mm: factor helpers for memory_failure_dev_pagemap
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
6a46079c
AK
36#include <linux/kernel.h>
37#include <linux/mm.h>
38#include <linux/page-flags.h>
478c5ffc 39#include <linux/kernel-page-flags.h>
3f07c014 40#include <linux/sched/signal.h>
29930025 41#include <linux/sched/task.h>
96c84dde 42#include <linux/dax.h>
01e00f88 43#include <linux/ksm.h>
6a46079c 44#include <linux/rmap.h>
b9e15baf 45#include <linux/export.h>
6a46079c
AK
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011 49#include <linux/migrate.h>
facb6011 50#include <linux/suspend.h>
5a0e3ad6 51#include <linux/slab.h>
bf998156 52#include <linux/swapops.h>
7af446a8 53#include <linux/hugetlb.h>
20d6c96b 54#include <linux/memory_hotplug.h>
5db8a73a 55#include <linux/mm_inline.h>
6100e34b 56#include <linux/memremap.h>
ea8f5fb8 57#include <linux/kfifo.h>
a5f65109 58#include <linux/ratelimit.h>
d4ae9916 59#include <linux/page-isolation.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
014bb1de 62#include "swap.h"
6a46079c 63#include "internal.h"
97f0b134 64#include "ras/ras_event.h"
6a46079c
AK
65
66int sysctl_memory_failure_early_kill __read_mostly = 0;
67
68int sysctl_memory_failure_recovery __read_mostly = 1;
69
293c07e3 70atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 71
67f22ba7 72static bool hw_memory_failure __read_mostly = false;
73
510d25c9
NH
74static bool __page_handle_poison(struct page *page)
75{
f87060d3 76 int ret;
510d25c9
NH
77
78 zone_pcp_disable(page_zone(page));
79 ret = dissolve_free_huge_page(page);
80 if (!ret)
81 ret = take_page_off_buddy(page);
82 zone_pcp_enable(page_zone(page));
83
f87060d3 84 return ret > 0;
510d25c9
NH
85}
86
6b9a217e 87static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 88{
6b9a217e
OS
89 if (hugepage_or_freepage) {
90 /*
91 * Doing this check for free pages is also fine since dissolve_free_huge_page
92 * returns 0 for non-hugetlb pages as well.
93 */
510d25c9 94 if (!__page_handle_poison(page))
6b9a217e
OS
95 /*
96 * We could fail to take off the target page from buddy
f0953a1b 97 * for example due to racy page allocation, but that's
6b9a217e
OS
98 * acceptable because soft-offlined page is not broken
99 * and if someone really want to use it, they should
100 * take it.
101 */
102 return false;
103 }
104
06be6ff3 105 SetPageHWPoison(page);
79f5f8fa
OS
106 if (release)
107 put_page(page);
06be6ff3
OS
108 page_ref_inc(page);
109 num_poisoned_pages_inc();
6b9a217e
OS
110
111 return true;
06be6ff3
OS
112}
113
27df5068
AK
114#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
115
1bfe5feb 116u32 hwpoison_filter_enable = 0;
7c116f2b
WF
117u32 hwpoison_filter_dev_major = ~0U;
118u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
119u64 hwpoison_filter_flags_mask;
120u64 hwpoison_filter_flags_value;
1bfe5feb 121EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
122EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
123EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
124EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
125EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
126
127static int hwpoison_filter_dev(struct page *p)
128{
129 struct address_space *mapping;
130 dev_t dev;
131
132 if (hwpoison_filter_dev_major == ~0U &&
133 hwpoison_filter_dev_minor == ~0U)
134 return 0;
135
7c116f2b
WF
136 mapping = page_mapping(p);
137 if (mapping == NULL || mapping->host == NULL)
138 return -EINVAL;
139
140 dev = mapping->host->i_sb->s_dev;
141 if (hwpoison_filter_dev_major != ~0U &&
142 hwpoison_filter_dev_major != MAJOR(dev))
143 return -EINVAL;
144 if (hwpoison_filter_dev_minor != ~0U &&
145 hwpoison_filter_dev_minor != MINOR(dev))
146 return -EINVAL;
147
148 return 0;
149}
150
478c5ffc
WF
151static int hwpoison_filter_flags(struct page *p)
152{
153 if (!hwpoison_filter_flags_mask)
154 return 0;
155
156 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
157 hwpoison_filter_flags_value)
158 return 0;
159 else
160 return -EINVAL;
161}
162
4fd466eb
AK
163/*
164 * This allows stress tests to limit test scope to a collection of tasks
165 * by putting them under some memcg. This prevents killing unrelated/important
166 * processes such as /sbin/init. Note that the target task may share clean
167 * pages with init (eg. libc text), which is harmless. If the target task
168 * share _dirty_ pages with another task B, the test scheme must make sure B
169 * is also included in the memcg. At last, due to race conditions this filter
170 * can only guarantee that the page either belongs to the memcg tasks, or is
171 * a freed page.
172 */
94a59fb3 173#ifdef CONFIG_MEMCG
4fd466eb
AK
174u64 hwpoison_filter_memcg;
175EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
176static int hwpoison_filter_task(struct page *p)
177{
4fd466eb
AK
178 if (!hwpoison_filter_memcg)
179 return 0;
180
94a59fb3 181 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
182 return -EINVAL;
183
184 return 0;
185}
186#else
187static int hwpoison_filter_task(struct page *p) { return 0; }
188#endif
189
7c116f2b
WF
190int hwpoison_filter(struct page *p)
191{
1bfe5feb
HL
192 if (!hwpoison_filter_enable)
193 return 0;
194
7c116f2b
WF
195 if (hwpoison_filter_dev(p))
196 return -EINVAL;
197
478c5ffc
WF
198 if (hwpoison_filter_flags(p))
199 return -EINVAL;
200
4fd466eb
AK
201 if (hwpoison_filter_task(p))
202 return -EINVAL;
203
7c116f2b
WF
204 return 0;
205}
27df5068
AK
206#else
207int hwpoison_filter(struct page *p)
208{
209 return 0;
210}
211#endif
212
7c116f2b
WF
213EXPORT_SYMBOL_GPL(hwpoison_filter);
214
ae1139ec
DW
215/*
216 * Kill all processes that have a poisoned page mapped and then isolate
217 * the page.
218 *
219 * General strategy:
220 * Find all processes having the page mapped and kill them.
221 * But we keep a page reference around so that the page is not
222 * actually freed yet.
223 * Then stash the page away
224 *
225 * There's no convenient way to get back to mapped processes
226 * from the VMAs. So do a brute-force search over all
227 * running processes.
228 *
229 * Remember that machine checks are not common (or rather
230 * if they are common you have other problems), so this shouldn't
231 * be a performance issue.
232 *
233 * Also there are some races possible while we get from the
234 * error detection to actually handle it.
235 */
236
237struct to_kill {
238 struct list_head nd;
239 struct task_struct *tsk;
240 unsigned long addr;
241 short size_shift;
ae1139ec
DW
242};
243
6a46079c 244/*
7329bbeb
TL
245 * Send all the processes who have the page mapped a signal.
246 * ``action optional'' if they are not immediately affected by the error
247 * ``action required'' if error happened in current execution context
6a46079c 248 */
ae1139ec 249static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 250{
ae1139ec
DW
251 struct task_struct *t = tk->tsk;
252 short addr_lsb = tk->size_shift;
872e9a20 253 int ret = 0;
6a46079c 254
03151c6e 255 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 256 pfn, t->comm, t->pid);
7329bbeb 257
49775047
ML
258 if ((flags & MF_ACTION_REQUIRED) && (t == current))
259 ret = force_sig_mceerr(BUS_MCEERR_AR,
260 (void __user *)tk->addr, addr_lsb);
261 else
7329bbeb 262 /*
49775047
ML
263 * Signal other processes sharing the page if they have
264 * PF_MCE_EARLY set.
7329bbeb
TL
265 * Don't use force here, it's convenient if the signal
266 * can be temporarily blocked.
267 * This could cause a loop when the user sets SIGBUS
268 * to SIG_IGN, but hopefully no one will do that?
269 */
ae1139ec 270 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 271 addr_lsb, t); /* synchronous? */
6a46079c 272 if (ret < 0)
495367c0 273 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 274 t->comm, t->pid, ret);
6a46079c
AK
275 return ret;
276}
277
588f9ce6 278/*
47e431f4 279 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 280 * lru_add_drain_all.
588f9ce6 281 */
d0505e9f 282void shake_page(struct page *p)
588f9ce6 283{
8bcb74de
NH
284 if (PageHuge(p))
285 return;
286
588f9ce6
AK
287 if (!PageSlab(p)) {
288 lru_add_drain_all();
588f9ce6
AK
289 if (PageLRU(p) || is_free_buddy_page(p))
290 return;
291 }
facb6011 292
588f9ce6 293 /*
d0505e9f
YS
294 * TODO: Could shrink slab caches here if a lightweight range-based
295 * shrinker will be available.
588f9ce6
AK
296 */
297}
298EXPORT_SYMBOL_GPL(shake_page);
299
6100e34b
DW
300static unsigned long dev_pagemap_mapping_shift(struct page *page,
301 struct vm_area_struct *vma)
302{
303 unsigned long address = vma_address(page, vma);
5c91c0e7 304 unsigned long ret = 0;
6100e34b
DW
305 pgd_t *pgd;
306 p4d_t *p4d;
307 pud_t *pud;
308 pmd_t *pmd;
309 pte_t *pte;
310
a994402b 311 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
312 pgd = pgd_offset(vma->vm_mm, address);
313 if (!pgd_present(*pgd))
314 return 0;
315 p4d = p4d_offset(pgd, address);
316 if (!p4d_present(*p4d))
317 return 0;
318 pud = pud_offset(p4d, address);
319 if (!pud_present(*pud))
320 return 0;
321 if (pud_devmap(*pud))
322 return PUD_SHIFT;
323 pmd = pmd_offset(pud, address);
324 if (!pmd_present(*pmd))
325 return 0;
326 if (pmd_devmap(*pmd))
327 return PMD_SHIFT;
328 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
329 if (pte_present(*pte) && pte_devmap(*pte))
330 ret = PAGE_SHIFT;
331 pte_unmap(pte);
332 return ret;
6100e34b 333}
6a46079c
AK
334
335/*
336 * Failure handling: if we can't find or can't kill a process there's
337 * not much we can do. We just print a message and ignore otherwise.
