mm/hugetlb: make pud_huge() and follow_huge_pud() aware of non-present pud entry
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
96c84dde 45#include <linux/dax.h>
01e00f88 46#include <linux/ksm.h>
6a46079c 47#include <linux/rmap.h>
b9e15baf 48#include <linux/export.h>
6a46079c
AK
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
facb6011 52#include <linux/migrate.h>
facb6011 53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
6100e34b 59#include <linux/memremap.h>
ea8f5fb8 60#include <linux/kfifo.h>
a5f65109 61#include <linux/ratelimit.h>
d4ae9916 62#include <linux/page-isolation.h>
a3f5d80e 63#include <linux/pagewalk.h>
a7605426 64#include <linux/shmem_fs.h>
014bb1de 65#include "swap.h"
6a46079c 66#include "internal.h"
97f0b134 67#include "ras/ras_event.h"
6a46079c
AK
68
69int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71int sysctl_memory_failure_recovery __read_mostly = 1;
72
293c07e3 73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 74
67f22ba7 75static bool hw_memory_failure __read_mostly = false;
76
510d25c9
NH
77static bool __page_handle_poison(struct page *page)
78{
f87060d3 79 int ret;
510d25c9
NH
80
81 zone_pcp_disable(page_zone(page));
82 ret = dissolve_free_huge_page(page);
83 if (!ret)
84 ret = take_page_off_buddy(page);
85 zone_pcp_enable(page_zone(page));
86
f87060d3 87 return ret > 0;
510d25c9
NH
88}
89
6b9a217e 90static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 91{
6b9a217e
OS
92 if (hugepage_or_freepage) {
93 /*
94 * Doing this check for free pages is also fine since dissolve_free_huge_page
95 * returns 0 for non-hugetlb pages as well.
96 */
510d25c9 97 if (!__page_handle_poison(page))
6b9a217e
OS
98 /*
99 * We could fail to take off the target page from buddy
f0953a1b 100 * for example due to racy page allocation, but that's
6b9a217e
OS
101 * acceptable because soft-offlined page is not broken
102 * and if someone really want to use it, they should
103 * take it.
104 */
105 return false;
106 }
107
06be6ff3 108 SetPageHWPoison(page);
79f5f8fa
OS
109 if (release)
110 put_page(page);
06be6ff3
OS
111 page_ref_inc(page);
112 num_poisoned_pages_inc();
6b9a217e
OS
113
114 return true;
06be6ff3
OS
115}
116
27df5068
AK
117#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
118
1bfe5feb 119u32 hwpoison_filter_enable = 0;
7c116f2b
WF
120u32 hwpoison_filter_dev_major = ~0U;
121u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
122u64 hwpoison_filter_flags_mask;
123u64 hwpoison_filter_flags_value;
1bfe5feb 124EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
125EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
126EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
127EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
128EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
129
130static int hwpoison_filter_dev(struct page *p)
131{
132 struct address_space *mapping;
133 dev_t dev;
134
135 if (hwpoison_filter_dev_major == ~0U &&
136 hwpoison_filter_dev_minor == ~0U)
137 return 0;
138
7c116f2b
WF
139 mapping = page_mapping(p);
140 if (mapping == NULL || mapping->host == NULL)
141 return -EINVAL;
142
143 dev = mapping->host->i_sb->s_dev;
144 if (hwpoison_filter_dev_major != ~0U &&
145 hwpoison_filter_dev_major != MAJOR(dev))
146 return -EINVAL;
147 if (hwpoison_filter_dev_minor != ~0U &&
148 hwpoison_filter_dev_minor != MINOR(dev))
149 return -EINVAL;
150
151 return 0;
152}
153
478c5ffc
WF
154static int hwpoison_filter_flags(struct page *p)
155{
156 if (!hwpoison_filter_flags_mask)
157 return 0;
158
159 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
160 hwpoison_filter_flags_value)
161 return 0;
162 else
163 return -EINVAL;
164}
165
4fd466eb
AK
166/*
167 * This allows stress tests to limit test scope to a collection of tasks
168 * by putting them under some memcg. This prevents killing unrelated/important
169 * processes such as /sbin/init. Note that the target task may share clean
170 * pages with init (eg. libc text), which is harmless. If the target task
171 * share _dirty_ pages with another task B, the test scheme must make sure B
172 * is also included in the memcg. At last, due to race conditions this filter
173 * can only guarantee that the page either belongs to the memcg tasks, or is
174 * a freed page.
175 */
94a59fb3 176#ifdef CONFIG_MEMCG
4fd466eb
AK
177u64 hwpoison_filter_memcg;
178EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
179static int hwpoison_filter_task(struct page *p)
180{
4fd466eb
AK
181 if (!hwpoison_filter_memcg)
182 return 0;
183
94a59fb3 184 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
185 return -EINVAL;
186
187 return 0;
188}
189#else
190static int hwpoison_filter_task(struct page *p) { return 0; }
191#endif
192
7c116f2b
WF
193int hwpoison_filter(struct page *p)
194{
1bfe5feb
HL
195 if (!hwpoison_filter_enable)
196 return 0;
197
7c116f2b
WF
198 if (hwpoison_filter_dev(p))
199 return -EINVAL;
200
478c5ffc
WF
201 if (hwpoison_filter_flags(p))
202 return -EINVAL;
203
4fd466eb
AK
204 if (hwpoison_filter_task(p))
205 return -EINVAL;
206
7c116f2b
WF
207 return 0;
208}
27df5068
AK
209#else
210int hwpoison_filter(struct page *p)
211{
212 return 0;
213}
214#endif
215
7c116f2b
WF
216EXPORT_SYMBOL_GPL(hwpoison_filter);
217
ae1139ec
DW
218/*
219 * Kill all processes that have a poisoned page mapped and then isolate
220 * the page.
221 *
222 * General strategy:
223 * Find all processes having the page mapped and kill them.
224 * But we keep a page reference around so that the page is not
225 * actually freed yet.
226 * Then stash the page away
227 *
228 * There's no convenient way to get back to mapped processes
229 * from the VMAs. So do a brute-force search over all
230 * running processes.
231 *
232 * Remember that machine checks are not common (or rather
233 * if they are common you have other problems), so this shouldn't
234 * be a performance issue.
235 *
236 * Also there are some races possible while we get from the
237 * error detection to actually handle it.
238 */
239
240struct to_kill {
241 struct list_head nd;
242 struct task_struct *tsk;
243 unsigned long addr;
244 short size_shift;
ae1139ec
DW
245};
246
6a46079c 247/*
7329bbeb
TL
248 * Send all the processes who have the page mapped a signal.
249 * ``action optional'' if they are not immediately affected by the error
250 * ``action required'' if error happened in current execution context
6a46079c 251 */
ae1139ec 252static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 253{
ae1139ec
DW
254 struct task_struct *t = tk->tsk;
255 short addr_lsb = tk->size_shift;
872e9a20 256 int ret = 0;
6a46079c 257
96f96763 258 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 259 pfn, t->comm, t->pid);
7329bbeb 260
49775047
ML
261 if ((flags & MF_ACTION_REQUIRED) && (t == current))
262 ret = force_sig_mceerr(BUS_MCEERR_AR,
263 (void __user *)tk->addr, addr_lsb);
264 else
7329bbeb 265 /*
49775047
ML
266 * Signal other processes sharing the page if they have
267 * PF_MCE_EARLY set.
7329bbeb
TL
268 * Don't use force here, it's convenient if the signal
269 * can be temporarily blocked.
270 * This could cause a loop when the user sets SIGBUS
271 * to SIG_IGN, but hopefully no one will do that?
272 */
ae1139ec 273 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 274 addr_lsb, t); /* synchronous? */
6a46079c 275 if (ret < 0)
96f96763 276 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 277 t->comm, t->pid, ret);
6a46079c
AK
278 return ret;
279}
280
588f9ce6 281/*
47e431f4 282 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 283 * lru_add_drain_all.
588f9ce6 284 */
d0505e9f 285void shake_page(struct page *p)
588f9ce6 286{
8bcb74de
NH
287 if (PageHuge(p))
288 return;
289
588f9ce6
AK
290 if (!PageSlab(p)) {
291 lru_add_drain_all();
588f9ce6
AK
292 if (PageLRU(p) || is_free_buddy_page(p))
293 return;
294 }
facb6011 295
588f9ce6 296 /*
d0505e9f
YS
297 * TODO: Could shrink slab caches here if a lightweight range-based
298 * shrinker will be available.
588f9ce6
AK
299 */
300}
301EXPORT_SYMBOL_GPL(shake_page);
302
c36e2024
SR
303static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
304 unsigned long address)
6100e34b 305{
5c91c0e7 306 unsigned long ret = 0;
6100e34b
DW
307 pgd_t *pgd;
308 p4d_t *p4d;
309 pud_t *pud;
310 pmd_t *pmd;
311 pte_t *pte;
312
a994402b 313 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
314 pgd = pgd_offset(vma->vm_mm, address);
315 if (!pgd_present(*pgd))
316 return 0;
317 p4d = p4d_offset(pgd, address);
318 if (!p4d_present(*p4d))
319 return 0;
320 pud = pud_offset(p4d, address);
321 if (!pud_present(*pud))
322 return 0;
323 if (pud_devmap(*pud))
324 return PUD_SHIFT;
325 pmd = pmd_offset(pud, address);
326 if (!pmd_present(*pmd))
327 return 0;
328 if (pmd_devmap(*pmd))
329 return PMD_SHIFT;
330 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
331 if (pte_present(*pte) && pte_devmap(*pte))
332 ret = PAGE_SHIFT;
333 pte_unmap(pte);
334 return ret;
6100e34b 335}
6a46079c
AK
336
337/*
338 * Failure handling: if we can't find or can't kill a process there's
339 * not much we can do. We just print a message and ignore otherwise.
340 */
341
342/*
343 * Schedule a process for later kill.
344 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024
SR
345 *
346 * Notice: @fsdax_pgoff is used only when @p is a fsdax page.
