mm,hwpoison: send SIGBUS with error virutal address
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
01e00f88 42#include <linux/ksm.h>
6a46079c 43#include <linux/rmap.h>
b9e15baf 44#include <linux/export.h>
6a46079c
AK
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
facb6011 48#include <linux/migrate.h>
facb6011 49#include <linux/suspend.h>
5a0e3ad6 50#include <linux/slab.h>
bf998156 51#include <linux/swapops.h>
7af446a8 52#include <linux/hugetlb.h>
20d6c96b 53#include <linux/memory_hotplug.h>
5db8a73a 54#include <linux/mm_inline.h>
6100e34b 55#include <linux/memremap.h>
ea8f5fb8 56#include <linux/kfifo.h>
a5f65109 57#include <linux/ratelimit.h>
d4ae9916 58#include <linux/page-isolation.h>
a3f5d80e 59#include <linux/pagewalk.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
6b9a217e 69static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 70{
6b9a217e
OS
71 if (hugepage_or_freepage) {
72 /*
73 * Doing this check for free pages is also fine since dissolve_free_huge_page
74 * returns 0 for non-hugetlb pages as well.
75 */
76 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page))
77 /*
78 * We could fail to take off the target page from buddy
f0953a1b 79 * for example due to racy page allocation, but that's
6b9a217e
OS
80 * acceptable because soft-offlined page is not broken
81 * and if someone really want to use it, they should
82 * take it.
83 */
84 return false;
85 }
86
06be6ff3 87 SetPageHWPoison(page);
79f5f8fa
OS
88 if (release)
89 put_page(page);
06be6ff3
OS
90 page_ref_inc(page);
91 num_poisoned_pages_inc();
6b9a217e
OS
92
93 return true;
06be6ff3
OS
94}
95
27df5068
AK
96#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
97
1bfe5feb 98u32 hwpoison_filter_enable = 0;
7c116f2b
WF
99u32 hwpoison_filter_dev_major = ~0U;
100u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
101u64 hwpoison_filter_flags_mask;
102u64 hwpoison_filter_flags_value;
1bfe5feb 103EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
104EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
105EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
106EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
107EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
108
109static int hwpoison_filter_dev(struct page *p)
110{
111 struct address_space *mapping;
112 dev_t dev;
113
114 if (hwpoison_filter_dev_major == ~0U &&
115 hwpoison_filter_dev_minor == ~0U)
116 return 0;
117
118 /*
1c80b990 119 * page_mapping() does not accept slab pages.
7c116f2b
WF
120 */
121 if (PageSlab(p))
122 return -EINVAL;
123
124 mapping = page_mapping(p);
125 if (mapping == NULL || mapping->host == NULL)
126 return -EINVAL;
127
128 dev = mapping->host->i_sb->s_dev;
129 if (hwpoison_filter_dev_major != ~0U &&
130 hwpoison_filter_dev_major != MAJOR(dev))
131 return -EINVAL;
132 if (hwpoison_filter_dev_minor != ~0U &&
133 hwpoison_filter_dev_minor != MINOR(dev))
134 return -EINVAL;
135
136 return 0;
137}
138
478c5ffc
WF
139static int hwpoison_filter_flags(struct page *p)
140{
141 if (!hwpoison_filter_flags_mask)
142 return 0;
143
144 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
145 hwpoison_filter_flags_value)
146 return 0;
147 else
148 return -EINVAL;
149}
150
4fd466eb
AK
151/*
152 * This allows stress tests to limit test scope to a collection of tasks
153 * by putting them under some memcg. This prevents killing unrelated/important
154 * processes such as /sbin/init. Note that the target task may share clean
155 * pages with init (eg. libc text), which is harmless. If the target task
156 * share _dirty_ pages with another task B, the test scheme must make sure B
157 * is also included in the memcg. At last, due to race conditions this filter
158 * can only guarantee that the page either belongs to the memcg tasks, or is
159 * a freed page.
160 */
94a59fb3 161#ifdef CONFIG_MEMCG
4fd466eb
AK
162u64 hwpoison_filter_memcg;
163EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
164static int hwpoison_filter_task(struct page *p)
165{
4fd466eb
AK
166 if (!hwpoison_filter_memcg)
167 return 0;
168
94a59fb3 169 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
170 return -EINVAL;
171
172 return 0;
173}
174#else
175static int hwpoison_filter_task(struct page *p) { return 0; }
176#endif
177
7c116f2b
WF
178int hwpoison_filter(struct page *p)
179{
1bfe5feb
HL
180 if (!hwpoison_filter_enable)
181 return 0;
182
7c116f2b
WF
183 if (hwpoison_filter_dev(p))
184 return -EINVAL;
185
478c5ffc
WF
186 if (hwpoison_filter_flags(p))
187 return -EINVAL;
188
4fd466eb
AK
189 if (hwpoison_filter_task(p))
190 return -EINVAL;
191
7c116f2b
WF
192 return 0;
193}
27df5068
AK
194#else
195int hwpoison_filter(struct page *p)
196{
197 return 0;
198}
199#endif
200
7c116f2b
WF
201EXPORT_SYMBOL_GPL(hwpoison_filter);
202
ae1139ec
DW
203/*
204 * Kill all processes that have a poisoned page mapped and then isolate
205 * the page.
206 *
207 * General strategy:
208 * Find all processes having the page mapped and kill them.
209 * But we keep a page reference around so that the page is not
210 * actually freed yet.
211 * Then stash the page away
212 *
213 * There's no convenient way to get back to mapped processes
214 * from the VMAs. So do a brute-force search over all
215 * running processes.
216 *
217 * Remember that machine checks are not common (or rather
218 * if they are common you have other problems), so this shouldn't
219 * be a performance issue.
220 *
221 * Also there are some races possible while we get from the
222 * error detection to actually handle it.
223 */
224
225struct to_kill {
226 struct list_head nd;
227 struct task_struct *tsk;
228 unsigned long addr;
229 short size_shift;
ae1139ec
DW
230};
231
6a46079c 232/*
7329bbeb
TL
233 * Send all the processes who have the page mapped a signal.
234 * ``action optional'' if they are not immediately affected by the error
235 * ``action required'' if error happened in current execution context
6a46079c 236 */
ae1139ec 237static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 238{
ae1139ec
DW
239 struct task_struct *t = tk->tsk;
240 short addr_lsb = tk->size_shift;
872e9a20 241 int ret = 0;
6a46079c 242
03151c6e 243 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 244 pfn, t->comm, t->pid);
7329bbeb 245
872e9a20 246 if (flags & MF_ACTION_REQUIRED) {
30c9cf49
AY
247 if (t == current)
248 ret = force_sig_mceerr(BUS_MCEERR_AR,
872e9a20 249 (void __user *)tk->addr, addr_lsb);
30c9cf49
AY
250 else
251 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */
252 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
253 addr_lsb, t);
7329bbeb
TL
254 } else {
255 /*
256 * Don't use force here, it's convenient if the signal
257 * can be temporarily blocked.
258 * This could cause a loop when the user sets SIGBUS
259 * to SIG_IGN, but hopefully no one will do that?
260 */
ae1139ec 261 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 262 addr_lsb, t); /* synchronous? */
7329bbeb 263 }
6a46079c 264 if (ret < 0)
495367c0 265 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 266 t->comm, t->pid, ret);
6a46079c
AK
267 return ret;
268}
269
588f9ce6 270/*
47e431f4
OS
271 * Unknown page type encountered. Try to check whether it can turn PageLRU by
272 * lru_add_drain_all, or a free page by reclaiming slabs when possible.
588f9ce6 273 */
facb6011 274void shake_page(struct page *p, int access)
588f9ce6 275{
8bcb74de
NH
276 if (PageHuge(p))
277 return;
278
588f9ce6
AK
279 if (!PageSlab(p)) {
280 lru_add_drain_all();
588f9ce6
AK
281 if (PageLRU(p) || is_free_buddy_page(p))
282 return;
283 }
facb6011 284
588f9ce6 285 /*
6b4f7799
JW
286 * Only call shrink_node_slabs here (which would also shrink
287 * other caches) if access is not potentially fatal.
