Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
1c80b990
AK
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
1c80b990
AK
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/vm/page-types when running a real workload.
1c80b990
AK
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
96c84dde 45#include <linux/dax.h>
01e00f88 46#include <linux/ksm.h>
6a46079c 47#include <linux/rmap.h>
b9e15baf 48#include <linux/export.h>
6a46079c
AK
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
facb6011 52#include <linux/migrate.h>
facb6011 53#include <linux/suspend.h>
5a0e3ad6 54#include <linux/slab.h>
bf998156 55#include <linux/swapops.h>
7af446a8 56#include <linux/hugetlb.h>
20d6c96b 57#include <linux/memory_hotplug.h>
5db8a73a 58#include <linux/mm_inline.h>
6100e34b 59#include <linux/memremap.h>
ea8f5fb8 60#include <linux/kfifo.h>
a5f65109 61#include <linux/ratelimit.h>
d4ae9916 62#include <linux/page-isolation.h>
a3f5d80e 63#include <linux/pagewalk.h>
a7605426 64#include <linux/shmem_fs.h>
014bb1de 65#include "swap.h"
6a46079c 66#include "internal.h"
97f0b134 67#include "ras/ras_event.h"
6a46079c
AK
68
69int sysctl_memory_failure_early_kill __read_mostly = 0;
70
71int sysctl_memory_failure_recovery __read_mostly = 1;
72
293c07e3 73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 74
67f22ba7 75static bool hw_memory_failure __read_mostly = false;
76
7453bf62
NH
77/*
78 * Return values:
79 * 1: the page is dissolved (if needed) and taken off from buddy,
80 * 0: the page is dissolved (if needed) and not taken off from buddy,
81 * < 0: failed to dissolve.
82 */
83static int __page_handle_poison(struct page *page)
510d25c9 84{
f87060d3 85 int ret;
510d25c9
NH
86
87 zone_pcp_disable(page_zone(page));
88 ret = dissolve_free_huge_page(page);
89 if (!ret)
90 ret = take_page_off_buddy(page);
91 zone_pcp_enable(page_zone(page));
92
7453bf62 93 return ret;
510d25c9
NH
94}
95
6b9a217e 96static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 97{
6b9a217e
OS
98 if (hugepage_or_freepage) {
99 /*
100 * Doing this check for free pages is also fine since dissolve_free_huge_page
101 * returns 0 for non-hugetlb pages as well.
102 */
7453bf62 103 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
104 /*
105 * We could fail to take off the target page from buddy
f0953a1b 106 * for example due to racy page allocation, but that's
6b9a217e
OS
107 * acceptable because soft-offlined page is not broken
108 * and if someone really want to use it, they should
109 * take it.
110 */
111 return false;
112 }
113
06be6ff3 114 SetPageHWPoison(page);
79f5f8fa
OS
115 if (release)
116 put_page(page);
06be6ff3
OS
117 page_ref_inc(page);
118 num_poisoned_pages_inc();
6b9a217e
OS
119
120 return true;
06be6ff3
OS
121}
122
27df5068
AK
123#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
124
1bfe5feb 125u32 hwpoison_filter_enable = 0;
7c116f2b
WF
126u32 hwpoison_filter_dev_major = ~0U;
127u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
128u64 hwpoison_filter_flags_mask;
129u64 hwpoison_filter_flags_value;
1bfe5feb 130EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
131EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
132EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
133EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
134EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
135
136static int hwpoison_filter_dev(struct page *p)
137{
138 struct address_space *mapping;
139 dev_t dev;
140
141 if (hwpoison_filter_dev_major == ~0U &&
142 hwpoison_filter_dev_minor == ~0U)
143 return 0;
144
7c116f2b
WF
145 mapping = page_mapping(p);
146 if (mapping == NULL || mapping->host == NULL)
147 return -EINVAL;
148
149 dev = mapping->host->i_sb->s_dev;
150 if (hwpoison_filter_dev_major != ~0U &&
151 hwpoison_filter_dev_major != MAJOR(dev))
152 return -EINVAL;
153 if (hwpoison_filter_dev_minor != ~0U &&
154 hwpoison_filter_dev_minor != MINOR(dev))
155 return -EINVAL;
156
157 return 0;
158}
159
478c5ffc
WF
160static int hwpoison_filter_flags(struct page *p)
161{
162 if (!hwpoison_filter_flags_mask)
163 return 0;
164
165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
166 hwpoison_filter_flags_value)
167 return 0;
168 else
169 return -EINVAL;
170}
171
4fd466eb
AK
172/*
173 * This allows stress tests to limit test scope to a collection of tasks
174 * by putting them under some memcg. This prevents killing unrelated/important
175 * processes such as /sbin/init. Note that the target task may share clean
176 * pages with init (eg. libc text), which is harmless. If the target task
177 * share _dirty_ pages with another task B, the test scheme must make sure B
178 * is also included in the memcg. At last, due to race conditions this filter
179 * can only guarantee that the page either belongs to the memcg tasks, or is
180 * a freed page.
181 */
94a59fb3 182#ifdef CONFIG_MEMCG
4fd466eb
AK
183u64 hwpoison_filter_memcg;
184EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
185static int hwpoison_filter_task(struct page *p)
186{
4fd466eb
AK
187 if (!hwpoison_filter_memcg)
188 return 0;
189
94a59fb3 190 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
191 return -EINVAL;
192
193 return 0;
194}
195#else
196static int hwpoison_filter_task(struct page *p) { return 0; }
197#endif
198
7c116f2b
WF
199int hwpoison_filter(struct page *p)
200{
1bfe5feb
HL
201 if (!hwpoison_filter_enable)
202 return 0;
203
7c116f2b
WF
204 if (hwpoison_filter_dev(p))
205 return -EINVAL;
206
478c5ffc
WF
207 if (hwpoison_filter_flags(p))
208 return -EINVAL;
209
4fd466eb
AK
210 if (hwpoison_filter_task(p))
211 return -EINVAL;
212
7c116f2b
WF
213 return 0;
214}
27df5068
AK
215#else
216int hwpoison_filter(struct page *p)
217{
218 return 0;
219}
220#endif
221
7c116f2b
WF
222EXPORT_SYMBOL_GPL(hwpoison_filter);
223
ae1139ec
DW
224/*
225 * Kill all processes that have a poisoned page mapped and then isolate
226 * the page.
227 *
228 * General strategy:
229 * Find all processes having the page mapped and kill them.
230 * But we keep a page reference around so that the page is not
231 * actually freed yet.
232 * Then stash the page away
233 *
234 * There's no convenient way to get back to mapped processes
235 * from the VMAs. So do a brute-force search over all
236 * running processes.
237 *
238 * Remember that machine checks are not common (or rather
239 * if they are common you have other problems), so this shouldn't
240 * be a performance issue.
241 *
242 * Also there are some races possible while we get from the
243 * error detection to actually handle it.
244 */
245
246struct to_kill {
247 struct list_head nd;
248 struct task_struct *tsk;
249 unsigned long addr;
250 short size_shift;
ae1139ec
DW
251};
252
6a46079c 253/*
7329bbeb
TL
254 * Send all the processes who have the page mapped a signal.
255 * ``action optional'' if they are not immediately affected by the error
256 * ``action required'' if error happened in current execution context
6a46079c 257 */
ae1139ec 258static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 259{
ae1139ec
DW
260 struct task_struct *t = tk->tsk;
261 short addr_lsb = tk->size_shift;
872e9a20 262 int ret = 0;
6a46079c 263
96f96763 264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 265 pfn, t->comm, t->pid);
7329bbeb 266
49775047
ML
267 if ((flags & MF_ACTION_REQUIRED) && (t == current))
268 ret = force_sig_mceerr(BUS_MCEERR_AR,
269 (void __user *)tk->addr, addr_lsb);
270 else
7329bbeb 271 /*
49775047
ML
272 * Signal other processes sharing the page if they have
273 * PF_MCE_EARLY set.
7329bbeb
TL
274 * Don't use force here, it's convenient if the signal
275 * can be temporarily blocked.
276 * This could cause a loop when the user sets SIGBUS
277 * to SIG_IGN, but hopefully no one will do that?
278 */
ae1139ec 279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
c0f45555 280 addr_lsb, t); /* synchronous? */
6a46079c 281 if (ret < 0)
96f96763 282 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 283 t->comm, t->pid, ret);
6a46079c
AK
284 return ret;
285}
286
588f9ce6 287/*
47e431f4 288 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 289 * lru_add_drain_all.
588f9ce6 290 */
d0505e9f 291void shake_page(struct page *p)
588f9ce6 292{
8bcb74de
NH
293 if (PageHuge(p))
294 return;
295
588f9ce6
AK
296 if (!PageSlab(p)) {
297 lru_add_drain_all();
588f9ce6
AK
298 if (PageLRU(p) || is_free_buddy_page(p))
299 return;
300 }
facb6011 301
588f9ce6 302 /*
d0505e9f
YS
303 * TODO: Could shrink slab caches here if a lightweight range-based
304 * shrinker will be available.
588f9ce6
AK
305 */
306}
307EXPORT_SYMBOL_GPL(shake_page);
308
c36e2024
SR
309static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
310 unsigned long address)
6100e34b 311{
5c91c0e7 312 unsigned long ret = 0;
6100e34b
DW
313 pgd_t *pgd;
314 p4d_t *p4d;
315 pud_t *pud;
316 pmd_t *pmd;
317 pte_t *pte;
318
a994402b 319 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
320 pgd = pgd_offset(vma->vm_mm, address);
321 if (!pgd_present(*pgd))
322 return 0;
323 p4d = p4d_offset(pgd, address);
324 if (!p4d_present(*p4d))
325 return 0;
326 pud = pud_offset(p4d, address);
327 if (!pud_present(*pud))
328 return 0;
329 if (pud_devmap(*pud))
330 return PUD_SHIFT;
331 pmd = pmd_offset(pud, address);
332 if (!pmd_present(*pmd))
333 return 0;
334 if (pmd_devmap(*pmd))
335 return PMD_SHIFT;
336 pte = pte_offset_map(pmd, address);
5c91c0e7
QZ
337 if (pte_present(*pte) && pte_devmap(*pte))
338 ret = PAGE_SHIFT;
339 pte_unmap(pte);
340 return ret;
6100e34b 341}
6a46079c
AK
342
343/*
344 * Failure handling: if we can't find or can't kill a process there's
345 * not much we can do. We just print a message and ignore otherwise.
346 */
347
ac87ca0e
DW
348#define FSDAX_INVALID_PGOFF ULONG_MAX
349
6a46079c
AK
350/*
351 * Schedule a process for later kill.
352 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 353 *
ac87ca0e
DW
354 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
355 * filesystem with a memory failure handler has claimed the
356 * memory_failure event. In all other cases, page->index and
357 * page->mapping are sufficient for mapping the page back to its
358 * corresponding user virtual address.
