mm/huge_memory: Convert __split_huge_pmd() to take a folio
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
96c84dde 42#include <linux/dax.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011 49#include <linux/migrate.h>
facb6011 50#include <linux/suspend.h>
5a0e3ad6 51#include <linux/slab.h>
bf998156 52#include <linux/swapops.h>
7af446a8 53#include <linux/hugetlb.h>
20d6c96b 54#include <linux/memory_hotplug.h>
5db8a73a 55#include <linux/mm_inline.h>
6100e34b 56#include <linux/memremap.h>
ea8f5fb8 57#include <linux/kfifo.h>
a5f65109 58#include <linux/ratelimit.h>
d4ae9916 59#include <linux/page-isolation.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
6a46079c 62#include "internal.h"
97f0b134 63#include "ras/ras_event.h"
6a46079c
AK
64
65int sysctl_memory_failure_early_kill __read_mostly = 0;
66
67int sysctl_memory_failure_recovery __read_mostly = 1;
68
293c07e3 69atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 70
510d25c9
NH
71static bool __page_handle_poison(struct page *page)
72{
f87060d3 73 int ret;
510d25c9
NH
74
75 zone_pcp_disable(page_zone(page));
76 ret = dissolve_free_huge_page(page);
77 if (!ret)
78 ret = take_page_off_buddy(page);
79 zone_pcp_enable(page_zone(page));
80
f87060d3 81 return ret > 0;
510d25c9
NH
82}
83
6b9a217e 84static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 85{
6b9a217e
OS
86 if (hugepage_or_freepage) {
87 /*
88 * Doing this check for free pages is also fine since dissolve_free_huge_page
89 * returns 0 for non-hugetlb pages as well.
90 */
510d25c9 91 if (!__page_handle_poison(page))
6b9a217e
OS
92 /*
93 * We could fail to take off the target page from buddy
f0953a1b 94 * for example due to racy page allocation, but that's
6b9a217e
OS
95 * acceptable because soft-offlined page is not broken
96 * and if someone really want to use it, they should
97 * take it.
98 */
99 return false;
100 }
101
06be6ff3 102 SetPageHWPoison(page);
79f5f8fa
OS
103 if (release)
104 put_page(page);
06be6ff3
OS
105 page_ref_inc(page);
106 num_poisoned_pages_inc();
6b9a217e
OS
107
108 return true;
06be6ff3
OS
109}
110
27df5068
AK
111#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
112
1bfe5feb 113u32 hwpoison_filter_enable = 0;
7c116f2b
WF
114u32 hwpoison_filter_dev_major = ~0U;
115u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
116u64 hwpoison_filter_flags_mask;
117u64 hwpoison_filter_flags_value;
1bfe5feb 118EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
119EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
120EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
121EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
122EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
123
124static int hwpoison_filter_dev(struct page *p)
125{
126 struct address_space *mapping;
127 dev_t dev;
128
129 if (hwpoison_filter_dev_major == ~0U &&
130 hwpoison_filter_dev_minor == ~0U)
131 return 0;
132
133 /*
1c80b990 134 * page_mapping() does not accept slab pages.
7c116f2b
WF
135 */
136 if (PageSlab(p))
137 return -EINVAL;
138
139 mapping = page_mapping(p);
140 if (mapping == NULL || mapping->host == NULL)
141 return -EINVAL;
142
143 dev = mapping->host->i_sb->s_dev;
144 if (hwpoison_filter_dev_major != ~0U &&
145 hwpoison_filter_dev_major != MAJOR(dev))
146 return -EINVAL;
147 if (hwpoison_filter_dev_minor != ~0U &&
148 hwpoison_filter_dev_minor != MINOR(dev))
149 return -EINVAL;
150
151 return 0;
152}
153
478c5ffc
WF
154static int hwpoison_filter_flags(struct page *p)
155{
156 if (!hwpoison_filter_flags_mask)
157 return 0;
158
159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 hwpoison_filter_flags_value)
161 return 0;
162 else
163 return -EINVAL;
164}
165
4fd466eb
AK
166/*
167 * This allows stress tests to limit test scope to a collection of tasks
168 * by putting them under some memcg. This prevents killing unrelated/important
169 * processes such as /sbin/init. Note that the target task may share clean
170 * pages with init (eg. libc text), which is harmless. If the target task
171 * share _dirty_ pages with another task B, the test scheme must make sure B
172 * is also included in the memcg. At last, due to race conditions this filter
173 * can only guarantee that the page either belongs to the memcg tasks, or is
174 * a freed page.
175 */
94a59fb3 176#ifdef CONFIG_MEMCG
4fd466eb
AK
177u64 hwpoison_filter_memcg;
178EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179static int hwpoison_filter_task(struct page *p)
180{
4fd466eb
AK
181 if (!hwpoison_filter_memcg)
182 return 0;
183
94a59fb3 184 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
185 return -EINVAL;
186
187 return 0;
188}
189#else
190static int hwpoison_filter_task(struct page *p) { return 0; }
191#endif
192
7c116f2b
WF
193int hwpoison_filter(struct page *p)
194{
1bfe5feb
HL
195 if (!hwpoison_filter_enable)
196 return 0;
197
7c116f2b
WF
198 if (hwpoison_filter_dev(p))
199 return -EINVAL;
200
478c5ffc
WF
201 if (hwpoison_filter_flags(p))
202 return -EINVAL;
203
4fd466eb
AK
204 if (hwpoison_filter_task(p))
205 return -EINVAL;
206
7c116f2b
WF
207 return 0;
208}
27df5068
AK
209#else
210int hwpoison_filter(struct page *p)
211{
212 return 0;
213}
214#endif
215
7c116f2b
WF
216EXPORT_SYMBOL_GPL(hwpoison_filter);
217
ae1139ec
DW
218/*
219 * Kill all processes that have a poisoned page mapped and then isolate
220 * the page.
221 *
222 * General strategy:
223 * Find all processes having the page mapped and kill them.
224 * But we keep a page reference around so that the page is not
225 * actually freed yet.
226 * Then stash the page away
227 *
228 * There's no convenient way to get back to mapped processes
229 * from the VMAs. So do a brute-force search over all
230 * running processes.
231 *
232 * Remember that machine checks are not common (or rather
233 * if they are common you have other problems), so this shouldn't
234 * be a performance issue.
235 *
236 * Also there are some races possible while we get from the
237 * error detection to actually handle it.
238 */
239
240struct to_kill {
241 struct list_head nd;
242 struct task_struct *tsk;
243 unsigned long addr;
244 short size_shift;
ae1139ec
DW
245};
246
6a46079c 247/*
7329bbeb
TL
248 * Send all the processes who have the page mapped a signal.
249 * ``action optional'' if they are not immediately affected by the error
250 * ``action required'' if error happened in current execution context
6a46079c 251 */
ae1139ec 252static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 253{
ae1139ec
DW
254 struct task_struct *t = tk->tsk;
255 short addr_lsb = tk->size_shift;
872e9a20 256 int ret = 0;
6a46079c 257
03151c6e 258 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 259 pfn, t->comm, t->pid);
7329bbeb 260
872e9a20 261 if (flags & MF_ACTION_REQUIRED) {
30c9cf49
AY
262 if (t == current)
263 ret = force_sig_mceerr(BUS_MCEERR_AR,
872e9a20 264 (void __user *)tk->addr, addr_lsb);
30c9cf49
AY
265 else
266 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
267 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
268 addr_lsb, t);
7329bbeb
TL
269 } else {
270 /*
271 * Don't use force here, it's convenient if the signal
272 * can be temporarily blocked.
273 * This could cause a loop when the user sets SIGBUS
274 * to SIG_IGN, but hopefully no one will do that?
275 */
ae1139ec 276 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 277 addr_lsb, t); /* synchronous? */
7329bbeb 278 }
6a46079c 279 if (ret < 0)
495367c0 280 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 281 t->comm, t->pid, ret);
6a46079c
AK
282 return ret;
283}
284
588f9ce6 285/*
47e431f4 286 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 287 * lru_add_drain_all.
588f9ce6 288 */
d0505e9f 289void shake_page(struct page *p)
588f9ce6 290{
8bcb74de
NH
291 if (PageHuge(p))
292 return;
293
588f9ce6
AK
294 if (!PageSlab(p)) {
295 lru_add_drain_all();
588f9ce6
AK
296 if (PageLRU(p) || is_free_buddy_page(p))
297 return;
298 }
facb6011 299
588f9ce6 300 /*
d0505e9f
YS
301 * TODO: Could shrink slab caches here if a lightweight range-based
302 * shrinker will be available.
