mm/debug_vm_pgtable,page_table_check: warn pte map fails
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
96c84dde 45#include <linux/dax.h>
01e00f88 46#include <linux/ksm.h>
6a46079c 47#include <linux/rmap.h>
b9e15baf 48#include <linux/export.h>
6a46079c
AK
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
facb6011 52#include <linux/migrate.h>
facb6011 53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
6100e34b 59#include <linux/memremap.h>
ea8f5fb8 60#include <linux/kfifo.h>
a5f65109 61#include <linux/ratelimit.h>
d4ae9916 62#include <linux/page-isolation.h>
a3f5d80e 63#include <linux/pagewalk.h>
a7605426 64#include <linux/shmem_fs.h>
8cbc82f3 65#include <linux/sysctl.h>
014bb1de 66#include "swap.h"
6a46079c 67#include "internal.h"
97f0b134 68#include "ras/ras_event.h"
6a46079c 69
8cbc82f3 70static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 71
8cbc82f3 72static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 73
293c07e3 74atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 75
67f22ba7 76static bool hw_memory_failure __read_mostly = false;
77
a46c9304 78inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
79{
80 atomic_long_inc(&num_poisoned_pages);
5033091d 81 memblk_nr_poison_inc(pfn);
d027122d
NH
82}
83
5033091d 84inline void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
85{
86 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
87 if (pfn != -1UL)
88 memblk_nr_poison_sub(pfn, i);
d027122d
NH
89}
90
44b8f8bf
JY
91/**
92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93 * @_name: name of the file in the per NUMA sysfs directory.
94 */
95#define MF_ATTR_RO(_name) \
96static ssize_t _name##_show(struct device *dev, \
97 struct device_attribute *attr, \
98 char *buf) \
99{ \
100 struct memory_failure_stats *mf_stats = \
101 &NODE_DATA(dev->id)->mf_stats; \
102 return sprintf(buf, "%lu\n", mf_stats->_name); \
103} \
104static DEVICE_ATTR_RO(_name)
105
106MF_ATTR_RO(total);
107MF_ATTR_RO(ignored);
108MF_ATTR_RO(failed);
109MF_ATTR_RO(delayed);
110MF_ATTR_RO(recovered);
111
112static struct attribute *memory_failure_attr[] = {
113 &dev_attr_total.attr,
114 &dev_attr_ignored.attr,
115 &dev_attr_failed.attr,
116 &dev_attr_delayed.attr,
117 &dev_attr_recovered.attr,
118 NULL,
119};
120
121const struct attribute_group memory_failure_attr_group = {
122 .name = "memory_failure",
123 .attrs = memory_failure_attr,
124};
125
8cbc82f3
KW
126static struct ctl_table memory_failure_table[] = {
127 {
128 .procname = "memory_failure_early_kill",
129 .data = &sysctl_memory_failure_early_kill,
130 .maxlen = sizeof(sysctl_memory_failure_early_kill),
131 .mode = 0644,
132 .proc_handler = proc_dointvec_minmax,
133 .extra1 = SYSCTL_ZERO,
134 .extra2 = SYSCTL_ONE,
135 },
136 {
137 .procname = "memory_failure_recovery",
138 .data = &sysctl_memory_failure_recovery,
139 .maxlen = sizeof(sysctl_memory_failure_recovery),
140 .mode = 0644,
141 .proc_handler = proc_dointvec_minmax,
142 .extra1 = SYSCTL_ZERO,
143 .extra2 = SYSCTL_ONE,
144 },
145 { }
146};
147
7453bf62
NH
148/*
149 * Return values:
150 * 1: the page is dissolved (if needed) and taken off from buddy,
151 * 0: the page is dissolved (if needed) and not taken off from buddy,
152 * < 0: failed to dissolve.
153 */
154static int __page_handle_poison(struct page *page)
510d25c9 155{
f87060d3 156 int ret;
510d25c9
NH
157
158 zone_pcp_disable(page_zone(page));
159 ret = dissolve_free_huge_page(page);
160 if (!ret)
161 ret = take_page_off_buddy(page);
162 zone_pcp_enable(page_zone(page));
163
7453bf62 164 return ret;
510d25c9
NH
165}
166
6b9a217e 167static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 168{
6b9a217e
OS
169 if (hugepage_or_freepage) {
170 /*
171 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 * returns 0 for non-hugetlb pages as well.
173 */
7453bf62 174 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
175 /*
176 * We could fail to take off the target page from buddy
f0953a1b 177 * for example due to racy page allocation, but that's
6b9a217e
OS
178 * acceptable because soft-offlined page is not broken
179 * and if someone really want to use it, they should
180 * take it.
181 */
182 return false;
183 }
184
06be6ff3 185 SetPageHWPoison(page);
79f5f8fa
OS
186 if (release)
187 put_page(page);
06be6ff3 188 page_ref_inc(page);
a46c9304 189 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
190
191 return true;
06be6ff3
OS
192}
193
611b9fd8 194#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 195
1bfe5feb 196u32 hwpoison_filter_enable = 0;
7c116f2b
WF
197u32 hwpoison_filter_dev_major = ~0U;
198u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
199u64 hwpoison_filter_flags_mask;
200u64 hwpoison_filter_flags_value;
1bfe5feb 201EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
206
207static int hwpoison_filter_dev(struct page *p)
208{
209 struct address_space *mapping;
210 dev_t dev;
211
212 if (hwpoison_filter_dev_major == ~0U &&
213 hwpoison_filter_dev_minor == ~0U)
214 return 0;
215
7c116f2b
WF
216 mapping = page_mapping(p);
217 if (mapping == NULL || mapping->host == NULL)
218 return -EINVAL;
219
220 dev = mapping->host->i_sb->s_dev;
221 if (hwpoison_filter_dev_major != ~0U &&
222 hwpoison_filter_dev_major != MAJOR(dev))
223 return -EINVAL;
224 if (hwpoison_filter_dev_minor != ~0U &&
225 hwpoison_filter_dev_minor != MINOR(dev))
226 return -EINVAL;
227
228 return 0;
229}
230
478c5ffc
WF
231static int hwpoison_filter_flags(struct page *p)
232{
233 if (!hwpoison_filter_flags_mask)
234 return 0;
235
236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 hwpoison_filter_flags_value)
238 return 0;
239 else
240 return -EINVAL;
241}
242
4fd466eb
AK
243/*
244 * This allows stress tests to limit test scope to a collection of tasks
245 * by putting them under some memcg. This prevents killing unrelated/important
246 * processes such as /sbin/init. Note that the target task may share clean
247 * pages with init (eg. libc text), which is harmless. If the target task
248 * share _dirty_ pages with another task B, the test scheme must make sure B
249 * is also included in the memcg. At last, due to race conditions this filter
250 * can only guarantee that the page either belongs to the memcg tasks, or is
251 * a freed page.
252 */
94a59fb3 253#ifdef CONFIG_MEMCG
4fd466eb
AK
254u64 hwpoison_filter_memcg;
255EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256static int hwpoison_filter_task(struct page *p)
257{
4fd466eb
AK
258 if (!hwpoison_filter_memcg)
259 return 0;
260
94a59fb3 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
262 return -EINVAL;
263
264 return 0;
265}
266#else
267static int hwpoison_filter_task(struct page *p) { return 0; }
268#endif
269
7c116f2b
WF
270int hwpoison_filter(struct page *p)
271{
1bfe5feb
HL
272 if (!hwpoison_filter_enable)
273 return 0;
274
7c116f2b
WF
275 if (hwpoison_filter_dev(p))
276 return -EINVAL;
277
478c5ffc
WF
278 if (hwpoison_filter_flags(p))
279 return -EINVAL;
280
4fd466eb
AK
281 if (hwpoison_filter_task(p))
282 return -EINVAL;
283
7c116f2b
WF
284 return 0;
285}
27df5068
AK
286#else
287int hwpoison_filter(struct page *p)
288{
289 return 0;
290}
291#endif
292
7c116f2b
WF
293EXPORT_SYMBOL_GPL(hwpoison_filter);
294
ae1139ec
DW
295/*
296 * Kill all processes that have a poisoned page mapped and then isolate
297 * the page.
298 *
299 * General strategy:
300 * Find all processes having the page mapped and kill them.
301 * But we keep a page reference around so that the page is not
302 * actually freed yet.
303 * Then stash the page away
304 *
305 * There's no convenient way to get back to mapped processes
306 * from the VMAs. So do a brute-force search over all
307 * running processes.
308 *
309 * Remember that machine checks are not common (or rather
310 * if they are common you have other problems), so this shouldn't
311 * be a performance issue.
312 *
313 * Also there are some races possible while we get from the
314 * error detection to actually handle it.
315 */
316
317struct to_kill {
318 struct list_head nd;
319 struct task_struct *tsk;
320 unsigned long addr;
321 short size_shift;
ae1139ec
DW
322};
323
6a46079c 324/*
7329bbeb
TL
325 * Send all the processes who have the page mapped a signal.
326 * ``action optional'' if they are not immediately affected by the error
327 * ``action required'' if error happened in current execution context
6a46079c 328 */
ae1139ec 329static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 330{
ae1139ec
DW
331 struct task_struct *t = tk->tsk;
332 short addr_lsb = tk->size_shift;
872e9a20 333 int ret = 0;
6a46079c 334
96f96763 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 336 pfn, t->comm, t->pid);
7329bbeb 337
49775047
ML
338 if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 ret = force_sig_mceerr(BUS_MCEERR_AR,
340 (void __user *)tk->addr, addr_lsb);
341 else
7329bbeb 342 /*
49775047
ML
343 * Signal other processes sharing the page if they have
344 * PF_MCE_EARLY set.
7329bbeb
TL
345 * Don't use force here, it's convenient if the signal
346 * can be temporarily blocked.
347 * This could cause a loop when the user sets SIGBUS
348 * to SIG_IGN, but hopefully no one will do that?
349 */
ae1139ec 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 351 addr_lsb, t);
6a46079c 352 if (ret < 0)
96f96763 353 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 354 t->comm, t->pid, ret);
6a46079c
AK
355 return ret;
356}
357
588f9ce6 358/*
47e431f4 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 360 * lru_add_drain_all.
588f9ce6 361 */
d0505e9f 362void shake_page(struct page *p)
588f9ce6 363{
8bcb74de
NH
364 if (PageHuge(p))
365 return;
366
588f9ce6
AK
367 if (!PageSlab(p)) {
368 lru_add_drain_all();
588f9ce6
AK
369 if (PageLRU(p) || is_free_buddy_page(p))
370 return;
371 }
facb6011 372
588f9ce6 373 /*
d0505e9f
YS
374 * TODO: Could shrink slab caches here if a lightweight range-based
375 * shrinker will be available.