6a46079c
AK
359 */
360static void add_to_kill(struct task_struct *tsk, struct page *p,
c36e2024
SR
361 pgoff_t fsdax_pgoff, struct vm_area_struct *vma,
362 struct list_head *to_kill)
6a46079c
AK
363{
364 struct to_kill *tk;
365
996ff7a0
JC
366 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
367 if (!tk) {
96f96763 368 pr_err("Out of memory while machine check handling\n");
996ff7a0 369 return;
6a46079c 370 }
996ff7a0 371
6a46079c 372 tk->addr = page_address_in_vma(p, vma);
c36e2024 373 if (is_zone_device_page(p)) {
ac87ca0e 374 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
377 } else
75068518 378 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
379
380 /*
3d7fed4a
JC
381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
382 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
383 * so "tk->size_shift == 0" effectively checks no mapping on
384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
385 * to a process' address space, it's possible not all N VMAs
386 * contain mappings for the page, but at least one VMA does.
387 * Only deliver SIGBUS with payload derived from the VMA that
388 * has a mapping for the page.
6a46079c 389 */
3d7fed4a 390 if (tk->addr == -EFAULT) {
96f96763 391 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 392 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
393 } else if (tk->size_shift == 0) {
394 kfree(tk);
395 return;
6a46079c 396 }
996ff7a0 397
6a46079c
AK
398 get_task_struct(tsk);
399 tk->tsk = tsk;
400 list_add_tail(&tk->nd, to_kill);
401}
402
403/*
404 * Kill the processes that have been collected earlier.
405 *
a21c184f
ML
406 * Only do anything when FORCEKILL is set, otherwise just free the
407 * list (this is used for clean pages which do not need killing)
6a46079c
AK
408 * Also when FAIL is set do a force kill because something went
409 * wrong earlier.
410 */
ae1139ec
DW
411static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
412 unsigned long pfn, int flags)
6a46079c
AK
413{
414 struct to_kill *tk, *next;
415
416 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 417 if (forcekill) {
6a46079c 418 /*
af901ca1 419 * In case something went wrong with munmapping
6a46079c
AK
420 * make sure the process doesn't catch the
421 * signal and then access the memory. Just kill it.
6a46079c 422 */
3d7fed4a 423 if (fail || tk->addr == -EFAULT) {
96f96763 424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 425 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
427 tk->tsk, PIDTYPE_PID);
6a46079c
AK
428 }
429
430 /*
431 * In theory the process could have mapped
432 * something else on the address in-between. We could
433 * check for that, but we need to tell the
434 * process anyways.
435 */
ae1139ec 436 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 438 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
439 }
440 put_task_struct(tk->tsk);
441 kfree(tk);
442 }
443}
444
3ba08129
NH
445/*
446 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
447 * on behalf of the thread group. Return task_struct of the (first found)
448 * dedicated thread if found, and return NULL otherwise.
449 *
450 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
451 * have to call rcu_read_lock/unlock() in this function.
452 */
453static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 454{
3ba08129
NH
455 struct task_struct *t;
456
4e018b45
NH
457 for_each_thread(tsk, t) {
458 if (t->flags & PF_MCE_PROCESS) {
459 if (t->flags & PF_MCE_EARLY)
460 return t;
461 } else {
462 if (sysctl_memory_failure_early_kill)
463 return t;
464 }
465 }
3ba08129
NH
466 return NULL;
467}
468
469/*
470 * Determine whether a given process is "early kill" process which expects
471 * to be signaled when some page under the process is hwpoisoned.
472 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 473 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 474 *
30c9cf49
AY
475 * Note that the above is true for Action Optional case. For Action Required
476 * case, it's only meaningful to the current thread which need to be signaled
477 * with SIGBUS, this error is Action Optional for other non current
478 * processes sharing the same error page,if the process is "early kill", the
479 * task_struct of the dedicated thread will also be returned.
3ba08129
NH
480 */
481static struct task_struct *task_early_kill(struct task_struct *tsk,
482 int force_early)
483{
6a46079c 484 if (!tsk->mm)
3ba08129 485 return NULL;
30c9cf49
AY
486 /*
487 * Comparing ->mm here because current task might represent
488 * a subthread, while tsk always points to the main thread.
489 */
490 if (force_early && tsk->mm == current->mm)
491 return current;
492
4e018b45 493 return find_early_kill_thread(tsk);
6a46079c
AK
494}
495
496/*
497 * Collect processes when the error hit an anonymous page.
498 */
499static void collect_procs_anon(struct page *page, struct list_head *to_kill,
996ff7a0 500 int force_early)
6a46079c 501{
9595d769 502 struct folio *folio = page_folio(page);
6a46079c
AK
503 struct vm_area_struct *vma;
504 struct task_struct *tsk;
505 struct anon_vma *av;
bf181b9f 506 pgoff_t pgoff;
6a46079c 507
6d4675e6 508 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 509 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
510 return;
511
a0f7a756 512 pgoff = page_to_pgoff(page);
9b679320 513 read_lock(&tasklist_lock);
6a46079c 514 for_each_process (tsk) {
5beb4930 515 struct anon_vma_chain *vmac;
3ba08129 516 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 517
3ba08129 518 if (!t)
6a46079c 519 continue;
bf181b9f
ML
520 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
521 pgoff, pgoff) {
5beb4930 522 vma = vmac->vma;
6a46079c
AK
523 if (!page_mapped_in_vma(page, vma))
524 continue;
3ba08129 525 if (vma->vm_mm == t->mm)
ac87ca0e
DW
526 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
527 to_kill);
6a46079c
AK
528 }
529 }
6a46079c 530 read_unlock(&tasklist_lock);
4fc3f1d6 531 page_unlock_anon_vma_read(av);
6a46079c
AK
532}
533
534/*
535 * Collect processes when the error hit a file mapped page.
536 */
537static void collect_procs_file(struct page *page, struct list_head *to_kill,
996ff7a0 538 int force_early)
6a46079c
AK
539{
540 struct vm_area_struct *vma;
541 struct task_struct *tsk;
6a46079c 542 struct address_space *mapping = page->mapping;
c43bc03d 543 pgoff_t pgoff;
6a46079c 544
d28eb9c8 545 i_mmap_lock_read(mapping);
9b679320 546 read_lock(&tasklist_lock);
c43bc03d 547 pgoff = page_to_pgoff(page);
6a46079c 548 for_each_process(tsk) {
3ba08129 549 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 550
3ba08129 551 if (!t)
6a46079c 552 continue;
6b2dbba8 553 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
554 pgoff) {
555 /*
556 * Send early kill signal to tasks where a vma covers
557 * the page but the corrupted page is not necessarily
558 * mapped it in its pte.
559 * Assume applications who requested early kill want
560 * to be informed of all such data corruptions.
561 */
3ba08129 562 if (vma->vm_mm == t->mm)
ac87ca0e
DW
563 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma,
564 to_kill);
6a46079c
AK
565 }
566 }
6a46079c 567 read_unlock(&tasklist_lock);
d28eb9c8 568 i_mmap_unlock_read(mapping);
6a46079c
AK
569}
570
c36e2024
SR
571#ifdef CONFIG_FS_DAX
572/*
573 * Collect processes when the error hit a fsdax page.
574 */
575static void collect_procs_fsdax(struct page *page,
576 struct address_space *mapping, pgoff_t pgoff,
577 struct list_head *to_kill)
578{
579 struct vm_area_struct *vma;
580 struct task_struct *tsk;
581
582 i_mmap_lock_read(mapping);
583 read_lock(&tasklist_lock);
584 for_each_process(tsk) {
585 struct task_struct *t = task_early_kill(tsk, true);
586
587 if (!t)
588 continue;
589 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
590 if (vma->vm_mm == t->mm)
591 add_to_kill(t, page, pgoff, vma, to_kill);
592 }
593 }
594 read_unlock(&tasklist_lock);
595 i_mmap_unlock_read(mapping);
596}
597#endif /* CONFIG_FS_DAX */
598
6a46079c
AK
599/*
600 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 601 */
74614de1
TL
602static void collect_procs(struct page *page, struct list_head *tokill,
603 int force_early)
6a46079c 604{
6a46079c
AK
605 if (!page->mapping)
606 return;
607
6a46079c 608 if (PageAnon(page))
996ff7a0 609 collect_procs_anon(page, tokill, force_early);
6a46079c 610 else
996ff7a0 611 collect_procs_file(page, tokill, force_early);
6a46079c
AK
612}
613
a3f5d80e
NH
614struct hwp_walk {
615 struct to_kill tk;
616 unsigned long pfn;
617 int flags;
618};
619
620static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
621{
622 tk->addr = addr;
623 tk->size_shift = shift;
624}
625
626static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
627 unsigned long poisoned_pfn, struct to_kill *tk)
628{
629 unsigned long pfn = 0;
630
631 if (pte_present(pte)) {
632 pfn = pte_pfn(pte);
633 } else {
634 swp_entry_t swp = pte_to_swp_entry(pte);
635
636 if (is_hwpoison_entry(swp))
637 pfn = hwpoison_entry_to_pfn(swp);
638 }
639
640 if (!pfn || pfn != poisoned_pfn)
641 return 0;
642
643 set_to_kill(tk, addr, shift);
644 return 1;
645}
646
647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
648static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
649 struct hwp_walk *hwp)
650{
651 pmd_t pmd = *pmdp;
652 unsigned long pfn;
653 unsigned long hwpoison_vaddr;
654
655 if (!pmd_present(pmd))
656 return 0;
657 pfn = pmd_pfn(pmd);
658 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
659 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
660 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
661 return 1;
662 }
663 return 0;
664}
665#else
666static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
667 struct hwp_walk *hwp)
668{
669 return 0;
670}
671#endif
672
673static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
674 unsigned long end, struct mm_walk *walk)
675{
f142e707 676 struct hwp_walk *hwp = walk->private;
a3f5d80e 677 int ret = 0;
ea3732f7 678 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
679 spinlock_t *ptl;
680
681 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
682 if (ptl) {
683 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
684 spin_unlock(ptl);
685 goto out;
686 }
687
688 if (pmd_trans_unstable(pmdp))
689 goto out;
690
ea3732f7
ML
691 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
692 addr, &ptl);
a3f5d80e
NH
693 for (; addr != end; ptep++, addr += PAGE_SIZE) {
694 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
695 hwp->pfn, &hwp->tk);
696 if (ret == 1)
697 break;
698 }
ea3732f7 699 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
700out:
701 cond_resched();
702 return ret;
703}
704
705#ifdef CONFIG_HUGETLB_PAGE
706static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
707 unsigned long addr, unsigned long end,
708 struct mm_walk *walk)
709{
f142e707 710 struct hwp_walk *hwp = walk->private;
a3f5d80e
NH
711 pte_t pte = huge_ptep_get(ptep);
712 struct hstate *h = hstate_vma(walk->vma);
713
714 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
715 hwp->pfn, &hwp->tk);
716}
717#else
718#define hwpoison_hugetlb_range NULL
719#endif
720
ba9eb3ce 721static const struct mm_walk_ops hwp_walk_ops = {
a3f5d80e
NH
722 .pmd_entry = hwpoison_pte_range,
723 .hugetlb_entry = hwpoison_hugetlb_range,
724};
725
726/*
727 * Sends SIGBUS to the current process with error info.
