mm/memory-failure.c: move clear_hwpoisoned_pages
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
96c84dde 42#include <linux/dax.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011 49#include <linux/migrate.h>
facb6011 50#include <linux/suspend.h>
5a0e3ad6 51#include <linux/slab.h>
bf998156 52#include <linux/swapops.h>
7af446a8 53#include <linux/hugetlb.h>
20d6c96b 54#include <linux/memory_hotplug.h>
5db8a73a 55#include <linux/mm_inline.h>
6100e34b 56#include <linux/memremap.h>
ea8f5fb8 57#include <linux/kfifo.h>
a5f65109 58#include <linux/ratelimit.h>
d4ae9916 59#include <linux/page-isolation.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
014bb1de 62#include "swap.h"
6a46079c 63#include "internal.h"
97f0b134 64#include "ras/ras_event.h"
6a46079c
AK
65
66int sysctl_memory_failure_early_kill __read_mostly = 0;
67
68int sysctl_memory_failure_recovery __read_mostly = 1;
69
293c07e3 70atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 71
510d25c9
NH
72static bool __page_handle_poison(struct page *page)
73{
f87060d3 74 int ret;
510d25c9
NH
75
76 zone_pcp_disable(page_zone(page));
77 ret = dissolve_free_huge_page(page);
78 if (!ret)
79 ret = take_page_off_buddy(page);
80 zone_pcp_enable(page_zone(page));
81
f87060d3 82 return ret > 0;
510d25c9
NH
83}
84
6b9a217e 85static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 86{
6b9a217e
OS
87 if (hugepage_or_freepage) {
88 /*
89 * Doing this check for free pages is also fine since dissolve_free_huge_page
90 * returns 0 for non-hugetlb pages as well.
91 */
510d25c9 92 if (!__page_handle_poison(page))
6b9a217e
OS
93 /*
94 * We could fail to take off the target page from buddy
f0953a1b 95 * for example due to racy page allocation, but that's
6b9a217e
OS
96 * acceptable because soft-offlined page is not broken
97 * and if someone really want to use it, they should
98 * take it.
99 */
100 return false;
101 }
102
06be6ff3 103 SetPageHWPoison(page);
79f5f8fa
OS
104 if (release)
105 put_page(page);
06be6ff3
OS
106 page_ref_inc(page);
107 num_poisoned_pages_inc();
6b9a217e
OS
108
109 return true;
06be6ff3
OS
110}
111
27df5068
AK
112#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
113
1bfe5feb 114u32 hwpoison_filter_enable = 0;
7c116f2b
WF
115u32 hwpoison_filter_dev_major = ~0U;
116u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
117u64 hwpoison_filter_flags_mask;
118u64 hwpoison_filter_flags_value;
1bfe5feb 119EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
120EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
121EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
122EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
123EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
124
125static int hwpoison_filter_dev(struct page *p)
126{
127 struct address_space *mapping;
128 dev_t dev;
129
130 if (hwpoison_filter_dev_major == ~0U &&
131 hwpoison_filter_dev_minor == ~0U)
132 return 0;
133
7c116f2b
WF
134 mapping = page_mapping(p);
135 if (mapping == NULL || mapping->host == NULL)
136 return -EINVAL;
137
138 dev = mapping->host->i_sb->s_dev;
139 if (hwpoison_filter_dev_major != ~0U &&
140 hwpoison_filter_dev_major != MAJOR(dev))
141 return -EINVAL;
142 if (hwpoison_filter_dev_minor != ~0U &&
143 hwpoison_filter_dev_minor != MINOR(dev))
144 return -EINVAL;
145
146 return 0;
147}
148
478c5ffc
WF
149static int hwpoison_filter_flags(struct page *p)
150{
151 if (!hwpoison_filter_flags_mask)
152 return 0;
153
154 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
155 hwpoison_filter_flags_value)
156 return 0;
157 else
158 return -EINVAL;
159}
160
4fd466eb
AK
161/*
162 * This allows stress tests to limit test scope to a collection of tasks
163 * by putting them under some memcg. This prevents killing unrelated/important
164 * processes such as /sbin/init. Note that the target task may share clean
165 * pages with init (eg. libc text), which is harmless. If the target task
166 * share _dirty_ pages with another task B, the test scheme must make sure B
167 * is also included in the memcg. At last, due to race conditions this filter
168 * can only guarantee that the page either belongs to the memcg tasks, or is
169 * a freed page.
170 */
94a59fb3 171#ifdef CONFIG_MEMCG
4fd466eb
AK
172u64 hwpoison_filter_memcg;
173EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
174static int hwpoison_filter_task(struct page *p)
175{
4fd466eb
AK
176 if (!hwpoison_filter_memcg)
177 return 0;
178
94a59fb3 179 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
180 return -EINVAL;
181
182 return 0;
183}
184#else
185static int hwpoison_filter_task(struct page *p) { return 0; }
186#endif
187
7c116f2b
WF
188int hwpoison_filter(struct page *p)
189{
1bfe5feb
HL
190 if (!hwpoison_filter_enable)
191 return 0;
192
7c116f2b
WF
193 if (hwpoison_filter_dev(p))
194 return -EINVAL;
195
478c5ffc
WF
196 if (hwpoison_filter_flags(p))
197 return -EINVAL;
198
4fd466eb
AK
199 if (hwpoison_filter_task(p))
200 return -EINVAL;
201
7c116f2b
WF
202 return 0;
203}
27df5068
AK
204#else
205int hwpoison_filter(struct page *p)
206{
207 return 0;
208}
209#endif
210
7c116f2b
WF
211EXPORT_SYMBOL_GPL(hwpoison_filter);
212
ae1139ec
DW
213/*
214 * Kill all processes that have a poisoned page mapped and then isolate
215 * the page.
216 *
217 * General strategy:
218 * Find all processes having the page mapped and kill them.
219 * But we keep a page reference around so that the page is not
220 * actually freed yet.
221 * Then stash the page away
222 *
223 * There's no convenient way to get back to mapped processes
224 * from the VMAs. So do a brute-force search over all
225 * running processes.
226 *
227 * Remember that machine checks are not common (or rather
228 * if they are common you have other problems), so this shouldn't
229 * be a performance issue.
230 *
231 * Also there are some races possible while we get from the
232 * error detection to actually handle it.
233 */
234
235struct to_kill {
236 struct list_head nd;
237 struct task_struct *tsk;
238 unsigned long addr;
239 short size_shift;
ae1139ec
DW
240};
241
6a46079c 242/*
7329bbeb
TL
243 * Send all the processes who have the page mapped a signal.
244 * ``action optional'' if they are not immediately affected by the error
245 * ``action required'' if error happened in current execution context
6a46079c 246 */
ae1139ec 247static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 248{
ae1139ec
DW
249 struct task_struct *t = tk->tsk;
250 short addr_lsb = tk->size_shift;
872e9a20 251 int ret = 0;
6a46079c 252
03151c6e 253 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 254 pfn, t->comm, t->pid);
7329bbeb 255
49775047
ML
256 if ((flags & MF_ACTION_REQUIRED) && (t == current))
257 ret = force_sig_mceerr(BUS_MCEERR_AR,
258 (void __user *)tk->addr, addr_lsb);
259 else
7329bbeb 260 /*
49775047
ML
261 * Signal other processes sharing the page if they have
262 * PF_MCE_EARLY set.
7329bbeb
TL
263 * Don't use force here, it's convenient if the signal
264 * can be temporarily blocked.
265 * This could cause a loop when the user sets SIGBUS
266 * to SIG_IGN, but hopefully no one will do that?
267 */
ae1139ec 268 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 269 addr_lsb, t); /* synchronous? */
6a46079c 270 if (ret < 0)
495367c0 271 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 272 t->comm, t->pid, ret);
6a46079c
AK
273 return ret;
274}
275
588f9ce6 276/*
47e431f4 277 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 278 * lru_add_drain_all.
588f9ce6 279 */
d0505e9f 280void shake_page(struct page *p)
588f9ce6 281{
8bcb74de
NH
282 if (PageHuge(p))
283 return;
284
588f9ce6
AK
285 if (!PageSlab(p)) {
286 lru_add_drain_all();
588f9ce6
AK
287 if (PageLRU(p) || is_free_buddy_page(p))
288 return;
289 }
facb6011 290
588f9ce6 291 /*
d0505e9f
YS
292 * TODO: Could shrink slab caches here if a lightweight range-based
293 * shrinker will be available.
588f9ce6
AK
294 */
295}
296EXPORT_SYMBOL_GPL(shake_page);
297
6100e34b
DW
298static unsigned long dev_pagemap_mapping_shift(struct page *page,
299 struct vm_area_struct *vma)
300{
301 unsigned long address = vma_address(page, vma);
5c91c0e7 302 unsigned long ret = 0;
6100e34b
DW
303 pgd_t *pgd;
304 p4d_t *p4d;
305 pud_t *pud;
306 pmd_t *pmd;
307 pte_t *pte;
308
a994402b 309 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
310 pgd = pgd_offset(vma->vm_mm, address);
311 if (!pgd_present(*pgd))
312 return 0;
313 p4d = p4d_offset(pgd, address);
314 if (!p4d_present(*p4d))
315 return 0;
316 pud = pud_offset(p4d, address);
317 if (!pud_present(*pud))
318 return 0;
319 if (pud_devmap(*pud))
320 return PUD_SHIFT;
321 pmd = pmd_offset(pud, address);
322 if (!pmd_present(*pmd))
323 return 0;
324 if (pmd_devmap(*pmd))
325 return PMD_SHIFT;
326 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
327 if (pte_present(*pte) && pte_devmap(*pte))
328 ret = PAGE_SHIFT;
329 pte_unmap(pte);
330 return ret;
6100e34b 331}
6a46079c
AK
332
333/*
334 * Failure handling: if we can't find or can't kill a process there's
335 * not much we can do. We just print a message and ignore otherwise.