588f9ce6
AK
376 */
377}
378EXPORT_SYMBOL_GPL(shake_page);
379
c36e2024
SR
380static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
381 unsigned long address)
6100e34b 382{
5c91c0e7 383 unsigned long ret = 0;
6100e34b
DW
384 pgd_t *pgd;
385 p4d_t *p4d;
386 pud_t *pud;
387 pmd_t *pmd;
388 pte_t *pte;
389
a994402b 390 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
391 pgd = pgd_offset(vma->vm_mm, address);
392 if (!pgd_present(*pgd))
393 return 0;
394 p4d = p4d_offset(pgd, address);
395 if (!p4d_present(*p4d))
396 return 0;
397 pud = pud_offset(p4d, address);
398 if (!pud_present(*pud))
399 return 0;
400 if (pud_devmap(*pud))
401 return PUD_SHIFT;
402 pmd = pmd_offset(pud, address);
403 if (!pmd_present(*pmd))
404 return 0;
405 if (pmd_devmap(*pmd))
406 return PMD_SHIFT;
407 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
408 if (pte_present(*pte) && pte_devmap(*pte))
409 ret = PAGE_SHIFT;
410 pte_unmap(pte);
411 return ret;
6100e34b 412}
6a46079c
AK
413
414/*
415 * Failure handling: if we can't find or can't kill a process there's
416 * not much we can do. We just print a message and ignore otherwise.
417 */
418
ac87ca0e
DW
419#define FSDAX_INVALID_PGOFF ULONG_MAX
420
6a46079c
AK
421/*
422 * Schedule a process for later kill.
423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 424 *
ac87ca0e
DW
425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426 * filesystem with a memory failure handler has claimed the
427 * memory_failure event. In all other cases, page->index and
428 * page->mapping are sufficient for mapping the page back to its
429 * corresponding user virtual address.
6a46079c 430 */
4f775086
LX
431static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 struct vm_area_struct *vma, struct list_head *to_kill,
433 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
6a46079c
AK
434{
435 struct to_kill *tk;
436
996ff7a0
JC
437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 if (!tk) {
96f96763 439 pr_err("Out of memory while machine check handling\n");
996ff7a0 440 return;
6a46079c 441 }
996ff7a0 442
4f775086 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
c36e2024 444 if (is_zone_device_page(p)) {
ac87ca0e 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 } else
75068518 449 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
450
451 /*
3d7fed4a
JC
452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 * so "tk->size_shift == 0" effectively checks no mapping on
455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 * to a process' address space, it's possible not all N VMAs
457 * contain mappings for the page, but at least one VMA does.
458 * Only deliver SIGBUS with payload derived from the VMA that
459 * has a mapping for the page.
6a46079c 460 */
3d7fed4a 461 if (tk->addr == -EFAULT) {
96f96763 462 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 463 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
464 } else if (tk->size_shift == 0) {
465 kfree(tk);
466 return;
6a46079c 467 }
996ff7a0 468
6a46079c
AK
469 get_task_struct(tsk);
470 tk->tsk = tsk;
471 list_add_tail(&tk->nd, to_kill);
472}
473
4f775086
LX
474static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 struct vm_area_struct *vma,
476 struct list_head *to_kill)
477{
478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479}
480
4248d008
LX
481#ifdef CONFIG_KSM
482static bool task_in_to_kill_list(struct list_head *to_kill,
483 struct task_struct *tsk)
484{
485 struct to_kill *tk, *next;
486
487 list_for_each_entry_safe(tk, next, to_kill, nd) {
488 if (tk->tsk == tsk)
489 return true;
490 }
491
492 return false;
493}
494void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 struct vm_area_struct *vma, struct list_head *to_kill,
496 unsigned long ksm_addr)
497{
498 if (!task_in_to_kill_list(to_kill, tsk))
499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500}
501#endif
6a46079c
AK
502/*
503 * Kill the processes that have been collected earlier.
504 *
a21c184f
ML
505 * Only do anything when FORCEKILL is set, otherwise just free the
506 * list (this is used for clean pages which do not need killing)
6a46079c
AK
507 * Also when FAIL is set do a force kill because something went
508 * wrong earlier.
509 */
ae1139ec
DW
510static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 unsigned long pfn, int flags)
6a46079c
AK
512{
513 struct to_kill *tk, *next;
514
54f9555d 515 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 516 if (forcekill) {
6a46079c 517 /*
af901ca1 518 * In case something went wrong with munmapping
6a46079c
AK
519 * make sure the process doesn't catch the
520 * signal and then access the memory. Just kill it.
6a46079c 521 */
3d7fed4a 522 if (fail || tk->addr == -EFAULT) {
96f96763 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 524 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 tk->tsk, PIDTYPE_PID);
6a46079c
AK
527 }
528
529 /*
530 * In theory the process could have mapped
531 * something else on the address in-between. We could
532 * check for that, but we need to tell the
533 * process anyways.
534 */
ae1139ec 535 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 537 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 538 }
54f9555d 539 list_del(&tk->nd);
6a46079c
AK
540 put_task_struct(tk->tsk);
541 kfree(tk);
542 }
543}
544
3ba08129
NH
545/*
546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547 * on behalf of the thread group. Return task_struct of the (first found)
548 * dedicated thread if found, and return NULL otherwise.
549 *
550 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
551 * have to call rcu_read_lock/unlock() in this function.
552 */
553static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 554{
3ba08129
NH
555 struct task_struct *t;
556
4e018b45
NH
557 for_each_thread(tsk, t) {
558 if (t->flags & PF_MCE_PROCESS) {
559 if (t->flags & PF_MCE_EARLY)
560 return t;
561 } else {
562 if (sysctl_memory_failure_early_kill)
563 return t;
564 }
565 }
3ba08129
NH
566 return NULL;
567}
568
569/*
570 * Determine whether a given process is "early kill" process which expects
571 * to be signaled when some page under the process is hwpoisoned.
572 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 573 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 574 *
30c9cf49
AY
575 * Note that the above is true for Action Optional case. For Action Required
576 * case, it's only meaningful to the current thread which need to be signaled
577 * with SIGBUS, this error is Action Optional for other non current
578 * processes sharing the same error page,if the process is "early kill", the
579 * task_struct of the dedicated thread will also be returned.
3ba08129 580 */
4248d008 581struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 582{
6a46079c 583 if (!tsk->mm)
3ba08129 584 return NULL;
30c9cf49
AY
585 /*
586 * Comparing ->mm here because current task might represent
587 * a subthread, while tsk always points to the main thread.
588 */
589 if (force_early && tsk->mm == current->mm)
590 return current;
591
4e018b45 592 return find_early_kill_thread(tsk);
6a46079c
AK
593}
594
595/*
596 * Collect processes when the error hit an anonymous page.
597 */
598static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 599 int force_early)
6a46079c 600{
9595d769 601 struct folio *folio = page_folio(page);
6a46079c
AK
602 struct vm_area_struct *vma;
603 struct task_struct *tsk;
604 struct anon_vma *av;
bf181b9f 605 pgoff_t pgoff;
6a46079c 606
6d4675e6 607 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 608 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
609 return;
610
a0f7a756 611 pgoff = page_to_pgoff(page);
9b679320 612 read_lock(&tasklist_lock);
6a46079c 613 for_each_process (tsk) {
5beb4930 614 struct anon_vma_chain *vmac;
3ba08129 615 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 616
3ba08129 617 if (!t)
6a46079c 618 continue;
bf181b9f
ML
619 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
620 pgoff, pgoff) {
5beb4930 621 vma = vmac->vma;
36537a67
ML
622 if (vma->vm_mm != t->mm)
623 continue;
6a46079c
AK
624 if (!page_mapped_in_vma(page, vma))
625 continue;
4f775086 626 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
627 }
628 }
6a46079c 629 read_unlock(&tasklist_lock);
0c826c0b 630 anon_vma_unlock_read(av);
6a46079c
AK
631}
632
633/*
634 * Collect processes when the error hit a file mapped page.
635 */
636static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 637 int force_early)
6a46079c
AK
638{
639 struct vm_area_struct *vma;
640 struct task_struct *tsk;
6a46079c 641 struct address_space *mapping = page->mapping;
c43bc03d 642 pgoff_t pgoff;
6a46079c 643
d28eb9c8 644 i_mmap_lock_read(mapping);
9b679320 645 read_lock(&tasklist_lock);
c43bc03d 646 pgoff = page_to_pgoff(page);
6a46079c 647 for_each_process(tsk) {
3ba08129 648 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 649
3ba08129 650 if (!t)
6a46079c 651 continue;
6b2dbba8 652 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
653 pgoff) {
654 /*
655 * Send early kill signal to tasks where a vma covers
656 * the page but the corrupted page is not necessarily
657 * mapped it in its pte.
658 * Assume applications who requested early kill want
659 * to be informed of all such data corruptions.
660 */
3ba08129 661 if (vma->vm_mm == t->mm)
4f775086 662 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
663 }
664 }
6a46079c 665 read_unlock(&tasklist_lock);
d28eb9c8 666 i_mmap_unlock_read(mapping);
6a46079c
AK
667}
668
c36e2024 669#ifdef CONFIG_FS_DAX
4f775086
LX
670static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
671 struct vm_area_struct *vma,
672 struct list_head *to_kill, pgoff_t pgoff)
673{
674 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
675}
676
c36e2024
SR
677/*
678 * Collect processes when the error hit a fsdax page.