588f9ce6 288 */
cb731d6c
VD
289 if (access)
290 drop_slab_node(page_to_nid(p));
588f9ce6
AK
291}
292EXPORT_SYMBOL_GPL(shake_page);
293
6100e34b
DW
294static unsigned long dev_pagemap_mapping_shift(struct page *page,
295 struct vm_area_struct *vma)
296{
297 unsigned long address = vma_address(page, vma);
298 pgd_t *pgd;
299 p4d_t *p4d;
300 pud_t *pud;
301 pmd_t *pmd;
302 pte_t *pte;
303
304 pgd = pgd_offset(vma->vm_mm, address);
305 if (!pgd_present(*pgd))
306 return 0;
307 p4d = p4d_offset(pgd, address);
308 if (!p4d_present(*p4d))
309 return 0;
310 pud = pud_offset(p4d, address);
311 if (!pud_present(*pud))
312 return 0;
313 if (pud_devmap(*pud))
314 return PUD_SHIFT;
315 pmd = pmd_offset(pud, address);
316 if (!pmd_present(*pmd))
317 return 0;
318 if (pmd_devmap(*pmd))
319 return PMD_SHIFT;
320 pte = pte_offset_map(pmd, address);
321 if (!pte_present(*pte))
322 return 0;
323 if (pte_devmap(*pte))
324 return PAGE_SHIFT;
325 return 0;
326}
6a46079c
AK
327
328/*
329 * Failure handling: if we can't find or can't kill a process there's
330 * not much we can do. We just print a message and ignore otherwise.
331 */
332
333/*
334 * Schedule a process for later kill.
335 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
336 */
337static void add_to_kill(struct task_struct *tsk, struct page *p,
338 struct vm_area_struct *vma,
996ff7a0 339 struct list_head *to_kill)
6a46079c
AK
340{
341 struct to_kill *tk;
342
996ff7a0
JC
343 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
344 if (!tk) {
345 pr_err("Memory failure: Out of memory while machine check handling\n");
346 return;
6a46079c 347 }
996ff7a0 348
6a46079c 349 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
350 if (is_zone_device_page(p))
351 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
352 else
75068518 353 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
354
355 /*
3d7fed4a
JC
356 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
357 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
358 * so "tk->size_shift == 0" effectively checks no mapping on
359 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
360 * to a process' address space, it's possible not all N VMAs
361 * contain mappings for the page, but at least one VMA does.
362 * Only deliver SIGBUS with payload derived from the VMA that
363 * has a mapping for the page.
6a46079c 364 */
3d7fed4a 365 if (tk->addr == -EFAULT) {
495367c0 366 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 367 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
368 } else if (tk->size_shift == 0) {
369 kfree(tk);
370 return;
6a46079c 371 }
996ff7a0 372
6a46079c
AK
373 get_task_struct(tsk);
374 tk->tsk = tsk;
375 list_add_tail(&tk->nd, to_kill);
376}
377
378/*
379 * Kill the processes that have been collected earlier.
380 *
381 * Only do anything when DOIT is set, otherwise just free the list
382 * (this is used for clean pages which do not need killing)
383 * Also when FAIL is set do a force kill because something went
384 * wrong earlier.
385 */
ae1139ec
DW
386static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
387 unsigned long pfn, int flags)
6a46079c
AK
388{
389 struct to_kill *tk, *next;
390
391 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 392 if (forcekill) {
6a46079c 393 /*
af901ca1 394 * In case something went wrong with munmapping
6a46079c
AK
395 * make sure the process doesn't catch the
396 * signal and then access the memory. Just kill it.
6a46079c 397 */
3d7fed4a 398 if (fail || tk->addr == -EFAULT) {
495367c0 399 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 400 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
401 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
402 tk->tsk, PIDTYPE_PID);
6a46079c
AK
403 }
404
405 /*
406 * In theory the process could have mapped
407 * something else on the address in-between. We could
408 * check for that, but we need to tell the
409 * process anyways.
410 */
ae1139ec 411 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 412 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 413 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
414 }
415 put_task_struct(tk->tsk);
416 kfree(tk);
417 }
418}
419
3ba08129
NH
420/*
421 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
422 * on behalf of the thread group. Return task_struct of the (first found)
423 * dedicated thread if found, and return NULL otherwise.
424 *
425 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
426 * have to call rcu_read_lock/unlock() in this function.
427 */
428static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 429{
3ba08129
NH
430 struct task_struct *t;
431
4e018b45
NH
432 for_each_thread(tsk, t) {
433 if (t->flags & PF_MCE_PROCESS) {
434 if (t->flags & PF_MCE_EARLY)
435 return t;
436 } else {
437 if (sysctl_memory_failure_early_kill)
438 return t;
439 }
440 }
3ba08129
NH
441 return NULL;
442}
443
444/*
445 * Determine whether a given process is "early kill" process which expects
446 * to be signaled when some page under the process is hwpoisoned.
447 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 448 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 449 *
30c9cf49
AY
450 * Note that the above is true for Action Optional case. For Action Required
451 * case, it's only meaningful to the current thread which need to be signaled
452 * with SIGBUS, this error is Action Optional for other non current
453 * processes sharing the same error page,if the process is "early kill", the
454 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
455 */
456static struct task_struct *task_early_kill(struct task_struct *tsk,
457 int force_early)
458{
6a46079c 459 if (!tsk->mm)
3ba08129 460 return NULL;
30c9cf49
AY
461 /*
462 * Comparing ->mm here because current task might represent
463 * a subthread, while tsk always points to the main thread.
464 */
465 if (force_early && tsk->mm == current->mm)
466 return current;
467
4e018b45 468 return find_early_kill_thread(tsk);
6a46079c
AK
469}
470
471/*
472 * Collect processes when the error hit an anonymous page.
473 */
474static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 475 int force_early)
6a46079c
AK
476{
477 struct vm_area_struct *vma;
478 struct task_struct *tsk;
479 struct anon_vma *av;
bf181b9f 480 pgoff_t pgoff;
6a46079c 481
4fc3f1d6 482 av = page_lock_anon_vma_read(page);
6a46079c 483 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
484 return;
485
a0f7a756 486 pgoff = page_to_pgoff(page);
9b679320 487 read_lock(&tasklist_lock);
6a46079c 488 for_each_process (tsk) {
5beb4930 489 struct anon_vma_chain *vmac;
3ba08129 490 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 491
3ba08129 492 if (!t)
6a46079c 493 continue;
bf181b9f
ML
494 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
495 pgoff, pgoff) {
5beb4930 496 vma = vmac->vma;
6a46079c
AK
497 if (!page_mapped_in_vma(page, vma))
498 continue;
3ba08129 499 if (vma->vm_mm == t->mm)
996ff7a0 500 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
501 }
502 }
6a46079c 503 read_unlock(&tasklist_lock);
4fc3f1d6 504 page_unlock_anon_vma_read(av);
6a46079c
AK
505}
506
507/*
508 * Collect processes when the error hit a file mapped page.
509 */
510static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 511 int force_early)
6a46079c
AK
512{
513 struct vm_area_struct *vma;
514 struct task_struct *tsk;
6a46079c 515 struct address_space *mapping = page->mapping;
c43bc03d 516 pgoff_t pgoff;
6a46079c 517
d28eb9c8 518 i_mmap_lock_read(mapping);
9b679320 519 read_lock(&tasklist_lock);
c43bc03d 520 pgoff = page_to_pgoff(page);
6a46079c 521 for_each_process(tsk) {
3ba08129 522 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 523
3ba08129 524 if (!t)
6a46079c 525 continue;
6b2dbba8 526 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
527 pgoff) {
528 /*
529 * Send early kill signal to tasks where a vma covers
530 * the page but the corrupted page is not necessarily
531 * mapped it in its pte.
532 * Assume applications who requested early kill want
533 * to be informed of all such data corruptions.