336 */
337
338/*
339 * Schedule a process for later kill.
340 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
341 */
342static void add_to_kill(struct task_struct *tsk, struct page *p,
343 struct vm_area_struct *vma,
996ff7a0 344 struct list_head *to_kill)
6a46079c
AK
345{
346 struct to_kill *tk;
347
996ff7a0
JC
348 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
349 if (!tk) {
350 pr_err("Memory failure: Out of memory while machine check handling\n");
351 return;
6a46079c 352 }
996ff7a0 353
6a46079c 354 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
355 if (is_zone_device_page(p))
356 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
357 else
75068518 358 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
359
360 /*
3d7fed4a
JC
361 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
362 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
363 * so "tk->size_shift == 0" effectively checks no mapping on
364 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
365 * to a process' address space, it's possible not all N VMAs
366 * contain mappings for the page, but at least one VMA does.
367 * Only deliver SIGBUS with payload derived from the VMA that
368 * has a mapping for the page.
6a46079c 369 */
3d7fed4a 370 if (tk->addr == -EFAULT) {
495367c0 371 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 372 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
373 } else if (tk->size_shift == 0) {
374 kfree(tk);
375 return;
6a46079c 376 }
996ff7a0 377
6a46079c
AK
378 get_task_struct(tsk);
379 tk->tsk = tsk;
380 list_add_tail(&tk->nd, to_kill);
381}
382
383/*
384 * Kill the processes that have been collected earlier.
385 *
a21c184f
ML
386 * Only do anything when FORCEKILL is set, otherwise just free the
387 * list (this is used for clean pages which do not need killing)
6a46079c
AK
388 * Also when FAIL is set do a force kill because something went
389 * wrong earlier.
390 */
ae1139ec
DW
391static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
392 unsigned long pfn, int flags)
6a46079c
AK
393{
394 struct to_kill *tk, *next;
395
396 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 397 if (forcekill) {
6a46079c 398 /*
af901ca1 399 * In case something went wrong with munmapping
6a46079c
AK
400 * make sure the process doesn't catch the
401 * signal and then access the memory. Just kill it.
6a46079c 402 */
3d7fed4a 403 if (fail || tk->addr == -EFAULT) {
495367c0 404 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 405 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
406 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
407 tk->tsk, PIDTYPE_PID);
6a46079c
AK
408 }
409
410 /*
411 * In theory the process could have mapped
412 * something else on the address in-between. We could
413 * check for that, but we need to tell the
414 * process anyways.
415 */
ae1139ec 416 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 417 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 418 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
419 }
420 put_task_struct(tk->tsk);
421 kfree(tk);
422 }
423}
424
3ba08129
NH
425/*
426 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
427 * on behalf of the thread group. Return task_struct of the (first found)
428 * dedicated thread if found, and return NULL otherwise.
429 *
430 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
431 * have to call rcu_read_lock/unlock() in this function.
432 */
433static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 434{
3ba08129
NH
435 struct task_struct *t;
436
4e018b45
NH
437 for_each_thread(tsk, t) {
438 if (t->flags & PF_MCE_PROCESS) {
439 if (t->flags & PF_MCE_EARLY)
440 return t;
441 } else {
442 if (sysctl_memory_failure_early_kill)
443 return t;
444 }
445 }
3ba08129
NH
446 return NULL;
447}
448
449/*
450 * Determine whether a given process is "early kill" process which expects
451 * to be signaled when some page under the process is hwpoisoned.
452 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 453 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 454 *
30c9cf49
AY
455 * Note that the above is true for Action Optional case. For Action Required
456 * case, it's only meaningful to the current thread which need to be signaled
457 * with SIGBUS, this error is Action Optional for other non current
458 * processes sharing the same error page,if the process is "early kill", the
459 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
460 */
461static struct task_struct *task_early_kill(struct task_struct *tsk,
462 int force_early)
463{
6a46079c 464 if (!tsk->mm)
3ba08129 465 return NULL;
30c9cf49
AY
466 /*
467 * Comparing ->mm here because current task might represent
468 * a subthread, while tsk always points to the main thread.
469 */
470 if (force_early && tsk->mm == current->mm)
471 return current;
472
4e018b45 473 return find_early_kill_thread(tsk);
6a46079c
AK
474}
475
476/*
477 * Collect processes when the error hit an anonymous page.
478 */
479static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 480 int force_early)
6a46079c 481{
9595d769 482 struct folio *folio = page_folio(page);
6a46079c
AK
483 struct vm_area_struct *vma;
484 struct task_struct *tsk;
485 struct anon_vma *av;
bf181b9f 486 pgoff_t pgoff;
6a46079c 487
9595d769 488 av = folio_lock_anon_vma_read(folio);
6a46079c 489 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
490 return;
491
a0f7a756 492 pgoff = page_to_pgoff(page);
9b679320 493 read_lock(&tasklist_lock);
6a46079c 494 for_each_process (tsk) {
5beb4930 495 struct anon_vma_chain *vmac;
3ba08129 496 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 497
3ba08129 498 if (!t)
6a46079c 499 continue;
bf181b9f
ML
500 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
501 pgoff, pgoff) {
5beb4930 502 vma = vmac->vma;
6a46079c
AK
503 if (!page_mapped_in_vma(page, vma))
504 continue;
3ba08129 505 if (vma->vm_mm == t->mm)
996ff7a0 506 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
507 }
508 }
6a46079c 509 read_unlock(&tasklist_lock);
4fc3f1d6 510 page_unlock_anon_vma_read(av);
6a46079c
AK
511}
512
513/*
514 * Collect processes when the error hit a file mapped page.
515 */
516static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 517 int force_early)
6a46079c
AK
518{
519 struct vm_area_struct *vma;
520 struct task_struct *tsk;
6a46079c 521 struct address_space *mapping = page->mapping;
c43bc03d 522 pgoff_t pgoff;
6a46079c 523
d28eb9c8 524 i_mmap_lock_read(mapping);
9b679320 525 read_lock(&tasklist_lock);
c43bc03d 526 pgoff = page_to_pgoff(page);
6a46079c 527 for_each_process(tsk) {
3ba08129 528 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 529
3ba08129 530 if (!t)
6a46079c 531 continue;
6b2dbba8 532 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
533 pgoff) {
534 /*
535 * Send early kill signal to tasks where a vma covers
536 * the page but the corrupted page is not necessarily
537 * mapped it in its pte.
538 * Assume applications who requested early kill want
539 * to be informed of all such data corruptions.
540 */
3ba08129 541 if (vma->vm_mm == t->mm)
996ff7a0 542 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
543 }
544 }
6a46079c 545 read_unlock(&tasklist_lock);
d28eb9c8 546 i_mmap_unlock_read(mapping);
6a46079c
AK
547}
548
549/*
550 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 551 */
74614de1
TL
552static void collect_procs(struct page *page, struct list_head *tokill,
553 int force_early)
6a46079c 554{
6a46079c
AK
555 if (!page->mapping)
556 return;
557
6a46079c 558 if (PageAnon(page))
996ff7a0 559 collect_procs_anon(page, tokill, force_early);
6a46079c 560 else
996ff7a0 561 collect_procs_file(page, tokill, force_early);
6a46079c
AK
562}
563
a3f5d80e
NH
564struct hwp_walk {
565 struct to_kill tk;
566 unsigned long pfn;
567 int flags;
568};
569
570static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
571{
572 tk->addr = addr;
573 tk->size_shift = shift;
574}
575
576static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
577 unsigned long poisoned_pfn, struct to_kill *tk)
578{
579 unsigned long pfn = 0;
580
581 if (pte_present(pte)) {
582 pfn = pte_pfn(pte);
583 } else {
584 swp_entry_t swp = pte_to_swp_entry(pte);
585
586 if (is_hwpoison_entry(swp))
587 pfn = hwpoison_entry_to_pfn(swp);
588 }
589
590 if (!pfn || pfn != poisoned_pfn)
591 return 0;
592
593 set_to_kill(tk, addr, shift);
594 return 1;
595}
596
597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
598static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
599 struct hwp_walk *hwp)
600{
601 pmd_t pmd = *pmdp;
602 unsigned long pfn;
603 unsigned long hwpoison_vaddr;
604
605 if (!pmd_present(pmd))
606 return 0;
607 pfn = pmd_pfn(pmd);
608 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
609 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
610 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
611 return 1;
612 }
613 return 0;
614}
615#else
616static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
617 struct hwp_walk *hwp)
618{
619 return 0;
620}
621#endif
622
623static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
624 unsigned long end, struct mm_walk *walk)
625{
f142e707 626 struct hwp_walk *hwp = walk->private;
a3f5d80e 627 int ret = 0;
ea3732f7 628 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
629 spinlock_t *ptl;
630
631 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
632 if (ptl) {
633 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
634 spin_unlock(ptl);
635 goto out;
636 }
637
638 if (pmd_trans_unstable(pmdp))
639 goto out;
640
ea3732f7
ML
641 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
642 addr, &ptl);
a3f5d80e
NH
643 for (; addr != end; ptep++, addr += PAGE_SIZE) {
644 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
645 hwp->pfn, &hwp->tk);
646 if (ret == 1)
647 break;
648 }
ea3732f7 649 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
650out:
651 cond_resched();
652 return ret;
653}
654
655#ifdef CONFIG_HUGETLB_PAGE
656static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
657 unsigned long addr, unsigned long end,
658 struct mm_walk *walk)
659{
f142e707 660 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
661 pte_t pte = huge_ptep_get(ptep);
662 struct hstate *h = hstate_vma(walk->vma);
663
664 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
665 hwp->pfn, &hwp->tk);
666}
667#else
668#define hwpoison_hugetlb_range NULL
669#endif
670
ba9eb3ce 671static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
672 .pmd_entry = hwpoison_pte_range,
673 .hugetlb_entry = hwpoison_hugetlb_range,
674};
675
676/*
677 * Sends SIGBUS to the current process with error info.