679 */
680static void collect_procs_fsdax(struct page *page,
681 struct address_space *mapping, pgoff_t pgoff,
682 struct list_head *to_kill)
683{
684 struct vm_area_struct *vma;
685 struct task_struct *tsk;
686
687 i_mmap_lock_read(mapping);
688 read_lock(&tasklist_lock);
689 for_each_process(tsk) {
690 struct task_struct *t = task_early_kill(tsk, true);
691
692 if (!t)
693 continue;
694 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
695 if (vma->vm_mm == t->mm)
4f775086 696 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
697 }
698 }
699 read_unlock(&tasklist_lock);
700 i_mmap_unlock_read(mapping);
701}
702#endif /* CONFIG_FS_DAX */
703
6a46079c
AK
704/*
705 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 706 */
74614de1
TL
707static void collect_procs(struct page *page, struct list_head *tokill,
708 int force_early)
6a46079c 709{
6a46079c
AK
710 if (!page->mapping)
711 return;
4248d008
LX
712 if (unlikely(PageKsm(page)))
713 collect_procs_ksm(page, tokill, force_early);
714 else if (PageAnon(page))
996ff7a0 715 collect_procs_anon(page, tokill, force_early);
6a46079c 716 else
996ff7a0 717 collect_procs_file(page, tokill, force_early);
6a46079c
AK
718}
719
a3f5d80e
NH
720struct hwp_walk {
721 struct to_kill tk;
722 unsigned long pfn;
723 int flags;
724};
725
726static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
727{
728 tk->addr = addr;
729 tk->size_shift = shift;
730}
731
732static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
733 unsigned long poisoned_pfn, struct to_kill *tk)
734{
735 unsigned long pfn = 0;
736
737 if (pte_present(pte)) {
738 pfn = pte_pfn(pte);
739 } else {
740 swp_entry_t swp = pte_to_swp_entry(pte);
741
742 if (is_hwpoison_entry(swp))
0d206b5d 743 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
744 }
745
746 if (!pfn || pfn != poisoned_pfn)
747 return 0;
748
749 set_to_kill(tk, addr, shift);
750 return 1;
751}
752
753#ifdef CONFIG_TRANSPARENT_HUGEPAGE
754static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
755 struct hwp_walk *hwp)
756{
757 pmd_t pmd = *pmdp;
758 unsigned long pfn;
759 unsigned long hwpoison_vaddr;
760
761 if (!pmd_present(pmd))
762 return 0;
763 pfn = pmd_pfn(pmd);
764 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
765 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
766 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
767 return 1;
768 }
769 return 0;
770}
771#else
772static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773 struct hwp_walk *hwp)
774{
775 return 0;
776}
777#endif
778
779static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
780 unsigned long end, struct mm_walk *walk)
781{
f142e707 782 struct hwp_walk *hwp = walk->private;
a3f5d80e 783 int ret = 0;
ea3732f7 784 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
785 spinlock_t *ptl;
786
787 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
788 if (ptl) {
789 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
790 spin_unlock(ptl);
791 goto out;
792 }
793
794 if (pmd_trans_unstable(pmdp))
795 goto out;
796
ea3732f7
ML
797 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
798 addr, &ptl);
a3f5d80e
NH
799 for (; addr != end; ptep++, addr += PAGE_SIZE) {
800 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
801 hwp->pfn, &hwp->tk);
802 if (ret == 1)
803 break;
804 }
ea3732f7 805 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
806out:
807 cond_resched();
808 return ret;
809}
810
811#ifdef CONFIG_HUGETLB_PAGE
812static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
813 unsigned long addr, unsigned long end,
814 struct mm_walk *walk)
815{
f142e707 816 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
817 pte_t pte = huge_ptep_get(ptep);
818 struct hstate *h = hstate_vma(walk->vma);
819
820 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
821 hwp->pfn, &hwp->tk);
822}
823#else
824#define hwpoison_hugetlb_range NULL
825#endif
826
ba9eb3ce 827static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
828 .pmd_entry = hwpoison_pte_range,
829 .hugetlb_entry = hwpoison_hugetlb_range,
830};
831
832/*
833 * Sends SIGBUS to the current process with error info.
834 *
835 * This function is intended to handle "Action Required" MCEs on already
836 * hardware poisoned pages. They could happen, for example, when
837 * memory_failure() failed to unmap the error page at the first call, or
838 * when multiple local machine checks happened on different CPUs.
839 *
840 * MCE handler currently has no easy access to the error virtual address,
841 * so this function walks page table to find it. The returned virtual address
842 * is proper in most cases, but it could be wrong when the application
843 * process has multiple entries mapping the error page.
844 */
845static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
846 int flags)
847{
848 int ret;
849 struct hwp_walk priv = {
850 .pfn = pfn,
851 };
852 priv.tk.tsk = p;
853
77677cdb
SX
854 if (!p->mm)
855 return -EFAULT;
856
a3f5d80e
NH
857 mmap_read_lock(p->mm);
858 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
859 (void *)&priv);
860 if (ret == 1 && priv.tk.addr)
861 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
862 else
863 ret = 0;
a3f5d80e 864 mmap_read_unlock(p->mm);
046545a6 865 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
866}
867
6a46079c 868static const char *action_name[] = {
cc637b17
XX
869 [MF_IGNORED] = "Ignored",
870 [MF_FAILED] = "Failed",
871 [MF_DELAYED] = "Delayed",
872 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
873};
874
875static const char * const action_page_types[] = {
cc637b17
XX
876 [MF_MSG_KERNEL] = "reserved kernel page",
877 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
878 [MF_MSG_SLAB] = "kernel slab page",
879 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
880 [MF_MSG_HUGE] = "huge page",
881 [MF_MSG_FREE_HUGE] = "free huge page",
882 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
883 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
884 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
885 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
886 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
887 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
888 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
889 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
890 [MF_MSG_CLEAN_LRU] = "clean LRU page",
891 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
892 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 893 [MF_MSG_DAX] = "dax page",
5d1fd5dc 894 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 895 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
896};
897
dc2a1cbf
WF
898/*
899 * XXX: It is possible that a page is isolated from LRU cache,
900 * and then kept in swap cache or failed to remove from page cache.
901 * The page count will stop it from being freed by unpoison.
902 * Stress tests should be aware of this memory leak problem.
903 */
904static int delete_from_lru_cache(struct page *p)
905{
f7f9c00d 906 if (isolate_lru_page(p)) {
dc2a1cbf
WF
907 /*
908 * Clear sensible page flags, so that the buddy system won't
909 * complain when the page is unpoison-and-freed.
910 */
911 ClearPageActive(p);
912 ClearPageUnevictable(p);
18365225
MH
913
914 /*
915 * Poisoned page might never drop its ref count to 0 so we have
916 * to uncharge it manually from its memcg.
917 */
bbc6b703 918 mem_cgroup_uncharge(page_folio(p));
18365225 919
dc2a1cbf
WF
920 /*
921 * drop the page count elevated by isolate_lru_page()
922 */
09cbfeaf 923 put_page(p);
dc2a1cbf
WF
924 return 0;
925 }
926 return -EIO;
927}
928
78bb9203
NH
929static int truncate_error_page(struct page *p, unsigned long pfn,
930 struct address_space *mapping)
931{
932 int ret = MF_FAILED;
933
934 if (mapping->a_ops->error_remove_page) {
ac5efa78 935 struct folio *folio = page_folio(p);
78bb9203
NH
936 int err = mapping->a_ops->error_remove_page(mapping, p);
937
938 if (err != 0) {
96f96763 939 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
ac5efa78
VMO
940 } else if (folio_has_private(folio) &&
941 !filemap_release_folio(folio, GFP_NOIO)) {
96f96763 942 pr_info("%#lx: failed to release buffers\n", pfn);
78bb9203
NH
943 } else {
944 ret = MF_RECOVERED;
945 }
946 } else {
947 /*
948 * If the file system doesn't support it just invalidate
949 * This fails on dirty or anything with private pages
950 */
951 if (invalidate_inode_page(p))
952 ret = MF_RECOVERED;
953 else
96f96763 954 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
955 }
956
957 return ret;
958}
959
dd0f230a
YS
960struct page_state {
961 unsigned long mask;
962 unsigned long res;
963 enum mf_action_page_type type;
964
965 /* Callback ->action() has to unlock the relevant page inside it. */
966 int (*action)(struct page_state *ps, struct page *p);
967};
968
969/*
970 * Return true if page is still referenced by others, otherwise return
971 * false.
972 *
973 * The extra_pins is true when one extra refcount is expected.
974 */
975static bool has_extra_refcount(struct page_state *ps, struct page *p,
976 bool extra_pins)
977{
978 int count = page_count(p) - 1;
979
980 if (extra_pins)
981 count -= 1;
982
983 if (count > 0) {
96f96763 984 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
985 page_to_pfn(p), action_page_types[ps->type], count);
986 return true;
987 }
988
989 return false;
990}
991
6a46079c
AK
992/*
993 * Error hit kernel page.
994 * Do nothing, try to be lucky and not touch this instead. For a few cases we
995 * could be more sophisticated.
996 */
dd0f230a 997static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 998{
ea6d0630 999 unlock_page(p);
cc637b17 1000 return MF_IGNORED;
6a46079c
AK
1001}
1002
1003/*
1004 * Page in unknown state. Do nothing.
1005 */
dd0f230a 1006static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1007{
96f96763 1008 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1009 unlock_page(p);
cc637b17 1010 return MF_FAILED;
6a46079c
AK
1011}
1012
6a46079c
AK
1013/*
1014 * Clean (or cleaned) page cache page.
1015 */
dd0f230a 1016static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1017{
ea6d0630 1018 int ret;
6a46079c 1019 struct address_space *mapping;
a7605426 1020 bool extra_pins;
6a46079c 1021
dc2a1cbf
WF
1022 delete_from_lru_cache(p);
1023
6a46079c
AK
1024 /*
1025 * For anonymous pages we're done the only reference left
1026 * should be the one m_f() holds.
1027 */
ea6d0630
NH
1028 if (PageAnon(p)) {
1029 ret = MF_RECOVERED;
1030 goto out;
1031 }
6a46079c
AK
1032
1033 /*
1034 * Now truncate the page in the page cache. This is really
1035 * more like a "temporary hole punch"
1036 * Don't do this for block devices when someone else
1037 * has a reference, because it could be file system metadata
1038 * and that's not safe to truncate.
1039 */
1040 mapping = page_mapping(p);
1041 if (!mapping) {
1042 /*
1043 * Page has been teared down in the meanwhile
1044 */
ea6d0630
NH
1045 ret = MF_FAILED;
1046 goto out;
6a46079c
AK
1047 }
1048
a7605426
YS
1049 /*
1050 * The shmem page is kept in page cache instead of truncating
1051 * so is expected to have an extra refcount after error-handling.
1052 */
1053 extra_pins = shmem_mapping(mapping);
1054
6a46079c
AK
1055 /*
1056 * Truncation is a bit tricky. Enable it per file system for now.
1057 *
9608703e 1058 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1059 */
dd0f230a 1060 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
1061 if (has_extra_refcount(ps, p, extra_pins))
1062 ret = MF_FAILED;
1063
ea6d0630
NH
1064out:
1065 unlock_page(p);
dd0f230a 1066
ea6d0630 1067 return ret;
6a46079c
AK
1068}
1069
1070/*
549543df 1071 * Dirty pagecache page
6a46079c
AK
1072 * Issues: when the error hit a hole page the error is not properly
1073 * propagated.
1074 */
dd0f230a 1075static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
1076{
1077 struct address_space *mapping = page_mapping(p);
1078
1079 SetPageError(p);
1080 /* TBD: print more information about the file. */
1081 if (mapping) {
1082 /*
1083 * IO error will be reported by write(), fsync(), etc.
1084 * who check the mapping.
1085 * This way the application knows that something went
1086 * wrong with its dirty file data.
1087 *
1088 * There's one open issue:
1089 *
1090 * The EIO will be only reported on the next IO
1091 * operation and then cleared through the IO map.
1092 * Normally Linux has two mechanisms to pass IO error
1093 * first through the AS_EIO flag in the address space
1094 * and then through the PageError flag in the page.
1095 * Since we drop pages on memory failure handling the
1096 * only mechanism open to use is through AS_AIO.
1097 *
1098 * This has the disadvantage that it gets cleared on
1099 * the first operation that returns an error, while
1100 * the PageError bit is more sticky and only cleared
1101 * when the page is reread or dropped. If an
1102 * application assumes it will always get error on
1103 * fsync, but does other operations on the fd before
25985edc 1104 * and the page is dropped between then the error
6a46079c
AK
1105 * will not be properly reported.
