memory-failure: convert truncate_error_page to truncate_error_folio
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
293c07e3 71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 72
67f22ba7 73static bool hw_memory_failure __read_mostly = false;
74
b79f8eb4
JY
75static DEFINE_MUTEX(mf_mutex);
76
1a7d018d 77void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
78{
79 atomic_long_inc(&num_poisoned_pages);
5033091d 80 memblk_nr_poison_inc(pfn);
d027122d
NH
81}
82
1a7d018d 83void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
84{
85 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
d027122d
NH
88}
89
44b8f8bf
JY
90/**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94#define MF_ATTR_RO(_name) \
95static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98{ \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102} \
103static DEVICE_ATTR_RO(_name)
104
105MF_ATTR_RO(total);
106MF_ATTR_RO(ignored);
107MF_ATTR_RO(failed);
108MF_ATTR_RO(delayed);
109MF_ATTR_RO(recovered);
110
111static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118};
119
120const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123};
124
8cbc82f3
KW
125static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145};
146
7453bf62
NH
147/*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
153static int __page_handle_poison(struct page *page)
510d25c9 154{
f87060d3 155 int ret;
510d25c9
NH
156
157 zone_pcp_disable(page_zone(page));
158 ret = dissolve_free_huge_page(page);
159 if (!ret)
160 ret = take_page_off_buddy(page);
161 zone_pcp_enable(page_zone(page));
162
7453bf62 163 return ret;
510d25c9
NH
164}
165
6b9a217e 166static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 167{
6b9a217e
OS
168 if (hugepage_or_freepage) {
169 /*
170 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 * returns 0 for non-hugetlb pages as well.
172 */
7453bf62 173 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
174 /*
175 * We could fail to take off the target page from buddy
f0953a1b 176 * for example due to racy page allocation, but that's
6b9a217e
OS
177 * acceptable because soft-offlined page is not broken
178 * and if someone really want to use it, they should
179 * take it.
180 */
181 return false;
182 }
183
06be6ff3 184 SetPageHWPoison(page);
79f5f8fa
OS
185 if (release)
186 put_page(page);
06be6ff3 187 page_ref_inc(page);
a46c9304 188 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
189
190 return true;
06be6ff3
OS
191}
192
611b9fd8 193#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 194
1bfe5feb 195u32 hwpoison_filter_enable = 0;
7c116f2b
WF
196u32 hwpoison_filter_dev_major = ~0U;
197u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
198u64 hwpoison_filter_flags_mask;
199u64 hwpoison_filter_flags_value;
1bfe5feb 200EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
201EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
203EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
205
206static int hwpoison_filter_dev(struct page *p)
207{
208 struct address_space *mapping;
209 dev_t dev;
210
211 if (hwpoison_filter_dev_major == ~0U &&
212 hwpoison_filter_dev_minor == ~0U)
213 return 0;
214
7c116f2b
WF
215 mapping = page_mapping(p);
216 if (mapping == NULL || mapping->host == NULL)
217 return -EINVAL;
218
219 dev = mapping->host->i_sb->s_dev;
220 if (hwpoison_filter_dev_major != ~0U &&
221 hwpoison_filter_dev_major != MAJOR(dev))
222 return -EINVAL;
223 if (hwpoison_filter_dev_minor != ~0U &&
224 hwpoison_filter_dev_minor != MINOR(dev))
225 return -EINVAL;
226
227 return 0;
228}
229
478c5ffc
WF
230static int hwpoison_filter_flags(struct page *p)
231{
232 if (!hwpoison_filter_flags_mask)
233 return 0;
234
235 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 hwpoison_filter_flags_value)
237 return 0;
238 else
239 return -EINVAL;
240}
241
4fd466eb
AK
242/*
243 * This allows stress tests to limit test scope to a collection of tasks
244 * by putting them under some memcg. This prevents killing unrelated/important
245 * processes such as /sbin/init. Note that the target task may share clean
246 * pages with init (eg. libc text), which is harmless. If the target task
247 * share _dirty_ pages with another task B, the test scheme must make sure B
248 * is also included in the memcg. At last, due to race conditions this filter
249 * can only guarantee that the page either belongs to the memcg tasks, or is
250 * a freed page.
251 */
94a59fb3 252#ifdef CONFIG_MEMCG
4fd466eb
AK
253u64 hwpoison_filter_memcg;
254EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
255static int hwpoison_filter_task(struct page *p)
256{
4fd466eb
AK
257 if (!hwpoison_filter_memcg)
258 return 0;
259
94a59fb3 260 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
261 return -EINVAL;
262
263 return 0;
264}
265#else
266static int hwpoison_filter_task(struct page *p) { return 0; }
267#endif
268
7c116f2b
WF
269int hwpoison_filter(struct page *p)
270{
1bfe5feb
HL
271 if (!hwpoison_filter_enable)
272 return 0;
273
7c116f2b
WF
274 if (hwpoison_filter_dev(p))
275 return -EINVAL;
276
478c5ffc
WF
277 if (hwpoison_filter_flags(p))
278 return -EINVAL;
279
4fd466eb
AK
280 if (hwpoison_filter_task(p))
281 return -EINVAL;
282
7c116f2b
WF
283 return 0;
284}
27df5068
AK
285#else
286int hwpoison_filter(struct page *p)
287{
288 return 0;
289}
290#endif
291
7c116f2b
WF
292EXPORT_SYMBOL_GPL(hwpoison_filter);
293
ae1139ec
DW
294/*
295 * Kill all processes that have a poisoned page mapped and then isolate
296 * the page.
297 *
298 * General strategy:
299 * Find all processes having the page mapped and kill them.
300 * But we keep a page reference around so that the page is not
301 * actually freed yet.
302 * Then stash the page away
303 *
304 * There's no convenient way to get back to mapped processes
305 * from the VMAs. So do a brute-force search over all
306 * running processes.
307 *
308 * Remember that machine checks are not common (or rather
309 * if they are common you have other problems), so this shouldn't
310 * be a performance issue.
311 *
312 * Also there are some races possible while we get from the
313 * error detection to actually handle it.
314 */
315
316struct to_kill {
317 struct list_head nd;
318 struct task_struct *tsk;
319 unsigned long addr;
320 short size_shift;
ae1139ec
DW
321};
322
6a46079c 323/*
7329bbeb
TL
324 * Send all the processes who have the page mapped a signal.
325 * ``action optional'' if they are not immediately affected by the error
326 * ``action required'' if error happened in current execution context
6a46079c 327 */
ae1139ec 328static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 329{
ae1139ec
DW
330 struct task_struct *t = tk->tsk;
331 short addr_lsb = tk->size_shift;
872e9a20 332 int ret = 0;
6a46079c 333
96f96763 334 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 335 pfn, t->comm, t->pid);
7329bbeb 336
49775047
ML
337 if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 ret = force_sig_mceerr(BUS_MCEERR_AR,
339 (void __user *)tk->addr, addr_lsb);
340 else
7329bbeb 341 /*
49775047
ML
342 * Signal other processes sharing the page if they have
343 * PF_MCE_EARLY set.
7329bbeb
TL
344 * Don't use force here, it's convenient if the signal
345 * can be temporarily blocked.
346 * This could cause a loop when the user sets SIGBUS
347 * to SIG_IGN, but hopefully no one will do that?
348 */
ae1139ec 349 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 350 addr_lsb, t);
6a46079c 351 if (ret < 0)
96f96763 352 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 353 t->comm, t->pid, ret);
6a46079c
AK
354 return ret;
355}
356
588f9ce6 357/*
47e431f4 358 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 359 * lru_add_drain_all.
588f9ce6 360 */
d0505e9f 361void shake_page(struct page *p)
588f9ce6 362{
8bcb74de
NH
363 if (PageHuge(p))
364 return;
588f9ce6 365 /*
d0505e9f
YS
366 * TODO: Could shrink slab caches here if a lightweight range-based
367 * shrinker will be available.
588f9ce6 368 */
b7b618da
ML
369 if (PageSlab(p))
370 return;
371
372 lru_add_drain_all();
588f9ce6
AK
373}
374EXPORT_SYMBOL_GPL(shake_page);
375
c36e2024
SR
376static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 unsigned long address)
6100e34b 378{
5c91c0e7 379 unsigned long ret = 0;
6100e34b
DW
380 pgd_t *pgd;
381 p4d_t *p4d;
382 pud_t *pud;
383 pmd_t *pmd;
384 pte_t *pte;
c33c7948 385 pte_t ptent;
6100e34b 386
a994402b 387 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
388 pgd = pgd_offset(vma->vm_mm, address);
389 if (!pgd_present(*pgd))
390 return 0;
391 p4d = p4d_offset(pgd, address);
392 if (!p4d_present(*p4d))
393 return 0;
394 pud = pud_offset(p4d, address);
395 if (!pud_present(*pud))
396 return 0;
397 if (pud_devmap(*pud))
398 return PUD_SHIFT;
399 pmd = pmd_offset(pud, address);
400 if (!pmd_present(*pmd))
401 return 0;
402 if (pmd_devmap(*pmd))
403 return PMD_SHIFT;
404 pte = pte_offset_map(pmd, address);
04dee9e8
HD
405 if (!pte)
406 return 0;
c33c7948
RR
407 ptent = ptep_get(pte);
408 if (pte_present(ptent) && pte_devmap(ptent))
5c91c0e7
QZ
409 ret = PAGE_SHIFT;
410 pte_unmap(pte);
411 return ret;
6100e34b 412}
6a46079c
AK
413
414/*
415 * Failure handling: if we can't find or can't kill a process there's
416 * not much we can do. We just print a message and ignore otherwise.
417 */
418
ac87ca0e
DW
419#define FSDAX_INVALID_PGOFF ULONG_MAX
420
6a46079c
AK
421/*
422 * Schedule a process for later kill.
423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 424 *
ac87ca0e
DW
425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426 * filesystem with a memory failure handler has claimed the
427 * memory_failure event. In all other cases, page->index and
428 * page->mapping are sufficient for mapping the page back to its
429 * corresponding user virtual address.
6a46079c 430 */
4f775086
LX
431static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 struct vm_area_struct *vma, struct list_head *to_kill,
433 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
6a46079c
AK
434{
435 struct to_kill *tk;
436
996ff7a0
JC
437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 if (!tk) {
96f96763 439 pr_err("Out of memory while machine check handling\n");
996ff7a0 440 return;
6a46079c 441 }
996ff7a0 442
4f775086 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
c36e2024 444 if (is_zone_device_page(p)) {
ac87ca0e 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 } else
75068518 449 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
450
451 /*
3d7fed4a
JC
452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 * so "tk->size_shift == 0" effectively checks no mapping on
455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 * to a process' address space, it's possible not all N VMAs
457 * contain mappings for the page, but at least one VMA does.
458 * Only deliver SIGBUS with payload derived from the VMA that
459 * has a mapping for the page.
