079c
AK
820}
821
822/*
823 * Page in unknown state. Do nothing.
824 */
825static int me_unknown(struct page *p, unsigned long pfn)
826{
495367c0 827 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
ea6d0630 828 unlock_page(p);
cc637b17 829 return MF_FAILED;
6a46079c
AK
830}
831
6a46079c
AK
832/*
833 * Clean (or cleaned) page cache page.
834 */
835static int me_pagecache_clean(struct page *p, unsigned long pfn)
836{
ea6d0630 837 int ret;
6a46079c
AK
838 struct address_space *mapping;
839
dc2a1cbf
WF
840 delete_from_lru_cache(p);
841
6a46079c
AK
842 /*
843 * For anonymous pages we're done the only reference left
844 * should be the one m_f() holds.
845 */
ea6d0630
NH
846 if (PageAnon(p)) {
847 ret = MF_RECOVERED;
848 goto out;
849 }
6a46079c
AK
850
851 /*
852 * Now truncate the page in the page cache. This is really
853 * more like a "temporary hole punch"
854 * Don't do this for block devices when someone else
855 * has a reference, because it could be file system metadata
856 * and that's not safe to truncate.
857 */
858 mapping = page_mapping(p);
859 if (!mapping) {
860 /*
861 * Page has been teared down in the meanwhile
862 */
ea6d0630
NH
863 ret = MF_FAILED;
864 goto out;
6a46079c
AK
865 }
866
867 /*
868 * Truncation is a bit tricky. Enable it per file system for now.
869 *
870 * Open: to take i_mutex or not for this? Right now we don't.
871 */
ea6d0630
NH
872 ret = truncate_error_page(p, pfn, mapping);
873out:
874 unlock_page(p);
875 return ret;
6a46079c
AK
876}
877
878/*
549543df 879 * Dirty pagecache page
6a46079c
AK
880 * Issues: when the error hit a hole page the error is not properly
881 * propagated.
882 */
883static int me_pagecache_dirty(struct page *p, unsigned long pfn)
884{
885 struct address_space *mapping = page_mapping(p);
886
887 SetPageError(p);
888 /* TBD: print more information about the file. */
889 if (mapping) {
890 /*
891 * IO error will be reported by write(), fsync(), etc.
892 * who check the mapping.
893 * This way the application knows that something went
894 * wrong with its dirty file data.
895 *
896 * There's one open issue:
897 *
898 * The EIO will be only reported on the next IO
899 * operation and then cleared through the IO map.
900 * Normally Linux has two mechanisms to pass IO error
901 * first through the AS_EIO flag in the address space
902 * and then through the PageError flag in the page.
903 * Since we drop pages on memory failure handling the
904 * only mechanism open to use is through AS_AIO.
905 *
906 * This has the disadvantage that it gets cleared on
907 * the first operation that returns an error, while
908 * the PageError bit is more sticky and only cleared
909 * when the page is reread or dropped. If an
910 * application assumes it will always get error on
911 * fsync, but does other operations on the fd before
25985edc 912 * and the page is dropped between then the error
6a46079c
AK
913 * will not be properly reported.
914 *
915 * This can already happen even without hwpoisoned
916 * pages: first on metadata IO errors (which only
917 * report through AS_EIO) or when the page is dropped
918 * at the wrong time.
919 *
920 * So right now we assume that the application DTRT on
921 * the first EIO, but we're not worse than other parts
922 * of the kernel.
923 */
af21bfaf 924 mapping_set_error(mapping, -EIO);
6a46079c
AK
925 }
926
927 return me_pagecache_clean(p, pfn);
928}
929
930/*
931 * Clean and dirty swap cache.
932 *
933 * Dirty swap cache page is tricky to handle. The page could live both in page
934 * cache and swap cache(ie. page is freshly swapped in). So it could be
935 * referenced concurrently by 2 types of PTEs:
936 * normal PTEs and swap PTEs. We try to handle them consistently by calling
937 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
938 * and then
939 * - clear dirty bit to prevent IO
940 * - remove from LRU
941 * - but keep in the swap cache, so that when we return to it on
942 * a later page fault, we know the application is accessing
943 * corrupted data and shall be killed (we installed simple
944 * interception code in do_swap_page to catch it).
945 *
946 * Clean swap cache pages can be directly isolated. A later page fault will
947 * bring in the known good data from disk.
948 */
949static int me_swapcache_dirty(struct page *p, unsigned long pfn)
950{
ea6d0630
NH
951 int ret;
952
6a46079c
AK
953 ClearPageDirty(p);
954 /* Trigger EIO in shmem: */
955 ClearPageUptodate(p);
956
ea6d0630
NH
957 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
958 unlock_page(p);
959 return ret;
6a46079c
AK
960}
961
962static int me_swapcache_clean(struct page *p, unsigned long pfn)
963{
ea6d0630
NH
964 int ret;
965
6a46079c 966 delete_from_swap_cache(p);
e43c3afb 967
ea6d0630
NH
968 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
969 unlock_page(p);
970 return ret;
6a46079c
AK
971}
972
973/*
974 * Huge pages. Needs work.
975 * Issues:
93f70f90
NH
976 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
977 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
978 */
979static int me_huge_page(struct page *p, unsigned long pfn)
980{
a8b2c2ce 981 int res;
93f70f90 982 struct page *hpage = compound_head(p);
78bb9203 983 struct address_space *mapping;
2491ffee
NH
984
985 if (!PageHuge(hpage))
986 return MF_DELAYED;
987
78bb9203
NH
988 mapping = page_mapping(hpage);
989 if (mapping) {
990 res = truncate_error_page(hpage, pfn, mapping);
ea6d0630 991 unlock_page(hpage);
78bb9203 992 } else {
a8b2c2ce 993 res = MF_FAILED;
78bb9203
NH
994 unlock_page(hpage);
995 /*
996 * migration entry prevents later access on error anonymous
997 * hugepage, so we can free and dissolve it into buddy to
998 * save healthy subpages.