338 */
339
340/*
341 * Schedule a process for later kill.
342 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
6a46079c
AK
343 */
344static void add_to_kill(struct task_struct *tsk, struct page *p,
345 struct vm_area_struct *vma,
996ff7a0 346 struct list_head *to_kill)
6a46079c
AK
347{
348 struct to_kill *tk;
349
996ff7a0
JC
350 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
351 if (!tk) {
352 pr_err("Memory failure: Out of memory while machine check handling\n");
353 return;
6a46079c 354 }
996ff7a0 355
6a46079c 356 tk->addr = page_address_in_vma(p, vma);
6100e34b
DW
357 if (is_zone_device_page(p))
358 tk->size_shift = dev_pagemap_mapping_shift(p, vma);
359 else
75068518 360 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
361
362 /*
3d7fed4a
JC
363 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
364 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
365 * so "tk->size_shift == 0" effectively checks no mapping on
366 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
367 * to a process' address space, it's possible not all N VMAs
368 * contain mappings for the page, but at least one VMA does.
369 * Only deliver SIGBUS with payload derived from the VMA that
370 * has a mapping for the page.
6a46079c 371 */
3d7fed4a 372 if (tk->addr == -EFAULT) {
495367c0 373 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c 374 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
375 } else if (tk->size_shift == 0) {
376 kfree(tk);
377 return;
6a46079c 378 }
996ff7a0 379
6a46079c
AK
380 get_task_struct(tsk);
381 tk->tsk = tsk;
382 list_add_tail(&tk->nd, to_kill);
383}
384
385/*
386 * Kill the processes that have been collected earlier.
387 *
a21c184f
ML
388 * Only do anything when FORCEKILL is set, otherwise just free the
389 * list (this is used for clean pages which do not need killing)
6a46079c
AK
390 * Also when FAIL is set do a force kill because something went
391 * wrong earlier.
392 */
ae1139ec
DW
393static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
394 unsigned long pfn, int flags)
6a46079c
AK
395{
396 struct to_kill *tk, *next;
397
398 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 399 if (forcekill) {
6a46079c 400 /*
af901ca1 401 * In case something went wrong with munmapping
6a46079c
AK
402 * make sure the process doesn't catch the
403 * signal and then access the memory. Just kill it.
6a46079c 404 */
3d7fed4a 405 if (fail || tk->addr == -EFAULT) {
495367c0 406 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 407 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
408 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
409 tk->tsk, PIDTYPE_PID);
6a46079c
AK
410 }
411
412 /*
413 * In theory the process could have mapped
414 * something else on the address in-between. We could
415 * check for that, but we need to tell the
416 * process anyways.
417 */
ae1139ec 418 else if (kill_proc(tk, pfn, flags) < 0)
495367c0 419 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 420 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
421 }
422 put_task_struct(tk->tsk);
423 kfree(tk);
424 }
425}
426
3ba08129
NH
427/*
428 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
429 * on behalf of the thread group. Return task_struct of the (first found)
430 * dedicated thread if found, and return NULL otherwise.
431 *
432 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
433 * have to call rcu_read_lock/unlock() in this function.
434 */
435static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 436{
3ba08129
NH
437 struct task_struct *t;
438
4e018b45
NH
439 for_each_thread(tsk, t) {
440 if (t->flags & PF_MCE_PROCESS) {
441 if (t->flags & PF_MCE_EARLY)
442 return t;
443 } else {
444 if (sysctl_memory_failure_early_kill)
445 return t;
446 }
447 }
3ba08129
NH
448 return NULL;
449}
450
451/*
452 * Determine whether a given process is "early kill" process which expects
453 * to be signaled when some page under the process is hwpoisoned.
454 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 455 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 456 *
30c9cf49
AY
457 * Note that the above is true for Action Optional case. For Action Required
458 * case, it's only meaningful to the current thread which need to be signaled
459 * with SIGBUS, this error is Action Optional for other non current
460 * processes sharing the same error page,if the process is "early kill", the
461 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
462 */
463static struct task_struct *task_early_kill(struct task_struct *tsk,
464 int force_early)
465{
6a46079c 466 if (!tsk->mm)
3ba08129 467 return NULL;
30c9cf49
AY
468 /*
469 * Comparing ->mm here because current task might represent
470 * a subthread, while tsk always points to the main thread.
471 */
472 if (force_early && tsk->mm == current->mm)
473 return current;
474
4e018b45 475 return find_early_kill_thread(tsk);
6a46079c
AK
476}
477
478/*
479 * Collect processes when the error hit an anonymous page.
480 */
481static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 482 int force_early)
6a46079c 483{
9595d769 484 struct folio *folio = page_folio(page);
6a46079c
AK
485 struct vm_area_struct *vma;
486 struct task_struct *tsk;
487 struct anon_vma *av;
bf181b9f 488 pgoff_t pgoff;
6a46079c 489
6d4675e6 490 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 491 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
492 return;
493
a0f7a756 494 pgoff = page_to_pgoff(page);
9b679320 495 read_lock(&tasklist_lock);
6a46079c 496 for_each_process (tsk) {
5beb4930 497 struct anon_vma_chain *vmac;
3ba08129 498 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 499
3ba08129 500 if (!t)
6a46079c 501 continue;
bf181b9f
ML
502 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
503 pgoff, pgoff) {
5beb4930 504 vma = vmac->vma;
6a46079c
AK
505 if (!page_mapped_in_vma(page, vma))
506 continue;
3ba08129 507 if (vma->vm_mm == t->mm)
996ff7a0 508 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
509 }
510 }
6a46079c 511 read_unlock(&tasklist_lock);
4fc3f1d6 512 page_unlock_anon_vma_read(av);
6a46079c
AK
513}
514
515/*
516 * Collect processes when the error hit a file mapped page.
517 */
518static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 519 int force_early)
6a46079c
AK
520{
521 struct vm_area_struct *vma;
522 struct task_struct *tsk;
6a46079c 523 struct address_space *mapping = page->mapping;
c43bc03d 524 pgoff_t pgoff;
6a46079c 525
d28eb9c8 526 i_mmap_lock_read(mapping);
9b679320 527 read_lock(&tasklist_lock);
c43bc03d 528 pgoff = page_to_pgoff(page);
6a46079c 529 for_each_process(tsk) {
3ba08129 530 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 531
3ba08129 532 if (!t)
6a46079c 533 continue;
6b2dbba8 534 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
535 pgoff) {
536 /*
537 * Send early kill signal to tasks where a vma covers
538 * the page but the corrupted page is not necessarily
539 * mapped it in its pte.
540 * Assume applications who requested early kill want
541 * to be informed of all such data corruptions.
542 */
3ba08129 543 if (vma->vm_mm == t->mm)
996ff7a0 544 add_to_kill(t, page, vma, to_kill);
6a46079c
AK
545 }
546 }
6a46079c 547 read_unlock(&tasklist_lock);
d28eb9c8 548 i_mmap_unlock_read(mapping);
6a46079c
AK
549}
550
551/*
552 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 553 */
74614de1
TL
554static void collect_procs(struct page *page, struct list_head *tokill,
555 int force_early)
6a46079c 556{
6a46079c
AK
557 if (!page->mapping)
558 return;
559
6a46079c 560 if (PageAnon(page))
996ff7a0 561 collect_procs_anon(page, tokill, force_early);
6a46079c 562 else
996ff7a0 563 collect_procs_file(page, tokill, force_early);
6a46079c
AK
564}
565
a3f5d80e
NH
566struct hwp_walk {
567 struct to_kill tk;
568 unsigned long pfn;
569 int flags;
570};
571
572static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
573{
574 tk->addr = addr;
575 tk->size_shift = shift;
576}
577
578static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
579 unsigned long poisoned_pfn, struct to_kill *tk)
580{
581 unsigned long pfn = 0;
582
583 if (pte_present(pte)) {
584 pfn = pte_pfn(pte);
585 } else {
586 swp_entry_t swp = pte_to_swp_entry(pte);
587
588 if (is_hwpoison_entry(swp))
589 pfn = hwpoison_entry_to_pfn(swp);
590 }
591
592 if (!pfn || pfn != poisoned_pfn)
593 return 0;
594
595 set_to_kill(tk, addr, shift);
596 return 1;
597}
598
599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
600static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
601 struct hwp_walk *hwp)
602{
603 pmd_t pmd = *pmdp;
604 unsigned long pfn;
605 unsigned long hwpoison_vaddr;
606
607 if (!pmd_present(pmd))
608 return 0;
609 pfn = pmd_pfn(pmd);
610 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
611 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
612 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
613 return 1;
614 }
615 return 0;
616}
617#else
618static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
619 struct hwp_walk *hwp)
620{
621 return 0;
622}
623#endif
624
625static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
626 unsigned long end, struct mm_walk *walk)
627{
f142e707 628 struct hwp_walk *hwp = walk->private;
a3f5d80e 629 int ret = 0;
ea3732f7 630 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
631 spinlock_t *ptl;
632
633 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
634 if (ptl) {
635 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
636 spin_unlock(ptl);
637 goto out;
638 }
639
640 if (pmd_trans_unstable(pmdp))
641 goto out;
642
ea3732f7
ML
643 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
644 addr, &ptl);
a3f5d80e
NH
645 for (; addr != end; ptep++, addr += PAGE_SIZE) {
646 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
647 hwp->pfn, &hwp->tk);
648 if (ret == 1)
649 break;
650 }
ea3732f7 651 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
652out:
653 cond_resched();
654 return ret;
655}
656
657#ifdef CONFIG_HUGETLB_PAGE
658static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
659 unsigned long addr, unsigned long end,
660 struct mm_walk *walk)
661{
f142e707 662 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
663 pte_t pte = huge_ptep_get(ptep);
664 struct hstate *h = hstate_vma(walk->vma);
665
666 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
667 hwp->pfn, &hwp->tk);
668}
669#else
670#define hwpoison_hugetlb_range NULL
671#endif
672
ba9eb3ce 673static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
674 .pmd_entry = hwpoison_pte_range,
675 .hugetlb_entry = hwpoison_hugetlb_range,
676};
677
678/*
679 * Sends SIGBUS to the current process with error info.