6a46079c 460 */
3d7fed4a 461 if (tk->addr == -EFAULT) {
96f96763 462 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 463 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
464 } else if (tk->size_shift == 0) {
465 kfree(tk);
466 return;
6a46079c 467 }
996ff7a0 468
6a46079c
AK
469 get_task_struct(tsk);
470 tk->tsk = tsk;
471 list_add_tail(&tk->nd, to_kill);
472}
473
4f775086
LX
474static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 struct vm_area_struct *vma,
476 struct list_head *to_kill)
477{
478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479}
480
4248d008
LX
481#ifdef CONFIG_KSM
482static bool task_in_to_kill_list(struct list_head *to_kill,
483 struct task_struct *tsk)
484{
485 struct to_kill *tk, *next;
486
487 list_for_each_entry_safe(tk, next, to_kill, nd) {
488 if (tk->tsk == tsk)
489 return true;
490 }
491
492 return false;
493}
494void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 struct vm_area_struct *vma, struct list_head *to_kill,
496 unsigned long ksm_addr)
497{
498 if (!task_in_to_kill_list(to_kill, tsk))
499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500}
501#endif
6a46079c
AK
502/*
503 * Kill the processes that have been collected earlier.
504 *
a21c184f
ML
505 * Only do anything when FORCEKILL is set, otherwise just free the
506 * list (this is used for clean pages which do not need killing)
6a46079c
AK
507 * Also when FAIL is set do a force kill because something went
508 * wrong earlier.
509 */
ae1139ec
DW
510static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 unsigned long pfn, int flags)
6a46079c
AK
512{
513 struct to_kill *tk, *next;
514
54f9555d 515 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 516 if (forcekill) {
6a46079c 517 /*
af901ca1 518 * In case something went wrong with munmapping
6a46079c
AK
519 * make sure the process doesn't catch the
520 * signal and then access the memory. Just kill it.
6a46079c 521 */
3d7fed4a 522 if (fail || tk->addr == -EFAULT) {
96f96763 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 524 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 tk->tsk, PIDTYPE_PID);
6a46079c
AK
527 }
528
529 /*
530 * In theory the process could have mapped
531 * something else on the address in-between. We could
532 * check for that, but we need to tell the
533 * process anyways.
534 */
ae1139ec 535 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 537 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 538 }
54f9555d 539 list_del(&tk->nd);
6a46079c
AK
540 put_task_struct(tk->tsk);
541 kfree(tk);
542 }
543}
544
3ba08129
NH
545/*
546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547 * on behalf of the thread group. Return task_struct of the (first found)
548 * dedicated thread if found, and return NULL otherwise.
549 *
d256d1cd
TT
550 * We already hold rcu lock in the caller, so we don't have to call
551 * rcu_read_lock/unlock() in this function.
3ba08129
NH
552 */
553static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 554{
3ba08129
NH
555 struct task_struct *t;
556
4e018b45
NH
557 for_each_thread(tsk, t) {
558 if (t->flags & PF_MCE_PROCESS) {
559 if (t->flags & PF_MCE_EARLY)
560 return t;
561 } else {
562 if (sysctl_memory_failure_early_kill)
563 return t;
564 }
565 }
3ba08129
NH
566 return NULL;
567}
568
569/*
570 * Determine whether a given process is "early kill" process which expects
571 * to be signaled when some page under the process is hwpoisoned.
572 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 573 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 574 *
30c9cf49
AY
575 * Note that the above is true for Action Optional case. For Action Required
576 * case, it's only meaningful to the current thread which need to be signaled
577 * with SIGBUS, this error is Action Optional for other non current
578 * processes sharing the same error page,if the process is "early kill", the
579 * task_struct of the dedicated thread will also be returned.
3ba08129 580 */
4248d008 581struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 582{
6a46079c 583 if (!tsk->mm)
3ba08129 584 return NULL;
30c9cf49
AY
585 /*
586 * Comparing ->mm here because current task might represent
587 * a subthread, while tsk always points to the main thread.
588 */
589 if (force_early && tsk->mm == current->mm)
590 return current;
591
4e018b45 592 return find_early_kill_thread(tsk);
6a46079c
AK
593}
594
595/*
596 * Collect processes when the error hit an anonymous page.
597 */
598static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 599 int force_early)
6a46079c 600{
9595d769 601 struct folio *folio = page_folio(page);
6a46079c
AK
602 struct vm_area_struct *vma;
603 struct task_struct *tsk;
604 struct anon_vma *av;
bf181b9f 605 pgoff_t pgoff;
6a46079c 606
6d4675e6 607 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 608 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
609 return;
610
a0f7a756 611 pgoff = page_to_pgoff(page);
d256d1cd 612 rcu_read_lock();
5885c6a6 613 for_each_process(tsk) {
5beb4930 614 struct anon_vma_chain *vmac;
3ba08129 615 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 616
3ba08129 617 if (!t)
6a46079c 618 continue;
bf181b9f
ML
619 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
620 pgoff, pgoff) {
5beb4930 621 vma = vmac->vma;
36537a67
ML
622 if (vma->vm_mm != t->mm)
623 continue;
6a46079c
AK
624 if (!page_mapped_in_vma(page, vma))
625 continue;
4f775086 626 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
627 }
628 }
d256d1cd 629 rcu_read_unlock();
0c826c0b 630 anon_vma_unlock_read(av);
6a46079c
AK
631}
632
633/*
634 * Collect processes when the error hit a file mapped page.
635 */
636static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 637 int force_early)
6a46079c
AK
638{
639 struct vm_area_struct *vma;
640 struct task_struct *tsk;
6a46079c 641 struct address_space *mapping = page->mapping;
c43bc03d 642 pgoff_t pgoff;
6a46079c 643
d28eb9c8 644 i_mmap_lock_read(mapping);
d256d1cd 645 rcu_read_lock();
c43bc03d 646 pgoff = page_to_pgoff(page);
6a46079c 647 for_each_process(tsk) {
3ba08129 648 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 649
3ba08129 650 if (!t)
6a46079c 651 continue;
6b2dbba8 652 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
653 pgoff) {
654 /*
655 * Send early kill signal to tasks where a vma covers
656 * the page but the corrupted page is not necessarily
5885c6a6 657 * mapped in its pte.
6a46079c
AK
658 * Assume applications who requested early kill want
659 * to be informed of all such data corruptions.
660 */
3ba08129 661 if (vma->vm_mm == t->mm)
4f775086 662 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
663 }
664 }
d256d1cd 665 rcu_read_unlock();
d28eb9c8 666 i_mmap_unlock_read(mapping);
6a46079c
AK
667}
668
c36e2024 669#ifdef CONFIG_FS_DAX
4f775086
LX
670static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
671 struct vm_area_struct *vma,
672 struct list_head *to_kill, pgoff_t pgoff)
673{
674 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
675}
676
c36e2024
SR
677/*
678 * Collect processes when the error hit a fsdax page.
679 */
680static void collect_procs_fsdax(struct page *page,
681 struct address_space *mapping, pgoff_t pgoff,
682 struct list_head *to_kill)
683{
684 struct vm_area_struct *vma;
685 struct task_struct *tsk;
686
687 i_mmap_lock_read(mapping);
d256d1cd 688 rcu_read_lock();
c36e2024
SR
689 for_each_process(tsk) {
690 struct task_struct *t = task_early_kill(tsk, true);
691
692 if (!t)
693 continue;
694 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
695 if (vma->vm_mm == t->mm)
4f775086 696 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
697 }
698 }
d256d1cd 699 rcu_read_unlock();
c36e2024
SR
700 i_mmap_unlock_read(mapping);
701}
702#endif /* CONFIG_FS_DAX */
703
6a46079c
AK
704/*
705 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 706 */
74614de1
TL
707static void collect_procs(struct page *page, struct list_head *tokill,
708 int force_early)
6a46079c 709{
6a46079c
AK
710 if (!page->mapping)
711 return;
4248d008
LX
712 if (unlikely(PageKsm(page)))
713 collect_procs_ksm(page, tokill, force_early);
714 else if (PageAnon(page))
996ff7a0 715 collect_procs_anon(page, tokill, force_early);
6a46079c 716 else
996ff7a0 717 collect_procs_file(page, tokill, force_early);
6a46079c
AK
718}
719
6885938c 720struct hwpoison_walk {
a3f5d80e
NH
721 struct to_kill tk;
722 unsigned long pfn;
723 int flags;
724};
725
726static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
727{
728 tk->addr = addr;
729 tk->size_shift = shift;
730}
731
732static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
733 unsigned long poisoned_pfn, struct to_kill *tk)
734{
735 unsigned long pfn = 0;
736
737 if (pte_present(pte)) {
738 pfn = pte_pfn(pte);
739 } else {
740 swp_entry_t swp = pte_to_swp_entry(pte);
741
742 if (is_hwpoison_entry(swp))
0d206b5d 743 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
744 }
745
746 if (!pfn || pfn != poisoned_pfn)
747 return 0;
748
749 set_to_kill(tk, addr, shift);
750 return 1;
751}
752
753#ifdef CONFIG_TRANSPARENT_HUGEPAGE
754static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 755 struct hwpoison_walk *hwp)
a3f5d80e
NH
756{
757 pmd_t pmd = *pmdp;
758 unsigned long pfn;
759 unsigned long hwpoison_vaddr;
760
761 if (!pmd_present(pmd))
762 return 0;
763 pfn = pmd_pfn(pmd);
764 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
765 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
766 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
767 return 1;
768 }
769 return 0;
770}
771#else
772static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 773 struct hwpoison_walk *hwp)
a3f5d80e
NH
774{
775 return 0;
776}
777#endif
778
779static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
780 unsigned long end, struct mm_walk *walk)
781{
6885938c 782 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 783 int ret = 0;
ea3732f7 784 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
785 spinlock_t *ptl;
786
787 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
788 if (ptl) {
789 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
790 spin_unlock(ptl);
791 goto out;
792 }
793
ea3732f7
ML
794 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
795 addr, &ptl);
04dee9e8
HD
796 if (!ptep)
797 goto out;
798
a3f5d80e 799 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 800 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
801 hwp->pfn, &hwp->tk);
802 if (ret == 1)
803 break;
804 }
ea3732f7 805 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
806out:
807 cond_resched();
808 return ret;
809}
810
811#ifdef CONFIG_HUGETLB_PAGE
812static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
813 unsigned long addr, unsigned long end,
814 struct mm_walk *walk)
815{
6885938c 816 struct hwpoison_walk *hwp = walk->private;
a3f5d80e
NH
817 pte_t pte = huge_ptep_get(ptep);
818 struct hstate *h = hstate_vma(walk->vma);
819
820 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
821 hwp->pfn, &hwp->tk);
822}
823#else
824#define hwpoison_hugetlb_range NULL
825#endif
826
6885938c 827static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
828 .pmd_entry = hwpoison_pte_range,
829 .hugetlb_entry = hwpoison_hugetlb_range,
49b06385 830 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
831};
832
833/*
834 * Sends SIGBUS to the current process with error info.