728 *
729 * This function is intended to handle "Action Required" MCEs on already
730 * hardware poisoned pages. They could happen, for example, when
731 * memory_failure() failed to unmap the error page at the first call, or
732 * when multiple local machine checks happened on different CPUs.
733 *
734 * MCE handler currently has no easy access to the error virtual address,
735 * so this function walks page table to find it. The returned virtual address
736 * is proper in most cases, but it could be wrong when the application
737 * process has multiple entries mapping the error page.
738 */
739static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
740 int flags)
741{
742 int ret;
743 struct hwp_walk priv = {
744 .pfn = pfn,
745 };
746 priv.tk.tsk = p;
747
77677cdb
SX
748 if (!p->mm)
749 return -EFAULT;
750
a3f5d80e
NH
751 mmap_read_lock(p->mm);
752 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
753 (void *)&priv);
754 if (ret == 1 && priv.tk.addr)
755 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
756 else
757 ret = 0;
a3f5d80e 758 mmap_read_unlock(p->mm);
046545a6 759 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
760}
761
6a46079c 762static const char *action_name[] = {
cc637b17
XX
763 [MF_IGNORED] = "Ignored",
764 [MF_FAILED] = "Failed",
765 [MF_DELAYED] = "Delayed",
766 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
767};
768
769static const char * const action_page_types[] = {
cc637b17
XX
770 [MF_MSG_KERNEL] = "reserved kernel page",
771 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
772 [MF_MSG_SLAB] = "kernel slab page",
773 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
774 [MF_MSG_HUGE] = "huge page",
775 [MF_MSG_FREE_HUGE] = "free huge page",
776 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
777 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
778 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
779 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
780 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
781 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
782 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
783 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
784 [MF_MSG_CLEAN_LRU] = "clean LRU page",
785 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
786 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 787 [MF_MSG_DAX] = "dax page",
5d1fd5dc 788 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 789 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
790};
791
dc2a1cbf
WF
792/*
793 * XXX: It is possible that a page is isolated from LRU cache,
794 * and then kept in swap cache or failed to remove from page cache.
795 * The page count will stop it from being freed by unpoison.
796 * Stress tests should be aware of this memory leak problem.
797 */
798static int delete_from_lru_cache(struct page *p)
799{
800 if (!isolate_lru_page(p)) {
801 /*
802 * Clear sensible page flags, so that the buddy system won't
803 * complain when the page is unpoison-and-freed.
804 */
805 ClearPageActive(p);
806 ClearPageUnevictable(p);
18365225
MH
807
808 /*
809 * Poisoned page might never drop its ref count to 0 so we have
810 * to uncharge it manually from its memcg.
811 */
bbc6b703 812 mem_cgroup_uncharge(page_folio(p));
18365225 813
dc2a1cbf
WF
814 /*
815 * drop the page count elevated by isolate_lru_page()
816 */
09cbfeaf 817 put_page(p);
dc2a1cbf
WF
818 return 0;
819 }
820 return -EIO;
821}
822
78bb9203
NH
823static int truncate_error_page(struct page *p, unsigned long pfn,
824 struct address_space *mapping)
825{
826 int ret = MF_FAILED;
827
828 if (mapping->a_ops->error_remove_page) {
829 int err = mapping->a_ops->error_remove_page(mapping, p);
830
831 if (err != 0) {
96f96763 832 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
78bb9203
NH
833 } else if (page_has_private(p) &&
834 !try_to_release_page(p, GFP_NOIO)) {
96f96763 835 pr_info("%#lx: failed to release buffers\n", pfn);
78bb9203
NH
836 } else {
837 ret = MF_RECOVERED;
838 }
839 } else {
840 /*
841 * If the file system doesn't support it just invalidate
842 * This fails on dirty or anything with private pages
843 */
844 if (invalidate_inode_page(p))
845 ret = MF_RECOVERED;
846 else
96f96763 847 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
848 }
849
850 return ret;
851}
852
dd0f230a
YS
853struct page_state {
854 unsigned long mask;
855 unsigned long res;
856 enum mf_action_page_type type;
857
858 /* Callback ->action() has to unlock the relevant page inside it. */
859 int (*action)(struct page_state *ps, struct page *p);
860};
861
862/*
863 * Return true if page is still referenced by others, otherwise return
864 * false.
865 *
866 * The extra_pins is true when one extra refcount is expected.
867 */
868static bool has_extra_refcount(struct page_state *ps, struct page *p,
869 bool extra_pins)
870{
871 int count = page_count(p) - 1;
872
873 if (extra_pins)
874 count -= 1;
875
876 if (count > 0) {
96f96763 877 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
878 page_to_pfn(p), action_page_types[ps->type], count);
879 return true;
880 }
881
882 return false;
883}
884
6a46079c
AK
885/*
886 * Error hit kernel page.
887 * Do nothing, try to be lucky and not touch this instead. For a few cases we
888 * could be more sophisticated.
889 */
dd0f230a 890static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 891{
ea6d0630 892 unlock_page(p);
cc637b17 893 return MF_IGNORED;
6a46079c
AK
894}
895
896/*
897 * Page in unknown state. Do nothing.
898 */
dd0f230a 899static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 900{
96f96763 901 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 902 unlock_page(p);
cc637b17 903 return MF_FAILED;
6a46079c
AK
904}
905
6a46079c
AK
906/*
907 * Clean (or cleaned) page cache page.
908 */
dd0f230a 909static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 910{
ea6d0630 911 int ret;
6a46079c 912 struct address_space *mapping;
a7605426 913 bool extra_pins;
6a46079c 914
dc2a1cbf
WF
915 delete_from_lru_cache(p);
916
6a46079c
AK
917 /*
918 * For anonymous pages we're done the only reference left
919 * should be the one m_f() holds.
920 */
ea6d0630
NH
921 if (PageAnon(p)) {
922 ret = MF_RECOVERED;
923 goto out;
924 }
6a46079c
AK
925
926 /*
927 * Now truncate the page in the page cache. This is really
928 * more like a "temporary hole punch"
929 * Don't do this for block devices when someone else
930 * has a reference, because it could be file system metadata
931 * and that's not safe to truncate.
932 */
933 mapping = page_mapping(p);
934 if (!mapping) {
935 /*
936 * Page has been teared down in the meanwhile
937 */
ea6d0630
NH
938 ret = MF_FAILED;
939 goto out;
6a46079c
AK
940 }
941
a7605426
YS
942 /*
943 * The shmem page is kept in page cache instead of truncating
944 * so is expected to have an extra refcount after error-handling.
945 */
946 extra_pins = shmem_mapping(mapping);
947
6a46079c
AK
948 /*
949 * Truncation is a bit tricky. Enable it per file system for now.
950 *
9608703e 951 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 952 */
dd0f230a 953 ret = truncate_error_page(p, page_to_pfn(p), mapping);
a7605426
YS
954 if (has_extra_refcount(ps, p, extra_pins))
955 ret = MF_FAILED;
956
ea6d0630
NH
957out:
958 unlock_page(p);
dd0f230a 959
ea6d0630 960 return ret;
6a46079c
AK
961}
962
963/*
549543df 964 * Dirty pagecache page
6a46079c
AK
965 * Issues: when the error hit a hole page the error is not properly
966 * propagated.
967 */
dd0f230a 968static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
969{
970 struct address_space *mapping = page_mapping(p);
971
972 SetPageError(p);
973 /* TBD: print more information about the file. */
974 if (mapping) {
975 /*
976 * IO error will be reported by write(), fsync(), etc.
977 * who check the mapping.
978 * This way the application knows that something went
979 * wrong with its dirty file data.
980 *
981 * There's one open issue:
982 *
983 * The EIO will be only reported on the next IO
984 * operation and then cleared through the IO map.
985 * Normally Linux has two mechanisms to pass IO error
986 * first through the AS_EIO flag in the address space
987 * and then through the PageError flag in the page.
988 * Since we drop pages on memory failure handling the
989 * only mechanism open to use is through AS_AIO.
990 *
991 * This has the disadvantage that it gets cleared on
992 * the first operation that returns an error, while
993 * the PageError bit is more sticky and only cleared
994 * when the page is reread or dropped. If an
995 * application assumes it will always get error on
996 * fsync, but does other operations on the fd before
25985edc 997 * and the page is dropped between then the error
6a46079c
AK
998 * will not be properly reported.
999 *
1000 * This can already happen even without hwpoisoned
1001 * pages: first on metadata IO errors (which only
1002 * report through AS_EIO) or when the page is dropped
1003 * at the wrong time.
1004 *
1005 * So right now we assume that the application DTRT on
1006 * the first EIO, but we're not worse than other parts
1007 * of the kernel.
1008 */
af21bfaf 1009 mapping_set_error(mapping, -EIO);
6a46079c
AK
1010 }
1011
dd0f230a 1012 return me_pagecache_clean(ps, p);
6a46079c
AK
1013}
1014
1015/*
1016 * Clean and dirty swap cache.
1017 *
1018 * Dirty swap cache page is tricky to handle. The page could live both in page
1019 * cache and swap cache(ie. page is freshly swapped in). So it could be
1020 * referenced concurrently by 2 types of PTEs:
1021 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1022 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
1023 * and then
1024 * - clear dirty bit to prevent IO
1025 * - remove from LRU
1026 * - but keep in the swap cache, so that when we return to it on
1027 * a later page fault, we know the application is accessing
1028 * corrupted data and shall be killed (we installed simple
1029 * interception code in do_swap_page to catch it).
1030 *
1031 * Clean swap cache pages can be directly isolated. A later page fault will
1032 * bring in the known good data from disk.