347 * In other cases, such as anonymous and file-backend page, the address to be
348 * killed can be caculated by @p itself.
6a46079c
AK
349 */
350static void add_to_kill(struct task_struct *tsk, struct page *p,
c36e2024
SR
351 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
352 struct list_head *to_kill)
6a46079c
AK
353{
354 struct to_kill *tk;
355
996ff7a0
JC
356 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
357 if (!tk) {
96f96763 358 pr_err("Out of memory while machine check handling\n");
996ff7a0 359 return;
6a46079c 360 }
996ff7a0 361
6a46079c 362 tk->addr = page_address_in_vma(p, vma);
c36e2024
SR
363 if (is_zone_device_page(p)) {
364 /*
365 * Since page->mapping is not used for fsdax, we need
366 * calculate the address based on the vma.
367 */
368 if (p->pgmap->type == MEMORY_DEVICE_FS_DAX)
369 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
370 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
371 } else
75068518 372 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
373
374 /*
3d7fed4a
JC
375 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
376 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
377 * so "tk->size_shift == 0" effectively checks no mapping on
378 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
379 * to a process' address space, it's possible not all N VMAs
380 * contain mappings for the page, but at least one VMA does.
381 * Only deliver SIGBUS with payload derived from the VMA that
382 * has a mapping for the page.
6a46079c 383 */
3d7fed4a 384 if (tk->addr == -EFAULT) {
96f96763 385 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 386 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
387 } else if (tk->size_shift == 0) {
388 kfree(tk);
389 return;
6a46079c 390 }
996ff7a0 391
6a46079c
AK
392 get_task_struct(tsk);
393 tk->tsk = tsk;
394 list_add_tail(&tk->nd, to_kill);
395}
396
397/*
398 * Kill the processes that have been collected earlier.
399 *
a21c184f
ML
400 * Only do anything when FORCEKILL is set, otherwise just free the
401 * list (this is used for clean pages which do not need killing)
6a46079c
AK
402 * Also when FAIL is set do a force kill because something went
403 * wrong earlier.
404 */
ae1139ec
DW
405static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
406 unsigned long pfn, int flags)
6a46079c
AK
407{
408 struct to_kill *tk, *next;
409
410 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 411 if (forcekill) {
6a46079c 412 /*
af901ca1 413 * In case something went wrong with munmapping
6a46079c
AK
414 * make sure the process doesn't catch the
415 * signal and then access the memory. Just kill it.
6a46079c 416 */
3d7fed4a 417 if (fail || tk->addr == -EFAULT) {
96f96763 418 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 419 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
420 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
421 tk->tsk, PIDTYPE_PID);
6a46079c
AK
422 }
423
424 /*
425 * In theory the process could have mapped
426 * something else on the address in-between. We could
427 * check for that, but we need to tell the
428 * process anyways.
429 */
ae1139ec 430 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 431 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 432 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
433 }
434 put_task_struct(tk->tsk);
435 kfree(tk);
436 }
437}
438
3ba08129
NH
439/*
440 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
441 * on behalf of the thread group. Return task_struct of the (first found)
442 * dedicated thread if found, and return NULL otherwise.
443 *
444 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
445 * have to call rcu_read_lock/unlock() in this function.
446 */
447static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 448{
3ba08129
NH
449 struct task_struct *t;
450
4e018b45
NH
451 for_each_thread(tsk, t) {
452 if (t->flags & PF_MCE_PROCESS) {
453 if (t->flags & PF_MCE_EARLY)
454 return t;
455 } else {
456 if (sysctl_memory_failure_early_kill)
457 return t;
458 }
459 }
3ba08129
NH
460 return NULL;
461}
462
463/*
464 * Determine whether a given process is "early kill" process which expects
465 * to be signaled when some page under the process is hwpoisoned.
466 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 467 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 468 *
30c9cf49
AY
469 * Note that the above is true for Action Optional case. For Action Required
470 * case, it's only meaningful to the current thread which need to be signaled
471 * with SIGBUS, this error is Action Optional for other non current
472 * processes sharing the same error page,if the process is "early kill", the
473 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
474 */
475static struct task_struct *task_early_kill(struct task_struct *tsk,
476 int force_early)
477{
6a46079c 478 if (!tsk->mm)
3ba08129 479 return NULL;
30c9cf49
AY
480 /*
481 * Comparing ->mm here because current task might represent
482 * a subthread, while tsk always points to the main thread.
483 */
484 if (force_early && tsk->mm == current->mm)
485 return current;
486
4e018b45 487 return find_early_kill_thread(tsk);
6a46079c
AK
488}
489
490/*
491 * Collect processes when the error hit an anonymous page.
492 */
493static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 494 int force_early)
6a46079c 495{
9595d769 496 struct folio *folio = page_folio(page);
6a46079c
AK
497 struct vm_area_struct *vma;
498 struct task_struct *tsk;
499 struct anon_vma *av;
bf181b9f 500 pgoff_t pgoff;
6a46079c 501
6d4675e6 502 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 503 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
504 return;
505
a0f7a756 506 pgoff = page_to_pgoff(page);
9b679320 507 read_lock(&tasklist_lock);
6a46079c 508 for_each_process (tsk) {
5beb4930 509 struct anon_vma_chain *vmac;
3ba08129 510 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 511
3ba08129 512 if (!t)
6a46079c 513 continue;
bf181b9f
ML
514 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
515 pgoff, pgoff) {
5beb4930 516 vma = vmac->vma;
6a46079c
AK
517 if (!page_mapped_in_vma(page, vma))
518 continue;
3ba08129 519 if (vma->vm_mm == t->mm)
c36e2024 520 add_to_kill(t, page, 0, vma, to_kill);
6a46079c
AK
521 }
522 }
6a46079c 523 read_unlock(&tasklist_lock);
4fc3f1d6 524 page_unlock_anon_vma_read(av);
6a46079c
AK
525}
526
527/*
528 * Collect processes when the error hit a file mapped page.
529 */
530static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 531 int force_early)
6a46079c
AK
532{
533 struct vm_area_struct *vma;
534 struct task_struct *tsk;
6a46079c 535 struct address_space *mapping = page->mapping;
c43bc03d 536 pgoff_t pgoff;
6a46079c 537
d28eb9c8 538 i_mmap_lock_read(mapping);
9b679320 539 read_lock(&tasklist_lock);
c43bc03d 540 pgoff = page_to_pgoff(page);
6a46079c 541 for_each_process(tsk) {
3ba08129 542 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 543
3ba08129 544 if (!t)
6a46079c 545 continue;
6b2dbba8 546 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
547 pgoff) {
548 /*
549 * Send early kill signal to tasks where a vma covers
550 * the page but the corrupted page is not necessarily
551 * mapped it in its pte.
552 * Assume applications who requested early kill want
553 * to be informed of all such data corruptions.
554 */
3ba08129 555 if (vma->vm_mm == t->mm)
c36e2024 556 add_to_kill(t, page, 0, vma, to_kill);
6a46079c
AK
557 }
558 }
6a46079c 559 read_unlock(&tasklist_lock);
d28eb9c8 560 i_mmap_unlock_read(mapping);
6a46079c
AK
561}
562
c36e2024
SR
563#ifdef CONFIG_FS_DAX
564/*
565 * Collect processes when the error hit a fsdax page.
566 */
567static void collect_procs_fsdax(struct page *page,
568 struct address_space *mapping, pgoff_t pgoff,
569 struct list_head *to_kill)
570{
571 struct vm_area_struct *vma;
572 struct task_struct *tsk;
573
574 i_mmap_lock_read(mapping);
575 read_lock(&tasklist_lock);
576 for_each_process(tsk) {
577 struct task_struct *t = task_early_kill(tsk, true);
578
579 if (!t)
580 continue;
581 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
582 if (vma->vm_mm == t->mm)
583 add_to_kill(t, page, pgoff, vma, to_kill);
584 }
585 }
586 read_unlock(&tasklist_lock);
587 i_mmap_unlock_read(mapping);
588}
589#endif /* CONFIG_FS_DAX */
590
6a46079c
AK
591/*
592 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 593 */
74614de1
TL
594static void collect_procs(struct page *page, struct list_head *tokill,
595 int force_early)
6a46079c 596{
6a46079c
AK
597 if (!page->mapping)
598 return;
599
6a46079c 600 if (PageAnon(page))
996ff7a0 601 collect_procs_anon(page, tokill, force_early);
6a46079c 602 else
996ff7a0 603 collect_procs_file(page, tokill, force_early);
6a46079c
AK
604}
605
a3f5d80e
NH
606struct hwp_walk {
607 struct to_kill tk;
608 unsigned long pfn;
609 int flags;
610};
611
612static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
613{
614 tk->addr = addr;
615 tk->size_shift = shift;
616}
617
618static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
619 unsigned long poisoned_pfn, struct to_kill *tk)
620{
621 unsigned long pfn = 0;
622
623 if (pte_present(pte)) {
624 pfn = pte_pfn(pte);
625 } else {
626 swp_entry_t swp = pte_to_swp_entry(pte);
627
628 if (is_hwpoison_entry(swp))
629 pfn = hwpoison_entry_to_pfn(swp);
630 }
631
632 if (!pfn || pfn != poisoned_pfn)
633 return 0;
634
635 set_to_kill(tk, addr, shift);
636 return 1;
637}
638
639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
640static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
641 struct hwp_walk *hwp)
642{
643 pmd_t pmd = *pmdp;
644 unsigned long pfn;
645 unsigned long hwpoison_vaddr;
646
647 if (!pmd_present(pmd))
648 return 0;
649 pfn = pmd_pfn(pmd);
650 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
651 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
652 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
653 return 1;
654 }
655 return 0;
656}
657#else
658static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
659 struct hwp_walk *hwp)
660{
661 return 0;
662}
663#endif
664
665static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
666 unsigned long end, struct mm_walk *walk)
667{
f142e707 668 struct hwp_walk *hwp = walk->private;
a3f5d80e 669 int ret = 0;
ea3732f7 670 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
671 spinlock_t *ptl;
672
673 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
674 if (ptl) {
675 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
676 spin_unlock(ptl);
677 goto out;
678 }
679
680 if (pmd_trans_unstable(pmdp))
681 goto out;
682
ea3732f7
ML
683 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
684 addr, &ptl);
a3f5d80e
NH
685 for (; addr != end; ptep++, addr += PAGE_SIZE) {
686 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
687 hwp->pfn, &hwp->tk);
688 if (ret == 1)
689 break;
690 }
ea3732f7 691 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
692out:
693 cond_resched();
694 return ret;
695}
696
697#ifdef CONFIG_HUGETLB_PAGE
698static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
699 unsigned long addr, unsigned long end,
700 struct mm_walk *walk)
701{
f142e707 702 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
703 pte_t pte = huge_ptep_get(ptep);
704 struct hstate *h = hstate_vma(walk->vma);
705
706 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
707 hwp->pfn, &hwp->tk);
708}
709#else
710#define hwpoison_hugetlb_range NULL
711#endif
712
ba9eb3ce 713static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
714 .pmd_entry = hwpoison_pte_range,
715 .hugetlb_entry = hwpoison_hugetlb_range,
716};
717
718/*
719 * Sends SIGBUS to the current process with error info.