835 *
836 * This function is intended to handle "Action Required" MCEs on already
837 * hardware poisoned pages. They could happen, for example, when
838 * memory_failure() failed to unmap the error page at the first call, or
839 * when multiple local machine checks happened on different CPUs.
840 *
841 * MCE handler currently has no easy access to the error virtual address,
842 * so this function walks page table to find it. The returned virtual address
843 * is proper in most cases, but it could be wrong when the application
844 * process has multiple entries mapping the error page.
845 */
846static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
847 int flags)
848{
849 int ret;
6885938c 850 struct hwpoison_walk priv = {
a3f5d80e
NH
851 .pfn = pfn,
852 };
853 priv.tk.tsk = p;
854
77677cdb
SX
855 if (!p->mm)
856 return -EFAULT;
857
a3f5d80e 858 mmap_read_lock(p->mm);
6885938c 859 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e
NH
860 (void *)&priv);
861 if (ret == 1 && priv.tk.addr)
862 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
863 else
864 ret = 0;
a3f5d80e 865 mmap_read_unlock(p->mm);
046545a6 866 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
867}
868
6a46079c 869static const char *action_name[] = {
cc637b17
XX
870 [MF_IGNORED] = "Ignored",
871 [MF_FAILED] = "Failed",
872 [MF_DELAYED] = "Delayed",
873 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
874};
875
876static const char * const action_page_types[] = {
cc637b17
XX
877 [MF_MSG_KERNEL] = "reserved kernel page",
878 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
879 [MF_MSG_SLAB] = "kernel slab page",
880 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
881 [MF_MSG_HUGE] = "huge page",
882 [MF_MSG_FREE_HUGE] = "free huge page",
883 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
884 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
885 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
886 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
887 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
888 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
889 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
890 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
891 [MF_MSG_CLEAN_LRU] = "clean LRU page",
892 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
893 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 894 [MF_MSG_DAX] = "dax page",
5d1fd5dc 895 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 896 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
897};
898
dc2a1cbf
WF
899/*
900 * XXX: It is possible that a page is isolated from LRU cache,
901 * and then kept in swap cache or failed to remove from page cache.
902 * The page count will stop it from being freed by unpoison.
903 * Stress tests should be aware of this memory leak problem.
904 */
f7092393 905static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 906{
f7092393 907 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
908 /*
909 * Clear sensible page flags, so that the buddy system won't
f7092393 910 * complain when the folio is unpoison-and-freed.
dc2a1cbf 911 */
f7092393
MWO
912 folio_clear_active(folio);
913 folio_clear_unevictable(folio);
18365225
MH
914
915 /*
916 * Poisoned page might never drop its ref count to 0 so we have
917 * to uncharge it manually from its memcg.
918 */
f7092393 919 mem_cgroup_uncharge(folio);
18365225 920
dc2a1cbf 921 /*
f7092393 922 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 923 */
f7092393 924 folio_put(folio);
dc2a1cbf
WF
925 return 0;
926 }
927 return -EIO;
928}
929
e130b651 930static int truncate_error_page(struct folio *folio, unsigned long pfn,
78bb9203
NH
931 struct address_space *mapping)
932{
933 int ret = MF_FAILED;
934
935 if (mapping->a_ops->error_remove_page) {
e130b651 936 int err = mapping->a_ops->error_remove_page(mapping, &folio->page);
78bb9203 937
0201ebf2 938 if (err != 0)
96f96763 939 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 940 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 941 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 942 else
78bb9203 943 ret = MF_RECOVERED;
78bb9203
NH
944 } else {
945 /*
946 * If the file system doesn't support it just invalidate
947 * This fails on dirty or anything with private pages
948 */
19369d86 949 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
950 ret = MF_RECOVERED;
951 else
96f96763 952 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
953 }
954
955 return ret;
956}
957
dd0f230a
YS
958struct page_state {
959 unsigned long mask;
960 unsigned long res;
961 enum mf_action_page_type type;
962
963 /* Callback ->action() has to unlock the relevant page inside it. */
964 int (*action)(struct page_state *ps, struct page *p);
965};
966
967/*
968 * Return true if page is still referenced by others, otherwise return
969 * false.
970 *
971 * The extra_pins is true when one extra refcount is expected.
972 */
973static bool has_extra_refcount(struct page_state *ps, struct page *p,
974 bool extra_pins)
975{
976 int count = page_count(p) - 1;
977
978 if (extra_pins)
979 count -= 1;
980
981 if (count > 0) {
96f96763 982 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
983 page_to_pfn(p), action_page_types[ps->type], count);
984 return true;
985 }
986
987 return false;
988}
989
6a46079c
AK
990/*
991 * Error hit kernel page.
992 * Do nothing, try to be lucky and not touch this instead. For a few cases we
993 * could be more sophisticated.
994 */
dd0f230a 995static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 996{
ea6d0630 997 unlock_page(p);
cc637b17 998 return MF_IGNORED;
6a46079c
AK
999}
1000
1001/*
1002 * Page in unknown state. Do nothing.
1003 */
dd0f230a 1004static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1005{
96f96763 1006 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1007 unlock_page(p);
cc637b17 1008 return MF_FAILED;
6a46079c
AK
1009}
1010
6a46079c
AK
1011/*
1012 * Clean (or cleaned) page cache page.
1013 */
dd0f230a 1014static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1015{
3d47e317 1016 struct folio *folio = page_folio(p);
ea6d0630 1017 int ret;
6a46079c 1018 struct address_space *mapping;
a7605426 1019 bool extra_pins;
6a46079c 1020
f7092393 1021 delete_from_lru_cache(folio);
dc2a1cbf 1022
6a46079c 1023 /*
3d47e317 1024 * For anonymous folios the only reference left
6a46079c
AK
1025 * should be the one m_f() holds.
1026 */
3d47e317 1027 if (folio_test_anon(folio)) {
ea6d0630
NH
1028 ret = MF_RECOVERED;
1029 goto out;
1030 }
6a46079c
AK
1031
1032 /*
1033 * Now truncate the page in the page cache. This is really
1034 * more like a "temporary hole punch"
1035 * Don't do this for block devices when someone else
1036 * has a reference, because it could be file system metadata
1037 * and that's not safe to truncate.
1038 */
3d47e317 1039 mapping = folio_mapping(folio);
6a46079c 1040 if (!mapping) {
3d47e317 1041 /* Folio has been torn down in the meantime */
ea6d0630
NH
1042 ret = MF_FAILED;
1043 goto out;
6a46079c
AK
1044 }
1045
a7605426
YS
1046 /*
1047 * The shmem page is kept in page cache instead of truncating
1048 * so is expected to have an extra refcount after error-handling.
1049 */
1050 extra_pins = shmem_mapping(mapping);
1051
6a46079c
AK
1052 /*
1053 * Truncation is a bit tricky. Enable it per file system for now.
1054 *
9608703e 1055 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1056 */
e130b651 1057 ret = truncate_error_page(folio, page_to_pfn(p), mapping);
a7605426
YS
1058 if (has_extra_refcount(ps, p, extra_pins))
1059 ret = MF_FAILED;
1060
ea6d0630 1061out:
3d47e317 1062 folio_unlock(folio);
dd0f230a 1063
ea6d0630 1064 return ret;
6a46079c
AK
1065}
1066
1067/*
549543df 1068 * Dirty pagecache page
6a46079c
AK
1069 * Issues: when the error hit a hole page the error is not properly
1070 * propagated.
1071 */
dd0f230a 1072static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
1073{
1074 struct address_space *mapping = page_mapping(p);
1075
1076 SetPageError(p);
1077 /* TBD: print more information about the file. */
1078 if (mapping) {
1079 /*
1080 * IO error will be reported by write(), fsync(), etc.
1081 * who check the mapping.
1082 * This way the application knows that something went
1083 * wrong with its dirty file data.
1084 *
1085 * There's one open issue:
1086 *
1087 * The EIO will be only reported on the next IO
1088 * operation and then cleared through the IO map.
1089 * Normally Linux has two mechanisms to pass IO error
1090 * first through the AS_EIO flag in the address space
1091 * and then through the PageError flag in the page.
1092 * Since we drop pages on memory failure handling the
1093 * only mechanism open to use is through AS_AIO.
1094 *
1095 * This has the disadvantage that it gets cleared on
1096 * the first operation that returns an error, while
1097 * the PageError bit is more sticky and only cleared
1098 * when the page is reread or dropped. If an
1099 * application assumes it will always get error on
1100 * fsync, but does other operations on the fd before
25985edc 1101 * and the page is dropped between then the error
6a46079c
AK
1102 * will not be properly reported.
1103 *
1104 * This can already happen even without hwpoisoned
1105 * pages: first on metadata IO errors (which only
1106 * report through AS_EIO) or when the page is dropped
1107 * at the wrong time.
1108 *
1109 * So right now we assume that the application DTRT on
1110 * the first EIO, but we're not worse than other parts
1111 * of the kernel.
1112 */
af21bfaf 1113 mapping_set_error(mapping, -EIO);
6a46079c
AK
1114 }
1115
dd0f230a 1116 return me_pagecache_clean(ps, p);
6a46079c
AK
1117}
1118
1119/*
1120 * Clean and dirty swap cache.
1121 *
1122 * Dirty swap cache page is tricky to handle. The page could live both in page
1123 * cache and swap cache(ie. page is freshly swapped in). So it could be
1124 * referenced concurrently by 2 types of PTEs:
1125 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1126 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1127 * and then
1128 * - clear dirty bit to prevent IO
1129 * - remove from LRU
1130 * - but keep in the swap cache, so that when we return to it on
1131 * a later page fault, we know the application is accessing
1132 * corrupted data and shall be killed (we installed simple
1133 * interception code in do_swap_page to catch it).
1134 *
1135 * Clean swap cache pages can be directly isolated. A later page fault will
1136 * bring in the known good data from disk.
1137 */
dd0f230a 1138static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1139{
6304b531 1140 struct folio *folio = page_folio(p);
ea6d0630 1141 int ret;
dd0f230a 1142 bool extra_pins = false;
ea6d0630 1143
6304b531 1144 folio_clear_dirty(folio);
6a46079c 1145 /* Trigger EIO in shmem: */
6304b531 1146 folio_clear_uptodate(folio);
6a46079c 1147
f7092393 1148 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1149 folio_unlock(folio);
dd0f230a
YS
1150
1151 if (ret == MF_DELAYED)
1152 extra_pins = true;
1153
1154 if (has_extra_refcount(ps, p, extra_pins))
1155 ret = MF_FAILED;
1156
ea6d0630 1157 return ret;
6a46079c
AK
1158}
1159
dd0f230a 1160static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1161{
75fa68a5 1162 struct folio *folio = page_folio(p);
ea6d0630
NH
1163 int ret;
1164
75fa68a5 1165 delete_from_swap_cache(folio);
e43c3afb 1166
f7092393 1167 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1168 folio_unlock(folio);
dd0f230a
YS
1169
1170 if (has_extra_refcount(ps, p, false))
1171 ret = MF_FAILED;
1172
ea6d0630 1173 return ret;
6a46079c
AK
1174}
1175
1176/*
1177 * Huge pages. Needs work.