678 *
679 * This function is intended to handle "Action Required" MCEs on already
680 * hardware poisoned pages. They could happen, for example, when
681 * memory_failure() failed to unmap the error page at the first call, or
682 * when multiple local machine checks happened on different CPUs.
683 *
684 * MCE handler currently has no easy access to the error virtual address,
685 * so this function walks page table to find it. The returned virtual address
686 * is proper in most cases, but it could be wrong when the application
687 * process has multiple entries mapping the error page.
688 */
689static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
690 int flags)
691{
692 int ret;
693 struct hwp_walk priv = {
694 .pfn = pfn,
695 };
696 priv.tk.tsk = p;
697
698 mmap_read_lock(p->mm);
699 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
700 (void *)&priv);
701 if (ret == 1 && priv.tk.addr)
702 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
703 else
704 ret = 0;
a3f5d80e 705 mmap_read_unlock(p->mm);
046545a6 706 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
707}
708
6a46079c 709static const char *action_name[] = {
cc637b17
XX
710 [MF_IGNORED] = "Ignored",
711 [MF_FAILED] = "Failed",
712 [MF_DELAYED] = "Delayed",
713 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
714};
715
716static const char * const action_page_types[] = {
cc637b17
XX
717 [MF_MSG_KERNEL] = "reserved kernel page",
718 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
719 [MF_MSG_SLAB] = "kernel slab page",
720 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
721 [MF_MSG_HUGE] = "huge page",
722 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 723 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
724 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
725 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
726 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
727 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
728 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
729 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
730 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
731 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
732 [MF_MSG_CLEAN_LRU] = "clean LRU page",
733 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
734 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 735 [MF_MSG_DAX] = "dax page",
5d1fd5dc 736 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 737 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
738};
739
dc2a1cbf
WF
740/*
741 * XXX: It is possible that a page is isolated from LRU cache,
742 * and then kept in swap cache or failed to remove from page cache.
743 * The page count will stop it from being freed by unpoison.
744 * Stress tests should be aware of this memory leak problem.
745 */
746static int delete_from_lru_cache(struct page *p)
747{
748 if (!isolate_lru_page(p)) {
749 /*
750 * Clear sensible page flags, so that the buddy system won't
751 * complain when the page is unpoison-and-freed.
752 */
753 ClearPageActive(p);
754 ClearPageUnevictable(p);
18365225
MH
755
756 /*
757 * Poisoned page might never drop its ref count to 0 so we have
758 * to uncharge it manually from its memcg.
759 */
bbc6b703 760 mem_cgroup_uncharge(page_folio(p));
18365225 761
dc2a1cbf
WF
762 /*
763 * drop the page count elevated by isolate_lru_page()
764 */
09cbfeaf 765 put_page(p);
dc2a1cbf
WF
766 return 0;
767 }
768 return -EIO;
769}
770
78bb9203
NH
771static int truncate_error_page(struct page *p, unsigned long pfn,
772 struct address_space *mapping)
773{
774 int ret = MF_FAILED;
775
776 if (mapping->a_ops->error_remove_page) {
777 int err = mapping->a_ops->error_remove_page(mapping, p);
778
779 if (err != 0) {
780 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
781 pfn, err);
782 } else if (page_has_private(p) &&
783 !try_to_release_page(p, GFP_NOIO)) {
784 pr_info("Memory failure: %#lx: failed to release buffers\n",
785 pfn);
786 } else {
787 ret = MF_RECOVERED;
788 }
789 } else {
790 /*
791 * If the file system doesn't support it just invalidate
792 * This fails on dirty or anything with private pages
793 */
794 if (invalidate_inode_page(p))
795 ret = MF_RECOVERED;
796 else
797 pr_info("Memory failure: %#lx: Failed to invalidate\n",
798 pfn);
799 }
800
801 return ret;
802}
803
dd0f230a
YS
804struct page_state {
805 unsigned long mask;
806 unsigned long res;
807 enum mf_action_page_type type;
808
809 /* Callback ->action() has to unlock the relevant page inside it. */
810 int (*action)(struct page_state *ps, struct page *p);
811};
812
813/*
814 * Return true if page is still referenced by others, otherwise return
815 * false.
816 *
817 * The extra_pins is true when one extra refcount is expected.
818 */
819static bool has_extra_refcount(struct page_state *ps, struct page *p,
820 bool extra_pins)
821{
822 int count = page_count(p) - 1;
823
824 if (extra_pins)
825 count -= 1;
826
827 if (count > 0) {
828 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
829 page_to_pfn(p), action_page_types[ps->type], count);
830 return true;
831 }
832
833 return false;
834}
835
6a46079c
AK
836/*
837 * Error hit kernel page.
838 * Do nothing, try to be lucky and not touch this instead. For a few cases we
839 * could be more sophisticated.
840 */
dd0f230a 841static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 842{
ea6d0630 843 unlock_page(p);
cc637b17 844 return MF_IGNORED;
6a46079c
AK
845}
846
847/*
848 * Page in unknown state. Do nothing.
849 */
dd0f230a 850static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 851{
dd0f230a 852 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 853 unlock_page(p);
cc637b17 854 return MF_FAILED;
6a46079c
AK
855}
856
6a46079c
AK
857/*
858 * Clean (or cleaned) page cache page.
859 */
dd0f230a 860static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 861{
ea6d0630 862 int ret;
6a46079c 863 struct address_space *mapping;
a7605426 864 bool extra_pins;
6a46079c 865
dc2a1cbf
WF
866 delete_from_lru_cache(p);
867
6a46079c
AK
868 /*
869 * For anonymous pages we're done the only reference left
870 * should be the one m_f() holds.
871 */
ea6d0630
NH
872 if (PageAnon(p)) {
873 ret = MF_RECOVERED;
874 goto out;
875 }
6a46079c
AK
876
877 /*
878 * Now truncate the page in the page cache. This is really
879 * more like a "temporary hole punch"
880 * Don't do this for block devices when someone else
881 * has a reference, because it could be file system metadata
882 * and that's not safe to truncate.
883 */
884 mapping = page_mapping(p);
885 if (!mapping) {
886 /*
887 * Page has been teared down in the meanwhile
888 */
ea6d0630
NH
889 ret = MF_FAILED;
890 goto out;
6a46079c
AK
891 }
892
a7605426
YS
893 /*
894 * The shmem page is kept in page cache instead of truncating
895 * so is expected to have an extra refcount after error-handling.
896 */
897 extra_pins = shmem_mapping(mapping);
898
6a46079c
AK
899 /*
900 * Truncation is a bit tricky. Enable it per file system for now.
901 *
9608703e 902 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 903 */
dd0f230a 904 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
905 if (has_extra_refcount(ps, p, extra_pins))
906 ret = MF_FAILED;
907
ea6d0630
NH
908out:
909 unlock_page(p);
dd0f230a 910
ea6d0630 911 return ret;
6a46079c
AK
912}
913
914/*
549543df 915 * Dirty pagecache page
6a46079c
AK
916 * Issues: when the error hit a hole page the error is not properly
917 * propagated.
918 */
dd0f230a 919static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
920{
921 struct address_space *mapping = page_mapping(p);
922
923 SetPageError(p);
924 /* TBD: print more information about the file. */
925 if (mapping) {
926 /*
927 * IO error will be reported by write(), fsync(), etc.
928 * who check the mapping.
929 * This way the application knows that something went
930 * wrong with its dirty file data.
931 *
932 * There's one open issue:
933 *
934 * The EIO will be only reported on the next IO
935 * operation and then cleared through the IO map.
936 * Normally Linux has two mechanisms to pass IO error
937 * first through the AS_EIO flag in the address space
938 * and then through the PageError flag in the page.
939 * Since we drop pages on memory failure handling the
940 * only mechanism open to use is through AS_AIO.
941 *
942 * This has the disadvantage that it gets cleared on
943 * the first operation that returns an error, while
944 * the PageError bit is more sticky and only cleared
945 * when the page is reread or dropped. If an
946 * application assumes it will always get error on
947 * fsync, but does other operations on the fd before
25985edc 948 * and the page is dropped between then the error
6a46079c
AK
949 * will not be properly reported.
950 *
951 * This can already happen even without hwpoisoned
952 * pages: first on metadata IO errors (which only
953 * report through AS_EIO) or when the page is dropped
954 * at the wrong time.
955 *
956 * So right now we assume that the application DTRT on
957 * the first EIO, but we're not worse than other parts
958 * of the kernel.
959 */
af21bfaf 960 mapping_set_error(mapping, -EIO);
6a46079c
AK
961 }
962
dd0f230a 963 return me_pagecache_clean(ps, p);
6a46079c
AK
964}
965
966/*
967 * Clean and dirty swap cache.
968 *
969 * Dirty swap cache page is tricky to handle. The page could live both in page
970 * cache and swap cache(ie. page is freshly swapped in). So it could be
971 * referenced concurrently by 2 types of PTEs:
972 * normal PTEs and swap PTEs. We try to handle them consistently by calling
973 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
974 * and then
975 * - clear dirty bit to prevent IO
976 * - remove from LRU
977 * - but keep in the swap cache, so that when we return to it on
978 * a later page fault, we know the application is accessing
979 * corrupted data and shall be killed (we installed simple
980 * interception code in do_swap_page to catch it).