680 *
681 * This function is intended to handle "Action Required" MCEs on already
682 * hardware poisoned pages. They could happen, for example, when
683 * memory_failure() failed to unmap the error page at the first call, or
684 * when multiple local machine checks happened on different CPUs.
685 *
686 * MCE handler currently has no easy access to the error virtual address,
687 * so this function walks page table to find it. The returned virtual address
688 * is proper in most cases, but it could be wrong when the application
689 * process has multiple entries mapping the error page.
690 */
691static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
692 int flags)
693{
694 int ret;
695 struct hwp_walk priv = {
696 .pfn = pfn,
697 };
698 priv.tk.tsk = p;
699
700 mmap_read_lock(p->mm);
701 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
702 (void *)&priv);
703 if (ret == 1 && priv.tk.addr)
704 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
705 else
706 ret = 0;
a3f5d80e 707 mmap_read_unlock(p->mm);
046545a6 708 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
709}
710
6a46079c 711static const char *action_name[] = {
cc637b17
XX
712 [MF_IGNORED] = "Ignored",
713 [MF_FAILED] = "Failed",
714 [MF_DELAYED] = "Delayed",
715 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
716};
717
718static const char * const action_page_types[] = {
cc637b17
XX
719 [MF_MSG_KERNEL] = "reserved kernel page",
720 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
721 [MF_MSG_SLAB] = "kernel slab page",
722 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
723 [MF_MSG_HUGE] = "huge page",
724 [MF_MSG_FREE_HUGE] = "free huge page",
31286a84 725 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
726 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
727 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
728 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
729 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
730 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
731 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
732 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
733 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
734 [MF_MSG_CLEAN_LRU] = "clean LRU page",
735 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
736 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 737 [MF_MSG_DAX] = "dax page",
5d1fd5dc 738 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 739 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
740};
741
dc2a1cbf
WF
742/*
743 * XXX: It is possible that a page is isolated from LRU cache,
744 * and then kept in swap cache or failed to remove from page cache.
745 * The page count will stop it from being freed by unpoison.
746 * Stress tests should be aware of this memory leak problem.
747 */
748static int delete_from_lru_cache(struct page *p)
749{
750 if (!isolate_lru_page(p)) {
751 /*
752 * Clear sensible page flags, so that the buddy system won't
753 * complain when the page is unpoison-and-freed.
754 */
755 ClearPageActive(p);
756 ClearPageUnevictable(p);
18365225
MH
757
758 /*
759 * Poisoned page might never drop its ref count to 0 so we have
760 * to uncharge it manually from its memcg.
761 */
bbc6b703 762 mem_cgroup_uncharge(page_folio(p));
18365225 763
dc2a1cbf
WF
764 /*
765 * drop the page count elevated by isolate_lru_page()
766 */
09cbfeaf 767 put_page(p);
dc2a1cbf
WF
768 return 0;
769 }
770 return -EIO;
771}
772
78bb9203
NH
773static int truncate_error_page(struct page *p, unsigned long pfn,
774 struct address_space *mapping)
775{
776 int ret = MF_FAILED;
777
778 if (mapping->a_ops->error_remove_page) {
779 int err = mapping->a_ops->error_remove_page(mapping, p);
780
781 if (err != 0) {
782 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
783 pfn, err);
784 } else if (page_has_private(p) &&
785 !try_to_release_page(p, GFP_NOIO)) {
786 pr_info("Memory failure: %#lx: failed to release buffers\n",
787 pfn);
788 } else {
789 ret = MF_RECOVERED;
790 }
791 } else {
792 /*
793 * If the file system doesn't support it just invalidate
794 * This fails on dirty or anything with private pages
795 */
796 if (invalidate_inode_page(p))
797 ret = MF_RECOVERED;
798 else
799 pr_info("Memory failure: %#lx: Failed to invalidate\n",
800 pfn);
801 }
802
803 return ret;
804}
805
dd0f230a
YS
806struct page_state {
807 unsigned long mask;
808 unsigned long res;
809 enum mf_action_page_type type;
810
811 /* Callback ->action() has to unlock the relevant page inside it. */
812 int (*action)(struct page_state *ps, struct page *p);
813};
814
815/*
816 * Return true if page is still referenced by others, otherwise return
817 * false.
818 *
819 * The extra_pins is true when one extra refcount is expected.
820 */
821static bool has_extra_refcount(struct page_state *ps, struct page *p,
822 bool extra_pins)
823{
824 int count = page_count(p) - 1;
825
826 if (extra_pins)
827 count -= 1;
828
829 if (count > 0) {
830 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
831 page_to_pfn(p), action_page_types[ps->type], count);
832 return true;
833 }
834
835 return false;
836}
837
6a46079c
AK
838/*
839 * Error hit kernel page.
840 * Do nothing, try to be lucky and not touch this instead. For a few cases we
841 * could be more sophisticated.
842 */
dd0f230a 843static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 844{
ea6d0630 845 unlock_page(p);
cc637b17 846 return MF_IGNORED;
6a46079c
AK
847}
848
849/*
850 * Page in unknown state. Do nothing.
851 */
dd0f230a 852static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 853{
dd0f230a 854 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 855 unlock_page(p);
cc637b17 856 return MF_FAILED;
6a46079c
AK
857}
858
6a46079c
AK
859/*
860 * Clean (or cleaned) page cache page.
861 */
dd0f230a 862static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 863{
ea6d0630 864 int ret;
6a46079c 865 struct address_space *mapping;
a7605426 866 bool extra_pins;
6a46079c 867
dc2a1cbf
WF
868 delete_from_lru_cache(p);
869
6a46079c
AK
870 /*
871 * For anonymous pages we're done the only reference left
872 * should be the one m_f() holds.
873 */
ea6d0630
NH
874 if (PageAnon(p)) {
875 ret = MF_RECOVERED;
876 goto out;
877 }
6a46079c
AK
878
879 /*
880 * Now truncate the page in the page cache. This is really
881 * more like a "temporary hole punch"
882 * Don't do this for block devices when someone else
883 * has a reference, because it could be file system metadata
884 * and that's not safe to truncate.
885 */
886 mapping = page_mapping(p);
887 if (!mapping) {
888 /*
889 * Page has been teared down in the meanwhile
890 */
ea6d0630
NH
891 ret = MF_FAILED;
892 goto out;
6a46079c
AK
893 }
894
a7605426
YS
895 /*
896 * The shmem page is kept in page cache instead of truncating
897 * so is expected to have an extra refcount after error-handling.
898 */
899 extra_pins = shmem_mapping(mapping);
900
6a46079c
AK
901 /*
902 * Truncation is a bit tricky. Enable it per file system for now.
903 *
9608703e 904 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 905 */
dd0f230a 906 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
907 if (has_extra_refcount(ps, p, extra_pins))
908 ret = MF_FAILED;
909
ea6d0630
NH
910out:
911 unlock_page(p);
dd0f230a 912
ea6d0630 913 return ret;
6a46079c
AK
914}
915
916/*
549543df 917 * Dirty pagecache page
6a46079c
AK
918 * Issues: when the error hit a hole page the error is not properly
919 * propagated.
920 */
dd0f230a 921static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
922{
923 struct address_space *mapping = page_mapping(p);
924
925 SetPageError(p);
926 /* TBD: print more information about the file. */
927 if (mapping) {
928 /*
929 * IO error will be reported by write(), fsync(), etc.
930 * who check the mapping.
931 * This way the application knows that something went
932 * wrong with its dirty file data.
933 *
934 * There's one open issue:
935 *
936 * The EIO will be only reported on the next IO
937 * operation and then cleared through the IO map.
938 * Normally Linux has two mechanisms to pass IO error
939 * first through the AS_EIO flag in the address space
940 * and then through the PageError flag in the page.
941 * Since we drop pages on memory failure handling the
942 * only mechanism open to use is through AS_AIO.
943 *
944 * This has the disadvantage that it gets cleared on
945 * the first operation that returns an error, while
946 * the PageError bit is more sticky and only cleared
947 * when the page is reread or dropped. If an
948 * application assumes it will always get error on
949 * fsync, but does other operations on the fd before
25985edc 950 * and the page is dropped between then the error
6a46079c
AK
951 * will not be properly reported.
952 *
953 * This can already happen even without hwpoisoned
954 * pages: first on metadata IO errors (which only
955 * report through AS_EIO) or when the page is dropped
956 * at the wrong time.
957 *
958 * So right now we assume that the application DTRT on
959 * the first EIO, but we're not worse than other parts
960 * of the kernel.