1178 * Issues:
93f70f90
NH
1179 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1180 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1181 */
dd0f230a 1182static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1183{
b6fd410c 1184 struct folio *folio = page_folio(p);
a8b2c2ce 1185 int res;
78bb9203 1186 struct address_space *mapping;
8625147c 1187 bool extra_pins = false;
2491ffee 1188
b6fd410c 1189 mapping = folio_mapping(folio);
78bb9203 1190 if (mapping) {
e130b651 1191 res = truncate_error_page(folio, page_to_pfn(p), mapping);
8625147c
JH
1192 /* The page is kept in page cache. */
1193 extra_pins = true;
b6fd410c 1194 folio_unlock(folio);
78bb9203 1195 } else {
b6fd410c 1196 folio_unlock(folio);
78bb9203 1197 /*
ef526b17
ML
1198 * migration entry prevents later access on error hugepage,
1199 * so we can free and dissolve it into buddy to save healthy
1200 * subpages.
78bb9203 1201 */
b6fd410c 1202 folio_put(folio);
ceaf8fbe 1203 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1204 page_ref_inc(p);
1205 res = MF_RECOVERED;
ceaf8fbe
NH
1206 } else {
1207 res = MF_FAILED;
a8b2c2ce 1208 }
93f70f90 1209 }
78bb9203 1210
8625147c 1211 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1212 res = MF_FAILED;
1213
78bb9203 1214 return res;
6a46079c
AK
1215}
1216
1217/*
1218 * Various page states we can handle.
1219 *
1220 * A page state is defined by its current page->flags bits.
1221 * The table matches them in order and calls the right handler.
1222 *
1223 * This is quite tricky because we can access page at any time
25985edc 1224 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1225 *
1226 * This is not complete. More states could be added.
1227 * For any missing state don't attempt recovery.
1228 */
1229
1230#define dirty (1UL << PG_dirty)
6326fec1 1231#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1232#define unevict (1UL << PG_unevictable)
1233#define mlock (1UL << PG_mlocked)
6a46079c 1234#define lru (1UL << PG_lru)
6a46079c 1235#define head (1UL << PG_head)
6a46079c 1236#define slab (1UL << PG_slab)
6a46079c
AK
1237#define reserved (1UL << PG_reserved)
1238
dd0f230a 1239static struct page_state error_states[] = {
cc637b17 1240 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1241 /*
1242 * free pages are specially detected outside this table:
1243 * PG_buddy pages only make a small fraction of all free pages.
1244 */
6a46079c
AK
1245
1246 /*
1247 * Could in theory check if slab page is free or if we can drop
1248 * currently unused objects without touching them. But just
1249 * treat it as standard kernel for now.
1250 */
cc637b17 1251 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1252
cc637b17 1253 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1254
cc637b17
XX
1255 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1256 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1257
cc637b17
XX
1258 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1259 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1260
cc637b17
XX
1261 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1262 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1263
cc637b17
XX
1264 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1265 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1266
1267 /*
1268 * Catchall entry: must be at end.
1269 */
cc637b17 1270 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1271};
1272
2326c467
AK
1273#undef dirty
1274#undef sc
1275#undef unevict
1276#undef mlock
2326c467 1277#undef lru
2326c467 1278#undef head
2326c467
AK
1279#undef slab
1280#undef reserved
1281
18f41fa6
JY
1282static void update_per_node_mf_stats(unsigned long pfn,
1283 enum mf_result result)
1284{
1285 int nid = MAX_NUMNODES;
1286 struct memory_failure_stats *mf_stats = NULL;
1287
1288 nid = pfn_to_nid(pfn);
1289 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1290 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1291 return;
1292 }
1293
1294 mf_stats = &NODE_DATA(nid)->mf_stats;
1295 switch (result) {
1296 case MF_IGNORED:
1297 ++mf_stats->ignored;
1298 break;
1299 case MF_FAILED:
1300 ++mf_stats->failed;
1301 break;
1302 case MF_DELAYED:
1303 ++mf_stats->delayed;
1304 break;
1305 case MF_RECOVERED:
1306 ++mf_stats->recovered;
1307 break;
1308 default:
1309 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1310 break;
1311 }
1312 ++mf_stats->total;
1313}
1314
ff604cf6
NH
1315/*
1316 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1317 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1318 */
b66d00df
KW
1319static int action_result(unsigned long pfn, enum mf_action_page_type type,
1320 enum mf_result result)
6a46079c 1321{
97f0b134
XX
1322 trace_memory_failure_event(pfn, type, result);
1323
a46c9304 1324 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1325
1326 update_per_node_mf_stats(pfn, result);
1327
96f96763 1328 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1329 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1330
1331 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1332}
1333
1334static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1335 unsigned long pfn)
6a46079c
AK
1336{
1337 int result;
1338
ea6d0630 1339 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1340 result = ps->action(ps, p);
7456b040 1341
6a46079c
AK
1342 /* Could do more checks here if page looks ok */
1343 /*
1344 * Could adjust zone counters here to correct for the missing page.
1345 */
1346
b66d00df 1347 return action_result(pfn, ps->type, result);
6a46079c
AK
1348}
1349
bf181c58
NH
1350static inline bool PageHWPoisonTakenOff(struct page *page)
1351{
1352 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1353}
1354
1355void SetPageHWPoisonTakenOff(struct page *page)
1356{
1357 set_page_private(page, MAGIC_HWPOISON);
1358}
1359
1360void ClearPageHWPoisonTakenOff(struct page *page)
1361{
1362 if (PageHWPoison(page))
1363 set_page_private(page, 0);
1364}
1365
25182f05
NH
1366/*
1367 * Return true if a page type of a given page is supported by hwpoison
1368 * mechanism (while handling could fail), otherwise false. This function
1369 * does not return true for hugetlb or device memory pages, so it's assumed
1370 * to be called only in the context where we never have such pages.
1371 */
bf6445bc 1372static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1373{
3f871370 1374 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1375 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1376 return true;
bf6445bc 1377
3f871370 1378 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1379}
1380
bf6445bc 1381static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1382{
04bac040 1383 struct folio *folio = page_folio(page);
25182f05
NH
1384 int ret = 0;
1385 bool hugetlb = false;
1386
04bac040 1387 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1388 if (hugetlb) {
1389 /* Make sure hugetlb demotion did not happen from under us. */
1390 if (folio == page_folio(page))
1391 return ret;
1392 if (ret > 0) {
1393 folio_put(folio);
1394 folio = page_folio(page);
1395 }
1396 }
25182f05
NH
1397
1398 /*
04bac040
SK
1399 * This check prevents from calling folio_try_get() for any
1400 * unsupported type of folio in order to reduce the risk of unexpected
1401 * races caused by taking a folio refcount.
25182f05 1402 */
04bac040 1403 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1404 return -EBUSY;
ead07f6a 1405
04bac040
SK
1406 if (folio_try_get(folio)) {
1407 if (folio == page_folio(page))
c2e7e00b
KK
1408 return 1;
1409
96f96763 1410 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1411 folio_put(folio);
c2e7e00b
KK
1412 }
1413
1414 return 0;
ead07f6a 1415}
ead07f6a 1416
2f714160 1417static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1418{
2f714160
OS
1419 int ret = 0, pass = 0;
1420 bool count_increased = false;
17e395b6 1421
2f714160
OS
1422 if (flags & MF_COUNT_INCREASED)
1423 count_increased = true;
1424
1425try_again:
0ed950d1 1426 if (!count_increased) {
bf6445bc 1427 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1428 if (!ret) {
1429 if (page_count(p)) {
1430 /* We raced with an allocation, retry. */
1431 if (pass++ < 3)
1432 goto try_again;
1433 ret = -EBUSY;
1434 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1435 /* We raced with put_page, retry. */
1436 if (pass++ < 3)
1437 goto try_again;
1438 ret = -EIO;
1439 }
1440 goto out;
1441 } else if (ret == -EBUSY) {
fcc00621
NH
1442 /*
1443 * We raced with (possibly temporary) unhandlable
1444 * page, retry.
1445 */
1446 if (pass++ < 3) {
d0505e9f 1447 shake_page(p);
2f714160 1448 goto try_again;
fcc00621
NH
1449 }
1450 ret = -EIO;
0ed950d1 1451 goto out;
2f714160 1452 }
0ed950d1
NH
1453 }
1454
bf6445bc 1455 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1456 ret = 1;
2f714160 1457 } else {
0ed950d1
NH
1458 /*
1459 * A page we cannot handle. Check whether we can turn
1460 * it into something we can handle.
1461 */
1462 if (pass++ < 3) {
2f714160 1463 put_page(p);
d0505e9f 1464 shake_page(p);
0ed950d1
NH
1465 count_increased = false;
1466 goto try_again;
2f714160 1467 }
0ed950d1
NH
1468 put_page(p);
1469 ret = -EIO;
17e395b6 1470 }
0ed950d1 1471out:
941ca063 1472 if (ret == -EIO)
96f96763 1473 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1474
17e395b6
OS
1475 return ret;
1476}
1477
bf181c58
NH
1478static int __get_unpoison_page(struct page *page)
1479{
04bac040 1480 struct folio *folio = page_folio(page);
bf181c58
NH
1481 int ret = 0;
1482 bool hugetlb = false;
1483
04bac040 1484 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1485 if (hugetlb) {
1486 /* Make sure hugetlb demotion did not happen from under us. */
1487 if (folio == page_folio(page))
1488 return ret;
1489 if (ret > 0)
1490 folio_put(folio);
1491 }
bf181c58
NH
1492
1493 /*
1494 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1495 * but also isolated from buddy freelist, so need to identify the
1496 * state and have to cancel both operations to unpoison.
1497 */
1498 if (PageHWPoisonTakenOff(page))
1499 return -EHWPOISON;
1500
1501 return get_page_unless_zero(page) ? 1 : 0;
1502}
1503
0ed950d1
NH
1504/**
1505 * get_hwpoison_page() - Get refcount for memory error handling
1506 * @p: Raw error page (hit by memory error)
1507 * @flags: Flags controlling behavior of error handling
1508 *
1509 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1510 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1511 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1512 * such as LRU page and hugetlb page).
1513 *
1514 * Memory error handling could be triggered at any time on any type of page,
1515 * so it's prone to race with typical memory management lifecycle (like
1516 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1517 * extra care for the error page's state (as done in __get_hwpoison_page()),
1518 * and has some retry logic in get_any_page().