1106 *
1107 * This can already happen even without hwpoisoned
1108 * pages: first on metadata IO errors (which only
1109 * report through AS_EIO) or when the page is dropped
1110 * at the wrong time.
1111 *
1112 * So right now we assume that the application DTRT on
1113 * the first EIO, but we're not worse than other parts
1114 * of the kernel.
1115 */
af21bfaf 1116 mapping_set_error(mapping, -EIO);
6a46079c
AK
1117 }
1118
dd0f230a 1119 return me_pagecache_clean(ps, p);
6a46079c
AK
1120}
1121
1122/*
1123 * Clean and dirty swap cache.
1124 *
1125 * Dirty swap cache page is tricky to handle. The page could live both in page
1126 * cache and swap cache(ie. page is freshly swapped in). So it could be
1127 * referenced concurrently by 2 types of PTEs:
1128 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1129 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1130 * and then
1131 * - clear dirty bit to prevent IO
1132 * - remove from LRU
1133 * - but keep in the swap cache, so that when we return to it on
1134 * a later page fault, we know the application is accessing
1135 * corrupted data and shall be killed (we installed simple
1136 * interception code in do_swap_page to catch it).
1137 *
1138 * Clean swap cache pages can be directly isolated. A later page fault will
1139 * bring in the known good data from disk.
1140 */
dd0f230a 1141static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1142{
ea6d0630 1143 int ret;
dd0f230a 1144 bool extra_pins = false;
ea6d0630 1145
6a46079c
AK
1146 ClearPageDirty(p);
1147 /* Trigger EIO in shmem: */
1148 ClearPageUptodate(p);
1149
ea6d0630
NH
1150 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1151 unlock_page(p);
dd0f230a
YS
1152
1153 if (ret == MF_DELAYED)
1154 extra_pins = true;
1155
1156 if (has_extra_refcount(ps, p, extra_pins))
1157 ret = MF_FAILED;
1158
ea6d0630 1159 return ret;
6a46079c
AK
1160}
1161
dd0f230a 1162static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1163{
75fa68a5 1164 struct folio *folio = page_folio(p);
ea6d0630
NH
1165 int ret;
1166
75fa68a5 1167 delete_from_swap_cache(folio);
e43c3afb 1168
ea6d0630 1169 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1170 folio_unlock(folio);
dd0f230a
YS
1171
1172 if (has_extra_refcount(ps, p, false))
1173 ret = MF_FAILED;
1174
ea6d0630 1175 return ret;
6a46079c
AK
1176}
1177
1178/*
1179 * Huge pages. Needs work.
1180 * Issues:
93f70f90
NH
1181 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1182 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1183 */
dd0f230a 1184static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1185{
a8b2c2ce 1186 int res;
93f70f90 1187 struct page *hpage = compound_head(p);
78bb9203 1188 struct address_space *mapping;
8625147c 1189 bool extra_pins = false;
2491ffee
NH
1190
1191 if (!PageHuge(hpage))
1192 return MF_DELAYED;
1193
78bb9203
NH
1194 mapping = page_mapping(hpage);
1195 if (mapping) {
dd0f230a 1196 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
8625147c
JH
1197 /* The page is kept in page cache. */
1198 extra_pins = true;
ea6d0630 1199 unlock_page(hpage);
78bb9203
NH
1200 } else {
1201 unlock_page(hpage);
1202 /*
ef526b17
ML
1203 * migration entry prevents later access on error hugepage,
1204 * so we can free and dissolve it into buddy to save healthy
1205 * subpages.
78bb9203 1206 */
ef526b17 1207 put_page(hpage);
ceaf8fbe 1208 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1209 page_ref_inc(p);
1210 res = MF_RECOVERED;
ceaf8fbe
NH
1211 } else {
1212 res = MF_FAILED;
a8b2c2ce 1213 }
93f70f90 1214 }
78bb9203 1215
8625147c 1216 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1217 res = MF_FAILED;
1218
78bb9203 1219 return res;
6a46079c
AK
1220}
1221
1222/*
1223 * Various page states we can handle.
1224 *
1225 * A page state is defined by its current page->flags bits.
1226 * The table matches them in order and calls the right handler.
1227 *
1228 * This is quite tricky because we can access page at any time
25985edc 1229 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1230 *
1231 * This is not complete. More states could be added.
1232 * For any missing state don't attempt recovery.
1233 */
1234
1235#define dirty (1UL << PG_dirty)
6326fec1 1236#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1237#define unevict (1UL << PG_unevictable)
1238#define mlock (1UL << PG_mlocked)
6a46079c 1239#define lru (1UL << PG_lru)
6a46079c 1240#define head (1UL << PG_head)
6a46079c 1241#define slab (1UL << PG_slab)
6a46079c
AK
1242#define reserved (1UL << PG_reserved)
1243
dd0f230a 1244static struct page_state error_states[] = {
cc637b17 1245 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1246 /*
1247 * free pages are specially detected outside this table:
1248 * PG_buddy pages only make a small fraction of all free pages.
1249 */
6a46079c
AK
1250
1251 /*
1252 * Could in theory check if slab page is free or if we can drop
1253 * currently unused objects without touching them. But just
1254 * treat it as standard kernel for now.
1255 */
cc637b17 1256 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1257
cc637b17 1258 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1259
cc637b17
XX
1260 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1261 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1262
cc637b17
XX
1263 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1264 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1265
cc637b17
XX
1266 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1267 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1268
cc637b17
XX
1269 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1270 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1271
1272 /*
1273 * Catchall entry: must be at end.
1274 */
cc637b17 1275 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1276};
1277
2326c467
AK
1278#undef dirty
1279#undef sc
1280#undef unevict
1281#undef mlock
2326c467 1282#undef lru
2326c467 1283#undef head
2326c467
AK
1284#undef slab
1285#undef reserved
1286
18f41fa6
JY
1287static void update_per_node_mf_stats(unsigned long pfn,
1288 enum mf_result result)
1289{
1290 int nid = MAX_NUMNODES;
1291 struct memory_failure_stats *mf_stats = NULL;
1292
1293 nid = pfn_to_nid(pfn);
1294 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1295 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1296 return;
1297 }
1298
1299 mf_stats = &NODE_DATA(nid)->mf_stats;
1300 switch (result) {
1301 case MF_IGNORED:
1302 ++mf_stats->ignored;
1303 break;
1304 case MF_FAILED:
1305 ++mf_stats->failed;
1306 break;
1307 case MF_DELAYED:
1308 ++mf_stats->delayed;
1309 break;
1310 case MF_RECOVERED:
1311 ++mf_stats->recovered;
1312 break;
1313 default:
1314 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1315 break;
1316 }
1317 ++mf_stats->total;
1318}
1319
ff604cf6
NH
1320/*
1321 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1322 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1323 */
b66d00df
KW
1324static int action_result(unsigned long pfn, enum mf_action_page_type type,
1325 enum mf_result result)
6a46079c 1326{
97f0b134
XX
1327 trace_memory_failure_event(pfn, type, result);
1328
a46c9304 1329 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1330
1331 update_per_node_mf_stats(pfn, result);
1332
96f96763 1333 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1334 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1335
1336 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1337}
1338
1339static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1340 unsigned long pfn)
6a46079c
AK
1341{
1342 int result;
1343
ea6d0630 1344 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1345 result = ps->action(ps, p);
7456b040 1346
6a46079c
AK
1347 /* Could do more checks here if page looks ok */
1348 /*
1349 * Could adjust zone counters here to correct for the missing page.
1350 */
1351
b66d00df 1352 return action_result(pfn, ps->type, result);
6a46079c
AK
1353}
1354
bf181c58
NH
1355static inline bool PageHWPoisonTakenOff(struct page *page)
1356{
1357 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1358}
1359
1360void SetPageHWPoisonTakenOff(struct page *page)
1361{
1362 set_page_private(page, MAGIC_HWPOISON);
1363}
1364
1365void ClearPageHWPoisonTakenOff(struct page *page)
1366{
1367 if (PageHWPoison(page))
1368 set_page_private(page, 0);
1369}
1370
25182f05
NH
1371/*
1372 * Return true if a page type of a given page is supported by hwpoison
1373 * mechanism (while handling could fail), otherwise false. This function
1374 * does not return true for hugetlb or device memory pages, so it's assumed
1375 * to be called only in the context where we never have such pages.
1376 */
bf6445bc 1377static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1378{
3f871370 1379 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1380 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1381 return true;
bf6445bc 1382
3f871370 1383 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1384}
1385
bf6445bc 1386static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1387{
04bac040 1388 struct folio *folio = page_folio(page);
25182f05
NH
1389 int ret = 0;
1390 bool hugetlb = false;
1391
04bac040 1392 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
25182f05
NH
1393 if (hugetlb)
1394 return ret;
1395
1396 /*
04bac040
SK
1397 * This check prevents from calling folio_try_get() for any
1398 * unsupported type of folio in order to reduce the risk of unexpected
1399 * races caused by taking a folio refcount.
25182f05 1400 */
04bac040 1401 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1402 return -EBUSY;
ead07f6a 1403
04bac040
SK
1404 if (folio_try_get(folio)) {
1405 if (folio == page_folio(page))
c2e7e00b
KK
1406 return 1;
1407
96f96763 1408 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1409 folio_put(folio);
c2e7e00b
KK
1410 }
1411
1412 return 0;
ead07f6a 1413}
ead07f6a 1414
2f714160 1415static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1416{
2f714160
OS
1417 int ret = 0, pass = 0;
1418 bool count_increased = false;
17e395b6 1419
2f714160
OS
1420 if (flags & MF_COUNT_INCREASED)
1421 count_increased = true;
1422
1423try_again:
0ed950d1 1424 if (!count_increased) {
bf6445bc 1425 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1426 if (!ret) {
1427 if (page_count(p)) {
1428 /* We raced with an allocation, retry. */
1429 if (pass++ < 3)
1430 goto try_again;
1431 ret = -EBUSY;
1432 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1433 /* We raced with put_page, retry. */
1434 if (pass++ < 3)
1435 goto try_again;
1436 ret = -EIO;
1437 }
1438 goto out;
1439 } else if (ret == -EBUSY) {
fcc00621
NH
1440 /*
1441 * We raced with (possibly temporary) unhandlable
1442 * page, retry.
1443 */
1444 if (pass++ < 3) {
d0505e9f 1445 shake_page(p);
2f714160 1446 goto try_again;
fcc00621
NH
1447 }
1448 ret = -EIO;
0ed950d1 1449 goto out;
2f714160 1450 }
0ed950d1
NH
1451 }
1452
bf6445bc 1453 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1454 ret = 1;
2f714160 1455 } else {
0ed950d1
NH
1456 /*
1457 * A page we cannot handle. Check whether we can turn
1458 * it into something we can handle.
