Merge tag 'thunderbolt-for-v6.8-rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / mm / memory-failure.c
CommitLineData
1439f94c 1// SPDX-License-Identifier: GPL-2.0-only
6a46079c
AK
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6a46079c 6 * High level machine check handler. Handles pages reported by the
1c80b990 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 8 * failure.
c33c7948 9 *
1c80b990
AK
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
12 *
13 * Handles page cache pages in various states. The tricky part
c33c7948
RR
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
1c80b990 19 * the error handling takes potentially a long time.
e0de78df
AK
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
799fb82a 27 * tools/mm/page-types when running a real workload.
c33c7948 28 *
1c80b990 29 * There are several operations here with exponential complexity because
c33c7948
RR
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
1c80b990 32 * has non linear complexity with the number. But since memory corruptions
c33c7948 33 * are rare we hope to get away with this. This avoids impacting the core
1c80b990 34 * VM.
6a46079c 35 */
96f96763
KW
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
3f07c014 42#include <linux/sched/signal.h>
29930025 43#include <linux/sched/task.h>
96c84dde 44#include <linux/dax.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
20d6c96b 55#include <linux/memory_hotplug.h>
5db8a73a 56#include <linux/mm_inline.h>
6100e34b 57#include <linux/memremap.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
a3f5d80e 60#include <linux/pagewalk.h>
a7605426 61#include <linux/shmem_fs.h>
8cbc82f3 62#include <linux/sysctl.h>
014bb1de 63#include "swap.h"
6a46079c 64#include "internal.h"
97f0b134 65#include "ras/ras_event.h"
6a46079c 66
8cbc82f3 67static int sysctl_memory_failure_early_kill __read_mostly;
6a46079c 68
8cbc82f3 69static int sysctl_memory_failure_recovery __read_mostly = 1;
6a46079c 70
293c07e3 71atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 72
67f22ba7 73static bool hw_memory_failure __read_mostly = false;
74
b79f8eb4
JY
75static DEFINE_MUTEX(mf_mutex);
76
1a7d018d 77void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
78{
79 atomic_long_inc(&num_poisoned_pages);
5033091d 80 memblk_nr_poison_inc(pfn);
d027122d
NH
81}
82
1a7d018d 83void num_poisoned_pages_sub(unsigned long pfn, long i)
d027122d
NH
84{
85 atomic_long_sub(i, &num_poisoned_pages);
5033091d
NH
86 if (pfn != -1UL)
87 memblk_nr_poison_sub(pfn, i);
d027122d
NH
88}
89
44b8f8bf
JY
90/**
91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92 * @_name: name of the file in the per NUMA sysfs directory.
93 */
94#define MF_ATTR_RO(_name) \
95static ssize_t _name##_show(struct device *dev, \
96 struct device_attribute *attr, \
97 char *buf) \
98{ \
99 struct memory_failure_stats *mf_stats = \
100 &NODE_DATA(dev->id)->mf_stats; \
101 return sprintf(buf, "%lu\n", mf_stats->_name); \
102} \
103static DEVICE_ATTR_RO(_name)
104
105MF_ATTR_RO(total);
106MF_ATTR_RO(ignored);
107MF_ATTR_RO(failed);
108MF_ATTR_RO(delayed);
109MF_ATTR_RO(recovered);
110
111static struct attribute *memory_failure_attr[] = {
112 &dev_attr_total.attr,
113 &dev_attr_ignored.attr,
114 &dev_attr_failed.attr,
115 &dev_attr_delayed.attr,
116 &dev_attr_recovered.attr,
117 NULL,
118};
119
120const struct attribute_group memory_failure_attr_group = {
121 .name = "memory_failure",
122 .attrs = memory_failure_attr,
123};
124
8cbc82f3
KW
125static struct ctl_table memory_failure_table[] = {
126 {
127 .procname = "memory_failure_early_kill",
128 .data = &sysctl_memory_failure_early_kill,
129 .maxlen = sizeof(sysctl_memory_failure_early_kill),
130 .mode = 0644,
131 .proc_handler = proc_dointvec_minmax,
132 .extra1 = SYSCTL_ZERO,
133 .extra2 = SYSCTL_ONE,
134 },
135 {
136 .procname = "memory_failure_recovery",
137 .data = &sysctl_memory_failure_recovery,
138 .maxlen = sizeof(sysctl_memory_failure_recovery),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ZERO,
142 .extra2 = SYSCTL_ONE,
143 },
144 { }
145};
146
7453bf62
NH
147/*
148 * Return values:
149 * 1: the page is dissolved (if needed) and taken off from buddy,
150 * 0: the page is dissolved (if needed) and not taken off from buddy,
151 * < 0: failed to dissolve.
152 */
153static int __page_handle_poison(struct page *page)
510d25c9 154{
f87060d3 155 int ret;
510d25c9
NH
156
157 zone_pcp_disable(page_zone(page));
158 ret = dissolve_free_huge_page(page);
159 if (!ret)
160 ret = take_page_off_buddy(page);
161 zone_pcp_enable(page_zone(page));
162
7453bf62 163 return ret;
510d25c9
NH
164}
165
6b9a217e 166static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
06be6ff3 167{
6b9a217e
OS
168 if (hugepage_or_freepage) {
169 /*
170 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 * returns 0 for non-hugetlb pages as well.
172 */
7453bf62 173 if (__page_handle_poison(page) <= 0)
6b9a217e
OS
174 /*
175 * We could fail to take off the target page from buddy
f0953a1b 176 * for example due to racy page allocation, but that's
6b9a217e
OS
177 * acceptable because soft-offlined page is not broken
178 * and if someone really want to use it, they should
179 * take it.
180 */
181 return false;
182 }
183
06be6ff3 184 SetPageHWPoison(page);
79f5f8fa
OS
185 if (release)
186 put_page(page);
06be6ff3 187 page_ref_inc(page);
a46c9304 188 num_poisoned_pages_inc(page_to_pfn(page));
6b9a217e
OS
189
190 return true;
06be6ff3
OS
191}
192
611b9fd8 193#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
27df5068 194
1bfe5feb 195u32 hwpoison_filter_enable = 0;
7c116f2b
WF
196u32 hwpoison_filter_dev_major = ~0U;
197u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
198u64 hwpoison_filter_flags_mask;
199u64 hwpoison_filter_flags_value;
1bfe5feb 200EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
201EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
203EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
205
206static int hwpoison_filter_dev(struct page *p)
207{
208 struct address_space *mapping;
209 dev_t dev;
210
211 if (hwpoison_filter_dev_major == ~0U &&
212 hwpoison_filter_dev_minor == ~0U)
213 return 0;
214
7c116f2b
WF
215 mapping = page_mapping(p);
216 if (mapping == NULL || mapping->host == NULL)
217 return -EINVAL;
218
219 dev = mapping->host->i_sb->s_dev;
220 if (hwpoison_filter_dev_major != ~0U &&
221 hwpoison_filter_dev_major != MAJOR(dev))
222 return -EINVAL;
223 if (hwpoison_filter_dev_minor != ~0U &&
224 hwpoison_filter_dev_minor != MINOR(dev))
225 return -EINVAL;
226
227 return 0;
228}
229
478c5ffc
WF
230static int hwpoison_filter_flags(struct page *p)
231{
232 if (!hwpoison_filter_flags_mask)
233 return 0;
234
235 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 hwpoison_filter_flags_value)
237 return 0;
238 else
239 return -EINVAL;
240}
241
4fd466eb
AK
242/*
243 * This allows stress tests to limit test scope to a collection of tasks
244 * by putting them under some memcg. This prevents killing unrelated/important
245 * processes such as /sbin/init. Note that the target task may share clean
246 * pages with init (eg. libc text), which is harmless. If the target task
247 * share _dirty_ pages with another task B, the test scheme must make sure B
248 * is also included in the memcg. At last, due to race conditions this filter
249 * can only guarantee that the page either belongs to the memcg tasks, or is
250 * a freed page.
251 */
94a59fb3 252#ifdef CONFIG_MEMCG
4fd466eb
AK
253u64 hwpoison_filter_memcg;
254EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
255static int hwpoison_filter_task(struct page *p)
256{
4fd466eb
AK
257 if (!hwpoison_filter_memcg)
258 return 0;
259
94a59fb3 260 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
261 return -EINVAL;
262
263 return 0;
264}
265#else
266static int hwpoison_filter_task(struct page *p) { return 0; }
267#endif
268
7c116f2b
WF
269int hwpoison_filter(struct page *p)
270{
1bfe5feb
HL
271 if (!hwpoison_filter_enable)
272 return 0;
273
7c116f2b
WF
274 if (hwpoison_filter_dev(p))
275 return -EINVAL;
276
478c5ffc
WF
277 if (hwpoison_filter_flags(p))
278 return -EINVAL;
279
4fd466eb
AK
280 if (hwpoison_filter_task(p))
281 return -EINVAL;
282
7c116f2b
WF
283 return 0;
284}
27df5068
AK
285#else
286int hwpoison_filter(struct page *p)
287{
288 return 0;
289}
290#endif
291
7c116f2b
WF
292EXPORT_SYMBOL_GPL(hwpoison_filter);
293
ae1139ec
DW
294/*
295 * Kill all processes that have a poisoned page mapped and then isolate
296 * the page.
297 *
298 * General strategy:
299 * Find all processes having the page mapped and kill them.
300 * But we keep a page reference around so that the page is not
301 * actually freed yet.
302 * Then stash the page away
303 *
304 * There's no convenient way to get back to mapped processes
305 * from the VMAs. So do a brute-force search over all
306 * running processes.
307 *
308 * Remember that machine checks are not common (or rather
309 * if they are common you have other problems), so this shouldn't
310 * be a performance issue.
311 *
312 * Also there are some races possible while we get from the
313 * error detection to actually handle it.
314 */
315
316struct to_kill {
317 struct list_head nd;
318 struct task_struct *tsk;
319 unsigned long addr;
320 short size_shift;
ae1139ec
DW
321};
322
6a46079c 323/*
7329bbeb
TL
324 * Send all the processes who have the page mapped a signal.
325 * ``action optional'' if they are not immediately affected by the error
326 * ``action required'' if error happened in current execution context
6a46079c 327 */
ae1139ec 328static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
6a46079c 329{
ae1139ec
DW
330 struct task_struct *t = tk->tsk;
331 short addr_lsb = tk->size_shift;
872e9a20 332 int ret = 0;
6a46079c 333
96f96763 334 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
872e9a20 335 pfn, t->comm, t->pid);
7329bbeb 336
49775047
ML
337 if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 ret = force_sig_mceerr(BUS_MCEERR_AR,
339 (void __user *)tk->addr, addr_lsb);
340 else
7329bbeb 341 /*
49775047
ML
342 * Signal other processes sharing the page if they have
343 * PF_MCE_EARLY set.
7329bbeb
TL
344 * Don't use force here, it's convenient if the signal
345 * can be temporarily blocked.
346 * This could cause a loop when the user sets SIGBUS
347 * to SIG_IGN, but hopefully no one will do that?
348 */
ae1139ec 349 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
9cf28191 350 addr_lsb, t);
6a46079c 351 if (ret < 0)
96f96763 352 pr_info("Error sending signal to %s:%d: %d\n",
1170532b 353 t->comm, t->pid, ret);
6a46079c
AK
354 return ret;
355}
356
588f9ce6 357/*
47e431f4 358 * Unknown page type encountered. Try to check whether it can turn PageLRU by
d0505e9f 359 * lru_add_drain_all.
588f9ce6 360 */
d0505e9f 361void shake_page(struct page *p)
588f9ce6 362{
8bcb74de
NH
363 if (PageHuge(p))
364 return;
588f9ce6 365 /*
d0505e9f
YS
366 * TODO: Could shrink slab caches here if a lightweight range-based
367 * shrinker will be available.