981 *
982 * Clean swap cache pages can be directly isolated. A later page fault will
983 * bring in the known good data from disk.
984 */
dd0f230a 985static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 986{
ea6d0630 987 int ret;
dd0f230a 988 bool extra_pins = false;
ea6d0630 989
6a46079c
AK
990 ClearPageDirty(p);
991 /* Trigger EIO in shmem: */
992 ClearPageUptodate(p);
993
ea6d0630
NH
994 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
995 unlock_page(p);
dd0f230a
YS
996
997 if (ret == MF_DELAYED)
998 extra_pins = true;
999
1000 if (has_extra_refcount(ps, p, extra_pins))
1001 ret = MF_FAILED;
1002
ea6d0630 1003 return ret;
6a46079c
AK
1004}
1005
dd0f230a 1006static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1007{
ea6d0630
NH
1008 int ret;
1009
6a46079c 1010 delete_from_swap_cache(p);
e43c3afb 1011
ea6d0630
NH
1012 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1013 unlock_page(p);
dd0f230a
YS
1014
1015 if (has_extra_refcount(ps, p, false))
1016 ret = MF_FAILED;
1017
ea6d0630 1018 return ret;
6a46079c
AK
1019}
1020
1021/*
1022 * Huge pages. Needs work.
1023 * Issues:
93f70f90
NH
1024 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1025 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1026 */
dd0f230a 1027static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1028{
a8b2c2ce 1029 int res;
93f70f90 1030 struct page *hpage = compound_head(p);
78bb9203 1031 struct address_space *mapping;
2491ffee
NH
1032
1033 if (!PageHuge(hpage))
1034 return MF_DELAYED;
1035
78bb9203
NH
1036 mapping = page_mapping(hpage);
1037 if (mapping) {
dd0f230a 1038 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
ea6d0630 1039 unlock_page(hpage);
78bb9203 1040 } else {
a8b2c2ce 1041 res = MF_FAILED;
78bb9203
NH
1042 unlock_page(hpage);
1043 /*
ef526b17
ML
1044 * migration entry prevents later access on error hugepage,
1045 * so we can free and dissolve it into buddy to save healthy
1046 * subpages.
78bb9203 1047 */
ef526b17 1048 put_page(hpage);
510d25c9 1049 if (__page_handle_poison(p)) {
a8b2c2ce
OS
1050 page_ref_inc(p);
1051 res = MF_RECOVERED;
1052 }
93f70f90 1053 }
78bb9203 1054
dd0f230a
YS
1055 if (has_extra_refcount(ps, p, false))
1056 res = MF_FAILED;
1057
78bb9203 1058 return res;
6a46079c
AK
1059}
1060
1061/*
1062 * Various page states we can handle.
1063 *
1064 * A page state is defined by its current page->flags bits.
1065 * The table matches them in order and calls the right handler.
1066 *
1067 * This is quite tricky because we can access page at any time
25985edc 1068 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1069 *
1070 * This is not complete. More states could be added.
1071 * For any missing state don't attempt recovery.
1072 */
1073
1074#define dirty (1UL << PG_dirty)
6326fec1 1075#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1076#define unevict (1UL << PG_unevictable)
1077#define mlock (1UL << PG_mlocked)
6a46079c 1078#define lru (1UL << PG_lru)
6a46079c 1079#define head (1UL << PG_head)
6a46079c 1080#define slab (1UL << PG_slab)
6a46079c
AK
1081#define reserved (1UL << PG_reserved)
1082
dd0f230a 1083static struct page_state error_states[] = {
cc637b17 1084 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1085 /*
1086 * free pages are specially detected outside this table:
1087 * PG_buddy pages only make a small fraction of all free pages.
1088 */
6a46079c
AK
1089
1090 /*
1091 * Could in theory check if slab page is free or if we can drop
1092 * currently unused objects without touching them. But just
1093 * treat it as standard kernel for now.
1094 */
cc637b17 1095 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1096
cc637b17 1097 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1098
cc637b17
XX
1099 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1100 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1101
cc637b17
XX
1102 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1103 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1104
cc637b17
XX
1105 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1106 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1107
cc637b17
XX
1108 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1109 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1110
1111 /*
1112 * Catchall entry: must be at end.
1113 */
cc637b17 1114 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1115};
1116
2326c467
AK
1117#undef dirty
1118#undef sc
1119#undef unevict
1120#undef mlock
2326c467 1121#undef lru
2326c467 1122#undef head
2326c467
AK
1123#undef slab
1124#undef reserved
1125
ff604cf6
NH
1126/*
1127 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1128 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1129 */
cc3e2af4
XX
1130static void action_result(unsigned long pfn, enum mf_action_page_type type,
1131 enum mf_result result)
6a46079c 1132{
97f0b134
XX
1133 trace_memory_failure_event(pfn, type, result);
1134
495367c0 1135 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 1136 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1137}
1138
1139static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1140 unsigned long pfn)
6a46079c
AK
1141{
1142 int result;
1143
ea6d0630 1144 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1145 result = ps->action(ps, p);
7456b040 1146
64d37a2b 1147 action_result(pfn, ps->type, result);
6a46079c
AK
1148
1149 /* Could do more checks here if page looks ok */
1150 /*
1151 * Could adjust zone counters here to correct for the missing page.
1152 */
1153
cc637b17 1154 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1155}
1156
bf181c58
NH
1157static inline bool PageHWPoisonTakenOff(struct page *page)
1158{
1159 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1160}
1161
1162void SetPageHWPoisonTakenOff(struct page *page)
1163{
1164 set_page_private(page, MAGIC_HWPOISON);
1165}
1166
1167void ClearPageHWPoisonTakenOff(struct page *page)
1168{
1169 if (PageHWPoison(page))
1170 set_page_private(page, 0);
1171}
1172
25182f05
NH
1173/*
1174 * Return true if a page type of a given page is supported by hwpoison
1175 * mechanism (while handling could fail), otherwise false. This function
1176 * does not return true for hugetlb or device memory pages, so it's assumed
1177 * to be called only in the context where we never have such pages.
1178 */
bf6445bc 1179static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1180{
3f871370 1181 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1182 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1183 return true;
bf6445bc 1184
3f871370 1185 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1186}
1187
bf6445bc 1188static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a
NH
1189{
1190 struct page *head = compound_head(page);
25182f05
NH
1191 int ret = 0;
1192 bool hugetlb = false;
1193
1194 ret = get_hwpoison_huge_page(head, &hugetlb);
1195 if (hugetlb)
1196 return ret;
1197
1198 /*
1199 * This check prevents from calling get_hwpoison_unless_zero()
1200 * for any unsupported type of page in order to reduce the risk of
1201 * unexpected races caused by taking a page refcount.
1202 */
bf6445bc 1203 if (!HWPoisonHandlable(head, flags))
fcc00621 1204 return -EBUSY;
ead07f6a 1205
c2e7e00b
KK
1206 if (get_page_unless_zero(head)) {
1207 if (head == compound_head(page))
1208 return 1;
1209
495367c0
CY
1210 pr_info("Memory failure: %#lx cannot catch tail\n",
1211 page_to_pfn(page));
c2e7e00b
KK
1212 put_page(head);
1213 }
1214
1215 return 0;
ead07f6a 1216}
ead07f6a 1217
2f714160 1218static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1219{
2f714160
OS
1220 int ret = 0, pass = 0;
1221 bool count_increased = false;
17e395b6 1222
2f714160
OS
1223 if (flags & MF_COUNT_INCREASED)
1224 count_increased = true;
1225
1226try_again:
0ed950d1 1227 if (!count_increased) {
bf6445bc 1228 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1229 if (!ret) {
1230 if (page_count(p)) {
1231 /* We raced with an allocation, retry. */
1232 if (pass++ < 3)
1233 goto try_again;
1234 ret = -EBUSY;
1235 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1236 /* We raced with put_page, retry. */
1237 if (pass++ < 3)
1238 goto try_again;
1239 ret = -EIO;
1240 }
1241 goto out;
1242 } else if (ret == -EBUSY) {
fcc00621
NH
1243 /*
1244 * We raced with (possibly temporary) unhandlable
1245 * page, retry.
1246 */
1247 if (pass++ < 3) {
d0505e9f 1248 shake_page(p);
2f714160 1249 goto try_again;
fcc00621
NH
1250 }
1251 ret = -EIO;
0ed950d1 1252 goto out;
2f714160 1253 }
0ed950d1
NH
1254 }
1255
bf6445bc 1256 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1257 ret = 1;
2f714160 1258 } else {
0ed950d1
NH
1259 /*
1260 * A page we cannot handle. Check whether we can turn
1261 * it into something we can handle.
1262 */
1263 if (pass++ < 3) {
2f714160 1264 put_page(p);
d0505e9f 1265 shake_page(p);
0ed950d1
NH
1266 count_increased = false;
1267 goto try_again;
2f714160 1268 }
0ed950d1
NH
1269 put_page(p);
1270 ret = -EIO;
17e395b6 1271 }
0ed950d1 1272out:
941ca063
YS
1273 if (ret == -EIO)
1274 dump_page(p, "hwpoison: unhandlable page");
1275
17e395b6
OS
1276 return ret;
1277}
1278
bf181c58
NH
1279static int __get_unpoison_page(struct page *page)
1280{
1281 struct page *head = compound_head(page);
1282 int ret = 0;
1283 bool hugetlb = false;
1284
1285 ret = get_hwpoison_huge_page(head, &hugetlb);
1286 if (hugetlb)
1287 return ret;
1288
1289 /*
1290 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1291 * but also isolated from buddy freelist, so need to identify the
1292 * state and have to cancel both operations to unpoison.