588f9ce6
AK
303 */
304}
305EXPORT_SYMBOL_GPL(shake_page);
306
6100e34b
DW
307static unsigned long dev_pagemap_mapping_shift(struct page *page,
308 struct vm_area_struct *vma)
309{
310 unsigned long address = vma_address(page, vma);
5c91c0e7 311 unsigned long ret = 0;
6100e34b
DW
312 pgd_t *pgd;
313 p4d_t *p4d;
314 pud_t *pud;
315 pmd_t *pmd;
316 pte_t *pte;
317
318 pgd = pgd_offset(vma->vm_mm, address);
319 if (!pgd_present(*pgd))
320 return 0;
321 p4d = p4d_offset(pgd, address);
322 if (!p4d_present(*p4d))
323 return 0;
324 pud = pud_offset(p4d, address);
325 if (!pud_present(*pud))
326 return 0;
327 if (pud_devmap(*pud))
328 return PUD_SHIFT;
329 pmd = pmd_offset(pud, address);
330 if (!pmd_present(*pmd))
331 return 0;
332 if (pmd_devmap(*pmd))
333 return PMD_SHIFT;
334 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
335 if (pte_present(*pte) && pte_devmap(*pte))
336 ret = PAGE_SHIFT;
337 pte_unmap(pte);
338 return ret;
6100e34b 339}
6a46079c
AK
340
341/*
342 * Failure handling: if we can't find or can't kill a process there's
343 * not much we can do. We just print a message and ignore otherwise.
344 */
345
346/*
347 * Schedule a process for later kill.
348 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
351 struct vm_area_struct *vma,
996ff7a0 352 struct list_head *to_kill)
6a46079c
AK
353{
354 struct to_kill *tk;
355
996ff7a0
JC
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
358 pr_err("Memory failure: Out of memory while machine check handling\n");
359 return;
6a46079c 360 }
996ff7a0 361
6a46079c 362 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
363 if (is_zone_device_page(p))
364 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
365 else
75068518 366 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
367
368 /*
3d7fed4a
JC
369 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
370 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
371 * so "tk->size_shift == 0" effectively checks no mapping on
372 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
373 * to a process' address space, it's possible not all N VMAs
374 * contain mappings for the page, but at least one VMA does.
375 * Only deliver SIGBUS with payload derived from the VMA that
376 * has a mapping for the page.
6a46079c 377 */
3d7fed4a 378 if (tk->addr == -EFAULT) {
495367c0 379 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 380 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
381 } else if (tk->size_shift == 0) {
382 kfree(tk);
383 return;
6a46079c 384 }
996ff7a0 385
6a46079c
AK
386 get_task_struct(tsk);
387 tk->tsk = tsk;
388 list_add_tail(&tk->nd, to_kill);
389}
390
391/*
392 * Kill the processes that have been collected earlier.
393 *
a21c184f
ML
394 * Only do anything when FORCEKILL is set, otherwise just free the
395 * list (this is used for clean pages which do not need killing)
6a46079c
AK
396 * Also when FAIL is set do a force kill because something went
397 * wrong earlier.
398 */
ae1139ec
DW
399static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
400 unsigned long pfn, int flags)
6a46079c
AK
401{
402 struct to_kill *tk, *next;
403
404 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 405 if (forcekill) {
6a46079c 406 /*
af901ca1 407 * In case something went wrong with munmapping
6a46079c
AK
408 * make sure the process doesn't catch the
409 * signal and then access the memory. Just kill it.
6a46079c 410 */
3d7fed4a 411 if (fail || tk->addr == -EFAULT) {
495367c0 412 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 413 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
414 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
415 tk->tsk, PIDTYPE_PID);
6a46079c
AK
416 }
417
418 /*
419 * In theory the process could have mapped
420 * something else on the address in-between. We could
421 * check for that, but we need to tell the
422 * process anyways.
423 */
ae1139ec 424 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 425 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 426 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
427 }
428 put_task_struct(tk->tsk);
429 kfree(tk);
430 }
431}
432
3ba08129
NH
433/*
434 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
435 * on behalf of the thread group. Return task_struct of the (first found)
436 * dedicated thread if found, and return NULL otherwise.
437 *
438 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
439 * have to call rcu_read_lock/unlock() in this function.
440 */
441static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 442{
3ba08129
NH
443 struct task_struct *t;
444
4e018b45
NH
445 for_each_thread(tsk, t) {
446 if (t->flags & PF_MCE_PROCESS) {
447 if (t->flags & PF_MCE_EARLY)
448 return t;
449 } else {
450 if (sysctl_memory_failure_early_kill)
451 return t;
452 }
453 }
3ba08129
NH
454 return NULL;
455}
456
457/*
458 * Determine whether a given process is "early kill" process which expects
459 * to be signaled when some page under the process is hwpoisoned.
460 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 461 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 462 *
30c9cf49
AY
463 * Note that the above is true for Action Optional case. For Action Required
464 * case, it's only meaningful to the current thread which need to be signaled
465 * with SIGBUS, this error is Action Optional for other non current
466 * processes sharing the same error page,if the process is "early kill", the
467 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
468 */
469static struct task_struct *task_early_kill(struct task_struct *tsk,
470 int force_early)
471{
6a46079c 472 if (!tsk->mm)
3ba08129 473 return NULL;
30c9cf49
AY
474 /*
475 * Comparing ->mm here because current task might represent
476 * a subthread, while tsk always points to the main thread.
477 */
478 if (force_early && tsk->mm == current->mm)
479 return current;
480
4e018b45 481 return find_early_kill_thread(tsk);
6a46079c
AK
482}
483
484/*
485 * Collect processes when the error hit an anonymous page.
486 */
487static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 488 int force_early)
6a46079c
AK
489{
490 struct vm_area_struct *vma;
491 struct task_struct *tsk;
492 struct anon_vma *av;
bf181b9f 493 pgoff_t pgoff;
6a46079c 494
4fc3f1d6 495 av = page_lock_anon_vma_read(page);
6a46079c 496 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
497 return;
498
a0f7a756 499 pgoff = page_to_pgoff(page);
9b679320 500 read_lock(&tasklist_lock);
6a46079c 501 for_each_process (tsk) {
5beb4930 502 struct anon_vma_chain *vmac;
3ba08129 503 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 504
3ba08129 505 if (!t)
6a46079c 506 continue;
bf181b9f
ML
507 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
508 pgoff, pgoff) {
5beb4930 509 vma = vmac->vma;
6a46079c
AK
510 if (!page_mapped_in_vma(page, vma))
511 continue;
3ba08129 512 if (vma->vm_mm == t->mm)
996ff7a0 513 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
514 }
515 }
6a46079c 516 read_unlock(&tasklist_lock);
4fc3f1d6 517 page_unlock_anon_vma_read(av);
6a46079c
AK
518}
519
520/*
521 * Collect processes when the error hit a file mapped page.
522 */
523static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 524 int force_early)
6a46079c
AK
525{
526 struct vm_area_struct *vma;
527 struct task_struct *tsk;
6a46079c 528 struct address_space *mapping = page->mapping;
c43bc03d 529 pgoff_t pgoff;
6a46079c 530
d28eb9c8 531 i_mmap_lock_read(mapping);
9b679320 532 read_lock(&tasklist_lock);
c43bc03d 533 pgoff = page_to_pgoff(page);
6a46079c 534 for_each_process(tsk) {
3ba08129 535 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 536
3ba08129 537 if (!t)
6a46079c 538 continue;
6b2dbba8 539 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
540 pgoff) {
541 /*
542 * Send early kill signal to tasks where a vma covers
543 * the page but the corrupted page is not necessarily
544 * mapped it in its pte.
545 * Assume applications who requested early kill want
546 * to be informed of all such data corruptions.
547 */
3ba08129 548 if (vma->vm_mm == t->mm)
996ff7a0 549 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
550 }
551 }
6a46079c 552 read_unlock(&tasklist_lock);
d28eb9c8 553 i_mmap_unlock_read(mapping);
6a46079c
AK
554}
555
556/*
557 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 558 */
74614de1
TL
559static void collect_procs(struct page *page, struct list_head *tokill,
560 int force_early)
6a46079c 561{
6a46079c
AK
562 if (!page->mapping)
563 return;
564
6a46079c 565 if (PageAnon(page))
996ff7a0 566 collect_procs_anon(page, tokill, force_early);
6a46079c 567 else
996ff7a0 568 collect_procs_file(page, tokill, force_early);
6a46079c
AK
569}
570
a3f5d80e
NH
571struct hwp_walk {
572 struct to_kill tk;
573 unsigned long pfn;
574 int flags;
575};
576
577static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
578{
579 tk->addr = addr;
580 tk->size_shift = shift;
581}
582
583static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
584 unsigned long poisoned_pfn, struct to_kill *tk)
585{
586 unsigned long pfn = 0;
587
588 if (pte_present(pte)) {
589 pfn = pte_pfn(pte);
590 } else {
591 swp_entry_t swp = pte_to_swp_entry(pte);
592
593 if (is_hwpoison_entry(swp))
594 pfn = hwpoison_entry_to_pfn(swp);
595 }
596
597 if (!pfn || pfn != poisoned_pfn)
598 return 0;
599
600 set_to_kill(tk, addr, shift);
601 return 1;
602}
603
604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
605static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
606 struct hwp_walk *hwp)
607{
608 pmd_t pmd = *pmdp;
609 unsigned long pfn;
610 unsigned long hwpoison_vaddr;
611
612 if (!pmd_present(pmd))
613 return 0;
614 pfn = pmd_pfn(pmd);
615 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
616 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
617 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
618 return 1;
619 }
620 return 0;
621}
622#else
623static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
624 struct hwp_walk *hwp)
625{
626 return 0;
627}
628#endif
629
630static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
631 unsigned long end, struct mm_walk *walk)
632{
633 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
634 int ret = 0;
ea3732f7 635 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
636 spinlock_t *ptl;
637
638 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
639 if (ptl) {
640 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
641 spin_unlock(ptl);
642 goto out;
643 }
644
645 if (pmd_trans_unstable(pmdp))
646 goto out;
647
ea3732f7
ML
648 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
649 addr, &ptl);
a3f5d80e
NH
650 for (; addr != end; ptep++, addr += PAGE_SIZE) {
651 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
652 hwp->pfn, &hwp->tk);
653 if (ret == 1)
654 break;
655 }
ea3732f7 656 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
657out:
658 cond_resched();
659 return ret;
660}
661
662#ifdef CONFIG_HUGETLB_PAGE
663static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
664 unsigned long addr, unsigned long end,
665 struct mm_walk *walk)
666{
667 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
668 pte_t pte = huge_ptep_get(ptep);
669 struct hstate *h = hstate_vma(walk->vma);
670
671 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
672 hwp->pfn, &hwp->tk);
673}
674#else
675#define hwpoison_hugetlb_range NULL
676#endif
677
ba9eb3ce 678static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
679 .pmd_entry = hwpoison_pte_range,
680 .hugetlb_entry = hwpoison_hugetlb_range,
681};
682
683/*
684 * Sends SIGBUS to the current process with error info.