720 *
721 * This function is intended to handle "Action Required" MCEs on already
722 * hardware poisoned pages. They could happen, for example, when
723 * memory_failure() failed to unmap the error page at the first call, or
724 * when multiple local machine checks happened on different CPUs.
725 *
726 * MCE handler currently has no easy access to the error virtual address,
727 * so this function walks page table to find it. The returned virtual address
728 * is proper in most cases, but it could be wrong when the application
729 * process has multiple entries mapping the error page.
730 */
731static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
732 int flags)
733{
734 int ret;
735 struct hwp_walk priv = {
736 .pfn = pfn,
737 };
738 priv.tk.tsk = p;
739
740 mmap_read_lock(p->mm);
741 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
742 (void *)&priv);
743 if (ret == 1 && priv.tk.addr)
744 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
745 else
746 ret = 0;
a3f5d80e 747 mmap_read_unlock(p->mm);
046545a6 748 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
749}
750
6a46079c 751static const char *action_name[] = {
cc637b17
XX
752 [MF_IGNORED] = "Ignored",
753 [MF_FAILED] = "Failed",
754 [MF_DELAYED] = "Delayed",
755 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
756};
757
758static const char * const action_page_types[] = {
cc637b17
XX
759 [MF_MSG_KERNEL] = "reserved kernel page",
760 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
761 [MF_MSG_SLAB] = "kernel slab page",
762 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
763 [MF_MSG_HUGE] = "huge page",
764 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 765 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
766 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
767 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
768 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
769 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
770 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
771 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
772 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
773 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
774 [MF_MSG_CLEAN_LRU] = "clean LRU page",
775 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
776 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 777 [MF_MSG_DAX] = "dax page",
5d1fd5dc 778 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 779 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
780};
781
dc2a1cbf
WF
782/*
783 * XXX: It is possible that a page is isolated from LRU cache,
784 * and then kept in swap cache or failed to remove from page cache.
785 * The page count will stop it from being freed by unpoison.
786 * Stress tests should be aware of this memory leak problem.
787 */
788static int delete_from_lru_cache(struct page *p)
789{
790 if (!isolate_lru_page(p)) {
791 /*
792 * Clear sensible page flags, so that the buddy system won't
793 * complain when the page is unpoison-and-freed.
794 */
795 ClearPageActive(p);
796 ClearPageUnevictable(p);
18365225
MH
797
798 /*
799 * Poisoned page might never drop its ref count to 0 so we have
800 * to uncharge it manually from its memcg.
801 */
bbc6b703 802 mem_cgroup_uncharge(page_folio(p));
18365225 803
dc2a1cbf
WF
804 /*
805 * drop the page count elevated by isolate_lru_page()
806 */
09cbfeaf 807 put_page(p);
dc2a1cbf
WF
808 return 0;
809 }
810 return -EIO;
811}
812
78bb9203
NH
813static int truncate_error_page(struct page *p, unsigned long pfn,
814 struct address_space *mapping)
815{
816 int ret = MF_FAILED;
817
818 if (mapping->a_ops->error_remove_page) {
819 int err = mapping->a_ops->error_remove_page(mapping, p);
820
821 if (err != 0) {
96f96763 822 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
78bb9203
NH
823 } else if (page_has_private(p) &&
824 !try_to_release_page(p, GFP_NOIO)) {
96f96763 825 pr_info("%#lx: failed to release buffers\n", pfn);
78bb9203
NH
826 } else {
827 ret = MF_RECOVERED;
828 }
829 } else {
830 /*
831 * If the file system doesn't support it just invalidate
832 * This fails on dirty or anything with private pages
833 */
834 if (invalidate_inode_page(p))
835 ret = MF_RECOVERED;
836 else
96f96763 837 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
838 }
839
840 return ret;
841}
842
dd0f230a
YS
843struct page_state {
844 unsigned long mask;
845 unsigned long res;
846 enum mf_action_page_type type;
847
848 /* Callback ->action() has to unlock the relevant page inside it. */
849 int (*action)(struct page_state *ps, struct page *p);
850};
851
852/*
853 * Return true if page is still referenced by others, otherwise return
854 * false.
855 *
856 * The extra_pins is true when one extra refcount is expected.
857 */
858static bool has_extra_refcount(struct page_state *ps, struct page *p,
859 bool extra_pins)
860{
861 int count = page_count(p) - 1;
862
863 if (extra_pins)
864 count -= 1;
865
866 if (count > 0) {
96f96763 867 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
868 page_to_pfn(p), action_page_types[ps->type], count);
869 return true;
870 }
871
872 return false;
873}
874
6a46079c
AK
875/*
876 * Error hit kernel page.
877 * Do nothing, try to be lucky and not touch this instead. For a few cases we
878 * could be more sophisticated.
879 */
dd0f230a 880static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 881{
ea6d0630 882 unlock_page(p);
cc637b17 883 return MF_IGNORED;
6a46079c
AK
884}
885
886/*
887 * Page in unknown state. Do nothing.
888 */
dd0f230a 889static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 890{
96f96763 891 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 892 unlock_page(p);
cc637b17 893 return MF_FAILED;
6a46079c
AK
894}
895
6a46079c
AK
896/*
897 * Clean (or cleaned) page cache page.
898 */
dd0f230a 899static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 900{
ea6d0630 901 int ret;
6a46079c 902 struct address_space *mapping;
a7605426 903 bool extra_pins;
6a46079c 904
dc2a1cbf
WF
905 delete_from_lru_cache(p);
906
6a46079c
AK
907 /*
908 * For anonymous pages we're done the only reference left
909 * should be the one m_f() holds.
910 */
ea6d0630
NH
911 if (PageAnon(p)) {
912 ret = MF_RECOVERED;
913 goto out;
914 }
6a46079c
AK
915
916 /*
917 * Now truncate the page in the page cache. This is really
918 * more like a "temporary hole punch"
919 * Don't do this for block devices when someone else
920 * has a reference, because it could be file system metadata
921 * and that's not safe to truncate.
922 */
923 mapping = page_mapping(p);
924 if (!mapping) {
925 /*
926 * Page has been teared down in the meanwhile
927 */
ea6d0630
NH
928 ret = MF_FAILED;
929 goto out;
6a46079c
AK
930 }
931
a7605426
YS
932 /*
933 * The shmem page is kept in page cache instead of truncating
934 * so is expected to have an extra refcount after error-handling.
935 */
936 extra_pins = shmem_mapping(mapping);
937
6a46079c
AK
938 /*
939 * Truncation is a bit tricky. Enable it per file system for now.
940 *
9608703e 941 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 942 */
dd0f230a 943 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
944 if (has_extra_refcount(ps, p, extra_pins))
945 ret = MF_FAILED;
946
ea6d0630
NH
947out:
948 unlock_page(p);
dd0f230a 949
ea6d0630 950 return ret;
6a46079c
AK
951}
952
953/*
549543df 954 * Dirty pagecache page
6a46079c
AK
955 * Issues: when the error hit a hole page the error is not properly
956 * propagated.
957 */
dd0f230a 958static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
959{
960 struct address_space *mapping = page_mapping(p);
961
962 SetPageError(p);
963 /* TBD: print more information about the file. */
964 if (mapping) {
965 /*
966 * IO error will be reported by write(), fsync(), etc.
967 * who check the mapping.
968 * This way the application knows that something went
969 * wrong with its dirty file data.
970 *
971 * There's one open issue:
972 *
973 * The EIO will be only reported on the next IO
974 * operation and then cleared through the IO map.
975 * Normally Linux has two mechanisms to pass IO error
976 * first through the AS_EIO flag in the address space
977 * and then through the PageError flag in the page.
978 * Since we drop pages on memory failure handling the
979 * only mechanism open to use is through AS_AIO.
980 *
981 * This has the disadvantage that it gets cleared on
982 * the first operation that returns an error, while
983 * the PageError bit is more sticky and only cleared
984 * when the page is reread or dropped. If an
985 * application assumes it will always get error on
986 * fsync, but does other operations on the fd before
25985edc 987 * and the page is dropped between then the error
6a46079c
AK
988 * will not be properly reported.
989 *
990 * This can already happen even without hwpoisoned
991 * pages: first on metadata IO errors (which only
992 * report through AS_EIO) or when the page is dropped
993 * at the wrong time.
994 *
995 * So right now we assume that the application DTRT on
996 * the first EIO, but we're not worse than other parts
997 * of the kernel.
998 */
af21bfaf 999 mapping_set_error(mapping, -EIO);
6a46079c
AK
1000 }
1001
dd0f230a 1002 return me_pagecache_clean(ps, p);
6a46079c
AK
1003}
1004
1005/*
1006 * Clean and dirty swap cache.