1459 */
1460 if (pass++ < 3) {
2f714160 1461 put_page(p);
d0505e9f 1462 shake_page(p);
0ed950d1
NH
1463 count_increased = false;
1464 goto try_again;
2f714160 1465 }
0ed950d1
NH
1466 put_page(p);
1467 ret = -EIO;
17e395b6 1468 }
0ed950d1 1469out:
941ca063 1470 if (ret == -EIO)
96f96763 1471 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1472
17e395b6
OS
1473 return ret;
1474}
1475
bf181c58
NH
1476static int __get_unpoison_page(struct page *page)
1477{
04bac040 1478 struct folio *folio = page_folio(page);
bf181c58
NH
1479 int ret = 0;
1480 bool hugetlb = false;
1481
04bac040 1482 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
bf181c58
NH
1483 if (hugetlb)
1484 return ret;
1485
1486 /*
1487 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1488 * but also isolated from buddy freelist, so need to identify the
1489 * state and have to cancel both operations to unpoison.
1490 */
1491 if (PageHWPoisonTakenOff(page))
1492 return -EHWPOISON;
1493
1494 return get_page_unless_zero(page) ? 1 : 0;
1495}
1496
0ed950d1
NH
1497/**
1498 * get_hwpoison_page() - Get refcount for memory error handling
1499 * @p: Raw error page (hit by memory error)
1500 * @flags: Flags controlling behavior of error handling
1501 *
1502 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1503 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1504 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1505 * such as LRU page and hugetlb page).
1506 *
1507 * Memory error handling could be triggered at any time on any type of page,
1508 * so it's prone to race with typical memory management lifecycle (like
1509 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1510 * extra care for the error page's state (as done in __get_hwpoison_page()),
1511 * and has some retry logic in get_any_page().
1512 *
bf181c58
NH
1513 * When called from unpoison_memory(), the caller should already ensure that
1514 * the given page has PG_hwpoison. So it's never reused for other page
1515 * allocations, and __get_unpoison_page() never races with them.
1516 *
0ed950d1
NH
1517 * Return: 0 on failure,
1518 * 1 on success for in-use pages in a well-defined state,
1519 * -EIO for pages on which we can not handle memory errors,
1520 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1521 * operations like allocation and free,
1522 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1523 */
1524static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1525{
1526 int ret;
1527
1528 zone_pcp_disable(page_zone(p));
bf181c58
NH
1529 if (flags & MF_UNPOISON)
1530 ret = __get_unpoison_page(p);
1531 else
1532 ret = get_any_page(p, flags);
2f714160
OS
1533 zone_pcp_enable(page_zone(p));
1534
1535 return ret;
1536}
1537
6a46079c
AK
1538/*
1539 * Do all that is necessary to remove user space mappings. Unmap
1540 * the pages and send SIGBUS to the processes if the data was dirty.
1541 */
666e5a40 1542static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1543 int flags, struct page *hpage)
6a46079c 1544{
869f7ee6 1545 struct folio *folio = page_folio(hpage);
6da6b1d4 1546 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1547 struct address_space *mapping;
1548 LIST_HEAD(tokill);
1fb08ac6 1549 bool unmap_success;
0792a4a6 1550 int forcekill;
286c469a 1551 bool mlocked = PageMlocked(hpage);
6a46079c 1552
93a9eb39
NH
1553 /*
1554 * Here we are interested only in user-mapped pages, so skip any
1555 * other types of pages.
1556 */
b680dae9 1557 if (PageReserved(p) || PageSlab(p) || PageTable(p))
666e5a40 1558 return true;
93a9eb39 1559 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1560 return true;
6a46079c 1561
6a46079c
AK
1562 /*
1563 * This check implies we don't kill processes if their pages
1564 * are in the swap cache early. Those are always late kills.
1565 */
7af446a8 1566 if (!page_mapped(hpage))
666e5a40 1567 return true;
1668bfd5 1568
6a46079c 1569 if (PageSwapCache(p)) {
96f96763 1570 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1571 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1572 }
1573
1574 /*
1575 * Propagate the dirty bit from PTEs to struct page first, because we
1576 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1577 * XXX: the dirty test could be racy: set_page_dirty() may not always
1578 * be called inside page lock (it's recommended but not enforced).
6a46079c 1579 */
7af446a8 1580 mapping = page_mapping(hpage);
6751ed65 1581 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1582 mapping_can_writeback(mapping)) {
7af446a8
NH
1583 if (page_mkclean(hpage)) {
1584 SetPageDirty(hpage);
6a46079c 1585 } else {
6da6b1d4 1586 ttu &= ~TTU_HWPOISON;
96f96763 1587 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1588 pfn);
1589 }
1590 }
1591
1592 /*
1593 * First collect all the processes that have the page
1594 * mapped in dirty form. This has to be done before try_to_unmap,
1595 * because ttu takes the rmap data structures down.
6a46079c 1596 */
0792a4a6 1597 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1598
357670f7
ML
1599 if (PageHuge(hpage) && !PageAnon(hpage)) {
1600 /*
1601 * For hugetlb pages in shared mappings, try_to_unmap
1602 * could potentially call huge_pmd_unshare. Because of
1603 * this, take semaphore in write mode here and set
1604 * TTU_RMAP_LOCKED to indicate we have taken the lock
1605 * at this higher level.
1606 */
1607 mapping = hugetlb_page_mapping_lock_write(hpage);
1608 if (mapping) {
9030fb0b 1609 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1610 i_mmap_unlock_write(mapping);
1611 } else
96f96763 1612 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1613 } else {
9030fb0b 1614 try_to_unmap(folio, ttu);
c0d0381a 1615 }
1fb08ac6
YS
1616
1617 unmap_success = !page_mapped(hpage);
666e5a40 1618 if (!unmap_success)
96f96763 1619 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1620 pfn, page_mapcount(hpage));
a6d30ddd 1621
286c469a
NH
1622 /*
1623 * try_to_unmap() might put mlocked page in lru cache, so call
1624 * shake_page() again to ensure that it's flushed.
1625 */
1626 if (mlocked)
d0505e9f 1627 shake_page(hpage);
286c469a 1628
6a46079c
AK
1629 /*
1630 * Now that the dirty bit has been propagated to the
1631 * struct page and all unmaps done we can decide if
1632 * killing is needed or not. Only kill when the page
6751ed65
TL
1633 * was dirty or the process is not restartable,
1634 * otherwise the tokill list is merely
6a46079c
AK
1635 * freed. When there was a problem unmapping earlier
1636 * use a more force-full uncatchable kill to prevent
1637 * any accesses to the poisoned memory.
1638 */
0792a4a6
ML
1639 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1640 !unmap_success;
ae1139ec 1641 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1642
666e5a40 1643 return unmap_success;
6a46079c
AK
1644}
1645
0348d2eb
NH
1646static int identify_page_state(unsigned long pfn, struct page *p,
1647 unsigned long page_flags)
761ad8d7
NH
1648{
1649 struct page_state *ps;
0348d2eb
NH
1650
1651 /*
1652 * The first check uses the current page flags which may not have any
1653 * relevant information. The second check with the saved page flags is
1654 * carried out only if the first check can't determine the page status.
1655 */
1656 for (ps = error_states;; ps++)
1657 if ((p->flags & ps->mask) == ps->res)
1658 break;
1659
1660 page_flags |= (p->flags & (1UL << PG_dirty));
1661
1662 if (!ps->mask)
1663 for (ps = error_states;; ps++)
1664 if ((page_flags & ps->mask) == ps->res)
1665 break;
1666 return page_action(ps, p, pfn);
1667}
1668
2ace36f0 1669static int try_to_split_thp_page(struct page *page)
694bf0b0 1670{
2ace36f0
KW
1671 int ret;
1672
694bf0b0 1673 lock_page(page);
2ace36f0
KW
1674 ret = split_huge_page(page);
1675 unlock_page(page);
694bf0b0 1676
2ace36f0 1677 if (unlikely(ret))
694bf0b0 1678 put_page(page);
694bf0b0 1679
2ace36f0 1680 return ret;
694bf0b0
OS
1681}
1682
00cc790e
SR
1683static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1684 struct address_space *mapping, pgoff_t index, int flags)
1685{
1686 struct to_kill *tk;
1687 unsigned long size = 0;
1688
1689 list_for_each_entry(tk, to_kill, nd)
1690 if (tk->size_shift)
1691 size = max(size, 1UL << tk->size_shift);
1692
1693 if (size) {
1694 /*
1695 * Unmap the largest mapping to avoid breaking up device-dax
1696 * mappings which are constant size. The actual size of the
1697 * mapping being torn down is communicated in siginfo, see
1698 * kill_proc()
1699 */
1700 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1701
1702 unmap_mapping_range(mapping, start, size, 0);
1703 }
1704
1705 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1706}
1707
1708static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1709 struct dev_pagemap *pgmap)
1710{
1711 struct page *page = pfn_to_page(pfn);
1712 LIST_HEAD(to_kill);
1713 dax_entry_t cookie;
1714 int rc = 0;
1715
1716 /*
1717 * Pages instantiated by device-dax (not filesystem-dax)
1718 * may be compound pages.
1719 */
1720 page = compound_head(page);
1721
1722 /*
1723 * Prevent the inode from being freed while we are interrogating
1724 * the address_space, typically this would be handled by
1725 * lock_page(), but dax pages do not use the page lock. This
1726 * also prevents changes to the mapping of this pfn until
1727 * poison signaling is complete.
1728 */
1729 cookie = dax_lock_page(page);
1730 if (!cookie)
1731 return -EBUSY;
1732
1733 if (hwpoison_filter(page)) {
1734 rc = -EOPNOTSUPP;
1735 goto unlock;
1736 }
1737
1738 switch (pgmap->type) {
1739 case MEMORY_DEVICE_PRIVATE:
1740 case MEMORY_DEVICE_COHERENT:
1741 /*
1742 * TODO: Handle device pages which may need coordination
1743 * with device-side memory.
1744 */
1745 rc = -ENXIO;
1746 goto unlock;
1747 default:
1748 break;
1749 }
1750
1751 /*
1752 * Use this flag as an indication that the dax page has been
1753 * remapped UC to prevent speculative consumption of poison.