685 *
686 * This function is intended to handle "Action Required" MCEs on already
687 * hardware poisoned pages. They could happen, for example, when
688 * memory_failure() failed to unmap the error page at the first call, or
689 * when multiple local machine checks happened on different CPUs.
690 *
691 * MCE handler currently has no easy access to the error virtual address,
692 * so this function walks page table to find it. The returned virtual address
693 * is proper in most cases, but it could be wrong when the application
694 * process has multiple entries mapping the error page.
695 */
696static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
697 int flags)
698{
699 int ret;
700 struct hwp_walk priv = {
701 .pfn = pfn,
702 };
703 priv.tk.tsk = p;
704
705 mmap_read_lock(p->mm);
706 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
707 (void *)&priv);
708 if (ret == 1 && priv.tk.addr)
709 kill_proc(&priv.tk, pfn, flags);
710 mmap_read_unlock(p->mm);
711 return ret ? -EFAULT : -EHWPOISON;
712}
713
6a46079c 714static const char *action_name[] = {
cc637b17
XX
715 [MF_IGNORED] = "Ignored",
716 [MF_FAILED] = "Failed",
717 [MF_DELAYED] = "Delayed",
718 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
719};
720
721static const char * const action_page_types[] = {
cc637b17
XX
722 [MF_MSG_KERNEL] = "reserved kernel page",
723 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
724 [MF_MSG_SLAB] = "kernel slab page",
725 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
726 [MF_MSG_HUGE] = "huge page",
727 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
736 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
737 [MF_MSG_CLEAN_LRU] = "clean LRU page",
738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
739 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 740 [MF_MSG_DAX] = "dax page",
5d1fd5dc 741 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 742 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
743};
744
dc2a1cbf
WF
745/*
746 * XXX: It is possible that a page is isolated from LRU cache,
747 * and then kept in swap cache or failed to remove from page cache.
748 * The page count will stop it from being freed by unpoison.
749 * Stress tests should be aware of this memory leak problem.
750 */
751static int delete_from_lru_cache(struct page *p)
752{
753 if (!isolate_lru_page(p)) {
754 /*
755 * Clear sensible page flags, so that the buddy system won't
756 * complain when the page is unpoison-and-freed.
757 */
758 ClearPageActive(p);
759 ClearPageUnevictable(p);
18365225
MH
760
761 /*
762 * Poisoned page might never drop its ref count to 0 so we have
763 * to uncharge it manually from its memcg.
764 */
bbc6b703 765 mem_cgroup_uncharge(page_folio(p));
18365225 766
dc2a1cbf
WF
767 /*
768 * drop the page count elevated by isolate_lru_page()
769 */
09cbfeaf 770 put_page(p);
dc2a1cbf
WF
771 return 0;
772 }
773 return -EIO;
774}
775
78bb9203
NH
776static int truncate_error_page(struct page *p, unsigned long pfn,
777 struct address_space *mapping)
778{
779 int ret = MF_FAILED;
780
781 if (mapping->a_ops->error_remove_page) {
782 int err = mapping->a_ops->error_remove_page(mapping, p);
783
784 if (err != 0) {
785 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
786 pfn, err);
787 } else if (page_has_private(p) &&
788 !try_to_release_page(p, GFP_NOIO)) {
789 pr_info("Memory failure: %#lx: failed to release buffers\n",
790 pfn);
791 } else {
792 ret = MF_RECOVERED;
793 }
794 } else {
795 /*
796 * If the file system doesn't support it just invalidate
797 * This fails on dirty or anything with private pages
798 */
799 if (invalidate_inode_page(p))
800 ret = MF_RECOVERED;
801 else
802 pr_info("Memory failure: %#lx: Failed to invalidate\n",
803 pfn);
804 }
805
806 return ret;
807}
808
dd0f230a
YS
809struct page_state {
810 unsigned long mask;
811 unsigned long res;
812 enum mf_action_page_type type;
813
814 /* Callback ->action() has to unlock the relevant page inside it. */
815 int (*action)(struct page_state *ps, struct page *p);
816};
817
818/*
819 * Return true if page is still referenced by others, otherwise return
820 * false.
821 *
822 * The extra_pins is true when one extra refcount is expected.
823 */
824static bool has_extra_refcount(struct page_state *ps, struct page *p,
825 bool extra_pins)
826{
827 int count = page_count(p) - 1;
828
829 if (extra_pins)
830 count -= 1;
831
832 if (count > 0) {
833 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
834 page_to_pfn(p), action_page_types[ps->type], count);
835 return true;
836 }
837
838 return false;
839}
840
6a46079c
AK
841/*
842 * Error hit kernel page.
843 * Do nothing, try to be lucky and not touch this instead. For a few cases we
844 * could be more sophisticated.
845 */
dd0f230a 846static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 847{
ea6d0630 848 unlock_page(p);
cc637b17 849 return MF_IGNORED;
6a46079c
AK
850}
851
852/*
853 * Page in unknown state. Do nothing.
854 */
dd0f230a 855static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 856{
dd0f230a 857 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 858 unlock_page(p);
cc637b17 859 return MF_FAILED;
6a46079c
AK
860}
861
6a46079c
AK
862/*
863 * Clean (or cleaned) page cache page.
864 */
dd0f230a 865static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 866{
ea6d0630 867 int ret;
6a46079c 868 struct address_space *mapping;
a7605426 869 bool extra_pins;
6a46079c 870
dc2a1cbf
WF
871 delete_from_lru_cache(p);
872
6a46079c
AK
873 /*
874 * For anonymous pages we're done the only reference left
875 * should be the one m_f() holds.
876 */
ea6d0630
NH
877 if (PageAnon(p)) {
878 ret = MF_RECOVERED;
879 goto out;
880 }
6a46079c
AK
881
882 /*
883 * Now truncate the page in the page cache. This is really
884 * more like a "temporary hole punch"
885 * Don't do this for block devices when someone else
886 * has a reference, because it could be file system metadata
887 * and that's not safe to truncate.
888 */
889 mapping = page_mapping(p);
890 if (!mapping) {
891 /*
892 * Page has been teared down in the meanwhile
893 */
ea6d0630
NH
894 ret = MF_FAILED;
895 goto out;
6a46079c
AK
896 }
897
a7605426
YS
898 /*
899 * The shmem page is kept in page cache instead of truncating
900 * so is expected to have an extra refcount after error-handling.
901 */
902 extra_pins = shmem_mapping(mapping);
903
6a46079c
AK
904 /*
905 * Truncation is a bit tricky. Enable it per file system for now.
906 *
9608703e 907 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 908 */
dd0f230a 909 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
910 if (has_extra_refcount(ps, p, extra_pins))
911 ret = MF_FAILED;
912
ea6d0630
NH
913out:
914 unlock_page(p);
dd0f230a 915
ea6d0630 916 return ret;
6a46079c
AK
917}
918
919/*
549543df 920 * Dirty pagecache page
6a46079c
AK
921 * Issues: when the error hit a hole page the error is not properly
922 * propagated.
923 */
dd0f230a 924static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
925{
926 struct address_space *mapping = page_mapping(p);
927
928 SetPageError(p);
929 /* TBD: print more information about the file. */
930 if (mapping) {
931 /*
932 * IO error will be reported by write(), fsync(), etc.
933 * who check the mapping.
934 * This way the application knows that something went
935 * wrong with its dirty file data.
936 *
937 * There's one open issue:
938 *
939 * The EIO will be only reported on the next IO
940 * operation and then cleared through the IO map.
941 * Normally Linux has two mechanisms to pass IO error
942 * first through the AS_EIO flag in the address space
943 * and then through the PageError flag in the page.
944 * Since we drop pages on memory failure handling the
945 * only mechanism open to use is through AS_AIO.
946 *
947 * This has the disadvantage that it gets cleared on
948 * the first operation that returns an error, while
949 * the PageError bit is more sticky and only cleared
950 * when the page is reread or dropped. If an
951 * application assumes it will always get error on
952 * fsync, but does other operations on the fd before
25985edc 953 * and the page is dropped between then the error
6a46079c
AK
954 * will not be properly reported.
