mm: memory-failure: remove unneeded PageHuge() check
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
96c84dde 45#include <linux/dax.h>
01e00f88 46#include <linux/ksm.h>
6a46079c 47#include <linux/rmap.h>
b9e15baf 48#include <linux/export.h>
6a46079c
AK
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
facb6011 52#include <linux/migrate.h>
facb6011 53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
6100e34b 59#include <linux/memremap.h>
ea8f5fb8 60#include <linux/kfifo.h>
a5f65109 61#include <linux/ratelimit.h>
d4ae9916 62#include <linux/page-isolation.h>
a3f5d80e 63#include <linux/pagewalk.h>
a7605426 64#include <linux/shmem_fs.h>
8cbc82f3 65#include <linux/sysctl.h>
014bb1de 66#include "swap.h"
6a46079c 67#include "internal.h"
97f0b134 68#include "ras/ras_event.h"
6a46079c 69
8cbc82f3 70static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 71
8cbc82f3 72static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 73
293c07e3 74atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 75
67f22ba7 76static bool hw_memory_failure __read_mostly = false;
77
1a7d018d 78void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
79{
80 atomic_long_inc(&num_poisoned_pages);
5033091d 81 memblk_nr_poison_inc(pfn);
d027122d
NH
82}
83
1a7d018d 84void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
85{
86 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
87 if (pfn != -1UL)
88 memblk_nr_poison_sub(pfn, i);
d027122d
NH
89}
90
44b8f8bf
JY
91/**
92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93 * @_name: name of the file in the per NUMA sysfs directory.
94 */
95#define MF_ATTR_RO(_name) \
96static ssize_t _name##_show(struct device *dev, \
97 struct device_attribute *attr, \
98 char *buf) \
99{ \
100 struct memory_failure_stats *mf_stats = \
101 &NODE_DATA(dev->id)->mf_stats; \
102 return sprintf(buf, "%lu\n", mf_stats->_name); \
103} \
104static DEVICE_ATTR_RO(_name)
105
106MF_ATTR_RO(total);
107MF_ATTR_RO(ignored);
108MF_ATTR_RO(failed);
109MF_ATTR_RO(delayed);
110MF_ATTR_RO(recovered);
111
112static struct attribute *memory_failure_attr[] = {
113 &dev_attr_total.attr,
114 &dev_attr_ignored.attr,
115 &dev_attr_failed.attr,
116 &dev_attr_delayed.attr,
117 &dev_attr_recovered.attr,
118 NULL,
119};
120
121const struct attribute_group memory_failure_attr_group = {
122 .name = "memory_failure",
123 .attrs = memory_failure_attr,
124};
125
8cbc82f3
KW
126static struct ctl_table memory_failure_table[] = {
127 {
128 .procname = "memory_failure_early_kill",
129 .data = &sysctl_memory_failure_early_kill,
130 .maxlen = sizeof(sysctl_memory_failure_early_kill),
131 .mode = 0644,
132 .proc_handler = proc_dointvec_minmax,
133 .extra1 = SYSCTL_ZERO,
134 .extra2 = SYSCTL_ONE,
135 },
136 {
137 .procname = "memory_failure_recovery",
138 .data = &sysctl_memory_failure_recovery,
139 .maxlen = sizeof(sysctl_memory_failure_recovery),
140 .mode = 0644,
141 .proc_handler = proc_dointvec_minmax,
142 .extra1 = SYSCTL_ZERO,
143 .extra2 = SYSCTL_ONE,
144 },
145 { }
146};
147
7453bf62
NH
148/*
149 * Return values:
150 * 1: the page is dissolved (if needed) and taken off from buddy,
151 * 0: the page is dissolved (if needed) and not taken off from buddy,
152 * < 0: failed to dissolve.
153 */
154static int __page_handle_poison(struct page *page)
510d25c9 155{
f87060d3 156 int ret;
510d25c9
NH
157
158 zone_pcp_disable(page_zone(page));
159 ret = dissolve_free_huge_page(page);
160 if (!ret)
161 ret = take_page_off_buddy(page);
162 zone_pcp_enable(page_zone(page));
163
7453bf62 164 return ret;
510d25c9
NH
165}
166
6b9a217e 167static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 168{
6b9a217e
OS
169 if (hugepage_or_freepage) {
170 /*
171 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 * returns 0 for non-hugetlb pages as well.
173 */
7453bf62 174 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
175 /*
176 * We could fail to take off the target page from buddy
f0953a1b 177 * for example due to racy page allocation, but that's
6b9a217e
OS
178 * acceptable because soft-offlined page is not broken
179 * and if someone really want to use it, they should
180 * take it.
181 */
182 return false;
183 }
184
06be6ff3 185 SetPageHWPoison(page);
79f5f8fa
OS
186 if (release)
187 put_page(page);
06be6ff3 188 page_ref_inc(page);
a46c9304 189 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
190
191 return true;
06be6ff3
OS
192}
193
611b9fd8 194#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 195
1bfe5feb 196u32 hwpoison_filter_enable = 0;
7c116f2b
WF
197u32 hwpoison_filter_dev_major = ~0U;
198u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
199u64 hwpoison_filter_flags_mask;
200u64 hwpoison_filter_flags_value;
1bfe5feb 201EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
206
207static int hwpoison_filter_dev(struct page *p)
208{
209 struct address_space *mapping;
210 dev_t dev;
211
212 if (hwpoison_filter_dev_major == ~0U &&
213 hwpoison_filter_dev_minor == ~0U)
214 return 0;
215
7c116f2b
WF
216 mapping = page_mapping(p);
217 if (mapping == NULL || mapping->host == NULL)
218 return -EINVAL;
219
220 dev = mapping->host->i_sb->s_dev;
221 if (hwpoison_filter_dev_major != ~0U &&
222 hwpoison_filter_dev_major != MAJOR(dev))
223 return -EINVAL;
224 if (hwpoison_filter_dev_minor != ~0U &&
225 hwpoison_filter_dev_minor != MINOR(dev))
226 return -EINVAL;
227
228 return 0;
229}
230
478c5ffc
WF
231static int hwpoison_filter_flags(struct page *p)
232{
233 if (!hwpoison_filter_flags_mask)
234 return 0;
235
236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 hwpoison_filter_flags_value)
238 return 0;
239 else
240 return -EINVAL;
241}
242
4fd466eb
AK
243/*
244 * This allows stress tests to limit test scope to a collection of tasks
245 * by putting them under some memcg. This prevents killing unrelated/important
246 * processes such as /sbin/init. Note that the target task may share clean
247 * pages with init (eg. libc text), which is harmless. If the target task
248 * share _dirty_ pages with another task B, the test scheme must make sure B
249 * is also included in the memcg. At last, due to race conditions this filter
250 * can only guarantee that the page either belongs to the memcg tasks, or is
251 * a freed page.
252 */
94a59fb3 253#ifdef CONFIG_MEMCG
4fd466eb
AK
254u64 hwpoison_filter_memcg;
255EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256static int hwpoison_filter_task(struct page *p)
257{
4fd466eb
AK
258 if (!hwpoison_filter_memcg)
259 return 0;
260
94a59fb3 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
262 return -EINVAL;
263
264 return 0;
265}
266#else
267static int hwpoison_filter_task(struct page *p) { return 0; }
268#endif
269
7c116f2b
WF
270int hwpoison_filter(struct page *p)
271{
1bfe5feb
HL
272 if (!hwpoison_filter_enable)
273 return 0;
274
7c116f2b
WF
275 if (hwpoison_filter_dev(p))
276 return -EINVAL;
277
478c5ffc
WF
278 if (hwpoison_filter_flags(p))
279 return -EINVAL;
280
4fd466eb
AK
281 if (hwpoison_filter_task(p))
282 return -EINVAL;
283
7c116f2b
WF
284 return 0;
285}
27df5068
AK
286#else
287int hwpoison_filter(struct page *p)
288{
289 return 0;
290}
291#endif
292
7c116f2b
WF
293EXPORT_SYMBOL_GPL(hwpoison_filter);
294
ae1139ec
DW
295/*
296 * Kill all processes that have a poisoned page mapped and then isolate
297 * the page.
298 *
299 * General strategy:
300 * Find all processes having the page mapped and kill them.
301 * But we keep a page reference around so that the page is not
302 * actually freed yet.
303 * Then stash the page away
304 *
305 * There's no convenient way to get back to mapped processes
306 * from the VMAs. So do a brute-force search over all
307 * running processes.
308 *
309 * Remember that machine checks are not common (or rather
310 * if they are common you have other problems), so this shouldn't
311 * be a performance issue.
312 *
313 * Also there are some races possible while we get from the
314 * error detection to actually handle it.
315 */
316
317struct to_kill {
318 struct list_head nd;
319 struct task_struct *tsk;
320 unsigned long addr;
321 short size_shift;
ae1139ec
DW
322};
323
6a46079c 324/*
7329bbeb
TL
325 * Send all the processes who have the page mapped a signal.
326 * ``action optional'' if they are not immediately affected by the error
327 * ``action required'' if error happened in current execution context
6a46079c 328 */
ae1139ec 329static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 330{
ae1139ec
DW
331 struct task_struct *t = tk->tsk;
332 short addr_lsb = tk->size_shift;
872e9a20 333 int ret = 0;
6a46079c 334
96f96763 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 336 pfn, t->comm, t->pid);
7329bbeb 337
49775047
ML
338 if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 ret = force_sig_mceerr(BUS_MCEERR_AR,
340 (void __user *)tk->addr, addr_lsb);
341 else
7329bbeb 342 /*
49775047
ML
343 * Signal other processes sharing the page if they have
344 * PF_MCE_EARLY set.
7329bbeb
TL
345 * Don't use force here, it's convenient if the signal
346 * can be temporarily blocked.
347 * This could cause a loop when the user sets SIGBUS
348 * to SIG_IGN, but hopefully no one will do that?
349 */
ae1139ec 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 351 addr_lsb, t);
6a46079c 352 if (ret < 0)
96f96763 353 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 354 t->comm, t->pid, ret);
6a46079c
AK
355 return ret;
356}
357
588f9ce6 358/*
47e431f4 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 360 * lru_add_drain_all.
588f9ce6 361 */
d0505e9f 362void shake_page(struct page *p)
588f9ce6 363{
8bcb74de
NH
364 if (PageHuge(p))
365 return;
588f9ce6 366 /*
d0505e9f
YS
367 * TODO: Could shrink slab caches here if a lightweight range-based
368 * shrinker will be available.