1293 */
1294 if (PageHWPoisonTakenOff(page))
1295 return -EHWPOISON;
1296
1297 return get_page_unless_zero(page) ? 1 : 0;
1298}
1299
0ed950d1
NH
1300/**
1301 * get_hwpoison_page() - Get refcount for memory error handling
1302 * @p: Raw error page (hit by memory error)
1303 * @flags: Flags controlling behavior of error handling
1304 *
1305 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1306 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1307 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1308 * such as LRU page and hugetlb page).
1309 *
1310 * Memory error handling could be triggered at any time on any type of page,
1311 * so it's prone to race with typical memory management lifecycle (like
1312 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1313 * extra care for the error page's state (as done in __get_hwpoison_page()),
1314 * and has some retry logic in get_any_page().
1315 *
bf181c58
NH
1316 * When called from unpoison_memory(), the caller should already ensure that
1317 * the given page has PG_hwpoison. So it's never reused for other page
1318 * allocations, and __get_unpoison_page() never races with them.
1319 *
0ed950d1
NH
1320 * Return: 0 on failure,
1321 * 1 on success for in-use pages in a well-defined state,
1322 * -EIO for pages on which we can not handle memory errors,
1323 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1324 * operations like allocation and free,
1325 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1326 */
1327static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1328{
1329 int ret;
1330
1331 zone_pcp_disable(page_zone(p));
bf181c58
NH
1332 if (flags & MF_UNPOISON)
1333 ret = __get_unpoison_page(p);
1334 else
1335 ret = get_any_page(p, flags);
2f714160
OS
1336 zone_pcp_enable(page_zone(p));
1337
1338 return ret;
1339}
1340
6a46079c
AK
1341/*
1342 * Do all that is necessary to remove user space mappings. Unmap
1343 * the pages and send SIGBUS to the processes if the data was dirty.
1344 */
666e5a40 1345static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1346 int flags, struct page *hpage)
6a46079c 1347{
869f7ee6 1348 struct folio *folio = page_folio(hpage);
36af6737 1349 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1350 struct address_space *mapping;
1351 LIST_HEAD(tokill);
1fb08ac6 1352 bool unmap_success;
6751ed65 1353 int kill = 1, forcekill;
286c469a 1354 bool mlocked = PageMlocked(hpage);
6a46079c 1355
93a9eb39
NH
1356 /*
1357 * Here we are interested only in user-mapped pages, so skip any
1358 * other types of pages.
1359 */
1360 if (PageReserved(p) || PageSlab(p))
666e5a40 1361 return true;
93a9eb39 1362 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1363 return true;
6a46079c 1364
6a46079c
AK
1365 /*
1366 * This check implies we don't kill processes if their pages
1367 * are in the swap cache early. Those are always late kills.
1368 */
7af446a8 1369 if (!page_mapped(hpage))
666e5a40 1370 return true;
1668bfd5 1371
52089b14 1372 if (PageKsm(p)) {
495367c0 1373 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 1374 return false;
52089b14 1375 }
6a46079c
AK
1376
1377 if (PageSwapCache(p)) {
495367c0
CY
1378 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1379 pfn);
6a46079c
AK
1380 ttu |= TTU_IGNORE_HWPOISON;
1381 }
1382
1383 /*
1384 * Propagate the dirty bit from PTEs to struct page first, because we
1385 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1386 * XXX: the dirty test could be racy: set_page_dirty() may not always
1387 * be called inside page lock (it's recommended but not enforced).
6a46079c 1388 */
7af446a8 1389 mapping = page_mapping(hpage);
6751ed65 1390 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1391 mapping_can_writeback(mapping)) {
7af446a8
NH
1392 if (page_mkclean(hpage)) {
1393 SetPageDirty(hpage);
6a46079c
AK
1394 } else {
1395 kill = 0;
1396 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1397 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1398 pfn);
1399 }
1400 }
1401
1402 /*
1403 * First collect all the processes that have the page
1404 * mapped in dirty form. This has to be done before try_to_unmap,
1405 * because ttu takes the rmap data structures down.
1406 *
1407 * Error handling: We ignore errors here because
1408 * there's nothing that can be done.
1409 */
1410 if (kill)
415c64c1 1411 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1412
357670f7
ML
1413 if (PageHuge(hpage) && !PageAnon(hpage)) {
1414 /*
1415 * For hugetlb pages in shared mappings, try_to_unmap
1416 * could potentially call huge_pmd_unshare. Because of
1417 * this, take semaphore in write mode here and set
1418 * TTU_RMAP_LOCKED to indicate we have taken the lock
1419 * at this higher level.
1420 */
1421 mapping = hugetlb_page_mapping_lock_write(hpage);
1422 if (mapping) {
9030fb0b 1423 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1424 i_mmap_unlock_write(mapping);
1425 } else
1426 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1427 } else {
9030fb0b 1428 try_to_unmap(folio, ttu);
c0d0381a 1429 }
1fb08ac6
YS
1430
1431 unmap_success = !page_mapped(hpage);
666e5a40 1432 if (!unmap_success)
495367c0 1433 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1434 pfn, page_mapcount(hpage));
a6d30ddd 1435
286c469a
NH
1436 /*
1437 * try_to_unmap() might put mlocked page in lru cache, so call
1438 * shake_page() again to ensure that it's flushed.
1439 */
1440 if (mlocked)
d0505e9f 1441 shake_page(hpage);
286c469a 1442
6a46079c
AK
1443 /*
1444 * Now that the dirty bit has been propagated to the
1445 * struct page and all unmaps done we can decide if
1446 * killing is needed or not. Only kill when the page
6751ed65
TL
1447 * was dirty or the process is not restartable,
1448 * otherwise the tokill list is merely
6a46079c
AK
1449 * freed. When there was a problem unmapping earlier
1450 * use a more force-full uncatchable kill to prevent
1451 * any accesses to the poisoned memory.
1452 */
415c64c1 1453 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1454 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1455
666e5a40 1456 return unmap_success;
6a46079c
AK
1457}
1458
0348d2eb
NH
1459static int identify_page_state(unsigned long pfn, struct page *p,
1460 unsigned long page_flags)
761ad8d7
NH
1461{
1462 struct page_state *ps;
0348d2eb
NH
1463
1464 /*
1465 * The first check uses the current page flags which may not have any
1466 * relevant information. The second check with the saved page flags is
1467 * carried out only if the first check can't determine the page status.
1468 */
1469 for (ps = error_states;; ps++)
1470 if ((p->flags & ps->mask) == ps->res)
1471 break;
1472
1473 page_flags |= (p->flags & (1UL << PG_dirty));
1474
1475 if (!ps->mask)
1476 for (ps = error_states;; ps++)
1477 if ((page_flags & ps->mask) == ps->res)
1478 break;
1479 return page_action(ps, p, pfn);
1480}
1481
694bf0b0
OS
1482static int try_to_split_thp_page(struct page *page, const char *msg)
1483{
1484 lock_page(page);
4966455d 1485 if (unlikely(split_huge_page(page))) {
694bf0b0
OS
1486 unsigned long pfn = page_to_pfn(page);
1487
1488 unlock_page(page);
4966455d 1489 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
694bf0b0
OS
1490 put_page(page);
1491 return -EBUSY;
1492 }
1493 unlock_page(page);
1494
1495 return 0;
1496}
1497
405ce051
NH
1498/*
1499 * Called from hugetlb code with hugetlb_lock held.
1500 *
1501 * Return values:
1502 * 0 - free hugepage
1503 * 1 - in-use hugepage
1504 * 2 - not a hugepage
1505 * -EBUSY - the hugepage is busy (try to retry)
1506 * -EHWPOISON - the hugepage is already hwpoisoned
1507 */
1508int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1509{
1510 struct page *page = pfn_to_page(pfn);
1511 struct page *head = compound_head(page);
1512 int ret = 2; /* fallback to normal page handling */
1513 bool count_increased = false;
1514
1515 if (!PageHeadHuge(head))
1516 goto out;
1517
1518 if (flags & MF_COUNT_INCREASED) {
1519 ret = 1;
1520 count_increased = true;
b283d983
NH
1521 } else if (HPageFreed(head)) {
1522 ret = 0;
1523 } else if (HPageMigratable(head)) {
405ce051
NH
1524 ret = get_page_unless_zero(head);
1525 if (ret)
1526 count_increased = true;
1527 } else {
1528 ret = -EBUSY;
1529 goto out;
1530 }
1531
1532 if (TestSetPageHWPoison(head)) {
1533 ret = -EHWPOISON;
1534 goto out;
1535 }
1536
1537 return ret;
1538out:
1539 if (count_increased)
1540 put_page(head);
1541 return ret;
1542}
1543
1544#ifdef CONFIG_HUGETLB_PAGE
1545/*
1546 * Taking refcount of hugetlb pages needs extra care about race conditions
1547 * with basic operations like hugepage allocation/free/demotion.
1548 * So some of prechecks for hwpoison (pinning, and testing/setting
1549 * PageHWPoison) should be done in single hugetlb_lock range.
