mm/memory: remove unnecessary pte_devmap case in copy_one_pte()
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
01e00f88 42#include <linux/ksm.h>
6a46079c 43#include <linux/rmap.h>
b9e15baf 44#include <linux/export.h>
6a46079c
AK
45#include <linux/pagemap.h>
46#include <linux/swap.h>
47#include <linux/backing-dev.h>
facb6011 48#include <linux/migrate.h>
facb6011 49#include <linux/suspend.h>
5a0e3ad6 50#include <linux/slab.h>
bf998156 51#include <linux/swapops.h>
7af446a8 52#include <linux/hugetlb.h>
20d6c96b 53#include <linux/memory_hotplug.h>
5db8a73a 54#include <linux/mm_inline.h>
6100e34b 55#include <linux/memremap.h>
ea8f5fb8 56#include <linux/kfifo.h>
a5f65109 57#include <linux/ratelimit.h>
d4ae9916 58#include <linux/page-isolation.h>
6a46079c 59#include "internal.h"
97f0b134 60#include "ras/ras_event.h"
6a46079c
AK
61
62int sysctl_memory_failure_early_kill __read_mostly = 0;
63
64int sysctl_memory_failure_recovery __read_mostly = 1;
65
293c07e3 66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 67
27df5068
AK
68#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69
1bfe5feb 70u32 hwpoison_filter_enable = 0;
7c116f2b
WF
71u32 hwpoison_filter_dev_major = ~0U;
72u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
73u64 hwpoison_filter_flags_mask;
74u64 hwpoison_filter_flags_value;
1bfe5feb 75EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
80
81static int hwpoison_filter_dev(struct page *p)
82{
83 struct address_space *mapping;
84 dev_t dev;
85
86 if (hwpoison_filter_dev_major == ~0U &&
87 hwpoison_filter_dev_minor == ~0U)
88 return 0;
89
90 /*
1c80b990 91 * page_mapping() does not accept slab pages.
7c116f2b
WF
92 */
93 if (PageSlab(p))
94 return -EINVAL;
95
96 mapping = page_mapping(p);
97 if (mapping == NULL || mapping->host == NULL)
98 return -EINVAL;
99
100 dev = mapping->host->i_sb->s_dev;
101 if (hwpoison_filter_dev_major != ~0U &&
102 hwpoison_filter_dev_major != MAJOR(dev))
103 return -EINVAL;
104 if (hwpoison_filter_dev_minor != ~0U &&
105 hwpoison_filter_dev_minor != MINOR(dev))
106 return -EINVAL;
107
108 return 0;
109}
110
478c5ffc
WF
111static int hwpoison_filter_flags(struct page *p)
112{
113 if (!hwpoison_filter_flags_mask)
114 return 0;
115
116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 hwpoison_filter_flags_value)
118 return 0;
119 else
120 return -EINVAL;
121}
122
4fd466eb
AK
123/*
124 * This allows stress tests to limit test scope to a collection of tasks
125 * by putting them under some memcg. This prevents killing unrelated/important
126 * processes such as /sbin/init. Note that the target task may share clean
127 * pages with init (eg. libc text), which is harmless. If the target task
128 * share _dirty_ pages with another task B, the test scheme must make sure B
129 * is also included in the memcg. At last, due to race conditions this filter
130 * can only guarantee that the page either belongs to the memcg tasks, or is
131 * a freed page.
132 */
94a59fb3 133#ifdef CONFIG_MEMCG
4fd466eb
AK
134u64 hwpoison_filter_memcg;
135EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136static int hwpoison_filter_task(struct page *p)
137{
4fd466eb
AK
138 if (!hwpoison_filter_memcg)
139 return 0;
140
94a59fb3 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
142 return -EINVAL;
143
144 return 0;
145}
146#else
147static int hwpoison_filter_task(struct page *p) { return 0; }
148#endif
149
7c116f2b
WF
150int hwpoison_filter(struct page *p)
151{
1bfe5feb
HL
152 if (!hwpoison_filter_enable)
153 return 0;
154
7c116f2b
WF
155 if (hwpoison_filter_dev(p))
156 return -EINVAL;
157
478c5ffc
WF
158 if (hwpoison_filter_flags(p))
159 return -EINVAL;
160
4fd466eb
AK
161 if (hwpoison_filter_task(p))
162 return -EINVAL;
163
7c116f2b
WF
164 return 0;
165}
27df5068
AK
166#else
167int hwpoison_filter(struct page *p)
168{
169 return 0;
170}
171#endif
172
7c116f2b
WF
173EXPORT_SYMBOL_GPL(hwpoison_filter);
174
ae1139ec
DW
175/*
176 * Kill all processes that have a poisoned page mapped and then isolate
177 * the page.
178 *
179 * General strategy:
180 * Find all processes having the page mapped and kill them.
181 * But we keep a page reference around so that the page is not
182 * actually freed yet.
183 * Then stash the page away
184 *
185 * There's no convenient way to get back to mapped processes
186 * from the VMAs. So do a brute-force search over all
187 * running processes.
188 *
189 * Remember that machine checks are not common (or rather
190 * if they are common you have other problems), so this shouldn't
191 * be a performance issue.
192 *
193 * Also there are some races possible while we get from the
194 * error detection to actually handle it.
195 */
196
197struct to_kill {
198 struct list_head nd;
199 struct task_struct *tsk;
200 unsigned long addr;
201 short size_shift;
ae1139ec
DW
202};
203
6a46079c 204/*
7329bbeb
TL
205 * Send all the processes who have the page mapped a signal.
206 * ``action optional'' if they are not immediately affected by the error
207 * ``action required'' if error happened in current execution context
6a46079c 208 */
ae1139ec 209static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 210{
ae1139ec
DW
211 struct task_struct *t = tk->tsk;
212 short addr_lsb = tk->size_shift;
6a46079c
AK
213 int ret;
214
135e5351 215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
495367c0 216 pfn, t->comm, t->pid);
7329bbeb 217
a70ffcac 218 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
ae1139ec 219 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
f8eac901 220 addr_lsb);
7329bbeb
TL
221 } else {
222 /*
223 * Don't use force here, it's convenient if the signal
224 * can be temporarily blocked.
225 * This could cause a loop when the user sets SIGBUS
226 * to SIG_IGN, but hopefully no one will do that?
227 */
ae1139ec 228 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 229 addr_lsb, t); /* synchronous? */
7329bbeb 230 }
6a46079c 231 if (ret < 0)
495367c0 232 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 233 t->comm, t->pid, ret);
6a46079c
AK
234 return ret;
235}
236
588f9ce6
AK
237/*
238 * When a unknown page type is encountered drain as many buffers as possible
239 * in the hope to turn the page into a LRU or free page, which we can handle.
240 */
facb6011 241void shake_page(struct page *p, int access)
588f9ce6 242{
8bcb74de
NH
243 if (PageHuge(p))
244 return;
245
588f9ce6
AK
246 if (!PageSlab(p)) {
247 lru_add_drain_all();
248 if (PageLRU(p))
249 return;
c0554329 250 drain_all_pages(page_zone(p));
588f9ce6
AK
251 if (PageLRU(p) || is_free_buddy_page(p))
252 return;
253 }
facb6011 254
588f9ce6 255 /*
6b4f7799
JW
256 * Only call shrink_node_slabs here (which would also shrink
257 * other caches) if access is not potentially fatal.