999 */
1000 if (PageAnon(hpage))
1001 put_page(hpage);
510d25c9 1002 if (__page_handle_poison(p)) {
a8b2c2ce
OS
1003 page_ref_inc(p);
1004 res = MF_RECOVERED;
1005 }
93f70f90 1006 }
78bb9203
NH
1007
1008 return res;
6a46079c
AK
1009}
1010
1011/*
1012 * Various page states we can handle.
1013 *
1014 * A page state is defined by its current page->flags bits.
1015 * The table matches them in order and calls the right handler.
1016 *
1017 * This is quite tricky because we can access page at any time
25985edc 1018 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1019 *
1020 * This is not complete. More states could be added.
1021 * For any missing state don't attempt recovery.
1022 */
1023
1024#define dirty (1UL << PG_dirty)
6326fec1 1025#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1026#define unevict (1UL << PG_unevictable)
1027#define mlock (1UL << PG_mlocked)
6a46079c 1028#define lru (1UL << PG_lru)
6a46079c 1029#define head (1UL << PG_head)
6a46079c 1030#define slab (1UL << PG_slab)
6a46079c
AK
1031#define reserved (1UL << PG_reserved)
1032
1033static struct page_state {
1034 unsigned long mask;
1035 unsigned long res;
cc637b17 1036 enum mf_action_page_type type;
ea6d0630
NH
1037
1038 /* Callback ->action() has to unlock the relevant page inside it. */
6a46079c
AK
1039 int (*action)(struct page *p, unsigned long pfn);
1040} error_states[] = {
cc637b17 1041 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1042 /*
1043 * free pages are specially detected outside this table:
1044 * PG_buddy pages only make a small fraction of all free pages.
1045 */
6a46079c
AK
1046
1047 /*
1048 * Could in theory check if slab page is free or if we can drop
1049 * currently unused objects without touching them. But just
1050 * treat it as standard kernel for now.
1051 */
cc637b17 1052 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1053
cc637b17 1054 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1055
cc637b17
XX
1056 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1057 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1058
cc637b17
XX
1059 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1060 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1061
cc637b17
XX
1062 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1063 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1064
cc637b17
XX
1065 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1066 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1067
1068 /*
1069 * Catchall entry: must be at end.
1070 */
cc637b17 1071 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1072};
1073
2326c467
AK
1074#undef dirty
1075#undef sc
1076#undef unevict
1077#undef mlock
2326c467 1078#undef lru
2326c467 1079#undef head
2326c467
AK
1080#undef slab
1081#undef reserved
1082
ff604cf6
NH
1083/*
1084 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1085 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1086 */
cc3e2af4
XX
1087static void action_result(unsigned long pfn, enum mf_action_page_type type,
1088 enum mf_result result)
6a46079c 1089{
97f0b134
XX
1090 trace_memory_failure_event(pfn, type, result);
1091
495367c0 1092 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 1093 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1094}
1095
1096static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1097 unsigned long pfn)
6a46079c
AK
1098{
1099 int result;
7456b040 1100 int count;
6a46079c 1101
ea6d0630 1102 /* page p should be unlocked after returning from ps->action(). */
6a46079c 1103 result = ps->action(p, pfn);
7456b040 1104
bd1ce5f9 1105 count = page_count(p) - 1;
cc637b17 1106 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286 1107 count--;
78bb9203 1108 if (count > 0) {
495367c0 1109 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 1110 pfn, action_page_types[ps->type], count);
cc637b17 1111 result = MF_FAILED;
138ce286 1112 }
64d37a2b 1113 action_result(pfn, ps->type, result);
6a46079c
AK
1114
1115 /* Could do more checks here if page looks ok */
1116 /*
1117 * Could adjust zone counters here to correct for the missing page.
1118 */
1119
cc637b17 1120 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1121}
1122
25182f05
NH
1123/*
1124 * Return true if a page type of a given page is supported by hwpoison
1125 * mechanism (while handling could fail), otherwise false. This function
1126 * does not return true for hugetlb or device memory pages, so it's assumed
1127 * to be called only in the context where we never have such pages.
1128 */
1129static inline bool HWPoisonHandlable(struct page *page)
1130{
1131 return PageLRU(page) || __PageMovable(page);
1132}
1133
17e395b6 1134static int __get_hwpoison_page(struct page *page)
ead07f6a
NH
1135{
1136 struct page *head = compound_head(page);
25182f05
NH
1137 int ret = 0;
1138 bool hugetlb = false;
1139
1140 ret = get_hwpoison_huge_page(head, &hugetlb);
1141 if (hugetlb)
1142 return ret;
1143
1144 /*
1145 * This check prevents from calling get_hwpoison_unless_zero()
1146 * for any unsupported type of page in order to reduce the risk of
1147 * unexpected races caused by taking a page refcount.
1148 */
1149 if (!HWPoisonHandlable(head))
fcc00621 1150 return -EBUSY;
ead07f6a 1151
25182f05 1152 if (PageTransHuge(head)) {
98ed2b00
NH
1153 /*
1154 * Non anonymous thp exists only in allocation/free time. We
1155 * can't handle such a case correctly, so let's give it up.
1156 * This should be better than triggering BUG_ON when kernel
1157 * tries to touch the "partially handled" page.
1158 */
1159 if (!PageAnon(head)) {
495367c0 1160 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
1161 page_to_pfn(page));
1162 return 0;
1163 }
ead07f6a
NH
1164 }
1165
c2e7e00b
KK
1166 if (get_page_unless_zero(head)) {
1167 if (head == compound_head(page))
1168 return 1;
1169
495367c0
CY
1170 pr_info("Memory failure: %#lx cannot catch tail\n",
1171 page_to_pfn(page));
c2e7e00b
KK
1172 put_page(head);
1173 }
1174
1175 return 0;
ead07f6a 1176}
ead07f6a 1177
2f714160 1178static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1179{
2f714160
OS
1180 int ret = 0, pass = 0;
1181 bool count_increased = false;
17e395b6 1182
2f714160
OS
1183 if (flags & MF_COUNT_INCREASED)
1184 count_increased = true;
1185
1186try_again:
0ed950d1
NH
1187 if (!count_increased) {
1188 ret = __get_hwpoison_page(p);
1189 if (!ret) {
1190 if (page_count(p)) {
1191 /* We raced with an allocation, retry. */
1192 if (pass++ < 3)
1193 goto try_again;
1194 ret = -EBUSY;
1195 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1196 /* We raced with put_page, retry. */
1197 if (pass++ < 3)
1198 goto try_again;
1199 ret = -EIO;
1200 }
1201 goto out;
1202 } else if (ret == -EBUSY) {
fcc00621
NH
1203 /*
1204 * We raced with (possibly temporary) unhandlable
1205 * page, retry.