1007 *
1008 * Dirty swap cache page is tricky to handle. The page could live both in page
1009 * cache and swap cache(ie. page is freshly swapped in). So it could be
1010 * referenced concurrently by 2 types of PTEs:
1011 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1012 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1013 * and then
1014 * - clear dirty bit to prevent IO
1015 * - remove from LRU
1016 * - but keep in the swap cache, so that when we return to it on
1017 * a later page fault, we know the application is accessing
1018 * corrupted data and shall be killed (we installed simple
1019 * interception code in do_swap_page to catch it).
1020 *
1021 * Clean swap cache pages can be directly isolated. A later page fault will
1022 * bring in the known good data from disk.
1023 */
dd0f230a 1024static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1025{
ea6d0630 1026 int ret;
dd0f230a 1027 bool extra_pins = false;
ea6d0630 1028
6a46079c
AK
1029 ClearPageDirty(p);
1030 /* Trigger EIO in shmem: */
1031 ClearPageUptodate(p);
1032
ea6d0630
NH
1033 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1034 unlock_page(p);
dd0f230a
YS
1035
1036 if (ret == MF_DELAYED)
1037 extra_pins = true;
1038
1039 if (has_extra_refcount(ps, p, extra_pins))
1040 ret = MF_FAILED;
1041
ea6d0630 1042 return ret;
6a46079c
AK
1043}
1044
dd0f230a 1045static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1046{
75fa68a5 1047 struct folio *folio = page_folio(p);
ea6d0630
NH
1048 int ret;
1049
75fa68a5 1050 delete_from_swap_cache(folio);
e43c3afb 1051
ea6d0630 1052 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1053 folio_unlock(folio);
dd0f230a
YS
1054
1055 if (has_extra_refcount(ps, p, false))
1056 ret = MF_FAILED;
1057
ea6d0630 1058 return ret;
6a46079c
AK
1059}
1060
1061/*
1062 * Huge pages. Needs work.
1063 * Issues:
93f70f90
NH
1064 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1065 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1066 */
dd0f230a 1067static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1068{
a8b2c2ce 1069 int res;
93f70f90 1070 struct page *hpage = compound_head(p);
78bb9203 1071 struct address_space *mapping;
2491ffee
NH
1072
1073 if (!PageHuge(hpage))
1074 return MF_DELAYED;
1075
78bb9203
NH
1076 mapping = page_mapping(hpage);
1077 if (mapping) {
dd0f230a 1078 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
ea6d0630 1079 unlock_page(hpage);
78bb9203 1080 } else {
a8b2c2ce 1081 res = MF_FAILED;
78bb9203
NH
1082 unlock_page(hpage);
1083 /*
ef526b17
ML
1084 * migration entry prevents later access on error hugepage,
1085 * so we can free and dissolve it into buddy to save healthy
1086 * subpages.
78bb9203 1087 */
ef526b17 1088 put_page(hpage);
510d25c9 1089 if (__page_handle_poison(p)) {
a8b2c2ce
OS
1090 page_ref_inc(p);
1091 res = MF_RECOVERED;
1092 }
93f70f90 1093 }
78bb9203 1094
dd0f230a
YS
1095 if (has_extra_refcount(ps, p, false))
1096 res = MF_FAILED;
1097
78bb9203 1098 return res;
6a46079c
AK
1099}
1100
1101/*
1102 * Various page states we can handle.
1103 *
1104 * A page state is defined by its current page->flags bits.
1105 * The table matches them in order and calls the right handler.
1106 *
1107 * This is quite tricky because we can access page at any time
25985edc 1108 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1109 *
1110 * This is not complete. More states could be added.
1111 * For any missing state don't attempt recovery.
1112 */
1113
1114#define dirty (1UL << PG_dirty)
6326fec1 1115#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1116#define unevict (1UL << PG_unevictable)
1117#define mlock (1UL << PG_mlocked)
6a46079c 1118#define lru (1UL << PG_lru)
6a46079c 1119#define head (1UL << PG_head)
6a46079c 1120#define slab (1UL << PG_slab)
6a46079c
AK
1121#define reserved (1UL << PG_reserved)
1122
dd0f230a 1123static struct page_state error_states[] = {
cc637b17 1124 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1125 /*
1126 * free pages are specially detected outside this table:
1127 * PG_buddy pages only make a small fraction of all free pages.
1128 */
6a46079c
AK
1129
1130 /*
1131 * Could in theory check if slab page is free or if we can drop
1132 * currently unused objects without touching them. But just
1133 * treat it as standard kernel for now.
1134 */
cc637b17 1135 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1136
cc637b17 1137 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1138
cc637b17
XX
1139 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1140 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1141
cc637b17
XX
1142 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1143 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1144
cc637b17
XX
1145 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1146 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1147
cc637b17
XX
1148 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1149 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1150
1151 /*
1152 * Catchall entry: must be at end.
1153 */
cc637b17 1154 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1155};
1156
2326c467
AK
1157#undef dirty
1158#undef sc
1159#undef unevict
1160#undef mlock
2326c467 1161#undef lru
2326c467 1162#undef head
2326c467
AK
1163#undef slab
1164#undef reserved
1165
ff604cf6
NH
1166/*
1167 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1168 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1169 */
cc3e2af4
XX
1170static void action_result(unsigned long pfn, enum mf_action_page_type type,
1171 enum mf_result result)
6a46079c 1172{
97f0b134
XX
1173 trace_memory_failure_event(pfn, type, result);
1174
e240ac52 1175 num_poisoned_pages_inc();
96f96763 1176 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1177 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1178}
1179
1180static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1181 unsigned long pfn)
6a46079c
AK
1182{
1183 int result;
1184
ea6d0630 1185 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1186 result = ps->action(ps, p);
7456b040 1187
64d37a2b 1188 action_result(pfn, ps->type, result);
6a46079c
AK
1189
1190 /* Could do more checks here if page looks ok */
1191 /*
1192 * Could adjust zone counters here to correct for the missing page.
1193 */
1194
cc637b17 1195 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1196}
1197
bf181c58
NH
1198static inline bool PageHWPoisonTakenOff(struct page *page)
1199{
1200 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1201}
1202
1203void SetPageHWPoisonTakenOff(struct page *page)
1204{
1205 set_page_private(page, MAGIC_HWPOISON);
1206}
1207
1208void ClearPageHWPoisonTakenOff(struct page *page)
1209{
1210 if (PageHWPoison(page))
1211 set_page_private(page, 0);
1212}
1213
25182f05
NH
1214/*
1215 * Return true if a page type of a given page is supported by hwpoison
1216 * mechanism (while handling could fail), otherwise false. This function
1217 * does not return true for hugetlb or device memory pages, so it's assumed
1218 * to be called only in the context where we never have such pages.
1219 */
bf6445bc 1220static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1221{
3f871370 1222 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1223 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1224 return true;
bf6445bc 1225
3f871370 1226 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1227}
1228
bf6445bc 1229static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a
NH
1230{
1231 struct page *head = compound_head(page);
25182f05
NH
1232 int ret = 0;
1233 bool hugetlb = false;
1234
1235 ret = get_hwpoison_huge_page(head, &hugetlb);
1236 if (hugetlb)
1237 return ret;
1238
1239 /*
1240 * This check prevents from calling get_hwpoison_unless_zero()
1241 * for any unsupported type of page in order to reduce the risk of
1242 * unexpected races caused by taking a page refcount.
1243 */
bf6445bc 1244 if (!HWPoisonHandlable(head, flags))
fcc00621 1245 return -EBUSY;
ead07f6a 1246
c2e7e00b
KK
1247 if (get_page_unless_zero(head)) {
1248 if (head == compound_head(page))
1249 return 1;
1250
96f96763 1251 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
c2e7e00b
KK
1252 put_page(head);
1253 }
1254
1255 return 0;
ead07f6a 1256}
ead07f6a 1257
2f714160 1258static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1259{
2f714160
OS
1260 int ret = 0, pass = 0;
1261 bool count_increased = false;
17e395b6 1262
2f714160
OS
1263 if (flags & MF_COUNT_INCREASED)
1264 count_increased = true;
1265
1266try_again:
0ed950d1 1267 if (!count_increased) {
bf6445bc 1268 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1269 if (!ret) {
1270 if (page_count(p)) {
1271 /* We raced with an allocation, retry. */
1272 if (pass++ < 3)
1273 goto try_again;
1274 ret = -EBUSY;
1275 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1276 /* We raced with put_page, retry. */
1277 if (pass++ < 3)
1278 goto try_again;
1279 ret = -EIO;
1280 }
1281 goto out;
1282 } else if (ret == -EBUSY) {
fcc00621
NH
1283 /*
1284 * We raced with (possibly temporary) unhandlable
1285 * page, retry.
1286 */
1287 if (pass++ < 3) {
d0505e9f 1288 shake_page(p);
2f714160 1289 goto try_again;
fcc00621
NH
1290 }
1291 ret = -EIO;
0ed950d1 1292 goto out;
2f714160 1293 }
0ed950d1
NH
1294 }
1295
bf6445bc 1296 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1297 ret = 1;
2f714160 1298 } else {
0ed950d1
NH
1299 /*
1300 * A page we cannot handle. Check whether we can turn
1301 * it into something we can handle.
1302 */
1303 if (pass++ < 3) {
2f714160 1304 put_page(p);
d0505e9f 1305 shake_page(p);
0ed950d1
NH
1306 count_increased = false;
1307 goto try_again;
2f714160 1308 }
0ed950d1
NH
1309 put_page(p);
1310 ret = -EIO;
17e395b6 1311 }
0ed950d1 1312out:
941ca063 1313 if (ret == -EIO)
96f96763 1314 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1315
17e395b6
OS
1316 return ret;
1317}
1318
bf181c58
NH
1319static int __get_unpoison_page(struct page *page)
1320{
1321 struct page *head = compound_head(page);
1322 int ret = 0;
1323 bool hugetlb = false;
1324
1325 ret = get_hwpoison_huge_page(head, &hugetlb);
1326 if (hugetlb)
1327 return ret;
1328
1329 /*
1330 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1331 * but also isolated from buddy freelist, so need to identify the
1332 * state and have to cancel both operations to unpoison.