1033 */
dd0f230a 1034static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1035{
ea6d0630 1036 int ret;
dd0f230a 1037 bool extra_pins = false;
ea6d0630 1038
6a46079c
AK
1039 ClearPageDirty(p);
1040 /* Trigger EIO in shmem: */
1041 ClearPageUptodate(p);
1042
ea6d0630
NH
1043 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1044 unlock_page(p);
dd0f230a
YS
1045
1046 if (ret == MF_DELAYED)
1047 extra_pins = true;
1048
1049 if (has_extra_refcount(ps, p, extra_pins))
1050 ret = MF_FAILED;
1051
ea6d0630 1052 return ret;
6a46079c
AK
1053}
1054
dd0f230a 1055static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1056{
75fa68a5 1057 struct folio *folio = page_folio(p);
ea6d0630
NH
1058 int ret;
1059
75fa68a5 1060 delete_from_swap_cache(folio);
e43c3afb 1061
ea6d0630 1062 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1063 folio_unlock(folio);
dd0f230a
YS
1064
1065 if (has_extra_refcount(ps, p, false))
1066 ret = MF_FAILED;
1067
ea6d0630 1068 return ret;
6a46079c
AK
1069}
1070
1071/*
1072 * Huge pages. Needs work.
1073 * Issues:
93f70f90
NH
1074 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1075 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1076 */
dd0f230a 1077static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1078{
a8b2c2ce 1079 int res;
93f70f90 1080 struct page *hpage = compound_head(p);
78bb9203 1081 struct address_space *mapping;
2491ffee
NH
1082
1083 if (!PageHuge(hpage))
1084 return MF_DELAYED;
1085
78bb9203
NH
1086 mapping = page_mapping(hpage);
1087 if (mapping) {
dd0f230a 1088 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
ea6d0630 1089 unlock_page(hpage);
78bb9203
NH
1090 } else {
1091 unlock_page(hpage);
1092 /*
ef526b17
ML
1093 * migration entry prevents later access on error hugepage,
1094 * so we can free and dissolve it into buddy to save healthy
1095 * subpages.
78bb9203 1096 */
ef526b17 1097 put_page(hpage);
ceaf8fbe 1098 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1099 page_ref_inc(p);
1100 res = MF_RECOVERED;
ceaf8fbe
NH
1101 } else {
1102 res = MF_FAILED;
a8b2c2ce 1103 }
93f70f90 1104 }
78bb9203 1105
dd0f230a
YS
1106 if (has_extra_refcount(ps, p, false))
1107 res = MF_FAILED;
1108
78bb9203 1109 return res;
6a46079c
AK
1110}
1111
1112/*
1113 * Various page states we can handle.
1114 *
1115 * A page state is defined by its current page->flags bits.
1116 * The table matches them in order and calls the right handler.
1117 *
1118 * This is quite tricky because we can access page at any time
25985edc 1119 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1120 *
1121 * This is not complete. More states could be added.
1122 * For any missing state don't attempt recovery.
1123 */
1124
1125#define dirty (1UL << PG_dirty)
6326fec1 1126#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1127#define unevict (1UL << PG_unevictable)
1128#define mlock (1UL << PG_mlocked)
6a46079c 1129#define lru (1UL << PG_lru)
6a46079c 1130#define head (1UL << PG_head)
6a46079c 1131#define slab (1UL << PG_slab)
6a46079c
AK
1132#define reserved (1UL << PG_reserved)
1133
dd0f230a 1134static struct page_state error_states[] = {
cc637b17 1135 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1136 /*
1137 * free pages are specially detected outside this table:
1138 * PG_buddy pages only make a small fraction of all free pages.
1139 */
6a46079c
AK
1140
1141 /*
1142 * Could in theory check if slab page is free or if we can drop
1143 * currently unused objects without touching them. But just
1144 * treat it as standard kernel for now.
1145 */
cc637b17 1146 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1147
cc637b17 1148 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1149
cc637b17
XX
1150 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1151 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1152
cc637b17
XX
1153 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1154 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1155
cc637b17
XX
1156 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1157 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1158
cc637b17
XX
1159 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1160 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1161
1162 /*
1163 * Catchall entry: must be at end.
1164 */
cc637b17 1165 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1166};
1167
2326c467
AK
1168#undef dirty
1169#undef sc
1170#undef unevict
1171#undef mlock
2326c467 1172#undef lru
2326c467 1173#undef head
2326c467
AK
1174#undef slab
1175#undef reserved
1176
ff604cf6
NH
1177/*
1178 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1179 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1180 */
cc3e2af4
XX
1181static void action_result(unsigned long pfn, enum mf_action_page_type type,
1182 enum mf_result result)
6a46079c 1183{
97f0b134
XX
1184 trace_memory_failure_event(pfn, type, result);
1185
e240ac52 1186 num_poisoned_pages_inc();
96f96763 1187 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1188 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
1189}
1190
1191static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1192 unsigned long pfn)
6a46079c
AK
1193{
1194 int result;
1195
ea6d0630 1196 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1197 result = ps->action(ps, p);
7456b040 1198
64d37a2b 1199 action_result(pfn, ps->type, result);
6a46079c
AK
1200
1201 /* Could do more checks here if page looks ok */
1202 /*
1203 * Could adjust zone counters here to correct for the missing page.
1204 */
1205
cc637b17 1206 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1207}
1208
bf181c58
NH
1209static inline bool PageHWPoisonTakenOff(struct page *page)
1210{
1211 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1212}
1213
1214void SetPageHWPoisonTakenOff(struct page *page)
1215{
1216 set_page_private(page, MAGIC_HWPOISON);
1217}
1218
1219void ClearPageHWPoisonTakenOff(struct page *page)
1220{
1221 if (PageHWPoison(page))
1222 set_page_private(page, 0);
1223}
1224
25182f05
NH
1225/*
1226 * Return true if a page type of a given page is supported by hwpoison
1227 * mechanism (while handling could fail), otherwise false. This function
1228 * does not return true for hugetlb or device memory pages, so it's assumed
1229 * to be called only in the context where we never have such pages.
1230 */
bf6445bc 1231static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1232{
3f871370 1233 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1234 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1235 return true;
bf6445bc 1236
3f871370 1237 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1238}
1239
bf6445bc 1240static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a
NH
1241{
1242 struct page *head = compound_head(page);
25182f05
NH
1243 int ret = 0;
1244 bool hugetlb = false;
1245
1246 ret = get_hwpoison_huge_page(head, &hugetlb);
1247 if (hugetlb)
1248 return ret;
1249
1250 /*
1251 * This check prevents from calling get_hwpoison_unless_zero()
1252 * for any unsupported type of page in order to reduce the risk of
1253 * unexpected races caused by taking a page refcount.
1254 */
bf6445bc 1255 if (!HWPoisonHandlable(head, flags))
fcc00621 1256 return -EBUSY;
ead07f6a 1257
c2e7e00b
KK
1258 if (get_page_unless_zero(head)) {
1259 if (head == compound_head(page))
1260 return 1;
1261
96f96763 1262 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
c2e7e00b
KK
1263 put_page(head);
1264 }
1265
1266 return 0;
ead07f6a 1267}
ead07f6a 1268
2f714160 1269static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1270{
2f714160
OS
1271 int ret = 0, pass = 0;
1272 bool count_increased = false;
17e395b6 1273
2f714160
OS
1274 if (flags & MF_COUNT_INCREASED)
1275 count_increased = true;
1276
1277try_again:
0ed950d1 1278 if (!count_increased) {
bf6445bc 1279 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1280 if (!ret) {
1281 if (page_count(p)) {
1282 /* We raced with an allocation, retry. */
1283 if (pass++ < 3)
1284 goto try_again;
1285 ret = -EBUSY;
1286 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1287 /* We raced with put_page, retry. */
1288 if (pass++ < 3)
1289 goto try_again;
1290 ret = -EIO;
1291 }
1292 goto out;
1293 } else if (ret == -EBUSY) {
fcc00621
NH
1294 /*
1295 * We raced with (possibly temporary) unhandlable
1296 * page, retry.
1297 */
1298 if (pass++ < 3) {
d0505e9f 1299 shake_page(p);
2f714160 1300 goto try_again;
fcc00621
NH
1301 }
1302 ret = -EIO;
0ed950d1 1303 goto out;
2f714160 1304 }
0ed950d1
NH
1305 }
1306
bf6445bc 1307 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1308 ret = 1;
2f714160 1309 } else {
0ed950d1
NH
1310 /*
1311 * A page we cannot handle. Check whether we can turn
1312 * it into something we can handle.
1313 */
1314 if (pass++ < 3) {
2f714160 1315 put_page(p);
d0505e9f 1316 shake_page(p);
0ed950d1
NH
1317 count_increased = false;
1318 goto try_again;
2f714160 1319 }
0ed950d1
NH
1320 put_page(p);
1321 ret = -EIO;
17e395b6 1322 }
0ed950d1 1323out:
941ca063 1324 if (ret == -EIO)
96f96763 1325 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1326
17e395b6
OS
1327 return ret;
1328}
1329
bf181c58
NH
1330static int __get_unpoison_page(struct page *page)
1331{
1332 struct page *head = compound_head(page);
1333 int ret = 0;
1334 bool hugetlb = false;
1335
1336 ret = get_hwpoison_huge_page(head, &hugetlb);
1337 if (hugetlb)
1338 return ret;
1339
1340 /*
1341 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1342 * but also isolated from buddy freelist, so need to identify the
1343 * state and have to cancel both operations to unpoison.
1344 */
1345 if (PageHWPoisonTakenOff(page))
1346 return -EHWPOISON;
1347
1348 return get_page_unless_zero(page) ? 1 : 0;
1349}
1350
0ed950d1
NH
1351/**
1352 * get_hwpoison_page() - Get refcount for memory error handling
1353 * @p: Raw error page (hit by memory error)
1354 * @flags: Flags controlling behavior of error handling
1355 *
1356 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1357 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1358 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1359 * such as LRU page and hugetlb page).
1360 *
1361 * Memory error handling could be triggered at any time on any type of page,
1362 * so it's prone to race with typical memory management lifecycle (like
1363 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1364 * extra care for the error page's state (as done in __get_hwpoison_page()),
1365 * and has some retry logic in get_any_page().
1366 *
bf181c58
NH
1367 * When called from unpoison_memory(), the caller should already ensure that
1368 * the given page has PG_hwpoison. So it's never reused for other page
1369 * allocations, and __get_unpoison_page() never races with them.
1370 *
0ed950d1
NH
1371 * Return: 0 on failure,
1372 * 1 on success for in-use pages in a well-defined state,
1373 * -EIO for pages on which we can not handle memory errors,
1374 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1375 * operations like allocation and free,
1376 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1377 */
1378static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1379{
1380 int ret;
1381
1382 zone_pcp_disable(page_zone(p));
bf181c58
NH
1383 if (flags & MF_UNPOISON)
1384 ret = __get_unpoison_page(p);
1385 else
1386 ret = get_any_page(p, flags);
2f714160
OS
1387 zone_pcp_enable(page_zone(p));
1388
1389 return ret;
1390}
1391
6a46079c
AK
1392/*
1393 * Do all that is necessary to remove user space mappings. Unmap
1394 * the pages and send SIGBUS to the processes if the data was dirty.