588f9ce6 258 */
cb731d6c
VD
259 if (access)
260 drop_slab_node(page_to_nid(p));
588f9ce6
AK
261}
262EXPORT_SYMBOL_GPL(shake_page);
263
6100e34b
DW
264static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 struct vm_area_struct *vma)
266{
267 unsigned long address = vma_address(page, vma);
268 pgd_t *pgd;
269 p4d_t *p4d;
270 pud_t *pud;
271 pmd_t *pmd;
272 pte_t *pte;
273
274 pgd = pgd_offset(vma->vm_mm, address);
275 if (!pgd_present(*pgd))
276 return 0;
277 p4d = p4d_offset(pgd, address);
278 if (!p4d_present(*p4d))
279 return 0;
280 pud = pud_offset(p4d, address);
281 if (!pud_present(*pud))
282 return 0;
283 if (pud_devmap(*pud))
284 return PUD_SHIFT;
285 pmd = pmd_offset(pud, address);
286 if (!pmd_present(*pmd))
287 return 0;
288 if (pmd_devmap(*pmd))
289 return PMD_SHIFT;
290 pte = pte_offset_map(pmd, address);
291 if (!pte_present(*pte))
292 return 0;
293 if (pte_devmap(*pte))
294 return PAGE_SHIFT;
295 return 0;
296}
6a46079c
AK
297
298/*
299 * Failure handling: if we can't find or can't kill a process there's
300 * not much we can do. We just print a message and ignore otherwise.
301 */
302
303/*
304 * Schedule a process for later kill.
305 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
306 */
307static void add_to_kill(struct task_struct *tsk, struct page *p,
308 struct vm_area_struct *vma,
996ff7a0 309 struct list_head *to_kill)
6a46079c
AK
310{
311 struct to_kill *tk;
312
996ff7a0
JC
313 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
314 if (!tk) {
315 pr_err("Memory failure: Out of memory while machine check handling\n");
316 return;
6a46079c 317 }
996ff7a0 318
6a46079c 319 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
320 if (is_zone_device_page(p))
321 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
322 else
75068518 323 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
324
325 /*
3d7fed4a
JC
326 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
327 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
328 * so "tk->size_shift == 0" effectively checks no mapping on
329 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
330 * to a process' address space, it's possible not all N VMAs
331 * contain mappings for the page, but at least one VMA does.
332 * Only deliver SIGBUS with payload derived from the VMA that
333 * has a mapping for the page.
6a46079c 334 */
3d7fed4a 335 if (tk->addr == -EFAULT) {
495367c0 336 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 337 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
338 } else if (tk->size_shift == 0) {
339 kfree(tk);
340 return;
6a46079c 341 }
996ff7a0 342
6a46079c
AK
343 get_task_struct(tsk);
344 tk->tsk = tsk;
345 list_add_tail(&tk->nd, to_kill);
346}
347
348/*
349 * Kill the processes that have been collected earlier.
350 *
351 * Only do anything when DOIT is set, otherwise just free the list
352 * (this is used for clean pages which do not need killing)
353 * Also when FAIL is set do a force kill because something went
354 * wrong earlier.
355 */
ae1139ec
DW
356static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
357 unsigned long pfn, int flags)
6a46079c
AK
358{
359 struct to_kill *tk, *next;
360
361 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 362 if (forcekill) {
6a46079c 363 /*
af901ca1 364 * In case something went wrong with munmapping
6a46079c
AK
365 * make sure the process doesn't catch the
366 * signal and then access the memory. Just kill it.
6a46079c 367 */
3d7fed4a 368 if (fail || tk->addr == -EFAULT) {
495367c0 369 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 370 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
371 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
372 tk->tsk, PIDTYPE_PID);
6a46079c
AK
373 }
374
375 /*
376 * In theory the process could have mapped
377 * something else on the address in-between. We could
378 * check for that, but we need to tell the
379 * process anyways.
380 */
ae1139ec 381 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 382 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 383 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
384 }
385 put_task_struct(tk->tsk);
386 kfree(tk);
387 }
388}
389
3ba08129
NH
390/*
391 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
392 * on behalf of the thread group. Return task_struct of the (first found)
393 * dedicated thread if found, and return NULL otherwise.
394 *
395 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
396 * have to call rcu_read_lock/unlock() in this function.
397 */
398static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 399{
3ba08129
NH
400 struct task_struct *t;
401
402 for_each_thread(tsk, t)
403 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
404 return t;
405 return NULL;
406}
407
408/*
409 * Determine whether a given process is "early kill" process which expects
410 * to be signaled when some page under the process is hwpoisoned.
411 * Return task_struct of the dedicated thread (main thread unless explicitly
412 * specified) if the process is "early kill," and otherwise returns NULL.
413 */
414static struct task_struct *task_early_kill(struct task_struct *tsk,
415 int force_early)
416{
417 struct task_struct *t;
6a46079c 418 if (!tsk->mm)
3ba08129 419 return NULL;
74614de1 420 if (force_early)
3ba08129
NH
421 return tsk;
422 t = find_early_kill_thread(tsk);
423 if (t)
424 return t;
425 if (sysctl_memory_failure_early_kill)
426 return tsk;
427 return NULL;
6a46079c
AK
428}
429
430/*
431 * Collect processes when the error hit an anonymous page.
432 */
433static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 434 int force_early)
6a46079c
AK
435{
436 struct vm_area_struct *vma;
437 struct task_struct *tsk;
438 struct anon_vma *av;
bf181b9f 439 pgoff_t pgoff;
6a46079c 440
4fc3f1d6 441 av = page_lock_anon_vma_read(page);
6a46079c 442 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
443 return;
444
a0f7a756 445 pgoff = page_to_pgoff(page);
9b679320 446 read_lock(&tasklist_lock);
6a46079c 447 for_each_process (tsk) {
5beb4930 448 struct anon_vma_chain *vmac;
3ba08129 449 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 450
3ba08129 451 if (!t)
6a46079c 452 continue;
bf181b9f
ML
453 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
454 pgoff, pgoff) {
5beb4930 455 vma = vmac->vma;
6a46079c
AK
456 if (!page_mapped_in_vma(page, vma))
457 continue;
3ba08129 458 if (vma->vm_mm == t->mm)
996ff7a0 459 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
460 }
461 }
6a46079c 462 read_unlock(&tasklist_lock);
4fc3f1d6 463 page_unlock_anon_vma_read(av);
6a46079c
AK
464}
465
466/*
467 * Collect processes when the error hit a file mapped page.
468 */
469static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 470 int force_early)
6a46079c
AK
471{
472 struct vm_area_struct *vma;
473 struct task_struct *tsk;
6a46079c
AK
474 struct address_space *mapping = page->mapping;
475
d28eb9c8 476 i_mmap_lock_read(mapping);
9b679320 477 read_lock(&tasklist_lock);
6a46079c 478 for_each_process(tsk) {
a0f7a756 479 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 480 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 481
3ba08129 482 if (!t)
6a46079c 483 continue;
6b2dbba8 484 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
485 pgoff) {
486 /*
487 * Send early kill signal to tasks where a vma covers
488 * the page but the corrupted page is not necessarily
489 * mapped it in its pte.
490 * Assume applications who requested early kill want
491 * to be informed of all such data corruptions.
492 */
3ba08129 493 if (vma->vm_mm == t->mm)
996ff7a0 494 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
495 }
496 }
6a46079c 497 read_unlock(&tasklist_lock);
d28eb9c8 498 i_mmap_unlock_read(mapping);
6a46079c
AK
499}
500
501/*
502 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 503 */
74614de1
TL
504static void collect_procs(struct page *page, struct list_head *tokill,
505 int force_early)
6a46079c 506{
6a46079c
AK
507 if (!page->mapping)
508 return;
509
6a46079c 510 if (PageAnon(page))
996ff7a0 511 collect_procs_anon(page, tokill, force_early);
6a46079c 512 else
996ff7a0 513 collect_procs_file(page, tokill, force_early);
6a46079c
AK
514}
515
6a46079c 516static const char *action_name[] = {
cc637b17
XX
517 [MF_IGNORED] = "Ignored",
518 [MF_FAILED] = "Failed",
519 [MF_DELAYED] = "Delayed",
520 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
521};
522
523static const char * const action_page_types[] = {
cc637b17
XX
524 [MF_MSG_KERNEL] = "reserved kernel page",
525 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
526 [MF_MSG_SLAB] = "kernel slab page",
527 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
528 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
529 [MF_MSG_HUGE] = "huge page",
530 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 531 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
532 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
533 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
534 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
535 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
536 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
537 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
538 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
539 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
540 [MF_MSG_CLEAN_LRU] = "clean LRU page",
541 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
542 [MF_MSG_BUDDY] = "free buddy page",
543 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
6100e34b 544 [MF_MSG_DAX] = "dax page",
cc637b17 545 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
546};
547
dc2a1cbf
WF
548/*
549 * XXX: It is possible that a page is isolated from LRU cache,
550 * and then kept in swap cache or failed to remove from page cache.