1754 */
1755 SetPageHWPoison(page);
1756
1757 /*
1758 * Unlike System-RAM there is no possibility to swap in a
1759 * different physical page at a given virtual address, so all
1760 * userspace consumption of ZONE_DEVICE memory necessitates
1761 * SIGBUS (i.e. MF_MUST_KILL)
1762 */
1763 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1764 collect_procs(page, &to_kill, true);
1765
1766 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1767unlock:
1768 dax_unlock_page(page, cookie);
1769 return rc;
1770}
1771
c36e2024
SR
1772#ifdef CONFIG_FS_DAX
1773/**
1774 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1775 * @mapping: address_space of the file in use
1776 * @index: start pgoff of the range within the file
1777 * @count: length of the range, in unit of PAGE_SIZE
1778 * @mf_flags: memory failure flags
1779 */
1780int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1781 unsigned long count, int mf_flags)
1782{
1783 LIST_HEAD(to_kill);
1784 dax_entry_t cookie;
1785 struct page *page;
1786 size_t end = index + count;
1787
1788 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1789
1790 for (; index < end; index++) {
1791 page = NULL;
1792 cookie = dax_lock_mapping_entry(mapping, index, &page);
1793 if (!cookie)
1794 return -EBUSY;
1795 if (!page)
1796 goto unlock;
1797
1798 SetPageHWPoison(page);
1799
1800 collect_procs_fsdax(page, mapping, index, &to_kill);
1801 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1802 index, mf_flags);
1803unlock:
1804 dax_unlock_mapping_entry(mapping, index, cookie);
1805 }
1806 return 0;
1807}
1808EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1809#endif /* CONFIG_FS_DAX */
1810
161df60e
NH
1811#ifdef CONFIG_HUGETLB_PAGE
1812/*
1813 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1814 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1815 */
1816struct raw_hwp_page {
1817 struct llist_node node;
1818 struct page *page;
1819};
1820
b02e7582 1821static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1822{
b02e7582 1823 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1824}
1825
0858b5eb 1826static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e
NH
1827{
1828 struct llist_head *head;
1829 struct llist_node *t, *tnode;
ac5fcde0 1830 unsigned long count = 0;
161df60e 1831
b02e7582 1832 head = raw_hwp_list_head(folio);
161df60e
NH
1833 llist_for_each_safe(tnode, t, head->first) {
1834 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1835
ac5fcde0
NH
1836 if (move_flag)
1837 SetPageHWPoison(p->page);
5033091d
NH
1838 else
1839 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1840 kfree(p);
ac5fcde0 1841 count++;
161df60e
NH
1842 }
1843 llist_del_all(head);
ac5fcde0 1844 return count;
161df60e
NH
1845}
1846
595dd818 1847static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1848{
1849 struct llist_head *head;
1850 struct raw_hwp_page *raw_hwp;
1851 struct llist_node *t, *tnode;
595dd818 1852 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1853
1854 /*
1855 * Once the hwpoison hugepage has lost reliable raw error info,
1856 * there is little meaning to keep additional error info precisely,
1857 * so skip to add additional raw error info.
1858 */
b02e7582 1859 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1860 return -EHWPOISON;
b02e7582 1861 head = raw_hwp_list_head(folio);
161df60e
NH
1862 llist_for_each_safe(tnode, t, head->first) {
1863 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1864
1865 if (p->page == page)
1866 return -EHWPOISON;
1867 }
1868
1869 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1870 if (raw_hwp) {
1871 raw_hwp->page = page;
1872 llist_add(&raw_hwp->node, head);
1873 /* the first error event will be counted in action_result(). */
1874 if (ret)
a46c9304 1875 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1876 } else {
1877 /*
1878 * Failed to save raw error info. We no longer trace all
1879 * hwpoisoned subpages, and we need refuse to free/dissolve
1880 * this hwpoisoned hugepage.
1881 */
b02e7582 1882 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1883 /*
b02e7582 1884 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1885 * used any more, so free it.
1886 */
0858b5eb 1887 __folio_free_raw_hwp(folio, false);
161df60e
NH
1888 }
1889 return ret;
1890}
1891
9637d7df 1892static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1893{
1894 /*
9637d7df 1895 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1896 * pages for tail pages are required but they don't exist.
1897 */
9637d7df 1898 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1899 return 0;
1900
1901 /*
9637d7df 1902 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1903 * definition.
1904 */
9637d7df 1905 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1906 return 0;
1907
0858b5eb 1908 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1909}
1910
2ff6cece 1911void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1912{
2ff6cece 1913 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1914 return;
2ff6cece 1915 folio_clear_hwpoison(folio);
9637d7df 1916 folio_free_raw_hwp(folio, true);
161df60e
NH
1917}
1918
405ce051
NH
1919/*
1920 * Called from hugetlb code with hugetlb_lock held.
1921 *
1922 * Return values:
1923 * 0 - free hugepage
1924 * 1 - in-use hugepage
1925 * 2 - not a hugepage
1926 * -EBUSY - the hugepage is busy (try to retry)
1927 * -EHWPOISON - the hugepage is already hwpoisoned
1928 */
e591ef7d
NH
1929int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1930 bool *migratable_cleared)
405ce051
NH
1931{
1932 struct page *page = pfn_to_page(pfn);
4c110ec9 1933 struct folio *folio = page_folio(page);
405ce051
NH
1934 int ret = 2; /* fallback to normal page handling */
1935 bool count_increased = false;
1936
4c110ec9 1937 if (!folio_test_hugetlb(folio))
405ce051
NH
1938 goto out;
1939
1940 if (flags & MF_COUNT_INCREASED) {
1941 ret = 1;
1942 count_increased = true;
4c110ec9 1943 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 1944 ret = 0;
4c110ec9
SK
1945 } else if (folio_test_hugetlb_migratable(folio)) {
1946 ret = folio_try_get(folio);
405ce051
NH
1947 if (ret)
1948 count_increased = true;
1949 } else {
1950 ret = -EBUSY;
38f6d293
NH
1951 if (!(flags & MF_NO_RETRY))
1952 goto out;
405ce051
NH
1953 }
1954
595dd818 1955 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
1956 ret = -EHWPOISON;
1957 goto out;
1958 }
1959
e591ef7d 1960 /*
4c110ec9 1961 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
1962 * from being migrated by memory hotremove.
1963 */
4c110ec9
SK
1964 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1965 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
1966 *migratable_cleared = true;
1967 }
1968
405ce051
NH
1969 return ret;
1970out:
1971 if (count_increased)
4c110ec9 1972 folio_put(folio);
405ce051
NH
1973 return ret;
1974}
1975
405ce051
NH
1976/*
1977 * Taking refcount of hugetlb pages needs extra care about race conditions
1978 * with basic operations like hugepage allocation/free/demotion.
1979 * So some of prechecks for hwpoison (pinning, and testing/setting
1980 * PageHWPoison) should be done in single hugetlb_lock range.
1981 */
1982static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1983{
761ad8d7 1984 int res;
405ce051 1985 struct page *p = pfn_to_page(pfn);
bc1cfde1 1986 struct folio *folio;
761ad8d7 1987 unsigned long page_flags;
e591ef7d 1988 bool migratable_cleared = false;
761ad8d7 1989
405ce051
NH
1990 *hugetlb = 1;
1991retry:
e591ef7d 1992 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
1993 if (res == 2) { /* fallback to normal page handling */
1994 *hugetlb = 0;
1995 return 0;
1996 } else if (res == -EHWPOISON) {
96f96763 1997 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 1998 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
1999 folio = page_folio(p);
2000 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
2001 }
2002 return res;
2003 } else if (res == -EBUSY) {
38f6d293
NH
2004 if (!(flags & MF_NO_RETRY)) {
2005 flags |= MF_NO_RETRY;
405ce051
NH
2006 goto retry;
2007 }
b66d00df 2008 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2009 }
2010
bc1cfde1
SK
2011 folio = page_folio(p);
2012 folio_lock(folio);
405ce051
NH
2013
2014 if (hwpoison_filter(p)) {
2ff6cece 2015 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2016 if (migratable_cleared)
bc1cfde1
SK
2017 folio_set_hugetlb_migratable(folio);
2018 folio_unlock(folio);
f36a5543 2019 if (res == 1)
bc1cfde1 2020 folio_put(folio);
f36a5543 2021 return -EOPNOTSUPP;
405ce051
NH
2022 }
2023
405ce051
NH
2024 /*
2025 * Handling free hugepage. The possible race with hugepage allocation
2026 * or demotion can be prevented by PageHWPoison flag.
2027 */
2028 if (res == 0) {
bc1cfde1 2029 folio_unlock(folio);
ceaf8fbe 2030 if (__page_handle_poison(p) >= 0) {
405ce051
NH
2031 page_ref_inc(p);
2032 res = MF_RECOVERED;
ceaf8fbe
NH
2033 } else {
2034 res = MF_FAILED;
761ad8d7 2035 }
b66d00df 2036 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2037 }
2038
bc1cfde1 2039 page_flags = folio->flags;
761ad8d7 2040
bc1cfde1
SK
2041 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2042 folio_unlock(folio);
b66d00df 2043 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2044 }
2045
ea6d0630 2046 return identify_page_state(pfn, p, page_flags);
761ad8d7 2047}
00cc790e 2048
405ce051
NH
2049#else
2050static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2051{
2052 return 0;
2053}
00cc790e 2054
9637d7df 2055static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2056{
2057 return 0;
2058}
00cc790e 2059#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2060
b5f1fc98
KW
2061/* Drop the extra refcount in case we come from madvise() */
2062static void put_ref_page(unsigned long pfn, int flags)
2063{
2064 struct page *page;
2065
2066 if (!(flags & MF_COUNT_INCREASED))
2067 return;
2068
2069 page = pfn_to_page(pfn);
2070 if (page)
2071 put_page(page);
2072}
2073
6100e34b
DW
2074static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2075 struct dev_pagemap *pgmap)
2076{
00cc790e 2077 int rc = -ENXIO;
6100e34b 2078
b5f1fc98 2079 put_ref_page(pfn, flags);
1e8aaedb 2080
34dc45be 2081 /* device metadata space is not recoverable */
00cc790e 2082 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2083 goto out;
61e28cf0 2084
6100e34b 2085 /*
33a8f7f2
SR
2086 * Call driver's implementation to handle the memory failure, otherwise
2087 * fall back to generic handler.
6100e34b 2088 */
65d3440e 2089 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2090 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2091 /*
33a8f7f2
SR
2092 * Fall back to generic handler too if operation is not
2093 * supported inside the driver/device/filesystem.
6100e34b 2094 */
33a8f7f2
SR
2095 if (rc != -EOPNOTSUPP)
2096 goto out;
6100e34b
DW
2097 }
2098
00cc790e 2099 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2100out:
2101 /* drop pgmap ref acquired in caller */
2102 put_dev_pagemap(pgmap);
2103 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2104 return rc;
2105}
2106
91d00547
NH
2107static DEFINE_MUTEX(mf_mutex);
2108
cd42f4a3
TL
2109/**
2110 * memory_failure - Handle memory failure of a page.
2111 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2112 * @flags: fine tune action taken
2113 *
2114 * This function is called by the low level machine check code
2115 * of an architecture when it detects hardware memory corruption
2116 * of a page. It tries its best to recover, which includes
2117 * dropping pages, killing processes etc.