1519 *
bf181c58
NH
1520 * When called from unpoison_memory(), the caller should already ensure that
1521 * the given page has PG_hwpoison. So it's never reused for other page
1522 * allocations, and __get_unpoison_page() never races with them.
1523 *
0ed950d1
NH
1524 * Return: 0 on failure,
1525 * 1 on success for in-use pages in a well-defined state,
1526 * -EIO for pages on which we can not handle memory errors,
1527 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1528 * operations like allocation and free,
1529 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1530 */
1531static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1532{
1533 int ret;
1534
1535 zone_pcp_disable(page_zone(p));
bf181c58
NH
1536 if (flags & MF_UNPOISON)
1537 ret = __get_unpoison_page(p);
1538 else
1539 ret = get_any_page(p, flags);
2f714160
OS
1540 zone_pcp_enable(page_zone(p));
1541
1542 return ret;
1543}
1544
6a46079c
AK
1545/*
1546 * Do all that is necessary to remove user space mappings. Unmap
1547 * the pages and send SIGBUS to the processes if the data was dirty.
1548 */
666e5a40 1549static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1550 int flags, struct page *hpage)
6a46079c 1551{
869f7ee6 1552 struct folio *folio = page_folio(hpage);
6da6b1d4 1553 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1554 struct address_space *mapping;
1555 LIST_HEAD(tokill);
1fb08ac6 1556 bool unmap_success;
0792a4a6 1557 int forcekill;
286c469a 1558 bool mlocked = PageMlocked(hpage);
6a46079c 1559
93a9eb39
NH
1560 /*
1561 * Here we are interested only in user-mapped pages, so skip any
1562 * other types of pages.
1563 */
7a8817f2 1564 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
666e5a40 1565 return true;
93a9eb39 1566 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1567 return true;
6a46079c 1568
6a46079c
AK
1569 /*
1570 * This check implies we don't kill processes if their pages
1571 * are in the swap cache early. Those are always late kills.
1572 */
7af446a8 1573 if (!page_mapped(hpage))
666e5a40 1574 return true;
1668bfd5 1575
6a46079c 1576 if (PageSwapCache(p)) {
96f96763 1577 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1578 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1579 }
1580
1581 /*
1582 * Propagate the dirty bit from PTEs to struct page first, because we
1583 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1584 * XXX: the dirty test could be racy: set_page_dirty() may not always
1585 * be called inside page lock (it's recommended but not enforced).
6a46079c 1586 */
7af446a8 1587 mapping = page_mapping(hpage);
6751ed65 1588 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1589 mapping_can_writeback(mapping)) {
7af446a8
NH
1590 if (page_mkclean(hpage)) {
1591 SetPageDirty(hpage);
6a46079c 1592 } else {
6da6b1d4 1593 ttu &= ~TTU_HWPOISON;
96f96763 1594 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1595 pfn);
1596 }
1597 }
1598
1599 /*
1600 * First collect all the processes that have the page
1601 * mapped in dirty form. This has to be done before try_to_unmap,
1602 * because ttu takes the rmap data structures down.
6a46079c 1603 */
0792a4a6 1604 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1605
357670f7
ML
1606 if (PageHuge(hpage) && !PageAnon(hpage)) {
1607 /*
1608 * For hugetlb pages in shared mappings, try_to_unmap
1609 * could potentially call huge_pmd_unshare. Because of
1610 * this, take semaphore in write mode here and set
1611 * TTU_RMAP_LOCKED to indicate we have taken the lock
1612 * at this higher level.
1613 */
1614 mapping = hugetlb_page_mapping_lock_write(hpage);
1615 if (mapping) {
9030fb0b 1616 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1617 i_mmap_unlock_write(mapping);
1618 } else
96f96763 1619 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1620 } else {
9030fb0b 1621 try_to_unmap(folio, ttu);
c0d0381a 1622 }
1fb08ac6
YS
1623
1624 unmap_success = !page_mapped(hpage);
666e5a40 1625 if (!unmap_success)
96f96763 1626 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1627 pfn, page_mapcount(hpage));
a6d30ddd 1628
286c469a
NH
1629 /*
1630 * try_to_unmap() might put mlocked page in lru cache, so call
1631 * shake_page() again to ensure that it's flushed.
1632 */
1633 if (mlocked)
d0505e9f 1634 shake_page(hpage);
286c469a 1635
6a46079c
AK
1636 /*
1637 * Now that the dirty bit has been propagated to the
1638 * struct page and all unmaps done we can decide if
1639 * killing is needed or not. Only kill when the page
6751ed65
TL
1640 * was dirty or the process is not restartable,
1641 * otherwise the tokill list is merely
6a46079c
AK
1642 * freed. When there was a problem unmapping earlier
1643 * use a more force-full uncatchable kill to prevent
1644 * any accesses to the poisoned memory.
1645 */
0792a4a6
ML
1646 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1647 !unmap_success;
ae1139ec 1648 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1649
666e5a40 1650 return unmap_success;
6a46079c
AK
1651}
1652
0348d2eb
NH
1653static int identify_page_state(unsigned long pfn, struct page *p,
1654 unsigned long page_flags)
761ad8d7
NH
1655{
1656 struct page_state *ps;
0348d2eb
NH
1657
1658 /*
1659 * The first check uses the current page flags which may not have any
1660 * relevant information. The second check with the saved page flags is
1661 * carried out only if the first check can't determine the page status.
1662 */
1663 for (ps = error_states;; ps++)
1664 if ((p->flags & ps->mask) == ps->res)
1665 break;
1666
1667 page_flags |= (p->flags & (1UL << PG_dirty));
1668
1669 if (!ps->mask)
1670 for (ps = error_states;; ps++)
1671 if ((page_flags & ps->mask) == ps->res)
1672 break;
1673 return page_action(ps, p, pfn);
1674}
1675
2ace36f0 1676static int try_to_split_thp_page(struct page *page)
694bf0b0 1677{
2ace36f0
KW
1678 int ret;
1679
694bf0b0 1680 lock_page(page);
2ace36f0
KW
1681 ret = split_huge_page(page);
1682 unlock_page(page);
694bf0b0 1683
2ace36f0 1684 if (unlikely(ret))
694bf0b0 1685 put_page(page);
694bf0b0 1686
2ace36f0 1687 return ret;
694bf0b0
OS
1688}
1689
00cc790e
SR
1690static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1691 struct address_space *mapping, pgoff_t index, int flags)
1692{
1693 struct to_kill *tk;
1694 unsigned long size = 0;
1695
1696 list_for_each_entry(tk, to_kill, nd)
1697 if (tk->size_shift)
1698 size = max(size, 1UL << tk->size_shift);
1699
1700 if (size) {
1701 /*
1702 * Unmap the largest mapping to avoid breaking up device-dax
1703 * mappings which are constant size. The actual size of the
1704 * mapping being torn down is communicated in siginfo, see
1705 * kill_proc()
1706 */
1707 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1708
1709 unmap_mapping_range(mapping, start, size, 0);
1710 }
1711
1712 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1713}
1714
91e79d22
MWO
1715/*
1716 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1717 * either do not claim or fails to claim a hwpoison event, or devdax.
1718 * The fsdax pages are initialized per base page, and the devdax pages
1719 * could be initialized either as base pages, or as compound pages with
1720 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1721 * hwpoison, such that, if a subpage of a compound page is poisoned,
1722 * simply mark the compound head page is by far sufficient.
1723 */
00cc790e
SR
1724static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1725 struct dev_pagemap *pgmap)
1726{
91e79d22 1727 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1728 LIST_HEAD(to_kill);
1729 dax_entry_t cookie;
1730 int rc = 0;
1731
00cc790e
SR
1732 /*
1733 * Prevent the inode from being freed while we are interrogating
1734 * the address_space, typically this would be handled by
1735 * lock_page(), but dax pages do not use the page lock. This
1736 * also prevents changes to the mapping of this pfn until
1737 * poison signaling is complete.
1738 */
91e79d22 1739 cookie = dax_lock_folio(folio);
00cc790e
SR
1740 if (!cookie)
1741 return -EBUSY;
1742
91e79d22 1743 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1744 rc = -EOPNOTSUPP;
1745 goto unlock;
1746 }
1747
1748 switch (pgmap->type) {
1749 case MEMORY_DEVICE_PRIVATE:
1750 case MEMORY_DEVICE_COHERENT:
1751 /*
1752 * TODO: Handle device pages which may need coordination
1753 * with device-side memory.
1754 */
1755 rc = -ENXIO;
1756 goto unlock;
1757 default:
1758 break;
1759 }
1760
1761 /*
1762 * Use this flag as an indication that the dax page has been
1763 * remapped UC to prevent speculative consumption of poison.
1764 */
91e79d22 1765 SetPageHWPoison(&folio->page);
00cc790e
SR
1766
1767 /*
1768 * Unlike System-RAM there is no possibility to swap in a
1769 * different physical page at a given virtual address, so all
1770 * userspace consumption of ZONE_DEVICE memory necessitates
1771 * SIGBUS (i.e. MF_MUST_KILL)
1772 */
1773 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
91e79d22 1774 collect_procs(&folio->page, &to_kill, true);
00cc790e 1775
91e79d22 1776 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1777unlock:
91e79d22 1778 dax_unlock_folio(folio, cookie);
00cc790e
SR
1779 return rc;
1780}
1781
c36e2024
SR
1782#ifdef CONFIG_FS_DAX
1783/**
1784 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1785 * @mapping: address_space of the file in use
1786 * @index: start pgoff of the range within the file
1787 * @count: length of the range, in unit of PAGE_SIZE
1788 * @mf_flags: memory failure flags
1789 */
1790int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1791 unsigned long count, int mf_flags)
1792{
1793 LIST_HEAD(to_kill);
1794 dax_entry_t cookie;
1795 struct page *page;
1796 size_t end = index + count;
1797
1798 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1799
1800 for (; index < end; index++) {
1801 page = NULL;
1802 cookie = dax_lock_mapping_entry(mapping, index, &page);
1803 if (!cookie)
1804 return -EBUSY;
1805 if (!page)
1806 goto unlock;
1807
1808 SetPageHWPoison(page);
1809
1810 collect_procs_fsdax(page, mapping, index, &to_kill);
1811 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1812 index, mf_flags);
1813unlock:
1814 dax_unlock_mapping_entry(mapping, index, cookie);
1815 }
1816 return 0;
1817}
1818EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1819#endif /* CONFIG_FS_DAX */
1820
161df60e 1821#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1822
161df60e
NH
1823/*
1824 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1825 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1826 */
1827struct raw_hwp_page {
1828 struct llist_node node;
1829 struct page *page;
1830};
1831
b02e7582 1832static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1833{
b02e7582 1834 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1835}
1836
b79f8eb4
JY
1837bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1838{
1839 struct llist_head *raw_hwp_head;
1840 struct raw_hwp_page *p;
1841 struct folio *folio = page_folio(page);
1842 bool ret = false;
1843
1844 if (!folio_test_hwpoison(folio))
1845 return false;
1846
1847 if (!folio_test_hugetlb(folio))
1848 return PageHWPoison(page);
1849
1850 /*
1851 * When RawHwpUnreliable is set, kernel lost track of which subpages
1852 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1853 */
1854 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1855 return true;
1856
1857 mutex_lock(&mf_mutex);
1858
1859 raw_hwp_head = raw_hwp_list_head(folio);
1860 llist_for_each_entry(p, raw_hwp_head->first, node) {
1861 if (page == p->page) {
1862 ret = true;
1863 break;
1864 }
1865 }
1866
1867 mutex_unlock(&mf_mutex);
1868
1869 return ret;
1870}
1871
0858b5eb 1872static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1873{
6379693e
ML
1874 struct llist_node *head;
1875 struct raw_hwp_page *p, *next;
ac5fcde0 1876 unsigned long count = 0;
161df60e 1877
9e130c4b 1878 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1879 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1880 if (move_flag)
1881 SetPageHWPoison(p->page);
5033091d
NH
1882 else
1883 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1884 kfree(p);
ac5fcde0 1885 count++;
161df60e 1886 }
ac5fcde0 1887 return count;
161df60e
NH
1888}
1889
595dd818 1890static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1891{
1892 struct llist_head *head;
1893 struct raw_hwp_page *raw_hwp;
6379693e 1894 struct raw_hwp_page *p, *next;
595dd818 1895 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1896
1897 /*
1898 * Once the hwpoison hugepage has lost reliable raw error info,
1899 * there is little meaning to keep additional error info precisely,
1900 * so skip to add additional raw error info.