534 */
3ba08129 535 if (vma->vm_mm == t->mm)
996ff7a0 536 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
537 }
538 }
6a46079c 539 read_unlock(&tasklist_lock);
d28eb9c8 540 i_mmap_unlock_read(mapping);
6a46079c
AK
541}
542
543/*
544 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 545 */
74614de1
TL
546static void collect_procs(struct page *page, struct list_head *tokill,
547 int force_early)
6a46079c 548{
6a46079c
AK
549 if (!page->mapping)
550 return;
551
6a46079c 552 if (PageAnon(page))
996ff7a0 553 collect_procs_anon(page, tokill, force_early);
6a46079c 554 else
996ff7a0 555 collect_procs_file(page, tokill, force_early);
6a46079c
AK
556}
557
a3f5d80e
NH
558struct hwp_walk {
559 struct to_kill tk;
560 unsigned long pfn;
561 int flags;
562};
563
564static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
565{
566 tk->addr = addr;
567 tk->size_shift = shift;
568}
569
570static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
571 unsigned long poisoned_pfn, struct to_kill *tk)
572{
573 unsigned long pfn = 0;
574
575 if (pte_present(pte)) {
576 pfn = pte_pfn(pte);
577 } else {
578 swp_entry_t swp = pte_to_swp_entry(pte);
579
580 if (is_hwpoison_entry(swp))
581 pfn = hwpoison_entry_to_pfn(swp);
582 }
583
584 if (!pfn || pfn != poisoned_pfn)
585 return 0;
586
587 set_to_kill(tk, addr, shift);
588 return 1;
589}
590
591#ifdef CONFIG_TRANSPARENT_HUGEPAGE
592static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
593 struct hwp_walk *hwp)
594{
595 pmd_t pmd = *pmdp;
596 unsigned long pfn;
597 unsigned long hwpoison_vaddr;
598
599 if (!pmd_present(pmd))
600 return 0;
601 pfn = pmd_pfn(pmd);
602 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
603 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
604 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
605 return 1;
606 }
607 return 0;
608}
609#else
610static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
611 struct hwp_walk *hwp)
612{
613 return 0;
614}
615#endif
616
617static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
618 unsigned long end, struct mm_walk *walk)
619{
620 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
621 int ret = 0;
622 pte_t *ptep;
623 spinlock_t *ptl;
624
625 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
626 if (ptl) {
627 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
628 spin_unlock(ptl);
629 goto out;
630 }
631
632 if (pmd_trans_unstable(pmdp))
633 goto out;
634
635 ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, addr, &ptl);
636 for (; addr != end; ptep++, addr += PAGE_SIZE) {
637 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
638 hwp->pfn, &hwp->tk);
639 if (ret == 1)
640 break;
641 }
642 pte_unmap_unlock(ptep - 1, ptl);
643out:
644 cond_resched();
645 return ret;
646}
647
648#ifdef CONFIG_HUGETLB_PAGE
649static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
650 unsigned long addr, unsigned long end,
651 struct mm_walk *walk)
652{
653 struct hwp_walk *hwp = (struct hwp_walk *)walk->private;
654 pte_t pte = huge_ptep_get(ptep);
655 struct hstate *h = hstate_vma(walk->vma);
656
657 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
658 hwp->pfn, &hwp->tk);
659}
660#else
661#define hwpoison_hugetlb_range NULL
662#endif
663
664static struct mm_walk_ops hwp_walk_ops = {
665 .pmd_entry = hwpoison_pte_range,
666 .hugetlb_entry = hwpoison_hugetlb_range,
667};
668
669/*
670 * Sends SIGBUS to the current process with error info.
671 *
672 * This function is intended to handle "Action Required" MCEs on already
673 * hardware poisoned pages. They could happen, for example, when
674 * memory_failure() failed to unmap the error page at the first call, or
675 * when multiple local machine checks happened on different CPUs.
676 *
677 * MCE handler currently has no easy access to the error virtual address,
678 * so this function walks page table to find it. The returned virtual address
679 * is proper in most cases, but it could be wrong when the application
680 * process has multiple entries mapping the error page.
681 */
682static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
683 int flags)
684{
685 int ret;
686 struct hwp_walk priv = {
687 .pfn = pfn,
688 };
689 priv.tk.tsk = p;
690
691 mmap_read_lock(p->mm);
692 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
693 (void *)&priv);
694 if (ret == 1 && priv.tk.addr)
695 kill_proc(&priv.tk, pfn, flags);
696 mmap_read_unlock(p->mm);
697 return ret ? -EFAULT : -EHWPOISON;
698}
699
6a46079c 700static const char *action_name[] = {
cc637b17
XX
701 [MF_IGNORED] = "Ignored",
702 [MF_FAILED] = "Failed",
703 [MF_DELAYED] = "Delayed",
704 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
705};
706
707static const char * const action_page_types[] = {
cc637b17
XX
708 [MF_MSG_KERNEL] = "reserved kernel page",
709 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
710 [MF_MSG_SLAB] = "kernel slab page",
711 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
712 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
713 [MF_MSG_HUGE] = "huge page",
714 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 715 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
716 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
717 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
718 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
719 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
720 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
721 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
722 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
723 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
724 [MF_MSG_CLEAN_LRU] = "clean LRU page",
725 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
726 [MF_MSG_BUDDY] = "free buddy page",
727 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
6100e34b 728 [MF_MSG_DAX] = "dax page",
5d1fd5dc 729 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 730 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
731};
732
dc2a1cbf
WF
733/*
734 * XXX: It is possible that a page is isolated from LRU cache,
735 * and then kept in swap cache or failed to remove from page cache.
736 * The page count will stop it from being freed by unpoison.
737 * Stress tests should be aware of this memory leak problem.
738 */
739static int delete_from_lru_cache(struct page *p)
740{
741 if (!isolate_lru_page(p)) {
742 /*
743 * Clear sensible page flags, so that the buddy system won't
744 * complain when the page is unpoison-and-freed.
745 */
746 ClearPageActive(p);
747 ClearPageUnevictable(p);
18365225
MH
748
749 /*
750 * Poisoned page might never drop its ref count to 0 so we have
751 * to uncharge it manually from its memcg.
752 */
753 mem_cgroup_uncharge(p);
754
dc2a1cbf
WF
755 /*
756 * drop the page count elevated by isolate_lru_page()
757 */
09cbfeaf 758 put_page(p);
dc2a1cbf
WF
759 return 0;
760 }
761 return -EIO;
762}
763
78bb9203
NH
764static int truncate_error_page(struct page *p, unsigned long pfn,
765 struct address_space *mapping)
766{
767 int ret = MF_FAILED;
768
769 if (mapping->a_ops->error_remove_page) {
770 int err = mapping->a_ops->error_remove_page(mapping, p);
771
772 if (err != 0) {
773 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
774 pfn, err);
775 } else if (page_has_private(p) &&
776 !try_to_release_page(p, GFP_NOIO)) {
777 pr_info("Memory failure: %#lx: failed to release buffers\n",
778 pfn);
779 } else {
780 ret = MF_RECOVERED;
781 }
782 } else {
783 /*
784 * If the file system doesn't support it just invalidate
785 * This fails on dirty or anything with private pages
786 */
787 if (invalidate_inode_page(p))
788 ret = MF_RECOVERED;
789 else
790 pr_info("Memory failure: %#lx: Failed to invalidate\n",
791 pfn);
792 }
793
794 return ret;
795}
796
6a46079c
AK
797/*
798 * Error hit kernel page.
799 * Do nothing, try to be lucky and not touch this instead. For a few cases we
800 * could be more sophisticated.
801 */
802static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 803{
ea6d0630 804 unlock_page(p);
cc637b17 805 return MF_IGNORED;
6a46079c
AK
806}
807
808/*
809 * Page in unknown state. Do nothing.
810 */
811static int me_unknown(struct page *p, unsigned long pfn)
812{
495367c0 813 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
ea6d0630 814 unlock_page(p);
cc637b17 815 return MF_FAILED;
6a46079c
AK
816}
817
6a46079c
AK
818/*
819 * Clean (or cleaned) page cache page.
820 */
821static int me_pagecache_clean(struct page *p, unsigned long pfn)
822{
ea6d0630 823 int ret;
6a46079c
AK
824 struct address_space *mapping;
825
dc2a1cbf
WF
826 delete_from_lru_cache(p);
827
6a46079c
AK
828 /*
829 * For anonymous pages we're done the only reference left
830 * should be the one m_f() holds.
831 */
ea6d0630
NH
832 if (PageAnon(p)) {
833 ret = MF_RECOVERED;
834 goto out;
835 }
6a46079c
AK
836
837 /*
838 * Now truncate the page in the page cache. This is really
839 * more like a "temporary hole punch"
840 * Don't do this for block devices when someone else
841 * has a reference, because it could be file system metadata
842 * and that's not safe to truncate.
843 */
844 mapping = page_mapping(p);
845 if (!mapping) {
846 /*
847 * Page has been teared down in the meanwhile
848 */
ea6d0630
NH
849 ret = MF_FAILED;
850 goto out;
6a46079c
AK
851 }
852
853 /*
854 * Truncation is a bit tricky. Enable it per file system for now.
855 *
856 * Open: to take i_mutex or not for this? Right now we don't.
857 */
ea6d0630
NH
858 ret = truncate_error_page(p, pfn, mapping);
859out:
860 unlock_page(p);
861 return ret;
6a46079c
AK
862}
863
864/*
549543df 865 * Dirty pagecache page
6a46079c
AK
866 * Issues: when the error hit a hole page the error is not properly
867 * propagated.
868 */
869static int me_pagecache_dirty(struct page *p, unsigned long pfn)
870{
871 struct address_space *mapping = page_mapping(p);
872
873 SetPageError(p);
874 /* TBD: print more information about the file. */
875 if (mapping) {
876 /*
877 * IO error will be reported by write(), fsync(), etc.
878 * who check the mapping.
879 * This way the application knows that something went
880 * wrong with its dirty file data.
881 *
882 * There's one open issue:
883 *
884 * The EIO will be only reported on the next IO
885 * operation and then cleared through the IO map.
886 * Normally Linux has two mechanisms to pass IO error
887 * first through the AS_EIO flag in the address space
888 * and then through the PageError flag in the page.
889 * Since we drop pages on memory failure handling the
890 * only mechanism open to use is through AS_AIO.