2118 *
2119 * The function is primarily of use for corruptions that
2120 * happen outside the current execution context (e.g. when
2121 * detected by a background scrubber)
2122 *
2123 * Must run in process context (e.g. a work queue) with interrupts
2124 * enabled and no spinlocks hold.
d1fe111f 2125 *
2126 * Return: 0 for successfully handled the memory error,
9113eaf3 2127 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2128 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2129 */
83b57531 2130int memory_failure(unsigned long pfn, int flags)
6a46079c 2131{
6a46079c 2132 struct page *p;
7af446a8 2133 struct page *hpage;
6100e34b 2134 struct dev_pagemap *pgmap;
171936dd 2135 int res = 0;
524fca1e 2136 unsigned long page_flags;
a8b2c2ce 2137 bool retry = true;
405ce051 2138 int hugetlb = 0;
6a46079c
AK
2139
2140 if (!sysctl_memory_failure_recovery)
83b57531 2141 panic("Memory failure on page %lx", pfn);
6a46079c 2142
03b122da
TL
2143 mutex_lock(&mf_mutex);
2144
67f22ba7 2145 if (!(flags & MF_SW_SIMULATED))
2146 hw_memory_failure = true;
2147
96c804a6
DH
2148 p = pfn_to_online_page(pfn);
2149 if (!p) {
03b122da
TL
2150 res = arch_memory_failure(pfn, flags);
2151 if (res == 0)
2152 goto unlock_mutex;
2153
96c804a6
DH
2154 if (pfn_valid(pfn)) {
2155 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
2156 if (pgmap) {
2157 res = memory_failure_dev_pagemap(pfn, flags,
2158 pgmap);
2159 goto unlock_mutex;
2160 }
96c804a6 2161 }
96f96763 2162 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2163 res = -ENXIO;
2164 goto unlock_mutex;
6a46079c
AK
2165 }
2166
a8b2c2ce 2167try_again:
405ce051
NH
2168 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2169 if (hugetlb)
171936dd 2170 goto unlock_mutex;
171936dd 2171
6a46079c 2172 if (TestSetPageHWPoison(p)) {
96f96763 2173 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2174 res = -EHWPOISON;
a3f5d80e
NH
2175 if (flags & MF_ACTION_REQUIRED)
2176 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2177 if (flags & MF_COUNT_INCREASED)
2178 put_page(p);
171936dd 2179 goto unlock_mutex;
6a46079c
AK
2180 }
2181
75ee64b3 2182 hpage = compound_head(p);
6a46079c
AK
2183
2184 /*
2185 * We need/can do nothing about count=0 pages.
2186 * 1) it's a free page, and therefore in safe hand:
9cf28191 2187 * check_new_page() will be the gate keeper.
761ad8d7 2188 * 2) it's part of a non-compound high order page.
6a46079c
AK
2189 * Implies some kernel user: cannot stop them from
2190 * R/W the page; let's pray that the page has been
2191 * used and will be freed some time later.
2192 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2193 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2194 */
0ed950d1
NH
2195 if (!(flags & MF_COUNT_INCREASED)) {
2196 res = get_hwpoison_page(p, flags);
2197 if (!res) {
2198 if (is_free_buddy_page(p)) {
2199 if (take_page_off_buddy(p)) {
2200 page_ref_inc(p);
2201 res = MF_RECOVERED;
2202 } else {
2203 /* We lost the race, try again */
2204 if (retry) {
2205 ClearPageHWPoison(p);
0ed950d1
NH
2206 retry = false;
2207 goto try_again;
2208 }
2209 res = MF_FAILED;
a8b2c2ce 2210 }
b66d00df 2211 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2212 } else {
b66d00df 2213 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2214 }
0ed950d1
NH
2215 goto unlock_mutex;
2216 } else if (res < 0) {
b66d00df 2217 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2218 goto unlock_mutex;
8d22ba1b 2219 }
6a46079c
AK
2220 }
2221
761ad8d7 2222 if (PageTransHuge(hpage)) {
eac96c3e
YS
2223 /*
2224 * The flag must be set after the refcount is bumped
2225 * otherwise it may race with THP split.
2226 * And the flag can't be set in get_hwpoison_page() since
2227 * it is called by soft offline too and it is just called
2228 * for !MF_COUNT_INCREASE. So here seems to be the best
2229 * place.
2230 *
2231 * Don't need care about the above error handling paths for
2232 * get_hwpoison_page() since they handle either free page
2233 * or unhandlable page. The refcount is bumped iff the
2234 * page is a valid handlable page.
2235 */
2236 SetPageHasHWPoisoned(hpage);
2ace36f0 2237 if (try_to_split_thp_page(p) < 0) {
b66d00df 2238 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2239 goto unlock_mutex;
5d1fd5dc 2240 }
415c64c1 2241 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2242 }
2243
e43c3afb
WF
2244 /*
2245 * We ignore non-LRU pages for good reasons.
2246 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2247 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2248 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2249 * The check (unnecessarily) ignores LRU pages being isolated and
2250 * walked by the page reclaim code, however that's not a big loss.
2251 */
d0505e9f 2252 shake_page(p);
e43c3afb 2253
761ad8d7 2254 lock_page(p);
847ce401 2255
f37d4298 2256 /*
75ee64b3
ML
2257 * We're only intended to deal with the non-Compound page here.
2258 * However, the page could have changed compound pages due to
2259 * race window. If this happens, we could try again to hopefully
2260 * handle the page next round.
f37d4298 2261 */
75ee64b3
ML
2262 if (PageCompound(p)) {
2263 if (retry) {
e240ac52 2264 ClearPageHWPoison(p);
75ee64b3
ML
2265 unlock_page(p);
2266 put_page(p);
2267 flags &= ~MF_COUNT_INCREASED;
2268 retry = false;
2269 goto try_again;
2270 }
b66d00df 2271 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2272 goto unlock_page;
f37d4298
AK
2273 }
2274
524fca1e
NH
2275 /*
2276 * We use page flags to determine what action should be taken, but
2277 * the flags can be modified by the error containment action. One
2278 * example is an mlocked page, where PG_mlocked is cleared by
2279 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2280 * correctly, we save a copy of the page flags at this time.
2281 */
7d9d46ac 2282 page_flags = p->flags;
524fca1e 2283
7c116f2b 2284 if (hwpoison_filter(p)) {
2fe62e22 2285 ClearPageHWPoison(p);
761ad8d7 2286 unlock_page(p);
dd6e2402 2287 put_page(p);
d1fe111f 2288 res = -EOPNOTSUPP;
171936dd 2289 goto unlock_mutex;
7c116f2b 2290 }
847ce401 2291
e8675d29 2292 /*
e0650a41 2293 * __munlock_folio() may clear a writeback page's LRU flag without
e8675d29 2294 * page_lock. We need wait writeback completion for this page or it
2295 * may trigger vfs BUG while evict inode.
2296 */
b04d3eeb 2297 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2298 goto identify_page_state;
2299
6edd6cc6
NH
2300 /*
2301 * It's very difficult to mess with pages currently under IO
2302 * and in many cases impossible, so we just avoid it here.
2303 */
6a46079c
AK
2304 wait_on_page_writeback(p);
2305
2306 /*
2307 * Now take care of user space mappings.
6ffcd825 2308 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2309 */
ed8c2f49 2310 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
b66d00df 2311 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2312 goto unlock_page;
1668bfd5 2313 }
6a46079c
AK
2314
2315 /*
2316 * Torn down by someone else?
2317 */
dc2a1cbf 2318 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
b66d00df 2319 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2320 goto unlock_page;
6a46079c
AK
2321 }
2322
0bc1f8b0 2323identify_page_state:
0348d2eb 2324 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2325 mutex_unlock(&mf_mutex);
2326 return res;
171936dd 2327unlock_page:
761ad8d7 2328 unlock_page(p);
171936dd
TL
2329unlock_mutex:
2330 mutex_unlock(&mf_mutex);
6a46079c
AK
2331 return res;
2332}
cd42f4a3 2333EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2334
ea8f5fb8
HY
2335#define MEMORY_FAILURE_FIFO_ORDER 4
2336#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2337
2338struct memory_failure_entry {
2339 unsigned long pfn;
ea8f5fb8
HY
2340 int flags;
2341};
2342
2343struct memory_failure_cpu {
2344 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2345 MEMORY_FAILURE_FIFO_SIZE);
2346 spinlock_t lock;
2347 struct work_struct work;
2348};
2349
2350static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2351
2352/**
2353 * memory_failure_queue - Schedule handling memory failure of a page.
2354 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2355 * @flags: Flags for memory failure handling
2356 *
2357 * This function is called by the low level hardware error handler
2358 * when it detects hardware memory corruption of a page. It schedules
2359 * the recovering of error page, including dropping pages, killing
2360 * processes etc.
2361 *
2362 * The function is primarily of use for corruptions that
2363 * happen outside the current execution context (e.g. when
2364 * detected by a background scrubber)
2365 *
2366 * Can run in IRQ context.
2367 */
83b57531 2368void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2369{
2370 struct memory_failure_cpu *mf_cpu;
2371 unsigned long proc_flags;
2372 struct memory_failure_entry entry = {
2373 .pfn = pfn,
ea8f5fb8
HY
2374 .flags = flags,
2375 };
2376
2377 mf_cpu = &get_cpu_var(memory_failure_cpu);
2378 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2379 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2380 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2381 else
96f96763 2382 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2383 pfn);
2384 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2385 put_cpu_var(memory_failure_cpu);
2386}
2387EXPORT_SYMBOL_GPL(memory_failure_queue);
2388
2389static void memory_failure_work_func(struct work_struct *work)
2390{
2391 struct memory_failure_cpu *mf_cpu;
2392 struct memory_failure_entry entry = { 0, };
2393 unsigned long proc_flags;
2394 int gotten;
2395
06202231 2396 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2397 for (;;) {
2398 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2399 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2400 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2401 if (!gotten)
2402 break;
cf870c70 2403 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2404 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2405 else
83b57531 2406 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2407 }
2408}
2409
06202231
JM
2410/*
2411 * Process memory_failure work queued on the specified CPU.
2412 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2413 */
2414void memory_failure_queue_kick(int cpu)
2415{
2416 struct memory_failure_cpu *mf_cpu;
2417
2418 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2419 cancel_work_sync(&mf_cpu->work);
2420 memory_failure_work_func(&mf_cpu->work);
2421}
2422
ea8f5fb8
HY
2423static int __init memory_failure_init(void)
2424{
2425 struct memory_failure_cpu *mf_cpu;
2426 int cpu;
2427
2428 for_each_possible_cpu(cpu) {
2429 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2430 spin_lock_init(&mf_cpu->lock);
2431 INIT_KFIFO(mf_cpu->fifo);
2432 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2433 }
2434
97de10a9
KW
2435 register_sysctl_init("vm", memory_failure_table);
2436
ea8f5fb8
HY
2437 return 0;
2438}
2439core_initcall(memory_failure_init);
2440
96f96763
KW
2441#undef pr_fmt
2442#define pr_fmt(fmt) "" fmt
a5f65109
NH
2443#define unpoison_pr_info(fmt, pfn, rs) \
2444({ \
2445 if (__ratelimit(rs)) \
2446 pr_info(fmt, pfn); \
2447})
2448
847ce401
WF
2449/**
2450 * unpoison_memory - Unpoison a previously poisoned page
2451 * @pfn: Page number of the to be unpoisoned page
2452 *
2453 * Software-unpoison a page that has been poisoned by
2454 * memory_failure() earlier.