1550 */
1551static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1552{
761ad8d7 1553 int res;
405ce051
NH
1554 struct page *p = pfn_to_page(pfn);
1555 struct page *head;
761ad8d7 1556 unsigned long page_flags;
405ce051 1557 bool retry = true;
761ad8d7 1558
405ce051
NH
1559 *hugetlb = 1;
1560retry:
1561 res = get_huge_page_for_hwpoison(pfn, flags);
1562 if (res == 2) { /* fallback to normal page handling */
1563 *hugetlb = 0;
1564 return 0;
1565 } else if (res == -EHWPOISON) {
1566 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1567 if (flags & MF_ACTION_REQUIRED) {
1568 head = compound_head(p);
a3f5d80e 1569 res = kill_accessing_process(current, page_to_pfn(head), flags);
405ce051
NH
1570 }
1571 return res;
1572 } else if (res == -EBUSY) {
1573 if (retry) {
1574 retry = false;
1575 goto retry;
1576 }
1577 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
a3f5d80e 1578 return res;
761ad8d7
NH
1579 }
1580
405ce051
NH
1581 head = compound_head(p);
1582 lock_page(head);
1583
1584 if (hwpoison_filter(p)) {
1585 ClearPageHWPoison(head);
1586 res = -EOPNOTSUPP;
1587 goto out;
1588 }
1589
761ad8d7
NH
1590 num_poisoned_pages_inc();
1591
405ce051
NH
1592 /*
1593 * Handling free hugepage. The possible race with hugepage allocation
1594 * or demotion can be prevented by PageHWPoison flag.
1595 */
1596 if (res == 0) {
1597 unlock_page(head);
1598 res = MF_FAILED;
1599 if (__page_handle_poison(p)) {
1600 page_ref_inc(p);
1601 res = MF_RECOVERED;
761ad8d7 1602 }
405ce051
NH
1603 action_result(pfn, MF_MSG_FREE_HUGE, res);
1604 return res == MF_RECOVERED ? 0 : -EBUSY;
761ad8d7
NH
1605 }
1606
761ad8d7
NH
1607 page_flags = head->flags;
1608
31286a84
NH
1609 /*
1610 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1611 * simply disable it. In order to make it work properly, we need
1612 * make sure that:
1613 * - conversion of a pud that maps an error hugetlb into hwpoison
1614 * entry properly works, and
1615 * - other mm code walking over page table is aware of pud-aligned
1616 * hwpoison entries.
1617 */
1618 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1619 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1620 res = -EBUSY;
1621 goto out;
1622 }
1623
ed8c2f49 1624 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1625 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1626 res = -EBUSY;
1627 goto out;
1628 }
1629
ea6d0630 1630 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1631out:
1632 unlock_page(head);
1633 return res;
1634}
405ce051
NH
1635#else
1636static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1637{
1638 return 0;
1639}
1640#endif
761ad8d7 1641
6100e34b
DW
1642static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1643 struct dev_pagemap *pgmap)
1644{
1645 struct page *page = pfn_to_page(pfn);
6100e34b
DW
1646 unsigned long size = 0;
1647 struct to_kill *tk;
1648 LIST_HEAD(tokill);
1649 int rc = -EBUSY;
1650 loff_t start;
27359fd6 1651 dax_entry_t cookie;
6100e34b 1652
1e8aaedb
OS
1653 if (flags & MF_COUNT_INCREASED)
1654 /*
1655 * Drop the extra refcount in case we come from madvise().
1656 */
1657 put_page(page);
1658
34dc45be
DW
1659 /* device metadata space is not recoverable */
1660 if (!pgmap_pfn_valid(pgmap, pfn)) {
1661 rc = -ENXIO;
1662 goto out;
1663 }
1664
61e28cf0
JM
1665 /*
1666 * Pages instantiated by device-dax (not filesystem-dax)
1667 * may be compound pages.
1668 */
1669 page = compound_head(page);
1670
6100e34b
DW
1671 /*
1672 * Prevent the inode from being freed while we are interrogating
1673 * the address_space, typically this would be handled by
1674 * lock_page(), but dax pages do not use the page lock. This
1675 * also prevents changes to the mapping of this pfn until
1676 * poison signaling is complete.
1677 */
27359fd6
MW
1678 cookie = dax_lock_page(page);
1679 if (!cookie)
6100e34b
DW
1680 goto out;
1681
1682 if (hwpoison_filter(page)) {
d1fe111f 1683 rc = -EOPNOTSUPP;
6100e34b
DW
1684 goto unlock;
1685 }
1686
25b2995a 1687 if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
6100e34b
DW
1688 /*
1689 * TODO: Handle HMM pages which may need coordination
1690 * with device-side memory.
1691 */
1692 goto unlock;
6100e34b
DW
1693 }
1694
1695 /*
1696 * Use this flag as an indication that the dax page has been
1697 * remapped UC to prevent speculative consumption of poison.
1698 */
1699 SetPageHWPoison(page);
1700
1701 /*
1702 * Unlike System-RAM there is no possibility to swap in a
1703 * different physical page at a given virtual address, so all
1704 * userspace consumption of ZONE_DEVICE memory necessitates
1705 * SIGBUS (i.e. MF_MUST_KILL)
1706 */
1707 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
577553f4 1708 collect_procs(page, &tokill, true);
6100e34b
DW
1709
1710 list_for_each_entry(tk, &tokill, nd)
1711 if (tk->size_shift)
1712 size = max(size, 1UL << tk->size_shift);
1713 if (size) {
1714 /*
1715 * Unmap the largest mapping to avoid breaking up
1716 * device-dax mappings which are constant size. The
1717 * actual size of the mapping being torn down is
1718 * communicated in siginfo, see kill_proc()
1719 */
1720 start = (page->index << PAGE_SHIFT) & ~(size - 1);
4d75136b 1721 unmap_mapping_range(page->mapping, start, size, 0);
6100e34b 1722 }
577553f4 1723 kill_procs(&tokill, true, false, pfn, flags);
6100e34b
DW
1724 rc = 0;
1725unlock:
27359fd6 1726 dax_unlock_page(page, cookie);
6100e34b
DW
1727out:
1728 /* drop pgmap ref acquired in caller */
1729 put_dev_pagemap(pgmap);
1730 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1731 return rc;
1732}
1733
91d00547
NH
1734static DEFINE_MUTEX(mf_mutex);
1735
cd42f4a3
TL
1736/**
1737 * memory_failure - Handle memory failure of a page.
1738 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1739 * @flags: fine tune action taken
1740 *
1741 * This function is called by the low level machine check code
1742 * of an architecture when it detects hardware memory corruption
1743 * of a page. It tries its best to recover, which includes
1744 * dropping pages, killing processes etc.
1745 *
1746 * The function is primarily of use for corruptions that
1747 * happen outside the current execution context (e.g. when
1748 * detected by a background scrubber)
1749 *
1750 * Must run in process context (e.g. a work queue) with interrupts
1751 * enabled and no spinlocks hold.
d1fe111f 1752 *
1753 * Return: 0 for successfully handled the memory error,
1754 * -EOPNOTSUPP for memory_filter() filtered the error event,
1755 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 1756 */
83b57531 1757int memory_failure(unsigned long pfn, int flags)
6a46079c 1758{
6a46079c 1759 struct page *p;
7af446a8 1760 struct page *hpage;
6100e34b 1761 struct dev_pagemap *pgmap;
171936dd 1762 int res = 0;
524fca1e 1763 unsigned long page_flags;
a8b2c2ce 1764 bool retry = true;
405ce051 1765 int hugetlb = 0;
6a46079c
AK
1766
1767 if (!sysctl_memory_failure_recovery)
83b57531 1768 panic("Memory failure on page %lx", pfn);
6a46079c 1769
03b122da
TL
1770 mutex_lock(&mf_mutex);
1771
96c804a6
DH
1772 p = pfn_to_online_page(pfn);
1773 if (!p) {
03b122da
TL
1774 res = arch_memory_failure(pfn, flags);
1775 if (res == 0)
1776 goto unlock_mutex;
1777
96c804a6
DH
1778 if (pfn_valid(pfn)) {
1779 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
1780 if (pgmap) {
1781 res = memory_failure_dev_pagemap(pfn, flags,
1782 pgmap);
1783 goto unlock_mutex;
1784 }
96c804a6 1785 }
495367c0
CY
1786 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1787 pfn);
03b122da
TL
1788 res = -ENXIO;
1789 goto unlock_mutex;
6a46079c
AK
1790 }
1791
a8b2c2ce 1792try_again:
405ce051
NH
1793 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1794 if (hugetlb)
171936dd 1795 goto unlock_mutex;
171936dd 1796
6a46079c 1797 if (TestSetPageHWPoison(p)) {
495367c0
CY
1798 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1799 pfn);
47af12ba 1800 res = -EHWPOISON;
a3f5d80e
NH
1801 if (flags & MF_ACTION_REQUIRED)
1802 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
1803 if (flags & MF_COUNT_INCREASED)
1804 put_page(p);
171936dd 1805 goto unlock_mutex;
6a46079c
AK
1806 }
1807
75ee64b3 1808 hpage = compound_head(p);
b37ff71c 1809 num_poisoned_pages_inc();
6a46079c
AK
1810
1811 /*
1812 * We need/can do nothing about count=0 pages.
1813 * 1) it's a free page, and therefore in safe hand:
1814 * prep_new_page() will be the gate keeper.
761ad8d7 1815 * 2) it's part of a non-compound high order page.
6a46079c
AK
1816 * Implies some kernel user: cannot stop them from
1817 * R/W the page; let's pray that the page has been
1818 * used and will be freed some time later.