955 *
956 * This can already happen even without hwpoisoned
957 * pages: first on metadata IO errors (which only
958 * report through AS_EIO) or when the page is dropped
959 * at the wrong time.
960 *
961 * So right now we assume that the application DTRT on
962 * the first EIO, but we're not worse than other parts
963 * of the kernel.
964 */
af21bfaf 965 mapping_set_error(mapping, -EIO);
6a46079c
AK
966 }
967
dd0f230a 968 return me_pagecache_clean(ps, p);
6a46079c
AK
969}
970
971/*
972 * Clean and dirty swap cache.
973 *
974 * Dirty swap cache page is tricky to handle. The page could live both in page
975 * cache and swap cache(ie. page is freshly swapped in). So it could be
976 * referenced concurrently by 2 types of PTEs:
977 * normal PTEs and swap PTEs. We try to handle them consistently by calling
978 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
979 * and then
980 * - clear dirty bit to prevent IO
981 * - remove from LRU
982 * - but keep in the swap cache, so that when we return to it on
983 * a later page fault, we know the application is accessing
984 * corrupted data and shall be killed (we installed simple
985 * interception code in do_swap_page to catch it).
986 *
987 * Clean swap cache pages can be directly isolated. A later page fault will
988 * bring in the known good data from disk.
989 */
dd0f230a 990static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 991{
ea6d0630 992 int ret;
dd0f230a 993 bool extra_pins = false;
ea6d0630 994
6a46079c
AK
995 ClearPageDirty(p);
996 /* Trigger EIO in shmem: */
997 ClearPageUptodate(p);
998
ea6d0630
NH
999 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1000 unlock_page(p);
dd0f230a
YS
1001
1002 if (ret == MF_DELAYED)
1003 extra_pins = true;
1004
1005 if (has_extra_refcount(ps, p, extra_pins))
1006 ret = MF_FAILED;
1007
ea6d0630 1008 return ret;
6a46079c
AK
1009}
1010
dd0f230a 1011static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1012{
ea6d0630
NH
1013 int ret;
1014
6a46079c 1015 delete_from_swap_cache(p);
e43c3afb 1016
ea6d0630
NH
1017 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1018 unlock_page(p);
dd0f230a
YS
1019
1020 if (has_extra_refcount(ps, p, false))
1021 ret = MF_FAILED;
1022
ea6d0630 1023 return ret;
6a46079c
AK
1024}
1025
1026/*
1027 * Huge pages. Needs work.
1028 * Issues:
93f70f90
NH
1029 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1030 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1031 */
dd0f230a 1032static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1033{
a8b2c2ce 1034 int res;
93f70f90 1035 struct page *hpage = compound_head(p);
78bb9203 1036 struct address_space *mapping;
2491ffee
NH
1037
1038 if (!PageHuge(hpage))
1039 return MF_DELAYED;
1040
78bb9203
NH
1041 mapping = page_mapping(hpage);
1042 if (mapping) {
dd0f230a 1043 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
ea6d0630 1044 unlock_page(hpage);
78bb9203 1045 } else {
a8b2c2ce 1046 res = MF_FAILED;
78bb9203
NH
1047 unlock_page(hpage);
1048 /*
1049 * migration entry prevents later access on error anonymous
1050 * hugepage, so we can free and dissolve it into buddy to
1051 * save healthy subpages.
1052 */
1053 if (PageAnon(hpage))
1054 put_page(hpage);
510d25c9 1055 if (__page_handle_poison(p)) {
a8b2c2ce
OS
1056 page_ref_inc(p);
1057 res = MF_RECOVERED;
1058 }
93f70f90 1059 }
78bb9203 1060
dd0f230a
YS
1061 if (has_extra_refcount(ps, p, false))
1062 res = MF_FAILED;
1063
78bb9203 1064 return res;
6a46079c
AK
1065}
1066
1067/*
1068 * Various page states we can handle.
1069 *
1070 * A page state is defined by its current page->flags bits.
1071 * The table matches them in order and calls the right handler.
1072 *
1073 * This is quite tricky because we can access page at any time
25985edc 1074 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1075 *
1076 * This is not complete. More states could be added.
1077 * For any missing state don't attempt recovery.
1078 */
1079
1080#define dirty (1UL << PG_dirty)
6326fec1 1081#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1082#define unevict (1UL << PG_unevictable)
1083#define mlock (1UL << PG_mlocked)
6a46079c 1084#define lru (1UL << PG_lru)
6a46079c 1085#define head (1UL << PG_head)
6a46079c 1086#define slab (1UL << PG_slab)
6a46079c
AK
1087#define reserved (1UL << PG_reserved)
1088
dd0f230a 1089static struct page_state error_states[] = {
cc637b17 1090 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1091 /*
1092 * free pages are specially detected outside this table:
1093 * PG_buddy pages only make a small fraction of all free pages.
1094 */
6a46079c
AK
1095
1096 /*
1097 * Could in theory check if slab page is free or if we can drop
1098 * currently unused objects without touching them. But just
1099 * treat it as standard kernel for now.
1100 */
cc637b17 1101 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1102
cc637b17 1103 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1104
cc637b17
XX
1105 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1106 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1107
cc637b17
XX
1108 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1109 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1110
cc637b17
XX
1111 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1112 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1113
cc637b17
XX
1114 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1115 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1116
1117 /*
1118 * Catchall entry: must be at end.
1119 */
cc637b17 1120 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1121};
1122
2326c467
AK
1123#undef dirty
1124#undef sc
1125#undef unevict
1126#undef mlock
2326c467 1127#undef lru
2326c467 1128#undef head
2326c467
AK
1129#undef slab
1130#undef reserved
1131
ff604cf6
NH
1132/*
1133 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1134 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1135 */
cc3e2af4
XX
1136static void action_result(unsigned long pfn, enum mf_action_page_type type,
1137 enum mf_result result)
6a46079c 1138{
97f0b134
XX
1139 trace_memory_failure_event(pfn, type, result);
1140
495367c0 1141 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 1142 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1143}
1144
1145static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1146 unsigned long pfn)
6a46079c
AK
1147{
1148 int result;
1149
ea6d0630 1150 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1151 result = ps->action(ps, p);
7456b040 1152
64d37a2b 1153 action_result(pfn, ps->type, result);
6a46079c
AK
1154
1155 /* Could do more checks here if page looks ok */
1156 /*
1157 * Could adjust zone counters here to correct for the missing page.
1158 */
1159
cc637b17 1160 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1161}
1162
bf181c58
NH
1163static inline bool PageHWPoisonTakenOff(struct page *page)
1164{
1165 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1166}
1167
1168void SetPageHWPoisonTakenOff(struct page *page)
1169{
1170 set_page_private(page, MAGIC_HWPOISON);
1171}
1172
1173void ClearPageHWPoisonTakenOff(struct page *page)
1174{
1175 if (PageHWPoison(page))
1176 set_page_private(page, 0);
1177}
1178
25182f05
NH
1179/*
1180 * Return true if a page type of a given page is supported by hwpoison
1181 * mechanism (while handling could fail), otherwise false. This function
1182 * does not return true for hugetlb or device memory pages, so it's assumed
1183 * to be called only in the context where we never have such pages.
1184 */
1185static inline bool HWPoisonHandlable(struct page *page)
1186{
acfa299a 1187 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page);
25182f05
NH
1188}
1189
17e395b6 1190static int __get_hwpoison_page(struct page *page)
ead07f6a
NH
1191{
1192 struct page *head = compound_head(page);
25182f05
NH
1193 int ret = 0;
1194 bool hugetlb = false;
1195
1196 ret = get_hwpoison_huge_page(head, &hugetlb);
1197 if (hugetlb)
1198 return ret;
1199
1200 /*
1201 * This check prevents from calling get_hwpoison_unless_zero()
1202 * for any unsupported type of page in order to reduce the risk of
1203 * unexpected races caused by taking a page refcount.
1204 */
1205 if (!HWPoisonHandlable(head))
fcc00621 1206 return -EBUSY;
ead07f6a 1207
c2e7e00b
KK
1208 if (get_page_unless_zero(head)) {
1209 if (head == compound_head(page))
1210 return 1;
1211
495367c0
CY
1212 pr_info("Memory failure: %#lx cannot catch tail\n",
1213 page_to_pfn(page));
c2e7e00b
KK
1214 put_page(head);
1215 }
1216
1217 return 0;
ead07f6a 1218}
ead07f6a 1219
2f714160 1220static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1221{
2f714160
OS
1222 int ret = 0, pass = 0;
1223 bool count_increased = false;
17e395b6 1224
2f714160
OS
1225 if (flags & MF_COUNT_INCREASED)
1226 count_increased = true;
1227
1228try_again:
0ed950d1
NH
1229 if (!count_increased) {
1230 ret = __get_hwpoison_page(p);
1231 if (!ret) {
1232 if (page_count(p)) {
1233 /* We raced with an allocation, retry. */
1234 if (pass++ < 3)
1235 goto try_again;
1236 ret = -EBUSY;
1237 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1238 /* We raced with put_page, retry. */
1239 if (pass++ < 3)
1240 goto try_again;
1241 ret = -EIO;
1242 }
1243 goto out;
1244 } else if (ret == -EBUSY) {
fcc00621
NH
1245 /*
1246 * We raced with (possibly temporary) unhandlable
1247 * page, retry.