2455 *
2456 * This is only done on the software-level, so it only works
2457 * for linux injected failures, not real hardware failures
2458 *
2459 * Returns 0 for success, otherwise -errno.
2460 */
2461int unpoison_memory(unsigned long pfn)
2462{
9637d7df 2463 struct folio *folio;
847ce401 2464 struct page *p;
bf181c58 2465 int ret = -EBUSY;
ac5fcde0 2466 unsigned long count = 1;
5033091d 2467 bool huge = false;
a5f65109
NH
2468 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2469 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2470
2471 if (!pfn_valid(pfn))
2472 return -ENXIO;
2473
2474 p = pfn_to_page(pfn);
9637d7df 2475 folio = page_folio(p);
847ce401 2476
91d00547
NH
2477 mutex_lock(&mf_mutex);
2478
67f22ba7 2479 if (hw_memory_failure) {
2480 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2481 pfn, &unpoison_rs);
2482 ret = -EOPNOTSUPP;
2483 goto unlock_mutex;
2484 }
2485
a6fddef4 2486 if (!folio_test_hwpoison(folio)) {
495367c0 2487 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2488 pfn, &unpoison_rs);
91d00547 2489 goto unlock_mutex;
847ce401
WF
2490 }
2491
a6fddef4 2492 if (folio_ref_count(folio) > 1) {
495367c0 2493 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2494 pfn, &unpoison_rs);
91d00547 2495 goto unlock_mutex;
230ac719
NH
2496 }
2497
a6fddef4 2498 if (folio_mapped(folio)) {
495367c0 2499 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2500 pfn, &unpoison_rs);
91d00547 2501 goto unlock_mutex;
230ac719
NH
2502 }
2503
a6fddef4 2504 if (folio_mapping(folio)) {
495367c0 2505 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2506 pfn, &unpoison_rs);
91d00547 2507 goto unlock_mutex;
0cea3fdc
WL
2508 }
2509
a6fddef4 2510 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
91d00547 2511 goto unlock_mutex;
847ce401 2512
bf181c58
NH
2513 ret = get_hwpoison_page(p, MF_UNPOISON);
2514 if (!ret) {
ac5fcde0 2515 if (PageHuge(p)) {
5033091d 2516 huge = true;
9637d7df 2517 count = folio_free_raw_hwp(folio, false);
ac5fcde0
NH
2518 if (count == 0) {
2519 ret = -EBUSY;
2520 goto unlock_mutex;
2521 }
2522 }
a6fddef4 2523 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
bf181c58
NH
2524 } else if (ret < 0) {
2525 if (ret == -EHWPOISON) {
c8bd84f7 2526 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
bf181c58
NH
2527 } else
2528 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2529 pfn, &unpoison_rs);
2530 } else {
ac5fcde0 2531 if (PageHuge(p)) {
5033091d 2532 huge = true;
9637d7df 2533 count = folio_free_raw_hwp(folio, false);
ac5fcde0
NH
2534 if (count == 0) {
2535 ret = -EBUSY;
a6fddef4 2536 folio_put(folio);
ac5fcde0
NH
2537 goto unlock_mutex;
2538 }
2539 }
847ce401 2540
a6fddef4 2541 folio_put(folio);
e0ff4280 2542 if (TestClearPageHWPoison(p)) {
a6fddef4 2543 folio_put(folio);
bf181c58
NH
2544 ret = 0;
2545 }
2546 }
847ce401 2547
91d00547
NH
2548unlock_mutex:
2549 mutex_unlock(&mf_mutex);
e0ff4280 2550 if (!ret) {
5033091d
NH
2551 if (!huge)
2552 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2553 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2554 page_to_pfn(p), &unpoison_rs);
2555 }
91d00547 2556 return ret;
847ce401
WF
2557}
2558EXPORT_SYMBOL(unpoison_memory);
facb6011 2559
6b9a217e 2560static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2561{
6b9a217e 2562 bool isolated = false;
d950b958 2563
6b9a217e 2564 if (PageHuge(page)) {
9747b9e9 2565 isolated = isolate_hugetlb(page_folio(page), pagelist);
6b9a217e 2566 } else {
da294991
ML
2567 bool lru = !__PageMovable(page);
2568
6b9a217e 2569 if (lru)
f7f9c00d 2570 isolated = isolate_lru_page(page);
6b9a217e 2571 else
cd775580
BW
2572 isolated = isolate_movable_page(page,
2573 ISOLATE_UNEVICTABLE);
6b9a217e 2574
da294991 2575 if (isolated) {
6b9a217e 2576 list_add(&page->lru, pagelist);
da294991
ML
2577 if (lru)
2578 inc_node_page_state(page, NR_ISOLATED_ANON +
2579 page_is_file_lru(page));
2580 }
0ebff32c 2581 }
d950b958 2582
03613808 2583 /*
6b9a217e
OS
2584 * If we succeed to isolate the page, we grabbed another refcount on
2585 * the page, so we can safely drop the one we got from get_any_pages().
2586 * If we failed to isolate the page, it means that we cannot go further
2587 * and we will return an error, so drop the reference we got from
2588 * get_any_pages() as well.
03613808 2589 */
6b9a217e
OS
2590 put_page(page);
2591 return isolated;
d950b958
NH
2592}
2593
6b9a217e 2594/*
48309e1f 2595 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2596 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2597 * If the page is mapped, it migrates the contents over.
2598 */
48309e1f 2599static int soft_offline_in_use_page(struct page *page)
af8fae7c 2600{
d6c75dc2 2601 long ret = 0;
af8fae7c 2602 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2603 struct page *hpage = compound_head(page);
2604 char const *msg_page[] = {"page", "hugepage"};
2605 bool huge = PageHuge(page);
2606 LIST_HEAD(pagelist);
54608759
JK
2607 struct migration_target_control mtc = {
2608 .nid = NUMA_NO_NODE,
2609 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2610 };
facb6011 2611
48309e1f
KW
2612 if (!huge && PageTransHuge(hpage)) {
2613 if (try_to_split_thp_page(page)) {
2614 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2615 return -EBUSY;
2616 }
2617 hpage = page;
2618 }
2619
0ebff32c 2620 lock_page(page);
6b9a217e
OS
2621 if (!PageHuge(page))
2622 wait_on_page_writeback(page);
af8fae7c
NH
2623 if (PageHWPoison(page)) {
2624 unlock_page(page);
dd6e2402 2625 put_page(page);
af8fae7c 2626 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2627 return 0;
af8fae7c 2628 }
6b9a217e 2629
593396b8 2630 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2631 /*
2632 * Try to invalidate first. This should work for
2633 * non dirty unmapped page cache pages.
2634 */
2635 ret = invalidate_inode_page(page);
facb6011 2636 unlock_page(page);
6b9a217e 2637
6b9a217e 2638 if (ret) {
fb46e735 2639 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2640 page_handle_poison(page, false, true);
af8fae7c 2641 return 0;
facb6011
AK
2642 }
2643
6b9a217e 2644 if (isolate_page(hpage, &pagelist)) {
54608759 2645 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2646 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2647 if (!ret) {
6b9a217e
OS
2648 bool release = !huge;
2649
2650 if (!page_handle_poison(page, huge, release))
2651 ret = -EBUSY;
79f5f8fa 2652 } else {
85fbe5d1
YX
2653 if (!list_empty(&pagelist))
2654 putback_movable_pages(&pagelist);
59c82b70 2655
d6c75dc2 2656 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2657 pfn, msg_page[huge], ret, &page->flags);
facb6011 2658 if (ret > 0)
3f4b815a 2659 ret = -EBUSY;
facb6011
AK
2660 }
2661 } else {
23efd080
MWO
2662 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2663 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2664 ret = -EBUSY;
facb6011 2665 }
facb6011
AK
2666 return ret;
2667}
86e05773
WL
2668
2669/**
2670 * soft_offline_page - Soft offline a page.
feec24a6 2671 * @pfn: pfn to soft-offline
86e05773
WL
2672 * @flags: flags. Same as memory_failure().
2673 *
9113eaf3 2674 * Returns 0 on success
2675 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2676 * < 0 otherwise negated errno.
86e05773
WL
2677 *
2678 * Soft offline a page, by migration or invalidation,
2679 * without killing anything. This is for the case when
2680 * a page is not corrupted yet (so it's still valid to access),
2681 * but has had a number of corrected errors and is better taken
2682 * out.
2683 *
2684 * The actual policy on when to do that is maintained by
2685 * user space.
2686 *
2687 * This should never impact any application or cause data loss,
2688 * however it might take some time.
2689 *
2690 * This is not a 100% solution for all memory, but tries to be
2691 * ``good enough'' for the majority of memory.
2692 */
feec24a6 2693int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2694{
2695 int ret;
b94e0282 2696 bool try_again = true;
b5f1fc98 2697 struct page *page;
dad4e5b3 2698
183a7c5d
KW
2699 if (!pfn_valid(pfn)) {
2700 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2701 return -ENXIO;
183a7c5d 2702 }
dad4e5b3 2703
feec24a6
NH
2704 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2705 page = pfn_to_online_page(pfn);
dad4e5b3 2706 if (!page) {
b5f1fc98 2707 put_ref_page(pfn, flags);
86a66810 2708 return -EIO;
dad4e5b3 2709 }
86a66810 2710
91d00547
NH
2711 mutex_lock(&mf_mutex);
2712
86e05773 2713 if (PageHWPoison(page)) {
8295d535 2714 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2715 put_ref_page(pfn, flags);
91d00547 2716 mutex_unlock(&mf_mutex);
5a2ffca3 2717 return 0;
86e05773 2718 }
86e05773 2719
b94e0282 2720retry:
bfc8c901 2721 get_online_mems();
bf6445bc 2722 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2723 put_online_mems();
4e41a30c 2724
9113eaf3 2725 if (hwpoison_filter(page)) {
2726 if (ret > 0)
2727 put_page(page);
9113eaf3 2728
2729 mutex_unlock(&mf_mutex);
2730 return -EOPNOTSUPP;
2731 }
2732
8295d535 2733 if (ret > 0) {
6b9a217e 2734 ret = soft_offline_in_use_page(page);
8295d535 2735 } else if (ret == 0) {
7adb4588 2736 if (!page_handle_poison(page, true, false) && try_again) {
b94e0282 2737 try_again = false;
2a57d83c 2738 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2739 goto retry;
2740 }
8295d535 2741 }
4e41a30c 2742
91d00547
NH
2743 mutex_unlock(&mf_mutex);
2744
86e05773
WL
2745 return ret;
2746}