1819 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1820 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1821 */
0ed950d1
NH
1822 if (!(flags & MF_COUNT_INCREASED)) {
1823 res = get_hwpoison_page(p, flags);
1824 if (!res) {
1825 if (is_free_buddy_page(p)) {
1826 if (take_page_off_buddy(p)) {
1827 page_ref_inc(p);
1828 res = MF_RECOVERED;
1829 } else {
1830 /* We lost the race, try again */
1831 if (retry) {
1832 ClearPageHWPoison(p);
1833 num_poisoned_pages_dec();
1834 retry = false;
1835 goto try_again;
1836 }
1837 res = MF_FAILED;
a8b2c2ce 1838 }
0ed950d1
NH
1839 action_result(pfn, MF_MSG_BUDDY, res);
1840 res = res == MF_RECOVERED ? 0 : -EBUSY;
1841 } else {
1842 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1843 res = -EBUSY;
a8b2c2ce 1844 }
0ed950d1
NH
1845 goto unlock_mutex;
1846 } else if (res < 0) {
1847 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 1848 res = -EBUSY;
0ed950d1 1849 goto unlock_mutex;
8d22ba1b 1850 }
6a46079c
AK
1851 }
1852
761ad8d7 1853 if (PageTransHuge(hpage)) {
d173d541
XY
1854 /*
1855 * Bail out before SetPageHasHWPoisoned() if hpage is
1856 * huge_zero_page, although PG_has_hwpoisoned is not
1857 * checked in set_huge_zero_page().
1858 *
1859 * TODO: Handle memory failure of huge_zero_page thoroughly.
1860 */
1861 if (is_huge_zero_page(hpage)) {
1862 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1863 res = -EBUSY;
1864 goto unlock_mutex;
1865 }
1866
eac96c3e
YS
1867 /*
1868 * The flag must be set after the refcount is bumped
1869 * otherwise it may race with THP split.
1870 * And the flag can't be set in get_hwpoison_page() since
1871 * it is called by soft offline too and it is just called
1872 * for !MF_COUNT_INCREASE. So here seems to be the best
1873 * place.
1874 *
1875 * Don't need care about the above error handling paths for
1876 * get_hwpoison_page() since they handle either free page
1877 * or unhandlable page. The refcount is bumped iff the
1878 * page is a valid handlable page.
1879 */
1880 SetPageHasHWPoisoned(hpage);
5d1fd5dc
NH
1881 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1882 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1883 res = -EBUSY;
1884 goto unlock_mutex;
5d1fd5dc 1885 }
415c64c1 1886 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1887 }
1888
e43c3afb
WF
1889 /*
1890 * We ignore non-LRU pages for good reasons.
1891 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1892 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1893 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1894 * The check (unnecessarily) ignores LRU pages being isolated and
1895 * walked by the page reclaim code, however that's not a big loss.
1896 */
d0505e9f 1897 shake_page(p);
e43c3afb 1898
761ad8d7 1899 lock_page(p);
847ce401 1900
f37d4298 1901 /*
75ee64b3
ML
1902 * We're only intended to deal with the non-Compound page here.
1903 * However, the page could have changed compound pages due to
1904 * race window. If this happens, we could try again to hopefully
1905 * handle the page next round.
f37d4298 1906 */
75ee64b3
ML
1907 if (PageCompound(p)) {
1908 if (retry) {
1909 if (TestClearPageHWPoison(p))
1910 num_poisoned_pages_dec();
1911 unlock_page(p);
1912 put_page(p);
1913 flags &= ~MF_COUNT_INCREASED;
1914 retry = false;
1915 goto try_again;
1916 }
cc637b17 1917 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 1918 res = -EBUSY;
171936dd 1919 goto unlock_page;
f37d4298
AK
1920 }
1921
524fca1e
NH
1922 /*
1923 * We use page flags to determine what action should be taken, but
1924 * the flags can be modified by the error containment action. One
1925 * example is an mlocked page, where PG_mlocked is cleared by
1926 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1927 * correctly, we save a copy of the page flags at this time.
1928 */
7d9d46ac 1929 page_flags = p->flags;
524fca1e 1930
7c116f2b
WF
1931 if (hwpoison_filter(p)) {
1932 if (TestClearPageHWPoison(p))
b37ff71c 1933 num_poisoned_pages_dec();
761ad8d7 1934 unlock_page(p);
dd6e2402 1935 put_page(p);
d1fe111f 1936 res = -EOPNOTSUPP;
171936dd 1937 goto unlock_mutex;
7c116f2b 1938 }
847ce401 1939
e8675d29 1940 /*
1941 * __munlock_pagevec may clear a writeback page's LRU flag without
1942 * page_lock. We need wait writeback completion for this page or it
1943 * may trigger vfs BUG while evict inode.
1944 */
b04d3eeb 1945 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
1946 goto identify_page_state;
1947
6edd6cc6
NH
1948 /*
1949 * It's very difficult to mess with pages currently under IO
1950 * and in many cases impossible, so we just avoid it here.
1951 */
6a46079c
AK
1952 wait_on_page_writeback(p);
1953
1954 /*
1955 * Now take care of user space mappings.
e64a782f 1956 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
6a46079c 1957 */
ed8c2f49 1958 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 1959 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 1960 res = -EBUSY;
171936dd 1961 goto unlock_page;
1668bfd5 1962 }
6a46079c
AK
1963
1964 /*
1965 * Torn down by someone else?
1966 */
dc2a1cbf 1967 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1968 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1969 res = -EBUSY;
171936dd 1970 goto unlock_page;
6a46079c
AK
1971 }
1972
0bc1f8b0 1973identify_page_state:
0348d2eb 1974 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
1975 mutex_unlock(&mf_mutex);
1976 return res;
171936dd 1977unlock_page:
761ad8d7 1978 unlock_page(p);
171936dd
TL
1979unlock_mutex:
1980 mutex_unlock(&mf_mutex);
6a46079c
AK
1981 return res;
1982}
cd42f4a3 1983EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1984
ea8f5fb8
HY
1985#define MEMORY_FAILURE_FIFO_ORDER 4
1986#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1987
1988struct memory_failure_entry {
1989 unsigned long pfn;
ea8f5fb8
HY
1990 int flags;
1991};
1992
1993struct memory_failure_cpu {
1994 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1995 MEMORY_FAILURE_FIFO_SIZE);
1996 spinlock_t lock;
1997 struct work_struct work;
1998};
1999
2000static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2001
2002/**
2003 * memory_failure_queue - Schedule handling memory failure of a page.
2004 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2005 * @flags: Flags for memory failure handling
2006 *
2007 * This function is called by the low level hardware error handler
2008 * when it detects hardware memory corruption of a page. It schedules
2009 * the recovering of error page, including dropping pages, killing
2010 * processes etc.
2011 *
2012 * The function is primarily of use for corruptions that
2013 * happen outside the current execution context (e.g. when
2014 * detected by a background scrubber)
2015 *
2016 * Can run in IRQ context.
2017 */
83b57531 2018void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2019{
2020 struct memory_failure_cpu *mf_cpu;
2021 unsigned long proc_flags;
2022 struct memory_failure_entry entry = {
2023 .pfn = pfn,
ea8f5fb8
HY
2024 .flags = flags,
2025 };
2026
2027 mf_cpu = &get_cpu_var(memory_failure_cpu);
2028 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2029 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2030 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2031 else
8e33a52f 2032 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2033 pfn);
2034 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2035 put_cpu_var(memory_failure_cpu);
2036}
2037EXPORT_SYMBOL_GPL(memory_failure_queue);
2038
2039static void memory_failure_work_func(struct work_struct *work)
2040{
2041 struct memory_failure_cpu *mf_cpu;
2042 struct memory_failure_entry entry = { 0, };
2043 unsigned long proc_flags;
2044 int gotten;
2045
06202231 2046 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2047 for (;;) {
2048 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2049 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2050 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2051 if (!gotten)
2052 break;
cf870c70 2053 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2054 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2055 else
83b57531 2056 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2057 }
2058}
2059
06202231
JM
2060/*
2061 * Process memory_failure work queued on the specified CPU.
2062 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2063 */
2064void memory_failure_queue_kick(int cpu)
2065{
2066 struct memory_failure_cpu *mf_cpu;
2067
2068 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2069 cancel_work_sync(&mf_cpu->work);
2070 memory_failure_work_func(&mf_cpu->work);
2071}
2072
ea8f5fb8
HY
2073static int __init memory_failure_init(void)
2074{
2075 struct memory_failure_cpu *mf_cpu;
2076 int cpu;
2077
2078 for_each_possible_cpu(cpu) {
2079 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2080 spin_lock_init(&mf_cpu->lock);
2081 INIT_KFIFO(mf_cpu->fifo);
2082 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2083 }
2084
2085 return 0;
2086}
2087core_initcall(memory_failure_init);
2088
a5f65109
NH
2089#define unpoison_pr_info(fmt, pfn, rs) \
2090({ \
2091 if (__ratelimit(rs)) \
2092 pr_info(fmt, pfn); \
2093})
2094
bf181c58
NH
2095static inline int clear_page_hwpoison(struct ratelimit_state *rs, struct page *p)
2096{
2097 if (TestClearPageHWPoison(p)) {
2098 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2099 page_to_pfn(p), rs);
2100 num_poisoned_pages_dec();
2101 return 1;
2102 }
2103 return 0;
2104}
2105
2106static inline int unpoison_taken_off_page(struct ratelimit_state *rs,
2107 struct page *p)
2108{
2109 if (put_page_back_buddy(p)) {
2110 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2111 page_to_pfn(p), rs);
2112 return 0;
2113 }
2114 return -EBUSY;
2115}
2116
847ce401
WF
2117/**
2118 * unpoison_memory - Unpoison a previously poisoned page
2119 * @pfn: Page number of the to be unpoisoned page
2120 *
2121 * Software-unpoison a page that has been poisoned by
2122 * memory_failure() earlier.
2123 *
2124 * This is only done on the software-level, so it only works
2125 * for linux injected failures, not real hardware failures
2126 *
2127 * Returns 0 for success, otherwise -errno.