588f9ce6 368 */
b7b618da
ML
369 if (PageSlab(p))
370 return;
371
372 lru_add_drain_all();
588f9ce6
AK
373}
374EXPORT_SYMBOL_GPL(shake_page);
375
c36e2024
SR
376static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 unsigned long address)
6100e34b 378{
5c91c0e7 379 unsigned long ret = 0;
6100e34b
DW
380 pgd_t *pgd;
381 p4d_t *p4d;
382 pud_t *pud;
383 pmd_t *pmd;
384 pte_t *pte;
c33c7948 385 pte_t ptent;
6100e34b 386
a994402b 387 VM_BUG_ON_VMA(address == -EFAULT, vma);
6100e34b
DW
388 pgd = pgd_offset(vma->vm_mm, address);
389 if (!pgd_present(*pgd))
390 return 0;
391 p4d = p4d_offset(pgd, address);
392 if (!p4d_present(*p4d))
393 return 0;
394 pud = pud_offset(p4d, address);
395 if (!pud_present(*pud))
396 return 0;
397 if (pud_devmap(*pud))
398 return PUD_SHIFT;
399 pmd = pmd_offset(pud, address);
400 if (!pmd_present(*pmd))
401 return 0;
402 if (pmd_devmap(*pmd))
403 return PMD_SHIFT;
404 pte = pte_offset_map(pmd, address);
04dee9e8
HD
405 if (!pte)
406 return 0;
c33c7948
RR
407 ptent = ptep_get(pte);
408 if (pte_present(ptent) && pte_devmap(ptent))
5c91c0e7
QZ
409 ret = PAGE_SHIFT;
410 pte_unmap(pte);
411 return ret;
6100e34b 412}
6a46079c
AK
413
414/*
415 * Failure handling: if we can't find or can't kill a process there's
416 * not much we can do. We just print a message and ignore otherwise.
417 */
418
ac87ca0e
DW
419#define FSDAX_INVALID_PGOFF ULONG_MAX
420
6a46079c
AK
421/*
422 * Schedule a process for later kill.
423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
c36e2024 424 *
ac87ca0e
DW
425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426 * filesystem with a memory failure handler has claimed the
427 * memory_failure event. In all other cases, page->index and
428 * page->mapping are sufficient for mapping the page back to its
429 * corresponding user virtual address.
6a46079c 430 */
4f775086
LX
431static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 struct vm_area_struct *vma, struct list_head *to_kill,
433 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
6a46079c
AK
434{
435 struct to_kill *tk;
436
996ff7a0
JC
437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 if (!tk) {
96f96763 439 pr_err("Out of memory while machine check handling\n");
996ff7a0 440 return;
6a46079c 441 }
996ff7a0 442
4f775086 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
c36e2024 444 if (is_zone_device_page(p)) {
ac87ca0e 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
c36e2024
SR
446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 } else
75068518 449 tk->size_shift = page_shift(compound_head(p));
6a46079c
AK
450
451 /*
3d7fed4a
JC
452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 * so "tk->size_shift == 0" effectively checks no mapping on
455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 * to a process' address space, it's possible not all N VMAs
457 * contain mappings for the page, but at least one VMA does.
458 * Only deliver SIGBUS with payload derived from the VMA that
459 * has a mapping for the page.
6a46079c 460 */
3d7fed4a 461 if (tk->addr == -EFAULT) {
96f96763 462 pr_info("Unable to find user space address %lx in %s\n",
6a46079c 463 page_to_pfn(p), tsk->comm);
3d7fed4a
JC
464 } else if (tk->size_shift == 0) {
465 kfree(tk);
466 return;
6a46079c 467 }
996ff7a0 468
6a46079c
AK
469 get_task_struct(tsk);
470 tk->tsk = tsk;
471 list_add_tail(&tk->nd, to_kill);
472}
473
4f775086
LX
474static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 struct vm_area_struct *vma,
476 struct list_head *to_kill)
477{
478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479}
480
4248d008
LX
481#ifdef CONFIG_KSM
482static bool task_in_to_kill_list(struct list_head *to_kill,
483 struct task_struct *tsk)
484{
485 struct to_kill *tk, *next;
486
487 list_for_each_entry_safe(tk, next, to_kill, nd) {
488 if (tk->tsk == tsk)
489 return true;
490 }
491
492 return false;
493}
494void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 struct vm_area_struct *vma, struct list_head *to_kill,
496 unsigned long ksm_addr)
497{
498 if (!task_in_to_kill_list(to_kill, tsk))
499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500}
501#endif
6a46079c
AK
502/*
503 * Kill the processes that have been collected earlier.
504 *
a21c184f
ML
505 * Only do anything when FORCEKILL is set, otherwise just free the
506 * list (this is used for clean pages which do not need killing)
6a46079c
AK
507 * Also when FAIL is set do a force kill because something went
508 * wrong earlier.
509 */
ae1139ec
DW
510static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 unsigned long pfn, int flags)
6a46079c
AK
512{
513 struct to_kill *tk, *next;
514
54f9555d 515 list_for_each_entry_safe(tk, next, to_kill, nd) {
6751ed65 516 if (forcekill) {
6a46079c 517 /*
af901ca1 518 * In case something went wrong with munmapping
6a46079c
AK
519 * make sure the process doesn't catch the
520 * signal and then access the memory. Just kill it.
6a46079c 521 */
3d7fed4a 522 if (fail || tk->addr == -EFAULT) {
96f96763 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 524 pfn, tk->tsk->comm, tk->tsk->pid);
6376360e
NH
525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 tk->tsk, PIDTYPE_PID);
6a46079c
AK
527 }
528
529 /*
530 * In theory the process could have mapped
531 * something else on the address in-between. We could
532 * check for that, but we need to tell the
533 * process anyways.
534 */
ae1139ec 535 else if (kill_proc(tk, pfn, flags) < 0)
96f96763 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 537 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c 538 }
54f9555d 539 list_del(&tk->nd);
6a46079c
AK
540 put_task_struct(tk->tsk);
541 kfree(tk);
542 }
543}
544
3ba08129
NH
545/*
546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547 * on behalf of the thread group. Return task_struct of the (first found)
548 * dedicated thread if found, and return NULL otherwise.
549 *
d256d1cd
TT
550 * We already hold rcu lock in the caller, so we don't have to call
551 * rcu_read_lock/unlock() in this function.
3ba08129
NH
552 */
553static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 554{
3ba08129
NH
555 struct task_struct *t;
556
4e018b45
NH
557 for_each_thread(tsk, t) {
558 if (t->flags & PF_MCE_PROCESS) {
559 if (t->flags & PF_MCE_EARLY)
560 return t;
561 } else {
562 if (sysctl_memory_failure_early_kill)
563 return t;
564 }
565 }
3ba08129
NH
566 return NULL;
567}
568
569/*
570 * Determine whether a given process is "early kill" process which expects
571 * to be signaled when some page under the process is hwpoisoned.
572 * Return task_struct of the dedicated thread (main thread unless explicitly
30c9cf49 573 * specified) if the process is "early kill" and otherwise returns NULL.
03151c6e 574 *
30c9cf49
AY
575 * Note that the above is true for Action Optional case. For Action Required
576 * case, it's only meaningful to the current thread which need to be signaled
577 * with SIGBUS, this error is Action Optional for other non current
578 * processes sharing the same error page,if the process is "early kill", the
579 * task_struct of the dedicated thread will also be returned.
3ba08129 580 */
4248d008 581struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
3ba08129 582{
6a46079c 583 if (!tsk->mm)
3ba08129 584 return NULL;
30c9cf49
AY
585 /*
586 * Comparing ->mm here because current task might represent
587 * a subthread, while tsk always points to the main thread.
588 */
589 if (force_early && tsk->mm == current->mm)
590 return current;
591
4e018b45 592 return find_early_kill_thread(tsk);
6a46079c
AK
593}
594
595/*
596 * Collect processes when the error hit an anonymous page.
597 */
376907f3
MWO
598static void collect_procs_anon(struct folio *folio, struct page *page,
599 struct list_head *to_kill, int force_early)
6a46079c
AK
600{
601 struct vm_area_struct *vma;
602 struct task_struct *tsk;
603 struct anon_vma *av;
bf181b9f 604 pgoff_t pgoff;
6a46079c 605
6d4675e6 606 av = folio_lock_anon_vma_read(folio, NULL);
6a46079c 607 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
608 return;
609
a0f7a756 610 pgoff = page_to_pgoff(page);
d256d1cd 611 rcu_read_lock();
5885c6a6 612 for_each_process(tsk) {
5beb4930 613 struct anon_vma_chain *vmac;
3ba08129 614 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 615
3ba08129 616 if (!t)
6a46079c 617 continue;
bf181b9f
ML
618 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
619 pgoff, pgoff) {
5beb4930 620 vma = vmac->vma;
36537a67
ML
621 if (vma->vm_mm != t->mm)
622 continue;
6a46079c
AK
623 if (!page_mapped_in_vma(page, vma))
624 continue;
4f775086 625 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
626 }
627 }
d256d1cd 628 rcu_read_unlock();
0c826c0b 629 anon_vma_unlock_read(av);
6a46079c
AK
630}
631
632/*
633 * Collect processes when the error hit a file mapped page.
634 */
376907f3
MWO
635static void collect_procs_file(struct folio *folio, struct page *page,
636 struct list_head *to_kill, int force_early)
6a46079c
AK
637{
638 struct vm_area_struct *vma;
639 struct task_struct *tsk;
376907f3 640 struct address_space *mapping = folio->mapping;
c43bc03d 641 pgoff_t pgoff;
6a46079c 642
d28eb9c8 643 i_mmap_lock_read(mapping);
d256d1cd 644 rcu_read_lock();
c43bc03d 645 pgoff = page_to_pgoff(page);
6a46079c 646 for_each_process(tsk) {
3ba08129 647 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 648
3ba08129 649 if (!t)
6a46079c 650 continue;
6b2dbba8 651 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
652 pgoff) {
653 /*
654 * Send early kill signal to tasks where a vma covers
655 * the page but the corrupted page is not necessarily
5885c6a6 656 * mapped in its pte.
6a46079c
AK
657 * Assume applications who requested early kill want
658 * to be informed of all such data corruptions.
659 */
3ba08129 660 if (vma->vm_mm == t->mm)
4f775086 661 add_to_kill_anon_file(t, page, vma, to_kill);
6a46079c
AK
662 }
663 }
d256d1cd 664 rcu_read_unlock();
d28eb9c8 665 i_mmap_unlock_read(mapping);
6a46079c
AK
666}
667
c36e2024 668#ifdef CONFIG_FS_DAX
4f775086
LX
669static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
670 struct vm_area_struct *vma,
671 struct list_head *to_kill, pgoff_t pgoff)
672{
673 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
674}
675
c36e2024
SR
676/*
677 * Collect processes when the error hit a fsdax page.
678 */
679static void collect_procs_fsdax(struct page *page,
680 struct address_space *mapping, pgoff_t pgoff,
fa422b35 681 struct list_head *to_kill, bool pre_remove)
c36e2024
SR
682{
683 struct vm_area_struct *vma;
684 struct task_struct *tsk;
685
686 i_mmap_lock_read(mapping);
d256d1cd 687 rcu_read_lock();
c36e2024 688 for_each_process(tsk) {
fa422b35 689 struct task_struct *t = tsk;
c36e2024 690
fa422b35
SR
691 /*
692 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
693 * the current may not be the one accessing the fsdax page.
694 * Otherwise, search for the current task.
695 */
696 if (!pre_remove)
697 t = task_early_kill(tsk, true);
c36e2024
SR
698 if (!t)
699 continue;
700 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
701 if (vma->vm_mm == t->mm)
4f775086 702 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
c36e2024
SR
703 }
704 }
d256d1cd 705 rcu_read_unlock();
c36e2024
SR
706 i_mmap_unlock_read(mapping);
707}
708#endif /* CONFIG_FS_DAX */
709
6a46079c
AK
710/*
711 * Collect the processes who have the corrupted page mapped to kill.