891 *
892 * This has the disadvantage that it gets cleared on
893 * the first operation that returns an error, while
894 * the PageError bit is more sticky and only cleared
895 * when the page is reread or dropped. If an
896 * application assumes it will always get error on
897 * fsync, but does other operations on the fd before
25985edc 898 * and the page is dropped between then the error
6a46079c
AK
899 * will not be properly reported.
900 *
901 * This can already happen even without hwpoisoned
902 * pages: first on metadata IO errors (which only
903 * report through AS_EIO) or when the page is dropped
904 * at the wrong time.
905 *
906 * So right now we assume that the application DTRT on
907 * the first EIO, but we're not worse than other parts
908 * of the kernel.
909 */
af21bfaf 910 mapping_set_error(mapping, -EIO);
6a46079c
AK
911 }
912
913 return me_pagecache_clean(p, pfn);
914}
915
916/*
917 * Clean and dirty swap cache.
918 *
919 * Dirty swap cache page is tricky to handle. The page could live both in page
920 * cache and swap cache(ie. page is freshly swapped in). So it could be
921 * referenced concurrently by 2 types of PTEs:
922 * normal PTEs and swap PTEs. We try to handle them consistently by calling
923 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
924 * and then
925 * - clear dirty bit to prevent IO
926 * - remove from LRU
927 * - but keep in the swap cache, so that when we return to it on
928 * a later page fault, we know the application is accessing
929 * corrupted data and shall be killed (we installed simple
930 * interception code in do_swap_page to catch it).
931 *
932 * Clean swap cache pages can be directly isolated. A later page fault will
933 * bring in the known good data from disk.
934 */
935static int me_swapcache_dirty(struct page *p, unsigned long pfn)
936{
ea6d0630
NH
937 int ret;
938
6a46079c
AK
939 ClearPageDirty(p);
940 /* Trigger EIO in shmem: */
941 ClearPageUptodate(p);
942
ea6d0630
NH
943 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
944 unlock_page(p);
945 return ret;
6a46079c
AK
946}
947
948static int me_swapcache_clean(struct page *p, unsigned long pfn)
949{
ea6d0630
NH
950 int ret;
951
6a46079c 952 delete_from_swap_cache(p);
e43c3afb 953
ea6d0630
NH
954 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
955 unlock_page(p);
956 return ret;
6a46079c
AK
957}
958
959/*
960 * Huge pages. Needs work.
961 * Issues:
93f70f90
NH
962 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
963 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
964 */
965static int me_huge_page(struct page *p, unsigned long pfn)
966{
a8b2c2ce 967 int res;
93f70f90 968 struct page *hpage = compound_head(p);
78bb9203 969 struct address_space *mapping;
2491ffee
NH
970
971 if (!PageHuge(hpage))
972 return MF_DELAYED;
973
78bb9203
NH
974 mapping = page_mapping(hpage);
975 if (mapping) {
976 res = truncate_error_page(hpage, pfn, mapping);
ea6d0630 977 unlock_page(hpage);
78bb9203 978 } else {
a8b2c2ce 979 res = MF_FAILED;
78bb9203
NH
980 unlock_page(hpage);
981 /*
982 * migration entry prevents later access on error anonymous
983 * hugepage, so we can free and dissolve it into buddy to
984 * save healthy subpages.
985 */
986 if (PageAnon(hpage))
987 put_page(hpage);
a8b2c2ce
OS
988 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
989 page_ref_inc(p);
990 res = MF_RECOVERED;
991 }
93f70f90 992 }
78bb9203
NH
993
994 return res;
6a46079c
AK
995}
996
997/*
998 * Various page states we can handle.
999 *
1000 * A page state is defined by its current page->flags bits.
1001 * The table matches them in order and calls the right handler.
1002 *
1003 * This is quite tricky because we can access page at any time
25985edc 1004 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1005 *
1006 * This is not complete. More states could be added.
1007 * For any missing state don't attempt recovery.
1008 */
1009
1010#define dirty (1UL << PG_dirty)
6326fec1 1011#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1012#define unevict (1UL << PG_unevictable)
1013#define mlock (1UL << PG_mlocked)
6a46079c 1014#define lru (1UL << PG_lru)
6a46079c 1015#define head (1UL << PG_head)
6a46079c 1016#define slab (1UL << PG_slab)
6a46079c
AK
1017#define reserved (1UL << PG_reserved)
1018
1019static struct page_state {
1020 unsigned long mask;
1021 unsigned long res;
cc637b17 1022 enum mf_action_page_type type;
ea6d0630
NH
1023
1024 /* Callback ->action() has to unlock the relevant page inside it. */
6a46079c
AK
1025 int (*action)(struct page *p, unsigned long pfn);
1026} error_states[] = {
cc637b17 1027 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1028 /*
1029 * free pages are specially detected outside this table:
1030 * PG_buddy pages only make a small fraction of all free pages.
1031 */
6a46079c
AK
1032
1033 /*
1034 * Could in theory check if slab page is free or if we can drop
1035 * currently unused objects without touching them. But just
1036 * treat it as standard kernel for now.
1037 */
cc637b17 1038 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1039
cc637b17 1040 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1041
cc637b17
XX
1042 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1043 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1044
cc637b17
XX
1045 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1046 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1047
cc637b17
XX
1048 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1049 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1050
cc637b17
XX
1051 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1052 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1053
1054 /*
1055 * Catchall entry: must be at end.
1056 */
cc637b17 1057 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1058};
1059
2326c467
AK
1060#undef dirty
1061#undef sc
1062#undef unevict
1063#undef mlock
2326c467 1064#undef lru
2326c467 1065#undef head
2326c467
AK
1066#undef slab
1067#undef reserved
1068
ff604cf6
NH
1069/*
1070 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1071 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1072 */
cc3e2af4
XX
1073static void action_result(unsigned long pfn, enum mf_action_page_type type,
1074 enum mf_result result)
6a46079c 1075{
97f0b134
XX
1076 trace_memory_failure_event(pfn, type, result);
1077
495367c0 1078 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 1079 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1080}
1081
1082static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1083 unsigned long pfn)
6a46079c
AK
1084{
1085 int result;
7456b040 1086 int count;
6a46079c 1087
ea6d0630 1088 /* page p should be unlocked after returning from ps->action(). */
6a46079c 1089 result = ps->action(p, pfn);
7456b040 1090
bd1ce5f9 1091 count = page_count(p) - 1;
cc637b17 1092 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286 1093 count--;
78bb9203 1094 if (count > 0) {
495367c0 1095 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 1096 pfn, action_page_types[ps->type], count);
cc637b17 1097 result = MF_FAILED;
138ce286 1098 }
64d37a2b 1099 action_result(pfn, ps->type, result);
6a46079c
AK
1100
1101 /* Could do more checks here if page looks ok */
1102 /*
1103 * Could adjust zone counters here to correct for the missing page.
1104 */
1105
cc637b17 1106 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1107}
1108
25182f05
NH
1109/*
1110 * Return true if a page type of a given page is supported by hwpoison
1111 * mechanism (while handling could fail), otherwise false. This function
1112 * does not return true for hugetlb or device memory pages, so it's assumed
1113 * to be called only in the context where we never have such pages.
1114 */
1115static inline bool HWPoisonHandlable(struct page *page)
1116{
1117 return PageLRU(page) || __PageMovable(page);
1118}
1119
ead07f6a 1120/**
17e395b6 1121 * __get_hwpoison_page() - Get refcount for memory error handling:
ead07f6a
NH
1122 * @page: raw error page (hit by memory error)
1123 *
1124 * Return: return 0 if failed to grab the refcount, otherwise true (some
1125 * non-zero value.)
1126 */
17e395b6 1127static int __get_hwpoison_page(struct page *page)
ead07f6a
NH
1128{
1129 struct page *head = compound_head(page);
25182f05
NH
1130 int ret = 0;
1131 bool hugetlb = false;
1132
1133 ret = get_hwpoison_huge_page(head, &hugetlb);
1134 if (hugetlb)
1135 return ret;
1136
1137 /*
1138 * This check prevents from calling get_hwpoison_unless_zero()
1139 * for any unsupported type of page in order to reduce the risk of
1140 * unexpected races caused by taking a page refcount.
1141 */
1142 if (!HWPoisonHandlable(head))
1143 return 0;
ead07f6a 1144
25182f05 1145 if (PageTransHuge(head)) {
98ed2b00
NH
1146 /*
1147 * Non anonymous thp exists only in allocation/free time. We
1148 * can't handle such a case correctly, so let's give it up.
1149 * This should be better than triggering BUG_ON when kernel
1150 * tries to touch the "partially handled" page.