1901 */
b02e7582 1902 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1903 return -EHWPOISON;
b02e7582 1904 head = raw_hwp_list_head(folio);
6379693e 1905 llist_for_each_entry_safe(p, next, head->first, node) {
161df60e
NH
1906 if (p->page == page)
1907 return -EHWPOISON;
1908 }
1909
1910 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1911 if (raw_hwp) {
1912 raw_hwp->page = page;
1913 llist_add(&raw_hwp->node, head);
1914 /* the first error event will be counted in action_result(). */
1915 if (ret)
a46c9304 1916 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1917 } else {
1918 /*
1919 * Failed to save raw error info. We no longer trace all
1920 * hwpoisoned subpages, and we need refuse to free/dissolve
1921 * this hwpoisoned hugepage.
1922 */
b02e7582 1923 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1924 /*
b02e7582 1925 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1926 * used any more, so free it.
1927 */
0858b5eb 1928 __folio_free_raw_hwp(folio, false);
161df60e
NH
1929 }
1930 return ret;
1931}
1932
9637d7df 1933static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1934{
1935 /*
9637d7df 1936 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1937 * pages for tail pages are required but they don't exist.
1938 */
9637d7df 1939 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1940 return 0;
1941
1942 /*
9637d7df 1943 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1944 * definition.
1945 */
9637d7df 1946 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1947 return 0;
1948
0858b5eb 1949 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1950}
1951
2ff6cece 1952void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1953{
2ff6cece 1954 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1955 return;
92a025a7
ML
1956 if (folio_test_hugetlb_vmemmap_optimized(folio))
1957 return;
2ff6cece 1958 folio_clear_hwpoison(folio);
9637d7df 1959 folio_free_raw_hwp(folio, true);
161df60e
NH
1960}
1961
405ce051
NH
1962/*
1963 * Called from hugetlb code with hugetlb_lock held.
1964 *
1965 * Return values:
1966 * 0 - free hugepage
1967 * 1 - in-use hugepage
1968 * 2 - not a hugepage
1969 * -EBUSY - the hugepage is busy (try to retry)
1970 * -EHWPOISON - the hugepage is already hwpoisoned
1971 */
e591ef7d
NH
1972int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1973 bool *migratable_cleared)
405ce051
NH
1974{
1975 struct page *page = pfn_to_page(pfn);
4c110ec9 1976 struct folio *folio = page_folio(page);
405ce051
NH
1977 int ret = 2; /* fallback to normal page handling */
1978 bool count_increased = false;
1979
4c110ec9 1980 if (!folio_test_hugetlb(folio))
405ce051
NH
1981 goto out;
1982
1983 if (flags & MF_COUNT_INCREASED) {
1984 ret = 1;
1985 count_increased = true;
4c110ec9 1986 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 1987 ret = 0;
4c110ec9
SK
1988 } else if (folio_test_hugetlb_migratable(folio)) {
1989 ret = folio_try_get(folio);
405ce051
NH
1990 if (ret)
1991 count_increased = true;
1992 } else {
1993 ret = -EBUSY;
38f6d293
NH
1994 if (!(flags & MF_NO_RETRY))
1995 goto out;
405ce051
NH
1996 }
1997
595dd818 1998 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
1999 ret = -EHWPOISON;
2000 goto out;
2001 }
2002
e591ef7d 2003 /*
4c110ec9 2004 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2005 * from being migrated by memory hotremove.
2006 */
4c110ec9
SK
2007 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2008 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2009 *migratable_cleared = true;
2010 }
2011
405ce051
NH
2012 return ret;
2013out:
2014 if (count_increased)
4c110ec9 2015 folio_put(folio);
405ce051
NH
2016 return ret;
2017}
2018
405ce051
NH
2019/*
2020 * Taking refcount of hugetlb pages needs extra care about race conditions
2021 * with basic operations like hugepage allocation/free/demotion.
2022 * So some of prechecks for hwpoison (pinning, and testing/setting
2023 * PageHWPoison) should be done in single hugetlb_lock range.
2024 */
2025static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2026{
761ad8d7 2027 int res;
405ce051 2028 struct page *p = pfn_to_page(pfn);
bc1cfde1 2029 struct folio *folio;
761ad8d7 2030 unsigned long page_flags;
e591ef7d 2031 bool migratable_cleared = false;
761ad8d7 2032
405ce051
NH
2033 *hugetlb = 1;
2034retry:
e591ef7d 2035 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2036 if (res == 2) { /* fallback to normal page handling */
2037 *hugetlb = 0;
2038 return 0;
2039 } else if (res == -EHWPOISON) {
96f96763 2040 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 2041 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2042 folio = page_folio(p);
2043 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
2044 }
2045 return res;
2046 } else if (res == -EBUSY) {
38f6d293
NH
2047 if (!(flags & MF_NO_RETRY)) {
2048 flags |= MF_NO_RETRY;
405ce051
NH
2049 goto retry;
2050 }
b66d00df 2051 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2052 }
2053
bc1cfde1
SK
2054 folio = page_folio(p);
2055 folio_lock(folio);
405ce051
NH
2056
2057 if (hwpoison_filter(p)) {
2ff6cece 2058 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2059 if (migratable_cleared)
bc1cfde1
SK
2060 folio_set_hugetlb_migratable(folio);
2061 folio_unlock(folio);
f36a5543 2062 if (res == 1)
bc1cfde1 2063 folio_put(folio);
f36a5543 2064 return -EOPNOTSUPP;
405ce051
NH
2065 }
2066
405ce051
NH
2067 /*
2068 * Handling free hugepage. The possible race with hugepage allocation
2069 * or demotion can be prevented by PageHWPoison flag.
2070 */
2071 if (res == 0) {
bc1cfde1 2072 folio_unlock(folio);
ceaf8fbe 2073 if (__page_handle_poison(p) >= 0) {
405ce051
NH
2074 page_ref_inc(p);
2075 res = MF_RECOVERED;
ceaf8fbe
NH
2076 } else {
2077 res = MF_FAILED;
761ad8d7 2078 }
b66d00df 2079 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2080 }
2081
bc1cfde1 2082 page_flags = folio->flags;
761ad8d7 2083
bc1cfde1
SK
2084 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2085 folio_unlock(folio);
b66d00df 2086 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2087 }
2088
ea6d0630 2089 return identify_page_state(pfn, p, page_flags);
761ad8d7 2090}
00cc790e 2091
405ce051
NH
2092#else
2093static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2094{
2095 return 0;
2096}
00cc790e 2097
9637d7df 2098static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2099{
2100 return 0;
2101}
00cc790e 2102#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2103
b5f1fc98
KW
2104/* Drop the extra refcount in case we come from madvise() */
2105static void put_ref_page(unsigned long pfn, int flags)
2106{
2107 struct page *page;
2108
2109 if (!(flags & MF_COUNT_INCREASED))
2110 return;
2111
2112 page = pfn_to_page(pfn);
2113 if (page)
2114 put_page(page);
2115}
2116
6100e34b
DW
2117static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2118 struct dev_pagemap *pgmap)
2119{
00cc790e 2120 int rc = -ENXIO;
6100e34b 2121
34dc45be 2122 /* device metadata space is not recoverable */
00cc790e 2123 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2124 goto out;
61e28cf0 2125
6100e34b 2126 /*
33a8f7f2
SR
2127 * Call driver's implementation to handle the memory failure, otherwise
2128 * fall back to generic handler.
6100e34b 2129 */
65d3440e 2130 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2131 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2132 /*
33a8f7f2
SR
2133 * Fall back to generic handler too if operation is not
2134 * supported inside the driver/device/filesystem.
6100e34b 2135 */
33a8f7f2
SR
2136 if (rc != -EOPNOTSUPP)
2137 goto out;
6100e34b
DW
2138 }
2139
00cc790e 2140 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2141out:
2142 /* drop pgmap ref acquired in caller */
2143 put_dev_pagemap(pgmap);
80ee7cb2
ML
2144 if (rc != -EOPNOTSUPP)
2145 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2146 return rc;
2147}
2148
cd42f4a3
TL
2149/**
2150 * memory_failure - Handle memory failure of a page.
2151 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2152 * @flags: fine tune action taken
2153 *
2154 * This function is called by the low level machine check code
2155 * of an architecture when it detects hardware memory corruption
2156 * of a page. It tries its best to recover, which includes
2157 * dropping pages, killing processes etc.