1206 */
1207 if (pass++ < 3) {
1208 shake_page(p, 1);
2f714160 1209 goto try_again;
fcc00621
NH
1210 }
1211 ret = -EIO;
0ed950d1 1212 goto out;
2f714160 1213 }
0ed950d1
NH
1214 }
1215
1216 if (PageHuge(p) || HWPoisonHandlable(p)) {
1217 ret = 1;
2f714160 1218 } else {
0ed950d1
NH
1219 /*
1220 * A page we cannot handle. Check whether we can turn
1221 * it into something we can handle.
1222 */
1223 if (pass++ < 3) {
2f714160 1224 put_page(p);
0ed950d1
NH
1225 shake_page(p, 1);
1226 count_increased = false;
1227 goto try_again;
2f714160 1228 }
0ed950d1
NH
1229 put_page(p);
1230 ret = -EIO;
17e395b6 1231 }
0ed950d1 1232out:
17e395b6
OS
1233 return ret;
1234}
1235
0ed950d1
NH
1236/**
1237 * get_hwpoison_page() - Get refcount for memory error handling
1238 * @p: Raw error page (hit by memory error)
1239 * @flags: Flags controlling behavior of error handling
1240 *
1241 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1242 * error on it, after checking that the error page is in a well-defined state
1243 * (defined as a page-type we can successfully handle the memor error on it,
1244 * such as LRU page and hugetlb page).
1245 *
1246 * Memory error handling could be triggered at any time on any type of page,
1247 * so it's prone to race with typical memory management lifecycle (like
1248 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1249 * extra care for the error page's state (as done in __get_hwpoison_page()),
1250 * and has some retry logic in get_any_page().
1251 *
1252 * Return: 0 on failure,
1253 * 1 on success for in-use pages in a well-defined state,
1254 * -EIO for pages on which we can not handle memory errors,
1255 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1256 * operations like allocation and free.
1257 */
1258static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1259{
1260 int ret;
1261
1262 zone_pcp_disable(page_zone(p));
0ed950d1 1263 ret = get_any_page(p, flags);
2f714160
OS
1264 zone_pcp_enable(page_zone(p));
1265
1266 return ret;
1267}
1268
6a46079c
AK
1269/*
1270 * Do all that is necessary to remove user space mappings. Unmap
1271 * the pages and send SIGBUS to the processes if the data was dirty.
1272 */
666e5a40 1273static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1274 int flags, struct page *hpage)
6a46079c 1275{
36af6737 1276 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1277 struct address_space *mapping;
1278 LIST_HEAD(tokill);
1fb08ac6 1279 bool unmap_success;
6751ed65 1280 int kill = 1, forcekill;
286c469a 1281 bool mlocked = PageMlocked(hpage);
6a46079c 1282
93a9eb39
NH
1283 /*
1284 * Here we are interested only in user-mapped pages, so skip any
1285 * other types of pages.
1286 */
1287 if (PageReserved(p) || PageSlab(p))
666e5a40 1288 return true;
93a9eb39 1289 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1290 return true;
6a46079c 1291
6a46079c
AK
1292 /*
1293 * This check implies we don't kill processes if their pages
1294 * are in the swap cache early. Those are always late kills.
1295 */
7af446a8 1296 if (!page_mapped(hpage))
666e5a40 1297 return true;
1668bfd5 1298
52089b14 1299 if (PageKsm(p)) {
495367c0 1300 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 1301 return false;
52089b14 1302 }
6a46079c
AK
1303
1304 if (PageSwapCache(p)) {
495367c0
CY
1305 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1306 pfn);
6a46079c
AK
1307 ttu |= TTU_IGNORE_HWPOISON;
1308 }
1309
1310 /*
1311 * Propagate the dirty bit from PTEs to struct page first, because we
1312 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1313 * XXX: the dirty test could be racy: set_page_dirty() may not always
1314 * be called inside page lock (it's recommended but not enforced).
6a46079c 1315 */
7af446a8 1316 mapping = page_mapping(hpage);
6751ed65 1317 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1318 mapping_can_writeback(mapping)) {
7af446a8
NH
1319 if (page_mkclean(hpage)) {
1320 SetPageDirty(hpage);
6a46079c
AK
1321 } else {
1322 kill = 0;
1323 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1324 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1325 pfn);
1326 }
1327 }
1328
1329 /*
1330 * First collect all the processes that have the page
1331 * mapped in dirty form. This has to be done before try_to_unmap,
1332 * because ttu takes the rmap data structures down.
1333 *
1334 * Error handling: We ignore errors here because
1335 * there's nothing that can be done.
1336 */
1337 if (kill)
415c64c1 1338 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1339
c0d0381a 1340 if (!PageHuge(hpage)) {
1fb08ac6 1341 try_to_unmap(hpage, ttu);
c0d0381a 1342 } else {
336bf30e
MK
1343 if (!PageAnon(hpage)) {
1344 /*
1345 * For hugetlb pages in shared mappings, try_to_unmap
1346 * could potentially call huge_pmd_unshare. Because of
1347 * this, take semaphore in write mode here and set
1348 * TTU_RMAP_LOCKED to indicate we have taken the lock
041711ce 1349 * at this higher level.