961 */
af21bfaf 962 mapping_set_error(mapping, -EIO);
6a46079c
AK
963 }
964
dd0f230a 965 return me_pagecache_clean(ps, p);
6a46079c
AK
966}
967
968/*
969 * Clean and dirty swap cache.
970 *
971 * Dirty swap cache page is tricky to handle. The page could live both in page
972 * cache and swap cache(ie. page is freshly swapped in). So it could be
973 * referenced concurrently by 2 types of PTEs:
974 * normal PTEs and swap PTEs. We try to handle them consistently by calling
975 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
976 * and then
977 * - clear dirty bit to prevent IO
978 * - remove from LRU
979 * - but keep in the swap cache, so that when we return to it on
980 * a later page fault, we know the application is accessing
981 * corrupted data and shall be killed (we installed simple
982 * interception code in do_swap_page to catch it).
983 *
984 * Clean swap cache pages can be directly isolated. A later page fault will
985 * bring in the known good data from disk.
986 */
dd0f230a 987static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 988{
ea6d0630 989 int ret;
dd0f230a 990 bool extra_pins = false;
ea6d0630 991
6a46079c
AK
992 ClearPageDirty(p);
993 /* Trigger EIO in shmem: */
994 ClearPageUptodate(p);
995
ea6d0630
NH
996 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
997 unlock_page(p);
dd0f230a
YS
998
999 if (ret == MF_DELAYED)
1000 extra_pins = true;
1001
1002 if (has_extra_refcount(ps, p, extra_pins))
1003 ret = MF_FAILED;
1004
ea6d0630 1005 return ret;
6a46079c
AK
1006}
1007
dd0f230a 1008static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1009{
75fa68a5 1010 struct folio *folio = page_folio(p);
ea6d0630
NH
1011 int ret;
1012
75fa68a5 1013 delete_from_swap_cache(folio);
e43c3afb 1014
ea6d0630 1015 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1016 folio_unlock(folio);
dd0f230a
YS
1017
1018 if (has_extra_refcount(ps, p, false))
1019 ret = MF_FAILED;
1020
ea6d0630 1021 return ret;
6a46079c
AK
1022}
1023
1024/*
1025 * Huge pages. Needs work.
1026 * Issues:
93f70f90
NH
1027 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1028 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1029 */
dd0f230a 1030static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1031{
a8b2c2ce 1032 int res;
93f70f90 1033 struct page *hpage = compound_head(p);
78bb9203 1034 struct address_space *mapping;
2491ffee
NH
1035
1036 if (!PageHuge(hpage))
1037 return MF_DELAYED;
1038
78bb9203
NH
1039 mapping = page_mapping(hpage);
1040 if (mapping) {
dd0f230a 1041 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
ea6d0630 1042 unlock_page(hpage);
78bb9203 1043 } else {
a8b2c2ce 1044 res = MF_FAILED;
78bb9203
NH
1045 unlock_page(hpage);
1046 /*
ef526b17
ML
1047 * migration entry prevents later access on error hugepage,
1048 * so we can free and dissolve it into buddy to save healthy
1049 * subpages.
78bb9203 1050 */
ef526b17 1051 put_page(hpage);
510d25c9 1052 if (__page_handle_poison(p)) {
a8b2c2ce
OS
1053 page_ref_inc(p);
1054 res = MF_RECOVERED;
1055 }
93f70f90 1056 }
78bb9203 1057
dd0f230a
YS
1058 if (has_extra_refcount(ps, p, false))
1059 res = MF_FAILED;
1060
78bb9203 1061 return res;
6a46079c
AK
1062}
1063
1064/*
1065 * Various page states we can handle.
1066 *
1067 * A page state is defined by its current page->flags bits.
1068 * The table matches them in order and calls the right handler.
1069 *
1070 * This is quite tricky because we can access page at any time
25985edc 1071 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1072 *
1073 * This is not complete. More states could be added.
1074 * For any missing state don't attempt recovery.
1075 */
1076
1077#define dirty (1UL << PG_dirty)
6326fec1 1078#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1079#define unevict (1UL << PG_unevictable)
1080#define mlock (1UL << PG_mlocked)
6a46079c 1081#define lru (1UL << PG_lru)
6a46079c 1082#define head (1UL << PG_head)
6a46079c 1083#define slab (1UL << PG_slab)
6a46079c
AK
1084#define reserved (1UL << PG_reserved)
1085
dd0f230a 1086static struct page_state error_states[] = {
cc637b17 1087 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1088 /*
1089 * free pages are specially detected outside this table:
1090 * PG_buddy pages only make a small fraction of all free pages.
1091 */
6a46079c
AK
1092
1093 /*
1094 * Could in theory check if slab page is free or if we can drop
1095 * currently unused objects without touching them. But just
1096 * treat it as standard kernel for now.
1097 */
cc637b17 1098 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1099
cc637b17 1100 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1101
cc637b17
XX
1102 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1103 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1104
cc637b17
XX
1105 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1106 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1107
cc637b17
XX
1108 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1109 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1110
cc637b17
XX
1111 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1112 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1113
1114 /*
1115 * Catchall entry: must be at end.
1116 */
cc637b17 1117 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1118};
1119
2326c467
AK
1120#undef dirty
1121#undef sc
1122#undef unevict
1123#undef mlock
2326c467 1124#undef lru
2326c467 1125#undef head
2326c467
AK
1126#undef slab
1127#undef reserved
1128
ff604cf6
NH
1129/*
1130 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1131 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1132 */
cc3e2af4
XX
1133static void action_result(unsigned long pfn, enum mf_action_page_type type,
1134 enum mf_result result)
6a46079c 1135{
97f0b134
XX
1136 trace_memory_failure_event(pfn, type, result);
1137
e240ac52 1138 num_poisoned_pages_inc();
495367c0 1139 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 1140 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1141}
1142
1143static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1144 unsigned long pfn)
6a46079c
AK
1145{
1146 int result;
1147
ea6d0630 1148 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1149 result = ps->action(ps, p);
7456b040 1150
64d37a2b 1151 action_result(pfn, ps->type, result);
6a46079c
AK
1152
1153 /* Could do more checks here if page looks ok */
1154 /*
1155 * Could adjust zone counters here to correct for the missing page.
1156 */
1157
cc637b17 1158 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1159}
1160
bf181c58
NH
1161static inline bool PageHWPoisonTakenOff(struct page *page)
1162{
1163 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1164}
1165
1166void SetPageHWPoisonTakenOff(struct page *page)
1167{
1168 set_page_private(page, MAGIC_HWPOISON);
1169}
1170
1171void ClearPageHWPoisonTakenOff(struct page *page)
1172{
1173 if (PageHWPoison(page))
1174 set_page_private(page, 0);
1175}
1176
25182f05
NH
1177/*
1178 * Return true if a page type of a given page is supported by hwpoison
1179 * mechanism (while handling could fail), otherwise false. This function
1180 * does not return true for hugetlb or device memory pages, so it's assumed
1181 * to be called only in the context where we never have such pages.
1182 */
bf6445bc 1183static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1184{
3f871370 1185 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1186 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1187 return true;
bf6445bc 1188
3f871370 1189 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1190}
1191
bf6445bc 1192static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a
NH
1193{
1194 struct page *head = compound_head(page);
25182f05
NH
1195 int ret = 0;
1196 bool hugetlb = false;
1197
1198 ret = get_hwpoison_huge_page(head, &hugetlb);
1199 if (hugetlb)
1200 return ret;
1201
1202 /*
1203 * This check prevents from calling get_hwpoison_unless_zero()
1204 * for any unsupported type of page in order to reduce the risk of
1205 * unexpected races caused by taking a page refcount.
1206 */
bf6445bc 1207 if (!HWPoisonHandlable(head, flags))
fcc00621 1208 return -EBUSY;
ead07f6a 1209
c2e7e00b
KK
1210 if (get_page_unless_zero(head)) {
1211 if (head == compound_head(page))
1212 return 1;
1213
495367c0
CY
1214 pr_info("Memory failure: %#lx cannot catch tail\n",
1215 page_to_pfn(page));
c2e7e00b
KK
1216 put_page(head);
1217 }
1218
1219 return 0;
ead07f6a 1220}
ead07f6a 1221
2f714160 1222static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1223{
2f714160
OS
1224 int ret = 0, pass = 0;
1225 bool count_increased = false;
17e395b6 1226
2f714160
OS
1227 if (flags & MF_COUNT_INCREASED)
1228 count_increased = true;
1229
1230try_again:
0ed950d1 1231 if (!count_increased) {
bf6445bc 1232 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1233 if (!ret) {
1234 if (page_count(p)) {
1235 /* We raced with an allocation, retry. */
1236 if (pass++ < 3)
1237 goto try_again;
1238 ret = -EBUSY;
1239 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1240 /* We raced with put_page, retry. */
1241 if (pass++ < 3)
1242 goto try_again;
1243 ret = -EIO;
1244 }
1245 goto out;
1246 } else if (ret == -EBUSY) {
fcc00621
NH
1247 /*
1248 * We raced with (possibly temporary) unhandlable
1249 * page, retry.
1250 */
1251 if (pass++ < 3) {
d0505e9f 1252 shake_page(p);
2f714160 1253 goto try_again;
fcc00621
NH
1254 }
1255 ret = -EIO;
0ed950d1 1256 goto out;
2f714160 1257 }
0ed950d1
NH
1258 }
1259
bf6445bc 1260 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1261 ret = 1;
2f714160 1262 } else {
0ed950d1
NH
1263 /*
1264 * A page we cannot handle. Check whether we can turn
1265 * it into something we can handle.