1333 */
1334 if (PageHWPoisonTakenOff(page))
1335 return -EHWPOISON;
1336
1337 return get_page_unless_zero(page) ? 1 : 0;
1338}
1339
0ed950d1
NH
1340/**
1341 * get_hwpoison_page() - Get refcount for memory error handling
1342 * @p: Raw error page (hit by memory error)
1343 * @flags: Flags controlling behavior of error handling
1344 *
1345 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1346 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1347 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1348 * such as LRU page and hugetlb page).
1349 *
1350 * Memory error handling could be triggered at any time on any type of page,
1351 * so it's prone to race with typical memory management lifecycle (like
1352 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1353 * extra care for the error page's state (as done in __get_hwpoison_page()),
1354 * and has some retry logic in get_any_page().
1355 *
bf181c58
NH
1356 * When called from unpoison_memory(), the caller should already ensure that
1357 * the given page has PG_hwpoison. So it's never reused for other page
1358 * allocations, and __get_unpoison_page() never races with them.
1359 *
0ed950d1
NH
1360 * Return: 0 on failure,
1361 * 1 on success for in-use pages in a well-defined state,
1362 * -EIO for pages on which we can not handle memory errors,
1363 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1364 * operations like allocation and free,
1365 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1366 */
1367static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1368{
1369 int ret;
1370
1371 zone_pcp_disable(page_zone(p));
bf181c58
NH
1372 if (flags & MF_UNPOISON)
1373 ret = __get_unpoison_page(p);
1374 else
1375 ret = get_any_page(p, flags);
2f714160
OS
1376 zone_pcp_enable(page_zone(p));
1377
1378 return ret;
1379}
1380
6a46079c
AK
1381/*
1382 * Do all that is necessary to remove user space mappings. Unmap
1383 * the pages and send SIGBUS to the processes if the data was dirty.
1384 */
666e5a40 1385static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1386 int flags, struct page *hpage)
6a46079c 1387{
869f7ee6 1388 struct folio *folio = page_folio(hpage);
36af6737 1389 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1390 struct address_space *mapping;
1391 LIST_HEAD(tokill);
1fb08ac6 1392 bool unmap_success;
6751ed65 1393 int kill = 1, forcekill;
286c469a 1394 bool mlocked = PageMlocked(hpage);
6a46079c 1395
93a9eb39
NH
1396 /*
1397 * Here we are interested only in user-mapped pages, so skip any
1398 * other types of pages.
1399 */
1400 if (PageReserved(p) || PageSlab(p))
666e5a40 1401 return true;
93a9eb39 1402 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1403 return true;
6a46079c 1404
6a46079c
AK
1405 /*
1406 * This check implies we don't kill processes if their pages
1407 * are in the swap cache early. Those are always late kills.
1408 */
7af446a8 1409 if (!page_mapped(hpage))
666e5a40 1410 return true;
1668bfd5 1411
52089b14 1412 if (PageKsm(p)) {
96f96763 1413 pr_err("%#lx: can't handle KSM pages.\n", pfn);
666e5a40 1414 return false;
52089b14 1415 }
6a46079c
AK
1416
1417 if (PageSwapCache(p)) {
96f96763 1418 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6a46079c
AK
1419 ttu |= TTU_IGNORE_HWPOISON;
1420 }
1421
1422 /*
1423 * Propagate the dirty bit from PTEs to struct page first, because we
1424 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1425 * XXX: the dirty test could be racy: set_page_dirty() may not always
1426 * be called inside page lock (it's recommended but not enforced).
6a46079c 1427 */
7af446a8 1428 mapping = page_mapping(hpage);
6751ed65 1429 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1430 mapping_can_writeback(mapping)) {
7af446a8
NH
1431 if (page_mkclean(hpage)) {
1432 SetPageDirty(hpage);
6a46079c
AK
1433 } else {
1434 kill = 0;
1435 ttu |= TTU_IGNORE_HWPOISON;
96f96763 1436 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1437 pfn);
1438 }
1439 }
1440
1441 /*
1442 * First collect all the processes that have the page
1443 * mapped in dirty form. This has to be done before try_to_unmap,
1444 * because ttu takes the rmap data structures down.
1445 *
1446 * Error handling: We ignore errors here because
1447 * there's nothing that can be done.
1448 */
1449 if (kill)
415c64c1 1450 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1451
357670f7
ML
1452 if (PageHuge(hpage) && !PageAnon(hpage)) {
1453 /*
1454 * For hugetlb pages in shared mappings, try_to_unmap
1455 * could potentially call huge_pmd_unshare. Because of
1456 * this, take semaphore in write mode here and set
1457 * TTU_RMAP_LOCKED to indicate we have taken the lock
1458 * at this higher level.
1459 */
1460 mapping = hugetlb_page_mapping_lock_write(hpage);
1461 if (mapping) {
9030fb0b 1462 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1463 i_mmap_unlock_write(mapping);
1464 } else
96f96763 1465 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1466 } else {
9030fb0b 1467 try_to_unmap(folio, ttu);
c0d0381a 1468 }
1fb08ac6
YS
1469
1470 unmap_success = !page_mapped(hpage);
666e5a40 1471 if (!unmap_success)
96f96763 1472 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1473 pfn, page_mapcount(hpage));
a6d30ddd 1474
286c469a
NH
1475 /*
1476 * try_to_unmap() might put mlocked page in lru cache, so call
1477 * shake_page() again to ensure that it's flushed.
1478 */
1479 if (mlocked)
d0505e9f 1480 shake_page(hpage);
286c469a 1481
6a46079c
AK
1482 /*
1483 * Now that the dirty bit has been propagated to the
1484 * struct page and all unmaps done we can decide if
1485 * killing is needed or not. Only kill when the page
6751ed65
TL
1486 * was dirty or the process is not restartable,
1487 * otherwise the tokill list is merely
6a46079c
AK
1488 * freed. When there was a problem unmapping earlier
1489 * use a more force-full uncatchable kill to prevent
1490 * any accesses to the poisoned memory.
1491 */
415c64c1 1492 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1493 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1494
666e5a40 1495 return unmap_success;
6a46079c
AK
1496}
1497
0348d2eb
NH
1498static int identify_page_state(unsigned long pfn, struct page *p,
1499 unsigned long page_flags)
761ad8d7
NH
1500{
1501 struct page_state *ps;
0348d2eb
NH
1502
1503 /*
1504 * The first check uses the current page flags which may not have any
1505 * relevant information. The second check with the saved page flags is
1506 * carried out only if the first check can't determine the page status.
1507 */
1508 for (ps = error_states;; ps++)
1509 if ((p->flags & ps->mask) == ps->res)
1510 break;
1511
1512 page_flags |= (p->flags & (1UL << PG_dirty));
1513
1514 if (!ps->mask)
1515 for (ps = error_states;; ps++)
1516 if ((page_flags & ps->mask) == ps->res)
1517 break;
1518 return page_action(ps, p, pfn);
1519}
1520
694bf0b0
OS
1521static int try_to_split_thp_page(struct page *page, const char *msg)
1522{
1523 lock_page(page);
4966455d 1524 if (unlikely(split_huge_page(page))) {
694bf0b0
OS
1525 unsigned long pfn = page_to_pfn(page);
1526
1527 unlock_page(page);
4966455d 1528 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
694bf0b0
OS
1529 put_page(page);
1530 return -EBUSY;
1531 }
1532 unlock_page(page);
1533
1534 return 0;
1535}
1536
00cc790e
SR
1537static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1538 struct address_space *mapping, pgoff_t index, int flags)
1539{
1540 struct to_kill *tk;
1541 unsigned long size = 0;
1542
1543 list_for_each_entry(tk, to_kill, nd)
1544 if (tk->size_shift)
1545 size = max(size, 1UL << tk->size_shift);
1546
1547 if (size) {
1548 /*
1549 * Unmap the largest mapping to avoid breaking up device-dax
1550 * mappings which are constant size. The actual size of the
1551 * mapping being torn down is communicated in siginfo, see
1552 * kill_proc()
1553 */
1554 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1555
1556 unmap_mapping_range(mapping, start, size, 0);
1557 }
1558
1559 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1560}
1561
1562static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1563 struct dev_pagemap *pgmap)
1564{
1565 struct page *page = pfn_to_page(pfn);
1566 LIST_HEAD(to_kill);
1567 dax_entry_t cookie;
1568 int rc = 0;
1569
1570 /*
1571 * Pages instantiated by device-dax (not filesystem-dax)
1572 * may be compound pages.
1573 */
1574 page = compound_head(page);
1575
1576 /*
1577 * Prevent the inode from being freed while we are interrogating
1578 * the address_space, typically this would be handled by
1579 * lock_page(), but dax pages do not use the page lock. This
1580 * also prevents changes to the mapping of this pfn until
1581 * poison signaling is complete.
1582 */
1583 cookie = dax_lock_page(page);
1584 if (!cookie)
1585 return -EBUSY;
1586
1587 if (hwpoison_filter(page)) {
1588 rc = -EOPNOTSUPP;
1589 goto unlock;
1590 }
1591
1592 switch (pgmap->type) {
1593 case MEMORY_DEVICE_PRIVATE:
1594 case MEMORY_DEVICE_COHERENT:
1595 /*
1596 * TODO: Handle device pages which may need coordination
1597 * with device-side memory.
1598 */
1599 rc = -ENXIO;
1600 goto unlock;
1601 default:
1602 break;
1603 }
1604
1605 /*
1606 * Use this flag as an indication that the dax page has been
1607 * remapped UC to prevent speculative consumption of poison.