551 * The page count will stop it from being freed by unpoison.
552 * Stress tests should be aware of this memory leak problem.
553 */
554static int delete_from_lru_cache(struct page *p)
555{
556 if (!isolate_lru_page(p)) {
557 /*
558 * Clear sensible page flags, so that the buddy system won't
559 * complain when the page is unpoison-and-freed.
560 */
561 ClearPageActive(p);
562 ClearPageUnevictable(p);
18365225
MH
563
564 /*
565 * Poisoned page might never drop its ref count to 0 so we have
566 * to uncharge it manually from its memcg.
567 */
568 mem_cgroup_uncharge(p);
569
dc2a1cbf
WF
570 /*
571 * drop the page count elevated by isolate_lru_page()
572 */
09cbfeaf 573 put_page(p);
dc2a1cbf
WF
574 return 0;
575 }
576 return -EIO;
577}
578
78bb9203
NH
579static int truncate_error_page(struct page *p, unsigned long pfn,
580 struct address_space *mapping)
581{
582 int ret = MF_FAILED;
583
584 if (mapping->a_ops->error_remove_page) {
585 int err = mapping->a_ops->error_remove_page(mapping, p);
586
587 if (err != 0) {
588 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
589 pfn, err);
590 } else if (page_has_private(p) &&
591 !try_to_release_page(p, GFP_NOIO)) {
592 pr_info("Memory failure: %#lx: failed to release buffers\n",
593 pfn);
594 } else {
595 ret = MF_RECOVERED;
596 }
597 } else {
598 /*
599 * If the file system doesn't support it just invalidate
600 * This fails on dirty or anything with private pages
601 */
602 if (invalidate_inode_page(p))
603 ret = MF_RECOVERED;
604 else
605 pr_info("Memory failure: %#lx: Failed to invalidate\n",
606 pfn);
607 }
608
609 return ret;
610}
611
6a46079c
AK
612/*
613 * Error hit kernel page.
614 * Do nothing, try to be lucky and not touch this instead. For a few cases we
615 * could be more sophisticated.
616 */
617static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 618{
cc637b17 619 return MF_IGNORED;
6a46079c
AK
620}
621
622/*
623 * Page in unknown state. Do nothing.
624 */
625static int me_unknown(struct page *p, unsigned long pfn)
626{
495367c0 627 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 628 return MF_FAILED;
6a46079c
AK
629}
630
6a46079c
AK
631/*
632 * Clean (or cleaned) page cache page.
633 */
634static int me_pagecache_clean(struct page *p, unsigned long pfn)
635{
6a46079c
AK
636 struct address_space *mapping;
637
dc2a1cbf
WF
638 delete_from_lru_cache(p);
639
6a46079c
AK
640 /*
641 * For anonymous pages we're done the only reference left
642 * should be the one m_f() holds.
643 */
644 if (PageAnon(p))
cc637b17 645 return MF_RECOVERED;
6a46079c
AK
646
647 /*
648 * Now truncate the page in the page cache. This is really
649 * more like a "temporary hole punch"
650 * Don't do this for block devices when someone else
651 * has a reference, because it could be file system metadata
652 * and that's not safe to truncate.
653 */
654 mapping = page_mapping(p);
655 if (!mapping) {
656 /*
657 * Page has been teared down in the meanwhile
658 */
cc637b17 659 return MF_FAILED;
6a46079c
AK
660 }
661
662 /*
663 * Truncation is a bit tricky. Enable it per file system for now.
664 *
665 * Open: to take i_mutex or not for this? Right now we don't.
666 */
78bb9203 667 return truncate_error_page(p, pfn, mapping);
6a46079c
AK
668}
669
670/*
549543df 671 * Dirty pagecache page
6a46079c
AK
672 * Issues: when the error hit a hole page the error is not properly
673 * propagated.
674 */
675static int me_pagecache_dirty(struct page *p, unsigned long pfn)
676{
677 struct address_space *mapping = page_mapping(p);
678
679 SetPageError(p);
680 /* TBD: print more information about the file. */
681 if (mapping) {
682 /*
683 * IO error will be reported by write(), fsync(), etc.
684 * who check the mapping.
685 * This way the application knows that something went
686 * wrong with its dirty file data.
687 *
688 * There's one open issue:
689 *
690 * The EIO will be only reported on the next IO
691 * operation and then cleared through the IO map.
692 * Normally Linux has two mechanisms to pass IO error
693 * first through the AS_EIO flag in the address space
694 * and then through the PageError flag in the page.
695 * Since we drop pages on memory failure handling the
696 * only mechanism open to use is through AS_AIO.
697 *
698 * This has the disadvantage that it gets cleared on
699 * the first operation that returns an error, while
700 * the PageError bit is more sticky and only cleared
701 * when the page is reread or dropped. If an
702 * application assumes it will always get error on
703 * fsync, but does other operations on the fd before
25985edc 704 * and the page is dropped between then the error
6a46079c
AK
705 * will not be properly reported.
706 *
707 * This can already happen even without hwpoisoned
708 * pages: first on metadata IO errors (which only
709 * report through AS_EIO) or when the page is dropped
710 * at the wrong time.
711 *
712 * So right now we assume that the application DTRT on
713 * the first EIO, but we're not worse than other parts
714 * of the kernel.
715 */
af21bfaf 716 mapping_set_error(mapping, -EIO);
6a46079c
AK
717 }
718
719 return me_pagecache_clean(p, pfn);
720}
721
722/*
723 * Clean and dirty swap cache.
724 *
725 * Dirty swap cache page is tricky to handle. The page could live both in page
726 * cache and swap cache(ie. page is freshly swapped in). So it could be
727 * referenced concurrently by 2 types of PTEs:
728 * normal PTEs and swap PTEs. We try to handle them consistently by calling
729 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
730 * and then
731 * - clear dirty bit to prevent IO
732 * - remove from LRU
733 * - but keep in the swap cache, so that when we return to it on
734 * a later page fault, we know the application is accessing
735 * corrupted data and shall be killed (we installed simple
736 * interception code in do_swap_page to catch it).
737 *
738 * Clean swap cache pages can be directly isolated. A later page fault will
739 * bring in the known good data from disk.
740 */
741static int me_swapcache_dirty(struct page *p, unsigned long pfn)
742{
6a46079c
AK
743 ClearPageDirty(p);
744 /* Trigger EIO in shmem: */
745 ClearPageUptodate(p);
746
dc2a1cbf 747 if (!delete_from_lru_cache(p))
cc637b17 748 return MF_DELAYED;
dc2a1cbf 749 else
cc637b17 750 return MF_FAILED;
6a46079c
AK
751}
752
753static int me_swapcache_clean(struct page *p, unsigned long pfn)
754{
6a46079c 755 delete_from_swap_cache(p);
e43c3afb 756
dc2a1cbf 757 if (!delete_from_lru_cache(p))
cc637b17 758 return MF_RECOVERED;
dc2a1cbf 759 else
cc637b17 760 return MF_FAILED;
6a46079c
AK
761}
762
763/*
764 * Huge pages. Needs work.