6a46079c 712 */
376907f3
MWO
713static void collect_procs(struct folio *folio, struct page *page,
714 struct list_head *tokill, int force_early)
6a46079c 715{
376907f3 716 if (!folio->mapping)
6a46079c 717 return;
4248d008
LX
718 if (unlikely(PageKsm(page)))
719 collect_procs_ksm(page, tokill, force_early);
720 else if (PageAnon(page))
376907f3 721 collect_procs_anon(folio, page, tokill, force_early);
6a46079c 722 else
376907f3 723 collect_procs_file(folio, page, tokill, force_early);
6a46079c
AK
724}
725
6885938c 726struct hwpoison_walk {
a3f5d80e
NH
727 struct to_kill tk;
728 unsigned long pfn;
729 int flags;
730};
731
732static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
733{
734 tk->addr = addr;
735 tk->size_shift = shift;
736}
737
738static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
739 unsigned long poisoned_pfn, struct to_kill *tk)
740{
741 unsigned long pfn = 0;
742
743 if (pte_present(pte)) {
744 pfn = pte_pfn(pte);
745 } else {
746 swp_entry_t swp = pte_to_swp_entry(pte);
747
748 if (is_hwpoison_entry(swp))
0d206b5d 749 pfn = swp_offset_pfn(swp);
a3f5d80e
NH
750 }
751
752 if (!pfn || pfn != poisoned_pfn)
753 return 0;
754
755 set_to_kill(tk, addr, shift);
756 return 1;
757}
758
759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
760static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 761 struct hwpoison_walk *hwp)
a3f5d80e
NH
762{
763 pmd_t pmd = *pmdp;
764 unsigned long pfn;
765 unsigned long hwpoison_vaddr;
766
767 if (!pmd_present(pmd))
768 return 0;
769 pfn = pmd_pfn(pmd);
770 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
771 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
772 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
773 return 1;
774 }
775 return 0;
776}
777#else
778static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
6885938c 779 struct hwpoison_walk *hwp)
a3f5d80e
NH
780{
781 return 0;
782}
783#endif
784
785static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
786 unsigned long end, struct mm_walk *walk)
787{
6885938c 788 struct hwpoison_walk *hwp = walk->private;
a3f5d80e 789 int ret = 0;
ea3732f7 790 pte_t *ptep, *mapped_pte;
a3f5d80e
NH
791 spinlock_t *ptl;
792
793 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
794 if (ptl) {
795 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
796 spin_unlock(ptl);
797 goto out;
798 }
799
ea3732f7
ML
800 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
801 addr, &ptl);
04dee9e8
HD
802 if (!ptep)
803 goto out;
804
a3f5d80e 805 for (; addr != end; ptep++, addr += PAGE_SIZE) {
c33c7948 806 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
a3f5d80e
NH
807 hwp->pfn, &hwp->tk);
808 if (ret == 1)
809 break;
810 }
ea3732f7 811 pte_unmap_unlock(mapped_pte, ptl);
a3f5d80e
NH
812out:
813 cond_resched();
814 return ret;
815}
816
817#ifdef CONFIG_HUGETLB_PAGE
818static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
819 unsigned long addr, unsigned long end,
820 struct mm_walk *walk)
821{
6885938c 822 struct hwpoison_walk *hwp = walk->private;
a3f5d80e
NH
823 pte_t pte = huge_ptep_get(ptep);
824 struct hstate *h = hstate_vma(walk->vma);
825
826 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
827 hwp->pfn, &hwp->tk);
828}
829#else
830#define hwpoison_hugetlb_range NULL
831#endif
832
6885938c 833static const struct mm_walk_ops hwpoison_walk_ops = {
a3f5d80e
NH
834 .pmd_entry = hwpoison_pte_range,
835 .hugetlb_entry = hwpoison_hugetlb_range,
49b06385 836 .walk_lock = PGWALK_RDLOCK,
a3f5d80e
NH
837};
838
839/*
840 * Sends SIGBUS to the current process with error info.
841 *
842 * This function is intended to handle "Action Required" MCEs on already
843 * hardware poisoned pages. They could happen, for example, when
844 * memory_failure() failed to unmap the error page at the first call, or
845 * when multiple local machine checks happened on different CPUs.
846 *
847 * MCE handler currently has no easy access to the error virtual address,
848 * so this function walks page table to find it. The returned virtual address
849 * is proper in most cases, but it could be wrong when the application
850 * process has multiple entries mapping the error page.
851 */
852static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
853 int flags)
854{
855 int ret;
6885938c 856 struct hwpoison_walk priv = {
a3f5d80e
NH
857 .pfn = pfn,
858 };
859 priv.tk.tsk = p;
860
77677cdb
SX
861 if (!p->mm)
862 return -EFAULT;
863
a3f5d80e 864 mmap_read_lock(p->mm);
6885938c 865 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
a3f5d80e
NH
866 (void *)&priv);
867 if (ret == 1 && priv.tk.addr)
868 kill_proc(&priv.tk, pfn, flags);
046545a6
NH
869 else
870 ret = 0;
a3f5d80e 871 mmap_read_unlock(p->mm);
046545a6 872 return ret > 0 ? -EHWPOISON : -EFAULT;
a3f5d80e
NH
873}
874
6a46079c 875static const char *action_name[] = {
cc637b17
XX
876 [MF_IGNORED] = "Ignored",
877 [MF_FAILED] = "Failed",
878 [MF_DELAYED] = "Delayed",
879 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
880};
881
882static const char * const action_page_types[] = {
cc637b17
XX
883 [MF_MSG_KERNEL] = "reserved kernel page",
884 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
885 [MF_MSG_SLAB] = "kernel slab page",
886 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
cc637b17
XX
887 [MF_MSG_HUGE] = "huge page",
888 [MF_MSG_FREE_HUGE] = "free huge page",
889 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
890 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
891 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
892 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
893 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
894 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
895 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
896 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
897 [MF_MSG_CLEAN_LRU] = "clean LRU page",
898 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
899 [MF_MSG_BUDDY] = "free buddy page",
6100e34b 900 [MF_MSG_DAX] = "dax page",
5d1fd5dc 901 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
cc637b17 902 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
903};
904
dc2a1cbf
WF
905/*
906 * XXX: It is possible that a page is isolated from LRU cache,
907 * and then kept in swap cache or failed to remove from page cache.
908 * The page count will stop it from being freed by unpoison.
909 * Stress tests should be aware of this memory leak problem.
910 */
f7092393 911static int delete_from_lru_cache(struct folio *folio)
dc2a1cbf 912{
f7092393 913 if (folio_isolate_lru(folio)) {
dc2a1cbf
WF
914 /*
915 * Clear sensible page flags, so that the buddy system won't
f7092393 916 * complain when the folio is unpoison-and-freed.
dc2a1cbf 917 */
f7092393
MWO
918 folio_clear_active(folio);
919 folio_clear_unevictable(folio);
18365225
MH
920
921 /*
922 * Poisoned page might never drop its ref count to 0 so we have
923 * to uncharge it manually from its memcg.
924 */
f7092393 925 mem_cgroup_uncharge(folio);
18365225 926
dc2a1cbf 927 /*
f7092393 928 * drop the refcount elevated by folio_isolate_lru()
dc2a1cbf 929 */
f7092393 930 folio_put(folio);
dc2a1cbf
WF
931 return 0;
932 }
933 return -EIO;
934}
935
af7628d6 936static int truncate_error_folio(struct folio *folio, unsigned long pfn,
78bb9203
NH
937 struct address_space *mapping)
938{
939 int ret = MF_FAILED;
940
af7628d6
MWO
941 if (mapping->a_ops->error_remove_folio) {
942 int err = mapping->a_ops->error_remove_folio(mapping, folio);
78bb9203 943
0201ebf2 944 if (err != 0)
96f96763 945 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
0201ebf2 946 else if (!filemap_release_folio(folio, GFP_NOIO))
96f96763 947 pr_info("%#lx: failed to release buffers\n", pfn);
0201ebf2 948 else
78bb9203 949 ret = MF_RECOVERED;
78bb9203
NH
950 } else {
951 /*
952 * If the file system doesn't support it just invalidate
953 * This fails on dirty or anything with private pages
954 */
19369d86 955 if (mapping_evict_folio(mapping, folio))
78bb9203
NH
956 ret = MF_RECOVERED;
957 else
96f96763 958 pr_info("%#lx: Failed to invalidate\n", pfn);
78bb9203
NH
959 }
960
961 return ret;
962}
963
dd0f230a
YS
964struct page_state {
965 unsigned long mask;
966 unsigned long res;
967 enum mf_action_page_type type;
968
969 /* Callback ->action() has to unlock the relevant page inside it. */
970 int (*action)(struct page_state *ps, struct page *p);
971};
972
973/*
974 * Return true if page is still referenced by others, otherwise return
975 * false.
976 *
977 * The extra_pins is true when one extra refcount is expected.
978 */
979static bool has_extra_refcount(struct page_state *ps, struct page *p,
980 bool extra_pins)
981{
982 int count = page_count(p) - 1;
983
984 if (extra_pins)
19d3e221 985 count -= folio_nr_pages(page_folio(p));
dd0f230a
YS
986
987 if (count > 0) {
96f96763 988 pr_err("%#lx: %s still referenced by %d users\n",
dd0f230a
YS
989 page_to_pfn(p), action_page_types[ps->type], count);
990 return true;
991 }
992
993 return false;
994}
995
6a46079c
AK
996/*
997 * Error hit kernel page.
998 * Do nothing, try to be lucky and not touch this instead. For a few cases we
999 * could be more sophisticated.
1000 */
dd0f230a 1001static int me_kernel(struct page_state *ps, struct page *p)
6a46079c 1002{
ea6d0630 1003 unlock_page(p);
cc637b17 1004 return MF_IGNORED;
6a46079c
AK
1005}
1006
1007/*
1008 * Page in unknown state. Do nothing.
1009 */
dd0f230a 1010static int me_unknown(struct page_state *ps, struct page *p)
6a46079c 1011{
96f96763 1012 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
ea6d0630 1013 unlock_page(p);
cc637b17 1014 return MF_FAILED;
6a46079c
AK
1015}
1016
6a46079c
AK
1017/*
1018 * Clean (or cleaned) page cache page.
1019 */
dd0f230a 1020static int me_pagecache_clean(struct page_state *ps, struct page *p)
6a46079c 1021{
3d47e317 1022 struct folio *folio = page_folio(p);
ea6d0630 1023 int ret;
6a46079c 1024 struct address_space *mapping;
a7605426 1025 bool extra_pins;
6a46079c 1026
f7092393 1027 delete_from_lru_cache(folio);
dc2a1cbf 1028
6a46079c 1029 /*
3d47e317 1030 * For anonymous folios the only reference left
6a46079c
AK
1031 * should be the one m_f() holds.
1032 */
3d47e317 1033 if (folio_test_anon(folio)) {
ea6d0630
NH
1034 ret = MF_RECOVERED;
1035 goto out;
1036 }
6a46079c
AK
1037
1038 /*
1039 * Now truncate the page in the page cache. This is really
1040 * more like a "temporary hole punch"
1041 * Don't do this for block devices when someone else
1042 * has a reference, because it could be file system metadata
1043 * and that's not safe to truncate.
1044 */
3d47e317 1045 mapping = folio_mapping(folio);
6a46079c 1046 if (!mapping) {
3d47e317 1047 /* Folio has been torn down in the meantime */
ea6d0630
NH
1048 ret = MF_FAILED;
1049 goto out;
6a46079c
AK
1050 }
1051
a7605426
YS
1052 /*
1053 * The shmem page is kept in page cache instead of truncating
1054 * so is expected to have an extra refcount after error-handling.
1055 */
1056 extra_pins = shmem_mapping(mapping);
1057
6a46079c
AK
1058 /*
1059 * Truncation is a bit tricky. Enable it per file system for now.
1060 *
9608703e 1061 * Open: to take i_rwsem or not for this? Right now we don't.
6a46079c 1062 */
af7628d6 1063 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
a7605426
YS
1064 if (has_extra_refcount(ps, p, extra_pins))
1065 ret = MF_FAILED;
1066
ea6d0630 1067out:
3d47e317 1068 folio_unlock(folio);
dd0f230a 1069
ea6d0630 1070 return ret;
6a46079c
AK
1071}
1072
1073/*
549543df 1074 * Dirty pagecache page
6a46079c
AK
1075 * Issues: when the error hit a hole page the error is not properly
1076 * propagated.
1077 */
dd0f230a 1078static int me_pagecache_dirty(struct page_state *ps, struct page *p)
6a46079c
AK
1079{
1080 struct address_space *mapping = page_mapping(p);
1081
1082 SetPageError(p);
1083 /* TBD: print more information about the file. */
1084 if (mapping) {
1085 /*
1086 * IO error will be reported by write(), fsync(), etc.
1087 * who check the mapping.
1088 * This way the application knows that something went
1089 * wrong with its dirty file data.
1090 *
1091 * There's one open issue:
1092 *
1093 * The EIO will be only reported on the next IO
1094 * operation and then cleared through the IO map.
1095 * Normally Linux has two mechanisms to pass IO error
1096 * first through the AS_EIO flag in the address space
1097 * and then through the PageError flag in the page.
1098 * Since we drop pages on memory failure handling the
1099 * only mechanism open to use is through AS_AIO.
1100 *
1101 * This has the disadvantage that it gets cleared on
1102 * the first operation that returns an error, while
1103 * the PageError bit is more sticky and only cleared
1104 * when the page is reread or dropped. If an
1105 * application assumes it will always get error on
1106 * fsync, but does other operations on the fd before
25985edc 1107 * and the page is dropped between then the error
6a46079c
AK
1108 * will not be properly reported.
1109 *
1110 * This can already happen even without hwpoisoned
1111 * pages: first on metadata IO errors (which only
1112 * report through AS_EIO) or when the page is dropped
1113 * at the wrong time.
1114 *
1115 * So right now we assume that the application DTRT on
1116 * the first EIO, but we're not worse than other parts
1117 * of the kernel.