1248 */
1249 if (pass++ < 3) {
d0505e9f 1250 shake_page(p);
2f714160 1251 goto try_again;
fcc00621
NH
1252 }
1253 ret = -EIO;
0ed950d1 1254 goto out;
2f714160 1255 }
0ed950d1
NH
1256 }
1257
1258 if (PageHuge(p) || HWPoisonHandlable(p)) {
1259 ret = 1;
2f714160 1260 } else {
0ed950d1
NH
1261 /*
1262 * A page we cannot handle. Check whether we can turn
1263 * it into something we can handle.
1264 */
1265 if (pass++ < 3) {
2f714160 1266 put_page(p);
d0505e9f 1267 shake_page(p);
0ed950d1
NH
1268 count_increased = false;
1269 goto try_again;
2f714160 1270 }
0ed950d1
NH
1271 put_page(p);
1272 ret = -EIO;
17e395b6 1273 }
0ed950d1 1274out:
941ca063
YS
1275 if (ret == -EIO)
1276 dump_page(p, "hwpoison: unhandlable page");
1277
17e395b6
OS
1278 return ret;
1279}
1280
bf181c58
NH
1281static int __get_unpoison_page(struct page *page)
1282{
1283 struct page *head = compound_head(page);
1284 int ret = 0;
1285 bool hugetlb = false;
1286
1287 ret = get_hwpoison_huge_page(head, &hugetlb);
1288 if (hugetlb)
1289 return ret;
1290
1291 /*
1292 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1293 * but also isolated from buddy freelist, so need to identify the
1294 * state and have to cancel both operations to unpoison.
1295 */
1296 if (PageHWPoisonTakenOff(page))
1297 return -EHWPOISON;
1298
1299 return get_page_unless_zero(page) ? 1 : 0;
1300}
1301
0ed950d1
NH
1302/**
1303 * get_hwpoison_page() - Get refcount for memory error handling
1304 * @p: Raw error page (hit by memory error)
1305 * @flags: Flags controlling behavior of error handling
1306 *
1307 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1308 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1309 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1310 * such as LRU page and hugetlb page).
1311 *
1312 * Memory error handling could be triggered at any time on any type of page,
1313 * so it's prone to race with typical memory management lifecycle (like
1314 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1315 * extra care for the error page's state (as done in __get_hwpoison_page()),
1316 * and has some retry logic in get_any_page().
1317 *
bf181c58
NH
1318 * When called from unpoison_memory(), the caller should already ensure that
1319 * the given page has PG_hwpoison. So it's never reused for other page
1320 * allocations, and __get_unpoison_page() never races with them.
1321 *
0ed950d1
NH
1322 * Return: 0 on failure,
1323 * 1 on success for in-use pages in a well-defined state,
1324 * -EIO for pages on which we can not handle memory errors,
1325 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1326 * operations like allocation and free,
1327 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1328 */
1329static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1330{
1331 int ret;
1332
1333 zone_pcp_disable(page_zone(p));
bf181c58
NH
1334 if (flags & MF_UNPOISON)
1335 ret = __get_unpoison_page(p);
1336 else
1337 ret = get_any_page(p, flags);
2f714160
OS
1338 zone_pcp_enable(page_zone(p));
1339
1340 return ret;
1341}
1342
6a46079c
AK
1343/*
1344 * Do all that is necessary to remove user space mappings. Unmap
1345 * the pages and send SIGBUS to the processes if the data was dirty.
1346 */
666e5a40 1347static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1348 int flags, struct page *hpage)
6a46079c 1349{
36af6737 1350 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1351 struct address_space *mapping;
1352 LIST_HEAD(tokill);
1fb08ac6 1353 bool unmap_success;
6751ed65 1354 int kill = 1, forcekill;
286c469a 1355 bool mlocked = PageMlocked(hpage);
6a46079c 1356
93a9eb39
NH
1357 /*
1358 * Here we are interested only in user-mapped pages, so skip any
1359 * other types of pages.
1360 */
1361 if (PageReserved(p) || PageSlab(p))
666e5a40 1362 return true;
93a9eb39 1363 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1364 return true;
6a46079c 1365
6a46079c
AK
1366 /*
1367 * This check implies we don't kill processes if their pages
1368 * are in the swap cache early. Those are always late kills.
1369 */
7af446a8 1370 if (!page_mapped(hpage))
666e5a40 1371 return true;
1668bfd5 1372
52089b14 1373 if (PageKsm(p)) {
495367c0 1374 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 1375 return false;
52089b14 1376 }
6a46079c
AK
1377
1378 if (PageSwapCache(p)) {
495367c0
CY
1379 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1380 pfn);
6a46079c
AK
1381 ttu |= TTU_IGNORE_HWPOISON;
1382 }
1383
1384 /*
1385 * Propagate the dirty bit from PTEs to struct page first, because we
1386 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1387 * XXX: the dirty test could be racy: set_page_dirty() may not always
1388 * be called inside page lock (it's recommended but not enforced).
6a46079c 1389 */
7af446a8 1390 mapping = page_mapping(hpage);
6751ed65 1391 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1392 mapping_can_writeback(mapping)) {
7af446a8
NH
1393 if (page_mkclean(hpage)) {
1394 SetPageDirty(hpage);
6a46079c
AK
1395 } else {
1396 kill = 0;
1397 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1398 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1399 pfn);
1400 }
1401 }
1402
1403 /*
1404 * First collect all the processes that have the page
1405 * mapped in dirty form. This has to be done before try_to_unmap,
1406 * because ttu takes the rmap data structures down.
1407 *
1408 * Error handling: We ignore errors here because
1409 * there's nothing that can be done.
1410 */
1411 if (kill)
415c64c1 1412 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1413
c0d0381a 1414 if (!PageHuge(hpage)) {
1fb08ac6 1415 try_to_unmap(hpage, ttu);
c0d0381a 1416 } else {
336bf30e
MK
1417 if (!PageAnon(hpage)) {
1418 /*
1419 * For hugetlb pages in shared mappings, try_to_unmap
1420 * could potentially call huge_pmd_unshare. Because of
1421 * this, take semaphore in write mode here and set
1422 * TTU_RMAP_LOCKED to indicate we have taken the lock
041711ce 1423 * at this higher level.
336bf30e
MK
1424 */
1425 mapping = hugetlb_page_mapping_lock_write(hpage);
1426 if (mapping) {
1fb08ac6 1427 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
336bf30e 1428 i_mmap_unlock_write(mapping);
1fb08ac6 1429 } else
336bf30e 1430 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1431 } else {
1fb08ac6 1432 try_to_unmap(hpage, ttu);
c0d0381a
MK
1433 }
1434 }
1fb08ac6
YS
1435
1436 unmap_success = !page_mapped(hpage);
666e5a40 1437 if (!unmap_success)
495367c0 1438 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1439 pfn, page_mapcount(hpage));
a6d30ddd 1440
286c469a
NH
1441 /*
1442 * try_to_unmap() might put mlocked page in lru cache, so call
1443 * shake_page() again to ensure that it's flushed.
1444 */
1445 if (mlocked)
d0505e9f 1446 shake_page(hpage);
286c469a 1447
6a46079c
AK
1448 /*
1449 * Now that the dirty bit has been propagated to the
1450 * struct page and all unmaps done we can decide if
1451 * killing is needed or not. Only kill when the page
6751ed65
TL
1452 * was dirty or the process is not restartable,
1453 * otherwise the tokill list is merely
6a46079c
AK
1454 * freed. When there was a problem unmapping earlier
1455 * use a more force-full uncatchable kill to prevent
1456 * any accesses to the poisoned memory.
1457 */
415c64c1 1458 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1459 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1460
666e5a40 1461 return unmap_success;
6a46079c
AK
1462}
1463
0348d2eb
NH
1464static int identify_page_state(unsigned long pfn, struct page *p,
1465 unsigned long page_flags)
761ad8d7
NH
1466{
1467 struct page_state *ps;
0348d2eb
NH
1468
1469 /*
1470 * The first check uses the current page flags which may not have any
1471 * relevant information. The second check with the saved page flags is
1472 * carried out only if the first check can't determine the page status.