1151 */
1152 if (!PageAnon(head)) {
495367c0 1153 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
1154 page_to_pfn(page));
1155 return 0;
1156 }
ead07f6a
NH
1157 }
1158
c2e7e00b
KK
1159 if (get_page_unless_zero(head)) {
1160 if (head == compound_head(page))
1161 return 1;
1162
495367c0
CY
1163 pr_info("Memory failure: %#lx cannot catch tail\n",
1164 page_to_pfn(page));
c2e7e00b
KK
1165 put_page(head);
1166 }
1167
1168 return 0;
ead07f6a 1169}
ead07f6a 1170
2f714160
OS
1171/*
1172 * Safely get reference count of an arbitrary page.
1173 *
1174 * Returns 0 for a free page, 1 for an in-use page,
1175 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an
1176 * allocation.
1177 * We only incremented refcount in case the page was already in-use and it
1178 * is a known type we can handle.
1179 */
1180static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1181{
2f714160
OS
1182 int ret = 0, pass = 0;
1183 bool count_increased = false;
17e395b6 1184
2f714160
OS
1185 if (flags & MF_COUNT_INCREASED)
1186 count_increased = true;
1187
1188try_again:
1189 if (!count_increased && !__get_hwpoison_page(p)) {
1190 if (page_count(p)) {
1191 /* We raced with an allocation, retry. */
1192 if (pass++ < 3)
1193 goto try_again;
1194 ret = -EBUSY;
1195 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1196 /* We raced with put_page, retry. */
1197 if (pass++ < 3)
1198 goto try_again;
1199 ret = -EIO;
1200 }
1201 } else {
25182f05 1202 if (PageHuge(p) || HWPoisonHandlable(p)) {
2f714160
OS
1203 ret = 1;
1204 } else {
1205 /*
1206 * A page we cannot handle. Check whether we can turn
1207 * it into something we can handle.
1208 */
1209 if (pass++ < 3) {
1210 put_page(p);
1211 shake_page(p, 1);
1212 count_increased = false;
1213 goto try_again;
1214 }
1215 put_page(p);
1216 ret = -EIO;
1217 }
17e395b6
OS
1218 }
1219
1220 return ret;
1221}
1222
2f714160
OS
1223static int get_hwpoison_page(struct page *p, unsigned long flags,
1224 enum mf_flags ctxt)
1225{
1226 int ret;
1227
1228 zone_pcp_disable(page_zone(p));
1229 if (ctxt == MF_SOFT_OFFLINE)
1230 ret = get_any_page(p, flags);
1231 else
1232 ret = __get_hwpoison_page(p);
1233 zone_pcp_enable(page_zone(p));
1234
1235 return ret;
1236}
1237
6a46079c
AK
1238/*
1239 * Do all that is necessary to remove user space mappings. Unmap
1240 * the pages and send SIGBUS to the processes if the data was dirty.
1241 */
666e5a40 1242static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
83b57531 1243 int flags, struct page **hpagep)
6a46079c 1244{
013339df 1245 enum ttu_flags ttu = TTU_IGNORE_MLOCK;
6a46079c
AK
1246 struct address_space *mapping;
1247 LIST_HEAD(tokill);
c0d0381a 1248 bool unmap_success = true;
6751ed65 1249 int kill = 1, forcekill;
54b9dd14 1250 struct page *hpage = *hpagep;
286c469a 1251 bool mlocked = PageMlocked(hpage);
6a46079c 1252
93a9eb39
NH
1253 /*
1254 * Here we are interested only in user-mapped pages, so skip any
1255 * other types of pages.
1256 */
1257 if (PageReserved(p) || PageSlab(p))
666e5a40 1258 return true;
93a9eb39 1259 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1260 return true;
6a46079c 1261
6a46079c
AK
1262 /*
1263 * This check implies we don't kill processes if their pages
1264 * are in the swap cache early. Those are always late kills.
1265 */
7af446a8 1266 if (!page_mapped(hpage))
666e5a40 1267 return true;
1668bfd5 1268
52089b14 1269 if (PageKsm(p)) {
495367c0 1270 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 1271 return false;
52089b14 1272 }
6a46079c
AK
1273
1274 if (PageSwapCache(p)) {
495367c0
CY
1275 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1276 pfn);
6a46079c
AK
1277 ttu |= TTU_IGNORE_HWPOISON;
1278 }
1279
1280 /*
1281 * Propagate the dirty bit from PTEs to struct page first, because we
1282 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1283 * XXX: the dirty test could be racy: set_page_dirty() may not always
1284 * be called inside page lock (it's recommended but not enforced).
6a46079c 1285 */
7af446a8 1286 mapping = page_mapping(hpage);
6751ed65 1287 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1288 mapping_can_writeback(mapping)) {
7af446a8
NH
1289 if (page_mkclean(hpage)) {
1290 SetPageDirty(hpage);
6a46079c
AK
1291 } else {
1292 kill = 0;
1293 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1294 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1295 pfn);
1296 }
1297 }
1298
1299 /*
1300 * First collect all the processes that have the page
1301 * mapped in dirty form. This has to be done before try_to_unmap,
1302 * because ttu takes the rmap data structures down.
1303 *
1304 * Error handling: We ignore errors here because
1305 * there's nothing that can be done.
1306 */
1307 if (kill)
415c64c1 1308 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1309
c0d0381a
MK
1310 if (!PageHuge(hpage)) {
1311 unmap_success = try_to_unmap(hpage, ttu);
1312 } else {
336bf30e
MK
1313 if (!PageAnon(hpage)) {
1314 /*
1315 * For hugetlb pages in shared mappings, try_to_unmap
1316 * could potentially call huge_pmd_unshare. Because of
1317 * this, take semaphore in write mode here and set
1318 * TTU_RMAP_LOCKED to indicate we have taken the lock
1319 * at this higer level.
1320 */
1321 mapping = hugetlb_page_mapping_lock_write(hpage);
1322 if (mapping) {
1323 unmap_success = try_to_unmap(hpage,
c0d0381a 1324 ttu|TTU_RMAP_LOCKED);
336bf30e
MK
1325 i_mmap_unlock_write(mapping);
1326 } else {
1327 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1328 unmap_success = false;
1329 }
c0d0381a 1330 } else {
336bf30e 1331 unmap_success = try_to_unmap(hpage, ttu);
c0d0381a
MK
1332 }
1333 }
666e5a40 1334 if (!unmap_success)
495367c0 1335 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1336 pfn, page_mapcount(hpage));
a6d30ddd 1337
286c469a
NH
1338 /*
1339 * try_to_unmap() might put mlocked page in lru cache, so call
1340 * shake_page() again to ensure that it's flushed.
1341 */
1342 if (mlocked)
1343 shake_page(hpage, 0);
1344
6a46079c
AK
1345 /*
1346 * Now that the dirty bit has been propagated to the
1347 * struct page and all unmaps done we can decide if
1348 * killing is needed or not. Only kill when the page
6751ed65
TL
1349 * was dirty or the process is not restartable,
1350 * otherwise the tokill list is merely
6a46079c
AK
1351 * freed. When there was a problem unmapping earlier
1352 * use a more force-full uncatchable kill to prevent
1353 * any accesses to the poisoned memory.
1354 */
415c64c1 1355 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1356 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1357
666e5a40 1358 return unmap_success;
6a46079c
AK
1359}
1360
0348d2eb
NH
1361static int identify_page_state(unsigned long pfn, struct page *p,
1362 unsigned long page_flags)
761ad8d7
NH
1363{
1364 struct page_state *ps;
0348d2eb
NH
1365
1366 /*
1367 * The first check uses the current page flags which may not have any
1368 * relevant information. The second check with the saved page flags is
1369 * carried out only if the first check can't determine the page status.
1370 */
1371 for (ps = error_states;; ps++)
1372 if ((p->flags & ps->mask) == ps->res)
1373 break;
1374
1375 page_flags |= (p->flags & (1UL << PG_dirty));
1376
1377 if (!ps->mask)
1378 for (ps = error_states;; ps++)
1379 if ((page_flags & ps->mask) == ps->res)
1380 break;
1381 return page_action(ps, p, pfn);
1382}
1383
694bf0b0
OS
1384static int try_to_split_thp_page(struct page *page, const char *msg)
1385{
1386 lock_page(page);
1387 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1388 unsigned long pfn = page_to_pfn(page);
1389
1390 unlock_page(page);
1391 if (!PageAnon(page))
1392 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn);
1393 else
1394 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1395 put_page(page);
1396 return -EBUSY;
1397 }
1398 unlock_page(page);
1399
1400 return 0;
1401}
1402
83b57531 1403static int memory_failure_hugetlb(unsigned long pfn, int flags)
0348d2eb 1404{
761ad8d7
NH
1405 struct page *p = pfn_to_page(pfn);
1406 struct page *head = compound_head(p);
1407 int res;
1408 unsigned long page_flags;
1409
1410 if (TestSetPageHWPoison(head)) {
1411 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1412 pfn);
a3f5d80e
NH
1413 res = -EHWPOISON;
1414 if (flags & MF_ACTION_REQUIRED)
1415 res = kill_accessing_process(current, page_to_pfn(head), flags);
1416 return res;
761ad8d7
NH
1417 }
1418
1419 num_poisoned_pages_inc();
1420
2f714160 1421 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
761ad8d7
NH
1422 /*
1423 * Check "filter hit" and "race with other subpage."