1266 */
1267 if (pass++ < 3) {
2f714160 1268 put_page(p);
d0505e9f 1269 shake_page(p);
0ed950d1
NH
1270 count_increased = false;
1271 goto try_again;
2f714160 1272 }
0ed950d1
NH
1273 put_page(p);
1274 ret = -EIO;
17e395b6 1275 }
0ed950d1 1276out:
941ca063 1277 if (ret == -EIO)
1825b93b 1278 pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1279
17e395b6
OS
1280 return ret;
1281}
1282
bf181c58
NH
1283static int __get_unpoison_page(struct page *page)
1284{
1285 struct page *head = compound_head(page);
1286 int ret = 0;
1287 bool hugetlb = false;
1288
1289 ret = get_hwpoison_huge_page(head, &hugetlb);
1290 if (hugetlb)
1291 return ret;
1292
1293 /*
1294 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1295 * but also isolated from buddy freelist, so need to identify the
1296 * state and have to cancel both operations to unpoison.
1297 */
1298 if (PageHWPoisonTakenOff(page))
1299 return -EHWPOISON;
1300
1301 return get_page_unless_zero(page) ? 1 : 0;
1302}
1303
0ed950d1
NH
1304/**
1305 * get_hwpoison_page() - Get refcount for memory error handling
1306 * @p: Raw error page (hit by memory error)
1307 * @flags: Flags controlling behavior of error handling
1308 *
1309 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1310 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1311 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1312 * such as LRU page and hugetlb page).
1313 *
1314 * Memory error handling could be triggered at any time on any type of page,
1315 * so it's prone to race with typical memory management lifecycle (like
1316 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1317 * extra care for the error page's state (as done in __get_hwpoison_page()),
1318 * and has some retry logic in get_any_page().
1319 *
bf181c58
NH
1320 * When called from unpoison_memory(), the caller should already ensure that
1321 * the given page has PG_hwpoison. So it's never reused for other page
1322 * allocations, and __get_unpoison_page() never races with them.
1323 *
0ed950d1
NH
1324 * Return: 0 on failure,
1325 * 1 on success for in-use pages in a well-defined state,
1326 * -EIO for pages on which we can not handle memory errors,
1327 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1328 * operations like allocation and free,
1329 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1330 */
1331static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1332{
1333 int ret;
1334
1335 zone_pcp_disable(page_zone(p));
bf181c58
NH
1336 if (flags & MF_UNPOISON)
1337 ret = __get_unpoison_page(p);
1338 else
1339 ret = get_any_page(p, flags);
2f714160
OS
1340 zone_pcp_enable(page_zone(p));
1341
1342 return ret;
1343}
1344
6a46079c
AK
1345/*
1346 * Do all that is necessary to remove user space mappings. Unmap
1347 * the pages and send SIGBUS to the processes if the data was dirty.
1348 */
666e5a40 1349static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1350 int flags, struct page *hpage)
6a46079c 1351{
869f7ee6 1352 struct folio *folio = page_folio(hpage);
36af6737 1353 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1354 struct address_space *mapping;
1355 LIST_HEAD(tokill);
1fb08ac6 1356 bool unmap_success;
6751ed65 1357 int kill = 1, forcekill;
286c469a 1358 bool mlocked = PageMlocked(hpage);
6a46079c 1359
93a9eb39
NH
1360 /*
1361 * Here we are interested only in user-mapped pages, so skip any
1362 * other types of pages.
1363 */
1364 if (PageReserved(p) || PageSlab(p))
666e5a40 1365 return true;
93a9eb39 1366 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1367 return true;
6a46079c 1368
6a46079c
AK
1369 /*
1370 * This check implies we don't kill processes if their pages
1371 * are in the swap cache early. Those are always late kills.
1372 */
7af446a8 1373 if (!page_mapped(hpage))
666e5a40 1374 return true;
1668bfd5 1375
52089b14 1376 if (PageKsm(p)) {
495367c0 1377 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 1378 return false;
52089b14 1379 }
6a46079c
AK
1380
1381 if (PageSwapCache(p)) {
495367c0
CY
1382 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1383 pfn);
6a46079c
AK
1384 ttu |= TTU_IGNORE_HWPOISON;
1385 }
1386
1387 /*
1388 * Propagate the dirty bit from PTEs to struct page first, because we
1389 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1390 * XXX: the dirty test could be racy: set_page_dirty() may not always
1391 * be called inside page lock (it's recommended but not enforced).
6a46079c 1392 */
7af446a8 1393 mapping = page_mapping(hpage);
6751ed65 1394 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1395 mapping_can_writeback(mapping)) {
7af446a8
NH
1396 if (page_mkclean(hpage)) {
1397 SetPageDirty(hpage);
6a46079c
AK
1398 } else {
1399 kill = 0;
1400 ttu |= TTU_IGNORE_HWPOISON;
495367c0 1401 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1402 pfn);
1403 }
1404 }
1405
1406 /*
1407 * First collect all the processes that have the page
1408 * mapped in dirty form. This has to be done before try_to_unmap,
1409 * because ttu takes the rmap data structures down.
1410 *
1411 * Error handling: We ignore errors here because
1412 * there's nothing that can be done.
1413 */
1414 if (kill)
415c64c1 1415 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1416
357670f7
ML
1417 if (PageHuge(hpage) && !PageAnon(hpage)) {
1418 /*
1419 * For hugetlb pages in shared mappings, try_to_unmap
1420 * could potentially call huge_pmd_unshare. Because of
1421 * this, take semaphore in write mode here and set
1422 * TTU_RMAP_LOCKED to indicate we have taken the lock
1423 * at this higher level.
1424 */
1425 mapping = hugetlb_page_mapping_lock_write(hpage);
1426 if (mapping) {
9030fb0b 1427 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1428 i_mmap_unlock_write(mapping);
1429 } else
1430 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1431 } else {
9030fb0b 1432 try_to_unmap(folio, ttu);
c0d0381a 1433 }
1fb08ac6
YS
1434
1435 unmap_success = !page_mapped(hpage);
666e5a40 1436 if (!unmap_success)
495367c0 1437 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1438 pfn, page_mapcount(hpage));
a6d30ddd 1439
286c469a
NH
1440 /*
1441 * try_to_unmap() might put mlocked page in lru cache, so call
1442 * shake_page() again to ensure that it's flushed.
1443 */
1444 if (mlocked)
d0505e9f 1445 shake_page(hpage);
286c469a 1446
6a46079c
AK
1447 /*
1448 * Now that the dirty bit has been propagated to the
1449 * struct page and all unmaps done we can decide if
1450 * killing is needed or not. Only kill when the page
6751ed65
TL
1451 * was dirty or the process is not restartable,
1452 * otherwise the tokill list is merely
6a46079c
AK
1453 * freed. When there was a problem unmapping earlier
1454 * use a more force-full uncatchable kill to prevent
1455 * any accesses to the poisoned memory.
1456 */
415c64c1 1457 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1458 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1459
666e5a40 1460 return unmap_success;
6a46079c
AK
1461}
1462
0348d2eb
NH
1463static int identify_page_state(unsigned long pfn, struct page *p,
1464 unsigned long page_flags)
761ad8d7
NH
1465{
1466 struct page_state *ps;
0348d2eb
NH
1467
1468 /*
1469 * The first check uses the current page flags which may not have any
1470 * relevant information. The second check with the saved page flags is
1471 * carried out only if the first check can't determine the page status.
1472 */
1473 for (ps = error_states;; ps++)
1474 if ((p->flags & ps->mask) == ps->res)
1475 break;
1476
1477 page_flags |= (p->flags & (1UL << PG_dirty));
1478
1479 if (!ps->mask)
1480 for (ps = error_states;; ps++)
1481 if ((page_flags & ps->mask) == ps->res)
1482 break;
1483 return page_action(ps, p, pfn);
1484}
1485
694bf0b0
OS
1486static int try_to_split_thp_page(struct page *page, const char *msg)
1487{
1488 lock_page(page);
4966455d 1489 if (unlikely(split_huge_page(page))) {
694bf0b0
OS
1490 unsigned long pfn = page_to_pfn(page);
1491
1492 unlock_page(page);
4966455d 1493 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
694bf0b0
OS
1494 put_page(page);
1495 return -EBUSY;
1496 }
1497 unlock_page(page);
1498
1499 return 0;
1500}
1501
00cc790e
SR
1502static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1503 struct address_space *mapping, pgoff_t index, int flags)
1504{
1505 struct to_kill *tk;
1506 unsigned long size = 0;
1507
1508 list_for_each_entry(tk, to_kill, nd)
1509 if (tk->size_shift)
1510 size = max(size, 1UL << tk->size_shift);
1511
1512 if (size) {
1513 /*
1514 * Unmap the largest mapping to avoid breaking up device-dax
1515 * mappings which are constant size. The actual size of the
1516 * mapping being torn down is communicated in siginfo, see
1517 * kill_proc()
1518 */
1519 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1520
1521 unmap_mapping_range(mapping, start, size, 0);
1522 }
1523
1524 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1525}
1526
1527static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1528 struct dev_pagemap *pgmap)
1529{
1530 struct page *page = pfn_to_page(pfn);
1531 LIST_HEAD(to_kill);
1532 dax_entry_t cookie;
1533 int rc = 0;
1534
1535 /*
1536 * Pages instantiated by device-dax (not filesystem-dax)
1537 * may be compound pages.
1538 */
1539 page = compound_head(page);
1540
1541 /*
1542 * Prevent the inode from being freed while we are interrogating
1543 * the address_space, typically this would be handled by
1544 * lock_page(), but dax pages do not use the page lock. This
1545 * also prevents changes to the mapping of this pfn until
1546 * poison signaling is complete.
1547 */
1548 cookie = dax_lock_page(page);
1549 if (!cookie)
1550 return -EBUSY;
1551
1552 if (hwpoison_filter(page)) {
1553 rc = -EOPNOTSUPP;
1554 goto unlock;
1555 }
1556
1557 switch (pgmap->type) {
1558 case MEMORY_DEVICE_PRIVATE:
1559 case MEMORY_DEVICE_COHERENT:
1560 /*
1561 * TODO: Handle device pages which may need coordination
1562 * with device-side memory.