1395 */
666e5a40 1396static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1397 int flags, struct page *hpage)
6a46079c 1398{
869f7ee6 1399 struct folio *folio = page_folio(hpage);
36af6737 1400 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
6a46079c
AK
1401 struct address_space *mapping;
1402 LIST_HEAD(tokill);
1fb08ac6 1403 bool unmap_success;
6751ed65 1404 int kill = 1, forcekill;
286c469a 1405 bool mlocked = PageMlocked(hpage);
6a46079c 1406
93a9eb39
NH
1407 /*
1408 * Here we are interested only in user-mapped pages, so skip any
1409 * other types of pages.
1410 */
1411 if (PageReserved(p) || PageSlab(p))
666e5a40 1412 return true;
93a9eb39 1413 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1414 return true;
6a46079c 1415
6a46079c
AK
1416 /*
1417 * This check implies we don't kill processes if their pages
1418 * are in the swap cache early. Those are always late kills.
1419 */
7af446a8 1420 if (!page_mapped(hpage))
666e5a40 1421 return true;
1668bfd5 1422
52089b14 1423 if (PageKsm(p)) {
96f96763 1424 pr_err("%#lx: can't handle KSM pages.\n", pfn);
666e5a40 1425 return false;
52089b14 1426 }
6a46079c
AK
1427
1428 if (PageSwapCache(p)) {
96f96763 1429 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6a46079c
AK
1430 ttu |= TTU_IGNORE_HWPOISON;
1431 }
1432
1433 /*
1434 * Propagate the dirty bit from PTEs to struct page first, because we
1435 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1436 * XXX: the dirty test could be racy: set_page_dirty() may not always
1437 * be called inside page lock (it's recommended but not enforced).
6a46079c 1438 */
7af446a8 1439 mapping = page_mapping(hpage);
6751ed65 1440 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1441 mapping_can_writeback(mapping)) {
7af446a8
NH
1442 if (page_mkclean(hpage)) {
1443 SetPageDirty(hpage);
6a46079c
AK
1444 } else {
1445 kill = 0;
1446 ttu |= TTU_IGNORE_HWPOISON;
96f96763 1447 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1448 pfn);
1449 }
1450 }
1451
1452 /*
1453 * First collect all the processes that have the page
1454 * mapped in dirty form. This has to be done before try_to_unmap,
1455 * because ttu takes the rmap data structures down.
1456 *
1457 * Error handling: We ignore errors here because
1458 * there's nothing that can be done.
1459 */
1460 if (kill)
415c64c1 1461 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1462
357670f7
ML
1463 if (PageHuge(hpage) && !PageAnon(hpage)) {
1464 /*
1465 * For hugetlb pages in shared mappings, try_to_unmap
1466 * could potentially call huge_pmd_unshare. Because of
1467 * this, take semaphore in write mode here and set
1468 * TTU_RMAP_LOCKED to indicate we have taken the lock
1469 * at this higher level.
1470 */
1471 mapping = hugetlb_page_mapping_lock_write(hpage);
1472 if (mapping) {
9030fb0b 1473 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1474 i_mmap_unlock_write(mapping);
1475 } else
96f96763 1476 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1477 } else {
9030fb0b 1478 try_to_unmap(folio, ttu);
c0d0381a 1479 }
1fb08ac6
YS
1480
1481 unmap_success = !page_mapped(hpage);
666e5a40 1482 if (!unmap_success)
96f96763 1483 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1484 pfn, page_mapcount(hpage));
a6d30ddd 1485
286c469a
NH
1486 /*
1487 * try_to_unmap() might put mlocked page in lru cache, so call
1488 * shake_page() again to ensure that it's flushed.
1489 */
1490 if (mlocked)
d0505e9f 1491 shake_page(hpage);
286c469a 1492
6a46079c
AK
1493 /*
1494 * Now that the dirty bit has been propagated to the
1495 * struct page and all unmaps done we can decide if
1496 * killing is needed or not. Only kill when the page
6751ed65
TL
1497 * was dirty or the process is not restartable,
1498 * otherwise the tokill list is merely
6a46079c
AK
1499 * freed. When there was a problem unmapping earlier
1500 * use a more force-full uncatchable kill to prevent
1501 * any accesses to the poisoned memory.
1502 */
415c64c1 1503 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
ae1139ec 1504 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1505
666e5a40 1506 return unmap_success;
6a46079c
AK
1507}
1508
0348d2eb
NH
1509static int identify_page_state(unsigned long pfn, struct page *p,
1510 unsigned long page_flags)
761ad8d7
NH
1511{
1512 struct page_state *ps;
0348d2eb
NH
1513
1514 /*
1515 * The first check uses the current page flags which may not have any
1516 * relevant information. The second check with the saved page flags is
1517 * carried out only if the first check can't determine the page status.
1518 */
1519 for (ps = error_states;; ps++)
1520 if ((p->flags & ps->mask) == ps->res)
1521 break;
1522
1523 page_flags |= (p->flags & (1UL << PG_dirty));
1524
1525 if (!ps->mask)
1526 for (ps = error_states;; ps++)
1527 if ((page_flags & ps->mask) == ps->res)
1528 break;
1529 return page_action(ps, p, pfn);
1530}
1531
694bf0b0
OS
1532static int try_to_split_thp_page(struct page *page, const char *msg)
1533{
1534 lock_page(page);
4966455d 1535 if (unlikely(split_huge_page(page))) {
694bf0b0
OS
1536 unsigned long pfn = page_to_pfn(page);
1537
1538 unlock_page(page);
4966455d 1539 pr_info("%s: %#lx: thp split failed\n", msg, pfn);
694bf0b0
OS
1540 put_page(page);
1541 return -EBUSY;
1542 }
1543 unlock_page(page);
1544
1545 return 0;
1546}
1547
00cc790e
SR
1548static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1549 struct address_space *mapping, pgoff_t index, int flags)
1550{
1551 struct to_kill *tk;
1552 unsigned long size = 0;
1553
1554 list_for_each_entry(tk, to_kill, nd)
1555 if (tk->size_shift)
1556 size = max(size, 1UL << tk->size_shift);
1557
1558 if (size) {
1559 /*
1560 * Unmap the largest mapping to avoid breaking up device-dax
1561 * mappings which are constant size. The actual size of the
1562 * mapping being torn down is communicated in siginfo, see
1563 * kill_proc()
1564 */
1565 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1566
1567 unmap_mapping_range(mapping, start, size, 0);
1568 }
1569
1570 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1571}
1572
1573static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1574 struct dev_pagemap *pgmap)
1575{
1576 struct page *page = pfn_to_page(pfn);
1577 LIST_HEAD(to_kill);
1578 dax_entry_t cookie;
1579 int rc = 0;
1580
1581 /*
1582 * Pages instantiated by device-dax (not filesystem-dax)
1583 * may be compound pages.
1584 */
1585 page = compound_head(page);
1586
1587 /*
1588 * Prevent the inode from being freed while we are interrogating
1589 * the address_space, typically this would be handled by
1590 * lock_page(), but dax pages do not use the page lock. This
1591 * also prevents changes to the mapping of this pfn until
1592 * poison signaling is complete.
1593 */
1594 cookie = dax_lock_page(page);
1595 if (!cookie)
1596 return -EBUSY;
1597
1598 if (hwpoison_filter(page)) {
1599 rc = -EOPNOTSUPP;
1600 goto unlock;
1601 }
1602
1603 switch (pgmap->type) {
1604 case MEMORY_DEVICE_PRIVATE:
1605 case MEMORY_DEVICE_COHERENT:
1606 /*
1607 * TODO: Handle device pages which may need coordination
1608 * with device-side memory.
1609 */
1610 rc = -ENXIO;
1611 goto unlock;
1612 default:
1613 break;
1614 }
1615
1616 /*
1617 * Use this flag as an indication that the dax page has been
1618 * remapped UC to prevent speculative consumption of poison.
1619 */
1620 SetPageHWPoison(page);
1621
1622 /*
1623 * Unlike System-RAM there is no possibility to swap in a
1624 * different physical page at a given virtual address, so all
1625 * userspace consumption of ZONE_DEVICE memory necessitates
1626 * SIGBUS (i.e. MF_MUST_KILL)
1627 */
1628 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1629 collect_procs(page, &to_kill, true);
1630
1631 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1632unlock:
1633 dax_unlock_page(page, cookie);
1634 return rc;
1635}
1636
c36e2024
SR
1637#ifdef CONFIG_FS_DAX
1638/**
1639 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1640 * @mapping: address_space of the file in use
1641 * @index: start pgoff of the range within the file
1642 * @count: length of the range, in unit of PAGE_SIZE
1643 * @mf_flags: memory failure flags
1644 */
1645int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1646 unsigned long count, int mf_flags)
1647{
1648 LIST_HEAD(to_kill);
1649 dax_entry_t cookie;
1650 struct page *page;
1651 size_t end = index + count;
1652
1653 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1654
1655 for (; index < end; index++) {
1656 page = NULL;
1657 cookie = dax_lock_mapping_entry(mapping, index, &page);
1658 if (!cookie)
1659 return -EBUSY;
1660 if (!page)
1661 goto unlock;
1662
1663 SetPageHWPoison(page);
1664
1665 collect_procs_fsdax(page, mapping, index, &to_kill);
1666 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1667 index, mf_flags);
1668unlock:
1669 dax_unlock_mapping_entry(mapping, index, cookie);
1670 }
1671 return 0;
1672}
1673EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1674#endif /* CONFIG_FS_DAX */
1675
161df60e
NH
1676#ifdef CONFIG_HUGETLB_PAGE
1677/*
1678 * Struct raw_hwp_page represents information about "raw error page",
1679 * constructing singly linked list originated from ->private field of
1680 * SUBPAGE_INDEX_HWPOISON-th tail page.
1681 */
1682struct raw_hwp_page {
1683 struct llist_node node;
1684 struct page *page;
1685};
1686
1687static inline struct llist_head *raw_hwp_list_head(struct page *hpage)
1688{
1689 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON);
1690}
1691
ac5fcde0 1692static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag)
161df60e
NH
1693{
1694 struct llist_head *head;
1695 struct llist_node *t, *tnode;
ac5fcde0 1696 unsigned long count = 0;
161df60e
NH
1697
1698 head = raw_hwp_list_head(hpage);
1699 llist_for_each_safe(tnode, t, head->first) {
1700 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1701
ac5fcde0
NH
1702 if (move_flag)
1703 SetPageHWPoison(p->page);
161df60e 1704 kfree(p);
ac5fcde0 1705 count++;
161df60e
NH
1706 }
1707 llist_del_all(head);
ac5fcde0 1708 return count;
161df60e
NH
1709}
1710
1711static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page)
1712{
1713 struct llist_head *head;
1714 struct raw_hwp_page *raw_hwp;
1715 struct llist_node *t, *tnode;
1716 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0;
1717
1718 /*
1719 * Once the hwpoison hugepage has lost reliable raw error info,
1720 * there is little meaning to keep additional error info precisely,
1721 * so skip to add additional raw error info.