1424 */
1425 lock_page(head);
1426 if (PageHWPoison(head)) {
1427 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1428 || (p != head && TestSetPageHWPoison(head))) {
1429 num_poisoned_pages_dec();
1430 unlock_page(head);
1431 return 0;
1432 }
1433 }
1434 unlock_page(head);
a8b2c2ce
OS
1435 res = MF_FAILED;
1436 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) {
1437 page_ref_inc(p);
1438 res = MF_RECOVERED;
1439 }
1440 action_result(pfn, MF_MSG_FREE_HUGE, res);
1441 return res == MF_RECOVERED ? 0 : -EBUSY;
761ad8d7
NH
1442 }
1443
1444 lock_page(head);
1445 page_flags = head->flags;
1446
1447 if (!PageHWPoison(head)) {
1448 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1449 num_poisoned_pages_dec();
1450 unlock_page(head);
dd6e2402 1451 put_page(head);
761ad8d7
NH
1452 return 0;
1453 }
1454
31286a84
NH
1455 /*
1456 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1457 * simply disable it. In order to make it work properly, we need
1458 * make sure that:
1459 * - conversion of a pud that maps an error hugetlb into hwpoison
1460 * entry properly works, and
1461 * - other mm code walking over page table is aware of pud-aligned
1462 * hwpoison entries.
1463 */
1464 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1465 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1466 res = -EBUSY;
1467 goto out;
1468 }
1469
83b57531 1470 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
761ad8d7
NH
1471 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1472 res = -EBUSY;
1473 goto out;
1474 }
1475
ea6d0630 1476 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1477out:
1478 unlock_page(head);
1479 return res;
1480}
1481
6100e34b
DW
1482static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1483 struct dev_pagemap *pgmap)
1484{
1485 struct page *page = pfn_to_page(pfn);
1486 const bool unmap_success = true;
1487 unsigned long size = 0;
1488 struct to_kill *tk;
1489 LIST_HEAD(tokill);
1490 int rc = -EBUSY;
1491 loff_t start;
27359fd6 1492 dax_entry_t cookie;
6100e34b 1493
1e8aaedb
OS
1494 if (flags & MF_COUNT_INCREASED)
1495 /*
1496 * Drop the extra refcount in case we come from madvise().
1497 */
1498 put_page(page);
1499
34dc45be
DW
1500 /* device metadata space is not recoverable */
1501 if (!pgmap_pfn_valid(pgmap, pfn)) {
1502 rc = -ENXIO;
1503 goto out;
1504 }
1505
6100e34b
DW
1506 /*
1507 * Prevent the inode from being freed while we are interrogating
1508 * the address_space, typically this would be handled by
1509 * lock_page(), but dax pages do not use the page lock. This
1510 * also prevents changes to the mapping of this pfn until
1511 * poison signaling is complete.
1512 */
27359fd6
MW
1513 cookie = dax_lock_page(page);
1514 if (!cookie)
6100e34b
DW
1515 goto out;
1516
1517 if (hwpoison_filter(page)) {
1518 rc = 0;
1519 goto unlock;
1520 }
1521
25b2995a 1522 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
6100e34b
DW
1523 /*
1524 * TODO: Handle HMM pages which may need coordination
1525 * with device-side memory.
1526 */
1527 goto unlock;
6100e34b
DW
1528 }
1529
1530 /*
1531 * Use this flag as an indication that the dax page has been
1532 * remapped UC to prevent speculative consumption of poison.
1533 */
1534 SetPageHWPoison(page);
1535
1536 /*
1537 * Unlike System-RAM there is no possibility to swap in a
1538 * different physical page at a given virtual address, so all
1539 * userspace consumption of ZONE_DEVICE memory necessitates
1540 * SIGBUS (i.e. MF_MUST_KILL)
1541 */
1542 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1543 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1544
1545 list_for_each_entry(tk, &tokill, nd)
1546 if (tk->size_shift)
1547 size = max(size, 1UL << tk->size_shift);
1548 if (size) {
1549 /*
1550 * Unmap the largest mapping to avoid breaking up
1551 * device-dax mappings which are constant size. The
1552 * actual size of the mapping being torn down is
1553 * communicated in siginfo, see kill_proc()
1554 */
1555 start = (page->index << PAGE_SHIFT) & ~(size - 1);
4d75136b 1556 unmap_mapping_range(page->mapping, start, size, 0);
6100e34b
DW
1557 }
1558 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1559 rc = 0;
1560unlock:
27359fd6 1561 dax_unlock_page(page, cookie);
6100e34b
DW
1562out:
1563 /* drop pgmap ref acquired in caller */
1564 put_dev_pagemap(pgmap);
1565 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1566 return rc;
1567}
1568
cd42f4a3
TL
1569/**
1570 * memory_failure - Handle memory failure of a page.
1571 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1572 * @flags: fine tune action taken
1573 *
1574 * This function is called by the low level machine check code
1575 * of an architecture when it detects hardware memory corruption
1576 * of a page. It tries its best to recover, which includes
1577 * dropping pages, killing processes etc.
1578 *
1579 * The function is primarily of use for corruptions that
1580 * happen outside the current execution context (e.g. when
1581 * detected by a background scrubber)
1582 *
1583 * Must run in process context (e.g. a work queue) with interrupts
1584 * enabled and no spinlocks hold.
1585 */
83b57531 1586int memory_failure(unsigned long pfn, int flags)
6a46079c 1587{
6a46079c 1588 struct page *p;
7af446a8 1589 struct page *hpage;
415c64c1 1590 struct page *orig_head;
6100e34b 1591 struct dev_pagemap *pgmap;
171936dd 1592 int res = 0;
524fca1e 1593 unsigned long page_flags;
a8b2c2ce 1594 bool retry = true;
171936dd 1595 static DEFINE_MUTEX(mf_mutex);
6a46079c
AK
1596
1597 if (!sysctl_memory_failure_recovery)
83b57531 1598 panic("Memory failure on page %lx", pfn);
6a46079c 1599
96c804a6
DH
1600 p = pfn_to_online_page(pfn);
1601 if (!p) {
1602 if (pfn_valid(pfn)) {
1603 pgmap = get_dev_pagemap(pfn, NULL);
1604 if (pgmap)
1605 return memory_failure_dev_pagemap(pfn, flags,
1606 pgmap);
1607 }
495367c0
CY
1608 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1609 pfn);
a7560fc8 1610 return -ENXIO;
6a46079c
AK
1611 }
1612
171936dd
TL
1613 mutex_lock(&mf_mutex);
1614
a8b2c2ce 1615try_again:
171936dd
TL
1616 if (PageHuge(p)) {
1617 res = memory_failure_hugetlb(pfn, flags);
1618 goto unlock_mutex;
1619 }
1620
6a46079c 1621 if (TestSetPageHWPoison(p)) {
495367c0
CY
1622 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1623 pfn);
47af12ba 1624 res = -EHWPOISON;
a3f5d80e
NH
1625 if (flags & MF_ACTION_REQUIRED)
1626 res = kill_accessing_process(current, pfn, flags);
171936dd 1627 goto unlock_mutex;
6a46079c
AK
1628 }
1629
761ad8d7 1630 orig_head = hpage = compound_head(p);
b37ff71c 1631 num_poisoned_pages_inc();
6a46079c
AK
1632
1633 /*
1634 * We need/can do nothing about count=0 pages.
1635 * 1) it's a free page, and therefore in safe hand:
1636 * prep_new_page() will be the gate keeper.
761ad8d7 1637 * 2) it's part of a non-compound high order page.
6a46079c
AK
1638 * Implies some kernel user: cannot stop them from
1639 * R/W the page; let's pray that the page has been
1640 * used and will be freed some time later.
1641 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1642 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1643 */
2f714160 1644 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) {
8d22ba1b 1645 if (is_free_buddy_page(p)) {
a8b2c2ce
OS
1646 if (take_page_off_buddy(p)) {
1647 page_ref_inc(p);
1648 res = MF_RECOVERED;
1649 } else {
1650 /* We lost the race, try again */
1651 if (retry) {
1652 ClearPageHWPoison(p);
1653 num_poisoned_pages_dec();
1654 retry = false;
1655 goto try_again;
1656 }
1657 res = MF_FAILED;
1658 }
1659 action_result(pfn, MF_MSG_BUDDY, res);
171936dd 1660 res = res == MF_RECOVERED ? 0 : -EBUSY;
8d22ba1b 1661 } else {
cc637b17 1662 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
171936dd 1663 res = -EBUSY;
8d22ba1b 1664 }
171936dd 1665 goto unlock_mutex;
6a46079c
AK
1666 }
1667
761ad8d7 1668 if (PageTransHuge(hpage)) {
5d1fd5dc
NH
1669 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1670 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1671 res = -EBUSY;
1672 goto unlock_mutex;
5d1fd5dc 1673 }
415c64c1 1674 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1675 }
1676
e43c3afb
WF
1677 /*
1678 * We ignore non-LRU pages for good reasons.