588f9ce6 369 */
b7b618da
ML
370 if (PageSlab(p))
371 return;
372
373 lru_add_drain_all();
588f9ce6
AK
374}
375EXPORT_SYMBOL_GPL(shake_page);
376
c36e2024
SR
377static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
378 unsigned long address)
6100e34b 379{
5c91c0e7 380 unsigned long ret = 0;
6100e34b
DW
381 pgd_t *pgd;
382 p4d_t *p4d;
383 pud_t *pud;
384 pmd_t *pmd;
385 pte_t *pte;
c33c7948 386 pte_t ptent;
6100e34b 387
a994402b 388 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
389 pgd = pgd_offset(vma->vm_mm, address);
390 if (!pgd_present(*pgd))
391 return 0;
392 p4d = p4d_offset(pgd, address);
393 if (!p4d_present(*p4d))
394 return 0;
395 pud = pud_offset(p4d, address);
396 if (!pud_present(*pud))
397 return 0;
398 if (pud_devmap(*pud))
399 return PUD_SHIFT;
400 pmd = pmd_offset(pud, address);
401 if (!pmd_present(*pmd))
402 return 0;
403 if (pmd_devmap(*pmd))
404 return PMD_SHIFT;
405 pte = pte_offset_map(pmd, address);
04dee9e8
HD
406 if (!pte)
407 return 0;
c33c7948
RR
408 ptent = ptep_get(pte);
409 if (pte_present(ptent) && pte_devmap(ptent))
5c91c0e7
QZ
410 ret = PAGE_SHIFT;
411 pte_unmap(pte);
412 return ret;
6100e34b 413}
6a46079c
AK
414
415/*
416 * Failure handling: if we can't find or can't kill a process there's
417 * not much we can do. We just print a message and ignore otherwise.
418 */
419
ac87ca0e
DW
420#define FSDAX_INVALID_PGOFF ULONG_MAX
421
6a46079c
AK
422/*
423 * Schedule a process for later kill.
424 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 425 *
ac87ca0e
DW
426 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
427 * filesystem with a memory failure handler has claimed the
428 * memory_failure event. In all other cases, page->index and
429 * page->mapping are sufficient for mapping the page back to its
430 * corresponding user virtual address.
6a46079c 431 */
4f775086
LX
432static void __add_to_kill(struct task_struct *tsk, struct page *p,
433 struct vm_area_struct *vma, struct list_head *to_kill,
434 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
6a46079c
AK
435{
436 struct to_kill *tk;
437
996ff7a0
JC
438 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
439 if (!tk) {
96f96763 440 pr_err("Out of memory while machine check handling\n");
996ff7a0 441 return;
6a46079c 442 }
996ff7a0 443
4f775086 444 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
c36e2024 445 if (is_zone_device_page(p)) {
ac87ca0e 446 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
447 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
448 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
449 } else
75068518 450 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
451
452 /*
3d7fed4a
JC
453 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
454 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
455 * so "tk->size_shift == 0" effectively checks no mapping on
456 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
457 * to a process' address space, it's possible not all N VMAs
458 * contain mappings for the page, but at least one VMA does.
459 * Only deliver SIGBUS with payload derived from the VMA that
460 * has a mapping for the page.
6a46079c 461 */
3d7fed4a 462 if (tk->addr == -EFAULT) {
96f96763 463 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 464 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
465 } else if (tk->size_shift == 0) {
466 kfree(tk);
467 return;
6a46079c 468 }
996ff7a0 469
6a46079c
AK
470 get_task_struct(tsk);
471 tk->tsk = tsk;
472 list_add_tail(&tk->nd, to_kill);
473}
474
4f775086
LX
475static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
476 struct vm_area_struct *vma,
477 struct list_head *to_kill)
478{
479 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
480}
481
4248d008
LX
482#ifdef CONFIG_KSM
483static bool task_in_to_kill_list(struct list_head *to_kill,
484 struct task_struct *tsk)
485{
486 struct to_kill *tk, *next;
487
488 list_for_each_entry_safe(tk, next, to_kill, nd) {
489 if (tk->tsk == tsk)
490 return true;
491 }
492
493 return false;
494}
495void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
496 struct vm_area_struct *vma, struct list_head *to_kill,
497 unsigned long ksm_addr)
498{
499 if (!task_in_to_kill_list(to_kill, tsk))
500 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
501}
502#endif
6a46079c
AK
503/*
504 * Kill the processes that have been collected earlier.
505 *
a21c184f
ML
506 * Only do anything when FORCEKILL is set, otherwise just free the
507 * list (this is used for clean pages which do not need killing)
6a46079c
AK
508 * Also when FAIL is set do a force kill because something went
509 * wrong earlier.
510 */
ae1139ec
DW
511static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
512 unsigned long pfn, int flags)
6a46079c
AK
513{
514 struct to_kill *tk, *next;
515
54f9555d 516 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 517 if (forcekill) {
6a46079c 518 /*
af901ca1 519 * In case something went wrong with munmapping
6a46079c
AK
520 * make sure the process doesn't catch the
521 * signal and then access the memory. Just kill it.
6a46079c 522 */
3d7fed4a 523 if (fail || tk->addr == -EFAULT) {
96f96763 524 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 525 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
526 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
527 tk->tsk, PIDTYPE_PID);
6a46079c
AK
528 }
529
530 /*
531 * In theory the process could have mapped
532 * something else on the address in-between. We could
533 * check for that, but we need to tell the
534 * process anyways.
535 */
ae1139ec 536 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 537 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 538 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 539 }
54f9555d 540 list_del(&tk->nd);
6a46079c
AK
541 put_task_struct(tk->tsk);
542 kfree(tk);
543 }
544}
545
3ba08129
NH
546/*
547 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
548 * on behalf of the thread group. Return task_struct of the (first found)
549 * dedicated thread if found, and return NULL otherwise.
550 *
551 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
552 * have to call rcu_read_lock/unlock() in this function.
553 */
554static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 555{
3ba08129
NH
556 struct task_struct *t;
557
4e018b45
NH
558 for_each_thread(tsk, t) {
559 if (t->flags & PF_MCE_PROCESS) {
560 if (t->flags & PF_MCE_EARLY)
561 return t;
562 } else {
563 if (sysctl_memory_failure_early_kill)
564 return t;
565 }
566 }
3ba08129
NH
567 return NULL;
568}
569
570/*
571 * Determine whether a given process is "early kill" process which expects
572 * to be signaled when some page under the process is hwpoisoned.
573 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 574 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 575 *
30c9cf49
AY
576 * Note that the above is true for Action Optional case. For Action Required
577 * case, it's only meaningful to the current thread which need to be signaled
578 * with SIGBUS, this error is Action Optional for other non current
579 * processes sharing the same error page,if the process is "early kill", the
580 * task_struct of the dedicated thread will also be returned.
3ba08129 581 */
4248d008 582struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 583{
6a46079c 584 if (!tsk->mm)
3ba08129 585 return NULL;
30c9cf49
AY
586 /*
587 * Comparing ->mm here because current task might represent
588 * a subthread, while tsk always points to the main thread.
589 */
590 if (force_early && tsk->mm == current->mm)
591 return current;
592
4e018b45 593 return find_early_kill_thread(tsk);
6a46079c
AK
594}
595
596/*
597 * Collect processes when the error hit an anonymous page.
598 */
599static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 600 int force_early)
6a46079c 601{
9595d769 602 struct folio *folio = page_folio(page);
6a46079c
AK
603 struct vm_area_struct *vma;
604 struct task_struct *tsk;
605 struct anon_vma *av;
bf181b9f 606 pgoff_t pgoff;
6a46079c 607
6d4675e6 608 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 609 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
610 return;
611
a0f7a756 612 pgoff = page_to_pgoff(page);
9b679320 613 read_lock(&tasklist_lock);
6a46079c 614 for_each_process (tsk) {
5beb4930 615 struct anon_vma_chain *vmac;
3ba08129 616 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 617
3ba08129 618 if (!t)
6a46079c 619 continue;
bf181b9f
ML
620 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
621 pgoff, pgoff) {
5beb4930 622 vma = vmac->vma;
36537a67
ML
623 if (vma->vm_mm != t->mm)
624 continue;
6a46079c
AK
625 if (!page_mapped_in_vma(page, vma))
626 continue;
4f775086 627 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
628 }
629 }
6a46079c 630 read_unlock(&tasklist_lock);
0c826c0b 631 anon_vma_unlock_read(av);
6a46079c
AK
632}
633
634/*
635 * Collect processes when the error hit a file mapped page.
636 */
637static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 638 int force_early)
6a46079c
AK
639{
640 struct vm_area_struct *vma;
641 struct task_struct *tsk;
6a46079c 642 struct address_space *mapping = page->mapping;
c43bc03d 643 pgoff_t pgoff;
6a46079c 644
d28eb9c8 645 i_mmap_lock_read(mapping);
9b679320 646 read_lock(&tasklist_lock);
c43bc03d 647 pgoff = page_to_pgoff(page);
6a46079c 648 for_each_process(tsk) {
3ba08129 649 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 650
3ba08129 651 if (!t)
6a46079c 652 continue;
6b2dbba8 653 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
654 pgoff) {
655 /*
656 * Send early kill signal to tasks where a vma covers
657 * the page but the corrupted page is not necessarily
658 * mapped it in its pte.
659 * Assume applications who requested early kill want
660 * to be informed of all such data corruptions.
661 */
3ba08129 662 if (vma->vm_mm == t->mm)
4f775086 663 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
664 }
665 }
6a46079c 666 read_unlock(&tasklist_lock);
d28eb9c8 667 i_mmap_unlock_read(mapping);
6a46079c
AK
668}
669
c36e2024 670#ifdef CONFIG_FS_DAX
4f775086
LX
671static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
672 struct vm_area_struct *vma,
673 struct list_head *to_kill, pgoff_t pgoff)
674{
675 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
676}
677
c36e2024
SR
678/*
679 * Collect processes when the error hit a fsdax page.