1118 */
af21bfaf 1119 mapping_set_error(mapping, -EIO);
6a46079c
AK
1120 }
1121
dd0f230a 1122 return me_pagecache_clean(ps, p);
6a46079c
AK
1123}
1124
1125/*
1126 * Clean and dirty swap cache.
1127 *
1128 * Dirty swap cache page is tricky to handle. The page could live both in page
1129 * cache and swap cache(ie. page is freshly swapped in). So it could be
1130 * referenced concurrently by 2 types of PTEs:
1131 * normal PTEs and swap PTEs. We try to handle them consistently by calling
6da6b1d4 1132 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
6a46079c
AK
1133 * and then
1134 * - clear dirty bit to prevent IO
1135 * - remove from LRU
1136 * - but keep in the swap cache, so that when we return to it on
1137 * a later page fault, we know the application is accessing
1138 * corrupted data and shall be killed (we installed simple
1139 * interception code in do_swap_page to catch it).
1140 *
1141 * Clean swap cache pages can be directly isolated. A later page fault will
1142 * bring in the known good data from disk.
1143 */
dd0f230a 1144static int me_swapcache_dirty(struct page_state *ps, struct page *p)
6a46079c 1145{
6304b531 1146 struct folio *folio = page_folio(p);
ea6d0630 1147 int ret;
dd0f230a 1148 bool extra_pins = false;
ea6d0630 1149
6304b531 1150 folio_clear_dirty(folio);
6a46079c 1151 /* Trigger EIO in shmem: */
6304b531 1152 folio_clear_uptodate(folio);
6a46079c 1153
f7092393 1154 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
6304b531 1155 folio_unlock(folio);
dd0f230a
YS
1156
1157 if (ret == MF_DELAYED)
1158 extra_pins = true;
1159
1160 if (has_extra_refcount(ps, p, extra_pins))
1161 ret = MF_FAILED;
1162
ea6d0630 1163 return ret;
6a46079c
AK
1164}
1165
dd0f230a 1166static int me_swapcache_clean(struct page_state *ps, struct page *p)
6a46079c 1167{
75fa68a5 1168 struct folio *folio = page_folio(p);
ea6d0630
NH
1169 int ret;
1170
75fa68a5 1171 delete_from_swap_cache(folio);
e43c3afb 1172
f7092393 1173 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
75fa68a5 1174 folio_unlock(folio);
dd0f230a
YS
1175
1176 if (has_extra_refcount(ps, p, false))
1177 ret = MF_FAILED;
1178
ea6d0630 1179 return ret;
6a46079c
AK
1180}
1181
1182/*
1183 * Huge pages. Needs work.
1184 * Issues:
93f70f90
NH
1185 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1186 * To narrow down kill region to one page, we need to break up pmd.
6a46079c 1187 */
dd0f230a 1188static int me_huge_page(struct page_state *ps, struct page *p)
6a46079c 1189{
b6fd410c 1190 struct folio *folio = page_folio(p);
a8b2c2ce 1191 int res;
78bb9203 1192 struct address_space *mapping;
8625147c 1193 bool extra_pins = false;
2491ffee 1194
b6fd410c 1195 mapping = folio_mapping(folio);
78bb9203 1196 if (mapping) {
af7628d6 1197 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
8625147c
JH
1198 /* The page is kept in page cache. */
1199 extra_pins = true;
b6fd410c 1200 folio_unlock(folio);
78bb9203 1201 } else {
b6fd410c 1202 folio_unlock(folio);
78bb9203 1203 /*
ef526b17
ML
1204 * migration entry prevents later access on error hugepage,
1205 * so we can free and dissolve it into buddy to save healthy
1206 * subpages.
78bb9203 1207 */
b6fd410c 1208 folio_put(folio);
ceaf8fbe 1209 if (__page_handle_poison(p) >= 0) {
a8b2c2ce
OS
1210 page_ref_inc(p);
1211 res = MF_RECOVERED;
ceaf8fbe
NH
1212 } else {
1213 res = MF_FAILED;
a8b2c2ce 1214 }
93f70f90 1215 }
78bb9203 1216
8625147c 1217 if (has_extra_refcount(ps, p, extra_pins))
dd0f230a
YS
1218 res = MF_FAILED;
1219
78bb9203 1220 return res;
6a46079c
AK
1221}
1222
1223/*
1224 * Various page states we can handle.
1225 *
1226 * A page state is defined by its current page->flags bits.
1227 * The table matches them in order and calls the right handler.
1228 *
1229 * This is quite tricky because we can access page at any time
25985edc 1230 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
1231 *
1232 * This is not complete. More states could be added.
1233 * For any missing state don't attempt recovery.
1234 */
1235
1236#define dirty (1UL << PG_dirty)
6326fec1 1237#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
1238#define unevict (1UL << PG_unevictable)
1239#define mlock (1UL << PG_mlocked)
6a46079c 1240#define lru (1UL << PG_lru)
6a46079c 1241#define head (1UL << PG_head)
6a46079c 1242#define slab (1UL << PG_slab)
6a46079c
AK
1243#define reserved (1UL << PG_reserved)
1244
dd0f230a 1245static struct page_state error_states[] = {
cc637b17 1246 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
1247 /*
1248 * free pages are specially detected outside this table:
1249 * PG_buddy pages only make a small fraction of all free pages.
1250 */
6a46079c
AK
1251
1252 /*
1253 * Could in theory check if slab page is free or if we can drop
1254 * currently unused objects without touching them. But just
1255 * treat it as standard kernel for now.
1256 */
cc637b17 1257 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 1258
cc637b17 1259 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 1260
cc637b17
XX
1261 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1262 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 1263
cc637b17
XX
1264 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1265 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 1266
cc637b17
XX
1267 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1268 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 1269
cc637b17
XX
1270 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1271 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
1272
1273 /*
1274 * Catchall entry: must be at end.
1275 */
cc637b17 1276 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
1277};
1278
2326c467
AK
1279#undef dirty
1280#undef sc
1281#undef unevict
1282#undef mlock
2326c467 1283#undef lru
2326c467 1284#undef head
2326c467
AK
1285#undef slab
1286#undef reserved
1287
18f41fa6
JY
1288static void update_per_node_mf_stats(unsigned long pfn,
1289 enum mf_result result)
1290{
1291 int nid = MAX_NUMNODES;
1292 struct memory_failure_stats *mf_stats = NULL;
1293
1294 nid = pfn_to_nid(pfn);
1295 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1296 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1297 return;
1298 }
1299
1300 mf_stats = &NODE_DATA(nid)->mf_stats;
1301 switch (result) {
1302 case MF_IGNORED:
1303 ++mf_stats->ignored;
1304 break;
1305 case MF_FAILED:
1306 ++mf_stats->failed;
1307 break;
1308 case MF_DELAYED:
1309 ++mf_stats->delayed;
1310 break;
1311 case MF_RECOVERED:
1312 ++mf_stats->recovered;
1313 break;
1314 default:
1315 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1316 break;
1317 }
1318 ++mf_stats->total;
1319}
1320
ff604cf6
NH
1321/*
1322 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1323 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1324 */
b66d00df
KW
1325static int action_result(unsigned long pfn, enum mf_action_page_type type,
1326 enum mf_result result)
6a46079c 1327{
97f0b134
XX
1328 trace_memory_failure_event(pfn, type, result);
1329
a46c9304 1330 num_poisoned_pages_inc(pfn);
18f41fa6
JY
1331
1332 update_per_node_mf_stats(pfn, result);
1333
96f96763 1334 pr_err("%#lx: recovery action for %s: %s\n",
64d37a2b 1335 pfn, action_page_types[type], action_name[result]);
b66d00df
KW
1336
1337 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
1338}
1339
1340static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 1341 unsigned long pfn)
6a46079c
AK
1342{
1343 int result;
1344
ea6d0630 1345 /* page p should be unlocked after returning from ps->action(). */
dd0f230a 1346 result = ps->action(ps, p);
7456b040 1347
6a46079c
AK
1348 /* Could do more checks here if page looks ok */
1349 /*
1350 * Could adjust zone counters here to correct for the missing page.
1351 */
1352
b66d00df 1353 return action_result(pfn, ps->type, result);
6a46079c
AK
1354}
1355
bf181c58
NH
1356static inline bool PageHWPoisonTakenOff(struct page *page)
1357{
1358 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1359}
1360
1361void SetPageHWPoisonTakenOff(struct page *page)
1362{
1363 set_page_private(page, MAGIC_HWPOISON);
1364}
1365
1366void ClearPageHWPoisonTakenOff(struct page *page)
1367{
1368 if (PageHWPoison(page))
1369 set_page_private(page, 0);
1370}
1371
25182f05
NH
1372/*
1373 * Return true if a page type of a given page is supported by hwpoison
1374 * mechanism (while handling could fail), otherwise false. This function
1375 * does not return true for hugetlb or device memory pages, so it's assumed
1376 * to be called only in the context where we never have such pages.
1377 */
bf6445bc 1378static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
25182f05 1379{
2fde9e7f
ML
1380 if (PageSlab(page))
1381 return false;
1382
3f871370 1383 /* Soft offline could migrate non-LRU movable pages */
bf6445bc 1384 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
3f871370 1385 return true;
bf6445bc 1386
3f871370 1387 return PageLRU(page) || is_free_buddy_page(page);
25182f05
NH
1388}
1389
bf6445bc 1390static int __get_hwpoison_page(struct page *page, unsigned long flags)
ead07f6a 1391{
04bac040 1392 struct folio *folio = page_folio(page);
25182f05
NH
1393 int ret = 0;
1394 bool hugetlb = false;
1395
04bac040 1396 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
d31155b8
ML
1397 if (hugetlb) {
1398 /* Make sure hugetlb demotion did not happen from under us. */
1399 if (folio == page_folio(page))
1400 return ret;
1401 if (ret > 0) {
1402 folio_put(folio);
1403 folio = page_folio(page);
1404 }
1405 }
25182f05
NH
1406
1407 /*
04bac040
SK
1408 * This check prevents from calling folio_try_get() for any
1409 * unsupported type of folio in order to reduce the risk of unexpected
1410 * races caused by taking a folio refcount.
25182f05 1411 */
04bac040 1412 if (!HWPoisonHandlable(&folio->page, flags))
fcc00621 1413 return -EBUSY;
ead07f6a 1414
04bac040
SK
1415 if (folio_try_get(folio)) {
1416 if (folio == page_folio(page))
c2e7e00b
KK
1417 return 1;
1418
96f96763 1419 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
04bac040 1420 folio_put(folio);
c2e7e00b
KK
1421 }
1422
1423 return 0;
ead07f6a 1424}
ead07f6a 1425
2f714160 1426static int get_any_page(struct page *p, unsigned long flags)
17e395b6 1427{
2f714160
OS
1428 int ret = 0, pass = 0;
1429 bool count_increased = false;
17e395b6 1430
2f714160
OS
1431 if (flags & MF_COUNT_INCREASED)
1432 count_increased = true;
1433
1434try_again:
0ed950d1 1435 if (!count_increased) {
bf6445bc 1436 ret = __get_hwpoison_page(p, flags);
0ed950d1
NH
1437 if (!ret) {
1438 if (page_count(p)) {
1439 /* We raced with an allocation, retry. */
1440 if (pass++ < 3)
1441 goto try_again;
1442 ret = -EBUSY;
1443 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1444 /* We raced with put_page, retry. */
1445 if (pass++ < 3)
1446 goto try_again;
1447 ret = -EIO;
1448 }
1449 goto out;
1450 } else if (ret == -EBUSY) {
fcc00621
NH
1451 /*
1452 * We raced with (possibly temporary) unhandlable
1453 * page, retry.
1454 */
1455 if (pass++ < 3) {
d0505e9f 1456 shake_page(p);
2f714160 1457 goto try_again;
fcc00621
NH
1458 }
1459 ret = -EIO;
0ed950d1 1460 goto out;
2f714160 1461 }
0ed950d1
NH
1462 }
1463
bf6445bc 1464 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
0ed950d1 1465 ret = 1;
2f714160 1466 } else {
0ed950d1
NH
1467 /*
1468 * A page we cannot handle. Check whether we can turn
1469 * it into something we can handle.