1679 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1680 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1681 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1682 * The check (unnecessarily) ignores LRU pages being isolated and
1683 * walked by the page reclaim code, however that's not a big loss.
1684 */
8bcb74de 1685 shake_page(p, 0);
e43c3afb 1686
761ad8d7 1687 lock_page(p);
847ce401 1688
f37d4298
AK
1689 /*
1690 * The page could have changed compound pages during the locking.
1691 * If this happens just bail out.
1692 */
415c64c1 1693 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1694 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 1695 res = -EBUSY;
171936dd 1696 goto unlock_page;
f37d4298
AK
1697 }
1698
524fca1e
NH
1699 /*
1700 * We use page flags to determine what action should be taken, but
1701 * the flags can be modified by the error containment action. One
1702 * example is an mlocked page, where PG_mlocked is cleared by
1703 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1704 * correctly, we save a copy of the page flags at this time.
1705 */
7d9d46ac 1706 page_flags = p->flags;
524fca1e 1707
847ce401
WF
1708 /*
1709 * unpoison always clear PG_hwpoison inside page lock
1710 */
1711 if (!PageHWPoison(p)) {
495367c0 1712 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1713 num_poisoned_pages_dec();
761ad8d7 1714 unlock_page(p);
dd6e2402 1715 put_page(p);
171936dd 1716 goto unlock_mutex;
847ce401 1717 }
7c116f2b
WF
1718 if (hwpoison_filter(p)) {
1719 if (TestClearPageHWPoison(p))
b37ff71c 1720 num_poisoned_pages_dec();
761ad8d7 1721 unlock_page(p);
dd6e2402 1722 put_page(p);
171936dd 1723 goto unlock_mutex;
7c116f2b 1724 }
847ce401 1725
e8675d29 1726 /*
1727 * __munlock_pagevec may clear a writeback page's LRU flag without
1728 * page_lock. We need wait writeback completion for this page or it
1729 * may trigger vfs BUG while evict inode.
1730 */
1731 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
1732 goto identify_page_state;
1733
6edd6cc6
NH
1734 /*
1735 * It's very difficult to mess with pages currently under IO
1736 * and in many cases impossible, so we just avoid it here.
1737 */
6a46079c
AK
1738 wait_on_page_writeback(p);
1739
1740 /*
1741 * Now take care of user space mappings.
e64a782f 1742 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
6a46079c 1743 */
1b473bec 1744 if (!hwpoison_user_mappings(p, pfn, flags, &p)) {
cc637b17 1745 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 1746 res = -EBUSY;
171936dd 1747 goto unlock_page;
1668bfd5 1748 }
6a46079c
AK
1749
1750 /*
1751 * Torn down by someone else?
1752 */
dc2a1cbf 1753 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1754 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1755 res = -EBUSY;
171936dd 1756 goto unlock_page;
6a46079c
AK
1757 }
1758
0bc1f8b0 1759identify_page_state:
0348d2eb 1760 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
1761 mutex_unlock(&mf_mutex);
1762 return res;
171936dd 1763unlock_page:
761ad8d7 1764 unlock_page(p);
171936dd
TL
1765unlock_mutex:
1766 mutex_unlock(&mf_mutex);
6a46079c
AK
1767 return res;
1768}
cd42f4a3 1769EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1770
ea8f5fb8
HY
1771#define MEMORY_FAILURE_FIFO_ORDER 4
1772#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1773
1774struct memory_failure_entry {
1775 unsigned long pfn;
ea8f5fb8
HY
1776 int flags;
1777};
1778
1779struct memory_failure_cpu {
1780 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1781 MEMORY_FAILURE_FIFO_SIZE);
1782 spinlock_t lock;
1783 struct work_struct work;
1784};
1785
1786static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1787
1788/**
1789 * memory_failure_queue - Schedule handling memory failure of a page.
1790 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
1791 * @flags: Flags for memory failure handling
1792 *
1793 * This function is called by the low level hardware error handler
1794 * when it detects hardware memory corruption of a page. It schedules
1795 * the recovering of error page, including dropping pages, killing
1796 * processes etc.
1797 *
1798 * The function is primarily of use for corruptions that
1799 * happen outside the current execution context (e.g. when
1800 * detected by a background scrubber)
1801 *
1802 * Can run in IRQ context.
1803 */
83b57531 1804void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
1805{
1806 struct memory_failure_cpu *mf_cpu;
1807 unsigned long proc_flags;
1808 struct memory_failure_entry entry = {
1809 .pfn = pfn,
ea8f5fb8
HY
1810 .flags = flags,
1811 };
1812
1813 mf_cpu = &get_cpu_var(memory_failure_cpu);
1814 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1815 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1816 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1817 else
8e33a52f 1818 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1819 pfn);
1820 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1821 put_cpu_var(memory_failure_cpu);
1822}
1823EXPORT_SYMBOL_GPL(memory_failure_queue);
1824
1825static void memory_failure_work_func(struct work_struct *work)
1826{
1827 struct memory_failure_cpu *mf_cpu;
1828 struct memory_failure_entry entry = { 0, };
1829 unsigned long proc_flags;
1830 int gotten;
1831
06202231 1832 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
1833 for (;;) {
1834 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1835 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1836 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1837 if (!gotten)
1838 break;
cf870c70 1839 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 1840 soft_offline_page(entry.pfn, entry.flags);
cf870c70 1841 else
83b57531 1842 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
1843 }
1844}
1845
06202231
JM
1846/*
1847 * Process memory_failure work queued on the specified CPU.
1848 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1849 */
1850void memory_failure_queue_kick(int cpu)
1851{
1852 struct memory_failure_cpu *mf_cpu;
1853
1854 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1855 cancel_work_sync(&mf_cpu->work);
1856 memory_failure_work_func(&mf_cpu->work);
1857}
1858
ea8f5fb8
HY
1859static int __init memory_failure_init(void)
1860{
1861 struct memory_failure_cpu *mf_cpu;
1862 int cpu;
1863
1864 for_each_possible_cpu(cpu) {
1865 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1866 spin_lock_init(&mf_cpu->lock);
1867 INIT_KFIFO(mf_cpu->fifo);
1868 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1869 }
1870
1871 return 0;
1872}
1873core_initcall(memory_failure_init);
1874
a5f65109
NH
1875#define unpoison_pr_info(fmt, pfn, rs) \
1876({ \
1877 if (__ratelimit(rs)) \
1878 pr_info(fmt, pfn); \
1879})
1880
847ce401
WF
1881/**
1882 * unpoison_memory - Unpoison a previously poisoned page
1883 * @pfn: Page number of the to be unpoisoned page
1884 *
1885 * Software-unpoison a page that has been poisoned by
1886 * memory_failure() earlier.
1887 *
1888 * This is only done on the software-level, so it only works
1889 * for linux injected failures, not real hardware failures
1890 *
1891 * Returns 0 for success, otherwise -errno.
1892 */
1893int unpoison_memory(unsigned long pfn)
1894{
1895 struct page *page;
1896 struct page *p;
1897 int freeit = 0;
2f714160 1898 unsigned long flags = 0;
a5f65109
NH
1899 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1900 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1901
1902 if (!pfn_valid(pfn))
1903 return -ENXIO;
1904
1905 p = pfn_to_page(pfn);
1906 page = compound_head(p);
1907
1908 if (!PageHWPoison(p)) {
495367c0 1909 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1910 pfn, &unpoison_rs);
847ce401
WF
1911 return 0;
1912 }
1913
230ac719 1914 if (page_count(page) > 1) {
495367c0 1915 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1916 pfn, &unpoison_rs);
230ac719
NH
1917 return 0;
1918 }
1919
1920 if (page_mapped(page)) {
495367c0 1921 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1922 pfn, &unpoison_rs);
230ac719
NH
1923 return 0;
1924 }
1925
1926 if (page_mapping(page)) {
495367c0 1927 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1928 pfn, &unpoison_rs);
230ac719
NH
1929 return 0;
1930 }
1931
0cea3fdc
WL
1932 /*
1933 * unpoison_memory() can encounter thp only when the thp is being
1934 * worked by memory_failure() and the page lock is not held yet.
1935 * In such case, we yield to memory_failure() and make unpoison fail.