1563 */
1564 rc = -ENXIO;
1565 goto unlock;
1566 default:
1567 break;
1568 }
1569
1570 /*
1571 * Use this flag as an indication that the dax page has been
1572 * remapped UC to prevent speculative consumption of poison.
1573 */
1574 SetPageHWPoison(page);
1575
1576 /*
1577 * Unlike System-RAM there is no possibility to swap in a
1578 * different physical page at a given virtual address, so all
1579 * userspace consumption of ZONE_DEVICE memory necessitates
1580 * SIGBUS (i.e. MF_MUST_KILL)
1581 */
1582 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1583 collect_procs(page, &to_kill, true);
1584
1585 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1586unlock:
1587 dax_unlock_page(page, cookie);
1588 return rc;
1589}
1590
405ce051
NH
1591/*
1592 * Called from hugetlb code with hugetlb_lock held.
1593 *
1594 * Return values:
1595 * 0 - free hugepage
1596 * 1 - in-use hugepage
1597 * 2 - not a hugepage
1598 * -EBUSY - the hugepage is busy (try to retry)
1599 * -EHWPOISON - the hugepage is already hwpoisoned
1600 */
1601int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1602{
1603 struct page *page = pfn_to_page(pfn);
1604 struct page *head = compound_head(page);
1605 int ret = 2; /* fallback to normal page handling */
1606 bool count_increased = false;
1607
1608 if (!PageHeadHuge(head))
1609 goto out;
1610
1611 if (flags & MF_COUNT_INCREASED) {
1612 ret = 1;
1613 count_increased = true;
b283d983
NH
1614 } else if (HPageFreed(head)) {
1615 ret = 0;
1616 } else if (HPageMigratable(head)) {
405ce051
NH
1617 ret = get_page_unless_zero(head);
1618 if (ret)
1619 count_increased = true;
1620 } else {
1621 ret = -EBUSY;
1622 goto out;
1623 }
1624
1625 if (TestSetPageHWPoison(head)) {
1626 ret = -EHWPOISON;
1627 goto out;
1628 }
1629
1630 return ret;
1631out:
1632 if (count_increased)
1633 put_page(head);
1634 return ret;
1635}
1636
1637#ifdef CONFIG_HUGETLB_PAGE
1638/*
1639 * Taking refcount of hugetlb pages needs extra care about race conditions
1640 * with basic operations like hugepage allocation/free/demotion.
1641 * So some of prechecks for hwpoison (pinning, and testing/setting
1642 * PageHWPoison) should be done in single hugetlb_lock range.
1643 */
1644static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1645{
761ad8d7 1646 int res;
405ce051
NH
1647 struct page *p = pfn_to_page(pfn);
1648 struct page *head;
761ad8d7 1649 unsigned long page_flags;
405ce051 1650 bool retry = true;
761ad8d7 1651
405ce051
NH
1652 *hugetlb = 1;
1653retry:
1654 res = get_huge_page_for_hwpoison(pfn, flags);
1655 if (res == 2) { /* fallback to normal page handling */
1656 *hugetlb = 0;
1657 return 0;
1658 } else if (res == -EHWPOISON) {
1659 pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1660 if (flags & MF_ACTION_REQUIRED) {
1661 head = compound_head(p);
a3f5d80e 1662 res = kill_accessing_process(current, page_to_pfn(head), flags);
405ce051
NH
1663 }
1664 return res;
1665 } else if (res == -EBUSY) {
1666 if (retry) {
1667 retry = false;
1668 goto retry;
1669 }
1670 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
a3f5d80e 1671 return res;
761ad8d7
NH
1672 }
1673
405ce051
NH
1674 head = compound_head(p);
1675 lock_page(head);
1676
1677 if (hwpoison_filter(p)) {
1678 ClearPageHWPoison(head);
1679 res = -EOPNOTSUPP;
1680 goto out;
1681 }
1682
405ce051
NH
1683 /*
1684 * Handling free hugepage. The possible race with hugepage allocation
1685 * or demotion can be prevented by PageHWPoison flag.
1686 */
1687 if (res == 0) {
1688 unlock_page(head);
1689 res = MF_FAILED;
1690 if (__page_handle_poison(p)) {
1691 page_ref_inc(p);
1692 res = MF_RECOVERED;
761ad8d7 1693 }
405ce051
NH
1694 action_result(pfn, MF_MSG_FREE_HUGE, res);
1695 return res == MF_RECOVERED ? 0 : -EBUSY;
761ad8d7
NH
1696 }
1697
761ad8d7
NH
1698 page_flags = head->flags;
1699
31286a84
NH
1700 /*
1701 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1702 * simply disable it. In order to make it work properly, we need
1703 * make sure that:
1704 * - conversion of a pud that maps an error hugetlb into hwpoison
1705 * entry properly works, and
1706 * - other mm code walking over page table is aware of pud-aligned
1707 * hwpoison entries.
1708 */
1709 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1710 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1711 res = -EBUSY;
1712 goto out;
1713 }
1714
ed8c2f49 1715 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1716 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1717 res = -EBUSY;
1718 goto out;
1719 }
1720
ea6d0630 1721 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1722out:
1723 unlock_page(head);
1724 return res;
1725}
00cc790e 1726
405ce051
NH
1727#else
1728static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1729{
1730 return 0;
1731}
00cc790e
SR
1732
1733#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 1734
6100e34b
DW
1735static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1736 struct dev_pagemap *pgmap)
1737{
1738 struct page *page = pfn_to_page(pfn);
00cc790e 1739 int rc = -ENXIO;
6100e34b 1740
1e8aaedb
OS
1741 if (flags & MF_COUNT_INCREASED)
1742 /*
1743 * Drop the extra refcount in case we come from madvise().
1744 */
1745 put_page(page);
1746
34dc45be 1747 /* device metadata space is not recoverable */
00cc790e 1748 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 1749 goto out;
6100e34b 1750
00cc790e 1751 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
1752out:
1753 /* drop pgmap ref acquired in caller */
1754 put_dev_pagemap(pgmap);
1755 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1756 return rc;
1757}
1758
91d00547
NH
1759static DEFINE_MUTEX(mf_mutex);
1760
cd42f4a3
TL
1761/**
1762 * memory_failure - Handle memory failure of a page.
1763 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1764 * @flags: fine tune action taken
1765 *
1766 * This function is called by the low level machine check code
1767 * of an architecture when it detects hardware memory corruption
1768 * of a page. It tries its best to recover, which includes
1769 * dropping pages, killing processes etc.
1770 *
1771 * The function is primarily of use for corruptions that
1772 * happen outside the current execution context (e.g. when
1773 * detected by a background scrubber)
1774 *
1775 * Must run in process context (e.g. a work queue) with interrupts
1776 * enabled and no spinlocks hold.
d1fe111f 1777 *
1778 * Return: 0 for successfully handled the memory error,
9113eaf3 1779 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 1780 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 1781 */
83b57531 1782int memory_failure(unsigned long pfn, int flags)
6a46079c 1783{
6a46079c 1784 struct page *p;
7af446a8 1785 struct page *hpage;
6100e34b 1786 struct dev_pagemap *pgmap;
171936dd 1787 int res = 0;
524fca1e 1788 unsigned long page_flags;
a8b2c2ce 1789 bool retry = true;
405ce051 1790 int hugetlb = 0;
6a46079c
AK
1791
1792 if (!sysctl_memory_failure_recovery)
83b57531 1793 panic("Memory failure on page %lx", pfn);
6a46079c 1794
03b122da
TL
1795 mutex_lock(&mf_mutex);
1796
67f22ba7 1797 if (!(flags & MF_SW_SIMULATED))
1798 hw_memory_failure = true;
1799
96c804a6
DH
1800 p = pfn_to_online_page(pfn);
1801 if (!p) {
03b122da
TL
1802 res = arch_memory_failure(pfn, flags);
1803 if (res == 0)
1804 goto unlock_mutex;
1805
96c804a6
DH
1806 if (pfn_valid(pfn)) {
1807 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
1808 if (pgmap) {
1809 res = memory_failure_dev_pagemap(pfn, flags,
1810 pgmap);
1811 goto unlock_mutex;
1812 }
96c804a6 1813 }
495367c0
CY
1814 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1815 pfn);
03b122da
TL
1816 res = -ENXIO;
1817 goto unlock_mutex;
6a46079c
AK
1818 }
1819
a8b2c2ce 1820try_again:
405ce051
NH
1821 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1822 if (hugetlb)
171936dd 1823 goto unlock_mutex;
171936dd 1824
6a46079c 1825 if (TestSetPageHWPoison(p)) {
495367c0
CY
1826 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1827 pfn);
47af12ba 1828 res = -EHWPOISON;
a3f5d80e
NH
1829 if (flags & MF_ACTION_REQUIRED)
1830 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
1831 if (flags & MF_COUNT_INCREASED)
1832 put_page(p);
171936dd 1833 goto unlock_mutex;
6a46079c
AK
1834 }
1835
75ee64b3 1836 hpage = compound_head(p);
6a46079c
AK
1837
1838 /*
1839 * We need/can do nothing about count=0 pages.
1840 * 1) it's a free page, and therefore in safe hand:
1841 * prep_new_page() will be the gate keeper.
761ad8d7 1842 * 2) it's part of a non-compound high order page.
6a46079c
AK
1843 * Implies some kernel user: cannot stop them from
1844 * R/W the page; let's pray that the page has been
1845 * used and will be freed some time later.