1722 */
1723 if (HPageRawHwpUnreliable(hpage))
1724 return -EHWPOISON;
1725 head = raw_hwp_list_head(hpage);
1726 llist_for_each_safe(tnode, t, head->first) {
1727 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1728
1729 if (p->page == page)
1730 return -EHWPOISON;
1731 }
1732
1733 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1734 if (raw_hwp) {
1735 raw_hwp->page = page;
1736 llist_add(&raw_hwp->node, head);
1737 /* the first error event will be counted in action_result(). */
1738 if (ret)
1739 num_poisoned_pages_inc();
1740 } else {
1741 /*
1742 * Failed to save raw error info. We no longer trace all
1743 * hwpoisoned subpages, and we need refuse to free/dissolve
1744 * this hwpoisoned hugepage.
1745 */
1746 SetHPageRawHwpUnreliable(hpage);
1747 /*
1748 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not
1749 * used any more, so free it.
1750 */
ac5fcde0 1751 __free_raw_hwp_pages(hpage, false);
161df60e
NH
1752 }
1753 return ret;
1754}
1755
ac5fcde0
NH
1756static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag)
1757{
1758 /*
1759 * HPageVmemmapOptimized hugepages can't be freed because struct
1760 * pages for tail pages are required but they don't exist.
1761 */
1762 if (move_flag && HPageVmemmapOptimized(hpage))
1763 return 0;
1764
1765 /*
1766 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by
1767 * definition.
1768 */
1769 if (HPageRawHwpUnreliable(hpage))
1770 return 0;
1771
1772 return __free_raw_hwp_pages(hpage, move_flag);
1773}
1774
161df60e
NH
1775void hugetlb_clear_page_hwpoison(struct page *hpage)
1776{
1777 if (HPageRawHwpUnreliable(hpage))
1778 return;
1779 ClearPageHWPoison(hpage);
ac5fcde0 1780 free_raw_hwp_pages(hpage, true);
161df60e
NH
1781}
1782
405ce051
NH
1783/*
1784 * Called from hugetlb code with hugetlb_lock held.
1785 *
1786 * Return values:
1787 * 0 - free hugepage
1788 * 1 - in-use hugepage
1789 * 2 - not a hugepage
1790 * -EBUSY - the hugepage is busy (try to retry)
1791 * -EHWPOISON - the hugepage is already hwpoisoned
1792 */
1793int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1794{
1795 struct page *page = pfn_to_page(pfn);
1796 struct page *head = compound_head(page);
1797 int ret = 2; /* fallback to normal page handling */
1798 bool count_increased = false;
1799
1800 if (!PageHeadHuge(head))
1801 goto out;
1802
1803 if (flags & MF_COUNT_INCREASED) {
1804 ret = 1;
1805 count_increased = true;
b283d983
NH
1806 } else if (HPageFreed(head)) {
1807 ret = 0;
1808 } else if (HPageMigratable(head)) {
405ce051
NH
1809 ret = get_page_unless_zero(head);
1810 if (ret)
1811 count_increased = true;
1812 } else {
1813 ret = -EBUSY;
38f6d293
NH
1814 if (!(flags & MF_NO_RETRY))
1815 goto out;
405ce051
NH
1816 }
1817
161df60e 1818 if (hugetlb_set_page_hwpoison(head, page)) {
405ce051
NH
1819 ret = -EHWPOISON;
1820 goto out;
1821 }
1822
1823 return ret;
1824out:
1825 if (count_increased)
1826 put_page(head);
1827 return ret;
1828}
1829
405ce051
NH
1830/*
1831 * Taking refcount of hugetlb pages needs extra care about race conditions
1832 * with basic operations like hugepage allocation/free/demotion.
1833 * So some of prechecks for hwpoison (pinning, and testing/setting
1834 * PageHWPoison) should be done in single hugetlb_lock range.
1835 */
1836static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 1837{
761ad8d7 1838 int res;
405ce051
NH
1839 struct page *p = pfn_to_page(pfn);
1840 struct page *head;
761ad8d7
NH
1841 unsigned long page_flags;
1842
405ce051
NH
1843 *hugetlb = 1;
1844retry:
1845 res = get_huge_page_for_hwpoison(pfn, flags);
1846 if (res == 2) { /* fallback to normal page handling */
1847 *hugetlb = 0;
1848 return 0;
1849 } else if (res == -EHWPOISON) {
96f96763 1850 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051
NH
1851 if (flags & MF_ACTION_REQUIRED) {
1852 head = compound_head(p);
a3f5d80e 1853 res = kill_accessing_process(current, page_to_pfn(head), flags);
405ce051
NH
1854 }
1855 return res;
1856 } else if (res == -EBUSY) {
38f6d293
NH
1857 if (!(flags & MF_NO_RETRY)) {
1858 flags |= MF_NO_RETRY;
405ce051
NH
1859 goto retry;
1860 }
1861 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
a3f5d80e 1862 return res;
761ad8d7
NH
1863 }
1864
405ce051
NH
1865 head = compound_head(p);
1866 lock_page(head);
1867
1868 if (hwpoison_filter(p)) {
161df60e 1869 hugetlb_clear_page_hwpoison(head);
405ce051
NH
1870 res = -EOPNOTSUPP;
1871 goto out;
1872 }
1873
405ce051
NH
1874 /*
1875 * Handling free hugepage. The possible race with hugepage allocation
1876 * or demotion can be prevented by PageHWPoison flag.
1877 */
1878 if (res == 0) {
1879 unlock_page(head);
ceaf8fbe 1880 if (__page_handle_poison(p) >= 0) {
405ce051
NH
1881 page_ref_inc(p);
1882 res = MF_RECOVERED;
ceaf8fbe
NH
1883 } else {
1884 res = MF_FAILED;
761ad8d7 1885 }
405ce051
NH
1886 action_result(pfn, MF_MSG_FREE_HUGE, res);
1887 return res == MF_RECOVERED ? 0 : -EBUSY;
761ad8d7
NH
1888 }
1889
761ad8d7
NH
1890 page_flags = head->flags;
1891
ed8c2f49 1892 if (!hwpoison_user_mappings(p, pfn, flags, head)) {
761ad8d7
NH
1893 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1894 res = -EBUSY;
1895 goto out;
1896 }
1897
ea6d0630 1898 return identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1899out:
1900 unlock_page(head);
1901 return res;
1902}
00cc790e 1903
405ce051
NH
1904#else
1905static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1906{
1907 return 0;
1908}
00cc790e 1909
ac5fcde0
NH
1910static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag)
1911{
1912 return 0;
1913}
00cc790e 1914#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 1915
6100e34b
DW
1916static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1917 struct dev_pagemap *pgmap)
1918{
1919 struct page *page = pfn_to_page(pfn);
00cc790e 1920 int rc = -ENXIO;
6100e34b 1921
1e8aaedb
OS
1922 if (flags & MF_COUNT_INCREASED)
1923 /*
1924 * Drop the extra refcount in case we come from madvise().
1925 */
1926 put_page(page);
1927
34dc45be 1928 /* device metadata space is not recoverable */
00cc790e 1929 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 1930 goto out;
61e28cf0 1931
6100e34b 1932 /*
33a8f7f2
SR
1933 * Call driver's implementation to handle the memory failure, otherwise
1934 * fall back to generic handler.
6100e34b 1935 */
65d3440e 1936 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 1937 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 1938 /*
33a8f7f2
SR
1939 * Fall back to generic handler too if operation is not
1940 * supported inside the driver/device/filesystem.
6100e34b 1941 */
33a8f7f2
SR
1942 if (rc != -EOPNOTSUPP)
1943 goto out;
6100e34b
DW
1944 }
1945
00cc790e 1946 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
1947out:
1948 /* drop pgmap ref acquired in caller */
1949 put_dev_pagemap(pgmap);
1950 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1951 return rc;
1952}
1953
91d00547
NH
1954static DEFINE_MUTEX(mf_mutex);
1955
cd42f4a3
TL
1956/**
1957 * memory_failure - Handle memory failure of a page.
1958 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
1959 * @flags: fine tune action taken
1960 *
1961 * This function is called by the low level machine check code
1962 * of an architecture when it detects hardware memory corruption
1963 * of a page. It tries its best to recover, which includes
1964 * dropping pages, killing processes etc.
1965 *
1966 * The function is primarily of use for corruptions that
1967 * happen outside the current execution context (e.g. when
1968 * detected by a background scrubber)
1969 *
1970 * Must run in process context (e.g. a work queue) with interrupts
1971 * enabled and no spinlocks hold.
d1fe111f 1972 *
1973 * Return: 0 for successfully handled the memory error,
9113eaf3 1974 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 1975 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 1976 */
83b57531 1977int memory_failure(unsigned long pfn, int flags)
6a46079c 1978{
6a46079c 1979 struct page *p;
7af446a8 1980 struct page *hpage;
6100e34b 1981 struct dev_pagemap *pgmap;
171936dd 1982 int res = 0;
524fca1e 1983 unsigned long page_flags;
a8b2c2ce 1984 bool retry = true;
405ce051 1985 int hugetlb = 0;
6a46079c
AK
1986
1987 if (!sysctl_memory_failure_recovery)
83b57531 1988 panic("Memory failure on page %lx", pfn);
6a46079c 1989
03b122da
TL
1990 mutex_lock(&mf_mutex);
1991
67f22ba7 1992 if (!(flags & MF_SW_SIMULATED))
1993 hw_memory_failure = true;
1994
96c804a6
DH
1995 p = pfn_to_online_page(pfn);
1996 if (!p) {
03b122da
TL
1997 res = arch_memory_failure(pfn, flags);
1998 if (res == 0)
1999 goto unlock_mutex;
2000
96c804a6
DH
2001 if (pfn_valid(pfn)) {
2002 pgmap = get_dev_pagemap(pfn, NULL);
03b122da
TL
2003 if (pgmap) {
2004 res = memory_failure_dev_pagemap(pfn, flags,
2005 pgmap);
2006 goto unlock_mutex;
2007 }
96c804a6 2008 }
96f96763 2009 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2010 res = -ENXIO;
2011 goto unlock_mutex;
6a46079c
AK
2012 }
2013
a8b2c2ce 2014try_again:
405ce051
NH
2015 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2016 if (hugetlb)
171936dd 2017 goto unlock_mutex;
171936dd 2018
6a46079c 2019 if (TestSetPageHWPoison(p)) {
96f96763 2020 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2021 res = -EHWPOISON;
a3f5d80e
NH
2022 if (flags & MF_ACTION_REQUIRED)
2023 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2024 if (flags & MF_COUNT_INCREASED)
2025 put_page(p);
171936dd 2026 goto unlock_mutex;
6a46079c
AK
2027 }
2028
75ee64b3 2029 hpage = compound_head(p);
6a46079c
AK
2030
2031 /*
2032 * We need/can do nothing about count=0 pages.