680 */
681static void collect_procs_fsdax(struct page *page,
682 struct address_space *mapping, pgoff_t pgoff,
683 struct list_head *to_kill)
684{
685 struct vm_area_struct *vma;
686 struct task_struct *tsk;
687
688 i_mmap_lock_read(mapping);
689 read_lock(&tasklist_lock);
690 for_each_process(tsk) {
691 struct task_struct *t = task_early_kill(tsk, true);
692
693 if (!t)
694 continue;
695 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
696 if (vma->vm_mm == t->mm)
4f775086 697 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
698 }
699 }
700 read_unlock(&tasklist_lock);
701 i_mmap_unlock_read(mapping);
702}
703#endif /* CONFIG_FS_DAX */
704
6a46079c
AK
705/*
706 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 707 */
74614de1
TL
708static void collect_procs(struct page *page, struct list_head *tokill,
709 int force_early)
6a46079c 710{
6a46079c
AK
711 if (!page->mapping)
712 return;
4248d008
LX
713 if (unlikely(PageKsm(page)))
714 collect_procs_ksm(page, tokill, force_early);
715 else if (PageAnon(page))
996ff7a0 716 collect_procs_anon(page, tokill, force_early);
6a46079c 717 else
996ff7a0 718 collect_procs_file(page, tokill, force_early);
6a46079c
AK
719}
720
a3f5d80e
NH
721struct hwp_walk {
722 struct to_kill tk;
723 unsigned long pfn;
724 int flags;
725};
726
727static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
728{
729 tk->addr = addr;
730 tk->size_shift = shift;
731}
732
733static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
734 unsigned long poisoned_pfn, struct to_kill *tk)
735{
736 unsigned long pfn = 0;
737
738 if (pte_present(pte)) {
739 pfn = pte_pfn(pte);
740 } else {
741 swp_entry_t swp = pte_to_swp_entry(pte);
742
743 if (is_hwpoison_entry(swp))
0d206b5d 744 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
745 }
746
747 if (!pfn || pfn != poisoned_pfn)
748 return 0;
749
750 set_to_kill(tk, addr, shift);
751 return 1;
752}
753
754#ifdef CONFIG_TRANSPARENT_HUGEPAGE
755static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
756 struct hwp_walk *hwp)
757{
758 pmd_t pmd = *pmdp;
759 unsigned long pfn;
760 unsigned long hwpoison_vaddr;
761
762 if (!pmd_present(pmd))
763 return 0;
764 pfn = pmd_pfn(pmd);
765 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
766 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
767 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
768 return 1;
769 }
770 return 0;
771}
772#else
773static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
774 struct hwp_walk *hwp)
775{
776 return 0;
777}
778#endif
779
780static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
781 unsigned long end, struct mm_walk *walk)
782{
f142e707 783 struct hwp_walk *hwp = walk->private;
a3f5d80e 784 int ret = 0;
ea3732f7 785 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
786 spinlock_t *ptl;
787
788 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
789 if (ptl) {
790 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
791 spin_unlock(ptl);
792 goto out;
793 }
794
ea3732f7
ML
795 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
796 addr, &ptl);
04dee9e8
HD
797 if (!ptep)
798 goto out;
799
a3f5d80e 800 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 801 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
802 hwp->pfn, &hwp->tk);
803 if (ret == 1)
804 break;
805 }
ea3732f7 806 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
807out:
808 cond_resched();
809 return ret;
810}
811
812#ifdef CONFIG_HUGETLB_PAGE
813static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
814 unsigned long addr, unsigned long end,
815 struct mm_walk *walk)
816{
f142e707 817 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
818 pte_t pte = huge_ptep_get(ptep);
819 struct hstate *h = hstate_vma(walk->vma);
820
821 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
822 hwp->pfn, &hwp->tk);
823}
824#else
825#define hwpoison_hugetlb_range NULL
826#endif
827
ba9eb3ce 828static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
829 .pmd_entry = hwpoison_pte_range,
830 .hugetlb_entry = hwpoison_hugetlb_range,
831};
832
833/*
834 * Sends SIGBUS to the current process with error info.
835 *
836 * This function is intended to handle "Action Required" MCEs on already
837 * hardware poisoned pages. They could happen, for example, when
838 * memory_failure() failed to unmap the error page at the first call, or
839 * when multiple local machine checks happened on different CPUs.
840 *
841 * MCE handler currently has no easy access to the error virtual address,
842 * so this function walks page table to find it. The returned virtual address
843 * is proper in most cases, but it could be wrong when the application
844 * process has multiple entries mapping the error page.
845 */
846static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
847 int flags)
848{
849 int ret;
850 struct hwp_walk priv = {
851 .pfn = pfn,
852 };
853 priv.tk.tsk = p;
854
77677cdb
SX
855 if (!p->mm)
856 return -EFAULT;
857
a3f5d80e
NH
858 mmap_read_lock(p->mm);
859 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
860 (void *)&priv);
861 if (ret == 1 && priv.tk.addr)
862 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
863 else
864 ret = 0;
a3f5d80e 865 mmap_read_unlock(p->mm);
046545a6 866 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
867}
868
6a46079c 869static const char *action_name[] = {
cc637b17
XX
870 [MF_IGNORED] = "Ignored",
871 [MF_FAILED] = "Failed",
872 [MF_DELAYED] = "Delayed",
873 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
874};
875
876static const char * const action_page_types[] = {
cc637b17
XX
877 [MF_MSG_KERNEL] = "reserved kernel page",
878 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
879 [MF_MSG_SLAB] = "kernel slab page",
880 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
881 [MF_MSG_HUGE] = "huge page",
882 [MF_MSG_FREE_HUGE] = "free huge page",
883 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
884 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
885 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
886 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
887 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
888 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
889 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
890 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
891 [MF_MSG_CLEAN_LRU] = "clean LRU page",
892 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
893 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 894 [MF_MSG_DAX] = "dax page",
5d1fd5dc 895 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 896 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
897};
898
dc2a1cbf
WF
899/*
900 * XXX: It is possible that a page is isolated from LRU cache,
901 * and then kept in swap cache or failed to remove from page cache.
902 * The page count will stop it from being freed by unpoison.
903 * Stress tests should be aware of this memory leak problem.
904 */
905static int delete_from_lru_cache(struct page *p)
906{
f7f9c00d 907 if (isolate_lru_page(p)) {
dc2a1cbf
WF
908 /*
909 * Clear sensible page flags, so that the buddy system won't
910 * complain when the page is unpoison-and-freed.
911 */
912 ClearPageActive(p);
913 ClearPageUnevictable(p);
18365225
MH
914
915 /*
916 * Poisoned page might never drop its ref count to 0 so we have
917 * to uncharge it manually from its memcg.
918 */
bbc6b703 919 mem_cgroup_uncharge(page_folio(p));
18365225 920
dc2a1cbf
WF
921 /*
922 * drop the page count elevated by isolate_lru_page()
923 */
09cbfeaf 924 put_page(p);
dc2a1cbf
WF
925 return 0;
926 }
927 return -EIO;
928}
929
78bb9203
NH
930static int truncate_error_page(struct page *p, unsigned long pfn,
931 struct address_space *mapping)
932{
933 int ret = MF_FAILED;
934
935 if (mapping->a_ops->error_remove_page) {
ac5efa78 936 struct folio *folio = page_folio(p);
78bb9203
NH
937 int err = mapping->a_ops->error_remove_page(mapping, p);
938
0201ebf2 939 if (err != 0)
96f96763 940 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 941 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 942 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 943 else
78bb9203 944 ret = MF_RECOVERED;
78bb9203
NH
945 } else {
946 /*
947 * If the file system doesn't support it just invalidate
948 * This fails on dirty or anything with private pages
949 */
950 if (invalidate_inode_page(p))
951 ret = MF_RECOVERED;
952 else
96f96763 953 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
954 }
955
956 return ret;
957}
958
dd0f230a
YS
959struct page_state {
960 unsigned long mask;
961 unsigned long res;
962 enum mf_action_page_type type;
963
964 /* Callback ->action() has to unlock the relevant page inside it. */
965 int (*action)(struct page_state *ps, struct page *p);
966};
967
968/*
969 * Return true if page is still referenced by others, otherwise return
970 * false.
971 *
972 * The extra_pins is true when one extra refcount is expected.
973 */
974static bool has_extra_refcount(struct page_state *ps, struct page *p,
975 bool extra_pins)
976{
977 int count = page_count(p) - 1;
978
979 if (extra_pins)
980 count -= 1;
981
982 if (count > 0) {
96f96763 983 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
984 page_to_pfn(p), action_page_types[ps->type], count);
985 return true;
986 }
987
988 return false;
989}
990
6a46079c
AK
991/*
992 * Error hit kernel page.
993 * Do nothing, try to be lucky and not touch this instead. For a few cases we
994 * could be more sophisticated.
995 */
dd0f230a 996static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 997{
ea6d0630 998 unlock_page(p);
cc637b17 999 return MF_IGNORED;
6a46079c
AK
1000}
1001
1002/*
1003 * Page in unknown state. Do nothing.
1004 */
dd0f230a 1005static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1006{
96f96763 1007 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1008 unlock_page(p);
cc637b17 1009 return MF_FAILED;
6a46079c
AK
1010}
1011
6a46079c
AK
1012/*
1013 * Clean (or cleaned) page cache page.
1014 */
dd0f230a 1015static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1016{
ea6d0630 1017 int ret;
6a46079c 1018 struct address_space *mapping;
a7605426 1019 bool extra_pins;
6a46079c 1020
dc2a1cbf
WF
1021 delete_from_lru_cache(p);
1022
6a46079c
AK
1023 /*
1024 * For anonymous pages we're done the only reference left
1025 * should be the one m_f() holds.
1026 */
ea6d0630
NH
1027 if (PageAnon(p)) {
1028 ret = MF_RECOVERED;
1029 goto out;
1030 }
6a46079c
AK
1031
1032 /*
1033 * Now truncate the page in the page cache. This is really
1034 * more like a "temporary hole punch"
1035 * Don't do this for block devices when someone else
1036 * has a reference, because it could be file system metadata
1037 * and that's not safe to truncate.
1038 */
1039 mapping = page_mapping(p);
1040 if (!mapping) {
1041 /*
1042 * Page has been teared down in the meanwhile
1043 */
ea6d0630
NH
1044 ret = MF_FAILED;
1045 goto out;
6a46079c
AK
1046 }
1047
a7605426
YS
1048 /*
1049 * The shmem page is kept in page cache instead of truncating
1050 * so is expected to have an extra refcount after error-handling.
1051 */
1052 extra_pins = shmem_mapping(mapping);
1053
6a46079c
AK
1054 /*
1055 * Truncation is a bit tricky. Enable it per file system for now.
1056 *
9608703e 1057 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1058 */
dd0f230a 1059 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
1060 if (has_extra_refcount(ps, p, extra_pins))
1061 ret = MF_FAILED;
1062
ea6d0630
NH
1063out:
1064 unlock_page(p);
dd0f230a 1065
ea6d0630 1066 return ret;
6a46079c
AK
1067}
1068
1069/*
549543df 1070 * Dirty pagecache page
6a46079c
AK
1071 * Issues: when the error hit a hole page the error is not properly
1072 * propagated.
1073 */
dd0f230a 1074static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
1075{
1076 struct address_space *mapping = page_mapping(p);
1077
1078 SetPageError(p);
1079 /* TBD: print more information about the file. */
1080 if (mapping) {
1081 /*
1082 * IO error will be reported by write(), fsync(), etc.
1083 * who check the mapping.
1084 * This way the application knows that something went
1085 * wrong with its dirty file data.
1086 *
1087 * There's one open issue:
1088 *
1089 * The EIO will be only reported on the next IO
1090 * operation and then cleared through the IO map.
1091 * Normally Linux has two mechanisms to pass IO error
1092 * first through the AS_EIO flag in the address space
1093 * and then through the PageError flag in the page.
1094 * Since we drop pages on memory failure handling the
1095 * only mechanism open to use is through AS_AIO.