1470 */
1471 if (pass++ < 3) {
2f714160 1472 put_page(p);
d0505e9f 1473 shake_page(p);
0ed950d1
NH
1474 count_increased = false;
1475 goto try_again;
2f714160 1476 }
0ed950d1
NH
1477 put_page(p);
1478 ret = -EIO;
17e395b6 1479 }
0ed950d1 1480out:
941ca063 1481 if (ret == -EIO)
96f96763 1482 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
941ca063 1483
17e395b6
OS
1484 return ret;
1485}
1486
bf181c58
NH
1487static int __get_unpoison_page(struct page *page)
1488{
04bac040 1489 struct folio *folio = page_folio(page);
bf181c58
NH
1490 int ret = 0;
1491 bool hugetlb = false;
1492
04bac040 1493 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
d31155b8
ML
1494 if (hugetlb) {
1495 /* Make sure hugetlb demotion did not happen from under us. */
1496 if (folio == page_folio(page))
1497 return ret;
1498 if (ret > 0)
1499 folio_put(folio);
1500 }
bf181c58
NH
1501
1502 /*
1503 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1504 * but also isolated from buddy freelist, so need to identify the
1505 * state and have to cancel both operations to unpoison.
1506 */
1507 if (PageHWPoisonTakenOff(page))
1508 return -EHWPOISON;
1509
1510 return get_page_unless_zero(page) ? 1 : 0;
1511}
1512
0ed950d1
NH
1513/**
1514 * get_hwpoison_page() - Get refcount for memory error handling
1515 * @p: Raw error page (hit by memory error)
1516 * @flags: Flags controlling behavior of error handling
1517 *
1518 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1519 * error on it, after checking that the error page is in a well-defined state
0b8f0d87 1520 * (defined as a page-type we can successfully handle the memory error on it,
0ed950d1
NH
1521 * such as LRU page and hugetlb page).
1522 *
1523 * Memory error handling could be triggered at any time on any type of page,
1524 * so it's prone to race with typical memory management lifecycle (like
1525 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1526 * extra care for the error page's state (as done in __get_hwpoison_page()),
1527 * and has some retry logic in get_any_page().
1528 *
bf181c58
NH
1529 * When called from unpoison_memory(), the caller should already ensure that
1530 * the given page has PG_hwpoison. So it's never reused for other page
1531 * allocations, and __get_unpoison_page() never races with them.
1532 *
0ed950d1
NH
1533 * Return: 0 on failure,
1534 * 1 on success for in-use pages in a well-defined state,
1535 * -EIO for pages on which we can not handle memory errors,
1536 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
bf181c58
NH
1537 * operations like allocation and free,
1538 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
0ed950d1
NH
1539 */
1540static int get_hwpoison_page(struct page *p, unsigned long flags)
2f714160
OS
1541{
1542 int ret;
1543
1544 zone_pcp_disable(page_zone(p));
bf181c58
NH
1545 if (flags & MF_UNPOISON)
1546 ret = __get_unpoison_page(p);
1547 else
1548 ret = get_any_page(p, flags);
2f714160
OS
1549 zone_pcp_enable(page_zone(p));
1550
1551 return ret;
1552}
1553
6a46079c
AK
1554/*
1555 * Do all that is necessary to remove user space mappings. Unmap
1556 * the pages and send SIGBUS to the processes if the data was dirty.
1557 */
666e5a40 1558static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
ed8c2f49 1559 int flags, struct page *hpage)
6a46079c 1560{
869f7ee6 1561 struct folio *folio = page_folio(hpage);
6da6b1d4 1562 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
6a46079c
AK
1563 struct address_space *mapping;
1564 LIST_HEAD(tokill);
1fb08ac6 1565 bool unmap_success;
0792a4a6 1566 int forcekill;
286c469a 1567 bool mlocked = PageMlocked(hpage);
6a46079c 1568
93a9eb39
NH
1569 /*
1570 * Here we are interested only in user-mapped pages, so skip any
1571 * other types of pages.
1572 */
7a8817f2 1573 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
666e5a40 1574 return true;
93a9eb39 1575 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 1576 return true;
6a46079c 1577
6a46079c
AK
1578 /*
1579 * This check implies we don't kill processes if their pages
1580 * are in the swap cache early. Those are always late kills.
1581 */
c79c5a0a 1582 if (!page_mapped(p))
666e5a40 1583 return true;
1668bfd5 1584
6a46079c 1585 if (PageSwapCache(p)) {
96f96763 1586 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
6da6b1d4 1587 ttu &= ~TTU_HWPOISON;
6a46079c
AK
1588 }
1589
1590 /*
1591 * Propagate the dirty bit from PTEs to struct page first, because we
1592 * need this to decide if we should kill or just drop the page.
db0480b3
WF
1593 * XXX: the dirty test could be racy: set_page_dirty() may not always
1594 * be called inside page lock (it's recommended but not enforced).
6a46079c 1595 */
7af446a8 1596 mapping = page_mapping(hpage);
6751ed65 1597 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
f56753ac 1598 mapping_can_writeback(mapping)) {
7af446a8
NH
1599 if (page_mkclean(hpage)) {
1600 SetPageDirty(hpage);
6a46079c 1601 } else {
6da6b1d4 1602 ttu &= ~TTU_HWPOISON;
96f96763 1603 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
1604 pfn);
1605 }
1606 }
1607
1608 /*
1609 * First collect all the processes that have the page
1610 * mapped in dirty form. This has to be done before try_to_unmap,
1611 * because ttu takes the rmap data structures down.
6a46079c 1612 */
376907f3 1613 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 1614
357670f7
ML
1615 if (PageHuge(hpage) && !PageAnon(hpage)) {
1616 /*
1617 * For hugetlb pages in shared mappings, try_to_unmap
1618 * could potentially call huge_pmd_unshare. Because of
1619 * this, take semaphore in write mode here and set
1620 * TTU_RMAP_LOCKED to indicate we have taken the lock
1621 * at this higher level.
1622 */
1623 mapping = hugetlb_page_mapping_lock_write(hpage);
1624 if (mapping) {
9030fb0b 1625 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
357670f7
ML
1626 i_mmap_unlock_write(mapping);
1627 } else
96f96763 1628 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
c0d0381a 1629 } else {
9030fb0b 1630 try_to_unmap(folio, ttu);
c0d0381a 1631 }
1fb08ac6 1632
c79c5a0a 1633 unmap_success = !page_mapped(p);
666e5a40 1634 if (!unmap_success)
96f96763 1635 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
c79c5a0a 1636 pfn, page_mapcount(p));
a6d30ddd 1637
286c469a
NH
1638 /*
1639 * try_to_unmap() might put mlocked page in lru cache, so call
1640 * shake_page() again to ensure that it's flushed.
1641 */
1642 if (mlocked)
d0505e9f 1643 shake_page(hpage);
286c469a 1644
6a46079c
AK
1645 /*
1646 * Now that the dirty bit has been propagated to the
1647 * struct page and all unmaps done we can decide if
1648 * killing is needed or not. Only kill when the page
6751ed65
TL
1649 * was dirty or the process is not restartable,
1650 * otherwise the tokill list is merely
6a46079c
AK
1651 * freed. When there was a problem unmapping earlier
1652 * use a more force-full uncatchable kill to prevent
1653 * any accesses to the poisoned memory.
1654 */
0792a4a6
ML
1655 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1656 !unmap_success;
ae1139ec 1657 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1668bfd5 1658
666e5a40 1659 return unmap_success;
6a46079c
AK
1660}
1661
0348d2eb
NH
1662static int identify_page_state(unsigned long pfn, struct page *p,
1663 unsigned long page_flags)
761ad8d7
NH
1664{
1665 struct page_state *ps;
0348d2eb
NH
1666
1667 /*
1668 * The first check uses the current page flags which may not have any
1669 * relevant information. The second check with the saved page flags is
1670 * carried out only if the first check can't determine the page status.
1671 */
1672 for (ps = error_states;; ps++)
1673 if ((p->flags & ps->mask) == ps->res)
1674 break;
1675
1676 page_flags |= (p->flags & (1UL << PG_dirty));
1677
1678 if (!ps->mask)
1679 for (ps = error_states;; ps++)
1680 if ((page_flags & ps->mask) == ps->res)
1681 break;
1682 return page_action(ps, p, pfn);
1683}
1684
2ace36f0 1685static int try_to_split_thp_page(struct page *page)
694bf0b0 1686{
2ace36f0
KW
1687 int ret;
1688
694bf0b0 1689 lock_page(page);
2ace36f0
KW
1690 ret = split_huge_page(page);
1691 unlock_page(page);
694bf0b0 1692
2ace36f0 1693 if (unlikely(ret))
694bf0b0 1694 put_page(page);
694bf0b0 1695
2ace36f0 1696 return ret;
694bf0b0
OS
1697}
1698
00cc790e
SR
1699static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1700 struct address_space *mapping, pgoff_t index, int flags)
1701{
1702 struct to_kill *tk;
1703 unsigned long size = 0;
1704
1705 list_for_each_entry(tk, to_kill, nd)
1706 if (tk->size_shift)
1707 size = max(size, 1UL << tk->size_shift);
1708
1709 if (size) {
1710 /*
1711 * Unmap the largest mapping to avoid breaking up device-dax
1712 * mappings which are constant size. The actual size of the
1713 * mapping being torn down is communicated in siginfo, see
1714 * kill_proc()
1715 */
39ebd6dc 1716 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
00cc790e
SR
1717
1718 unmap_mapping_range(mapping, start, size, 0);
1719 }
1720
1721 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1722}
1723
91e79d22
MWO
1724/*
1725 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1726 * either do not claim or fails to claim a hwpoison event, or devdax.
1727 * The fsdax pages are initialized per base page, and the devdax pages
1728 * could be initialized either as base pages, or as compound pages with
1729 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1730 * hwpoison, such that, if a subpage of a compound page is poisoned,
1731 * simply mark the compound head page is by far sufficient.
1732 */
00cc790e
SR
1733static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1734 struct dev_pagemap *pgmap)
1735{
91e79d22 1736 struct folio *folio = pfn_folio(pfn);
00cc790e
SR
1737 LIST_HEAD(to_kill);
1738 dax_entry_t cookie;
1739 int rc = 0;
1740
00cc790e
SR
1741 /*
1742 * Prevent the inode from being freed while we are interrogating
1743 * the address_space, typically this would be handled by
1744 * lock_page(), but dax pages do not use the page lock. This
1745 * also prevents changes to the mapping of this pfn until
1746 * poison signaling is complete.
1747 */
91e79d22 1748 cookie = dax_lock_folio(folio);
00cc790e
SR
1749 if (!cookie)
1750 return -EBUSY;
1751
91e79d22 1752 if (hwpoison_filter(&folio->page)) {
00cc790e
SR
1753 rc = -EOPNOTSUPP;
1754 goto unlock;
1755 }
1756
1757 switch (pgmap->type) {
1758 case MEMORY_DEVICE_PRIVATE:
1759 case MEMORY_DEVICE_COHERENT:
1760 /*
1761 * TODO: Handle device pages which may need coordination
1762 * with device-side memory.
1763 */
1764 rc = -ENXIO;
1765 goto unlock;
1766 default:
1767 break;
1768 }
1769
1770 /*
1771 * Use this flag as an indication that the dax page has been
1772 * remapped UC to prevent speculative consumption of poison.
1773 */
91e79d22 1774 SetPageHWPoison(&folio->page);
00cc790e
SR
1775
1776 /*
1777 * Unlike System-RAM there is no possibility to swap in a
1778 * different physical page at a given virtual address, so all
1779 * userspace consumption of ZONE_DEVICE memory necessitates
1780 * SIGBUS (i.e. MF_MUST_KILL)
1781 */
1782 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
376907f3 1783 collect_procs(folio, &folio->page, &to_kill, true);
00cc790e 1784
91e79d22 1785 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
00cc790e 1786unlock:
91e79d22 1787 dax_unlock_folio(folio, cookie);
00cc790e
SR
1788 return rc;
1789}
1790
c36e2024
SR
1791#ifdef CONFIG_FS_DAX
1792/**
1793 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1794 * @mapping: address_space of the file in use
1795 * @index: start pgoff of the range within the file
1796 * @count: length of the range, in unit of PAGE_SIZE
1797 * @mf_flags: memory failure flags
1798 */
1799int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1800 unsigned long count, int mf_flags)
1801{
1802 LIST_HEAD(to_kill);
1803 dax_entry_t cookie;
1804 struct page *page;
1805 size_t end = index + count;
fa422b35 1806 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
c36e2024
SR
1807
1808 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1809
1810 for (; index < end; index++) {
1811 page = NULL;
1812 cookie = dax_lock_mapping_entry(mapping, index, &page);
1813 if (!cookie)
1814 return -EBUSY;
1815 if (!page)
1816 goto unlock;
1817
fa422b35
SR
1818 if (!pre_remove)
1819 SetPageHWPoison(page);
c36e2024 1820
fa422b35
SR
1821 /*
1822 * The pre_remove case is revoking access, the memory is still
1823 * good and could theoretically be put back into service.