2033 * 1) it's a free page, and therefore in safe hand:
2034 * prep_new_page() will be the gate keeper.
761ad8d7 2035 * 2) it's part of a non-compound high order page.
6a46079c
AK
2036 * Implies some kernel user: cannot stop them from
2037 * R/W the page; let's pray that the page has been
2038 * used and will be freed some time later.
2039 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2040 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2041 */
0ed950d1
NH
2042 if (!(flags & MF_COUNT_INCREASED)) {
2043 res = get_hwpoison_page(p, flags);
2044 if (!res) {
2045 if (is_free_buddy_page(p)) {
2046 if (take_page_off_buddy(p)) {
2047 page_ref_inc(p);
2048 res = MF_RECOVERED;
2049 } else {
2050 /* We lost the race, try again */
2051 if (retry) {
2052 ClearPageHWPoison(p);
0ed950d1
NH
2053 retry = false;
2054 goto try_again;
2055 }
2056 res = MF_FAILED;
a8b2c2ce 2057 }
0ed950d1
NH
2058 action_result(pfn, MF_MSG_BUDDY, res);
2059 res = res == MF_RECOVERED ? 0 : -EBUSY;
2060 } else {
2061 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2062 res = -EBUSY;
a8b2c2ce 2063 }
0ed950d1
NH
2064 goto unlock_mutex;
2065 } else if (res < 0) {
2066 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
171936dd 2067 res = -EBUSY;
0ed950d1 2068 goto unlock_mutex;
8d22ba1b 2069 }
6a46079c
AK
2070 }
2071
761ad8d7 2072 if (PageTransHuge(hpage)) {
eac96c3e
YS
2073 /*
2074 * The flag must be set after the refcount is bumped
2075 * otherwise it may race with THP split.
2076 * And the flag can't be set in get_hwpoison_page() since
2077 * it is called by soft offline too and it is just called
2078 * for !MF_COUNT_INCREASE. So here seems to be the best
2079 * place.
2080 *
2081 * Don't need care about the above error handling paths for
2082 * get_hwpoison_page() since they handle either free page
2083 * or unhandlable page. The refcount is bumped iff the
2084 * page is a valid handlable page.
2085 */
2086 SetPageHasHWPoisoned(hpage);
5d1fd5dc
NH
2087 if (try_to_split_thp_page(p, "Memory Failure") < 0) {
2088 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd
TL
2089 res = -EBUSY;
2090 goto unlock_mutex;
5d1fd5dc 2091 }
415c64c1 2092 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2093 }
2094
e43c3afb
WF
2095 /*
2096 * We ignore non-LRU pages for good reasons.
2097 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2098 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2099 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2100 * The check (unnecessarily) ignores LRU pages being isolated and
2101 * walked by the page reclaim code, however that's not a big loss.
2102 */
d0505e9f 2103 shake_page(p);
e43c3afb 2104
761ad8d7 2105 lock_page(p);
847ce401 2106
f37d4298 2107 /*
75ee64b3
ML
2108 * We're only intended to deal with the non-Compound page here.
2109 * However, the page could have changed compound pages due to
2110 * race window. If this happens, we could try again to hopefully
2111 * handle the page next round.
f37d4298 2112 */
75ee64b3
ML
2113 if (PageCompound(p)) {
2114 if (retry) {
e240ac52 2115 ClearPageHWPoison(p);
75ee64b3
ML
2116 unlock_page(p);
2117 put_page(p);
2118 flags &= ~MF_COUNT_INCREASED;
2119 retry = false;
2120 goto try_again;
2121 }
cc637b17 2122 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298 2123 res = -EBUSY;
171936dd 2124 goto unlock_page;
f37d4298
AK
2125 }
2126
524fca1e
NH
2127 /*
2128 * We use page flags to determine what action should be taken, but
2129 * the flags can be modified by the error containment action. One
2130 * example is an mlocked page, where PG_mlocked is cleared by
2131 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2132 * correctly, we save a copy of the page flags at this time.
2133 */
7d9d46ac 2134 page_flags = p->flags;
524fca1e 2135
7c116f2b 2136 if (hwpoison_filter(p)) {
e240ac52 2137 TestClearPageHWPoison(p);
761ad8d7 2138 unlock_page(p);
dd6e2402 2139 put_page(p);
d1fe111f 2140 res = -EOPNOTSUPP;
171936dd 2141 goto unlock_mutex;
7c116f2b 2142 }
847ce401 2143
e8675d29 2144 /*
2145 * __munlock_pagevec may clear a writeback page's LRU flag without
2146 * page_lock. We need wait writeback completion for this page or it
2147 * may trigger vfs BUG while evict inode.
2148 */
b04d3eeb 2149 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2150 goto identify_page_state;
2151
6edd6cc6
NH
2152 /*
2153 * It's very difficult to mess with pages currently under IO
2154 * and in many cases impossible, so we just avoid it here.
2155 */
6a46079c
AK
2156 wait_on_page_writeback(p);
2157
2158 /*
2159 * Now take care of user space mappings.
6ffcd825 2160 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2161 */
ed8c2f49 2162 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
cc637b17 2163 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5 2164 res = -EBUSY;
171936dd 2165 goto unlock_page;
1668bfd5 2166 }
6a46079c
AK
2167
2168 /*
2169 * Torn down by someone else?
2170 */
dc2a1cbf 2171 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 2172 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 2173 res = -EBUSY;
171936dd 2174 goto unlock_page;
6a46079c
AK
2175 }
2176
0bc1f8b0 2177identify_page_state:
0348d2eb 2178 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2179 mutex_unlock(&mf_mutex);
2180 return res;
171936dd 2181unlock_page:
761ad8d7 2182 unlock_page(p);
171936dd
TL
2183unlock_mutex:
2184 mutex_unlock(&mf_mutex);
6a46079c
AK
2185 return res;
2186}
cd42f4a3 2187EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2188
ea8f5fb8
HY
2189#define MEMORY_FAILURE_FIFO_ORDER 4
2190#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2191
2192struct memory_failure_entry {
2193 unsigned long pfn;
ea8f5fb8
HY
2194 int flags;
2195};
2196
2197struct memory_failure_cpu {
2198 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2199 MEMORY_FAILURE_FIFO_SIZE);
2200 spinlock_t lock;
2201 struct work_struct work;
2202};
2203
2204static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2205
2206/**
2207 * memory_failure_queue - Schedule handling memory failure of a page.
2208 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2209 * @flags: Flags for memory failure handling
2210 *
2211 * This function is called by the low level hardware error handler
2212 * when it detects hardware memory corruption of a page. It schedules
2213 * the recovering of error page, including dropping pages, killing
2214 * processes etc.
2215 *
2216 * The function is primarily of use for corruptions that
2217 * happen outside the current execution context (e.g. when
2218 * detected by a background scrubber)
2219 *
2220 * Can run in IRQ context.
2221 */
83b57531 2222void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2223{
2224 struct memory_failure_cpu *mf_cpu;
2225 unsigned long proc_flags;
2226 struct memory_failure_entry entry = {
2227 .pfn = pfn,
ea8f5fb8
HY
2228 .flags = flags,
2229 };
2230
2231 mf_cpu = &get_cpu_var(memory_failure_cpu);
2232 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2233 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2234 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2235 else
96f96763 2236 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2237 pfn);
2238 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2239 put_cpu_var(memory_failure_cpu);
2240}
2241EXPORT_SYMBOL_GPL(memory_failure_queue);
2242
2243static void memory_failure_work_func(struct work_struct *work)
2244{
2245 struct memory_failure_cpu *mf_cpu;
2246 struct memory_failure_entry entry = { 0, };
2247 unsigned long proc_flags;
2248 int gotten;
2249
06202231 2250 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2251 for (;;) {
2252 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2253 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2254 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2255 if (!gotten)
2256 break;
cf870c70 2257 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2258 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2259 else
83b57531 2260 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2261 }
2262}
2263
06202231
JM
2264/*
2265 * Process memory_failure work queued on the specified CPU.
2266 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2267 */
2268void memory_failure_queue_kick(int cpu)
2269{
2270 struct memory_failure_cpu *mf_cpu;
2271
2272 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2273 cancel_work_sync(&mf_cpu->work);
2274 memory_failure_work_func(&mf_cpu->work);
2275}
2276
ea8f5fb8
HY
2277static int __init memory_failure_init(void)
2278{
2279 struct memory_failure_cpu *mf_cpu;
2280 int cpu;
2281
2282 for_each_possible_cpu(cpu) {
2283 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2284 spin_lock_init(&mf_cpu->lock);
2285 INIT_KFIFO(mf_cpu->fifo);
2286 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2287 }
2288
2289 return 0;
2290}
2291core_initcall(memory_failure_init);
2292
96f96763
KW
2293#undef pr_fmt
2294#define pr_fmt(fmt) "" fmt
a5f65109
NH
2295#define unpoison_pr_info(fmt, pfn, rs) \
2296({ \
2297 if (__ratelimit(rs)) \
2298 pr_info(fmt, pfn); \
2299})
2300
847ce401
WF
2301/**
2302 * unpoison_memory - Unpoison a previously poisoned page
2303 * @pfn: Page number of the to be unpoisoned page
2304 *
2305 * Software-unpoison a page that has been poisoned by
2306 * memory_failure() earlier.
2307 *
2308 * This is only done on the software-level, so it only works
2309 * for linux injected failures, not real hardware failures
2310 *
2311 * Returns 0 for success, otherwise -errno.