1608 */
1609 SetPageHWPoison(page);
1610
1611 /*
1612 * Unlike System-RAM there is no possibility to swap in a
1613 * different physical page at a given virtual address, so all
1614 * userspace consumption of ZONE_DEVICE memory necessitates
1615 * SIGBUS (i.e. MF_MUST_KILL)
1616 */
1617 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1618 collect_procs(page, &to_kill, true);
1619
1620 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1621unlock:
1622 dax_unlock_page(page, cookie);
1623 return rc;
1624}
1625
c36e2024
SR
1626#ifdef CONFIG_FS_DAX
1627/**
1628 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1629 * @mapping: address_space of the file in use
1630 * @index: start pgoff of the range within the file
1631 * @count: length of the range, in unit of PAGE_SIZE
1632 * @mf_flags: memory failure flags
1633 */
1634int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1635 unsigned long count, int mf_flags)
1636{
1637 LIST_HEAD(to_kill);
1638 dax_entry_t cookie;
1639 struct page *page;
1640 size_t end = index + count;
1641
1642 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1643
1644 for (; index < end; index++) {
1645 page = NULL;
1646 cookie = dax_lock_mapping_entry(mapping, index, &page);
1647 if (!cookie)
1648 return -EBUSY;
1649 if (!page)
1650 goto unlock;
1651
1652 SetPageHWPoison(page);
1653
1654 collect_procs_fsdax(page, mapping, index, &to_kill);
1655 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1656 index, mf_flags);
1657unlock:
1658 dax_unlock_mapping_entry(mapping, index, cookie);
1659 }
1660 return 0;
1661}
1662EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1663#endif /* CONFIG_FS_DAX */
1664
405ce051
NH
1665/*
1666 * Called from hugetlb code with hugetlb_lock held.
1667 *
1668 * Return values:
1669 * 0 - free hugepage
1670 * 1 - in-use hugepage
1671 * 2 - not a hugepage
1672 * -EBUSY - the hugepage is busy (try to retry)
1673 * -EHWPOISON - the hugepage is already hwpoisoned
1674 */
1675int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1676{
1677 struct page *page = pfn_to_page(pfn);
1678 struct page *head = compound_head(page);
1679 int ret = 2; /* fallback to normal page handling */
1680 bool count_increased = false;
1681
1682 if (!PageHeadHuge(head))
1683 goto out;
1684
1685 if (flags & MF_COUNT_INCREASED) {
1686 ret = 1;
1687 count_increased = true;
b283d983
NH
1688 } else if (HPageFreed(head)) {
1689 ret = 0;
1690 } else if (HPageMigratable(head)) {
405ce051
NH
1691 ret = get_page_unless_zero(head);
1692 if (ret)
1693 count_increased = true;
1694 } else {
1695 ret = -EBUSY;
1696 goto out;
1697 }
1698
1699 if (TestSetPageHWPoison(head)) {
1700 ret = -EHWPOISON;
1701 goto out;
1702 }
1703
1704 return ret;
1705out:
1706 if (count_increased)
1707 put_page(head);
1708 return ret;
1709}
1710
1711#ifdef CONFIG_HUGETLB_PAGE
1712/*
1713 * Taking refcount of hugetlb pages needs extra care about race conditions
1714 * with basic operations like hugepage allocation/free/demotion.
1715 * So some of prechecks for hwpoison (pinning, and testing/setting
1716 * PageHWPoison) should be done in single hugetlb_lock range.
1717 */
1718static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1719{
761ad8d7 1720 int res;
405ce051
NH
1721 struct page *p = pfn_to_page(pfn);
1722 struct page *head;
761ad8d7 1723 unsigned long page_flags;
405ce051 1724 bool retry = true;
761ad8d7 1725
405ce051
NH
1726 *hugetlb = 1;
1727retry:
1728 res = get_huge_page_for_hwpoison(pfn, flags);
1729 if (res == 2) { /* fallback to normal page handling */
1730 *hugetlb = 0;
1731 return 0;
1732 } else if (res == -EHWPOISON) {
96f96763 1733 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051
NH
1734 if (flags & MF_ACTION_REQUIRED) {
1735 head = compound_head(p);
a3f5d80e 1736 res = kill_accessing_process(current, page_to_pfn(head), flags);
405ce051
NH
1737 }
1738 return res;
1739 } else if (res == -EBUSY) {
1740 if (retry) {
1741 retry = false;
1742 goto retry;
1743 }
1744 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
a3f5d80e 1745 return res;
761ad8d7
NH
1746 }
1747
405ce051
NH
1748 head = compound_head(p);
1749 lock_page(head);
1750
1751 if (hwpoison_filter(p)) {
1752 ClearPageHWPoison(head);
1753 res = -EOPNOTSUPP;
1754 goto out;
1755 }
1756
405ce051
NH
1757 /*
1758 * Handling free hugepage. The possible race with hugepage allocation
1759 * or demotion can be prevented by PageHWPoison flag.
1760 */
1761 if (res == 0) {
1762 unlock_page(head);
1763 res = MF_FAILED;
1764 if (__page_handle_poison(p)) {
1765 page_ref_inc(p);
1766 res = MF_RECOVERED;
761ad8d7 1767 }
405ce051
NH
1768 action_result(pfn, MF_MSG_FREE_HUGE, res);
1769 return res == MF_RECOVERED ? 0 : -EBUSY;
761ad8d7
NH
1770 }
1771
761ad8d7
NH
1772 page_flags = head->flags;
1773
31286a84
NH
1774 /*
1775 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1776 * simply disable it. In order to make it work properly, we need
1777 * make sure that:
1778 * - conversion of a pud that maps an error hugetlb into hwpoison
1779 * entry properly works, and
1780 * - other mm code walking over page table is aware of pud-aligned
1781 * hwpoison entries.
1782 */
1783 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1784 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1785 res = -EBUSY;
1786 goto out;
1787 }
1788
ed8c2f49 1789 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1790 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1791 res = -EBUSY;
1792 goto out;
1793 }
1794
ea6d0630 1795 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1796out:
1797 unlock_page(head);
1798 return res;
1799}
00cc790e 1800
405ce051
NH
1801#else
1802static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1803{
1804 return 0;
1805}
00cc790e
SR
1806
1807#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 1808
6100e34b
DW
1809static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1810 struct dev_pagemap *pgmap)
1811{
1812 struct page *page = pfn_to_page(pfn);
00cc790e 1813 int rc = -ENXIO;
6100e34b 1814
1e8aaedb
OS
1815 if (flags & MF_COUNT_INCREASED)
1816 /*
1817 * Drop the extra refcount in case we come from madvise().
1818 */
1819 put_page(page);
1820
34dc45be 1821 /* device metadata space is not recoverable */
00cc790e 1822 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 1823 goto out;
61e28cf0 1824
6100e34b 1825 /*
33a8f7f2
SR
1826 * Call driver's implementation to handle the memory failure, otherwise
1827 * fall back to generic handler.
6100e34b 1828 */
33a8f7f2
SR
1829 if (pgmap->ops->memory_failure) {
1830 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 1831 /*
33a8f7f2
SR
1832 * Fall back to generic handler too if operation is not
1833 * supported inside the driver/device/filesystem.
6100e34b 1834 */
33a8f7f2
SR
1835 if (rc != -EOPNOTSUPP)
1836 goto out;
6100e34b
DW
1837 }
1838
00cc790e 1839 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
1840out:
1841 /* drop pgmap ref acquired in caller */
1842 put_dev_pagemap(pgmap);
1843 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1844 return rc;
1845}
1846
91d00547
NH
1847static DEFINE_MUTEX(mf_mutex);
1848
cd42f4a3
TL
1849/**
1850 * memory_failure - Handle memory failure of a page.
1851 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1852 * @flags: fine tune action taken
1853 *
1854 * This function is called by the low level machine check code
1855 * of an architecture when it detects hardware memory corruption
1856 * of a page. It tries its best to recover, which includes
1857 * dropping pages, killing processes etc.
1858 *
1859 * The function is primarily of use for corruptions that
1860 * happen outside the current execution context (e.g. when
1861 * detected by a background scrubber)
1862 *
1863 * Must run in process context (e.g. a work queue) with interrupts
1864 * enabled and no spinlocks hold.
d1fe111f 1865 *
1866 * Return: 0 for successfully handled the memory error,
9113eaf3 1867 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 1868 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 1869 */
83b57531 1870int memory_failure(unsigned long pfn, int flags)
6a46079c 1871{
6a46079c 1872 struct page *p;
7af446a8 1873 struct page *hpage;
6100e34b 1874 struct dev_pagemap *pgmap;
171936dd 1875 int res = 0;
524fca1e 1876 unsigned long page_flags;
a8b2c2ce 1877 bool retry = true;
405ce051 1878 int hugetlb = 0;
6a46079c
AK
1879
1880 if (!sysctl_memory_failure_recovery)
83b57531 1881 panic("Memory failure on page %lx", pfn);
6a46079c 1882
03b122da
TL
1883 mutex_lock(&mf_mutex);
1884
67f22ba7 1885 if (!(flags & MF_SW_SIMULATED))
1886 hw_memory_failure = true;
1887
96c804a6
DH
1888 p = pfn_to_online_page(pfn);
1889 if (!p) {
03b122da
TL
1890 res = arch_memory_failure(pfn, flags);
1891 if (res == 0)
1892 goto unlock_mutex;
1893
96c804a6
DH
1894 if (pfn_valid(pfn)) {
1895 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
1896 if (pgmap) {
1897 res = memory_failure_dev_pagemap(pfn, flags,
1898 pgmap);
1899 goto unlock_mutex;
1900 }
96c804a6 1901 }
96f96763 1902 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
1903 res = -ENXIO;
1904 goto unlock_mutex;
6a46079c
AK
1905 }
1906
a8b2c2ce 1907try_again:
405ce051
NH
1908 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1909 if (hugetlb)
171936dd 1910 goto unlock_mutex;
171936dd 1911
6a46079c 1912 if (TestSetPageHWPoison(p)) {
96f96763 1913 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 1914 res = -EHWPOISON;
a3f5d80e
NH
1915 if (flags & MF_ACTION_REQUIRED)
1916 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
1917 if (flags & MF_COUNT_INCREASED)
1918 put_page(p);
171936dd 1919 goto unlock_mutex;
6a46079c
AK
1920 }
1921
75ee64b3 1922 hpage = compound_head(p);
6a46079c
AK
1923
1924 /*
1925 * We need/can do nothing about count=0 pages.