1824 */
1825 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
c36e2024
SR
1826 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1827 index, mf_flags);
1828unlock:
1829 dax_unlock_mapping_entry(mapping, index, cookie);
1830 }
1831 return 0;
1832}
1833EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1834#endif /* CONFIG_FS_DAX */
1835
161df60e 1836#ifdef CONFIG_HUGETLB_PAGE
b79f8eb4 1837
161df60e
NH
1838/*
1839 * Struct raw_hwp_page represents information about "raw error page",
dad6a5eb 1840 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
161df60e
NH
1841 */
1842struct raw_hwp_page {
1843 struct llist_node node;
1844 struct page *page;
1845};
1846
b02e7582 1847static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
161df60e 1848{
b02e7582 1849 return (struct llist_head *)&folio->_hugetlb_hwpoison;
161df60e
NH
1850}
1851
b79f8eb4
JY
1852bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1853{
1854 struct llist_head *raw_hwp_head;
1855 struct raw_hwp_page *p;
1856 struct folio *folio = page_folio(page);
1857 bool ret = false;
1858
1859 if (!folio_test_hwpoison(folio))
1860 return false;
1861
1862 if (!folio_test_hugetlb(folio))
1863 return PageHWPoison(page);
1864
1865 /*
1866 * When RawHwpUnreliable is set, kernel lost track of which subpages
1867 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1868 */
1869 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1870 return true;
1871
1872 mutex_lock(&mf_mutex);
1873
1874 raw_hwp_head = raw_hwp_list_head(folio);
1875 llist_for_each_entry(p, raw_hwp_head->first, node) {
1876 if (page == p->page) {
1877 ret = true;
1878 break;
1879 }
1880 }
1881
1882 mutex_unlock(&mf_mutex);
1883
1884 return ret;
1885}
1886
0858b5eb 1887static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
161df60e 1888{
6379693e
ML
1889 struct llist_node *head;
1890 struct raw_hwp_page *p, *next;
ac5fcde0 1891 unsigned long count = 0;
161df60e 1892
9e130c4b 1893 head = llist_del_all(raw_hwp_list_head(folio));
6379693e 1894 llist_for_each_entry_safe(p, next, head, node) {
ac5fcde0
NH
1895 if (move_flag)
1896 SetPageHWPoison(p->page);
5033091d
NH
1897 else
1898 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
161df60e 1899 kfree(p);
ac5fcde0 1900 count++;
161df60e 1901 }
ac5fcde0 1902 return count;
161df60e
NH
1903}
1904
595dd818 1905static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
161df60e
NH
1906{
1907 struct llist_head *head;
1908 struct raw_hwp_page *raw_hwp;
6379693e 1909 struct raw_hwp_page *p, *next;
595dd818 1910 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
161df60e
NH
1911
1912 /*
1913 * Once the hwpoison hugepage has lost reliable raw error info,
1914 * there is little meaning to keep additional error info precisely,
1915 * so skip to add additional raw error info.
1916 */
b02e7582 1917 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1918 return -EHWPOISON;
b02e7582 1919 head = raw_hwp_list_head(folio);
6379693e 1920 llist_for_each_entry_safe(p, next, head->first, node) {
161df60e
NH
1921 if (p->page == page)
1922 return -EHWPOISON;
1923 }
1924
1925 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1926 if (raw_hwp) {
1927 raw_hwp->page = page;
1928 llist_add(&raw_hwp->node, head);
1929 /* the first error event will be counted in action_result(). */
1930 if (ret)
a46c9304 1931 num_poisoned_pages_inc(page_to_pfn(page));
161df60e
NH
1932 } else {
1933 /*
1934 * Failed to save raw error info. We no longer trace all
1935 * hwpoisoned subpages, and we need refuse to free/dissolve
1936 * this hwpoisoned hugepage.
1937 */
b02e7582 1938 folio_set_hugetlb_raw_hwp_unreliable(folio);
161df60e 1939 /*
b02e7582 1940 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
161df60e
NH
1941 * used any more, so free it.
1942 */
0858b5eb 1943 __folio_free_raw_hwp(folio, false);
161df60e
NH
1944 }
1945 return ret;
1946}
1947
9637d7df 1948static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
ac5fcde0
NH
1949{
1950 /*
9637d7df 1951 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
ac5fcde0
NH
1952 * pages for tail pages are required but they don't exist.
1953 */
9637d7df 1954 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
ac5fcde0
NH
1955 return 0;
1956
1957 /*
9637d7df 1958 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
ac5fcde0
NH
1959 * definition.
1960 */
9637d7df 1961 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
ac5fcde0
NH
1962 return 0;
1963
0858b5eb 1964 return __folio_free_raw_hwp(folio, move_flag);
ac5fcde0
NH
1965}
1966
2ff6cece 1967void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e 1968{
2ff6cece 1969 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
161df60e 1970 return;
92a025a7
ML
1971 if (folio_test_hugetlb_vmemmap_optimized(folio))
1972 return;
2ff6cece 1973 folio_clear_hwpoison(folio);
9637d7df 1974 folio_free_raw_hwp(folio, true);
161df60e
NH
1975}
1976
405ce051
NH
1977/*
1978 * Called from hugetlb code with hugetlb_lock held.
1979 *
1980 * Return values:
1981 * 0 - free hugepage
1982 * 1 - in-use hugepage
1983 * 2 - not a hugepage
1984 * -EBUSY - the hugepage is busy (try to retry)
1985 * -EHWPOISON - the hugepage is already hwpoisoned
1986 */
e591ef7d
NH
1987int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1988 bool *migratable_cleared)
405ce051
NH
1989{
1990 struct page *page = pfn_to_page(pfn);
4c110ec9 1991 struct folio *folio = page_folio(page);
405ce051
NH
1992 int ret = 2; /* fallback to normal page handling */
1993 bool count_increased = false;
1994
4c110ec9 1995 if (!folio_test_hugetlb(folio))
405ce051
NH
1996 goto out;
1997
1998 if (flags & MF_COUNT_INCREASED) {
1999 ret = 1;
2000 count_increased = true;
4c110ec9 2001 } else if (folio_test_hugetlb_freed(folio)) {
b283d983 2002 ret = 0;
4c110ec9
SK
2003 } else if (folio_test_hugetlb_migratable(folio)) {
2004 ret = folio_try_get(folio);
405ce051
NH
2005 if (ret)
2006 count_increased = true;
2007 } else {
2008 ret = -EBUSY;
38f6d293
NH
2009 if (!(flags & MF_NO_RETRY))
2010 goto out;
405ce051
NH
2011 }
2012
595dd818 2013 if (folio_set_hugetlb_hwpoison(folio, page)) {
405ce051
NH
2014 ret = -EHWPOISON;
2015 goto out;
2016 }
2017
e591ef7d 2018 /*
4c110ec9 2019 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
e591ef7d
NH
2020 * from being migrated by memory hotremove.
2021 */
4c110ec9
SK
2022 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2023 folio_clear_hugetlb_migratable(folio);
e591ef7d
NH
2024 *migratable_cleared = true;
2025 }
2026
405ce051
NH
2027 return ret;
2028out:
2029 if (count_increased)
4c110ec9 2030 folio_put(folio);
405ce051
NH
2031 return ret;
2032}
2033
405ce051
NH
2034/*
2035 * Taking refcount of hugetlb pages needs extra care about race conditions
2036 * with basic operations like hugepage allocation/free/demotion.
2037 * So some of prechecks for hwpoison (pinning, and testing/setting
2038 * PageHWPoison) should be done in single hugetlb_lock range.
2039 */
2040static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
0348d2eb 2041{
761ad8d7 2042 int res;
405ce051 2043 struct page *p = pfn_to_page(pfn);
bc1cfde1 2044 struct folio *folio;
761ad8d7 2045 unsigned long page_flags;
e591ef7d 2046 bool migratable_cleared = false;
761ad8d7 2047
405ce051
NH
2048 *hugetlb = 1;
2049retry:
e591ef7d 2050 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
405ce051
NH
2051 if (res == 2) { /* fallback to normal page handling */
2052 *hugetlb = 0;
2053 return 0;
2054 } else if (res == -EHWPOISON) {
96f96763 2055 pr_err("%#lx: already hardware poisoned\n", pfn);
405ce051 2056 if (flags & MF_ACTION_REQUIRED) {
bc1cfde1
SK
2057 folio = page_folio(p);
2058 res = kill_accessing_process(current, folio_pfn(folio), flags);
405ce051
NH
2059 }
2060 return res;
2061 } else if (res == -EBUSY) {
38f6d293
NH
2062 if (!(flags & MF_NO_RETRY)) {
2063 flags |= MF_NO_RETRY;
405ce051
NH
2064 goto retry;
2065 }
b66d00df 2066 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
761ad8d7
NH
2067 }
2068
bc1cfde1
SK
2069 folio = page_folio(p);
2070 folio_lock(folio);
405ce051
NH
2071
2072 if (hwpoison_filter(p)) {
2ff6cece 2073 folio_clear_hugetlb_hwpoison(folio);
e591ef7d 2074 if (migratable_cleared)
bc1cfde1
SK
2075 folio_set_hugetlb_migratable(folio);
2076 folio_unlock(folio);
f36a5543 2077 if (res == 1)
bc1cfde1 2078 folio_put(folio);
f36a5543 2079 return -EOPNOTSUPP;
405ce051
NH
2080 }
2081
405ce051
NH
2082 /*
2083 * Handling free hugepage. The possible race with hugepage allocation
2084 * or demotion can be prevented by PageHWPoison flag.
2085 */
2086 if (res == 0) {
bc1cfde1 2087 folio_unlock(folio);
ceaf8fbe 2088 if (__page_handle_poison(p) >= 0) {
405ce051
NH
2089 page_ref_inc(p);
2090 res = MF_RECOVERED;
ceaf8fbe
NH
2091 } else {
2092 res = MF_FAILED;
761ad8d7 2093 }
b66d00df 2094 return action_result(pfn, MF_MSG_FREE_HUGE, res);
761ad8d7
NH
2095 }
2096
bc1cfde1 2097 page_flags = folio->flags;
761ad8d7 2098
bc1cfde1
SK
2099 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2100 folio_unlock(folio);
b66d00df 2101 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
761ad8d7
NH
2102 }
2103
ea6d0630 2104 return identify_page_state(pfn, p, page_flags);
761ad8d7 2105}
00cc790e 2106
405ce051
NH
2107#else
2108static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2109{
2110 return 0;
2111}
00cc790e 2112
9637d7df 2113static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
ac5fcde0
NH
2114{
2115 return 0;
2116}
00cc790e 2117#endif /* CONFIG_HUGETLB_PAGE */
761ad8d7 2118
b5f1fc98
KW
2119/* Drop the extra refcount in case we come from madvise() */
2120static void put_ref_page(unsigned long pfn, int flags)
2121{
2122 struct page *page;
2123
2124 if (!(flags & MF_COUNT_INCREASED))
2125 return;
2126
2127 page = pfn_to_page(pfn);
2128 if (page)
2129 put_page(page);
2130}
2131
6100e34b
DW
2132static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2133 struct dev_pagemap *pgmap)
2134{
00cc790e 2135 int rc = -ENXIO;
6100e34b 2136
34dc45be 2137 /* device metadata space is not recoverable */
00cc790e 2138 if (!pgmap_pfn_valid(pgmap, pfn))
34dc45be 2139 goto out;
61e28cf0 2140
6100e34b 2141 /*
33a8f7f2
SR
2142 * Call driver's implementation to handle the memory failure, otherwise
2143 * fall back to generic handler.
6100e34b 2144 */
65d3440e 2145 if (pgmap_has_memory_failure(pgmap)) {
33a8f7f2 2146 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
6100e34b 2147 /*
33a8f7f2
SR
2148 * Fall back to generic handler too if operation is not
2149 * supported inside the driver/device/filesystem.
6100e34b 2150 */
33a8f7f2
SR
2151 if (rc != -EOPNOTSUPP)
2152 goto out;
6100e34b
DW
2153 }
2154
00cc790e 2155 rc = mf_generic_kill_procs(pfn, flags, pgmap);
6100e34b
DW
2156out:
2157 /* drop pgmap ref acquired in caller */
2158 put_dev_pagemap(pgmap);
80ee7cb2
ML
2159 if (rc != -EOPNOTSUPP)
2160 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
6100e34b
DW
2161 return rc;
2162}
2163
cd42f4a3
TL
2164/**
2165 * memory_failure - Handle memory failure of a page.