336bf30e
MK
1350 */
1351 mapping = hugetlb_page_mapping_lock_write(hpage);
1352 if (mapping) {
1fb08ac6 1353 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
336bf30e 1354 i_mmap_unlock_write(mapping);
1fb08ac6 1355 } else
336bf30e 1356 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1357 } else {
1fb08ac6 1358 try_to_unmap(hpage, ttu);
c0d0381a
MK
1359 }
1360 }
1fb08ac6
YS
1361
1362 unmap_success = !page_mapped(hpage);
666e5a40 1363 if (!unmap_success)
495367c0 1364 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1365 pfn, page_mapcount(hpage));
a6d30ddd 1366
286c469a
NH
1367 /*
1368 * try_to_unmap() might put mlocked page in lru cache, so call
1369 * shake_page() again to ensure that it's flushed.
1370 */
1371 if (mlocked)
1372 shake_page(hpage, 0);
1373
6a46079c
AK
1374 /*
1375 * Now that the dirty bit has been propagated to the
1376 * struct page and all unmaps done we can decide if
1377 * killing is needed or not. Only kill when the page
6751ed65
TL
1378 * was dirty or the process is not restartable,
1379 * otherwise the tokill list is merely
6a46079c
AK
1380 * freed. When there was a problem unmapping earlier
1381 * use a more force-full uncatchable kill to prevent
1382 * any accesses to the poisoned memory.
1383 */
415c64c1 1384 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1385 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1386
666e5a40 1387 return unmap_success;
6a46079c
AK
1388}
1389
0348d2eb
NH
1390static int identify_page_state(unsigned long pfn, struct page *p,
1391 unsigned long page_flags)
761ad8d7
NH
1392{
1393 struct page_state *ps;
0348d2eb
NH
1394
1395 /*
1396 * The first check uses the current page flags which may not have any
1397 * relevant information. The second check with the saved page flags is
1398 * carried out only if the first check can't determine the page status.
1399 */
1400 for (ps = error_states;; ps++)
1401 if ((p->flags & ps->mask) == ps->res)
1402 break;
1403
1404 page_flags |= (p->flags & (1UL << PG_dirty));
1405
1406 if (!ps->mask)
1407 for (ps = error_states;; ps++)
1408 if ((page_flags & ps->mask) == ps->res)
1409 break;
1410 return page_action(ps, p, pfn);
1411}
1412
694bf0b0
OS
1413static int try_to_split_thp_page(struct page *page, const char *msg)
1414{
1415 lock_page(page);
1416 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1417 unsigned long pfn = page_to_pfn(page);
1418
1419 unlock_page(page);
1420 if (!PageAnon(page))
1421 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1422 else
1423 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1424 put_page(page);
1425 return -EBUSY;
1426 }
1427 unlock_page(page);
1428
1429 return 0;
1430}
1431
83b57531 1432static int memory_failure_hugetlb(unsigned long pfn, int flags)
0348d2eb 1433{
761ad8d7
NH
1434 struct page *p = pfn_to_page(pfn);
1435 struct page *head = compound_head(p);
1436 int res;
1437 unsigned long page_flags;
1438
1439 if (TestSetPageHWPoison(head)) {
1440 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1441 pfn);
a3f5d80e
NH
1442 res = -EHWPOISON;
1443 if (flags & MF_ACTION_REQUIRED)
1444 res = kill_accessing_process(current, page_to_pfn(head), flags);
1445 return res;
761ad8d7
NH
1446 }
1447
1448 num_poisoned_pages_inc();
1449
0ed950d1
NH
1450 if (!(flags & MF_COUNT_INCREASED)) {
1451 res = get_hwpoison_page(p, flags);
1452 if (!res) {
1453 /*
1454 * Check "filter hit" and "race with other subpage."
1455 */
1456 lock_page(head);
1457 if (PageHWPoison(head)) {
1458 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1459 || (p != head && TestSetPageHWPoison(head))) {
1460 num_poisoned_pages_dec();
1461 unlock_page(head);
1462 return 0;
1463 }
761ad8d7 1464 }
0ed950d1
NH
1465 unlock_page(head);
1466 res = MF_FAILED;
510d25c9 1467 if (__page_handle_poison(p)) {
0ed950d1
NH
1468 page_ref_inc(p);
1469 res = MF_RECOVERED;
1470 }
1471 action_result(pfn, MF_MSG_FREE_HUGE, res);
1472 return res == MF_RECOVERED ? 0 : -EBUSY;
1473 } else if (res < 0) {
1474 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1475 return -EBUSY;
761ad8d7 1476 }
761ad8d7
NH
1477 }
1478
1479 lock_page(head);
1480 page_flags = head->flags;
1481
1482 if (!PageHWPoison(head)) {
1483 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1484 num_poisoned_pages_dec();
1485 unlock_page(head);
dd6e2402 1486 put_page(head);
761ad8d7
NH
1487 return 0;
1488 }
1489
31286a84
NH
1490 /*
1491 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1492 * simply disable it. In order to make it work properly, we need
1493 * make sure that:
1494 * - conversion of a pud that maps an error hugetlb into hwpoison
1495 * entry properly works, and
1496 * - other mm code walking over page table is aware of pud-aligned
1497 * hwpoison entries.
1498 */
1499 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1500 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1501 res = -EBUSY;
1502 goto out;
1503 }
1504
ed8c2f49 1505 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1506 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1507 res = -EBUSY;
1508 goto out;
1509 }
1510
ea6d0630 1511 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1512out:
1513 unlock_page(head);
1514 return res;
1515}
1516
6100e34b
DW
1517static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1518 struct dev_pagemap *pgmap)
1519{
1520 struct page *page = pfn_to_page(pfn);
6100e34b
DW
1521 unsigned long size = 0;
1522 struct to_kill *tk;
1523 LIST_HEAD(tokill);
1524 int rc = -EBUSY;
1525 loff_t start;
27359fd6 1526 dax_entry_t cookie;
6100e34b 1527
1e8aaedb
OS
1528 if (flags & MF_COUNT_INCREASED)
1529 /*
1530 * Drop the extra refcount in case we come from madvise().