2158 *
2159 * The function is primarily of use for corruptions that
2160 * happen outside the current execution context (e.g. when
2161 * detected by a background scrubber)
2162 *
2163 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2164 * enabled and no spinlocks held.
d1fe111f 2165 *
2166 * Return: 0 for successfully handled the memory error,
9113eaf3 2167 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2168 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2169 */
83b57531 2170int memory_failure(unsigned long pfn, int flags)
6a46079c 2171{
6a46079c 2172 struct page *p;
7af446a8 2173 struct page *hpage;
6100e34b 2174 struct dev_pagemap *pgmap;
171936dd 2175 int res = 0;
524fca1e 2176 unsigned long page_flags;
a8b2c2ce 2177 bool retry = true;
405ce051 2178 int hugetlb = 0;
6a46079c
AK
2179
2180 if (!sysctl_memory_failure_recovery)
83b57531 2181 panic("Memory failure on page %lx", pfn);
6a46079c 2182
03b122da
TL
2183 mutex_lock(&mf_mutex);
2184
67f22ba7 2185 if (!(flags & MF_SW_SIMULATED))
2186 hw_memory_failure = true;
2187
96c804a6
DH
2188 p = pfn_to_online_page(pfn);
2189 if (!p) {
03b122da
TL
2190 res = arch_memory_failure(pfn, flags);
2191 if (res == 0)
2192 goto unlock_mutex;
2193
96c804a6
DH
2194 if (pfn_valid(pfn)) {
2195 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2196 put_ref_page(pfn, flags);
03b122da
TL
2197 if (pgmap) {
2198 res = memory_failure_dev_pagemap(pfn, flags,
2199 pgmap);
2200 goto unlock_mutex;
2201 }
96c804a6 2202 }
96f96763 2203 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2204 res = -ENXIO;
2205 goto unlock_mutex;
6a46079c
AK
2206 }
2207
a8b2c2ce 2208try_again:
405ce051
NH
2209 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2210 if (hugetlb)
171936dd 2211 goto unlock_mutex;
171936dd 2212
6a46079c 2213 if (TestSetPageHWPoison(p)) {
96f96763 2214 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2215 res = -EHWPOISON;
a3f5d80e
NH
2216 if (flags & MF_ACTION_REQUIRED)
2217 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2218 if (flags & MF_COUNT_INCREASED)
2219 put_page(p);
171936dd 2220 goto unlock_mutex;
6a46079c
AK
2221 }
2222
6a46079c
AK
2223 /*
2224 * We need/can do nothing about count=0 pages.
2225 * 1) it's a free page, and therefore in safe hand:
9cf28191 2226 * check_new_page() will be the gate keeper.
761ad8d7 2227 * 2) it's part of a non-compound high order page.
6a46079c
AK
2228 * Implies some kernel user: cannot stop them from
2229 * R/W the page; let's pray that the page has been
2230 * used and will be freed some time later.
2231 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2232 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2233 */
0ed950d1
NH
2234 if (!(flags & MF_COUNT_INCREASED)) {
2235 res = get_hwpoison_page(p, flags);
2236 if (!res) {
2237 if (is_free_buddy_page(p)) {
2238 if (take_page_off_buddy(p)) {
2239 page_ref_inc(p);
2240 res = MF_RECOVERED;
2241 } else {
2242 /* We lost the race, try again */
2243 if (retry) {
2244 ClearPageHWPoison(p);
0ed950d1
NH
2245 retry = false;
2246 goto try_again;
2247 }
2248 res = MF_FAILED;
a8b2c2ce 2249 }
b66d00df 2250 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2251 } else {
b66d00df 2252 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2253 }
0ed950d1
NH
2254 goto unlock_mutex;
2255 } else if (res < 0) {
b66d00df 2256 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2257 goto unlock_mutex;
8d22ba1b 2258 }
6a46079c
AK
2259 }
2260
a363d122 2261 hpage = compound_head(p);
761ad8d7 2262 if (PageTransHuge(hpage)) {
eac96c3e
YS
2263 /*
2264 * The flag must be set after the refcount is bumped
2265 * otherwise it may race with THP split.
2266 * And the flag can't be set in get_hwpoison_page() since
2267 * it is called by soft offline too and it is just called
5885c6a6 2268 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2269 * place.
2270 *
2271 * Don't need care about the above error handling paths for
2272 * get_hwpoison_page() since they handle either free page
2273 * or unhandlable page. The refcount is bumped iff the
2274 * page is a valid handlable page.
2275 */
2276 SetPageHasHWPoisoned(hpage);
2ace36f0 2277 if (try_to_split_thp_page(p) < 0) {
b66d00df 2278 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2279 goto unlock_mutex;
5d1fd5dc 2280 }
415c64c1 2281 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2282 }
2283
e43c3afb
WF
2284 /*
2285 * We ignore non-LRU pages for good reasons.
2286 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2287 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2288 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2289 * The check (unnecessarily) ignores LRU pages being isolated and
2290 * walked by the page reclaim code, however that's not a big loss.
2291 */
d0505e9f 2292 shake_page(p);
e43c3afb 2293
761ad8d7 2294 lock_page(p);
847ce401 2295
f37d4298 2296 /*
75ee64b3
ML
2297 * We're only intended to deal with the non-Compound page here.
2298 * However, the page could have changed compound pages due to
2299 * race window. If this happens, we could try again to hopefully
2300 * handle the page next round.
f37d4298 2301 */
75ee64b3
ML
2302 if (PageCompound(p)) {
2303 if (retry) {
e240ac52 2304 ClearPageHWPoison(p);
75ee64b3
ML
2305 unlock_page(p);
2306 put_page(p);
2307 flags &= ~MF_COUNT_INCREASED;
2308 retry = false;
2309 goto try_again;
2310 }
b66d00df 2311 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2312 goto unlock_page;
f37d4298
AK
2313 }
2314
524fca1e
NH
2315 /*
2316 * We use page flags to determine what action should be taken, but
2317 * the flags can be modified by the error containment action. One
2318 * example is an mlocked page, where PG_mlocked is cleared by
2319 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2320 * correctly, we save a copy of the page flags at this time.
2321 */
7d9d46ac 2322 page_flags = p->flags;
524fca1e 2323
7c116f2b 2324 if (hwpoison_filter(p)) {
2fe62e22 2325 ClearPageHWPoison(p);
761ad8d7 2326 unlock_page(p);
dd6e2402 2327 put_page(p);
d1fe111f 2328 res = -EOPNOTSUPP;
171936dd 2329 goto unlock_mutex;
7c116f2b 2330 }
847ce401 2331
e8675d29 2332 /*
e0650a41 2333 * __munlock_folio() may clear a writeback page's LRU flag without
e8675d29 2334 * page_lock. We need wait writeback completion for this page or it
2335 * may trigger vfs BUG while evict inode.
2336 */
b04d3eeb 2337 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2338 goto identify_page_state;
2339
6edd6cc6
NH
2340 /*
2341 * It's very difficult to mess with pages currently under IO
2342 * and in many cases impossible, so we just avoid it here.
2343 */
6a46079c
AK
2344 wait_on_page_writeback(p);
2345
2346 /*
2347 * Now take care of user space mappings.
6ffcd825 2348 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2349 */
ed8c2f49 2350 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
b66d00df 2351 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2352 goto unlock_page;
1668bfd5 2353 }
6a46079c
AK
2354
2355 /*
2356 * Torn down by someone else?
2357 */
dc2a1cbf 2358 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
b66d00df 2359 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2360 goto unlock_page;
6a46079c
AK
2361 }
2362
0bc1f8b0 2363identify_page_state:
0348d2eb 2364 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2365 mutex_unlock(&mf_mutex);
2366 return res;
171936dd 2367unlock_page:
761ad8d7 2368 unlock_page(p);
171936dd
TL
2369unlock_mutex:
2370 mutex_unlock(&mf_mutex);
6a46079c
AK
2371 return res;
2372}
cd42f4a3 2373EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2374
ea8f5fb8
HY
2375#define MEMORY_FAILURE_FIFO_ORDER 4
2376#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2377
2378struct memory_failure_entry {
2379 unsigned long pfn;
ea8f5fb8
HY
2380 int flags;
2381};
2382
2383struct memory_failure_cpu {
2384 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2385 MEMORY_FAILURE_FIFO_SIZE);
2386 spinlock_t lock;
2387 struct work_struct work;
2388};
2389
2390static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2391
2392/**
2393 * memory_failure_queue - Schedule handling memory failure of a page.
2394 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2395 * @flags: Flags for memory failure handling
2396 *
2397 * This function is called by the low level hardware error handler
2398 * when it detects hardware memory corruption of a page. It schedules
2399 * the recovering of error page, including dropping pages, killing
2400 * processes etc.
2401 *
2402 * The function is primarily of use for corruptions that
2403 * happen outside the current execution context (e.g. when
2404 * detected by a background scrubber)
2405 *
2406 * Can run in IRQ context.
2407 */
83b57531 2408void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2409{
2410 struct memory_failure_cpu *mf_cpu;
2411 unsigned long proc_flags;
2412 struct memory_failure_entry entry = {
2413 .pfn = pfn,
ea8f5fb8
HY
2414 .flags = flags,
2415 };
2416
2417 mf_cpu = &get_cpu_var(memory_failure_cpu);
2418 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2419 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2420 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2421 else
96f96763 2422 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2423 pfn);
2424 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2425 put_cpu_var(memory_failure_cpu);
2426}
2427EXPORT_SYMBOL_GPL(memory_failure_queue);
2428
2429static void memory_failure_work_func(struct work_struct *work)
2430{
2431 struct memory_failure_cpu *mf_cpu;
2432 struct memory_failure_entry entry = { 0, };
2433 unsigned long proc_flags;
2434 int gotten;
2435
06202231 2436 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2437 for (;;) {
2438 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2439 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2440 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2441 if (!gotten)
2442 break;
cf870c70 2443 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2444 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2445 else
83b57531 2446 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2447 }
2448}
2449
06202231
JM
2450/*
2451 * Process memory_failure work queued on the specified CPU.
2452 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2453 */
2454void memory_failure_queue_kick(int cpu)
2455{
2456 struct memory_failure_cpu *mf_cpu;
2457
2458 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2459 cancel_work_sync(&mf_cpu->work);
2460 memory_failure_work_func(&mf_cpu->work);
2461}
2462
ea8f5fb8
HY
2463static int __init memory_failure_init(void)
2464{
2465 struct memory_failure_cpu *mf_cpu;
2466 int cpu;
2467
2468 for_each_possible_cpu(cpu) {
2469 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2470 spin_lock_init(&mf_cpu->lock);
2471 INIT_KFIFO(mf_cpu->fifo);
2472 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2473 }
2474
97de10a9
KW
2475 register_sysctl_init("vm", memory_failure_table);
2476
ea8f5fb8
HY
2477 return 0;
2478}
2479core_initcall(memory_failure_init);
2480
96f96763
KW
2481#undef pr_fmt
2482#define pr_fmt(fmt) "" fmt
a5f65109
NH
2483#define unpoison_pr_info(fmt, pfn, rs) \
2484({ \
2485 if (__ratelimit(rs)) \
2486 pr_info(fmt, pfn); \
2487})
2488
847ce401
WF
2489/**
2490 * unpoison_memory - Unpoison a previously poisoned page
2491 * @pfn: Page number of the to be unpoisoned page
2492 *
2493 * Software-unpoison a page that has been poisoned by
2494 * memory_failure() earlier.
2495 *
2496 * This is only done on the software-level, so it only works
2497 * for linux injected failures, not real hardware failures
2498 *
2499 * Returns 0 for success, otherwise -errno.