2166 * @pfn: Page Number of the corrupted page
cd42f4a3
TL
2167 * @flags: fine tune action taken
2168 *
2169 * This function is called by the low level machine check code
2170 * of an architecture when it detects hardware memory corruption
2171 * of a page. It tries its best to recover, which includes
2172 * dropping pages, killing processes etc.
2173 *
2174 * The function is primarily of use for corruptions that
2175 * happen outside the current execution context (e.g. when
2176 * detected by a background scrubber)
2177 *
2178 * Must run in process context (e.g. a work queue) with interrupts
5885c6a6 2179 * enabled and no spinlocks held.
d1fe111f 2180 *
2181 * Return: 0 for successfully handled the memory error,
9113eaf3 2182 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
d1fe111f 2183 * < 0(except -EOPNOTSUPP) on failure.
cd42f4a3 2184 */
83b57531 2185int memory_failure(unsigned long pfn, int flags)
6a46079c 2186{
6a46079c 2187 struct page *p;
7af446a8 2188 struct page *hpage;
6100e34b 2189 struct dev_pagemap *pgmap;
171936dd 2190 int res = 0;
524fca1e 2191 unsigned long page_flags;
a8b2c2ce 2192 bool retry = true;
405ce051 2193 int hugetlb = 0;
6a46079c
AK
2194
2195 if (!sysctl_memory_failure_recovery)
83b57531 2196 panic("Memory failure on page %lx", pfn);
6a46079c 2197
03b122da
TL
2198 mutex_lock(&mf_mutex);
2199
67f22ba7 2200 if (!(flags & MF_SW_SIMULATED))
2201 hw_memory_failure = true;
2202
96c804a6
DH
2203 p = pfn_to_online_page(pfn);
2204 if (!p) {
03b122da
TL
2205 res = arch_memory_failure(pfn, flags);
2206 if (res == 0)
2207 goto unlock_mutex;
2208
96c804a6
DH
2209 if (pfn_valid(pfn)) {
2210 pgmap = get_dev_pagemap(pfn, NULL);
d51b6846 2211 put_ref_page(pfn, flags);
03b122da
TL
2212 if (pgmap) {
2213 res = memory_failure_dev_pagemap(pfn, flags,
2214 pgmap);
2215 goto unlock_mutex;
2216 }
96c804a6 2217 }
96f96763 2218 pr_err("%#lx: memory outside kernel control\n", pfn);
03b122da
TL
2219 res = -ENXIO;
2220 goto unlock_mutex;
6a46079c
AK
2221 }
2222
a8b2c2ce 2223try_again:
405ce051
NH
2224 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2225 if (hugetlb)
171936dd 2226 goto unlock_mutex;
171936dd 2227
6a46079c 2228 if (TestSetPageHWPoison(p)) {
96f96763 2229 pr_err("%#lx: already hardware poisoned\n", pfn);
47af12ba 2230 res = -EHWPOISON;
a3f5d80e
NH
2231 if (flags & MF_ACTION_REQUIRED)
2232 res = kill_accessing_process(current, pfn, flags);
f361e246
NH
2233 if (flags & MF_COUNT_INCREASED)
2234 put_page(p);
171936dd 2235 goto unlock_mutex;
6a46079c
AK
2236 }
2237
6a46079c
AK
2238 /*
2239 * We need/can do nothing about count=0 pages.
2240 * 1) it's a free page, and therefore in safe hand:
9cf28191 2241 * check_new_page() will be the gate keeper.
761ad8d7 2242 * 2) it's part of a non-compound high order page.
6a46079c
AK
2243 * Implies some kernel user: cannot stop them from
2244 * R/W the page; let's pray that the page has been
2245 * used and will be freed some time later.
2246 * In fact it's dangerous to directly bump up page count from 0,
1c4c3b99 2247 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
6a46079c 2248 */
0ed950d1
NH
2249 if (!(flags & MF_COUNT_INCREASED)) {
2250 res = get_hwpoison_page(p, flags);
2251 if (!res) {
2252 if (is_free_buddy_page(p)) {
2253 if (take_page_off_buddy(p)) {
2254 page_ref_inc(p);
2255 res = MF_RECOVERED;
2256 } else {
2257 /* We lost the race, try again */
2258 if (retry) {
2259 ClearPageHWPoison(p);
0ed950d1
NH
2260 retry = false;
2261 goto try_again;
2262 }
2263 res = MF_FAILED;
a8b2c2ce 2264 }
b66d00df 2265 res = action_result(pfn, MF_MSG_BUDDY, res);
0ed950d1 2266 } else {
b66d00df 2267 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
a8b2c2ce 2268 }
0ed950d1
NH
2269 goto unlock_mutex;
2270 } else if (res < 0) {
b66d00df 2271 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
0ed950d1 2272 goto unlock_mutex;
8d22ba1b 2273 }
6a46079c
AK
2274 }
2275
a363d122 2276 hpage = compound_head(p);
761ad8d7 2277 if (PageTransHuge(hpage)) {
eac96c3e
YS
2278 /*
2279 * The flag must be set after the refcount is bumped
2280 * otherwise it may race with THP split.
2281 * And the flag can't be set in get_hwpoison_page() since
2282 * it is called by soft offline too and it is just called
5885c6a6 2283 * for !MF_COUNT_INCREASED. So here seems to be the best
eac96c3e
YS
2284 * place.
2285 *
2286 * Don't need care about the above error handling paths for
2287 * get_hwpoison_page() since they handle either free page
2288 * or unhandlable page. The refcount is bumped iff the
2289 * page is a valid handlable page.
2290 */
2291 SetPageHasHWPoisoned(hpage);
2ace36f0 2292 if (try_to_split_thp_page(p) < 0) {
b66d00df 2293 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
171936dd 2294 goto unlock_mutex;
5d1fd5dc 2295 }
415c64c1 2296 VM_BUG_ON_PAGE(!page_count(p), p);
415c64c1
NH
2297 }
2298
e43c3afb
WF
2299 /*
2300 * We ignore non-LRU pages for good reasons.
2301 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 2302 * - to avoid races with __SetPageLocked()
e43c3afb
WF
2303 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2304 * The check (unnecessarily) ignores LRU pages being isolated and
2305 * walked by the page reclaim code, however that's not a big loss.
2306 */
d0505e9f 2307 shake_page(p);
e43c3afb 2308
761ad8d7 2309 lock_page(p);
847ce401 2310
f37d4298 2311 /*
75ee64b3
ML
2312 * We're only intended to deal with the non-Compound page here.
2313 * However, the page could have changed compound pages due to
2314 * race window. If this happens, we could try again to hopefully
2315 * handle the page next round.
f37d4298 2316 */
75ee64b3
ML
2317 if (PageCompound(p)) {
2318 if (retry) {
e240ac52 2319 ClearPageHWPoison(p);
75ee64b3
ML
2320 unlock_page(p);
2321 put_page(p);
2322 flags &= ~MF_COUNT_INCREASED;
2323 retry = false;
2324 goto try_again;
2325 }
b66d00df 2326 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
171936dd 2327 goto unlock_page;
f37d4298
AK
2328 }
2329
524fca1e
NH
2330 /*
2331 * We use page flags to determine what action should be taken, but
2332 * the flags can be modified by the error containment action. One
2333 * example is an mlocked page, where PG_mlocked is cleared by
4d8f7418
DH
2334 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2335 * status correctly, we save a copy of the page flags at this time.
524fca1e 2336 */
7d9d46ac 2337 page_flags = p->flags;
524fca1e 2338
7c116f2b 2339 if (hwpoison_filter(p)) {
2fe62e22 2340 ClearPageHWPoison(p);
761ad8d7 2341 unlock_page(p);
dd6e2402 2342 put_page(p);
d1fe111f 2343 res = -EOPNOTSUPP;
171936dd 2344 goto unlock_mutex;
7c116f2b 2345 }
847ce401 2346
e8675d29 2347 /*
e0650a41 2348 * __munlock_folio() may clear a writeback page's LRU flag without
e8675d29 2349 * page_lock. We need wait writeback completion for this page or it
2350 * may trigger vfs BUG while evict inode.
2351 */
b04d3eeb 2352 if (!PageLRU(p) && !PageWriteback(p))
0bc1f8b0
CY
2353 goto identify_page_state;
2354
6edd6cc6
NH
2355 /*
2356 * It's very difficult to mess with pages currently under IO
2357 * and in many cases impossible, so we just avoid it here.
2358 */
6a46079c
AK
2359 wait_on_page_writeback(p);
2360
2361 /*
2362 * Now take care of user space mappings.
6ffcd825 2363 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
6a46079c 2364 */
ed8c2f49 2365 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
b66d00df 2366 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
171936dd 2367 goto unlock_page;
1668bfd5 2368 }
6a46079c
AK
2369
2370 /*
2371 * Torn down by someone else?
2372 */
dc2a1cbf 2373 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
b66d00df 2374 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
171936dd 2375 goto unlock_page;
6a46079c
AK
2376 }
2377
0bc1f8b0 2378identify_page_state:
0348d2eb 2379 res = identify_page_state(pfn, p, page_flags);
ea6d0630
NH
2380 mutex_unlock(&mf_mutex);
2381 return res;
171936dd 2382unlock_page:
761ad8d7 2383 unlock_page(p);
171936dd
TL
2384unlock_mutex:
2385 mutex_unlock(&mf_mutex);
6a46079c
AK
2386 return res;
2387}
cd42f4a3 2388EXPORT_SYMBOL_GPL(memory_failure);
847ce401 2389
ea8f5fb8
HY
2390#define MEMORY_FAILURE_FIFO_ORDER 4
2391#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2392
2393struct memory_failure_entry {
2394 unsigned long pfn;
ea8f5fb8
HY
2395 int flags;
2396};
2397
2398struct memory_failure_cpu {
2399 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2400 MEMORY_FAILURE_FIFO_SIZE);
2401 spinlock_t lock;
2402 struct work_struct work;
2403};
2404
2405static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2406
2407/**
2408 * memory_failure_queue - Schedule handling memory failure of a page.
2409 * @pfn: Page Number of the corrupted page
ea8f5fb8
HY
2410 * @flags: Flags for memory failure handling
2411 *
2412 * This function is called by the low level hardware error handler
2413 * when it detects hardware memory corruption of a page. It schedules
2414 * the recovering of error page, including dropping pages, killing
2415 * processes etc.
2416 *
2417 * The function is primarily of use for corruptions that
2418 * happen outside the current execution context (e.g. when
2419 * detected by a background scrubber)
2420 *
2421 * Can run in IRQ context.
2422 */
83b57531 2423void memory_failure_queue(unsigned long pfn, int flags)
ea8f5fb8
HY
2424{
2425 struct memory_failure_cpu *mf_cpu;
2426 unsigned long proc_flags;
2427 struct memory_failure_entry entry = {
2428 .pfn = pfn,
ea8f5fb8
HY
2429 .flags = flags,
2430 };
2431
2432 mf_cpu = &get_cpu_var(memory_failure_cpu);
2433 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 2434 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
2435 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2436 else
96f96763 2437 pr_err("buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
2438 pfn);
2439 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2440 put_cpu_var(memory_failure_cpu);
2441}
2442EXPORT_SYMBOL_GPL(memory_failure_queue);
2443
2444static void memory_failure_work_func(struct work_struct *work)
2445{
2446 struct memory_failure_cpu *mf_cpu;
2447 struct memory_failure_entry entry = { 0, };
2448 unsigned long proc_flags;
2449 int gotten;
2450
06202231 2451 mf_cpu = container_of(work, struct memory_failure_cpu, work);
ea8f5fb8
HY
2452 for (;;) {
2453 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2454 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2455 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2456 if (!gotten)
2457 break;
cf870c70 2458 if (entry.flags & MF_SOFT_OFFLINE)
feec24a6 2459 soft_offline_page(entry.pfn, entry.flags);
cf870c70 2460 else
83b57531 2461 memory_failure(entry.pfn, entry.flags);
ea8f5fb8
HY
2462 }
2463}
2464
06202231
JM
2465/*
2466 * Process memory_failure work queued on the specified CPU.