2312 */
2313int unpoison_memory(unsigned long pfn)
2314{
2315 struct page *page;
2316 struct page *p;
bf181c58 2317 int ret = -EBUSY;
c8bd84f7 2318 int freeit = 0;
ac5fcde0 2319 unsigned long count = 1;
a5f65109
NH
2320 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2321 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2322
2323 if (!pfn_valid(pfn))
2324 return -ENXIO;
2325
2326 p = pfn_to_page(pfn);
2327 page = compound_head(p);
2328
91d00547
NH
2329 mutex_lock(&mf_mutex);
2330
67f22ba7 2331 if (hw_memory_failure) {
2332 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2333 pfn, &unpoison_rs);
2334 ret = -EOPNOTSUPP;
2335 goto unlock_mutex;
2336 }
2337
847ce401 2338 if (!PageHWPoison(p)) {
495367c0 2339 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2340 pfn, &unpoison_rs);
91d00547 2341 goto unlock_mutex;
847ce401
WF
2342 }
2343
230ac719 2344 if (page_count(page) > 1) {
495367c0 2345 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2346 pfn, &unpoison_rs);
91d00547 2347 goto unlock_mutex;
230ac719
NH
2348 }
2349
2350 if (page_mapped(page)) {
495367c0 2351 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2352 pfn, &unpoison_rs);
91d00547 2353 goto unlock_mutex;
230ac719
NH
2354 }
2355
2356 if (page_mapping(page)) {
495367c0 2357 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2358 pfn, &unpoison_rs);
91d00547 2359 goto unlock_mutex;
0cea3fdc
WL
2360 }
2361
bf181c58 2362 if (PageSlab(page) || PageTable(page))
91d00547 2363 goto unlock_mutex;
847ce401 2364
bf181c58
NH
2365 ret = get_hwpoison_page(p, MF_UNPOISON);
2366 if (!ret) {
ac5fcde0
NH
2367 if (PageHuge(p)) {
2368 count = free_raw_hwp_pages(page, false);
2369 if (count == 0) {
2370 ret = -EBUSY;
2371 goto unlock_mutex;
2372 }
2373 }
c8bd84f7 2374 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
bf181c58
NH
2375 } else if (ret < 0) {
2376 if (ret == -EHWPOISON) {
c8bd84f7 2377 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
bf181c58
NH
2378 } else
2379 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2380 pfn, &unpoison_rs);
2381 } else {
ac5fcde0
NH
2382 if (PageHuge(p)) {
2383 count = free_raw_hwp_pages(page, false);
2384 if (count == 0) {
2385 ret = -EBUSY;
2386 goto unlock_mutex;
2387 }
2388 }
c8bd84f7 2389 freeit = !!TestClearPageHWPoison(p);
847ce401 2390
dd6e2402 2391 put_page(page);
bf181c58
NH
2392 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2393 put_page(page);
2394 ret = 0;
2395 }
2396 }
847ce401 2397
91d00547
NH
2398unlock_mutex:
2399 mutex_unlock(&mf_mutex);
c8bd84f7 2400 if (!ret || freeit) {
ac5fcde0 2401 num_poisoned_pages_sub(count);
c8bd84f7 2402 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2403 page_to_pfn(p), &unpoison_rs);
2404 }
91d00547 2405 return ret;
847ce401
WF
2406}
2407EXPORT_SYMBOL(unpoison_memory);
facb6011 2408
6b9a217e 2409static bool isolate_page(struct page *page, struct list_head *pagelist)
d950b958 2410{
6b9a217e
OS
2411 bool isolated = false;
2412 bool lru = PageLRU(page);
d950b958 2413
6b9a217e 2414 if (PageHuge(page)) {
7ce82f4c 2415 isolated = !isolate_hugetlb(page, pagelist);
6b9a217e
OS
2416 } else {
2417 if (lru)
2418 isolated = !isolate_lru_page(page);
2419 else
2420 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2421
2422 if (isolated)
2423 list_add(&page->lru, pagelist);
0ebff32c 2424 }
d950b958 2425
6b9a217e
OS
2426 if (isolated && lru)
2427 inc_node_page_state(page, NR_ISOLATED_ANON +
2428 page_is_file_lru(page));
2429
03613808 2430 /*
6b9a217e
OS
2431 * If we succeed to isolate the page, we grabbed another refcount on
2432 * the page, so we can safely drop the one we got from get_any_pages().
2433 * If we failed to isolate the page, it means that we cannot go further
2434 * and we will return an error, so drop the reference we got from
2435 * get_any_pages() as well.
03613808 2436 */
6b9a217e
OS
2437 put_page(page);
2438 return isolated;
d950b958
NH
2439}
2440
6b9a217e
OS
2441/*
2442 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2443 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2444 * If the page is mapped, it migrates the contents over.
2445 */
2446static int __soft_offline_page(struct page *page)
af8fae7c 2447{
d6c75dc2 2448 long ret = 0;
af8fae7c 2449 unsigned long pfn = page_to_pfn(page);
6b9a217e
OS
2450 struct page *hpage = compound_head(page);
2451 char const *msg_page[] = {"page", "hugepage"};
2452 bool huge = PageHuge(page);
2453 LIST_HEAD(pagelist);
54608759
JK
2454 struct migration_target_control mtc = {
2455 .nid = NUMA_NO_NODE,
2456 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2457 };
facb6011 2458
0ebff32c 2459 lock_page(page);
6b9a217e
OS
2460 if (!PageHuge(page))
2461 wait_on_page_writeback(page);
af8fae7c
NH
2462 if (PageHWPoison(page)) {
2463 unlock_page(page);
dd6e2402 2464 put_page(page);
af8fae7c 2465 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2466 return 0;
af8fae7c 2467 }
6b9a217e 2468
593396b8 2469 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
6b9a217e
OS
2470 /*
2471 * Try to invalidate first. This should work for
2472 * non dirty unmapped page cache pages.
2473 */
2474 ret = invalidate_inode_page(page);
facb6011 2475 unlock_page(page);
6b9a217e 2476
6b9a217e 2477 if (ret) {
fb46e735 2478 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2479 page_handle_poison(page, false, true);
af8fae7c 2480 return 0;
facb6011
AK
2481 }
2482
6b9a217e 2483 if (isolate_page(hpage, &pagelist)) {
54608759 2484 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2485 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2486 if (!ret) {
6b9a217e
OS
2487 bool release = !huge;
2488
2489 if (!page_handle_poison(page, huge, release))
2490 ret = -EBUSY;
79f5f8fa 2491 } else {
85fbe5d1
YX
2492 if (!list_empty(&pagelist))
2493 putback_movable_pages(&pagelist);
59c82b70 2494
d6c75dc2 2495 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2496 pfn, msg_page[huge], ret, &page->flags);
facb6011 2497 if (ret > 0)
3f4b815a 2498 ret = -EBUSY;
facb6011
AK
2499 }
2500 } else {
23efd080
MWO
2501 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2502 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2503 ret = -EBUSY;
facb6011 2504 }
facb6011
AK
2505 return ret;
2506}
86e05773 2507
6b9a217e 2508static int soft_offline_in_use_page(struct page *page)
acc14dc4 2509{
acc14dc4
NH
2510 struct page *hpage = compound_head(page);
2511
694bf0b0
OS
2512 if (!PageHuge(page) && PageTransHuge(hpage))
2513 if (try_to_split_thp_page(page, "soft offline") < 0)
acc14dc4 2514 return -EBUSY;
6b9a217e 2515 return __soft_offline_page(page);
acc14dc4
NH
2516}
2517
d4ae9916 2518static int soft_offline_free_page(struct page *page)
acc14dc4 2519{
6b9a217e 2520 int rc = 0;
acc14dc4 2521
6b9a217e
OS
2522 if (!page_handle_poison(page, true, false))
2523 rc = -EBUSY;
06be6ff3 2524
d4ae9916 2525 return rc;
acc14dc4
NH
2526}
2527
dad4e5b3
DW
2528static void put_ref_page(struct page *page)
2529{
2530 if (page)
2531 put_page(page);
2532}
2533
86e05773
WL
2534/**
2535 * soft_offline_page - Soft offline a page.
feec24a6 2536 * @pfn: pfn to soft-offline
86e05773
WL
2537 * @flags: flags. Same as memory_failure().
2538 *
9113eaf3 2539 * Returns 0 on success
2540 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2541 * < 0 otherwise negated errno.
86e05773
WL
2542 *
2543 * Soft offline a page, by migration or invalidation,
2544 * without killing anything. This is for the case when
2545 * a page is not corrupted yet (so it's still valid to access),
2546 * but has had a number of corrected errors and is better taken
2547 * out.
2548 *
2549 * The actual policy on when to do that is maintained by
2550 * user space.
2551 *
2552 * This should never impact any application or cause data loss,
2553 * however it might take some time.
2554 *
2555 * This is not a 100% solution for all memory, but tries to be
2556 * ``good enough'' for the majority of memory.
2557 */
feec24a6 2558int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2559{
2560 int ret;
b94e0282 2561 bool try_again = true;
dad4e5b3
DW
2562 struct page *page, *ref_page = NULL;
2563
2564 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
86e05773 2565
feec24a6
NH
2566 if (!pfn_valid(pfn))
2567 return -ENXIO;
dad4e5b3
DW
2568 if (flags & MF_COUNT_INCREASED)
2569 ref_page = pfn_to_page(pfn);
2570
feec24a6
NH
2571 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2572 page = pfn_to_online_page(pfn);
dad4e5b3
DW
2573 if (!page) {
2574 put_ref_page(ref_page);
86a66810 2575 return -EIO;
dad4e5b3 2576 }
86a66810 2577
91d00547
NH
2578 mutex_lock(&mf_mutex);
2579
86e05773 2580 if (PageHWPoison(page)) {
8295d535 2581 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
dad4e5b3 2582 put_ref_page(ref_page);
91d00547 2583 mutex_unlock(&mf_mutex);
5a2ffca3 2584 return 0;
86e05773 2585 }
86e05773 2586
b94e0282 2587retry:
bfc8c901 2588 get_online_mems();
bf6445bc 2589 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2590 put_online_mems();
4e41a30c 2591
9113eaf3 2592 if (hwpoison_filter(page)) {
2593 if (ret > 0)
2594 put_page(page);
2595 else
2596 put_ref_page(ref_page);
2597
2598 mutex_unlock(&mf_mutex);
2599 return -EOPNOTSUPP;
2600 }
2601
8295d535 2602 if (ret > 0) {
6b9a217e 2603 ret = soft_offline_in_use_page(page);
8295d535 2604 } else if (ret == 0) {
b94e0282
OS
2605 if (soft_offline_free_page(page) && try_again) {
2606 try_again = false;
2a57d83c 2607 flags &= ~MF_COUNT_INCREASED;
b94e0282
OS
2608 goto retry;
2609 }
8295d535 2610 }
4e41a30c 2611
91d00547
NH
2612 mutex_unlock(&mf_mutex);
2613
86e05773
WL
2614 return ret;
2615}
60f272f6 2616
2617void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2618{
2619 int i;
2620
2621 /*
2622 * A further optimization is to have per section refcounted
2623 * num_poisoned_pages. But that would need more space per memmap, so
2624 * for now just do a quick global check to speed up this routine in the
2625 * absence of bad pages.
2626 */
2627 if (atomic_long_read(&num_poisoned_pages) == 0)
2628 return;
2629
2630 for (i = 0; i < nr_pages; i++) {
2631 if (PageHWPoison(&memmap[i])) {
2632 num_poisoned_pages_dec();
2633 ClearPageHWPoison(&memmap[i]);
2634 }
2635 }
2636}