2500 */
2501int unpoison_memory(unsigned long pfn)
2502{
9637d7df 2503 struct folio *folio;
847ce401 2504 struct page *p;
f29623e4 2505 int ret = -EBUSY, ghp;
ac5fcde0 2506 unsigned long count = 1;
5033091d 2507 bool huge = false;
a5f65109
NH
2508 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2509 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2510
2511 if (!pfn_valid(pfn))
2512 return -ENXIO;
2513
2514 p = pfn_to_page(pfn);
9637d7df 2515 folio = page_folio(p);
847ce401 2516
91d00547
NH
2517 mutex_lock(&mf_mutex);
2518
67f22ba7 2519 if (hw_memory_failure) {
2520 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2521 pfn, &unpoison_rs);
2522 ret = -EOPNOTSUPP;
2523 goto unlock_mutex;
2524 }
2525
6c54312f 2526 if (!PageHWPoison(p)) {
495367c0 2527 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2528 pfn, &unpoison_rs);
91d00547 2529 goto unlock_mutex;
847ce401
WF
2530 }
2531
a6fddef4 2532 if (folio_ref_count(folio) > 1) {
495367c0 2533 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2534 pfn, &unpoison_rs);
91d00547 2535 goto unlock_mutex;
230ac719
NH
2536 }
2537
7a8817f2
ML
2538 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2539 folio_test_reserved(folio) || PageOffline(&folio->page))
faeb2ff2
ML
2540 goto unlock_mutex;
2541
2542 /*
2543 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2544 * in folio_mapped() has to be done after folio_test_slab() is checked.
2545 */
a6fddef4 2546 if (folio_mapped(folio)) {
495367c0 2547 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2548 pfn, &unpoison_rs);
91d00547 2549 goto unlock_mutex;
230ac719
NH
2550 }
2551
a6fddef4 2552 if (folio_mapping(folio)) {
495367c0 2553 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2554 pfn, &unpoison_rs);
91d00547 2555 goto unlock_mutex;
0cea3fdc
WL
2556 }
2557
f29623e4
ML
2558 ghp = get_hwpoison_page(p, MF_UNPOISON);
2559 if (!ghp) {
ac5fcde0 2560 if (PageHuge(p)) {
5033091d 2561 huge = true;
9637d7df 2562 count = folio_free_raw_hwp(folio, false);
f29623e4 2563 if (count == 0)
ac5fcde0 2564 goto unlock_mutex;
ac5fcde0 2565 }
a6fddef4 2566 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2567 } else if (ghp < 0) {
2568 if (ghp == -EHWPOISON) {
c8bd84f7 2569 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2570 } else {
2571 ret = ghp;
bf181c58
NH
2572 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2573 pfn, &unpoison_rs);
f29623e4 2574 }
bf181c58 2575 } else {
ac5fcde0 2576 if (PageHuge(p)) {
5033091d 2577 huge = true;
9637d7df 2578 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2579 if (count == 0) {
a6fddef4 2580 folio_put(folio);
ac5fcde0
NH
2581 goto unlock_mutex;
2582 }
2583 }
847ce401 2584
a6fddef4 2585 folio_put(folio);
e0ff4280 2586 if (TestClearPageHWPoison(p)) {
a6fddef4 2587 folio_put(folio);
bf181c58
NH
2588 ret = 0;
2589 }
2590 }
847ce401 2591
91d00547
NH
2592unlock_mutex:
2593 mutex_unlock(&mf_mutex);
e0ff4280 2594 if (!ret) {
5033091d
NH
2595 if (!huge)
2596 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2597 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2598 page_to_pfn(p), &unpoison_rs);
2599 }
91d00547 2600 return ret;
847ce401
WF
2601}
2602EXPORT_SYMBOL(unpoison_memory);
facb6011 2603
761d79fb 2604static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
d950b958 2605{
6b9a217e 2606 bool isolated = false;
d950b958 2607
761d79fb
MWO
2608 if (folio_test_hugetlb(folio)) {
2609 isolated = isolate_hugetlb(folio, pagelist);
6b9a217e 2610 } else {
761d79fb 2611 bool lru = !__folio_test_movable(folio);
da294991 2612
6b9a217e 2613 if (lru)
761d79fb 2614 isolated = folio_isolate_lru(folio);
6b9a217e 2615 else
761d79fb 2616 isolated = isolate_movable_page(&folio->page,
cd775580 2617 ISOLATE_UNEVICTABLE);
6b9a217e 2618
da294991 2619 if (isolated) {
761d79fb 2620 list_add(&folio->lru, pagelist);
da294991 2621 if (lru)
761d79fb
MWO
2622 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2623 folio_is_file_lru(folio));
da294991 2624 }
0ebff32c 2625 }
d950b958 2626
03613808 2627 /*
761d79fb
MWO
2628 * If we succeed to isolate the folio, we grabbed another refcount on
2629 * the folio, so we can safely drop the one we got from get_any_page().
2630 * If we failed to isolate the folio, it means that we cannot go further
6b9a217e 2631 * and we will return an error, so drop the reference we got from
5885c6a6 2632 * get_any_page() as well.
03613808 2633 */
761d79fb 2634 folio_put(folio);
6b9a217e 2635 return isolated;
d950b958
NH
2636}
2637
6b9a217e 2638/*
48309e1f 2639 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2640 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2641 * If the page is mapped, it migrates the contents over.
2642 */
48309e1f 2643static int soft_offline_in_use_page(struct page *page)
af8fae7c 2644{
d6c75dc2 2645 long ret = 0;
af8fae7c 2646 unsigned long pfn = page_to_pfn(page);
049b2604 2647 struct folio *folio = page_folio(page);
6b9a217e 2648 char const *msg_page[] = {"page", "hugepage"};
049b2604 2649 bool huge = folio_test_hugetlb(folio);
6b9a217e 2650 LIST_HEAD(pagelist);
54608759
JK
2651 struct migration_target_control mtc = {
2652 .nid = NUMA_NO_NODE,
2653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2654 };
facb6011 2655
049b2604 2656 if (!huge && folio_test_large(folio)) {
48309e1f
KW
2657 if (try_to_split_thp_page(page)) {
2658 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2659 return -EBUSY;
2660 }
049b2604 2661 folio = page_folio(page);
48309e1f
KW
2662 }
2663
049b2604 2664 folio_lock(folio);
55c7ac45 2665 if (!huge)
049b2604 2666 folio_wait_writeback(folio);
af8fae7c 2667 if (PageHWPoison(page)) {
049b2604
MWO
2668 folio_unlock(folio);
2669 folio_put(folio);
af8fae7c 2670 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2671 return 0;
af8fae7c 2672 }
6b9a217e 2673
049b2604 2674 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2675 /*
2676 * Try to invalidate first. This should work for
2677 * non dirty unmapped page cache pages.
2678 */
049b2604
MWO
2679 ret = mapping_evict_folio(folio_mapping(folio), folio);
2680 folio_unlock(folio);
6b9a217e 2681
6b9a217e 2682 if (ret) {
fb46e735 2683 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2684 page_handle_poison(page, false, true);
af8fae7c 2685 return 0;
facb6011
AK
2686 }
2687
761d79fb 2688 if (mf_isolate_folio(folio, &pagelist)) {
54608759 2689 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2690 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2691 if (!ret) {
6b9a217e
OS
2692 bool release = !huge;
2693
2694 if (!page_handle_poison(page, huge, release))
2695 ret = -EBUSY;
79f5f8fa 2696 } else {
85fbe5d1
YX
2697 if (!list_empty(&pagelist))
2698 putback_movable_pages(&pagelist);
59c82b70 2699
d6c75dc2 2700 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2701 pfn, msg_page[huge], ret, &page->flags);
facb6011 2702 if (ret > 0)
3f4b815a 2703 ret = -EBUSY;
facb6011
AK
2704 }
2705 } else {
23efd080
MWO
2706 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2707 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2708 ret = -EBUSY;
facb6011 2709 }
facb6011
AK
2710 return ret;
2711}
86e05773
WL
2712
2713/**
2714 * soft_offline_page - Soft offline a page.
feec24a6 2715 * @pfn: pfn to soft-offline
86e05773
WL
2716 * @flags: flags. Same as memory_failure().
2717 *
9113eaf3 2718 * Returns 0 on success
2719 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2720 * < 0 otherwise negated errno.
86e05773
WL
2721 *
2722 * Soft offline a page, by migration or invalidation,
2723 * without killing anything. This is for the case when
2724 * a page is not corrupted yet (so it's still valid to access),
2725 * but has had a number of corrected errors and is better taken
2726 * out.
2727 *
2728 * The actual policy on when to do that is maintained by
2729 * user space.
2730 *
2731 * This should never impact any application or cause data loss,
2732 * however it might take some time.
2733 *
2734 * This is not a 100% solution for all memory, but tries to be
2735 * ``good enough'' for the majority of memory.
2736 */
feec24a6 2737int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2738{
2739 int ret;
b94e0282 2740 bool try_again = true;
b5f1fc98 2741 struct page *page;
dad4e5b3 2742
183a7c5d
KW
2743 if (!pfn_valid(pfn)) {
2744 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2745 return -ENXIO;
183a7c5d 2746 }
dad4e5b3 2747
feec24a6
NH
2748 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2749 page = pfn_to_online_page(pfn);
dad4e5b3 2750 if (!page) {
b5f1fc98 2751 put_ref_page(pfn, flags);
86a66810 2752 return -EIO;
dad4e5b3 2753 }
86a66810 2754
91d00547
NH
2755 mutex_lock(&mf_mutex);
2756
86e05773 2757 if (PageHWPoison(page)) {
8295d535 2758 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2759 put_ref_page(pfn, flags);
91d00547 2760 mutex_unlock(&mf_mutex);
5a2ffca3 2761 return 0;
86e05773 2762 }
86e05773 2763
b94e0282 2764retry:
bfc8c901 2765 get_online_mems();
bf6445bc 2766 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2767 put_online_mems();
4e41a30c 2768
9113eaf3 2769 if (hwpoison_filter(page)) {
2770 if (ret > 0)
2771 put_page(page);
9113eaf3 2772
2773 mutex_unlock(&mf_mutex);
2774 return -EOPNOTSUPP;
2775 }
2776
8295d535 2777 if (ret > 0) {
6b9a217e 2778 ret = soft_offline_in_use_page(page);
8295d535 2779 } else if (ret == 0) {
e2c1ab07
ML
2780 if (!page_handle_poison(page, true, false)) {
2781 if (try_again) {
2782 try_again = false;
2783 flags &= ~MF_COUNT_INCREASED;
2784 goto retry;
2785 }
2786 ret = -EBUSY;
b94e0282 2787 }
8295d535 2788 }
4e41a30c 2789
91d00547
NH
2790 mutex_unlock(&mf_mutex);
2791
86e05773
WL
2792 return ret;
2793}