1531 */
1532 put_page(page);
1533
34dc45be
DW
1534 /* device metadata space is not recoverable */
1535 if (!pgmap_pfn_valid(pgmap, pfn)) {
1536 rc = -ENXIO;
1537 goto out;
1538 }
1539
6100e34b
DW
1540 /*
1541 * Prevent the inode from being freed while we are interrogating
1542 * the address_space, typically this would be handled by
1543 * lock_page(), but dax pages do not use the page lock. This
1544 * also prevents changes to the mapping of this pfn until
1545 * poison signaling is complete.
1546 */
27359fd6
MW
1547 cookie = dax_lock_page(page);
1548 if (!cookie)
6100e34b
DW
1549 goto out;
1550
1551 if (hwpoison_filter(page)) {
1552 rc = 0;
1553 goto unlock;
1554 }
1555
25b2995a 1556 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
6100e34b
DW
1557 /*
1558 * TODO: Handle HMM pages which may need coordination
1559 * with device-side memory.
1560 */
1561 goto unlock;
6100e34b
DW
1562 }
1563
1564 /*
1565 * Use this flag as an indication that the dax page has been
1566 * remapped UC to prevent speculative consumption of poison.
1567 */
1568 SetPageHWPoison(page);
1569
1570 /*
1571 * Unlike System-RAM there is no possibility to swap in a
1572 * different physical page at a given virtual address, so all
1573 * userspace consumption of ZONE_DEVICE memory necessitates
1574 * SIGBUS (i.e. MF_MUST_KILL)
1575 */
1576 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1577 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1578
1579 list_for_each_entry(tk, &tokill, nd)
1580 if (tk->size_shift)
1581 size = max(size, 1UL << tk->size_shift);
1582 if (size) {
1583 /*
1584 * Unmap the largest mapping to avoid breaking up
1585 * device-dax mappings which are constant size. The
1586 * actual size of the mapping being torn down is
1587 * communicated in siginfo, see kill_proc()
1588 */
1589 start = (page->index << PAGE_SHIFT) & ~(size - 1);
4d75136b 1590 unmap_mapping_range(page->mapping, start, size, 0);
6100e34b 1591 }
ae611d07 1592 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
6100e34b
DW
1593 rc = 0;
1594unlock:
27359fd6 1595 dax_unlock_page(page, cookie);
6100e34b
DW
1596out:
1597 /* drop pgmap ref acquired in caller */
1598 put_dev_pagemap(pgmap);
1599 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1600 return rc;
1601}
1602
cd42f4a3
TL
1603/**
1604 * memory_failure - Handle memory failure of a page.
1605 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1606 * @flags: fine tune action taken
1607 *
1608 * This function is called by the low level machine check code
1609 * of an architecture when it detects hardware memory corruption
1610 * of a page. It tries its best to recover, which includes
1611 * dropping pages, killing processes etc.
1612 *
1613 * The function is primarily of use for corruptions that
1614 * happen outside the current execution context (e.g. when
1615 * detected by a background scrubber)
1616 *
1617 * Must run in process context (e.g. a work queue) with interrupts
1618 * enabled and no spinlocks hold.
1619 */
83b57531 1620int memory_failure(unsigned long pfn, int flags)
6a46079c 1621{
6a46079c 1622 struct page *p;
7af446a8 1623 struct page *hpage;
415c64c1 1624 struct page *orig_head;
6100e34b 1625 struct dev_pagemap *pgmap;
171936dd 1626 int res = 0;
524fca1e 1627 unsigned long page_flags;
a8b2c2ce 1628 bool retry = true;
171936dd 1629 static DEFINE_MUTEX(mf_mutex);
6a46079c
AK
1630
1631 if (!sysctl_memory_failure_recovery)
83b57531 1632 panic("Memory failure on page %lx", pfn);
6a46079c 1633
96c804a6
DH
1634 p = pfn_to_online_page(pfn);
1635 if (!p) {
1636 if (pfn_valid(pfn)) {
1637 pgmap = get_dev_pagemap(pfn, NULL);
1638 if (pgmap)
1639 return memory_failure_dev_pagemap(pfn, flags,
1640 pgmap);
1641 }
495367c0
CY
1642 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1643 pfn);
a7560fc8 1644 return -ENXIO;
6a46079c
AK
1645 }
1646
171936dd
TL
1647 mutex_lock(&mf_mutex);
1648
a8b2c2ce 1649try_again:
171936dd
TL
1650 if (PageHuge(p)) {
1651 res = memory_failure_hugetlb(pfn, flags);
1652 goto unlock_mutex;
1653 }
1654
6a46079c 1655 if (TestSetPageHWPoison(p)) {
495367c0
CY
1656 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1657 pfn);
47af12ba 1658 res = -EHWPOISON;
a3f5d80e
NH
1659 if (flags & MF_ACTION_REQUIRED)
1660 res = kill_accessing_process(current, pfn, flags);
171936dd 1661 goto unlock_mutex;
6a46079c
AK
1662 }
1663
761ad8d7 1664 orig_head = hpage = compound_head(p);
b37ff71c 1665 num_poisoned_pages_inc();
6a46079c
AK
1666
1667 /*
1668 * We need/can do nothing about count=0 pages.
1669 * 1) it's a free page, and therefore in safe hand:
1670 * prep_new_page() will be the gate keeper.
761ad8d7 1671 * 2) it's part of a non-compound high order page.
6a46079c
AK
1672 * Implies some kernel user: cannot stop them from
1673 * R/W the page; let's pray that the page has been
1674 * used and will be freed some time later.