1936 */
e76d30e2 1937 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1938 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1939 pfn, &unpoison_rs);
ead07f6a 1940 return 0;
0cea3fdc
WL
1941 }
1942
2f714160 1943 if (!get_hwpoison_page(p, flags, 0)) {
847ce401 1944 if (TestClearPageHWPoison(p))
8e30456b 1945 num_poisoned_pages_dec();
495367c0 1946 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1947 pfn, &unpoison_rs);
847ce401
WF
1948 return 0;
1949 }
1950
7eaceacc 1951 lock_page(page);
847ce401
WF
1952 /*
1953 * This test is racy because PG_hwpoison is set outside of page lock.
1954 * That's acceptable because that won't trigger kernel panic. Instead,
1955 * the PG_hwpoison page will be caught and isolated on the entrance to
1956 * the free buddy page pool.
1957 */
c9fbdd5f 1958 if (TestClearPageHWPoison(page)) {
495367c0 1959 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1960 pfn, &unpoison_rs);
b37ff71c 1961 num_poisoned_pages_dec();
847ce401
WF
1962 freeit = 1;
1963 }
1964 unlock_page(page);
1965
dd6e2402 1966 put_page(page);
3ba5eebc 1967 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
dd6e2402 1968 put_page(page);
847ce401
WF
1969
1970 return 0;
1971}
1972EXPORT_SYMBOL(unpoison_memory);
facb6011 1973
6b9a217e 1974static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 1975{
6b9a217e
OS
1976 bool isolated = false;
1977 bool lru = PageLRU(page);
d950b958 1978
6b9a217e
OS
1979 if (PageHuge(page)) {
1980 isolated = isolate_huge_page(page, pagelist);
1981 } else {
1982 if (lru)
1983 isolated = !isolate_lru_page(page);
1984 else
1985 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1986
1987 if (isolated)
1988 list_add(&page->lru, pagelist);
0ebff32c 1989 }
d950b958 1990
6b9a217e
OS
1991 if (isolated && lru)
1992 inc_node_page_state(page, NR_ISOLATED_ANON +
1993 page_is_file_lru(page));
1994
03613808 1995 /*
6b9a217e
OS
1996 * If we succeed to isolate the page, we grabbed another refcount on
1997 * the page, so we can safely drop the one we got from get_any_pages().
1998 * If we failed to isolate the page, it means that we cannot go further
1999 * and we will return an error, so drop the reference we got from
2000 * get_any_pages() as well.
03613808 2001 */
6b9a217e
OS
2002 put_page(page);
2003 return isolated;
d950b958
NH
2004}
2005
6b9a217e
OS
2006/*
2007 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2008 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2009 * If the page is mapped, it migrates the contents over.
2010 */
2011static int __soft_offline_page(struct page *page)
af8fae7c 2012{
6b9a217e 2013 int ret = 0;
af8fae7c 2014 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2015 struct page *hpage = compound_head(page);
2016 char const *msg_page[] = {"page", "hugepage"};
2017 bool huge = PageHuge(page);
2018 LIST_HEAD(pagelist);
54608759
JK
2019 struct migration_target_control mtc = {
2020 .nid = NUMA_NO_NODE,
2021 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2022 };
facb6011 2023
facb6011 2024 /*
af8fae7c
NH
2025 * Check PageHWPoison again inside page lock because PageHWPoison
2026 * is set by memory_failure() outside page lock. Note that
2027 * memory_failure() also double-checks PageHWPoison inside page lock,
2028 * so there's no race between soft_offline_page() and memory_failure().
facb6011 2029 */
0ebff32c 2030 lock_page(page);
6b9a217e
OS
2031 if (!PageHuge(page))
2032 wait_on_page_writeback(page);
af8fae7c
NH
2033 if (PageHWPoison(page)) {
2034 unlock_page(page);
dd6e2402 2035 put_page(page);
af8fae7c 2036 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2037 return 0;
af8fae7c 2038 }
6b9a217e
OS
2039
2040 if (!PageHuge(page))
2041 /*
2042 * Try to invalidate first. This should work for
2043 * non dirty unmapped page cache pages.
2044 */
2045 ret = invalidate_inode_page(page);
facb6011 2046 unlock_page(page);
6b9a217e 2047
facb6011 2048 /*
facb6011
AK
2049 * RED-PEN would be better to keep it isolated here, but we
2050 * would need to fix isolation locking first.
2051 */
6b9a217e 2052 if (ret) {
fb46e735 2053 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2054 page_handle_poison(page, false, true);
af8fae7c 2055 return 0;
facb6011
AK
2056 }
2057
6b9a217e 2058 if (isolate_page(hpage, &pagelist)) {
54608759
JK
2059 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2060 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE);
79f5f8fa 2061 if (!ret) {
6b9a217e
OS
2062 bool release = !huge;
2063
2064 if (!page_handle_poison(page, huge, release))
2065 ret = -EBUSY;
79f5f8fa 2066 } else {
85fbe5d1
YX
2067 if (!list_empty(&pagelist))
2068 putback_movable_pages(&pagelist);
59c82b70 2069
6b9a217e
OS
2070 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n",
2071 pfn, msg_page[huge], ret, page->flags, &page->flags);
facb6011 2072 if (ret > 0)
3f4b815a 2073 ret = -EBUSY;
facb6011
AK
2074 }
2075 } else {
3f4b815a
OS
2076 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n",
2077 pfn, msg_page[huge], page_count(page), page->flags, &page->flags);
6b9a217e 2078 ret = -EBUSY;
facb6011 2079 }
facb6011
AK
2080 return ret;
2081}
86e05773 2082
6b9a217e 2083static int soft_offline_in_use_page(struct page *page)
acc14dc4 2084{
acc14dc4
NH
2085 struct page *hpage = compound_head(page);
2086
694bf0b0
OS
2087 if (!PageHuge(page) && PageTransHuge(hpage))
2088 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2089 return -EBUSY;
6b9a217e 2090 return __soft_offline_page(page);
acc14dc4
NH
2091}
2092
d4ae9916 2093static int soft_offline_free_page(struct page *page)
acc14dc4 2094{
6b9a217e 2095 int rc = 0;
acc14dc4 2096
6b9a217e
OS
2097 if (!page_handle_poison(page, true, false))
2098 rc = -EBUSY;
06be6ff3 2099
d4ae9916 2100 return rc;
acc14dc4
NH
2101}
2102
dad4e5b3
DW
2103static void put_ref_page(struct page *page)
2104{
2105 if (page)
2106 put_page(page);
2107}
2108
86e05773
WL
2109/**
2110 * soft_offline_page - Soft offline a page.
feec24a6 2111 * @pfn: pfn to soft-offline
86e05773
WL
2112 * @flags: flags. Same as memory_failure().
2113 *
2114 * Returns 0 on success, otherwise negated errno.
2115 *
2116 * Soft offline a page, by migration or invalidation,
2117 * without killing anything. This is for the case when
2118 * a page is not corrupted yet (so it's still valid to access),
2119 * but has had a number of corrected errors and is better taken
2120 * out.
2121 *
2122 * The actual policy on when to do that is maintained by
2123 * user space.
2124 *
2125 * This should never impact any application or cause data loss,
2126 * however it might take some time.
2127 *
2128 * This is not a 100% solution for all memory, but tries to be
2129 * ``good enough'' for the majority of memory.
2130 */
feec24a6 2131int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2132{
2133 int ret;
b94e0282 2134 bool try_again = true;
dad4e5b3
DW
2135 struct page *page, *ref_page = NULL;
2136
2137 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2138
feec24a6
NH
2139 if (!pfn_valid(pfn))
2140 return -ENXIO;
dad4e5b3
DW
2141 if (flags & MF_COUNT_INCREASED)
2142 ref_page = pfn_to_page(pfn);
2143
feec24a6
NH
2144 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2145 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2146 if (!page) {
2147 put_ref_page(ref_page);
86a66810 2148 return -EIO;
dad4e5b3 2149 }
86a66810 2150
86e05773 2151 if (PageHWPoison(page)) {
8295d535 2152 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2153 put_ref_page(ref_page);
5a2ffca3 2154 return 0;
86e05773 2155 }
86e05773 2156
b94e0282 2157retry:
bfc8c901 2158 get_online_mems();
2f714160 2159 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE);
bfc8c901 2160 put_online_mems();
4e41a30c 2161
8295d535 2162 if (ret > 0) {
6b9a217e 2163 ret = soft_offline_in_use_page(page);
8295d535 2164 } else if (ret == 0) {
b94e0282
OS
2165 if (soft_offline_free_page(page) && try_again) {
2166 try_again = false;
2167 goto retry;
2168 }
8295d535 2169 } else if (ret == -EIO) {
6696d2a6 2170 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n",
8295d535
OS
2171 __func__, pfn, page->flags, &page->flags);
2172 }
4e41a30c 2173
86e05773
WL
2174 return ret;
2175}