765 * Issues:
93f70f90
NH
766 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
767 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
768 */
769static int me_huge_page(struct page *p, unsigned long pfn)
770{
6de2b1aa 771 int res = 0;
93f70f90 772 struct page *hpage = compound_head(p);
78bb9203 773 struct address_space *mapping;
2491ffee
NH
774
775 if (!PageHuge(hpage))
776 return MF_DELAYED;
777
78bb9203
NH
778 mapping = page_mapping(hpage);
779 if (mapping) {
780 res = truncate_error_page(hpage, pfn, mapping);
781 } else {
782 unlock_page(hpage);
783 /*
784 * migration entry prevents later access on error anonymous
785 * hugepage, so we can free and dissolve it into buddy to
786 * save healthy subpages.
787 */
788 if (PageAnon(hpage))
789 put_page(hpage);
790 dissolve_free_huge_page(p);
791 res = MF_RECOVERED;
792 lock_page(hpage);
93f70f90 793 }
78bb9203
NH
794
795 return res;
6a46079c
AK
796}
797
798/*
799 * Various page states we can handle.
800 *
801 * A page state is defined by its current page->flags bits.
802 * The table matches them in order and calls the right handler.
803 *
804 * This is quite tricky because we can access page at any time
25985edc 805 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
806 *
807 * This is not complete. More states could be added.
808 * For any missing state don't attempt recovery.
809 */
810
811#define dirty (1UL << PG_dirty)
6326fec1 812#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
813#define unevict (1UL << PG_unevictable)
814#define mlock (1UL << PG_mlocked)
815#define writeback (1UL << PG_writeback)
816#define lru (1UL << PG_lru)
6a46079c 817#define head (1UL << PG_head)
6a46079c 818#define slab (1UL << PG_slab)
6a46079c
AK
819#define reserved (1UL << PG_reserved)
820
821static struct page_state {
822 unsigned long mask;
823 unsigned long res;
cc637b17 824 enum mf_action_page_type type;
6a46079c
AK
825 int (*action)(struct page *p, unsigned long pfn);
826} error_states[] = {
cc637b17 827 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
828 /*
829 * free pages are specially detected outside this table:
830 * PG_buddy pages only make a small fraction of all free pages.
831 */
6a46079c
AK
832
833 /*
834 * Could in theory check if slab page is free or if we can drop
835 * currently unused objects without touching them. But just
836 * treat it as standard kernel for now.
837 */
cc637b17 838 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 839
cc637b17 840 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 841
cc637b17
XX
842 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
843 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 844
cc637b17
XX
845 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
846 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 847
cc637b17
XX
848 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
849 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 850
cc637b17
XX
851 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
852 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
853
854 /*
855 * Catchall entry: must be at end.
856 */
cc637b17 857 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
858};
859
2326c467
AK
860#undef dirty
861#undef sc
862#undef unevict
863#undef mlock
864#undef writeback
865#undef lru
2326c467 866#undef head
2326c467
AK
867#undef slab
868#undef reserved
869
ff604cf6
NH
870/*
871 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
872 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
873 */
cc3e2af4
XX
874static void action_result(unsigned long pfn, enum mf_action_page_type type,
875 enum mf_result result)
6a46079c 876{
97f0b134
XX
877 trace_memory_failure_event(pfn, type, result);
878
495367c0 879 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 880 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
881}
882
883static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 884 unsigned long pfn)
6a46079c
AK
885{
886 int result;
7456b040 887 int count;
6a46079c
AK
888
889 result = ps->action(p, pfn);
7456b040 890
bd1ce5f9 891 count = page_count(p) - 1;
cc637b17 892 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286 893 count--;
78bb9203 894 if (count > 0) {
495367c0 895 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 896 pfn, action_page_types[ps->type], count);
cc637b17 897 result = MF_FAILED;
138ce286 898 }
64d37a2b 899 action_result(pfn, ps->type, result);
6a46079c
AK
900
901 /* Could do more checks here if page looks ok */
902 /*
903 * Could adjust zone counters here to correct for the missing page.
904 */
905
cc637b17 906 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
907}
908
ead07f6a
NH
909/**
910 * get_hwpoison_page() - Get refcount for memory error handling:
911 * @page: raw error page (hit by memory error)
912 *
913 * Return: return 0 if failed to grab the refcount, otherwise true (some
914 * non-zero value.)
915 */
916int get_hwpoison_page(struct page *page)
917{
918 struct page *head = compound_head(page);
919
4e41a30c 920 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
921 /*
922 * Non anonymous thp exists only in allocation/free time. We
923 * can't handle such a case correctly, so let's give it up.
924 * This should be better than triggering BUG_ON when kernel
925 * tries to touch the "partially handled" page.
926 */
927 if (!PageAnon(head)) {
495367c0 928 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
929 page_to_pfn(page));
930 return 0;
931 }
ead07f6a
NH
932 }
933
c2e7e00b
KK
934 if (get_page_unless_zero(head)) {
935 if (head == compound_head(page))
936 return 1;
937
495367c0
CY
938 pr_info("Memory failure: %#lx cannot catch tail\n",
939 page_to_pfn(page));
c2e7e00b
KK
940 put_page(head);
941 }
942
943 return 0;
ead07f6a
NH
944}
945EXPORT_SYMBOL_GPL(get_hwpoison_page);
946
6a46079c
AK
947/*
948 * Do all that is necessary to remove user space mappings. Unmap
949 * the pages and send SIGBUS to the processes if the data was dirty.
950 */
666e5a40 951static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
83b57531 952 int flags, struct page **hpagep)
6a46079c 953{
a128ca71 954 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
955 struct address_space *mapping;
956 LIST_HEAD(tokill);
c0d0381a 957 bool unmap_success = true;
6751ed65 958 int kill = 1, forcekill;
54b9dd14 959 struct page *hpage = *hpagep;
286c469a 960 bool mlocked = PageMlocked(hpage);
6a46079c 961
93a9eb39
NH
962 /*
963 * Here we are interested only in user-mapped pages, so skip any
964 * other types of pages.
965 */
966 if (PageReserved(p) || PageSlab(p))
666e5a40 967 return true;
93a9eb39 968 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 969 return true;
6a46079c 970
6a46079c
AK
971 /*
972 * This check implies we don't kill processes if their pages
973 * are in the swap cache early. Those are always late kills.
974 */
7af446a8 975 if (!page_mapped(hpage))
666e5a40 976 return true;
1668bfd5 977
52089b14 978 if (PageKsm(p)) {
495367c0 979 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 980 return false;
52089b14 981 }
6a46079c
AK
982
983 if (PageSwapCache(p)) {
495367c0
CY
984 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
985 pfn);
6a46079c
AK
986 ttu |= TTU_IGNORE_HWPOISON;
987 }
988
989 /*
990 * Propagate the dirty bit from PTEs to struct page first, because we
991 * need this to decide if we should kill or just drop the page.
db0480b3
WF
992 * XXX: the dirty test could be racy: set_page_dirty() may not always
993 * be called inside page lock (it's recommended but not enforced).
6a46079c 994 */
7af446a8 995 mapping = page_mapping(hpage);
6751ed65 996 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
997 mapping_cap_writeback_dirty(mapping)) {
998 if (page_mkclean(hpage)) {
999 SetPageDirty(hpage);
6a46079c
AK
1000 } else {
1001 kill = 0;
1002 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1003 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1004 pfn);
1005 }
1006 }
1007
1008 /*
1009 * First collect all the processes that have the page
1010 * mapped in dirty form. This has to be done before try_to_unmap,
1011 * because ttu takes the rmap data structures down.
1012 *
1013 * Error handling: We ignore errors here because
1014 * there's nothing that can be done.
1015 */
1016 if (kill)
415c64c1 1017 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1018
c0d0381a
MK
1019 if (!PageHuge(hpage)) {
1020 unmap_success = try_to_unmap(hpage, ttu);
1021 } else {
1022 /*
1023 * For hugetlb pages, try_to_unmap could potentially call
1024 * huge_pmd_unshare. Because of this, take semaphore in
1025 * write mode here and set TTU_RMAP_LOCKED to indicate we
1026 * have taken the lock at this higer level.