1675 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1676 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1677 */
0ed950d1
NH
1678 if (!(flags & MF_COUNT_INCREASED)) {
1679 res = get_hwpoison_page(p, flags);
1680 if (!res) {
1681 if (is_free_buddy_page(p)) {
1682 if (take_page_off_buddy(p)) {
1683 page_ref_inc(p);
1684 res = MF_RECOVERED;
1685 } else {
1686 /* We lost the race, try again */
1687 if (retry) {
1688 ClearPageHWPoison(p);
1689 num_poisoned_pages_dec();
1690 retry = false;
1691 goto try_again;
1692 }
1693 res = MF_FAILED;
a8b2c2ce 1694 }
0ed950d1
NH
1695 action_result(pfn, MF_MSG_BUDDY, res);
1696 res = res == MF_RECOVERED ? 0 : -EBUSY;
1697 } else {
1698 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1699 res = -EBUSY;
a8b2c2ce 1700 }
0ed950d1
NH
1701 goto unlock_mutex;
1702 } else if (res < 0) {
1703 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 1704 res = -EBUSY;
0ed950d1 1705 goto unlock_mutex;
8d22ba1b 1706 }
6a46079c
AK
1707 }
1708
761ad8d7 1709 if (PageTransHuge(hpage)) {
5d1fd5dc
NH
1710 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1711 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1712 res = -EBUSY;
1713 goto unlock_mutex;
5d1fd5dc 1714 }
415c64c1 1715 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1716 }
1717
e43c3afb
WF
1718 /*
1719 * We ignore non-LRU pages for good reasons.
1720 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1721 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1722 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1723 * The check (unnecessarily) ignores LRU pages being isolated and
1724 * walked by the page reclaim code, however that's not a big loss.
1725 */
8bcb74de 1726 shake_page(p, 0);
e43c3afb 1727
761ad8d7 1728 lock_page(p);
847ce401 1729
f37d4298
AK
1730 /*
1731 * The page could have changed compound pages during the locking.
1732 * If this happens just bail out.
1733 */
415c64c1 1734 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1735 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 1736 res = -EBUSY;
171936dd 1737 goto unlock_page;
f37d4298
AK
1738 }
1739
524fca1e
NH
1740 /*
1741 * We use page flags to determine what action should be taken, but
1742 * the flags can be modified by the error containment action. One
1743 * example is an mlocked page, where PG_mlocked is cleared by
1744 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1745 * correctly, we save a copy of the page flags at this time.
1746 */
7d9d46ac 1747 page_flags = p->flags;
524fca1e 1748
847ce401
WF
1749 /*
1750 * unpoison always clear PG_hwpoison inside page lock
1751 */
1752 if (!PageHWPoison(p)) {
495367c0 1753 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1754 num_poisoned_pages_dec();
761ad8d7 1755 unlock_page(p);
dd6e2402 1756 put_page(p);
171936dd 1757 goto unlock_mutex;
847ce401 1758 }
7c116f2b
WF
1759 if (hwpoison_filter(p)) {
1760 if (TestClearPageHWPoison(p))
b37ff71c 1761 num_poisoned_pages_dec();
761ad8d7 1762 unlock_page(p);
dd6e2402 1763 put_page(p);
171936dd 1764 goto unlock_mutex;
7c116f2b 1765 }
847ce401 1766
e8675d29 1767 /*
1768 * __munlock_pagevec may clear a writeback page's LRU flag without
1769 * page_lock. We need wait writeback completion for this page or it
1770 * may trigger vfs BUG while evict inode.
1771 */
1772 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
1773 goto identify_page_state;
1774
6edd6cc6
NH
1775 /*
1776 * It's very difficult to mess with pages currently under IO
1777 * and in many cases impossible, so we just avoid it here.
1778 */
6a46079c
AK
1779 wait_on_page_writeback(p);
1780
1781 /*
1782 * Now take care of user space mappings.
e64a782f 1783 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
6a46079c 1784 */
ed8c2f49 1785 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 1786 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 1787 res = -EBUSY;
171936dd 1788 goto unlock_page;
1668bfd5 1789 }
6a46079c
AK
1790
1791 /*
1792 * Torn down by someone else?
1793 */
dc2a1cbf 1794 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1795 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1796 res = -EBUSY;
171936dd 1797 goto unlock_page;
6a46079c
AK
1798 }
1799
0bc1f8b0 1800identify_page_state:
0348d2eb 1801 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
1802 mutex_unlock(&mf_mutex);
1803 return res;
171936dd 1804unlock_page:
761ad8d7 1805 unlock_page(p);
171936dd
TL
1806unlock_mutex:
1807 mutex_unlock(&mf_mutex);
6a46079c
AK
1808 return res;
1809}
cd42f4a3 1810EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1811
ea8f5fb8
HY
1812#define MEMORY_FAILURE_FIFO_ORDER 4
1813#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1814
1815struct memory_failure_entry {
1816 unsigned long pfn;
ea8f5fb8
HY
1817 int flags;
1818};
1819
1820struct memory_failure_cpu {
1821 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1822 MEMORY_FAILURE_FIFO_SIZE);
1823 spinlock_t lock;
1824 struct work_struct work;
1825};
1826
1827static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1828
1829/**
1830 * memory_failure_queue - Schedule handling memory failure of a page.
1831 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
1832 * @flags: Flags for memory failure handling
1833 *
1834 * This function is called by the low level hardware error handler
1835 * when it detects hardware memory corruption of a page. It schedules
1836 * the recovering of error page, including dropping pages, killing
1837 * processes etc.
1838 *
1839 * The function is primarily of use for corruptions that
1840 * happen outside the current execution context (e.g. when
1841 * detected by a background scrubber)
1842 *
1843 * Can run in IRQ context.
1844 */
83b57531 1845void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
1846{
1847 struct memory_failure_cpu *mf_cpu;
1848 unsigned long proc_flags;
1849 struct memory_failure_entry entry = {
1850 .pfn = pfn,
ea8f5fb8
HY
1851 .flags = flags,
1852 };
1853
1854 mf_cpu = &get_cpu_var(memory_failure_cpu);
1855 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1856 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1857 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1858 else
8e33a52f 1859 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1860 pfn);
1861 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1862 put_cpu_var(memory_failure_cpu);
1863}
1864EXPORT_SYMBOL_GPL(memory_failure_queue);
1865
1866static void memory_failure_work_func(struct work_struct *work)
1867{
1868 struct memory_failure_cpu *mf_cpu;
1869 struct memory_failure_entry entry = { 0, };
1870 unsigned long proc_flags;
1871 int gotten;
1872
06202231 1873 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
1874 for (;;) {
1875 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1876 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1877 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1878 if (!gotten)
1879 break;
cf870c70 1880 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 1881 soft_offline_page(entry.pfn, entry.flags);
cf870c70 1882 else
83b57531 1883 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
1884 }
1885}
1886
06202231
JM
1887/*
1888 * Process memory_failure work queued on the specified CPU.