1926 * 1) it's a free page, and therefore in safe hand:
1927 * prep_new_page() will be the gate keeper.
761ad8d7 1928 * 2) it's part of a non-compound high order page.
6a46079c
AK
1929 * Implies some kernel user: cannot stop them from
1930 * R/W the page; let's pray that the page has been
1931 * used and will be freed some time later.
1932 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1933 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1934 */
0ed950d1
NH
1935 if (!(flags & MF_COUNT_INCREASED)) {
1936 res = get_hwpoison_page(p, flags);
1937 if (!res) {
1938 if (is_free_buddy_page(p)) {
1939 if (take_page_off_buddy(p)) {
1940 page_ref_inc(p);
1941 res = MF_RECOVERED;
1942 } else {
1943 /* We lost the race, try again */
1944 if (retry) {
1945 ClearPageHWPoison(p);
0ed950d1
NH
1946 retry = false;
1947 goto try_again;
1948 }
1949 res = MF_FAILED;
a8b2c2ce 1950 }
0ed950d1
NH
1951 action_result(pfn, MF_MSG_BUDDY, res);
1952 res = res == MF_RECOVERED ? 0 : -EBUSY;
1953 } else {
1954 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1955 res = -EBUSY;
a8b2c2ce 1956 }
0ed950d1
NH
1957 goto unlock_mutex;
1958 } else if (res < 0) {
1959 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 1960 res = -EBUSY;
0ed950d1 1961 goto unlock_mutex;
8d22ba1b 1962 }
6a46079c
AK
1963 }
1964
761ad8d7 1965 if (PageTransHuge(hpage)) {
eac96c3e
YS
1966 /*
1967 * The flag must be set after the refcount is bumped
1968 * otherwise it may race with THP split.
1969 * And the flag can't be set in get_hwpoison_page() since
1970 * it is called by soft offline too and it is just called
1971 * for !MF_COUNT_INCREASE. So here seems to be the best
1972 * place.
1973 *
1974 * Don't need care about the above error handling paths for
1975 * get_hwpoison_page() since they handle either free page
1976 * or unhandlable page. The refcount is bumped iff the
1977 * page is a valid handlable page.
1978 */
1979 SetPageHasHWPoisoned(hpage);
5d1fd5dc
NH
1980 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1981 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1982 res = -EBUSY;
1983 goto unlock_mutex;
5d1fd5dc 1984 }
415c64c1 1985 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1986 }
1987
e43c3afb
WF
1988 /*
1989 * We ignore non-LRU pages for good reasons.
1990 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1991 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1992 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1993 * The check (unnecessarily) ignores LRU pages being isolated and
1994 * walked by the page reclaim code, however that's not a big loss.
1995 */
d0505e9f 1996 shake_page(p);
e43c3afb 1997
761ad8d7 1998 lock_page(p);
847ce401 1999
f37d4298 2000 /*
75ee64b3
ML
2001 * We're only intended to deal with the non-Compound page here.
2002 * However, the page could have changed compound pages due to
2003 * race window. If this happens, we could try again to hopefully
2004 * handle the page next round.
f37d4298 2005 */
75ee64b3
ML
2006 if (PageCompound(p)) {
2007 if (retry) {
e240ac52 2008 ClearPageHWPoison(p);
75ee64b3
ML
2009 unlock_page(p);
2010 put_page(p);
2011 flags &= ~MF_COUNT_INCREASED;
2012 retry = false;
2013 goto try_again;
2014 }
cc637b17 2015 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 2016 res = -EBUSY;
171936dd 2017 goto unlock_page;
f37d4298
AK
2018 }
2019
524fca1e
NH
2020 /*
2021 * We use page flags to determine what action should be taken, but
2022 * the flags can be modified by the error containment action. One
2023 * example is an mlocked page, where PG_mlocked is cleared by
2024 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2025 * correctly, we save a copy of the page flags at this time.
2026 */
7d9d46ac 2027 page_flags = p->flags;
524fca1e 2028
7c116f2b 2029 if (hwpoison_filter(p)) {
e240ac52 2030 TestClearPageHWPoison(p);
761ad8d7 2031 unlock_page(p);
dd6e2402 2032 put_page(p);
d1fe111f 2033 res = -EOPNOTSUPP;
171936dd 2034 goto unlock_mutex;
7c116f2b 2035 }
847ce401 2036
e8675d29 2037 /*
2038 * __munlock_pagevec may clear a writeback page's LRU flag without
2039 * page_lock. We need wait writeback completion for this page or it
2040 * may trigger vfs BUG while evict inode.
2041 */
b04d3eeb 2042 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2043 goto identify_page_state;
2044
6edd6cc6
NH
2045 /*
2046 * It's very difficult to mess with pages currently under IO
2047 * and in many cases impossible, so we just avoid it here.
2048 */
6a46079c
AK
2049 wait_on_page_writeback(p);
2050
2051 /*
2052 * Now take care of user space mappings.
6ffcd825 2053 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2054 */
ed8c2f49 2055 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 2056 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 2057 res = -EBUSY;
171936dd 2058 goto unlock_page;
1668bfd5 2059 }
6a46079c
AK
2060
2061 /*
2062 * Torn down by someone else?
2063 */
dc2a1cbf 2064 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 2065 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 2066 res = -EBUSY;
171936dd 2067 goto unlock_page;
6a46079c
AK
2068 }
2069
0bc1f8b0 2070identify_page_state:
0348d2eb 2071 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2072 mutex_unlock(&mf_mutex);
2073 return res;
171936dd 2074unlock_page:
761ad8d7 2075 unlock_page(p);
171936dd
TL
2076unlock_mutex:
2077 mutex_unlock(&mf_mutex);
6a46079c
AK
2078 return res;
2079}
cd42f4a3 2080EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2081
ea8f5fb8
HY
2082#define MEMORY_FAILURE_FIFO_ORDER 4
2083#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2084
2085struct memory_failure_entry {
2086 unsigned long pfn;
ea8f5fb8
HY
2087 int flags;
2088};
2089
2090struct memory_failure_cpu {
2091 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2092 MEMORY_FAILURE_FIFO_SIZE);
2093 spinlock_t lock;
2094 struct work_struct work;
2095};
2096
2097static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2098
2099/**
2100 * memory_failure_queue - Schedule handling memory failure of a page.
2101 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2102 * @flags: Flags for memory failure handling
2103 *
2104 * This function is called by the low level hardware error handler
2105 * when it detects hardware memory corruption of a page. It schedules
2106 * the recovering of error page, including dropping pages, killing
2107 * processes etc.
2108 *
2109 * The function is primarily of use for corruptions that
2110 * happen outside the current execution context (e.g. when
2111 * detected by a background scrubber)
2112 *
2113 * Can run in IRQ context.
2114 */
83b57531 2115void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2116{
2117 struct memory_failure_cpu *mf_cpu;
2118 unsigned long proc_flags;
2119 struct memory_failure_entry entry = {
2120 .pfn = pfn,
ea8f5fb8
HY
2121 .flags = flags,
2122 };
2123
2124 mf_cpu = &get_cpu_var(memory_failure_cpu);
2125 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2126 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2127 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2128 else
96f96763 2129 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2130 pfn);
2131 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2132 put_cpu_var(memory_failure_cpu);
2133}
2134EXPORT_SYMBOL_GPL(memory_failure_queue);
2135
2136static void memory_failure_work_func(struct work_struct *work)
2137{
2138 struct memory_failure_cpu *mf_cpu;
2139 struct memory_failure_entry entry = { 0, };
2140 unsigned long proc_flags;
2141 int gotten;
2142
06202231 2143 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2144 for (;;) {
2145 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2146 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2147 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2148 if (!gotten)
2149 break;
cf870c70 2150 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2151 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2152 else
83b57531 2153 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2154 }
2155}
2156
06202231
JM
2157/*
2158 * Process memory_failure work queued on the specified CPU.
2159 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2160 */
2161void memory_failure_queue_kick(int cpu)
2162{
2163 struct memory_failure_cpu *mf_cpu;
2164
2165 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2166 cancel_work_sync(&mf_cpu->work);
2167 memory_failure_work_func(&mf_cpu->work);
2168}
2169
ea8f5fb8
HY
2170static int __init memory_failure_init(void)
2171{
2172 struct memory_failure_cpu *mf_cpu;
2173 int cpu;
2174
2175 for_each_possible_cpu(cpu) {
2176 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2177 spin_lock_init(&mf_cpu->lock);
2178 INIT_KFIFO(mf_cpu->fifo);
2179 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2180 }
2181
2182 return 0;
2183}
2184core_initcall(memory_failure_init);
2185
96f96763
KW
2186#undef pr_fmt
2187#define pr_fmt(fmt) "" fmt
a5f65109
NH
2188#define unpoison_pr_info(fmt, pfn, rs) \
2189({ \
2190 if (__ratelimit(rs)) \
2191 pr_info(fmt, pfn); \
2192})
2193
847ce401
WF
2194/**
2195 * unpoison_memory - Unpoison a previously poisoned page
2196 * @pfn: Page number of the to be unpoisoned page
2197 *
2198 * Software-unpoison a page that has been poisoned by
2199 * memory_failure() earlier.
2200 *
2201 * This is only done on the software-level, so it only works
2202 * for linux injected failures, not real hardware failures
2203 *
2204 * Returns 0 for success, otherwise -errno.