1473 */
1474 for (ps = error_states;; ps++)
1475 if ((p->flags & ps->mask) == ps->res)
1476 break;
1477
1478 page_flags |= (p->flags & (1UL << PG_dirty));
1479
1480 if (!ps->mask)
1481 for (ps = error_states;; ps++)
1482 if ((page_flags & ps->mask) == ps->res)
1483 break;
1484 return page_action(ps, p, pfn);
1485}
1486
694bf0b0
OS
1487static int try_to_split_thp_page(struct page *page, const char *msg)
1488{
1489 lock_page(page);
4966455d 1490 if (unlikely(split_huge_page(page))) {
694bf0b0
OS
1491 unsigned long pfn = page_to_pfn(page);
1492
1493 unlock_page(page);
4966455d 1494 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
694bf0b0
OS
1495 put_page(page);
1496 return -EBUSY;
1497 }
1498 unlock_page(page);
1499
1500 return 0;
1501}
1502
83b57531 1503static int memory_failure_hugetlb(unsigned long pfn, int flags)
0348d2eb 1504{
761ad8d7
NH
1505 struct page *p = pfn_to_page(pfn);
1506 struct page *head = compound_head(p);
1507 int res;
1508 unsigned long page_flags;
1509
1510 if (TestSetPageHWPoison(head)) {
1511 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1512 pfn);
a3f5d80e
NH
1513 res = -EHWPOISON;
1514 if (flags & MF_ACTION_REQUIRED)
1515 res = kill_accessing_process(current, page_to_pfn(head), flags);
1516 return res;
761ad8d7
NH
1517 }
1518
1519 num_poisoned_pages_inc();
1520
0ed950d1
NH
1521 if (!(flags & MF_COUNT_INCREASED)) {
1522 res = get_hwpoison_page(p, flags);
1523 if (!res) {
0ed950d1 1524 lock_page(head);
e37e7b0b
NH
1525 if (hwpoison_filter(p)) {
1526 if (TestClearPageHWPoison(head))
0ed950d1 1527 num_poisoned_pages_dec();
e37e7b0b
NH
1528 unlock_page(head);
1529 return 0;
761ad8d7 1530 }
0ed950d1
NH
1531 unlock_page(head);
1532 res = MF_FAILED;
510d25c9 1533 if (__page_handle_poison(p)) {
0ed950d1
NH
1534 page_ref_inc(p);
1535 res = MF_RECOVERED;
1536 }
1537 action_result(pfn, MF_MSG_FREE_HUGE, res);
1538 return res == MF_RECOVERED ? 0 : -EBUSY;
1539 } else if (res < 0) {
1540 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1541 return -EBUSY;
761ad8d7 1542 }
761ad8d7
NH
1543 }
1544
1545 lock_page(head);
1546 page_flags = head->flags;
1547
31286a84
NH
1548 /*
1549 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1550 * simply disable it. In order to make it work properly, we need
1551 * make sure that:
1552 * - conversion of a pud that maps an error hugetlb into hwpoison
1553 * entry properly works, and
1554 * - other mm code walking over page table is aware of pud-aligned
1555 * hwpoison entries.
1556 */
1557 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1558 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1559 res = -EBUSY;
1560 goto out;
1561 }
1562
ed8c2f49 1563 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1564 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1565 res = -EBUSY;
1566 goto out;
1567 }
1568
ea6d0630 1569 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1570out:
1571 unlock_page(head);
1572 return res;
1573}
1574
6100e34b
DW
1575static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1576 struct dev_pagemap *pgmap)
1577{
1578 struct page *page = pfn_to_page(pfn);
6100e34b
DW
1579 unsigned long size = 0;
1580 struct to_kill *tk;
1581 LIST_HEAD(tokill);
1582 int rc = -EBUSY;
1583 loff_t start;
27359fd6 1584 dax_entry_t cookie;
6100e34b 1585
1e8aaedb
OS
1586 if (flags & MF_COUNT_INCREASED)
1587 /*
1588 * Drop the extra refcount in case we come from madvise().
1589 */
1590 put_page(page);
1591
34dc45be
DW
1592 /* device metadata space is not recoverable */
1593 if (!pgmap_pfn_valid(pgmap, pfn)) {
1594 rc = -ENXIO;
1595 goto out;
1596 }
1597
61e28cf0
JM
1598 /*
1599 * Pages instantiated by device-dax (not filesystem-dax)
1600 * may be compound pages.
1601 */
1602 page = compound_head(page);
1603
6100e34b
DW
1604 /*
1605 * Prevent the inode from being freed while we are interrogating
1606 * the address_space, typically this would be handled by
1607 * lock_page(), but dax pages do not use the page lock. This
1608 * also prevents changes to the mapping of this pfn until
1609 * poison signaling is complete.
1610 */
27359fd6
MW
1611 cookie = dax_lock_page(page);
1612 if (!cookie)
6100e34b
DW
1613 goto out;
1614
1615 if (hwpoison_filter(page)) {
1616 rc = 0;
1617 goto unlock;
1618 }
1619
25b2995a 1620 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
6100e34b
DW
1621 /*
1622 * TODO: Handle HMM pages which may need coordination
1623 * with device-side memory.
1624 */
1625 goto unlock;
6100e34b
DW
1626 }
1627
1628 /*
1629 * Use this flag as an indication that the dax page has been
1630 * remapped UC to prevent speculative consumption of poison.
1631 */
1632 SetPageHWPoison(page);
1633
1634 /*
1635 * Unlike System-RAM there is no possibility to swap in a
1636 * different physical page at a given virtual address, so all
1637 * userspace consumption of ZONE_DEVICE memory necessitates
1638 * SIGBUS (i.e. MF_MUST_KILL)
1639 */
1640 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1641 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1642
1643 list_for_each_entry(tk, &tokill, nd)
1644 if (tk->size_shift)
1645 size = max(size, 1UL << tk->size_shift);
1646 if (size) {
1647 /*
1648 * Unmap the largest mapping to avoid breaking up
1649 * device-dax mappings which are constant size. The
1650 * actual size of the mapping being torn down is
1651 * communicated in siginfo, see kill_proc()
1652 */
1653 start = (page->index << PAGE_SHIFT) & ~(size - 1);
4d75136b 1654 unmap_mapping_range(page->mapping, start, size, 0);
6100e34b 1655 }
ae611d07 1656 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags);
6100e34b
DW
1657 rc = 0;
1658unlock:
27359fd6 1659 dax_unlock_page(page, cookie);
6100e34b
DW
1660out:
1661 /* drop pgmap ref acquired in caller */
1662 put_dev_pagemap(pgmap);
1663 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1664 return rc;
1665}
1666
91d00547
NH
1667static DEFINE_MUTEX(mf_mutex);
1668
cd42f4a3
TL
1669/**
1670 * memory_failure - Handle memory failure of a page.
1671 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1672 * @flags: fine tune action taken
1673 *
1674 * This function is called by the low level machine check code
1675 * of an architecture when it detects hardware memory corruption
1676 * of a page. It tries its best to recover, which includes
1677 * dropping pages, killing processes etc.
1678 *
1679 * The function is primarily of use for corruptions that
1680 * happen outside the current execution context (e.g. when
1681 * detected by a background scrubber)
1682 *
1683 * Must run in process context (e.g. a work queue) with interrupts
1684 * enabled and no spinlocks hold.
1685 */
83b57531 1686int memory_failure(unsigned long pfn, int flags)
6a46079c 1687{
6a46079c 1688 struct page *p;
7af446a8 1689 struct page *hpage;
415c64c1 1690 struct page *orig_head;
6100e34b 1691 struct dev_pagemap *pgmap;
171936dd 1692 int res = 0;
524fca1e 1693 unsigned long page_flags;
a8b2c2ce 1694 bool retry = true;
6a46079c
AK
1695
1696 if (!sysctl_memory_failure_recovery)
83b57531 1697 panic("Memory failure on page %lx", pfn);
6a46079c 1698
03b122da
TL
1699 mutex_lock(&mf_mutex);
1700
96c804a6
DH
1701 p = pfn_to_online_page(pfn);
1702 if (!p) {
03b122da
TL
1703 res = arch_memory_failure(pfn, flags);
1704 if (res == 0)
1705 goto unlock_mutex;
1706
96c804a6
DH
1707 if (pfn_valid(pfn)) {
1708 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
1709 if (pgmap) {
1710 res = memory_failure_dev_pagemap(pfn, flags,
1711 pgmap);
1712 goto unlock_mutex;
1713 }
96c804a6 1714 }
495367c0
CY
1715 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1716 pfn);
03b122da
TL
1717 res = -ENXIO;
1718 goto unlock_mutex;
6a46079c
AK
1719 }
1720
a8b2c2ce 1721try_again:
171936dd
TL
1722 if (PageHuge(p)) {
1723 res = memory_failure_hugetlb(pfn, flags);
1724 goto unlock_mutex;
1725 }
1726
6a46079c 1727 if (TestSetPageHWPoison(p)) {
495367c0
CY
1728 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1729 pfn);
47af12ba 1730 res = -EHWPOISON;
a3f5d80e
NH
1731 if (flags & MF_ACTION_REQUIRED)
1732 res = kill_accessing_process(current, pfn, flags);
171936dd 1733 goto unlock_mutex;
6a46079c
AK
1734 }
1735
761ad8d7 1736 orig_head = hpage = compound_head(p);
b37ff71c 1737 num_poisoned_pages_inc();
6a46079c
AK
1738
1739 /*
1740 * We need/can do nothing about count=0 pages.
1741 * 1) it's a free page, and therefore in safe hand:
1742 * prep_new_page() will be the gate keeper.
761ad8d7 1743 * 2) it's part of a non-compound high order page.
6a46079c
AK
1744 * Implies some kernel user: cannot stop them from
1745 * R/W the page; let's pray that the page has been
1746 * used and will be freed some time later.