1889 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1890 */
1891void memory_failure_queue_kick(int cpu)
1892{
1893 struct memory_failure_cpu *mf_cpu;
1894
1895 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1896 cancel_work_sync(&mf_cpu->work);
1897 memory_failure_work_func(&mf_cpu->work);
1898}
1899
ea8f5fb8
HY
1900static int __init memory_failure_init(void)
1901{
1902 struct memory_failure_cpu *mf_cpu;
1903 int cpu;
1904
1905 for_each_possible_cpu(cpu) {
1906 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1907 spin_lock_init(&mf_cpu->lock);
1908 INIT_KFIFO(mf_cpu->fifo);
1909 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1910 }
1911
1912 return 0;
1913}
1914core_initcall(memory_failure_init);
1915
a5f65109
NH
1916#define unpoison_pr_info(fmt, pfn, rs) \
1917({ \
1918 if (__ratelimit(rs)) \
1919 pr_info(fmt, pfn); \
1920})
1921
847ce401
WF
1922/**
1923 * unpoison_memory - Unpoison a previously poisoned page
1924 * @pfn: Page number of the to be unpoisoned page
1925 *
1926 * Software-unpoison a page that has been poisoned by
1927 * memory_failure() earlier.
1928 *
1929 * This is only done on the software-level, so it only works
1930 * for linux injected failures, not real hardware failures
1931 *
1932 * Returns 0 for success, otherwise -errno.
1933 */
1934int unpoison_memory(unsigned long pfn)
1935{
1936 struct page *page;
1937 struct page *p;
1938 int freeit = 0;
2f714160 1939 unsigned long flags = 0;
a5f65109
NH
1940 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1941 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1942
1943 if (!pfn_valid(pfn))
1944 return -ENXIO;
1945
1946 p = pfn_to_page(pfn);
1947 page = compound_head(p);
1948
1949 if (!PageHWPoison(p)) {
495367c0 1950 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1951 pfn, &unpoison_rs);
847ce401
WF
1952 return 0;
1953 }
1954
230ac719 1955 if (page_count(page) > 1) {
495367c0 1956 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1957 pfn, &unpoison_rs);
230ac719
NH
1958 return 0;
1959 }
1960
1961 if (page_mapped(page)) {
495367c0 1962 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1963 pfn, &unpoison_rs);
230ac719
NH
1964 return 0;
1965 }
1966
1967 if (page_mapping(page)) {
495367c0 1968 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1969 pfn, &unpoison_rs);
230ac719
NH
1970 return 0;
1971 }
1972
0cea3fdc
WL
1973 /*
1974 * unpoison_memory() can encounter thp only when the thp is being
1975 * worked by memory_failure() and the page lock is not held yet.
1976 * In such case, we yield to memory_failure() and make unpoison fail.
1977 */
e76d30e2 1978 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1979 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1980 pfn, &unpoison_rs);
ead07f6a 1981 return 0;
0cea3fdc
WL
1982 }
1983
0ed950d1 1984 if (!get_hwpoison_page(p, flags)) {
847ce401 1985 if (TestClearPageHWPoison(p))
8e30456b 1986 num_poisoned_pages_dec();
495367c0 1987 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1988 pfn, &unpoison_rs);
847ce401
WF
1989 return 0;
1990 }
1991
7eaceacc 1992 lock_page(page);
847ce401
WF
1993 /*
1994 * This test is racy because PG_hwpoison is set outside of page lock.
1995 * That's acceptable because that won't trigger kernel panic. Instead,
1996 * the PG_hwpoison page will be caught and isolated on the entrance to
1997 * the free buddy page pool.
1998 */
c9fbdd5f 1999 if (TestClearPageHWPoison(page)) {
495367c0 2000 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 2001 pfn, &unpoison_rs);
b37ff71c 2002 num_poisoned_pages_dec();
847ce401
WF
2003 freeit = 1;
2004 }
2005 unlock_page(page);
2006
dd6e2402 2007 put_page(page);
3ba5eebc 2008 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
dd6e2402 2009 put_page(page);
847ce401
WF
2010
2011 return 0;
2012}
2013EXPORT_SYMBOL(unpoison_memory);
facb6011 2014
6b9a217e 2015static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2016{
6b9a217e
OS
2017 bool isolated = false;
2018 bool lru = PageLRU(page);
d950b958 2019
6b9a217e
OS
2020 if (PageHuge(page)) {
2021 isolated = isolate_huge_page(page, pagelist);
2022 } else {
2023 if (lru)
2024 isolated = !isolate_lru_page(page);
2025 else
2026 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2027
2028 if (isolated)
2029 list_add(&page->lru, pagelist);
0ebff32c 2030 }
d950b958 2031
6b9a217e
OS
2032 if (isolated && lru)
2033 inc_node_page_state(page, NR_ISOLATED_ANON +
2034 page_is_file_lru(page));
2035
03613808 2036 /*
6b9a217e
OS
2037 * If we succeed to isolate the page, we grabbed another refcount on
2038 * the page, so we can safely drop the one we got from get_any_pages().
2039 * If we failed to isolate the page, it means that we cannot go further
2040 * and we will return an error, so drop the reference we got from
2041 * get_any_pages() as well.
03613808 2042 */
6b9a217e
OS
2043 put_page(page);
2044 return isolated;
d950b958
NH
2045}
2046
6b9a217e
OS
2047/*
2048 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2049 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2050 * If the page is mapped, it migrates the contents over.