1027 *
1028 * Note that the call to hugetlb_page_mapping_lock_write
1029 * is necessary even if mapping is already set. It handles
1030 * ugliness of potentially having to drop page lock to obtain
1031 * i_mmap_rwsem.
1032 */
1033 mapping = hugetlb_page_mapping_lock_write(hpage);
1034
1035 if (mapping) {
1036 unmap_success = try_to_unmap(hpage,
1037 ttu|TTU_RMAP_LOCKED);
1038 i_mmap_unlock_write(mapping);
1039 } else {
1040 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1041 pfn);
1042 unmap_success = false;
1043 }
1044 }
666e5a40 1045 if (!unmap_success)
495367c0 1046 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1047 pfn, page_mapcount(hpage));
a6d30ddd 1048
286c469a
NH
1049 /*
1050 * try_to_unmap() might put mlocked page in lru cache, so call
1051 * shake_page() again to ensure that it's flushed.
1052 */
1053 if (mlocked)
1054 shake_page(hpage, 0);
1055
6a46079c
AK
1056 /*
1057 * Now that the dirty bit has been propagated to the
1058 * struct page and all unmaps done we can decide if
1059 * killing is needed or not. Only kill when the page
6751ed65
TL
1060 * was dirty or the process is not restartable,
1061 * otherwise the tokill list is merely
6a46079c
AK
1062 * freed. When there was a problem unmapping earlier
1063 * use a more force-full uncatchable kill to prevent
1064 * any accesses to the poisoned memory.
1065 */
415c64c1 1066 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1067 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1068
666e5a40 1069 return unmap_success;
6a46079c
AK
1070}
1071
0348d2eb
NH
1072static int identify_page_state(unsigned long pfn, struct page *p,
1073 unsigned long page_flags)
761ad8d7
NH
1074{
1075 struct page_state *ps;
0348d2eb
NH
1076
1077 /*
1078 * The first check uses the current page flags which may not have any
1079 * relevant information. The second check with the saved page flags is
1080 * carried out only if the first check can't determine the page status.
1081 */
1082 for (ps = error_states;; ps++)
1083 if ((p->flags & ps->mask) == ps->res)
1084 break;
1085
1086 page_flags |= (p->flags & (1UL << PG_dirty));
1087
1088 if (!ps->mask)
1089 for (ps = error_states;; ps++)
1090 if ((page_flags & ps->mask) == ps->res)
1091 break;
1092 return page_action(ps, p, pfn);
1093}
1094
83b57531 1095static int memory_failure_hugetlb(unsigned long pfn, int flags)
0348d2eb 1096{
761ad8d7
NH
1097 struct page *p = pfn_to_page(pfn);
1098 struct page *head = compound_head(p);
1099 int res;
1100 unsigned long page_flags;
1101
1102 if (TestSetPageHWPoison(head)) {
1103 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1104 pfn);
1105 return 0;
1106 }
1107
1108 num_poisoned_pages_inc();
1109
1110 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1111 /*
1112 * Check "filter hit" and "race with other subpage."
1113 */
1114 lock_page(head);
1115 if (PageHWPoison(head)) {
1116 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1117 || (p != head && TestSetPageHWPoison(head))) {
1118 num_poisoned_pages_dec();
1119 unlock_page(head);
1120 return 0;
1121 }
1122 }
1123 unlock_page(head);
1124 dissolve_free_huge_page(p);
1125 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1126 return 0;
1127 }
1128
1129 lock_page(head);
1130 page_flags = head->flags;
1131
1132 if (!PageHWPoison(head)) {
1133 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1134 num_poisoned_pages_dec();
1135 unlock_page(head);
1136 put_hwpoison_page(head);
1137 return 0;
1138 }
1139
31286a84
NH
1140 /*
1141 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1142 * simply disable it. In order to make it work properly, we need
1143 * make sure that:
1144 * - conversion of a pud that maps an error hugetlb into hwpoison
1145 * entry properly works, and
1146 * - other mm code walking over page table is aware of pud-aligned
1147 * hwpoison entries.
1148 */
1149 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1150 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1151 res = -EBUSY;
1152 goto out;
1153 }
1154
83b57531 1155 if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
761ad8d7
NH
1156 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1157 res = -EBUSY;
1158 goto out;
1159 }
1160
0348d2eb 1161 res = identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1162out:
1163 unlock_page(head);
1164 return res;
1165}
1166
6100e34b
DW
1167static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1168 struct dev_pagemap *pgmap)
1169{
1170 struct page *page = pfn_to_page(pfn);
1171 const bool unmap_success = true;
1172 unsigned long size = 0;
1173 struct to_kill *tk;
1174 LIST_HEAD(tokill);
1175 int rc = -EBUSY;
1176 loff_t start;
27359fd6 1177 dax_entry_t cookie;
6100e34b
DW
1178
1179 /*
1180 * Prevent the inode from being freed while we are interrogating
1181 * the address_space, typically this would be handled by
1182 * lock_page(), but dax pages do not use the page lock. This
1183 * also prevents changes to the mapping of this pfn until
1184 * poison signaling is complete.
1185 */
27359fd6
MW
1186 cookie = dax_lock_page(page);
1187 if (!cookie)
6100e34b
DW
1188 goto out;
1189
1190 if (hwpoison_filter(page)) {
1191 rc = 0;
1192 goto unlock;
1193 }
1194
25b2995a 1195 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
6100e34b
DW
1196 /*
1197 * TODO: Handle HMM pages which may need coordination
1198 * with device-side memory.
1199 */
1200 goto unlock;
6100e34b
DW
1201 }
1202
1203 /*
1204 * Use this flag as an indication that the dax page has been
1205 * remapped UC to prevent speculative consumption of poison.
1206 */
1207 SetPageHWPoison(page);
1208
1209 /*
1210 * Unlike System-RAM there is no possibility to swap in a
1211 * different physical page at a given virtual address, so all
1212 * userspace consumption of ZONE_DEVICE memory necessitates
1213 * SIGBUS (i.e. MF_MUST_KILL)
1214 */
1215 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1216 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1217
1218 list_for_each_entry(tk, &tokill, nd)
1219 if (tk->size_shift)
1220 size = max(size, 1UL << tk->size_shift);
1221 if (size) {
1222 /*
1223 * Unmap the largest mapping to avoid breaking up
1224 * device-dax mappings which are constant size. The
1225 * actual size of the mapping being torn down is
1226 * communicated in siginfo, see kill_proc()
1227 */
1228 start = (page->index << PAGE_SHIFT) & ~(size - 1);
1229 unmap_mapping_range(page->mapping, start, start + size, 0);
1230 }
1231 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1232 rc = 0;
1233unlock:
27359fd6 1234 dax_unlock_page(page, cookie);
6100e34b
DW
1235out:
1236 /* drop pgmap ref acquired in caller */
1237 put_dev_pagemap(pgmap);
1238 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1239 return rc;
1240}
1241
cd42f4a3
TL
1242/**
1243 * memory_failure - Handle memory failure of a page.
1244 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1245 * @flags: fine tune action taken
1246 *
1247 * This function is called by the low level machine check code
1248 * of an architecture when it detects hardware memory corruption
1249 * of a page. It tries its best to recover, which includes
1250 * dropping pages, killing processes etc.
1251 *
1252 * The function is primarily of use for corruptions that
1253 * happen outside the current execution context (e.g. when
1254 * detected by a background scrubber)
1255 *
1256 * Must run in process context (e.g. a work queue) with interrupts
1257 * enabled and no spinlocks hold.