1747 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1748 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1749 */
0ed950d1
NH
1750 if (!(flags & MF_COUNT_INCREASED)) {
1751 res = get_hwpoison_page(p, flags);
1752 if (!res) {
1753 if (is_free_buddy_page(p)) {
1754 if (take_page_off_buddy(p)) {
1755 page_ref_inc(p);
1756 res = MF_RECOVERED;
1757 } else {
1758 /* We lost the race, try again */
1759 if (retry) {
1760 ClearPageHWPoison(p);
1761 num_poisoned_pages_dec();
1762 retry = false;
1763 goto try_again;
1764 }
1765 res = MF_FAILED;
a8b2c2ce 1766 }
0ed950d1
NH
1767 action_result(pfn, MF_MSG_BUDDY, res);
1768 res = res == MF_RECOVERED ? 0 : -EBUSY;
1769 } else {
1770 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1771 res = -EBUSY;
a8b2c2ce 1772 }
0ed950d1
NH
1773 goto unlock_mutex;
1774 } else if (res < 0) {
1775 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 1776 res = -EBUSY;
0ed950d1 1777 goto unlock_mutex;
8d22ba1b 1778 }
6a46079c
AK
1779 }
1780
761ad8d7 1781 if (PageTransHuge(hpage)) {
eac96c3e
YS
1782 /*
1783 * The flag must be set after the refcount is bumped
1784 * otherwise it may race with THP split.
1785 * And the flag can't be set in get_hwpoison_page() since
1786 * it is called by soft offline too and it is just called
1787 * for !MF_COUNT_INCREASE. So here seems to be the best
1788 * place.
1789 *
1790 * Don't need care about the above error handling paths for
1791 * get_hwpoison_page() since they handle either free page
1792 * or unhandlable page. The refcount is bumped iff the
1793 * page is a valid handlable page.
1794 */
1795 SetPageHasHWPoisoned(hpage);
5d1fd5dc
NH
1796 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1797 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1798 res = -EBUSY;
1799 goto unlock_mutex;
5d1fd5dc 1800 }
415c64c1 1801 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1802 }
1803
e43c3afb
WF
1804 /*
1805 * We ignore non-LRU pages for good reasons.
1806 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1807 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1808 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1809 * The check (unnecessarily) ignores LRU pages being isolated and
1810 * walked by the page reclaim code, however that's not a big loss.
1811 */
d0505e9f 1812 shake_page(p);
e43c3afb 1813
761ad8d7 1814 lock_page(p);
847ce401 1815
f37d4298
AK
1816 /*
1817 * The page could have changed compound pages during the locking.
1818 * If this happens just bail out.
1819 */
415c64c1 1820 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1821 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 1822 res = -EBUSY;
171936dd 1823 goto unlock_page;
f37d4298
AK
1824 }
1825
524fca1e
NH
1826 /*
1827 * We use page flags to determine what action should be taken, but
1828 * the flags can be modified by the error containment action. One
1829 * example is an mlocked page, where PG_mlocked is cleared by
1830 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1831 * correctly, we save a copy of the page flags at this time.
1832 */
7d9d46ac 1833 page_flags = p->flags;
524fca1e 1834
7c116f2b
WF
1835 if (hwpoison_filter(p)) {
1836 if (TestClearPageHWPoison(p))
b37ff71c 1837 num_poisoned_pages_dec();
761ad8d7 1838 unlock_page(p);
dd6e2402 1839 put_page(p);
171936dd 1840 goto unlock_mutex;
7c116f2b 1841 }
847ce401 1842
e8675d29 1843 /*
1844 * __munlock_pagevec may clear a writeback page's LRU flag without
1845 * page_lock. We need wait writeback completion for this page or it
1846 * may trigger vfs BUG while evict inode.
1847 */
1848 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
1849 goto identify_page_state;
1850
6edd6cc6
NH
1851 /*
1852 * It's very difficult to mess with pages currently under IO
1853 * and in many cases impossible, so we just avoid it here.
1854 */
6a46079c
AK
1855 wait_on_page_writeback(p);
1856
1857 /*
1858 * Now take care of user space mappings.
e64a782f 1859 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
6a46079c 1860 */
ed8c2f49 1861 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 1862 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 1863 res = -EBUSY;
171936dd 1864 goto unlock_page;
1668bfd5 1865 }
6a46079c
AK
1866
1867 /*
1868 * Torn down by someone else?
1869 */
dc2a1cbf 1870 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1871 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1872 res = -EBUSY;
171936dd 1873 goto unlock_page;
6a46079c
AK
1874 }
1875
0bc1f8b0 1876identify_page_state:
0348d2eb 1877 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
1878 mutex_unlock(&mf_mutex);
1879 return res;
171936dd 1880unlock_page:
761ad8d7 1881 unlock_page(p);
171936dd
TL
1882unlock_mutex:
1883 mutex_unlock(&mf_mutex);
6a46079c
AK
1884 return res;
1885}
cd42f4a3 1886EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1887
ea8f5fb8
HY
1888#define MEMORY_FAILURE_FIFO_ORDER 4
1889#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1890
1891struct memory_failure_entry {
1892 unsigned long pfn;
ea8f5fb8
HY
1893 int flags;
1894};
1895
1896struct memory_failure_cpu {
1897 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1898 MEMORY_FAILURE_FIFO_SIZE);
1899 spinlock_t lock;
1900 struct work_struct work;
1901};
1902
1903static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1904
1905/**
1906 * memory_failure_queue - Schedule handling memory failure of a page.
1907 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
1908 * @flags: Flags for memory failure handling
1909 *
1910 * This function is called by the low level hardware error handler
1911 * when it detects hardware memory corruption of a page. It schedules
1912 * the recovering of error page, including dropping pages, killing
1913 * processes etc.
1914 *
1915 * The function is primarily of use for corruptions that
1916 * happen outside the current execution context (e.g. when
1917 * detected by a background scrubber)
1918 *
1919 * Can run in IRQ context.
1920 */
83b57531 1921void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
1922{
1923 struct memory_failure_cpu *mf_cpu;
1924 unsigned long proc_flags;
1925 struct memory_failure_entry entry = {
1926 .pfn = pfn,
ea8f5fb8
HY
1927 .flags = flags,
1928 };
1929
1930 mf_cpu = &get_cpu_var(memory_failure_cpu);
1931 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1932 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1933 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1934 else
8e33a52f 1935 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1936 pfn);
1937 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1938 put_cpu_var(memory_failure_cpu);
1939}
1940EXPORT_SYMBOL_GPL(memory_failure_queue);
1941
1942static void memory_failure_work_func(struct work_struct *work)
1943{
1944 struct memory_failure_cpu *mf_cpu;
1945 struct memory_failure_entry entry = { 0, };
1946 unsigned long proc_flags;
1947 int gotten;
1948
06202231 1949 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
1950 for (;;) {
1951 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1952 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1953 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1954 if (!gotten)
1955 break;
cf870c70 1956 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 1957 soft_offline_page(entry.pfn, entry.flags);
cf870c70 1958 else
83b57531 1959 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
1960 }
1961}
1962
06202231
JM
1963/*
1964 * Process memory_failure work queued on the specified CPU.
1965 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1966 */
1967void memory_failure_queue_kick(int cpu)
1968{
1969 struct memory_failure_cpu *mf_cpu;
1970
1971 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1972 cancel_work_sync(&mf_cpu->work);
1973 memory_failure_work_func(&mf_cpu->work);
1974}
1975
ea8f5fb8
HY
1976static int __init memory_failure_init(void)
1977{
1978 struct memory_failure_cpu *mf_cpu;
1979 int cpu;
1980
1981 for_each_possible_cpu(cpu) {
1982 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1983 spin_lock_init(&mf_cpu->lock);
1984 INIT_KFIFO(mf_cpu->fifo);
1985 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1986 }
1987
1988 return 0;
1989}
1990core_initcall(memory_failure_init);
1991
a5f65109
NH
1992#define unpoison_pr_info(fmt, pfn, rs) \
1993({ \
1994 if (__ratelimit(rs)) \
1995 pr_info(fmt, pfn); \
1996})
1997
bf181c58
NH
1998static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
1999{
2000 if (TestClearPageHWPoison(p)) {
2001 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2002 page_to_pfn(p), rs);
2003 num_poisoned_pages_dec();
2004 return 1;
2005 }
2006 return 0;
2007}
2008
2009static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2010 struct page *p)
2011{
2012 if (put_page_back_buddy(p)) {
2013 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2014 page_to_pfn(p), rs);
2015 return 0;
2016 }
2017 return -EBUSY;
2018}
2019
847ce401
WF
2020/**
2021 * unpoison_memory - Unpoison a previously poisoned page
2022 * @pfn: Page number of the to be unpoisoned page
2023 *
2024 * Software-unpoison a page that has been poisoned by
2025 * memory_failure() earlier.
2026 *
2027 * This is only done on the software-level, so it only works
2028 * for linux injected failures, not real hardware failures
2029 *
2030 * Returns 0 for success, otherwise -errno.