2051 */
2052static int __soft_offline_page(struct page *page)
af8fae7c 2053{
6b9a217e 2054 int ret = 0;
af8fae7c 2055 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2056 struct page *hpage = compound_head(page);
2057 char const *msg_page[] = {"page", "hugepage"};
2058 bool huge = PageHuge(page);
2059 LIST_HEAD(pagelist);
54608759
JK
2060 struct migration_target_control mtc = {
2061 .nid = NUMA_NO_NODE,
2062 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2063 };
facb6011 2064
facb6011 2065 /*
af8fae7c
NH
2066 * Check PageHWPoison again inside page lock because PageHWPoison
2067 * is set by memory_failure() outside page lock. Note that
2068 * memory_failure() also double-checks PageHWPoison inside page lock,
2069 * so there's no race between soft_offline_page() and memory_failure().
facb6011 2070 */
0ebff32c 2071 lock_page(page);
6b9a217e
OS
2072 if (!PageHuge(page))
2073 wait_on_page_writeback(page);
af8fae7c
NH
2074 if (PageHWPoison(page)) {
2075 unlock_page(page);
dd6e2402 2076 put_page(page);
af8fae7c 2077 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2078 return 0;
af8fae7c 2079 }
6b9a217e
OS
2080
2081 if (!PageHuge(page))
2082 /*
2083 * Try to invalidate first. This should work for
2084 * non dirty unmapped page cache pages.
2085 */
2086 ret = invalidate_inode_page(page);
facb6011 2087 unlock_page(page);
6b9a217e 2088
facb6011 2089 /*
facb6011
AK
2090 * RED-PEN would be better to keep it isolated here, but we
2091 * would need to fix isolation locking first.
2092 */
6b9a217e 2093 if (ret) {
fb46e735 2094 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2095 page_handle_poison(page, false, true);
af8fae7c 2096 return 0;
facb6011
AK
2097 }
2098
6b9a217e 2099 if (isolate_page(hpage, &pagelist)) {
54608759
JK
2100 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2101 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
79f5f8fa 2102 if (!ret) {
6b9a217e
OS
2103 bool release = !huge;
2104
2105 if (!page_handle_poison(page, huge, release))
2106 ret = -EBUSY;
79f5f8fa 2107 } else {
85fbe5d1
YX
2108 if (!list_empty(&pagelist))
2109 putback_movable_pages(&pagelist);
59c82b70 2110
6b9a217e
OS
2111 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2112 pfn, msg_page[huge], ret, page->flags, &page->flags);
facb6011 2113 if (ret > 0)
3f4b815a 2114 ret = -EBUSY;
facb6011
AK
2115 }
2116 } else {
3f4b815a
OS
2117 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2118 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
6b9a217e 2119 ret = -EBUSY;
facb6011 2120 }
facb6011
AK
2121 return ret;
2122}
86e05773 2123
6b9a217e 2124static int soft_offline_in_use_page(struct page *page)
acc14dc4 2125{
acc14dc4
NH
2126 struct page *hpage = compound_head(page);
2127
694bf0b0
OS
2128 if (!PageHuge(page) && PageTransHuge(hpage))
2129 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2130 return -EBUSY;
6b9a217e 2131 return __soft_offline_page(page);
acc14dc4
NH
2132}
2133
d4ae9916 2134static int soft_offline_free_page(struct page *page)
acc14dc4 2135{
6b9a217e 2136 int rc = 0;
acc14dc4 2137
6b9a217e
OS
2138 if (!page_handle_poison(page, true, false))
2139 rc = -EBUSY;
06be6ff3 2140
d4ae9916 2141 return rc;
acc14dc4
NH
2142}
2143
dad4e5b3
DW
2144static void put_ref_page(struct page *page)
2145{
2146 if (page)
2147 put_page(page);
2148}
2149
86e05773
WL
2150/**
2151 * soft_offline_page - Soft offline a page.
feec24a6 2152 * @pfn: pfn to soft-offline
86e05773
WL
2153 * @flags: flags. Same as memory_failure().
2154 *
2155 * Returns 0 on success, otherwise negated errno.
2156 *
2157 * Soft offline a page, by migration or invalidation,
2158 * without killing anything. This is for the case when
2159 * a page is not corrupted yet (so it's still valid to access),
2160 * but has had a number of corrected errors and is better taken
2161 * out.
2162 *
2163 * The actual policy on when to do that is maintained by
2164 * user space.
2165 *
2166 * This should never impact any application or cause data loss,
2167 * however it might take some time.
2168 *
2169 * This is not a 100% solution for all memory, but tries to be
2170 * ``good enough'' for the majority of memory.
2171 */
feec24a6 2172int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2173{
2174 int ret;
b94e0282 2175 bool try_again = true;
dad4e5b3
DW
2176 struct page *page, *ref_page = NULL;
2177
2178 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2179
feec24a6
NH
2180 if (!pfn_valid(pfn))
2181 return -ENXIO;
dad4e5b3
DW
2182 if (flags & MF_COUNT_INCREASED)
2183 ref_page = pfn_to_page(pfn);
2184
feec24a6
NH
2185 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2186 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2187 if (!page) {
2188 put_ref_page(ref_page);
86a66810 2189 return -EIO;
dad4e5b3 2190 }
86a66810 2191
86e05773 2192 if (PageHWPoison(page)) {
8295d535 2193 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2194 put_ref_page(ref_page);
5a2ffca3 2195 return 0;
86e05773 2196 }
86e05773 2197
b94e0282 2198retry:
bfc8c901 2199 get_online_mems();
0ed950d1 2200 ret = get_hwpoison_page(page, flags);
bfc8c901 2201 put_online_mems();
4e41a30c 2202
8295d535 2203 if (ret > 0) {
6b9a217e 2204 ret = soft_offline_in_use_page(page);
8295d535 2205 } else if (ret == 0) {
b94e0282
OS
2206 if (soft_offline_free_page(page) && try_again) {
2207 try_again = false;
2208 goto retry;
2209 }
8295d535 2210 } else if (ret == -EIO) {
6696d2a6 2211 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
8295d535
OS
2212 __func__, pfn, page->flags, &page->flags);
2213 }
4e41a30c 2214
86e05773
WL
2215 return ret;
2216}