1096 *
1097 * This has the disadvantage that it gets cleared on
1098 * the first operation that returns an error, while
1099 * the PageError bit is more sticky and only cleared
1100 * when the page is reread or dropped. If an
1101 * application assumes it will always get error on
1102 * fsync, but does other operations on the fd before
25985edc 1103 * and the page is dropped between then the error
6a46079c
AK
1104 * will not be properly reported.
1105 *
1106 * This can already happen even without hwpoisoned
1107 * pages: first on metadata IO errors (which only
1108 * report through AS_EIO) or when the page is dropped
1109 * at the wrong time.
1110 *
1111 * So right now we assume that the application DTRT on
1112 * the first EIO, but we're not worse than other parts
1113 * of the kernel.
1114 */
af21bfaf 1115 mapping_set_error(mapping, -EIO);
6a46079c
AK
1116 }
1117
dd0f230a 1118 return me_pagecache_clean(ps, p);
6a46079c
AK
1119}
1120
1121/*
1122 * Clean and dirty swap cache.
1123 *
1124 * Dirty swap cache page is tricky to handle. The page could live both in page
1125 * cache and swap cache(ie. page is freshly swapped in). So it could be
1126 * referenced concurrently by 2 types of PTEs:
1127 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1128 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1129 * and then
1130 * - clear dirty bit to prevent IO
1131 * - remove from LRU
1132 * - but keep in the swap cache, so that when we return to it on
1133 * a later page fault, we know the application is accessing
1134 * corrupted data and shall be killed (we installed simple
1135 * interception code in do_swap_page to catch it).
1136 *
1137 * Clean swap cache pages can be directly isolated. A later page fault will
1138 * bring in the known good data from disk.
1139 */
dd0f230a 1140static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1141{
ea6d0630 1142 int ret;
dd0f230a 1143 bool extra_pins = false;
ea6d0630 1144
6a46079c
AK
1145 ClearPageDirty(p);
1146 /* Trigger EIO in shmem: */
1147 ClearPageUptodate(p);
1148
ea6d0630
NH
1149 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1150 unlock_page(p);
dd0f230a
YS
1151
1152 if (ret == MF_DELAYED)
1153 extra_pins = true;
1154
1155 if (has_extra_refcount(ps, p, extra_pins))
1156 ret = MF_FAILED;
1157
ea6d0630 1158 return ret;
6a46079c
AK
1159}
1160
dd0f230a 1161static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1162{
75fa68a5 1163 struct folio *folio = page_folio(p);
ea6d0630
NH
1164 int ret;
1165
75fa68a5 1166 delete_from_swap_cache(folio);
e43c3afb 1167
ea6d0630 1168 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1169 folio_unlock(folio);
dd0f230a
YS
1170
1171 if (has_extra_refcount(ps, p, false))
1172 ret = MF_FAILED;
1173
ea6d0630 1174 return ret;
6a46079c
AK
1175}
1176
1177/*
1178 * Huge pages. Needs work.
1179 * Issues:
93f70f90
NH
1180 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1181 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1182 */
dd0f230a 1183static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1184{
a8b2c2ce 1185 int res;
93f70f90 1186 struct page *hpage = compound_head(p);
78bb9203 1187 struct address_space *mapping;
8625147c 1188 bool extra_pins = false;
2491ffee 1189
78bb9203
NH
1190 mapping = page_mapping(hpage);
1191 if (mapping) {
dd0f230a 1192 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
8625147c
JH
1193 /* The page is kept in page cache. */
1194 extra_pins = true;
ea6d0630 1195 unlock_page(hpage);
78bb9203
NH
1196 } else {
1197 unlock_page(hpage);
1198 /*
ef526b17
ML
1199 * migration entry prevents later access on error hugepage,
1200 * so we can free and dissolve it into buddy to save healthy
1201 * subpages.
78bb9203 1202 */
ef526b17 1203 put_page(hpage);
ceaf8fbe 1204 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1205 page_ref_inc(p);
1206 res = MF_RECOVERED;
ceaf8fbe
NH
1207 } else {
1208 res = MF_FAILED;
a8b2c2ce 1209 }
93f70f90 1210 }
78bb9203 1211
8625147c 1212 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1213 res = MF_FAILED;
1214
78bb9203 1215 return res;
6a46079c
AK
1216}
1217
1218/*
1219 * Various page states we can handle.
1220 *
1221 * A page state is defined by its current page->flags bits.
1222 * The table matches them in order and calls the right handler.
1223 *
1224 * This is quite tricky because we can access page at any time
25985edc 1225 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1226 *
1227 * This is not complete. More states could be added.
1228 * For any missing state don't attempt recovery.
1229 */
1230
1231#define dirty (1UL << PG_dirty)
6326fec1 1232#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1233#define unevict (1UL << PG_unevictable)
1234#define mlock (1UL << PG_mlocked)
6a46079c 1235#define lru (1UL << PG_lru)
6a46079c 1236#define head (1UL << PG_head)
6a46079c 1237#define slab (1UL << PG_slab)
6a46079c
AK
1238#define reserved (1UL << PG_reserved)
1239
dd0f230a 1240static struct page_state error_states[] = {
cc637b17 1241 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1242 /*
1243 * free pages are specially detected outside this table:
1244 * PG_buddy pages only make a small fraction of all free pages.
1245 */
6a46079c
AK
1246
1247 /*
1248 * Could in theory check if slab page is free or if we can drop
1249 * currently unused objects without touching them. But just
1250 * treat it as standard kernel for now.
1251 */
cc637b17 1252 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1253
cc637b17 1254 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1255
cc637b17
XX
1256 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1257 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1258
cc637b17
XX
1259 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1260 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1261
cc637b17
XX
1262 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1263 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1264
cc637b17
XX
1265 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1266 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1267
1268 /*
1269 * Catchall entry: must be at end.
1270 */
cc637b17 1271 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1272};
1273
2326c467
AK
1274#undef dirty
1275#undef sc
1276#undef unevict
1277#undef mlock
2326c467 1278#undef lru
2326c467 1279#undef head
2326c467
AK
1280#undef slab
1281#undef reserved
1282
18f41fa6
JY
1283static void update_per_node_mf_stats(unsigned long pfn,
1284 enum mf_result result)
1285{
1286 int nid = MAX_NUMNODES;
1287 struct memory_failure_stats *mf_stats = NULL;
1288
1289 nid = pfn_to_nid(pfn);
1290 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1291 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1292 return;
1293 }
1294
1295 mf_stats = &NODE_DATA(nid)->mf_stats;
1296 switch (result) {
1297 case MF_IGNORED:
1298 ++mf_stats->ignored;
1299 break;
1300 case MF_FAILED:
1301 ++mf_stats->failed;
1302 break;
1303 case MF_DELAYED:
1304 ++mf_stats->delayed;
1305 break;
1306 case MF_RECOVERED:
1307 ++mf_stats->recovered;
1308 break;
1309 default:
1310 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1311 break;
1312 }
1313 ++mf_stats->total;
1314}
1315
ff604cf6
NH
1316/*
1317 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1318 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1319 */
b66d00df
KW
1320static int action_result(unsigned long pfn, enum mf_action_page_type type,
1321 enum mf_result result)
6a46079c 1322{
97f0b134
XX
1323 trace_memory_failure_event(pfn, type, result);
1324
a46c9304 1325 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1326
1327 update_per_node_mf_stats(pfn, result);
1328
96f96763 1329 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1330 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1331
1332 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1333}
1334
1335static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1336 unsigned long pfn)
6a46079c
AK
1337{
1338 int result;
1339
ea6d0630 1340 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1341 result = ps->action(ps, p);
7456b040 1342
6a46079c
AK
1343 /* Could do more checks here if page looks ok */
1344 /*
1345 * Could adjust zone counters here to correct for the missing page.
1346 */
1347
b66d00df 1348 return action_result(pfn, ps->type, result);
6a46079c
AK
1349}
1350
bf181c58
NH
1351static inline bool PageHWPoisonTakenOff(struct page *page)
1352{
1353 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1354}
1355
1356void SetPageHWPoisonTakenOff(struct page *page)
1357{
1358 set_page_private(page, MAGIC_HWPOISON);
1359}
1360
1361void ClearPageHWPoisonTakenOff(struct page *page)
1362{
1363 if (PageHWPoison(page))
1364 set_page_private(page, 0);
1365}
1366
25182f05
NH
1367/*
1368 * Return true if a page type of a given page is supported by hwpoison
1369 * mechanism (while handling could fail), otherwise false. This function
1370 * does not return true for hugetlb or device memory pages, so it's assumed
1371 * to be called only in the context where we never have such pages.
1372 */
bf6445bc 1373static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1374{
3f871370 1375 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1376 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1377 return true;
bf6445bc 1378
3f871370 1379 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1380}
1381
bf6445bc 1382static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1383{
04bac040 1384 struct folio *folio = page_folio(page);
25182f05
NH
1385 int ret = 0;
1386 bool hugetlb = false;
1387
04bac040 1388 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
25182f05
NH
1389 if (hugetlb)
1390 return ret;
1391
1392 /*
04bac040
SK
1393 * This check prevents from calling folio_try_get() for any
1394 * unsupported type of folio in order to reduce the risk of unexpected
1395 * races caused by taking a folio refcount.
25182f05 1396 */
04bac040 1397 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1398 return -EBUSY;
ead07f6a 1399
04bac040
SK
1400 if (folio_try_get(folio)) {
1401 if (folio == page_folio(page))
c2e7e00b
KK
1402 return 1;
1403
96f96763 1404 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1405 folio_put(folio);
c2e7e00b
KK
1406 }
1407
1408 return 0;
ead07f6a 1409}
ead07f6a 1410
2f714160 1411static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1412{
2f714160
OS
1413 int ret = 0, pass = 0;
1414 bool count_increased = false;
17e395b6 1415
2f714160
OS
1416 if (flags & MF_COUNT_INCREASED)
1417 count_increased = true;
1418
1419try_again:
0ed950d1 1420 if (!count_increased) {
bf6445bc 1421 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1422 if (!ret) {
1423 if (page_count(p)) {
1424 /* We raced with an allocation, retry. */
1425 if (pass++ < 3)
1426 goto try_again;
1427 ret = -EBUSY;
1428 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1429 /* We raced with put_page, retry. */
1430 if (pass++ < 3)
1431 goto try_again;
1432 ret = -EIO;
1433 }
1434 goto out;
1435 } else if (ret == -EBUSY) {
fcc00621
NH
1436 /*
1437 * We raced with (possibly temporary) unhandlable
1438 * page, retry.
1439 */
1440 if (pass++ < 3) {
d0505e9f 1441 shake_page(p);
2f714160 1442 goto try_again;
fcc00621
NH
1443 }
1444 ret = -EIO;
0ed950d1 1445 goto out;
2f714160 1446 }
0ed950d1
NH
1447 }
1448
bf6445bc 1449 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1450 ret = 1;
2f714160 1451 } else {
0ed950d1
NH
1452 /*
1453 * A page we cannot handle. Check whether we can turn
1454 * it into something we can handle.