1258 */
83b57531 1259int memory_failure(unsigned long pfn, int flags)
6a46079c 1260{
6a46079c 1261 struct page *p;
7af446a8 1262 struct page *hpage;
415c64c1 1263 struct page *orig_head;
6100e34b 1264 struct dev_pagemap *pgmap;
6a46079c 1265 int res;
524fca1e 1266 unsigned long page_flags;
6a46079c
AK
1267
1268 if (!sysctl_memory_failure_recovery)
83b57531 1269 panic("Memory failure on page %lx", pfn);
6a46079c 1270
96c804a6
DH
1271 p = pfn_to_online_page(pfn);
1272 if (!p) {
1273 if (pfn_valid(pfn)) {
1274 pgmap = get_dev_pagemap(pfn, NULL);
1275 if (pgmap)
1276 return memory_failure_dev_pagemap(pfn, flags,
1277 pgmap);
1278 }
495367c0
CY
1279 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1280 pfn);
a7560fc8 1281 return -ENXIO;
6a46079c
AK
1282 }
1283
761ad8d7 1284 if (PageHuge(p))
83b57531 1285 return memory_failure_hugetlb(pfn, flags);
6a46079c 1286 if (TestSetPageHWPoison(p)) {
495367c0
CY
1287 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1288 pfn);
6a46079c
AK
1289 return 0;
1290 }
1291
761ad8d7 1292 orig_head = hpage = compound_head(p);
b37ff71c 1293 num_poisoned_pages_inc();
6a46079c
AK
1294
1295 /*
1296 * We need/can do nothing about count=0 pages.
1297 * 1) it's a free page, and therefore in safe hand:
1298 * prep_new_page() will be the gate keeper.
761ad8d7 1299 * 2) it's part of a non-compound high order page.
6a46079c
AK
1300 * Implies some kernel user: cannot stop them from
1301 * R/W the page; let's pray that the page has been
1302 * used and will be freed some time later.
1303 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1304 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1305 */
ead07f6a 1306 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1307 if (is_free_buddy_page(p)) {
cc637b17 1308 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b
WF
1309 return 0;
1310 } else {
cc637b17 1311 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1312 return -EBUSY;
1313 }
6a46079c
AK
1314 }
1315
761ad8d7 1316 if (PageTransHuge(hpage)) {
c3901e72
NH
1317 lock_page(p);
1318 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1319 unlock_page(p);
1320 if (!PageAnon(p))
495367c0
CY
1321 pr_err("Memory failure: %#lx: non anonymous thp\n",
1322 pfn);
7f6bf39b 1323 else
495367c0
CY
1324 pr_err("Memory failure: %#lx: thp split failed\n",
1325 pfn);
ead07f6a 1326 if (TestClearPageHWPoison(p))
b37ff71c 1327 num_poisoned_pages_dec();
665d9da7 1328 put_hwpoison_page(p);
415c64c1
NH
1329 return -EBUSY;
1330 }
c3901e72 1331 unlock_page(p);
415c64c1
NH
1332 VM_BUG_ON_PAGE(!page_count(p), p);
1333 hpage = compound_head(p);
1334 }
1335
e43c3afb
WF
1336 /*
1337 * We ignore non-LRU pages for good reasons.
1338 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1339 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1340 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1341 * The check (unnecessarily) ignores LRU pages being isolated and
1342 * walked by the page reclaim code, however that's not a big loss.
1343 */
8bcb74de
NH
1344 shake_page(p, 0);
1345 /* shake_page could have turned it free. */
1346 if (!PageLRU(p) && is_free_buddy_page(p)) {
1347 if (flags & MF_COUNT_INCREASED)
1348 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1349 else
1350 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1351 return 0;
e43c3afb 1352 }
e43c3afb 1353
761ad8d7 1354 lock_page(p);
847ce401 1355
f37d4298
AK
1356 /*
1357 * The page could have changed compound pages during the locking.
1358 * If this happens just bail out.
1359 */
415c64c1 1360 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1361 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1362 res = -EBUSY;
1363 goto out;
1364 }
1365
524fca1e
NH
1366 /*
1367 * We use page flags to determine what action should be taken, but
1368 * the flags can be modified by the error containment action. One
1369 * example is an mlocked page, where PG_mlocked is cleared by
1370 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1371 * correctly, we save a copy of the page flags at this time.
1372 */
7258ae5c
JM
1373 if (PageHuge(p))
1374 page_flags = hpage->flags;
1375 else
1376 page_flags = p->flags;
524fca1e 1377
847ce401
WF
1378 /*
1379 * unpoison always clear PG_hwpoison inside page lock
1380 */
1381 if (!PageHWPoison(p)) {
495367c0 1382 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1383 num_poisoned_pages_dec();
761ad8d7
NH
1384 unlock_page(p);
1385 put_hwpoison_page(p);
a09233f3 1386 return 0;
847ce401 1387 }
7c116f2b
WF
1388 if (hwpoison_filter(p)) {
1389 if (TestClearPageHWPoison(p))
b37ff71c 1390 num_poisoned_pages_dec();
761ad8d7
NH
1391 unlock_page(p);
1392 put_hwpoison_page(p);
7c116f2b
WF
1393 return 0;
1394 }
847ce401 1395
761ad8d7 1396 if (!PageTransTail(p) && !PageLRU(p))
0bc1f8b0
CY
1397 goto identify_page_state;
1398
6edd6cc6
NH
1399 /*
1400 * It's very difficult to mess with pages currently under IO
1401 * and in many cases impossible, so we just avoid it here.
1402 */
6a46079c
AK
1403 wait_on_page_writeback(p);
1404
1405 /*
1406 * Now take care of user space mappings.
e64a782f 1407 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1408 *
1409 * When the raw error page is thp tail page, hpage points to the raw
1410 * page after thp split.
6a46079c 1411 */
83b57531 1412 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
cc637b17 1413 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1414 res = -EBUSY;
1415 goto out;
1416 }
6a46079c
AK
1417
1418 /*
1419 * Torn down by someone else?
1420 */
dc2a1cbf 1421 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1422 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1423 res = -EBUSY;
6a46079c
AK
1424 goto out;
1425 }
1426
0bc1f8b0 1427identify_page_state:
0348d2eb 1428 res = identify_page_state(pfn, p, page_flags);
6a46079c 1429out:
761ad8d7 1430 unlock_page(p);
6a46079c
AK
1431 return res;
1432}
cd42f4a3 1433EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1434
ea8f5fb8
HY
1435#define MEMORY_FAILURE_FIFO_ORDER 4
1436#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1437
1438struct memory_failure_entry {
1439 unsigned long pfn;
ea8f5fb8
HY
1440 int flags;
1441};
1442
1443struct memory_failure_cpu {
1444 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1445 MEMORY_FAILURE_FIFO_SIZE);
1446 spinlock_t lock;
1447 struct work_struct work;
1448};
1449
1450static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1451
1452/**
1453 * memory_failure_queue - Schedule handling memory failure of a page.
1454 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
1455 * @flags: Flags for memory failure handling
1456 *
1457 * This function is called by the low level hardware error handler
1458 * when it detects hardware memory corruption of a page. It schedules
1459 * the recovering of error page, including dropping pages, killing
1460 * processes etc.
1461 *
1462 * The function is primarily of use for corruptions that
1463 * happen outside the current execution context (e.g. when
1464 * detected by a background scrubber)
1465 *
1466 * Can run in IRQ context.