2467 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2468 */
2469void memory_failure_queue_kick(int cpu)
2470{
2471 struct memory_failure_cpu *mf_cpu;
2472
2473 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2474 cancel_work_sync(&mf_cpu->work);
2475 memory_failure_work_func(&mf_cpu->work);
2476}
2477
ea8f5fb8
HY
2478static int __init memory_failure_init(void)
2479{
2480 struct memory_failure_cpu *mf_cpu;
2481 int cpu;
2482
2483 for_each_possible_cpu(cpu) {
2484 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2485 spin_lock_init(&mf_cpu->lock);
2486 INIT_KFIFO(mf_cpu->fifo);
2487 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2488 }
2489
97de10a9
KW
2490 register_sysctl_init("vm", memory_failure_table);
2491
ea8f5fb8
HY
2492 return 0;
2493}
2494core_initcall(memory_failure_init);
2495
96f96763
KW
2496#undef pr_fmt
2497#define pr_fmt(fmt) "" fmt
a5f65109
NH
2498#define unpoison_pr_info(fmt, pfn, rs) \
2499({ \
2500 if (__ratelimit(rs)) \
2501 pr_info(fmt, pfn); \
2502})
2503
847ce401
WF
2504/**
2505 * unpoison_memory - Unpoison a previously poisoned page
2506 * @pfn: Page number of the to be unpoisoned page
2507 *
2508 * Software-unpoison a page that has been poisoned by
2509 * memory_failure() earlier.
2510 *
2511 * This is only done on the software-level, so it only works
2512 * for linux injected failures, not real hardware failures
2513 *
2514 * Returns 0 for success, otherwise -errno.
2515 */
2516int unpoison_memory(unsigned long pfn)
2517{
9637d7df 2518 struct folio *folio;
847ce401 2519 struct page *p;
f29623e4 2520 int ret = -EBUSY, ghp;
ac5fcde0 2521 unsigned long count = 1;
5033091d 2522 bool huge = false;
a5f65109
NH
2523 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2524 DEFAULT_RATELIMIT_BURST);
847ce401
WF
2525
2526 if (!pfn_valid(pfn))
2527 return -ENXIO;
2528
2529 p = pfn_to_page(pfn);
9637d7df 2530 folio = page_folio(p);
847ce401 2531
91d00547
NH
2532 mutex_lock(&mf_mutex);
2533
67f22ba7 2534 if (hw_memory_failure) {
2535 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2536 pfn, &unpoison_rs);
2537 ret = -EOPNOTSUPP;
2538 goto unlock_mutex;
2539 }
2540
6c54312f 2541 if (!PageHWPoison(p)) {
495367c0 2542 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 2543 pfn, &unpoison_rs);
91d00547 2544 goto unlock_mutex;
847ce401
WF
2545 }
2546
a6fddef4 2547 if (folio_ref_count(folio) > 1) {
495367c0 2548 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 2549 pfn, &unpoison_rs);
91d00547 2550 goto unlock_mutex;
230ac719
NH
2551 }
2552
7a8817f2
ML
2553 if (folio_test_slab(folio) || PageTable(&folio->page) ||
2554 folio_test_reserved(folio) || PageOffline(&folio->page))
faeb2ff2
ML
2555 goto unlock_mutex;
2556
2557 /*
2558 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2559 * in folio_mapped() has to be done after folio_test_slab() is checked.
2560 */
a6fddef4 2561 if (folio_mapped(folio)) {
495367c0 2562 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 2563 pfn, &unpoison_rs);
91d00547 2564 goto unlock_mutex;
230ac719
NH
2565 }
2566
a6fddef4 2567 if (folio_mapping(folio)) {
495367c0 2568 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 2569 pfn, &unpoison_rs);
91d00547 2570 goto unlock_mutex;
0cea3fdc
WL
2571 }
2572
f29623e4
ML
2573 ghp = get_hwpoison_page(p, MF_UNPOISON);
2574 if (!ghp) {
ac5fcde0 2575 if (PageHuge(p)) {
5033091d 2576 huge = true;
9637d7df 2577 count = folio_free_raw_hwp(folio, false);
f29623e4 2578 if (count == 0)
ac5fcde0 2579 goto unlock_mutex;
ac5fcde0 2580 }
a6fddef4 2581 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
f29623e4
ML
2582 } else if (ghp < 0) {
2583 if (ghp == -EHWPOISON) {
c8bd84f7 2584 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
f29623e4
ML
2585 } else {
2586 ret = ghp;
bf181c58
NH
2587 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2588 pfn, &unpoison_rs);
f29623e4 2589 }
bf181c58 2590 } else {
ac5fcde0 2591 if (PageHuge(p)) {
5033091d 2592 huge = true;
9637d7df 2593 count = folio_free_raw_hwp(folio, false);
ac5fcde0 2594 if (count == 0) {
a6fddef4 2595 folio_put(folio);
ac5fcde0
NH
2596 goto unlock_mutex;
2597 }
2598 }
847ce401 2599
a6fddef4 2600 folio_put(folio);
e0ff4280 2601 if (TestClearPageHWPoison(p)) {
a6fddef4 2602 folio_put(folio);
bf181c58
NH
2603 ret = 0;
2604 }
2605 }
847ce401 2606
91d00547
NH
2607unlock_mutex:
2608 mutex_unlock(&mf_mutex);
e0ff4280 2609 if (!ret) {
5033091d
NH
2610 if (!huge)
2611 num_poisoned_pages_sub(pfn, 1);
c8bd84f7 2612 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2613 page_to_pfn(p), &unpoison_rs);
2614 }
91d00547 2615 return ret;
847ce401
WF
2616}
2617EXPORT_SYMBOL(unpoison_memory);
facb6011 2618
761d79fb 2619static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
d950b958 2620{
6b9a217e 2621 bool isolated = false;
d950b958 2622
761d79fb
MWO
2623 if (folio_test_hugetlb(folio)) {
2624 isolated = isolate_hugetlb(folio, pagelist);
6b9a217e 2625 } else {
761d79fb 2626 bool lru = !__folio_test_movable(folio);
da294991 2627
6b9a217e 2628 if (lru)
761d79fb 2629 isolated = folio_isolate_lru(folio);
6b9a217e 2630 else
761d79fb 2631 isolated = isolate_movable_page(&folio->page,
cd775580 2632 ISOLATE_UNEVICTABLE);
6b9a217e 2633
da294991 2634 if (isolated) {
761d79fb 2635 list_add(&folio->lru, pagelist);
da294991 2636 if (lru)
761d79fb
MWO
2637 node_stat_add_folio(folio, NR_ISOLATED_ANON +
2638 folio_is_file_lru(folio));
da294991 2639 }
0ebff32c 2640 }
d950b958 2641
03613808 2642 /*
761d79fb
MWO
2643 * If we succeed to isolate the folio, we grabbed another refcount on
2644 * the folio, so we can safely drop the one we got from get_any_page().
2645 * If we failed to isolate the folio, it means that we cannot go further
6b9a217e 2646 * and we will return an error, so drop the reference we got from
5885c6a6 2647 * get_any_page() as well.
03613808 2648 */
761d79fb 2649 folio_put(folio);
6b9a217e 2650 return isolated;
d950b958
NH
2651}
2652
6b9a217e 2653/*
48309e1f 2654 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
6b9a217e
OS
2655 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2656 * If the page is mapped, it migrates the contents over.
2657 */
48309e1f 2658static int soft_offline_in_use_page(struct page *page)
af8fae7c 2659{
d6c75dc2 2660 long ret = 0;
af8fae7c 2661 unsigned long pfn = page_to_pfn(page);
049b2604 2662 struct folio *folio = page_folio(page);
6b9a217e 2663 char const *msg_page[] = {"page", "hugepage"};
049b2604 2664 bool huge = folio_test_hugetlb(folio);
6b9a217e 2665 LIST_HEAD(pagelist);
54608759
JK
2666 struct migration_target_control mtc = {
2667 .nid = NUMA_NO_NODE,
2668 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2669 };
facb6011 2670
049b2604 2671 if (!huge && folio_test_large(folio)) {
48309e1f
KW
2672 if (try_to_split_thp_page(page)) {
2673 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2674 return -EBUSY;
2675 }
049b2604 2676 folio = page_folio(page);
48309e1f
KW
2677 }
2678
049b2604 2679 folio_lock(folio);
55c7ac45 2680 if (!huge)
049b2604 2681 folio_wait_writeback(folio);
af8fae7c 2682 if (PageHWPoison(page)) {
049b2604
MWO
2683 folio_unlock(folio);
2684 folio_put(folio);
af8fae7c 2685 pr_info("soft offline: %#lx page already poisoned\n", pfn);
5a2ffca3 2686 return 0;
af8fae7c 2687 }
6b9a217e 2688
049b2604 2689 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
6b9a217e
OS
2690 /*
2691 * Try to invalidate first. This should work for
2692 * non dirty unmapped page cache pages.
2693 */
049b2604
MWO
2694 ret = mapping_evict_folio(folio_mapping(folio), folio);
2695 folio_unlock(folio);
6b9a217e 2696
6b9a217e 2697 if (ret) {
fb46e735 2698 pr_info("soft_offline: %#lx: invalidated\n", pfn);
6b9a217e 2699 page_handle_poison(page, false, true);
af8fae7c 2700 return 0;
facb6011
AK
2701 }
2702
761d79fb 2703 if (mf_isolate_folio(folio, &pagelist)) {
54608759 2704 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
5ac95884 2705 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
79f5f8fa 2706 if (!ret) {
6b9a217e
OS
2707 bool release = !huge;
2708
2709 if (!page_handle_poison(page, huge, release))
2710 ret = -EBUSY;
79f5f8fa 2711 } else {
85fbe5d1
YX
2712 if (!list_empty(&pagelist))
2713 putback_movable_pages(&pagelist);
59c82b70 2714
d6c75dc2 2715 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
23efd080 2716 pfn, msg_page[huge], ret, &page->flags);
facb6011 2717 if (ret > 0)
3f4b815a 2718 ret = -EBUSY;
facb6011
AK
2719 }
2720 } else {
23efd080
MWO
2721 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2722 pfn, msg_page[huge], page_count(page), &page->flags);
6b9a217e 2723 ret = -EBUSY;
facb6011 2724 }
facb6011
AK
2725 return ret;
2726}
86e05773
WL
2727
2728/**
2729 * soft_offline_page - Soft offline a page.
feec24a6 2730 * @pfn: pfn to soft-offline
86e05773
WL
2731 * @flags: flags. Same as memory_failure().
2732 *
9113eaf3 2733 * Returns 0 on success
2734 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2735 * < 0 otherwise negated errno.
86e05773
WL
2736 *
2737 * Soft offline a page, by migration or invalidation,
2738 * without killing anything. This is for the case when
2739 * a page is not corrupted yet (so it's still valid to access),
2740 * but has had a number of corrected errors and is better taken
2741 * out.
2742 *
2743 * The actual policy on when to do that is maintained by
2744 * user space.
2745 *
2746 * This should never impact any application or cause data loss,
2747 * however it might take some time.
2748 *
2749 * This is not a 100% solution for all memory, but tries to be
2750 * ``good enough'' for the majority of memory.
2751 */
feec24a6 2752int soft_offline_page(unsigned long pfn, int flags)
86e05773
WL
2753{
2754 int ret;
b94e0282 2755 bool try_again = true;
b5f1fc98 2756 struct page *page;
dad4e5b3 2757
183a7c5d
KW
2758 if (!pfn_valid(pfn)) {
2759 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
feec24a6 2760 return -ENXIO;
183a7c5d 2761 }
dad4e5b3 2762
feec24a6
NH
2763 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2764 page = pfn_to_online_page(pfn);
dad4e5b3 2765 if (!page) {
b5f1fc98 2766 put_ref_page(pfn, flags);
86a66810 2767 return -EIO;
dad4e5b3 2768 }
86a66810 2769
91d00547
NH
2770 mutex_lock(&mf_mutex);
2771
86e05773 2772 if (PageHWPoison(page)) {
8295d535 2773 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
b5f1fc98 2774 put_ref_page(pfn, flags);
91d00547 2775 mutex_unlock(&mf_mutex);
5a2ffca3 2776 return 0;
86e05773 2777 }
86e05773 2778
b94e0282 2779retry:
bfc8c901 2780 get_online_mems();
bf6445bc 2781 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
bfc8c901 2782 put_online_mems();
4e41a30c 2783
9113eaf3 2784 if (hwpoison_filter(page)) {
2785 if (ret > 0)
2786 put_page(page);
9113eaf3 2787
2788 mutex_unlock(&mf_mutex);
2789 return -EOPNOTSUPP;
2790 }
2791
8295d535 2792 if (ret > 0) {
6b9a217e 2793 ret = soft_offline_in_use_page(page);
8295d535 2794 } else if (ret == 0) {
e2c1ab07
ML
2795 if (!page_handle_poison(page, true, false)) {
2796 if (try_again) {
2797 try_again = false;
2798 flags &= ~MF_COUNT_INCREASED;
2799 goto retry;
2800 }
2801 ret = -EBUSY;
b94e0282 2802 }
8295d535 2803 }
4e41a30c 2804
91d00547
NH
2805 mutex_unlock(&mf_mutex);
2806
86e05773
WL
2807 return ret;
2808}