2128 */
2129int unpoison_memory(unsigned long pfn)
2130{
2131 struct page *page;
2132 struct page *p;
bf181c58 2133 int ret = -EBUSY;
a5f65109
NH
2134 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2135 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2136
2137 if (!pfn_valid(pfn))
2138 return -ENXIO;
2139
2140 p = pfn_to_page(pfn);
2141 page = compound_head(p);
2142
91d00547
NH
2143 mutex_lock(&mf_mutex);
2144
847ce401 2145 if (!PageHWPoison(p)) {
495367c0 2146 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2147 pfn, &unpoison_rs);
91d00547 2148 goto unlock_mutex;
847ce401
WF
2149 }
2150
230ac719 2151 if (page_count(page) > 1) {
495367c0 2152 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2153 pfn, &unpoison_rs);
91d00547 2154 goto unlock_mutex;
230ac719
NH
2155 }
2156
2157 if (page_mapped(page)) {
495367c0 2158 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2159 pfn, &unpoison_rs);
91d00547 2160 goto unlock_mutex;
230ac719
NH
2161 }
2162
2163 if (page_mapping(page)) {
495367c0 2164 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2165 pfn, &unpoison_rs);
91d00547 2166 goto unlock_mutex;
0cea3fdc
WL
2167 }
2168
bf181c58 2169 if (PageSlab(page) || PageTable(page))
91d00547 2170 goto unlock_mutex;
847ce401 2171
bf181c58
NH
2172 ret = get_hwpoison_page(p, MF_UNPOISON);
2173 if (!ret) {
2174 if (clear_page_hwpoison(&unpoison_rs, page))
2175 ret = 0;
2176 else
2177 ret = -EBUSY;
2178 } else if (ret < 0) {
2179 if (ret == -EHWPOISON) {
2180 ret = unpoison_taken_off_page(&unpoison_rs, p);
2181 } else
2182 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2183 pfn, &unpoison_rs);
2184 } else {
2185 int freeit = clear_page_hwpoison(&unpoison_rs, p);
847ce401 2186
dd6e2402 2187 put_page(page);
bf181c58
NH
2188 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2189 put_page(page);
2190 ret = 0;
2191 }
2192 }
847ce401 2193
91d00547
NH
2194unlock_mutex:
2195 mutex_unlock(&mf_mutex);
2196 return ret;
847ce401
WF
2197}
2198EXPORT_SYMBOL(unpoison_memory);
facb6011 2199
6b9a217e 2200static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2201{
6b9a217e
OS
2202 bool isolated = false;
2203 bool lru = PageLRU(page);
d950b958 2204
6b9a217e
OS
2205 if (PageHuge(page)) {
2206 isolated = isolate_huge_page(page, pagelist);
2207 } else {
2208 if (lru)
2209 isolated = !isolate_lru_page(page);
2210 else
2211 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2212
2213 if (isolated)
2214 list_add(&page->lru, pagelist);
0ebff32c 2215 }
d950b958 2216
6b9a217e
OS
2217 if (isolated && lru)
2218 inc_node_page_state(page, NR_ISOLATED_ANON +
2219 page_is_file_lru(page));
2220
03613808 2221 /*
6b9a217e
OS
2222 * If we succeed to isolate the page, we grabbed another refcount on
2223 * the page, so we can safely drop the one we got from get_any_pages().
2224 * If we failed to isolate the page, it means that we cannot go further
2225 * and we will return an error, so drop the reference we got from
2226 * get_any_pages() as well.
03613808 2227 */
6b9a217e
OS
2228 put_page(page);
2229 return isolated;
d950b958
NH
2230}
2231
6b9a217e
OS
2232/*
2233 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2234 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2235 * If the page is mapped, it migrates the contents over.
2236 */
2237static int __soft_offline_page(struct page *page)
af8fae7c 2238{
d6c75dc2 2239 long ret = 0;
af8fae7c 2240 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2241 struct page *hpage = compound_head(page);
2242 char const *msg_page[] = {"page", "hugepage"};
2243 bool huge = PageHuge(page);
2244 LIST_HEAD(pagelist);
54608759
JK
2245 struct migration_target_control mtc = {
2246 .nid = NUMA_NO_NODE,
2247 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2248 };
facb6011 2249
0ebff32c 2250 lock_page(page);
6b9a217e
OS
2251 if (!PageHuge(page))
2252 wait_on_page_writeback(page);
af8fae7c
NH
2253 if (PageHWPoison(page)) {
2254 unlock_page(page);
dd6e2402 2255 put_page(page);
af8fae7c 2256 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2257 return 0;
af8fae7c 2258 }
6b9a217e 2259
593396b8 2260 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2261 /*
2262 * Try to invalidate first. This should work for
2263 * non dirty unmapped page cache pages.
2264 */
2265 ret = invalidate_inode_page(page);
facb6011 2266 unlock_page(page);
6b9a217e 2267
6b9a217e 2268 if (ret) {
fb46e735 2269 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2270 page_handle_poison(page, false, true);
af8fae7c 2271 return 0;
facb6011
AK
2272 }
2273
6b9a217e 2274 if (isolate_page(hpage, &pagelist)) {
54608759 2275 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2276 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2277 if (!ret) {
6b9a217e
OS
2278 bool release = !huge;
2279
2280 if (!page_handle_poison(page, huge, release))
2281 ret = -EBUSY;
79f5f8fa 2282 } else {
85fbe5d1
YX
2283 if (!list_empty(&pagelist))
2284 putback_movable_pages(&pagelist);
59c82b70 2285
d6c75dc2 2286 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2287 pfn, msg_page[huge], ret, &page->flags);
facb6011 2288 if (ret > 0)
3f4b815a 2289 ret = -EBUSY;
facb6011
AK
2290 }
2291 } else {
23efd080
MWO
2292 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2293 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2294 ret = -EBUSY;
facb6011 2295 }
facb6011
AK
2296 return ret;
2297}
86e05773 2298
6b9a217e 2299static int soft_offline_in_use_page(struct page *page)
acc14dc4 2300{
acc14dc4
NH
2301 struct page *hpage = compound_head(page);
2302
694bf0b0
OS
2303 if (!PageHuge(page) && PageTransHuge(hpage))
2304 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2305 return -EBUSY;
6b9a217e 2306 return __soft_offline_page(page);
acc14dc4
NH
2307}
2308
d4ae9916 2309static int soft_offline_free_page(struct page *page)
acc14dc4 2310{
6b9a217e 2311 int rc = 0;
acc14dc4 2312
6b9a217e
OS
2313 if (!page_handle_poison(page, true, false))
2314 rc = -EBUSY;
06be6ff3 2315
d4ae9916 2316 return rc;
acc14dc4
NH
2317}
2318
dad4e5b3
DW
2319static void put_ref_page(struct page *page)
2320{
2321 if (page)
2322 put_page(page);
2323}
2324
86e05773
WL
2325/**
2326 * soft_offline_page - Soft offline a page.
feec24a6 2327 * @pfn: pfn to soft-offline
86e05773
WL
2328 * @flags: flags. Same as memory_failure().
2329 *
2330 * Returns 0 on success, otherwise negated errno.
2331 *
2332 * Soft offline a page, by migration or invalidation,
2333 * without killing anything. This is for the case when
2334 * a page is not corrupted yet (so it's still valid to access),
2335 * but has had a number of corrected errors and is better taken
2336 * out.
2337 *
2338 * The actual policy on when to do that is maintained by
2339 * user space.
2340 *
2341 * This should never impact any application or cause data loss,
2342 * however it might take some time.
2343 *
2344 * This is not a 100% solution for all memory, but tries to be
2345 * ``good enough'' for the majority of memory.
2346 */
feec24a6 2347int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2348{
2349 int ret;
b94e0282 2350 bool try_again = true;
dad4e5b3
DW
2351 struct page *page, *ref_page = NULL;
2352
2353 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2354
feec24a6
NH
2355 if (!pfn_valid(pfn))
2356 return -ENXIO;
dad4e5b3
DW
2357 if (flags & MF_COUNT_INCREASED)
2358 ref_page = pfn_to_page(pfn);
2359
feec24a6
NH
2360 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2361 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2362 if (!page) {
2363 put_ref_page(ref_page);
86a66810 2364 return -EIO;
dad4e5b3 2365 }
86a66810 2366
91d00547
NH
2367 mutex_lock(&mf_mutex);
2368
86e05773 2369 if (PageHWPoison(page)) {
8295d535 2370 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2371 put_ref_page(ref_page);
91d00547 2372 mutex_unlock(&mf_mutex);
5a2ffca3 2373 return 0;
86e05773 2374 }
86e05773 2375
b94e0282 2376retry:
bfc8c901 2377 get_online_mems();
bf6445bc 2378 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2379 put_online_mems();
4e41a30c 2380
8295d535 2381 if (ret > 0) {
6b9a217e 2382 ret = soft_offline_in_use_page(page);
8295d535 2383 } else if (ret == 0) {
b94e0282
OS
2384 if (soft_offline_free_page(page) && try_again) {
2385 try_again = false;
2a57d83c 2386 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2387 goto retry;
2388 }
8295d535 2389 }
4e41a30c 2390
91d00547
NH
2391 mutex_unlock(&mf_mutex);
2392
86e05773
WL
2393 return ret;
2394}
60f272f6 2395
2396void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2397{
2398 int i;
2399
2400 /*
2401 * A further optimization is to have per section refcounted
2402 * num_poisoned_pages. But that would need more space per memmap, so
2403 * for now just do a quick global check to speed up this routine in the
2404 * absence of bad pages.
2405 */
2406 if (atomic_long_read(&num_poisoned_pages) == 0)
2407 return;
2408
2409 for (i = 0; i < nr_pages; i++) {
2410 if (PageHWPoison(&memmap[i])) {
2411 num_poisoned_pages_dec();
2412 ClearPageHWPoison(&memmap[i]);
2413 }
2414 }
2415}