1467 */
83b57531 1468void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
1469{
1470 struct memory_failure_cpu *mf_cpu;
1471 unsigned long proc_flags;
1472 struct memory_failure_entry entry = {
1473 .pfn = pfn,
ea8f5fb8
HY
1474 .flags = flags,
1475 };
1476
1477 mf_cpu = &get_cpu_var(memory_failure_cpu);
1478 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1479 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1480 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1481 else
8e33a52f 1482 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1483 pfn);
1484 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1485 put_cpu_var(memory_failure_cpu);
1486}
1487EXPORT_SYMBOL_GPL(memory_failure_queue);
1488
1489static void memory_failure_work_func(struct work_struct *work)
1490{
1491 struct memory_failure_cpu *mf_cpu;
1492 struct memory_failure_entry entry = { 0, };
1493 unsigned long proc_flags;
1494 int gotten;
1495
7c8e0181 1496 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1497 for (;;) {
1498 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1499 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1500 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1501 if (!gotten)
1502 break;
cf870c70 1503 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 1504 soft_offline_page(entry.pfn, entry.flags);
cf870c70 1505 else
83b57531 1506 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
1507 }
1508}
1509
1510static int __init memory_failure_init(void)
1511{
1512 struct memory_failure_cpu *mf_cpu;
1513 int cpu;
1514
1515 for_each_possible_cpu(cpu) {
1516 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1517 spin_lock_init(&mf_cpu->lock);
1518 INIT_KFIFO(mf_cpu->fifo);
1519 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1520 }
1521
1522 return 0;
1523}
1524core_initcall(memory_failure_init);
1525
a5f65109
NH
1526#define unpoison_pr_info(fmt, pfn, rs) \
1527({ \
1528 if (__ratelimit(rs)) \
1529 pr_info(fmt, pfn); \
1530})
1531
847ce401
WF
1532/**
1533 * unpoison_memory - Unpoison a previously poisoned page
1534 * @pfn: Page number of the to be unpoisoned page
1535 *
1536 * Software-unpoison a page that has been poisoned by
1537 * memory_failure() earlier.
1538 *
1539 * This is only done on the software-level, so it only works
1540 * for linux injected failures, not real hardware failures
1541 *
1542 * Returns 0 for success, otherwise -errno.
1543 */
1544int unpoison_memory(unsigned long pfn)
1545{
1546 struct page *page;
1547 struct page *p;
1548 int freeit = 0;
a5f65109
NH
1549 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1550 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1551
1552 if (!pfn_valid(pfn))
1553 return -ENXIO;
1554
1555 p = pfn_to_page(pfn);
1556 page = compound_head(p);
1557
1558 if (!PageHWPoison(p)) {
495367c0 1559 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1560 pfn, &unpoison_rs);
847ce401
WF
1561 return 0;
1562 }
1563
230ac719 1564 if (page_count(page) > 1) {
495367c0 1565 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1566 pfn, &unpoison_rs);
230ac719
NH
1567 return 0;
1568 }
1569
1570 if (page_mapped(page)) {
495367c0 1571 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1572 pfn, &unpoison_rs);
230ac719
NH
1573 return 0;
1574 }
1575
1576 if (page_mapping(page)) {
495367c0 1577 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1578 pfn, &unpoison_rs);
230ac719
NH
1579 return 0;
1580 }
1581
0cea3fdc
WL
1582 /*
1583 * unpoison_memory() can encounter thp only when the thp is being
1584 * worked by memory_failure() and the page lock is not held yet.
1585 * In such case, we yield to memory_failure() and make unpoison fail.
1586 */
e76d30e2 1587 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1588 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1589 pfn, &unpoison_rs);
ead07f6a 1590 return 0;
0cea3fdc
WL
1591 }
1592
ead07f6a 1593 if (!get_hwpoison_page(p)) {
847ce401 1594 if (TestClearPageHWPoison(p))
8e30456b 1595 num_poisoned_pages_dec();
495367c0 1596 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1597 pfn, &unpoison_rs);
847ce401
WF
1598 return 0;
1599 }
1600
7eaceacc 1601 lock_page(page);
847ce401
WF
1602 /*
1603 * This test is racy because PG_hwpoison is set outside of page lock.
1604 * That's acceptable because that won't trigger kernel panic. Instead,
1605 * the PG_hwpoison page will be caught and isolated on the entrance to
1606 * the free buddy page pool.
1607 */
c9fbdd5f 1608 if (TestClearPageHWPoison(page)) {
495367c0 1609 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1610 pfn, &unpoison_rs);
b37ff71c 1611 num_poisoned_pages_dec();
847ce401
WF
1612 freeit = 1;
1613 }
1614 unlock_page(page);
1615
665d9da7 1616 put_hwpoison_page(page);
3ba5eebc 1617 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1618 put_hwpoison_page(page);
847ce401
WF
1619
1620 return 0;
1621}
1622EXPORT_SYMBOL(unpoison_memory);
facb6011 1623
666feb21 1624static struct page *new_page(struct page *p, unsigned long private)
facb6011 1625{
12686d15 1626 int nid = page_to_nid(p);
94310cbc 1627
ef77ba5c 1628 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
facb6011
AK
1629}
1630
1631/*
1632 * Safely get reference count of an arbitrary page.
1633 * Returns 0 for a free page, -EIO for a zero refcount page
1634 * that is not free, and 1 for any other page type.
1635 * For 1 the page is returned with increased page count, otherwise not.
1636 */
af8fae7c 1637static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1638{
1639 int ret;
1640
1641 if (flags & MF_COUNT_INCREASED)
1642 return 1;
1643
d950b958
NH
1644 /*
1645 * When the target page is a free hugepage, just remove it
1646 * from free hugepage list.
1647 */
ead07f6a 1648 if (!get_hwpoison_page(p)) {
d950b958 1649 if (PageHuge(p)) {
71dd0b8a 1650 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1651 ret = 0;
d950b958 1652 } else if (is_free_buddy_page(p)) {
71dd0b8a 1653 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1654 ret = 0;
1655 } else {
71dd0b8a
BP
1656 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1657 __func__, pfn, p->flags);
facb6011
AK
1658 ret = -EIO;
1659 }
1660 } else {
1661 /* Not a free page */
1662 ret = 1;
1663 }
facb6011
AK
1664 return ret;
1665}
1666
af8fae7c
NH
1667static int get_any_page(struct page *page, unsigned long pfn, int flags)
1668{
1669 int ret = __get_any_page(page, pfn, flags);
1670
85fbe5d1
YX
1671 if (ret == 1 && !PageHuge(page) &&
1672 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1673 /*
1674 * Try to free it.
1675 */
665d9da7 1676 put_hwpoison_page(page);
af8fae7c
NH
1677 shake_page(page, 1);
1678
1679 /*
1680 * Did it turn free?
1681 */
1682 ret = __get_any_page(page, pfn, 0);
d96b339f 1683 if (ret == 1 && !PageLRU(page)) {
4f32be67 1684 /* Drop page reference which is from __get_any_page() */
665d9da7 1685 put_hwpoison_page(page);
82a2481e
AK
1686 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1687 pfn, page->flags, &page->flags);
af8fae7c
NH
1688 return -EIO;
1689 }
1690 }
1691 return ret;
1692}
1693
d950b958
NH
1694static int soft_offline_huge_page(struct page *page, int flags)
1695{
1696 int ret;
1697 unsigned long pfn = page_to_pfn(page);
1698 struct page *hpage = compound_head(page);
b8ec1cee 1699 LIST_HEAD(pagelist);
d950b958 1700
af8fae7c
NH
1701 /*
1702 * This double-check of PageHWPoison is to avoid the race with
1703 * memory_failure(). See also comment in __soft_offline_page().
1704 */
1705 lock_page(hpage);
0ebff32c 1706 if (PageHWPoison(hpage)) {
af8fae7c 1707 unlock_page(hpage);
665d9da7 1708 put_hwpoison_page(hpage);
0ebff32c 1709 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1710 return -EBUSY;
0ebff32c 1711 }
af8fae7c 1712 unlock_page(hpage);
d950b958 1713
bcc54222 1714 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1715 /*
1716 * get_any_page() and isolate_huge_page() takes a refcount each,
1717 * so need to drop one here.