1846 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 1847 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 1848 */
0ed950d1
NH
1849 if (!(flags & MF_COUNT_INCREASED)) {
1850 res = get_hwpoison_page(p, flags);
1851 if (!res) {
1852 if (is_free_buddy_page(p)) {
1853 if (take_page_off_buddy(p)) {
1854 page_ref_inc(p);
1855 res = MF_RECOVERED;
1856 } else {
1857 /* We lost the race, try again */
1858 if (retry) {
1859 ClearPageHWPoison(p);
0ed950d1
NH
1860 retry = false;
1861 goto try_again;
1862 }
1863 res = MF_FAILED;
a8b2c2ce 1864 }
0ed950d1
NH
1865 action_result(pfn, MF_MSG_BUDDY, res);
1866 res = res == MF_RECOVERED ? 0 : -EBUSY;
1867 } else {
1868 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1869 res = -EBUSY;
a8b2c2ce 1870 }
0ed950d1
NH
1871 goto unlock_mutex;
1872 } else if (res < 0) {
1873 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 1874 res = -EBUSY;
0ed950d1 1875 goto unlock_mutex;
8d22ba1b 1876 }
6a46079c
AK
1877 }
1878
761ad8d7 1879 if (PageTransHuge(hpage)) {
eac96c3e
YS
1880 /*
1881 * The flag must be set after the refcount is bumped
1882 * otherwise it may race with THP split.
1883 * And the flag can't be set in get_hwpoison_page() since
1884 * it is called by soft offline too and it is just called
1885 * for !MF_COUNT_INCREASE. So here seems to be the best
1886 * place.
1887 *
1888 * Don't need care about the above error handling paths for
1889 * get_hwpoison_page() since they handle either free page
1890 * or unhandlable page. The refcount is bumped iff the
1891 * page is a valid handlable page.
1892 */
1893 SetPageHasHWPoisoned(hpage);
5d1fd5dc
NH
1894 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1895 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
1896 res = -EBUSY;
1897 goto unlock_mutex;
5d1fd5dc 1898 }
415c64c1 1899 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
1900 }
1901
e43c3afb
WF
1902 /*
1903 * We ignore non-LRU pages for good reasons.
1904 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1905 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1906 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1907 * The check (unnecessarily) ignores LRU pages being isolated and
1908 * walked by the page reclaim code, however that's not a big loss.
1909 */
d0505e9f 1910 shake_page(p);
e43c3afb 1911
761ad8d7 1912 lock_page(p);
847ce401 1913
f37d4298 1914 /*
75ee64b3
ML
1915 * We're only intended to deal with the non-Compound page here.
1916 * However, the page could have changed compound pages due to
1917 * race window. If this happens, we could try again to hopefully
1918 * handle the page next round.
f37d4298 1919 */
75ee64b3
ML
1920 if (PageCompound(p)) {
1921 if (retry) {
e240ac52 1922 ClearPageHWPoison(p);
75ee64b3
ML
1923 unlock_page(p);
1924 put_page(p);
1925 flags &= ~MF_COUNT_INCREASED;
1926 retry = false;
1927 goto try_again;
1928 }
cc637b17 1929 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 1930 res = -EBUSY;
171936dd 1931 goto unlock_page;
f37d4298
AK
1932 }
1933
524fca1e
NH
1934 /*
1935 * We use page flags to determine what action should be taken, but
1936 * the flags can be modified by the error containment action. One
1937 * example is an mlocked page, where PG_mlocked is cleared by
1938 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1939 * correctly, we save a copy of the page flags at this time.
1940 */
7d9d46ac 1941 page_flags = p->flags;
524fca1e 1942
7c116f2b 1943 if (hwpoison_filter(p)) {
e240ac52 1944 TestClearPageHWPoison(p);
761ad8d7 1945 unlock_page(p);
dd6e2402 1946 put_page(p);
d1fe111f 1947 res = -EOPNOTSUPP;
171936dd 1948 goto unlock_mutex;
7c116f2b 1949 }
847ce401 1950
e8675d29 1951 /*
1952 * __munlock_pagevec may clear a writeback page's LRU flag without
1953 * page_lock. We need wait writeback completion for this page or it
1954 * may trigger vfs BUG while evict inode.
1955 */
b04d3eeb 1956 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
1957 goto identify_page_state;
1958
6edd6cc6
NH
1959 /*
1960 * It's very difficult to mess with pages currently under IO
1961 * and in many cases impossible, so we just avoid it here.
1962 */
6a46079c
AK
1963 wait_on_page_writeback(p);
1964
1965 /*
1966 * Now take care of user space mappings.
e64a782f 1967 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
6a46079c 1968 */
ed8c2f49 1969 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 1970 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 1971 res = -EBUSY;
171936dd 1972 goto unlock_page;
1668bfd5 1973 }
6a46079c
AK
1974
1975 /*
1976 * Torn down by someone else?
1977 */
dc2a1cbf 1978 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1979 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1980 res = -EBUSY;
171936dd 1981 goto unlock_page;
6a46079c
AK
1982 }
1983
0bc1f8b0 1984identify_page_state:
0348d2eb 1985 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
1986 mutex_unlock(&mf_mutex);
1987 return res;
171936dd 1988unlock_page:
761ad8d7 1989 unlock_page(p);
171936dd
TL
1990unlock_mutex:
1991 mutex_unlock(&mf_mutex);
6a46079c
AK
1992 return res;
1993}
cd42f4a3 1994EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1995
ea8f5fb8
HY
1996#define MEMORY_FAILURE_FIFO_ORDER 4
1997#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1998
1999struct memory_failure_entry {
2000 unsigned long pfn;
ea8f5fb8
HY
2001 int flags;
2002};
2003
2004struct memory_failure_cpu {
2005 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2006 MEMORY_FAILURE_FIFO_SIZE);
2007 spinlock_t lock;
2008 struct work_struct work;
2009};
2010
2011static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2012
2013/**
2014 * memory_failure_queue - Schedule handling memory failure of a page.
2015 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2016 * @flags: Flags for memory failure handling
2017 *
2018 * This function is called by the low level hardware error handler
2019 * when it detects hardware memory corruption of a page. It schedules
2020 * the recovering of error page, including dropping pages, killing
2021 * processes etc.
2022 *
2023 * The function is primarily of use for corruptions that
2024 * happen outside the current execution context (e.g. when
2025 * detected by a background scrubber)
2026 *
2027 * Can run in IRQ context.
2028 */
83b57531 2029void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2030{
2031 struct memory_failure_cpu *mf_cpu;
2032 unsigned long proc_flags;
2033 struct memory_failure_entry entry = {
2034 .pfn = pfn,
ea8f5fb8
HY
2035 .flags = flags,
2036 };
2037
2038 mf_cpu = &get_cpu_var(memory_failure_cpu);
2039 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2040 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2041 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2042 else
8e33a52f 2043 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2044 pfn);
2045 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2046 put_cpu_var(memory_failure_cpu);
2047}
2048EXPORT_SYMBOL_GPL(memory_failure_queue);
2049
2050static void memory_failure_work_func(struct work_struct *work)
2051{
2052 struct memory_failure_cpu *mf_cpu;
2053 struct memory_failure_entry entry = { 0, };
2054 unsigned long proc_flags;
2055 int gotten;
2056
06202231 2057 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2058 for (;;) {
2059 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2060 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2061 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2062 if (!gotten)
2063 break;
cf870c70 2064 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2065 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2066 else
83b57531 2067 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2068 }
2069}
2070
06202231
JM
2071/*
2072 * Process memory_failure work queued on the specified CPU.
2073 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2074 */
2075void memory_failure_queue_kick(int cpu)
2076{
2077 struct memory_failure_cpu *mf_cpu;
2078
2079 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2080 cancel_work_sync(&mf_cpu->work);
2081 memory_failure_work_func(&mf_cpu->work);
2082}
2083
ea8f5fb8
HY
2084static int __init memory_failure_init(void)
2085{
2086 struct memory_failure_cpu *mf_cpu;
2087 int cpu;
2088
2089 for_each_possible_cpu(cpu) {
2090 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2091 spin_lock_init(&mf_cpu->lock);
2092 INIT_KFIFO(mf_cpu->fifo);
2093 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2094 }
2095
2096 return 0;
2097}
2098core_initcall(memory_failure_init);
2099
a5f65109
NH
2100#define unpoison_pr_info(fmt, pfn, rs) \
2101({ \
2102 if (__ratelimit(rs)) \
2103 pr_info(fmt, pfn); \
2104})
2105
847ce401
WF
2106/**
2107 * unpoison_memory - Unpoison a previously poisoned page
2108 * @pfn: Page number of the to be unpoisoned page
2109 *
2110 * Software-unpoison a page that has been poisoned by
2111 * memory_failure() earlier.
2112 *
2113 * This is only done on the software-level, so it only works
2114 * for linux injected failures, not real hardware failures
2115 *
2116 * Returns 0 for success, otherwise -errno.