1455 */
1456 if (pass++ < 3) {
2f714160 1457 put_page(p);
d0505e9f 1458 shake_page(p);
0ed950d1
NH
1459 count_increased = false;
1460 goto try_again;
2f714160 1461 }
0ed950d1
NH
1462 put_page(p);
1463 ret = -EIO;
17e395b6 1464 }
0ed950d1 1465out:
941ca063 1466 if (ret == -EIO)
96f96763 1467 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1468
17e395b6
OS
1469 return ret;
1470}
1471
bf181c58
NH
1472static int __get_unpoison_page(struct page *page)
1473{
04bac040 1474 struct folio *folio = page_folio(page);
bf181c58
NH
1475 int ret = 0;
1476 bool hugetlb = false;
1477
04bac040 1478 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
bf181c58
NH
1479 if (hugetlb)
1480 return ret;
1481
1482 /*
1483 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1484 * but also isolated from buddy freelist, so need to identify the
1485 * state and have to cancel both operations to unpoison.
1486 */
1487 if (PageHWPoisonTakenOff(page))
1488 return -EHWPOISON;
1489
1490 return get_page_unless_zero(page) ? 1 : 0;
1491}
1492
0ed950d1
NH
1493/**
1494 * get_hwpoison_page() - Get refcount for memory error handling
1495 * @p: Raw error page (hit by memory error)
1496 * @flags: Flags controlling behavior of error handling
1497 *
1498 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1499 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1500 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1501 * such as LRU page and hugetlb page).
1502 *
1503 * Memory error handling could be triggered at any time on any type of page,
1504 * so it's prone to race with typical memory management lifecycle (like
1505 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1506 * extra care for the error page's state (as done in __get_hwpoison_page()),
1507 * and has some retry logic in get_any_page().
1508 *
bf181c58
NH
1509 * When called from unpoison_memory(), the caller should already ensure that
1510 * the given page has PG_hwpoison. So it's never reused for other page
1511 * allocations, and __get_unpoison_page() never races with them.
1512 *
0ed950d1
NH
1513 * Return: 0 on failure,
1514 * 1 on success for in-use pages in a well-defined state,
1515 * -EIO for pages on which we can not handle memory errors,
1516 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1517 * operations like allocation and free,
1518 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1519 */
1520static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1521{
1522 int ret;
1523
1524 zone_pcp_disable(page_zone(p));
bf181c58
NH
1525 if (flags & MF_UNPOISON)
1526 ret = __get_unpoison_page(p);
1527 else
1528 ret = get_any_page(p, flags);
2f714160
OS
1529 zone_pcp_enable(page_zone(p));
1530
1531 return ret;
1532}
1533
6a46079c
AK
1534/*
1535 * Do all that is necessary to remove user space mappings. Unmap
1536 * the pages and send SIGBUS to the processes if the data was dirty.
1537 */
666e5a40 1538static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1539 int flags, struct page *hpage)
6a46079c 1540{
869f7ee6 1541 struct folio *folio = page_folio(hpage);
6da6b1d4 1542 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1543 struct address_space *mapping;
1544 LIST_HEAD(tokill);
1fb08ac6 1545 bool unmap_success;
0792a4a6 1546 int forcekill;
286c469a 1547 bool mlocked = PageMlocked(hpage);
6a46079c 1548
93a9eb39
NH
1549 /*
1550 * Here we are interested only in user-mapped pages, so skip any
1551 * other types of pages.
1552 */
b680dae9 1553 if (PageReserved(p) || PageSlab(p) || PageTable(p))
666e5a40 1554 return true;
93a9eb39 1555 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1556 return true;
6a46079c 1557
6a46079c
AK
1558 /*
1559 * This check implies we don't kill processes if their pages
1560 * are in the swap cache early. Those are always late kills.
1561 */
7af446a8 1562 if (!page_mapped(hpage))
666e5a40 1563 return true;
1668bfd5 1564
6a46079c 1565 if (PageSwapCache(p)) {
96f96763 1566 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1567 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1568 }
1569
1570 /*
1571 * Propagate the dirty bit from PTEs to struct page first, because we
1572 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1573 * XXX: the dirty test could be racy: set_page_dirty() may not always
1574 * be called inside page lock (it's recommended but not enforced).
6a46079c 1575 */
7af446a8 1576 mapping = page_mapping(hpage);
6751ed65 1577 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1578 mapping_can_writeback(mapping)) {
7af446a8
NH
1579 if (page_mkclean(hpage)) {
1580 SetPageDirty(hpage);
6a46079c 1581 } else {
6da6b1d4 1582 ttu &= ~TTU_HWPOISON;
96f96763 1583 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1584 pfn);
1585 }
1586 }
1587
1588 /*
1589 * First collect all the processes that have the page
1590 * mapped in dirty form. This has to be done before try_to_unmap,
1591 * because ttu takes the rmap data structures down.
6a46079c 1592 */
0792a4a6 1593 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1594
357670f7
ML
1595 if (PageHuge(hpage) && !PageAnon(hpage)) {
1596 /*
1597 * For hugetlb pages in shared mappings, try_to_unmap
1598 * could potentially call huge_pmd_unshare. Because of
1599 * this, take semaphore in write mode here and set
1600 * TTU_RMAP_LOCKED to indicate we have taken the lock
1601 * at this higher level.
1602 */
1603 mapping = hugetlb_page_mapping_lock_write(hpage);
1604 if (mapping) {
9030fb0b 1605 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1606 i_mmap_unlock_write(mapping);
1607 } else
96f96763 1608 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1609 } else {
9030fb0b 1610 try_to_unmap(folio, ttu);
c0d0381a 1611 }
1fb08ac6
YS
1612
1613 unmap_success = !page_mapped(hpage);
666e5a40 1614 if (!unmap_success)
96f96763 1615 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1616 pfn, page_mapcount(hpage));
a6d30ddd 1617
286c469a
NH
1618 /*
1619 * try_to_unmap() might put mlocked page in lru cache, so call
1620 * shake_page() again to ensure that it's flushed.
1621 */
1622 if (mlocked)
d0505e9f 1623 shake_page(hpage);
286c469a 1624
6a46079c
AK
1625 /*
1626 * Now that the dirty bit has been propagated to the
1627 * struct page and all unmaps done we can decide if
1628 * killing is needed or not. Only kill when the page
6751ed65
TL
1629 * was dirty or the process is not restartable,
1630 * otherwise the tokill list is merely
6a46079c
AK
1631 * freed. When there was a problem unmapping earlier
1632 * use a more force-full uncatchable kill to prevent
1633 * any accesses to the poisoned memory.
1634 */
0792a4a6
ML
1635 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1636 !unmap_success;
ae1139ec 1637 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1638
666e5a40 1639 return unmap_success;
6a46079c
AK
1640}
1641
0348d2eb
NH
1642static int identify_page_state(unsigned long pfn, struct page *p,
1643 unsigned long page_flags)
761ad8d7
NH
1644{
1645 struct page_state *ps;
0348d2eb
NH
1646
1647 /*
1648 * The first check uses the current page flags which may not have any
1649 * relevant information. The second check with the saved page flags is
1650 * carried out only if the first check can't determine the page status.
1651 */
1652 for (ps = error_states;; ps++)
1653 if ((p->flags & ps->mask) == ps->res)
1654 break;
1655
1656 page_flags |= (p->flags & (1UL << PG_dirty));
1657
1658 if (!ps->mask)
1659 for (ps = error_states;; ps++)
1660 if ((page_flags & ps->mask) == ps->res)
1661 break;
1662 return page_action(ps, p, pfn);
1663}
1664
2ace36f0 1665static int try_to_split_thp_page(struct page *page)
694bf0b0 1666{
2ace36f0
KW
1667 int ret;
1668
694bf0b0 1669 lock_page(page);
2ace36f0
KW
1670 ret = split_huge_page(page);
1671 unlock_page(page);
694bf0b0 1672
2ace36f0 1673 if (unlikely(ret))
694bf0b0 1674 put_page(page);
694bf0b0 1675
2ace36f0 1676 return ret;
694bf0b0
OS
1677}
1678
00cc790e
SR
1679static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1680 struct address_space *mapping, pgoff_t index, int flags)
1681{
1682 struct to_kill *tk;
1683 unsigned long size = 0;
1684
1685 list_for_each_entry(tk, to_kill, nd)
1686 if (tk->size_shift)
1687 size = max(size, 1UL << tk->size_shift);
1688
1689 if (size) {
1690 /*
1691 * Unmap the largest mapping to avoid breaking up device-dax
1692 * mappings which are constant size. The actual size of the
1693 * mapping being torn down is communicated in siginfo, see
1694 * kill_proc()
1695 */
1696 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1697
1698 unmap_mapping_range(mapping, start, size, 0);
1699 }
1700
1701 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1702}
1703
1704static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1705 struct dev_pagemap *pgmap)
1706{
1707 struct page *page = pfn_to_page(pfn);
1708 LIST_HEAD(to_kill);
1709 dax_entry_t cookie;
1710 int rc = 0;
1711
1712 /*
1713 * Pages instantiated by device-dax (not filesystem-dax)
1714 * may be compound pages.
1715 */
1716 page = compound_head(page);
1717
1718 /*
1719 * Prevent the inode from being freed while we are interrogating
1720 * the address_space, typically this would be handled by
1721 * lock_page(), but dax pages do not use the page lock. This
1722 * also prevents changes to the mapping of this pfn until
1723 * poison signaling is complete.
1724 */
1725 cookie = dax_lock_page(page);
1726 if (!cookie)
1727 return -EBUSY;
1728
1729 if (hwpoison_filter(page)) {
1730 rc = -EOPNOTSUPP;
1731 goto unlock;
1732 }
1733
1734 switch (pgmap->type) {
1735 case MEMORY_DEVICE_PRIVATE:
1736 case MEMORY_DEVICE_COHERENT:
1737 /*
1738 * TODO: Handle device pages which may need coordination
1739 * with device-side memory.
1740 */
1741 rc = -ENXIO;
1742 goto unlock;
1743 default:
1744 break;
1745 }
1746
1747 /*
1748 * Use this flag as an indication that the dax page has been
1749 * remapped UC to prevent speculative consumption of poison.