2031 */
2032int unpoison_memory(unsigned long pfn)
2033{
2034 struct page *page;
2035 struct page *p;
bf181c58 2036 int ret = -EBUSY;
a5f65109
NH
2037 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2038 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2039
2040 if (!pfn_valid(pfn))
2041 return -ENXIO;
2042
2043 p = pfn_to_page(pfn);
2044 page = compound_head(p);
2045
91d00547
NH
2046 mutex_lock(&mf_mutex);
2047
847ce401 2048 if (!PageHWPoison(p)) {
495367c0 2049 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2050 pfn, &unpoison_rs);
91d00547 2051 goto unlock_mutex;
847ce401
WF
2052 }
2053
230ac719 2054 if (page_count(page) > 1) {
495367c0 2055 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2056 pfn, &unpoison_rs);
91d00547 2057 goto unlock_mutex;
230ac719
NH
2058 }
2059
2060 if (page_mapped(page)) {
495367c0 2061 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2062 pfn, &unpoison_rs);
91d00547 2063 goto unlock_mutex;
230ac719
NH
2064 }
2065
2066 if (page_mapping(page)) {
495367c0 2067 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2068 pfn, &unpoison_rs);
91d00547 2069 goto unlock_mutex;
0cea3fdc
WL
2070 }
2071
bf181c58 2072 if (PageSlab(page) || PageTable(page))
91d00547 2073 goto unlock_mutex;
847ce401 2074
bf181c58
NH
2075 ret = get_hwpoison_page(p, MF_UNPOISON);
2076 if (!ret) {
2077 if (clear_page_hwpoison(&unpoison_rs, page))
2078 ret = 0;
2079 else
2080 ret = -EBUSY;
2081 } else if (ret < 0) {
2082 if (ret == -EHWPOISON) {
2083 ret = unpoison_taken_off_page(&unpoison_rs, p);
2084 } else
2085 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2086 pfn, &unpoison_rs);
2087 } else {
2088 int freeit = clear_page_hwpoison(&unpoison_rs, p);
847ce401 2089
dd6e2402 2090 put_page(page);
bf181c58
NH
2091 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2092 put_page(page);
2093 ret = 0;
2094 }
2095 }
847ce401 2096
91d00547
NH
2097unlock_mutex:
2098 mutex_unlock(&mf_mutex);
2099 return ret;
847ce401
WF
2100}
2101EXPORT_SYMBOL(unpoison_memory);
facb6011 2102
6b9a217e 2103static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2104{
6b9a217e
OS
2105 bool isolated = false;
2106 bool lru = PageLRU(page);
d950b958 2107
6b9a217e
OS
2108 if (PageHuge(page)) {
2109 isolated = isolate_huge_page(page, pagelist);
2110 } else {
2111 if (lru)
2112 isolated = !isolate_lru_page(page);
2113 else
2114 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2115
2116 if (isolated)
2117 list_add(&page->lru, pagelist);
0ebff32c 2118 }
d950b958 2119
6b9a217e
OS
2120 if (isolated && lru)
2121 inc_node_page_state(page, NR_ISOLATED_ANON +
2122 page_is_file_lru(page));
2123
03613808 2124 /*
6b9a217e
OS
2125 * If we succeed to isolate the page, we grabbed another refcount on
2126 * the page, so we can safely drop the one we got from get_any_pages().
2127 * If we failed to isolate the page, it means that we cannot go further
2128 * and we will return an error, so drop the reference we got from
2129 * get_any_pages() as well.
03613808 2130 */
6b9a217e
OS
2131 put_page(page);
2132 return isolated;
d950b958
NH
2133}
2134
6b9a217e
OS
2135/*
2136 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2137 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2138 * If the page is mapped, it migrates the contents over.
2139 */
2140static int __soft_offline_page(struct page *page)
af8fae7c 2141{
d6c75dc2 2142 long ret = 0;
af8fae7c 2143 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2144 struct page *hpage = compound_head(page);
2145 char const *msg_page[] = {"page", "hugepage"};
2146 bool huge = PageHuge(page);
2147 LIST_HEAD(pagelist);
54608759
JK
2148 struct migration_target_control mtc = {
2149 .nid = NUMA_NO_NODE,
2150 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2151 };
facb6011 2152
facb6011 2153 /*
af8fae7c
NH
2154 * Check PageHWPoison again inside page lock because PageHWPoison
2155 * is set by memory_failure() outside page lock. Note that
2156 * memory_failure() also double-checks PageHWPoison inside page lock,
2157 * so there's no race between soft_offline_page() and memory_failure().
facb6011 2158 */
0ebff32c 2159 lock_page(page);
6b9a217e
OS
2160 if (!PageHuge(page))
2161 wait_on_page_writeback(page);
af8fae7c
NH
2162 if (PageHWPoison(page)) {
2163 unlock_page(page);
dd6e2402 2164 put_page(page);
af8fae7c 2165 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2166 return 0;
af8fae7c 2167 }
6b9a217e
OS
2168
2169 if (!PageHuge(page))
2170 /*
2171 * Try to invalidate first. This should work for
2172 * non dirty unmapped page cache pages.
2173 */
2174 ret = invalidate_inode_page(page);
facb6011 2175 unlock_page(page);
6b9a217e 2176
facb6011 2177 /*
facb6011
AK
2178 * RED-PEN would be better to keep it isolated here, but we
2179 * would need to fix isolation locking first.
2180 */
6b9a217e 2181 if (ret) {
fb46e735 2182 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2183 page_handle_poison(page, false, true);
af8fae7c 2184 return 0;
facb6011
AK
2185 }
2186
6b9a217e 2187 if (isolate_page(hpage, &pagelist)) {
54608759 2188 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2189 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2190 if (!ret) {
6b9a217e
OS
2191 bool release = !huge;
2192
2193 if (!page_handle_poison(page, huge, release))
2194 ret = -EBUSY;
79f5f8fa 2195 } else {
85fbe5d1
YX
2196 if (!list_empty(&pagelist))
2197 putback_movable_pages(&pagelist);
59c82b70 2198
d6c75dc2 2199 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2200 pfn, msg_page[huge], ret, &page->flags);
facb6011 2201 if (ret > 0)
3f4b815a 2202 ret = -EBUSY;
facb6011
AK
2203 }
2204 } else {
23efd080
MWO
2205 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2206 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2207 ret = -EBUSY;
facb6011 2208 }
facb6011
AK
2209 return ret;
2210}
86e05773 2211
6b9a217e 2212static int soft_offline_in_use_page(struct page *page)
acc14dc4 2213{
acc14dc4
NH
2214 struct page *hpage = compound_head(page);
2215
694bf0b0
OS
2216 if (!PageHuge(page) && PageTransHuge(hpage))
2217 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2218 return -EBUSY;
6b9a217e 2219 return __soft_offline_page(page);
acc14dc4
NH
2220}
2221
d4ae9916 2222static int soft_offline_free_page(struct page *page)
acc14dc4 2223{
6b9a217e 2224 int rc = 0;
acc14dc4 2225
6b9a217e
OS
2226 if (!page_handle_poison(page, true, false))
2227 rc = -EBUSY;
06be6ff3 2228
d4ae9916 2229 return rc;
acc14dc4
NH
2230}
2231
dad4e5b3
DW
2232static void put_ref_page(struct page *page)
2233{
2234 if (page)
2235 put_page(page);
2236}
2237
86e05773
WL
2238/**
2239 * soft_offline_page - Soft offline a page.
feec24a6 2240 * @pfn: pfn to soft-offline
86e05773
WL
2241 * @flags: flags. Same as memory_failure().
2242 *
2243 * Returns 0 on success, otherwise negated errno.
2244 *
2245 * Soft offline a page, by migration or invalidation,
2246 * without killing anything. This is for the case when
2247 * a page is not corrupted yet (so it's still valid to access),
2248 * but has had a number of corrected errors and is better taken
2249 * out.
2250 *
2251 * The actual policy on when to do that is maintained by
2252 * user space.
2253 *
2254 * This should never impact any application or cause data loss,
2255 * however it might take some time.
2256 *
2257 * This is not a 100% solution for all memory, but tries to be
2258 * ``good enough'' for the majority of memory.
2259 */
feec24a6 2260int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2261{
2262 int ret;
b94e0282 2263 bool try_again = true;
dad4e5b3
DW
2264 struct page *page, *ref_page = NULL;
2265
2266 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2267
feec24a6
NH
2268 if (!pfn_valid(pfn))
2269 return -ENXIO;
dad4e5b3
DW
2270 if (flags & MF_COUNT_INCREASED)
2271 ref_page = pfn_to_page(pfn);
2272
feec24a6
NH
2273 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2274 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2275 if (!page) {
2276 put_ref_page(ref_page);
86a66810 2277 return -EIO;
dad4e5b3 2278 }
86a66810 2279
91d00547
NH
2280 mutex_lock(&mf_mutex);
2281
86e05773 2282 if (PageHWPoison(page)) {
8295d535 2283 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2284 put_ref_page(ref_page);
91d00547 2285 mutex_unlock(&mf_mutex);
5a2ffca3 2286 return 0;
86e05773 2287 }
86e05773 2288
b94e0282 2289retry:
bfc8c901 2290 get_online_mems();
0ed950d1 2291 ret = get_hwpoison_page(page, flags);
bfc8c901 2292 put_online_mems();
4e41a30c 2293
8295d535 2294 if (ret > 0) {
6b9a217e 2295 ret = soft_offline_in_use_page(page);
8295d535 2296 } else if (ret == 0) {
b94e0282
OS
2297 if (soft_offline_free_page(page) && try_again) {
2298 try_again = false;
2a57d83c 2299 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2300 goto retry;
2301 }
8295d535 2302 }
4e41a30c 2303
91d00547
NH
2304 mutex_unlock(&mf_mutex);
2305
86e05773
WL
2306 return ret;
2307}