2117 */
2118int unpoison_memory(unsigned long pfn)
2119{
2120 struct page *page;
2121 struct page *p;
bf181c58 2122 int ret = -EBUSY;
c8bd84f7 2123 int freeit = 0;
a5f65109
NH
2124 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2125 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2126
2127 if (!pfn_valid(pfn))
2128 return -ENXIO;
2129
2130 p = pfn_to_page(pfn);
2131 page = compound_head(p);
2132
91d00547
NH
2133 mutex_lock(&mf_mutex);
2134
67f22ba7 2135 if (hw_memory_failure) {
2136 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2137 pfn, &unpoison_rs);
2138 ret = -EOPNOTSUPP;
2139 goto unlock_mutex;
2140 }
2141
847ce401 2142 if (!PageHWPoison(p)) {
495367c0 2143 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2144 pfn, &unpoison_rs);
91d00547 2145 goto unlock_mutex;
847ce401
WF
2146 }
2147
230ac719 2148 if (page_count(page) > 1) {
495367c0 2149 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2150 pfn, &unpoison_rs);
91d00547 2151 goto unlock_mutex;
230ac719
NH
2152 }
2153
2154 if (page_mapped(page)) {
495367c0 2155 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2156 pfn, &unpoison_rs);
91d00547 2157 goto unlock_mutex;
230ac719
NH
2158 }
2159
2160 if (page_mapping(page)) {
495367c0 2161 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2162 pfn, &unpoison_rs);
91d00547 2163 goto unlock_mutex;
0cea3fdc
WL
2164 }
2165
bf181c58 2166 if (PageSlab(page) || PageTable(page))
91d00547 2167 goto unlock_mutex;
847ce401 2168
bf181c58
NH
2169 ret = get_hwpoison_page(p, MF_UNPOISON);
2170 if (!ret) {
c8bd84f7 2171 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
bf181c58
NH
2172 } else if (ret < 0) {
2173 if (ret == -EHWPOISON) {
c8bd84f7 2174 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
bf181c58
NH
2175 } else
2176 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2177 pfn, &unpoison_rs);
2178 } else {
c8bd84f7 2179 freeit = !!TestClearPageHWPoison(p);
847ce401 2180
dd6e2402 2181 put_page(page);
bf181c58
NH
2182 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2183 put_page(page);
2184 ret = 0;
2185 }
2186 }
847ce401 2187
91d00547
NH
2188unlock_mutex:
2189 mutex_unlock(&mf_mutex);
c8bd84f7 2190 if (!ret || freeit) {
2191 num_poisoned_pages_dec();
2192 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2193 page_to_pfn(p), &unpoison_rs);
2194 }
91d00547 2195 return ret;
847ce401
WF
2196}
2197EXPORT_SYMBOL(unpoison_memory);
facb6011 2198
6b9a217e 2199static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2200{
6b9a217e
OS
2201 bool isolated = false;
2202 bool lru = PageLRU(page);
d950b958 2203
6b9a217e 2204 if (PageHuge(page)) {
7ce82f4c 2205 isolated = !isolate_hugetlb(page, pagelist);
6b9a217e
OS
2206 } else {
2207 if (lru)
2208 isolated = !isolate_lru_page(page);
2209 else
2210 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2211
2212 if (isolated)
2213 list_add(&page->lru, pagelist);
0ebff32c 2214 }
d950b958 2215
6b9a217e
OS
2216 if (isolated && lru)
2217 inc_node_page_state(page, NR_ISOLATED_ANON +
2218 page_is_file_lru(page));
2219
03613808 2220 /*
6b9a217e
OS
2221 * If we succeed to isolate the page, we grabbed another refcount on
2222 * the page, so we can safely drop the one we got from get_any_pages().
2223 * If we failed to isolate the page, it means that we cannot go further
2224 * and we will return an error, so drop the reference we got from
2225 * get_any_pages() as well.
03613808 2226 */
6b9a217e
OS
2227 put_page(page);
2228 return isolated;
d950b958
NH
2229}
2230
6b9a217e
OS
2231/*
2232 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2233 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2234 * If the page is mapped, it migrates the contents over.
2235 */
2236static int __soft_offline_page(struct page *page)
af8fae7c 2237{
d6c75dc2 2238 long ret = 0;
af8fae7c 2239 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2240 struct page *hpage = compound_head(page);
2241 char const *msg_page[] = {"page", "hugepage"};
2242 bool huge = PageHuge(page);
2243 LIST_HEAD(pagelist);
54608759
JK
2244 struct migration_target_control mtc = {
2245 .nid = NUMA_NO_NODE,
2246 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2247 };
facb6011 2248
0ebff32c 2249 lock_page(page);
6b9a217e
OS
2250 if (!PageHuge(page))
2251 wait_on_page_writeback(page);
af8fae7c
NH
2252 if (PageHWPoison(page)) {
2253 unlock_page(page);
dd6e2402 2254 put_page(page);
af8fae7c 2255 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2256 return 0;
af8fae7c 2257 }
6b9a217e 2258
593396b8 2259 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2260 /*
2261 * Try to invalidate first. This should work for
2262 * non dirty unmapped page cache pages.
2263 */
2264 ret = invalidate_inode_page(page);
facb6011 2265 unlock_page(page);
6b9a217e 2266
6b9a217e 2267 if (ret) {
fb46e735 2268 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2269 page_handle_poison(page, false, true);
af8fae7c 2270 return 0;
facb6011
AK
2271 }
2272
6b9a217e 2273 if (isolate_page(hpage, &pagelist)) {
54608759 2274 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2275 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2276 if (!ret) {
6b9a217e
OS
2277 bool release = !huge;
2278
2279 if (!page_handle_poison(page, huge, release))
2280 ret = -EBUSY;
79f5f8fa 2281 } else {
85fbe5d1
YX
2282 if (!list_empty(&pagelist))
2283 putback_movable_pages(&pagelist);
59c82b70 2284
d6c75dc2 2285 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2286 pfn, msg_page[huge], ret, &page->flags);
facb6011 2287 if (ret > 0)
3f4b815a 2288 ret = -EBUSY;
facb6011
AK
2289 }
2290 } else {
23efd080
MWO
2291 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2292 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2293 ret = -EBUSY;
facb6011 2294 }
facb6011
AK
2295 return ret;
2296}
86e05773 2297
6b9a217e 2298static int soft_offline_in_use_page(struct page *page)
acc14dc4 2299{
acc14dc4
NH
2300 struct page *hpage = compound_head(page);
2301
694bf0b0
OS
2302 if (!PageHuge(page) && PageTransHuge(hpage))
2303 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2304 return -EBUSY;
6b9a217e 2305 return __soft_offline_page(page);
acc14dc4
NH
2306}
2307
d4ae9916 2308static int soft_offline_free_page(struct page *page)
acc14dc4 2309{
6b9a217e 2310 int rc = 0;
acc14dc4 2311
6b9a217e
OS
2312 if (!page_handle_poison(page, true, false))
2313 rc = -EBUSY;
06be6ff3 2314
d4ae9916 2315 return rc;
acc14dc4
NH
2316}
2317
dad4e5b3
DW
2318static void put_ref_page(struct page *page)
2319{
2320 if (page)
2321 put_page(page);
2322}
2323
86e05773
WL
2324/**
2325 * soft_offline_page - Soft offline a page.
feec24a6 2326 * @pfn: pfn to soft-offline
86e05773
WL
2327 * @flags: flags. Same as memory_failure().
2328 *
9113eaf3 2329 * Returns 0 on success
2330 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2331 * < 0 otherwise negated errno.
86e05773
WL
2332 *
2333 * Soft offline a page, by migration or invalidation,
2334 * without killing anything. This is for the case when
2335 * a page is not corrupted yet (so it's still valid to access),
2336 * but has had a number of corrected errors and is better taken
2337 * out.
2338 *
2339 * The actual policy on when to do that is maintained by
2340 * user space.
2341 *
2342 * This should never impact any application or cause data loss,
2343 * however it might take some time.
2344 *
2345 * This is not a 100% solution for all memory, but tries to be
2346 * ``good enough'' for the majority of memory.
2347 */
feec24a6 2348int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2349{
2350 int ret;
b94e0282 2351 bool try_again = true;
dad4e5b3
DW
2352 struct page *page, *ref_page = NULL;
2353
2354 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2355
feec24a6
NH
2356 if (!pfn_valid(pfn))
2357 return -ENXIO;
dad4e5b3
DW
2358 if (flags & MF_COUNT_INCREASED)
2359 ref_page = pfn_to_page(pfn);
2360
feec24a6
NH
2361 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2362 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2363 if (!page) {
2364 put_ref_page(ref_page);
86a66810 2365 return -EIO;
dad4e5b3 2366 }
86a66810 2367
91d00547
NH
2368 mutex_lock(&mf_mutex);
2369
86e05773 2370 if (PageHWPoison(page)) {
8295d535 2371 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2372 put_ref_page(ref_page);
91d00547 2373 mutex_unlock(&mf_mutex);
5a2ffca3 2374 return 0;
86e05773 2375 }
86e05773 2376
b94e0282 2377retry:
bfc8c901 2378 get_online_mems();
bf6445bc 2379 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2380 put_online_mems();
4e41a30c 2381
9113eaf3 2382 if (hwpoison_filter(page)) {
2383 if (ret > 0)
2384 put_page(page);
2385 else
2386 put_ref_page(ref_page);
2387
2388 mutex_unlock(&mf_mutex);
2389 return -EOPNOTSUPP;
2390 }
2391
8295d535 2392 if (ret > 0) {
6b9a217e 2393 ret = soft_offline_in_use_page(page);
8295d535 2394 } else if (ret == 0) {
b94e0282
OS
2395 if (soft_offline_free_page(page) && try_again) {
2396 try_again = false;
2a57d83c 2397 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2398 goto retry;
2399 }
8295d535 2400 }
4e41a30c 2401
91d00547
NH
2402 mutex_unlock(&mf_mutex);
2403
86e05773
WL
2404 return ret;
2405}
60f272f6 2406
2407void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2408{
2409 int i;
2410
2411 /*
2412 * A further optimization is to have per section refcounted
2413 * num_poisoned_pages. But that would need more space per memmap, so
2414 * for now just do a quick global check to speed up this routine in the
2415 * absence of bad pages.
2416 */
2417 if (atomic_long_read(&num_poisoned_pages) == 0)
2418 return;
2419
2420 for (i = 0; i < nr_pages; i++) {
2421 if (PageHWPoison(&memmap[i])) {
2422 num_poisoned_pages_dec();
2423 ClearPageHWPoison(&memmap[i]);
2424 }
2425 }
2426}