1750 */
1751 SetPageHWPoison(page);
1752
1753 /*
1754 * Unlike System-RAM there is no possibility to swap in a
1755 * different physical page at a given virtual address, so all
1756 * userspace consumption of ZONE_DEVICE memory necessitates
1757 * SIGBUS (i.e. MF_MUST_KILL)
1758 */
1759 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1760 collect_procs(page, &to_kill, true);
1761
1762 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1763unlock:
1764 dax_unlock_page(page, cookie);
1765 return rc;
1766}
1767
c36e2024
SR
1768#ifdef CONFIG_FS_DAX
1769/**
1770 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1771 * @mapping: address_space of the file in use
1772 * @index: start pgoff of the range within the file
1773 * @count: length of the range, in unit of PAGE_SIZE
1774 * @mf_flags: memory failure flags
1775 */
1776int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1777 unsigned long count, int mf_flags)
1778{
1779 LIST_HEAD(to_kill);
1780 dax_entry_t cookie;
1781 struct page *page;
1782 size_t end = index + count;
1783
1784 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1785
1786 for (; index < end; index++) {
1787 page = NULL;
1788 cookie = dax_lock_mapping_entry(mapping, index, &page);
1789 if (!cookie)
1790 return -EBUSY;
1791 if (!page)
1792 goto unlock;
1793
1794 SetPageHWPoison(page);
1795
1796 collect_procs_fsdax(page, mapping, index, &to_kill);
1797 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1798 index, mf_flags);
1799unlock:
1800 dax_unlock_mapping_entry(mapping, index, cookie);
1801 }
1802 return 0;
1803}
1804EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1805#endif /* CONFIG_FS_DAX */
1806
161df60e
NH
1807#ifdef CONFIG_HUGETLB_PAGE
1808/*
1809 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1810 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1811 */
1812struct raw_hwp_page {
1813 struct llist_node node;
1814 struct page *page;
1815};
1816
b02e7582 1817static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1818{
b02e7582 1819 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1820}
1821
0858b5eb 1822static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e
NH
1823{
1824 struct llist_head *head;
1825 struct llist_node *t, *tnode;
ac5fcde0 1826 unsigned long count = 0;
161df60e 1827
b02e7582 1828 head = raw_hwp_list_head(folio);
161df60e
NH
1829 llist_for_each_safe(tnode, t, head->first) {
1830 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1831
ac5fcde0
NH
1832 if (move_flag)
1833 SetPageHWPoison(p->page);
5033091d
NH
1834 else
1835 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1836 kfree(p);
ac5fcde0 1837 count++;
161df60e
NH
1838 }
1839 llist_del_all(head);
ac5fcde0 1840 return count;
161df60e
NH
1841}
1842
595dd818 1843static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1844{
1845 struct llist_head *head;
1846 struct raw_hwp_page *raw_hwp;
1847 struct llist_node *t, *tnode;
595dd818 1848 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1849
1850 /*
1851 * Once the hwpoison hugepage has lost reliable raw error info,
1852 * there is little meaning to keep additional error info precisely,
1853 * so skip to add additional raw error info.
1854 */
b02e7582 1855 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1856 return -EHWPOISON;
b02e7582 1857 head = raw_hwp_list_head(folio);
161df60e
NH
1858 llist_for_each_safe(tnode, t, head->first) {
1859 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1860
1861 if (p->page == page)
1862 return -EHWPOISON;
1863 }
1864
1865 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1866 if (raw_hwp) {
1867 raw_hwp->page = page;
1868 llist_add(&raw_hwp->node, head);
1869 /* the first error event will be counted in action_result(). */
1870 if (ret)
a46c9304 1871 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1872 } else {
1873 /*
1874 * Failed to save raw error info. We no longer trace all
1875 * hwpoisoned subpages, and we need refuse to free/dissolve
1876 * this hwpoisoned hugepage.
1877 */
b02e7582 1878 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1879 /*
b02e7582 1880 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1881 * used any more, so free it.
1882 */
0858b5eb 1883 __folio_free_raw_hwp(folio, false);
161df60e
NH
1884 }
1885 return ret;
1886}
1887
9637d7df 1888static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1889{
1890 /*
9637d7df 1891 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1892 * pages for tail pages are required but they don't exist.
1893 */
9637d7df 1894 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1895 return 0;
1896
1897 /*
9637d7df 1898 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1899 * definition.
1900 */
9637d7df 1901 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1902 return 0;
1903
0858b5eb 1904 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1905}
1906
2ff6cece 1907void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1908{
2ff6cece 1909 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1910 return;
2ff6cece 1911 folio_clear_hwpoison(folio);
9637d7df 1912 folio_free_raw_hwp(folio, true);
161df60e
NH
1913}
1914
405ce051
NH
1915/*
1916 * Called from hugetlb code with hugetlb_lock held.
1917 *
1918 * Return values:
1919 * 0 - free hugepage
1920 * 1 - in-use hugepage
1921 * 2 - not a hugepage
1922 * -EBUSY - the hugepage is busy (try to retry)
1923 * -EHWPOISON - the hugepage is already hwpoisoned
1924 */
e591ef7d
NH
1925int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1926 bool *migratable_cleared)
405ce051
NH
1927{
1928 struct page *page = pfn_to_page(pfn);
4c110ec9 1929 struct folio *folio = page_folio(page);
405ce051
NH
1930 int ret = 2; /* fallback to normal page handling */
1931 bool count_increased = false;
1932
4c110ec9 1933 if (!folio_test_hugetlb(folio))
405ce051
NH
1934 goto out;
1935
1936 if (flags & MF_COUNT_INCREASED) {
1937 ret = 1;
1938 count_increased = true;
4c110ec9 1939 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 1940 ret = 0;
4c110ec9
SK
1941 } else if (folio_test_hugetlb_migratable(folio)) {
1942 ret = folio_try_get(folio);
405ce051
NH
1943 if (ret)
1944 count_increased = true;
1945 } else {
1946 ret = -EBUSY;
38f6d293
NH
1947 if (!(flags & MF_NO_RETRY))
1948 goto out;
405ce051
NH
1949 }
1950
595dd818 1951 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
1952 ret = -EHWPOISON;
1953 goto out;
1954 }
1955
e591ef7d 1956 /*
4c110ec9 1957 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
1958 * from being migrated by memory hotremove.
1959 */
4c110ec9
SK
1960 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1961 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
1962 *migratable_cleared = true;
1963 }
1964
405ce051
NH
1965 return ret;
1966out:
1967 if (count_increased)
4c110ec9 1968 folio_put(folio);
405ce051
NH
1969 return ret;
1970}
1971
405ce051
NH
1972/*
1973 * Taking refcount of hugetlb pages needs extra care about race conditions
1974 * with basic operations like hugepage allocation/free/demotion.
1975 * So some of prechecks for hwpoison (pinning, and testing/setting
1976 * PageHWPoison) should be done in single hugetlb_lock range.
1977 */
1978static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1979{
761ad8d7 1980 int res;
405ce051 1981 struct page *p = pfn_to_page(pfn);
bc1cfde1 1982 struct folio *folio;
761ad8d7 1983 unsigned long page_flags;
e591ef7d 1984 bool migratable_cleared = false;
761ad8d7 1985
405ce051
NH
1986 *hugetlb = 1;
1987retry:
e591ef7d 1988 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
1989 if (res == 2) { /* fallback to normal page handling */
1990 *hugetlb = 0;
1991 return 0;
1992 } else if (res == -EHWPOISON) {
96f96763 1993 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 1994 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
1995 folio = page_folio(p);
1996 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
1997 }
1998 return res;
1999 } else if (res == -EBUSY) {
38f6d293
NH
2000 if (!(flags & MF_NO_RETRY)) {
2001 flags |= MF_NO_RETRY;
405ce051
NH
2002 goto retry;
2003 }
b66d00df 2004 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2005 }
2006
bc1cfde1
SK
2007 folio = page_folio(p);
2008 folio_lock(folio);
405ce051
NH
2009
2010 if (hwpoison_filter(p)) {
2ff6cece 2011 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2012 if (migratable_cleared)
bc1cfde1
SK
2013 folio_set_hugetlb_migratable(folio);
2014 folio_unlock(folio);
f36a5543 2015 if (res == 1)
bc1cfde1 2016 folio_put(folio);
f36a5543 2017 return -EOPNOTSUPP;
405ce051
NH
2018 }
2019
405ce051
NH
2020 /*
2021 * Handling free hugepage. The possible race with hugepage allocation
2022 * or demotion can be prevented by PageHWPoison flag.
2023 */
2024 if (res == 0) {
bc1cfde1 2025 folio_unlock(folio);
ceaf8fbe 2026 if (__page_handle_poison(p) >= 0) {
405ce051
NH
2027 page_ref_inc(p);
2028 res = MF_RECOVERED;
ceaf8fbe
NH
2029 } else {
2030 res = MF_FAILED;
761ad8d7 2031 }
b66d00df 2032 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2033 }
2034
bc1cfde1 2035 page_flags = folio->flags;
761ad8d7 2036
bc1cfde1
SK
2037 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2038 folio_unlock(folio);
b66d00df 2039 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2040 }
2041
ea6d0630 2042 return identify_page_state(pfn, p, page_flags);
761ad8d7 2043}
00cc790e 2044
405ce051
NH
2045#else
2046static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2047{
2048 return 0;
2049}
00cc790e 2050
9637d7df 2051static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2052{
2053 return 0;
2054}
00cc790e 2055#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2056
b5f1fc98
KW
2057/* Drop the extra refcount in case we come from madvise() */
2058static void put_ref_page(unsigned long pfn, int flags)
2059{
2060 struct page *page;
2061
2062 if (!(flags & MF_COUNT_INCREASED))
2063 return;
2064
2065 page = pfn_to_page(pfn);
2066 if (page)
2067 put_page(page);
2068}
2069
6100e34b
DW
2070static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2071 struct dev_pagemap *pgmap)
2072{
00cc790e 2073 int rc = -ENXIO;
6100e34b 2074
b5f1fc98 2075 put_ref_page(pfn, flags);
1e8aaedb 2076
34dc45be 2077 /* device metadata space is not recoverable */
00cc790e 2078 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2079 goto out;
61e28cf0 2080
6100e34b 2081 /*
33a8f7f2
SR
2082 * Call driver's implementation to handle the memory failure, otherwise
2083 * fall back to generic handler.
6100e34b 2084 */
65d3440e 2085 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2086 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2087 /*
33a8f7f2
SR
2088 * Fall back to generic handler too if operation is not
2089 * supported inside the driver/device/filesystem.
6100e34b 2090 */
33a8f7f2
SR
2091 if (rc != -EOPNOTSUPP)
2092 goto out;
6100e34b
DW
2093 }
2094
00cc790e 2095 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2096out:
2097 /* drop pgmap ref acquired in caller */
2098 put_dev_pagemap(pgmap);
2099 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2100 return rc;
2101}
2102
91d00547
NH
2103static DEFINE_MUTEX(mf_mutex);
2104
cd42f4a3
TL
2105/**
2106 * memory_failure - Handle memory failure of a page.
2107 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2108 * @flags: fine tune action taken
2109 *
2110 * This function is called by the low level machine check code
2111 * of an architecture when it detects hardware memory corruption
2112 * of a page. It tries its best to recover, which includes
2113 * dropping pages, killing processes etc.