1718 */
665d9da7 1719 put_hwpoison_page(hpage);
03613808 1720 if (!ret) {
bcc54222
NH
1721 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1722 return -EBUSY;
1723 }
1724
68711a74 1725 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1726 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1727 if (ret) {
b6b18aa8 1728 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
82a2481e 1729 pfn, ret, page->flags, &page->flags);
30809f55
PA
1730 if (!list_empty(&pagelist))
1731 putback_movable_pages(&pagelist);
b8ec1cee
NH
1732 if (ret > 0)
1733 ret = -EIO;
af8fae7c 1734 } else {
6bc9b564
NH
1735 /*
1736 * We set PG_hwpoison only when the migration source hugepage
1737 * was successfully dissolved, because otherwise hwpoisoned
1738 * hugepage remains on free hugepage list, then userspace will
1739 * find it as SIGBUS by allocation failure. That's not expected
1740 * in soft-offlining.
1741 */
1742 ret = dissolve_free_huge_page(page);
1743 if (!ret) {
1744 if (set_hwpoison_free_buddy_page(page))
1745 num_poisoned_pages_inc();
b38e5962
NH
1746 else
1747 ret = -EBUSY;
6bc9b564 1748 }
d950b958 1749 }
d950b958
NH
1750 return ret;
1751}
1752
af8fae7c
NH
1753static int __soft_offline_page(struct page *page, int flags)
1754{
1755 int ret;
1756 unsigned long pfn = page_to_pfn(page);
facb6011 1757
facb6011 1758 /*
af8fae7c
NH
1759 * Check PageHWPoison again inside page lock because PageHWPoison
1760 * is set by memory_failure() outside page lock. Note that
1761 * memory_failure() also double-checks PageHWPoison inside page lock,
1762 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1763 */
0ebff32c
XQ
1764 lock_page(page);
1765 wait_on_page_writeback(page);
af8fae7c
NH
1766 if (PageHWPoison(page)) {
1767 unlock_page(page);
665d9da7 1768 put_hwpoison_page(page);
af8fae7c
NH
1769 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1770 return -EBUSY;
1771 }
facb6011
AK
1772 /*
1773 * Try to invalidate first. This should work for
1774 * non dirty unmapped page cache pages.
1775 */
1776 ret = invalidate_inode_page(page);
1777 unlock_page(page);
facb6011 1778 /*
facb6011
AK
1779 * RED-PEN would be better to keep it isolated here, but we
1780 * would need to fix isolation locking first.
1781 */
facb6011 1782 if (ret == 1) {
665d9da7 1783 put_hwpoison_page(page);
fb46e735 1784 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1785 SetPageHWPoison(page);
8e30456b 1786 num_poisoned_pages_inc();
af8fae7c 1787 return 0;
facb6011
AK
1788 }
1789
1790 /*
1791 * Simple invalidation didn't work.
1792 * Try to migrate to a new page instead. migrate.c
1793 * handles a large number of cases for us.
1794 */
85fbe5d1
YX
1795 if (PageLRU(page))
1796 ret = isolate_lru_page(page);
1797 else
1798 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1799 /*
1800 * Drop page reference which is came from get_any_page()
1801 * successful isolate_lru_page() already took another one.
1802 */
665d9da7 1803 put_hwpoison_page(page);
facb6011
AK
1804 if (!ret) {
1805 LIST_HEAD(pagelist);
85fbe5d1
YX
1806 /*
1807 * After isolated lru page, the PageLRU will be cleared,
1808 * so use !__PageMovable instead for LRU page's mapping
1809 * cannot have PAGE_MAPPING_MOVABLE.
1810 */
1811 if (!__PageMovable(page))
1812 inc_node_page_state(page, NR_ISOLATED_ANON +
9de4f22a 1813 page_is_file_lru(page));
facb6011 1814 list_add(&page->lru, &pagelist);
68711a74 1815 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1816 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1817 if (ret) {
85fbe5d1
YX
1818 if (!list_empty(&pagelist))
1819 putback_movable_pages(&pagelist);
59c82b70 1820
82a2481e
AK
1821 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1822 pfn, ret, page->flags, &page->flags);
facb6011
AK
1823 if (ret > 0)
1824 ret = -EIO;
1825 }
1826 } else {
82a2481e
AK
1827 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1828 pfn, ret, page_count(page), page->flags, &page->flags);
facb6011 1829 }
facb6011
AK
1830 return ret;
1831}
86e05773 1832
acc14dc4
NH
1833static int soft_offline_in_use_page(struct page *page, int flags)
1834{
1835 int ret;
d4ae9916 1836 int mt;
acc14dc4
NH
1837 struct page *hpage = compound_head(page);
1838
1839 if (!PageHuge(page) && PageTransHuge(hpage)) {
46612b75 1840 lock_page(page);
1841 if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1842 unlock_page(page);
1843 if (!PageAnon(page))
98fd1ef4
NH
1844 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1845 else
1846 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
46612b75 1847 put_hwpoison_page(page);
acc14dc4
NH
1848 return -EBUSY;
1849 }
46612b75 1850 unlock_page(page);
acc14dc4
NH
1851 }
1852
d4ae9916
NH
1853 /*
1854 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1855 * to free list immediately (not via pcplist) when released after
1856 * successful page migration. Otherwise we can't guarantee that the
1857 * page is really free after put_page() returns, so
1858 * set_hwpoison_free_buddy_page() highly likely fails.
1859 */
1860 mt = get_pageblock_migratetype(page);
1861 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
acc14dc4
NH
1862 if (PageHuge(page))
1863 ret = soft_offline_huge_page(page, flags);
1864 else
1865 ret = __soft_offline_page(page, flags);
d4ae9916 1866 set_pageblock_migratetype(page, mt);
acc14dc4
NH
1867 return ret;
1868}
1869
d4ae9916 1870static int soft_offline_free_page(struct page *page)
acc14dc4 1871{
faf53def 1872 int rc = dissolve_free_huge_page(page);
acc14dc4 1873
d4ae9916
NH
1874 if (!rc) {
1875 if (set_hwpoison_free_buddy_page(page))
1876 num_poisoned_pages_inc();
1877 else
1878 rc = -EBUSY;
1879 }
1880 return rc;
acc14dc4
NH
1881}
1882
86e05773
WL
1883/**
1884 * soft_offline_page - Soft offline a page.
feec24a6 1885 * @pfn: pfn to soft-offline
86e05773
WL
1886 * @flags: flags. Same as memory_failure().
1887 *
1888 * Returns 0 on success, otherwise negated errno.
1889 *
1890 * Soft offline a page, by migration or invalidation,
1891 * without killing anything. This is for the case when
1892 * a page is not corrupted yet (so it's still valid to access),
1893 * but has had a number of corrected errors and is better taken
1894 * out.
1895 *
1896 * The actual policy on when to do that is maintained by
1897 * user space.
1898 *
1899 * This should never impact any application or cause data loss,
1900 * however it might take some time.
1901 *
1902 * This is not a 100% solution for all memory, but tries to be
1903 * ``good enough'' for the majority of memory.
1904 */
feec24a6 1905int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
1906{
1907 int ret;
feec24a6 1908 struct page *page;
86e05773 1909
feec24a6
NH
1910 if (!pfn_valid(pfn))
1911 return -ENXIO;
1912 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1913 page = pfn_to_online_page(pfn);
1914 if (!page)
86a66810 1915 return -EIO;
86a66810 1916
86e05773
WL
1917 if (PageHWPoison(page)) {
1918 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1919 if (flags & MF_COUNT_INCREASED)
665d9da7 1920 put_hwpoison_page(page);
86e05773
WL
1921 return -EBUSY;
1922 }
86e05773 1923
bfc8c901 1924 get_online_mems();
86e05773 1925 ret = get_any_page(page, pfn, flags);
bfc8c901 1926 put_online_mems();
4e41a30c 1927
acc14dc4
NH
1928 if (ret > 0)
1929 ret = soft_offline_in_use_page(page, flags);
1930 else if (ret == 0)
d4ae9916 1931 ret = soft_offline_free_page(page);
4e41a30c 1932
86e05773
WL
1933 return ret;
1934}