2205 */
2206int unpoison_memory(unsigned long pfn)
2207{
2208 struct page *page;
2209 struct page *p;
bf181c58 2210 int ret = -EBUSY;
c8bd84f7 2211 int freeit = 0;
a5f65109
NH
2212 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2213 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2214
2215 if (!pfn_valid(pfn))
2216 return -ENXIO;
2217
2218 p = pfn_to_page(pfn);
2219 page = compound_head(p);
2220
91d00547
NH
2221 mutex_lock(&mf_mutex);
2222
67f22ba7 2223 if (hw_memory_failure) {
2224 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2225 pfn, &unpoison_rs);
2226 ret = -EOPNOTSUPP;
2227 goto unlock_mutex;
2228 }
2229
847ce401 2230 if (!PageHWPoison(p)) {
495367c0 2231 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2232 pfn, &unpoison_rs);
91d00547 2233 goto unlock_mutex;
847ce401
WF
2234 }
2235
230ac719 2236 if (page_count(page) > 1) {
495367c0 2237 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2238 pfn, &unpoison_rs);
91d00547 2239 goto unlock_mutex;
230ac719
NH
2240 }
2241
2242 if (page_mapped(page)) {
495367c0 2243 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2244 pfn, &unpoison_rs);
91d00547 2245 goto unlock_mutex;
230ac719
NH
2246 }
2247
2248 if (page_mapping(page)) {
495367c0 2249 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2250 pfn, &unpoison_rs);
91d00547 2251 goto unlock_mutex;
0cea3fdc
WL
2252 }
2253
bf181c58 2254 if (PageSlab(page) || PageTable(page))
91d00547 2255 goto unlock_mutex;
847ce401 2256
bf181c58
NH
2257 ret = get_hwpoison_page(p, MF_UNPOISON);
2258 if (!ret) {
c8bd84f7 2259 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
bf181c58
NH
2260 } else if (ret < 0) {
2261 if (ret == -EHWPOISON) {
c8bd84f7 2262 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
bf181c58
NH
2263 } else
2264 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2265 pfn, &unpoison_rs);
2266 } else {
c8bd84f7 2267 freeit = !!TestClearPageHWPoison(p);
847ce401 2268
dd6e2402 2269 put_page(page);
bf181c58
NH
2270 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2271 put_page(page);
2272 ret = 0;
2273 }
2274 }
847ce401 2275
91d00547
NH
2276unlock_mutex:
2277 mutex_unlock(&mf_mutex);
c8bd84f7 2278 if (!ret || freeit) {
2279 num_poisoned_pages_dec();
2280 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2281 page_to_pfn(p), &unpoison_rs);
2282 }
91d00547 2283 return ret;
847ce401
WF
2284}
2285EXPORT_SYMBOL(unpoison_memory);
facb6011 2286
6b9a217e 2287static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2288{
6b9a217e
OS
2289 bool isolated = false;
2290 bool lru = PageLRU(page);
d950b958 2291
6b9a217e 2292 if (PageHuge(page)) {
7ce82f4c 2293 isolated = !isolate_hugetlb(page, pagelist);
6b9a217e
OS
2294 } else {
2295 if (lru)
2296 isolated = !isolate_lru_page(page);
2297 else
2298 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2299
2300 if (isolated)
2301 list_add(&page->lru, pagelist);
0ebff32c 2302 }
d950b958 2303
6b9a217e
OS
2304 if (isolated && lru)
2305 inc_node_page_state(page, NR_ISOLATED_ANON +
2306 page_is_file_lru(page));
2307
03613808 2308 /*
6b9a217e
OS
2309 * If we succeed to isolate the page, we grabbed another refcount on
2310 * the page, so we can safely drop the one we got from get_any_pages().
2311 * If we failed to isolate the page, it means that we cannot go further
2312 * and we will return an error, so drop the reference we got from
2313 * get_any_pages() as well.
03613808 2314 */
6b9a217e
OS
2315 put_page(page);
2316 return isolated;
d950b958
NH
2317}
2318
6b9a217e
OS
2319/*
2320 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2321 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2322 * If the page is mapped, it migrates the contents over.
2323 */
2324static int __soft_offline_page(struct page *page)
af8fae7c 2325{
d6c75dc2 2326 long ret = 0;
af8fae7c 2327 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2328 struct page *hpage = compound_head(page);
2329 char const *msg_page[] = {"page", "hugepage"};
2330 bool huge = PageHuge(page);
2331 LIST_HEAD(pagelist);
54608759
JK
2332 struct migration_target_control mtc = {
2333 .nid = NUMA_NO_NODE,
2334 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2335 };
facb6011 2336
0ebff32c 2337 lock_page(page);
6b9a217e
OS
2338 if (!PageHuge(page))
2339 wait_on_page_writeback(page);
af8fae7c
NH
2340 if (PageHWPoison(page)) {
2341 unlock_page(page);
dd6e2402 2342 put_page(page);
af8fae7c 2343 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2344 return 0;
af8fae7c 2345 }
6b9a217e 2346
593396b8 2347 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2348 /*
2349 * Try to invalidate first. This should work for
2350 * non dirty unmapped page cache pages.
2351 */
2352 ret = invalidate_inode_page(page);
facb6011 2353 unlock_page(page);
6b9a217e 2354
6b9a217e 2355 if (ret) {
fb46e735 2356 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2357 page_handle_poison(page, false, true);
af8fae7c 2358 return 0;
facb6011
AK
2359 }
2360
6b9a217e 2361 if (isolate_page(hpage, &pagelist)) {
54608759 2362 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2363 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2364 if (!ret) {
6b9a217e
OS
2365 bool release = !huge;
2366
2367 if (!page_handle_poison(page, huge, release))
2368 ret = -EBUSY;
79f5f8fa 2369 } else {
85fbe5d1
YX
2370 if (!list_empty(&pagelist))
2371 putback_movable_pages(&pagelist);
59c82b70 2372
d6c75dc2 2373 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2374 pfn, msg_page[huge], ret, &page->flags);
facb6011 2375 if (ret > 0)
3f4b815a 2376 ret = -EBUSY;
facb6011
AK
2377 }
2378 } else {
23efd080
MWO
2379 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2380 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2381 ret = -EBUSY;
facb6011 2382 }
facb6011
AK
2383 return ret;
2384}
86e05773 2385
6b9a217e 2386static int soft_offline_in_use_page(struct page *page)
acc14dc4 2387{
acc14dc4
NH
2388 struct page *hpage = compound_head(page);
2389
694bf0b0
OS
2390 if (!PageHuge(page) && PageTransHuge(hpage))
2391 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2392 return -EBUSY;
6b9a217e 2393 return __soft_offline_page(page);
acc14dc4
NH
2394}
2395
d4ae9916 2396static int soft_offline_free_page(struct page *page)
acc14dc4 2397{
6b9a217e 2398 int rc = 0;
acc14dc4 2399
6b9a217e
OS
2400 if (!page_handle_poison(page, true, false))
2401 rc = -EBUSY;
06be6ff3 2402
d4ae9916 2403 return rc;
acc14dc4
NH
2404}
2405
dad4e5b3
DW
2406static void put_ref_page(struct page *page)
2407{
2408 if (page)
2409 put_page(page);
2410}
2411
86e05773
WL
2412/**
2413 * soft_offline_page - Soft offline a page.
feec24a6 2414 * @pfn: pfn to soft-offline
86e05773
WL
2415 * @flags: flags. Same as memory_failure().
2416 *
9113eaf3 2417 * Returns 0 on success
2418 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2419 * < 0 otherwise negated errno.
86e05773
WL
2420 *
2421 * Soft offline a page, by migration or invalidation,
2422 * without killing anything. This is for the case when
2423 * a page is not corrupted yet (so it's still valid to access),
2424 * but has had a number of corrected errors and is better taken
2425 * out.
2426 *
2427 * The actual policy on when to do that is maintained by
2428 * user space.
2429 *
2430 * This should never impact any application or cause data loss,
2431 * however it might take some time.
2432 *
2433 * This is not a 100% solution for all memory, but tries to be
2434 * ``good enough'' for the majority of memory.
2435 */
feec24a6 2436int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2437{
2438 int ret;
b94e0282 2439 bool try_again = true;
dad4e5b3
DW
2440 struct page *page, *ref_page = NULL;
2441
2442 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2443
feec24a6
NH
2444 if (!pfn_valid(pfn))
2445 return -ENXIO;
dad4e5b3
DW
2446 if (flags & MF_COUNT_INCREASED)
2447 ref_page = pfn_to_page(pfn);
2448
feec24a6
NH
2449 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2450 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2451 if (!page) {
2452 put_ref_page(ref_page);
86a66810 2453 return -EIO;
dad4e5b3 2454 }
86a66810 2455
91d00547
NH
2456 mutex_lock(&mf_mutex);
2457
86e05773 2458 if (PageHWPoison(page)) {
8295d535 2459 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2460 put_ref_page(ref_page);
91d00547 2461 mutex_unlock(&mf_mutex);
5a2ffca3 2462 return 0;
86e05773 2463 }
86e05773 2464
b94e0282 2465retry:
bfc8c901 2466 get_online_mems();
bf6445bc 2467 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2468 put_online_mems();
4e41a30c 2469
9113eaf3 2470 if (hwpoison_filter(page)) {
2471 if (ret > 0)
2472 put_page(page);
2473 else
2474 put_ref_page(ref_page);
2475
2476 mutex_unlock(&mf_mutex);
2477 return -EOPNOTSUPP;
2478 }
2479
8295d535 2480 if (ret > 0) {
6b9a217e 2481 ret = soft_offline_in_use_page(page);
8295d535 2482 } else if (ret == 0) {
b94e0282
OS
2483 if (soft_offline_free_page(page) && try_again) {
2484 try_again = false;
2a57d83c 2485 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2486 goto retry;
2487 }
8295d535 2488 }
4e41a30c 2489
91d00547
NH
2490 mutex_unlock(&mf_mutex);
2491
86e05773
WL
2492 return ret;
2493}
60f272f6 2494
2495void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2496{
2497 int i;
2498
2499 /*
2500 * A further optimization is to have per section refcounted
2501 * num_poisoned_pages. But that would need more space per memmap, so
2502 * for now just do a quick global check to speed up this routine in the
2503 * absence of bad pages.
2504 */
2505 if (atomic_long_read(&num_poisoned_pages) == 0)
2506 return;
2507
2508 for (i = 0; i < nr_pages; i++) {
2509 if (PageHWPoison(&memmap[i])) {
2510 num_poisoned_pages_dec();
2511 ClearPageHWPoison(&memmap[i]);
2512 }
2513 }
2514}