2114 *
2115 * The function is primarily of use for corruptions that
2116 * happen outside the current execution context (e.g. when
2117 * detected by a background scrubber)
2118 *
2119 * Must run in process context (e.g. a work queue) with interrupts
2120 * enabled and no spinlocks hold.
d1fe111f 2121 *
2122 * Return: 0 for successfully handled the memory error,
9113eaf3 2123 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2124 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2125 */
83b57531 2126int memory_failure(unsigned long pfn, int flags)
6a46079c 2127{
6a46079c 2128 struct page *p;
7af446a8 2129 struct page *hpage;
6100e34b 2130 struct dev_pagemap *pgmap;
171936dd 2131 int res = 0;
524fca1e 2132 unsigned long page_flags;
a8b2c2ce 2133 bool retry = true;
405ce051 2134 int hugetlb = 0;
6a46079c
AK
2135
2136 if (!sysctl_memory_failure_recovery)
83b57531 2137 panic("Memory failure on page %lx", pfn);
6a46079c 2138
03b122da
TL
2139 mutex_lock(&mf_mutex);
2140
67f22ba7 2141 if (!(flags & MF_SW_SIMULATED))
2142 hw_memory_failure = true;
2143
96c804a6
DH
2144 p = pfn_to_online_page(pfn);
2145 if (!p) {
03b122da
TL
2146 res = arch_memory_failure(pfn, flags);
2147 if (res == 0)
2148 goto unlock_mutex;
2149
96c804a6
DH
2150 if (pfn_valid(pfn)) {
2151 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
2152 if (pgmap) {
2153 res = memory_failure_dev_pagemap(pfn, flags,
2154 pgmap);
2155 goto unlock_mutex;
2156 }
96c804a6 2157 }
96f96763 2158 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2159 res = -ENXIO;
2160 goto unlock_mutex;
6a46079c
AK
2161 }
2162
a8b2c2ce 2163try_again:
405ce051
NH
2164 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2165 if (hugetlb)
171936dd 2166 goto unlock_mutex;
171936dd 2167
6a46079c 2168 if (TestSetPageHWPoison(p)) {
96f96763 2169 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2170 res = -EHWPOISON;
a3f5d80e
NH
2171 if (flags & MF_ACTION_REQUIRED)
2172 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2173 if (flags & MF_COUNT_INCREASED)
2174 put_page(p);
171936dd 2175 goto unlock_mutex;
6a46079c
AK
2176 }
2177
75ee64b3 2178 hpage = compound_head(p);
6a46079c
AK
2179
2180 /*
2181 * We need/can do nothing about count=0 pages.
2182 * 1) it's a free page, and therefore in safe hand:
9cf28191 2183 * check_new_page() will be the gate keeper.
761ad8d7 2184 * 2) it's part of a non-compound high order page.
6a46079c
AK
2185 * Implies some kernel user: cannot stop them from
2186 * R/W the page; let's pray that the page has been
2187 * used and will be freed some time later.
2188 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2189 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2190 */
0ed950d1
NH
2191 if (!(flags & MF_COUNT_INCREASED)) {
2192 res = get_hwpoison_page(p, flags);
2193 if (!res) {
2194 if (is_free_buddy_page(p)) {
2195 if (take_page_off_buddy(p)) {
2196 page_ref_inc(p);
2197 res = MF_RECOVERED;
2198 } else {
2199 /* We lost the race, try again */
2200 if (retry) {
2201 ClearPageHWPoison(p);
0ed950d1
NH
2202 retry = false;
2203 goto try_again;
2204 }
2205 res = MF_FAILED;
a8b2c2ce 2206 }
b66d00df 2207 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2208 } else {
b66d00df 2209 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2210 }
0ed950d1
NH
2211 goto unlock_mutex;
2212 } else if (res < 0) {
b66d00df 2213 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2214 goto unlock_mutex;
8d22ba1b 2215 }
6a46079c
AK
2216 }
2217
761ad8d7 2218 if (PageTransHuge(hpage)) {
eac96c3e
YS
2219 /*
2220 * The flag must be set after the refcount is bumped
2221 * otherwise it may race with THP split.
2222 * And the flag can't be set in get_hwpoison_page() since
2223 * it is called by soft offline too and it is just called
2224 * for !MF_COUNT_INCREASE. So here seems to be the best
2225 * place.
2226 *
2227 * Don't need care about the above error handling paths for
2228 * get_hwpoison_page() since they handle either free page
2229 * or unhandlable page. The refcount is bumped iff the
2230 * page is a valid handlable page.
2231 */
2232 SetPageHasHWPoisoned(hpage);
2ace36f0 2233 if (try_to_split_thp_page(p) < 0) {
b66d00df 2234 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2235 goto unlock_mutex;
5d1fd5dc 2236 }
415c64c1 2237 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2238 }
2239
e43c3afb
WF
2240 /*
2241 * We ignore non-LRU pages for good reasons.
2242 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2243 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2244 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2245 * The check (unnecessarily) ignores LRU pages being isolated and
2246 * walked by the page reclaim code, however that's not a big loss.
2247 */
d0505e9f 2248 shake_page(p);
e43c3afb 2249
761ad8d7 2250 lock_page(p);
847ce401 2251
f37d4298 2252 /*
75ee64b3
ML
2253 * We're only intended to deal with the non-Compound page here.
2254 * However, the page could have changed compound pages due to
2255 * race window. If this happens, we could try again to hopefully
2256 * handle the page next round.
f37d4298 2257 */
75ee64b3
ML
2258 if (PageCompound(p)) {
2259 if (retry) {
e240ac52 2260 ClearPageHWPoison(p);
75ee64b3
ML
2261 unlock_page(p);
2262 put_page(p);
2263 flags &= ~MF_COUNT_INCREASED;
2264 retry = false;
2265 goto try_again;
2266 }
b66d00df 2267 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2268 goto unlock_page;
f37d4298
AK
2269 }
2270
524fca1e
NH
2271 /*
2272 * We use page flags to determine what action should be taken, but
2273 * the flags can be modified by the error containment action. One
2274 * example is an mlocked page, where PG_mlocked is cleared by
2275 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2276 * correctly, we save a copy of the page flags at this time.
2277 */
7d9d46ac 2278 page_flags = p->flags;
524fca1e 2279
7c116f2b 2280 if (hwpoison_filter(p)) {
2fe62e22 2281 ClearPageHWPoison(p);
761ad8d7 2282 unlock_page(p);
dd6e2402 2283 put_page(p);
d1fe111f 2284 res = -EOPNOTSUPP;
171936dd 2285 goto unlock_mutex;
7c116f2b 2286 }
847ce401 2287
e8675d29 2288 /*
e0650a41 2289 * __munlock_folio() may clear a writeback page's LRU flag without
e8675d29 2290 * page_lock. We need wait writeback completion for this page or it
2291 * may trigger vfs BUG while evict inode.
2292 */
b04d3eeb 2293 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2294 goto identify_page_state;
2295
6edd6cc6
NH
2296 /*
2297 * It's very difficult to mess with pages currently under IO
2298 * and in many cases impossible, so we just avoid it here.
2299 */
6a46079c
AK
2300 wait_on_page_writeback(p);
2301
2302 /*
2303 * Now take care of user space mappings.
6ffcd825 2304 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2305 */
ed8c2f49 2306 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
b66d00df 2307 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2308 goto unlock_page;
1668bfd5 2309 }
6a46079c
AK
2310
2311 /*
2312 * Torn down by someone else?
2313 */
dc2a1cbf 2314 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
b66d00df 2315 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2316 goto unlock_page;
6a46079c
AK
2317 }
2318
0bc1f8b0 2319identify_page_state:
0348d2eb 2320 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2321 mutex_unlock(&mf_mutex);
2322 return res;
171936dd 2323unlock_page:
761ad8d7 2324 unlock_page(p);
171936dd
TL
2325unlock_mutex:
2326 mutex_unlock(&mf_mutex);
6a46079c
AK
2327 return res;
2328}
cd42f4a3 2329EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2330
ea8f5fb8
HY
2331#define MEMORY_FAILURE_FIFO_ORDER 4
2332#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2333
2334struct memory_failure_entry {
2335 unsigned long pfn;
ea8f5fb8
HY
2336 int flags;
2337};
2338
2339struct memory_failure_cpu {
2340 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2341 MEMORY_FAILURE_FIFO_SIZE);
2342 spinlock_t lock;
2343 struct work_struct work;
2344};
2345
2346static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2347
2348/**
2349 * memory_failure_queue - Schedule handling memory failure of a page.
2350 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2351 * @flags: Flags for memory failure handling
2352 *
2353 * This function is called by the low level hardware error handler
2354 * when it detects hardware memory corruption of a page. It schedules
2355 * the recovering of error page, including dropping pages, killing
2356 * processes etc.
2357 *
2358 * The function is primarily of use for corruptions that
2359 * happen outside the current execution context (e.g. when
2360 * detected by a background scrubber)
2361 *
2362 * Can run in IRQ context.
2363 */
83b57531 2364void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2365{
2366 struct memory_failure_cpu *mf_cpu;
2367 unsigned long proc_flags;
2368 struct memory_failure_entry entry = {
2369 .pfn = pfn,
ea8f5fb8
HY
2370 .flags = flags,
2371 };
2372
2373 mf_cpu = &get_cpu_var(memory_failure_cpu);
2374 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2375 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2376 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2377 else
96f96763 2378 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2379 pfn);
2380 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2381 put_cpu_var(memory_failure_cpu);
2382}
2383EXPORT_SYMBOL_GPL(memory_failure_queue);
2384
2385static void memory_failure_work_func(struct work_struct *work)
2386{
2387 struct memory_failure_cpu *mf_cpu;
2388 struct memory_failure_entry entry = { 0, };
2389 unsigned long proc_flags;
2390 int gotten;
2391
06202231 2392 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2393 for (;;) {
2394 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2395 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2396 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2397 if (!gotten)
2398 break;
cf870c70 2399 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2400 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2401 else
83b57531 2402 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2403 }
2404}
2405
06202231
JM
2406/*
2407 * Process memory_failure work queued on the specified CPU.
2408 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2409 */
2410void memory_failure_queue_kick(int cpu)
2411{
2412 struct memory_failure_cpu *mf_cpu;
2413
2414 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2415 cancel_work_sync(&mf_cpu->work);
2416 memory_failure_work_func(&mf_cpu->work);
2417}
2418
ea8f5fb8
HY
2419static int __init memory_failure_init(void)
2420{
2421 struct memory_failure_cpu *mf_cpu;
2422 int cpu;
2423
2424 for_each_possible_cpu(cpu) {
2425 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2426 spin_lock_init(&mf_cpu->lock);
2427 INIT_KFIFO(mf_cpu->fifo);
2428 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2429 }
2430
97de10a9
KW
2431 register_sysctl_init("vm", memory_failure_table);
2432
ea8f5fb8
HY
2433 return 0;
2434}
2435core_initcall(memory_failure_init);
2436
96f96763
KW
2437#undef pr_fmt
2438#define pr_fmt(fmt) "" fmt
a5f65109
NH
2439#define unpoison_pr_info(fmt, pfn, rs) \
2440({ \
2441 if (__ratelimit(rs)) \
2442 pr_info(fmt, pfn); \
2443})
2444
847ce401
WF
2445/**
2446 * unpoison_memory - Unpoison a previously poisoned page
2447 * @pfn: Page number of the to be unpoisoned page
2448 *
2449 * Software-unpoison a page that has been poisoned by
2450 * memory_failure() earlier.
2451 *
2452 * This is only done on the software-level, so it only works
2453 * for linux injected failures, not real hardware failures
2454 *
2455 * Returns 0 for success, otherwise -errno.
2456 */
2457int unpoison_memory(unsigned long pfn)
2458{
9637d7df 2459 struct folio *folio;
847ce401 2460 struct page *p;
bf181c58 2461 int ret = -EBUSY;
ac5fcde0 2462 unsigned long count = 1;
5033091d 2463 bool huge = false;
a5f65109
NH
2464 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2465 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2466
2467 if (!pfn_valid(pfn))
2468 return -ENXIO;
2469
2470 p = pfn_to_page(pfn);
9637d7df 2471 folio = page_folio(p);
847ce401 2472
91d00547
NH
2473 mutex_lock(&mf_mutex);
2474
67f22ba7 2475 if (hw_memory_failure) {
2476 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2477 pfn, &unpoison_rs);
2478 ret = -EOPNOTSUPP;
2479 goto unlock_mutex;
2480 }
2481
6c54312f 2482 if (!PageHWPoison(p)) {
495367c0 2483 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2484 pfn, &unpoison_rs);
91d00547 2485 goto unlock_mutex;
847ce401
WF
2486 }
2487
a6fddef4 2488 if (folio_ref_count(folio) > 1) {
495367c0 2489 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2490 pfn, &unpoison_rs);
91d00547 2491 goto unlock_mutex;
230ac719
NH
2492 }
2493
a6fddef4 2494 if (folio_mapped(folio)) {
495367c0 2495 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2496 pfn, &unpoison_rs);
91d00547 2497 goto unlock_mutex;
230ac719
NH
2498 }
2499
a6fddef4 2500 if (folio_mapping(folio)) {
495367c0 2501 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2502 pfn, &unpoison_rs);
91d00547 2503 goto unlock_mutex;
0cea3fdc
WL
2504 }
2505
a6fddef4 2506 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
91d00547 2507 goto unlock_mutex;
847ce401 2508
bf181c58
NH
2509 ret = get_hwpoison_page(p, MF_UNPOISON);
2510 if (!ret) {
ac5fcde0 2511 if (PageHuge(p)) {
5033091d 2512 huge = true;
9637d7df 2513 count = folio_free_raw_hwp(folio, false);
ac5fcde0
NH
2514 if (count == 0) {
2515 ret = -EBUSY;
2516 goto unlock_mutex;
2517 }
2518 }
a6fddef4 2519 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
bf181c58
NH
2520 } else if (ret < 0) {
2521 if (ret == -EHWPOISON) {
c8bd84f7 2522 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
bf181c58
NH
2523 } else
2524 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2525 pfn, &unpoison_rs);
2526 } else {
ac5fcde0 2527 if (PageHuge(p)) {
5033091d 2528 huge = true;
9637d7df 2529 count = folio_free_raw_hwp(folio, false);
ac5fcde0
NH
2530 if (count == 0) {
2531 ret = -EBUSY;
a6fddef4 2532 folio_put(folio);
ac5fcde0
NH
2533 goto unlock_mutex;
2534 }
2535 }
847ce401 2536
a6fddef4 2537 folio_put(folio);
e0ff4280 2538 if (TestClearPageHWPoison(p)) {
a6fddef4 2539 folio_put(folio);
bf181c58
NH
2540 ret = 0;
2541 }
2542 }
847ce401 2543
91d00547
NH
2544unlock_mutex:
2545 mutex_unlock(&mf_mutex);
e0ff4280 2546 if (!ret) {
5033091d
NH
2547 if (!huge)
2548 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2549 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2550 page_to_pfn(p), &unpoison_rs);
2551 }
91d00547 2552 return ret;
847ce401
WF
2553}
2554EXPORT_SYMBOL(unpoison_memory);
facb6011 2555
6b9a217e 2556static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2557{
6b9a217e 2558 bool isolated = false;
d950b958 2559
6b9a217e 2560 if (PageHuge(page)) {
9747b9e9 2561 isolated = isolate_hugetlb(page_folio(page), pagelist);
6b9a217e 2562 } else {
da294991
ML
2563 bool lru = !__PageMovable(page);
2564
6b9a217e 2565 if (lru)
f7f9c00d 2566 isolated = isolate_lru_page(page);
6b9a217e 2567 else
cd775580
BW
2568 isolated = isolate_movable_page(page,
2569 ISOLATE_UNEVICTABLE);
6b9a217e 2570
da294991 2571 if (isolated) {
6b9a217e 2572 list_add(&page->lru, pagelist);
da294991
ML
2573 if (lru)
2574 inc_node_page_state(page, NR_ISOLATED_ANON +
2575 page_is_file_lru(page));
2576 }
0ebff32c 2577 }
d950b958 2578
03613808 2579 /*
6b9a217e
OS
2580 * If we succeed to isolate the page, we grabbed another refcount on
2581 * the page, so we can safely drop the one we got from get_any_pages().
2582 * If we failed to isolate the page, it means that we cannot go further
2583 * and we will return an error, so drop the reference we got from
2584 * get_any_pages() as well.
03613808 2585 */
6b9a217e
OS
2586 put_page(page);
2587 return isolated;
d950b958
NH
2588}
2589
6b9a217e 2590/*
48309e1f 2591 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2592 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2593 * If the page is mapped, it migrates the contents over.
2594 */
48309e1f 2595static int soft_offline_in_use_page(struct page *page)
af8fae7c 2596{
d6c75dc2 2597 long ret = 0;
af8fae7c 2598 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2599 struct page *hpage = compound_head(page);
2600 char const *msg_page[] = {"page", "hugepage"};
2601 bool huge = PageHuge(page);
2602 LIST_HEAD(pagelist);
54608759
JK
2603 struct migration_target_control mtc = {
2604 .nid = NUMA_NO_NODE,
2605 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2606 };
facb6011 2607
48309e1f
KW
2608 if (!huge && PageTransHuge(hpage)) {
2609 if (try_to_split_thp_page(page)) {
2610 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2611 return -EBUSY;
2612 }
2613 hpage = page;
2614 }
2615
0ebff32c 2616 lock_page(page);
6b9a217e
OS
2617 if (!PageHuge(page))
2618 wait_on_page_writeback(page);
af8fae7c
NH
2619 if (PageHWPoison(page)) {
2620 unlock_page(page);
dd6e2402 2621 put_page(page);
af8fae7c 2622 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2623 return 0;
af8fae7c 2624 }
6b9a217e 2625
593396b8 2626 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2627 /*
2628 * Try to invalidate first. This should work for
2629 * non dirty unmapped page cache pages.
2630 */
2631 ret = invalidate_inode_page(page);
facb6011 2632 unlock_page(page);
6b9a217e 2633
6b9a217e 2634 if (ret) {
fb46e735 2635 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2636 page_handle_poison(page, false, true);
af8fae7c 2637 return 0;
facb6011
AK
2638 }
2639
6b9a217e 2640 if (isolate_page(hpage, &pagelist)) {
54608759 2641 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2642 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2643 if (!ret) {
6b9a217e
OS
2644 bool release = !huge;
2645
2646 if (!page_handle_poison(page, huge, release))
2647 ret = -EBUSY;
79f5f8fa 2648 } else {
85fbe5d1
YX
2649 if (!list_empty(&pagelist))
2650 putback_movable_pages(&pagelist);
59c82b70 2651
d6c75dc2 2652 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2653 pfn, msg_page[huge], ret, &page->flags);
facb6011 2654 if (ret > 0)
3f4b815a 2655 ret = -EBUSY;
facb6011
AK
2656 }
2657 } else {
23efd080
MWO
2658 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2659 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2660 ret = -EBUSY;
facb6011 2661 }
facb6011
AK
2662 return ret;
2663}
86e05773
WL
2664
2665/**
2666 * soft_offline_page - Soft offline a page.
feec24a6 2667 * @pfn: pfn to soft-offline
86e05773
WL
2668 * @flags: flags. Same as memory_failure().
2669 *
9113eaf3 2670 * Returns 0 on success
2671 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2672 * < 0 otherwise negated errno.
86e05773
WL
2673 *
2674 * Soft offline a page, by migration or invalidation,
2675 * without killing anything. This is for the case when
2676 * a page is not corrupted yet (so it's still valid to access),
2677 * but has had a number of corrected errors and is better taken
2678 * out.
2679 *
2680 * The actual policy on when to do that is maintained by
2681 * user space.
2682 *
2683 * This should never impact any application or cause data loss,
2684 * however it might take some time.
2685 *
2686 * This is not a 100% solution for all memory, but tries to be
2687 * ``good enough'' for the majority of memory.
2688 */
feec24a6 2689int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2690{
2691 int ret;
b94e0282 2692 bool try_again = true;
b5f1fc98 2693 struct page *page;
dad4e5b3 2694
183a7c5d
KW
2695 if (!pfn_valid(pfn)) {
2696 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2697 return -ENXIO;
183a7c5d 2698 }
dad4e5b3 2699
feec24a6
NH
2700 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2701 page = pfn_to_online_page(pfn);
dad4e5b3 2702 if (!page) {
b5f1fc98 2703 put_ref_page(pfn, flags);
86a66810 2704 return -EIO;
dad4e5b3 2705 }
86a66810 2706
91d00547
NH
2707 mutex_lock(&mf_mutex);
2708
86e05773 2709 if (PageHWPoison(page)) {
8295d535 2710 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2711 put_ref_page(pfn, flags);
91d00547 2712 mutex_unlock(&mf_mutex);
5a2ffca3 2713 return 0;
86e05773 2714 }
86e05773 2715
b94e0282 2716retry:
bfc8c901 2717 get_online_mems();
bf6445bc 2718 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2719 put_online_mems();
4e41a30c 2720
9113eaf3 2721 if (hwpoison_filter(page)) {
2722 if (ret > 0)
2723 put_page(page);
9113eaf3 2724
2725 mutex_unlock(&mf_mutex);
2726 return -EOPNOTSUPP;
2727 }
2728
8295d535 2729 if (ret > 0) {
6b9a217e 2730 ret = soft_offline_in_use_page(page);
8295d535 2731 } else if (ret == 0) {
7adb4588 2732 if (!page_handle_poison(page, true, false) && try_again) {
b94e0282 2733 try_again = false;
2a57d83c 2734 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2735 goto retry;
2736 }
8295d535 2737 }
4e41a30c 2738
91d00547
NH
2739 mutex_unlock(&mf_mutex);
2740
86e05773
WL
2741 return ret;
2742}